|
|
import numpy
|
|
|
|
|
|
from jroproc_base import ProcessingUnit, Operation
|
|
|
from schainpy.model.data.jrodata import Spectra
|
|
|
from schainpy.model.data.jrodata import hildebrand_sekhon
|
|
|
|
|
|
class SpectraLagsProc(ProcessingUnit):
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
ProcessingUnit.__init__(self, **kwargs)
|
|
|
|
|
|
self.__input_buffer = None
|
|
|
self.firstdatatime = None
|
|
|
self.profIndex = 0
|
|
|
self.dataOut = Spectra()
|
|
|
self.id_min = None
|
|
|
self.id_max = None
|
|
|
self.__codeIndex = 0
|
|
|
|
|
|
self.__lags_buffer = None
|
|
|
|
|
|
def __updateSpecFromVoltage(self):
|
|
|
|
|
|
self.dataOut.plotting = "spectra_lags"
|
|
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
|
|
|
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
|
self.dataOut.ippSeconds = self.dataIn.getDeltaH()*(10**-6)/0.15
|
|
|
|
|
|
self.dataOut.channelList = self.dataIn.channelList
|
|
|
self.dataOut.heightList = self.dataIn.heightList
|
|
|
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
|
|
|
|
|
|
self.dataOut.nBaud = self.dataIn.nBaud
|
|
|
self.dataOut.nCode = self.dataIn.nCode
|
|
|
self.dataOut.code = self.dataIn.code
|
|
|
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
|
|
|
|
|
|
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
|
|
|
self.dataOut.utctime = self.firstdatatime
|
|
|
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
|
|
|
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
|
|
|
self.dataOut.flagShiftFFT = False
|
|
|
|
|
|
self.dataOut.nCohInt = self.dataIn.nCohInt
|
|
|
self.dataOut.nIncohInt = 1
|
|
|
|
|
|
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
|
|
|
|
self.dataOut.frequency = self.dataIn.frequency
|
|
|
self.dataOut.realtime = self.dataIn.realtime
|
|
|
|
|
|
self.dataOut.azimuth = self.dataIn.azimuth
|
|
|
self.dataOut.zenith = self.dataIn.zenith
|
|
|
|
|
|
self.dataOut.beam.codeList = self.dataIn.beam.codeList
|
|
|
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
|
|
|
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
|
|
|
|
|
|
def __createLagsBlock(self, voltages):
|
|
|
|
|
|
if self.__lags_buffer is None:
|
|
|
self.__lags_buffer = numpy.zeros((self.dataOut.nChannels, self.dataOut.nProfiles, self.dataOut.nHeights), dtype='complex')
|
|
|
|
|
|
nsegments = self.dataOut.nHeights - self.dataOut.nProfiles
|
|
|
|
|
|
# codes = numpy.conjugate(self.__input_buffer[:,9:169])/10000
|
|
|
|
|
|
for i in range(nsegments):
|
|
|
self.__lags_buffer[:,:,i] = voltages[:,i:i+self.dataOut.nProfiles]#*codes
|
|
|
|
|
|
return self.__lags_buffer
|
|
|
|
|
|
def __decodeData(self, volt_buffer, pulseIndex=None):
|
|
|
|
|
|
if pulseIndex is None:
|
|
|
return volt_buffer
|
|
|
|
|
|
codes = numpy.conjugate(self.__input_buffer[:,pulseIndex[0]:pulseIndex[1]])/10000
|
|
|
|
|
|
nsegments = self.dataOut.nHeights - self.dataOut.nProfiles
|
|
|
|
|
|
for i in range(nsegments):
|
|
|
volt_buffer[:,:,i] = volt_buffer[:,:,i]*codes
|
|
|
|
|
|
return volt_buffer
|
|
|
|
|
|
def __getFft(self, datablock):
|
|
|
"""
|
|
|
Convierte valores de Voltaje a Spectra
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.data_cspc
|
|
|
self.dataOut.data_dc
|
|
|
self.dataOut.heightList
|
|
|
self.profIndex
|
|
|
self.__input_buffer
|
|
|
self.dataOut.flagNoData
|
|
|
"""
|
|
|
|
|
|
fft_volt = numpy.fft.fft(datablock, n=self.dataOut.nFFTPoints, axis=1)
|
|
|
|
|
|
dc = fft_volt[:,0,:]
|
|
|
|
|
|
#calculo de self-spectra
|
|
|
fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,))
|
|
|
spc = fft_volt * numpy.conjugate(fft_volt)
|
|
|
spc = spc.real
|
|
|
|
|
|
blocksize = 0
|
|
|
blocksize += dc.size
|
|
|
blocksize += spc.size
|
|
|
|
|
|
cspc = None
|
|
|
pairIndex = 0
|
|
|
|
|
|
if self.dataOut.pairsList != []:
|
|
|
#calculo de cross-spectra
|
|
|
cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
|
|
|
for pair in self.dataOut.pairsList:
|
|
|
if pair[0] not in self.dataOut.channelList:
|
|
|
raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
|
|
|
if pair[1] not in self.dataOut.channelList:
|
|
|
raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList))
|
|
|
|
|
|
chan_index0 = self.dataOut.channelList.index(pair[0])
|
|
|
chan_index1 = self.dataOut.channelList.index(pair[1])
|
|
|
|
|
|
cspc[pairIndex,:,:] = fft_volt[chan_index0,:,:] * numpy.conjugate(fft_volt[chan_index1,:,:])
|
|
|
pairIndex += 1
|
|
|
blocksize += cspc.size
|
|
|
|
|
|
self.dataOut.data_spc = spc
|
|
|
self.dataOut.data_cspc = cspc
|
|
|
self.dataOut.data_dc = dc
|
|
|
self.dataOut.blockSize = blocksize
|
|
|
self.dataOut.flagShiftFFT = True
|
|
|
|
|
|
def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], code=None, nCode=None, nBaud=None, codeFromHeader=False, pulseIndex=None):
|
|
|
|
|
|
self.dataOut.flagNoData = True
|
|
|
|
|
|
self.code = None
|
|
|
|
|
|
if codeFromHeader:
|
|
|
if self.dataIn.code is not None:
|
|
|
self.code = self.dataIn.code
|
|
|
|
|
|
if code is not None:
|
|
|
self.code = numpy.array(code).reshape(nCode,nBaud)
|
|
|
|
|
|
if self.dataIn.type == "Voltage":
|
|
|
|
|
|
if nFFTPoints == None:
|
|
|
raise ValueError, "This SpectraProc.run() need nFFTPoints input variable"
|
|
|
|
|
|
if nProfiles == None:
|
|
|
nProfiles = nFFTPoints
|
|
|
|
|
|
self.profIndex == nProfiles
|
|
|
self.firstdatatime = self.dataIn.utctime
|
|
|
|
|
|
self.dataOut.ippFactor = 1
|
|
|
self.dataOut.nFFTPoints = nFFTPoints
|
|
|
self.dataOut.nProfiles = nProfiles
|
|
|
self.dataOut.pairsList = pairsList
|
|
|
|
|
|
self.__updateSpecFromVoltage()
|
|
|
|
|
|
if not self.dataIn.flagDataAsBlock:
|
|
|
self.__input_buffer = self.dataIn.data.copy()
|
|
|
|
|
|
lags_block = self.__createLagsBlock(self.__input_buffer)
|
|
|
|
|
|
lags_block = self.__decodeData(lags_block, pulseIndex)
|
|
|
|
|
|
else:
|
|
|
self.__input_buffer = self.dataIn.data.copy()
|
|
|
|
|
|
self.__getFft(lags_block)
|
|
|
|
|
|
self.dataOut.flagNoData = False
|
|
|
|
|
|
return True
|
|
|
|
|
|
raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type)
|
|
|
|
|
|
def __selectPairs(self, pairsList):
|
|
|
|
|
|
if channelList == None:
|
|
|
return
|
|
|
|
|
|
pairsIndexListSelected = []
|
|
|
|
|
|
for thisPair in pairsList:
|
|
|
|
|
|
if thisPair not in self.dataOut.pairsList:
|
|
|
continue
|
|
|
|
|
|
pairIndex = self.dataOut.pairsList.index(thisPair)
|
|
|
|
|
|
pairsIndexListSelected.append(pairIndex)
|
|
|
|
|
|
if not pairsIndexListSelected:
|
|
|
self.dataOut.data_cspc = None
|
|
|
self.dataOut.pairsList = []
|
|
|
return
|
|
|
|
|
|
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
|
|
|
self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
|
|
|
|
|
|
return
|
|
|
|
|
|
def __selectPairsByChannel(self, channelList=None):
|
|
|
|
|
|
if channelList == None:
|
|
|
return
|
|
|
|
|
|
pairsIndexListSelected = []
|
|
|
for pairIndex in self.dataOut.pairsIndexList:
|
|
|
#First pair
|
|
|
if self.dataOut.pairsList[pairIndex][0] not in channelList:
|
|
|
continue
|
|
|
#Second pair
|
|
|
if self.dataOut.pairsList[pairIndex][1] not in channelList:
|
|
|
continue
|
|
|
|
|
|
pairsIndexListSelected.append(pairIndex)
|
|
|
|
|
|
if not pairsIndexListSelected:
|
|
|
self.dataOut.data_cspc = None
|
|
|
self.dataOut.pairsList = []
|
|
|
return
|
|
|
|
|
|
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
|
|
|
self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected]
|
|
|
|
|
|
return
|
|
|
|
|
|
def selectChannels(self, channelList):
|
|
|
|
|
|
channelIndexList = []
|
|
|
|
|
|
for channel in channelList:
|
|
|
if channel not in self.dataOut.channelList:
|
|
|
raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList))
|
|
|
|
|
|
index = self.dataOut.channelList.index(channel)
|
|
|
channelIndexList.append(index)
|
|
|
|
|
|
self.selectChannelsByIndex(channelIndexList)
|
|
|
|
|
|
def selectChannelsByIndex(self, channelIndexList):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a canales segun el channelIndexList
|
|
|
|
|
|
Input:
|
|
|
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.channelIndexList
|
|
|
self.dataOut.nChannels
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
for channelIndex in channelIndexList:
|
|
|
if channelIndex not in self.dataOut.channelIndexList:
|
|
|
raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList)
|
|
|
|
|
|
# nChannels = len(channelIndexList)
|
|
|
|
|
|
data_spc = self.dataOut.data_spc[channelIndexList,:]
|
|
|
data_dc = self.dataOut.data_dc[channelIndexList,:]
|
|
|
|
|
|
self.dataOut.data_spc = data_spc
|
|
|
self.dataOut.data_dc = data_dc
|
|
|
|
|
|
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
|
|
|
# self.dataOut.nChannels = nChannels
|
|
|
|
|
|
self.__selectPairsByChannel(self.dataOut.channelList)
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def selectHeights(self, minHei, maxHei):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
|
|
|
minHei <= height <= maxHei
|
|
|
|
|
|
Input:
|
|
|
minHei : valor minimo de altura a considerar
|
|
|
maxHei : valor maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
|
|
|
if (minHei > maxHei):
|
|
|
raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)
|
|
|
|
|
|
if (minHei < self.dataOut.heightList[0]):
|
|
|
minHei = self.dataOut.heightList[0]
|
|
|
|
|
|
if (maxHei > self.dataOut.heightList[-1]):
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
|
|
|
minIndex = 0
|
|
|
maxIndex = 0
|
|
|
heights = self.dataOut.heightList
|
|
|
|
|
|
inda = numpy.where(heights >= minHei)
|
|
|
indb = numpy.where(heights <= maxHei)
|
|
|
|
|
|
try:
|
|
|
minIndex = inda[0][0]
|
|
|
except:
|
|
|
minIndex = 0
|
|
|
|
|
|
try:
|
|
|
maxIndex = indb[0][-1]
|
|
|
except:
|
|
|
maxIndex = len(heights)
|
|
|
|
|
|
self.selectHeightsByIndex(minIndex, maxIndex)
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
|
|
|
newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
|
|
|
|
|
|
if hei_ref != None:
|
|
|
newheis = numpy.where(self.dataOut.heightList>hei_ref)
|
|
|
|
|
|
minIndex = min(newheis[0])
|
|
|
maxIndex = max(newheis[0])
|
|
|
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
|
|
|
heightList = self.dataOut.heightList[minIndex:maxIndex+1]
|
|
|
|
|
|
# determina indices
|
|
|
nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
|
|
|
avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
|
|
|
beacon_dB = numpy.sort(avg_dB)[-nheis:]
|
|
|
beacon_heiIndexList = []
|
|
|
for val in avg_dB.tolist():
|
|
|
if val >= beacon_dB[0]:
|
|
|
beacon_heiIndexList.append(avg_dB.tolist().index(val))
|
|
|
|
|
|
#data_spc = data_spc[:,:,beacon_heiIndexList]
|
|
|
data_cspc = None
|
|
|
if self.dataOut.data_cspc is not None:
|
|
|
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
|
|
|
#data_cspc = data_cspc[:,:,beacon_heiIndexList]
|
|
|
|
|
|
data_dc = None
|
|
|
if self.dataOut.data_dc is not None:
|
|
|
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
|
|
|
#data_dc = data_dc[:,beacon_heiIndexList]
|
|
|
|
|
|
self.dataOut.data_spc = data_spc
|
|
|
self.dataOut.data_cspc = data_cspc
|
|
|
self.dataOut.data_dc = data_dc
|
|
|
self.dataOut.heightList = heightList
|
|
|
self.dataOut.beacon_heiIndexList = beacon_heiIndexList
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def selectHeightsByIndex(self, minIndex, maxIndex):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
|
|
|
minIndex <= index <= maxIndex
|
|
|
|
|
|
Input:
|
|
|
minIndex : valor de indice minimo de altura a considerar
|
|
|
maxIndex : valor de indice maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.data_cspc
|
|
|
self.dataOut.data_dc
|
|
|
self.dataOut.heightList
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
|
|
|
if (minIndex < 0) or (minIndex > maxIndex):
|
|
|
raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)
|
|
|
|
|
|
if (maxIndex >= self.dataOut.nHeights):
|
|
|
maxIndex = self.dataOut.nHeights-1
|
|
|
|
|
|
#Spectra
|
|
|
data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
|
|
|
|
|
|
data_cspc = None
|
|
|
if self.dataOut.data_cspc is not None:
|
|
|
data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
|
|
|
|
|
|
data_dc = None
|
|
|
if self.dataOut.data_dc is not None:
|
|
|
data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
|
|
|
|
|
|
self.dataOut.data_spc = data_spc
|
|
|
self.dataOut.data_cspc = data_cspc
|
|
|
self.dataOut.data_dc = data_dc
|
|
|
|
|
|
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def removeDC(self, mode = 2):
|
|
|
jspectra = self.dataOut.data_spc
|
|
|
jcspectra = self.dataOut.data_cspc
|
|
|
|
|
|
|
|
|
num_chan = jspectra.shape[0]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
if jcspectra is not None:
|
|
|
jcspectraExist = True
|
|
|
num_pairs = jcspectra.shape[0]
|
|
|
else: jcspectraExist = False
|
|
|
|
|
|
freq_dc = jspectra.shape[1]/2
|
|
|
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
|
|
|
|
|
|
if ind_vel[0]<0:
|
|
|
ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
|
|
|
|
|
|
if mode == 1:
|
|
|
jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
|
|
|
|
|
|
if jcspectraExist:
|
|
|
jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
|
|
|
|
|
|
if mode == 2:
|
|
|
|
|
|
vel = numpy.array([-2,-1,1,2])
|
|
|
xx = numpy.zeros([4,4])
|
|
|
|
|
|
for fil in range(4):
|
|
|
xx[fil,:] = vel[fil]**numpy.asarray(range(4))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx_aux = xx_inv[0,:]
|
|
|
|
|
|
for ich in range(num_chan):
|
|
|
yy = jspectra[ich,ind_vel,:]
|
|
|
jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
|
|
|
|
|
|
junkid = jspectra[ich,freq_dc,:]<=0
|
|
|
cjunkid = sum(junkid)
|
|
|
|
|
|
if cjunkid.any():
|
|
|
jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
|
|
|
|
|
|
if jcspectraExist:
|
|
|
for ip in range(num_pairs):
|
|
|
yy = jcspectra[ip,ind_vel,:]
|
|
|
jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
|
|
|
|
|
|
|
|
|
self.dataOut.data_spc = jspectra
|
|
|
self.dataOut.data_cspc = jcspectra
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
|
|
|
|
|
|
jspectra = self.dataOut.data_spc
|
|
|
jcspectra = self.dataOut.data_cspc
|
|
|
jnoise = self.dataOut.getNoise()
|
|
|
num_incoh = self.dataOut.nIncohInt
|
|
|
|
|
|
num_channel = jspectra.shape[0]
|
|
|
num_prof = jspectra.shape[1]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
#hei_interf
|
|
|
if hei_interf is None:
|
|
|
count_hei = num_hei/2 #Como es entero no importa
|
|
|
hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
|
|
|
hei_interf = numpy.asarray(hei_interf)[0]
|
|
|
#nhei_interf
|
|
|
if (nhei_interf == None):
|
|
|
nhei_interf = 5
|
|
|
if (nhei_interf < 1):
|
|
|
nhei_interf = 1
|
|
|
if (nhei_interf > count_hei):
|
|
|
nhei_interf = count_hei
|
|
|
if (offhei_interf == None):
|
|
|
offhei_interf = 0
|
|
|
|
|
|
ind_hei = range(num_hei)
|
|
|
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
|
|
|
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
|
|
|
mask_prof = numpy.asarray(range(num_prof))
|
|
|
num_mask_prof = mask_prof.size
|
|
|
comp_mask_prof = [0, num_prof/2]
|
|
|
|
|
|
|
|
|
#noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
|
|
|
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
|
|
|
jnoise = numpy.nan
|
|
|
noise_exist = jnoise[0] < numpy.Inf
|
|
|
|
|
|
#Subrutina de Remocion de la Interferencia
|
|
|
for ich in range(num_channel):
|
|
|
#Se ordena los espectros segun su potencia (menor a mayor)
|
|
|
power = jspectra[ich,mask_prof,:]
|
|
|
power = power[:,hei_interf]
|
|
|
power = power.sum(axis = 0)
|
|
|
psort = power.ravel().argsort()
|
|
|
|
|
|
#Se estima la interferencia promedio en los Espectros de Potencia empleando
|
|
|
junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]]
|
|
|
|
|
|
if noise_exist:
|
|
|
# tmp_noise = jnoise[ich] / num_prof
|
|
|
tmp_noise = jnoise[ich]
|
|
|
junkspc_interf = junkspc_interf - tmp_noise
|
|
|
#junkspc_interf[:,comp_mask_prof] = 0
|
|
|
|
|
|
jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
|
|
|
jspc_interf = jspc_interf.transpose()
|
|
|
#Calculando el espectro de interferencia promedio
|
|
|
noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh))
|
|
|
noiseid = noiseid[0]
|
|
|
cnoiseid = noiseid.size
|
|
|
interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh))
|
|
|
interfid = interfid[0]
|
|
|
cinterfid = interfid.size
|
|
|
|
|
|
if (cnoiseid > 0): jspc_interf[noiseid] = 0
|
|
|
|
|
|
#Expandiendo los perfiles a limpiar
|
|
|
if (cinterfid > 0):
|
|
|
new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
|
|
|
new_interfid = numpy.asarray(new_interfid)
|
|
|
new_interfid = {x for x in new_interfid}
|
|
|
new_interfid = numpy.array(list(new_interfid))
|
|
|
new_cinterfid = new_interfid.size
|
|
|
else: new_cinterfid = 0
|
|
|
|
|
|
for ip in range(new_cinterfid):
|
|
|
ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
|
|
|
jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
|
|
|
|
|
|
|
|
|
jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
|
|
|
|
|
|
#Removiendo la interferencia del punto de mayor interferencia
|
|
|
ListAux = jspc_interf[mask_prof].tolist()
|
|
|
maxid = ListAux.index(max(ListAux))
|
|
|
|
|
|
|
|
|
if cinterfid > 0:
|
|
|
for ip in range(cinterfid*(interf == 2) - 1):
|
|
|
ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero()
|
|
|
cind = len(ind)
|
|
|
|
|
|
if (cind > 0):
|
|
|
jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh))
|
|
|
|
|
|
ind = numpy.array([-2,-1,1,2])
|
|
|
xx = numpy.zeros([4,4])
|
|
|
|
|
|
for id1 in range(4):
|
|
|
xx[:,id1] = ind[id1]**numpy.asarray(range(4))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx = xx_inv[:,0]
|
|
|
ind = (ind + maxid + num_mask_prof)%num_mask_prof
|
|
|
yy = jspectra[ich,mask_prof[ind],:]
|
|
|
jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
|
|
|
|
|
|
|
|
|
indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero()
|
|
|
jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh))
|
|
|
|
|
|
#Remocion de Interferencia en el Cross Spectra
|
|
|
if jcspectra is None: return jspectra, jcspectra
|
|
|
num_pairs = jcspectra.size/(num_prof*num_hei)
|
|
|
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
|
|
|
|
|
|
for ip in range(num_pairs):
|
|
|
|
|
|
#-------------------------------------------
|
|
|
|
|
|
cspower = numpy.abs(jcspectra[ip,mask_prof,:])
|
|
|
cspower = cspower[:,hei_interf]
|
|
|
cspower = cspower.sum(axis = 0)
|
|
|
|
|
|
cspsort = cspower.ravel().argsort()
|
|
|
junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]]
|
|
|
junkcspc_interf = junkcspc_interf.transpose()
|
|
|
jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
|
|
|
|
|
|
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
|
|
|
|
|
|
median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
|
|
|
median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
|
|
|
junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
|
|
|
|
|
|
for iprof in range(num_prof):
|
|
|
ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
|
|
|
jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
|
|
|
|
|
|
#Removiendo la Interferencia
|
|
|
jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
|
|
|
|
|
|
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
|
|
|
maxid = ListAux.index(max(ListAux))
|
|
|
|
|
|
ind = numpy.array([-2,-1,1,2])
|
|
|
xx = numpy.zeros([4,4])
|
|
|
|
|
|
for id1 in range(4):
|
|
|
xx[:,id1] = ind[id1]**numpy.asarray(range(4))
|
|
|
|
|
|
xx_inv = numpy.linalg.inv(xx)
|
|
|
xx = xx_inv[:,0]
|
|
|
|
|
|
ind = (ind + maxid + num_mask_prof)%num_mask_prof
|
|
|
yy = jcspectra[ip,mask_prof[ind],:]
|
|
|
jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
|
|
|
|
|
|
#Guardar Resultados
|
|
|
self.dataOut.data_spc = jspectra
|
|
|
self.dataOut.data_cspc = jcspectra
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def setRadarFrequency(self, frequency=None):
|
|
|
|
|
|
if frequency != None:
|
|
|
self.dataOut.frequency = frequency
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
|
|
|
#validacion de rango
|
|
|
if minHei == None:
|
|
|
minHei = self.dataOut.heightList[0]
|
|
|
|
|
|
if maxHei == None:
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
|
|
|
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
|
|
|
print 'minHei: %.2f is out of the heights range'%(minHei)
|
|
|
print 'minHei is setting to %.2f'%(self.dataOut.heightList[0])
|
|
|
minHei = self.dataOut.heightList[0]
|
|
|
|
|
|
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
|
|
|
print 'maxHei: %.2f is out of the heights range'%(maxHei)
|
|
|
print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1])
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
|
|
|
# validacion de velocidades
|
|
|
velrange = self.dataOut.getVelRange(1)
|
|
|
|
|
|
if minVel == None:
|
|
|
minVel = velrange[0]
|
|
|
|
|
|
if maxVel == None:
|
|
|
maxVel = velrange[-1]
|
|
|
|
|
|
if (minVel < velrange[0]) or (minVel > maxVel):
|
|
|
print 'minVel: %.2f is out of the velocity range'%(minVel)
|
|
|
print 'minVel is setting to %.2f'%(velrange[0])
|
|
|
minVel = velrange[0]
|
|
|
|
|
|
if (maxVel > velrange[-1]) or (maxVel < minVel):
|
|
|
print 'maxVel: %.2f is out of the velocity range'%(maxVel)
|
|
|
print 'maxVel is setting to %.2f'%(velrange[-1])
|
|
|
maxVel = velrange[-1]
|
|
|
|
|
|
# seleccion de indices para rango
|
|
|
minIndex = 0
|
|
|
maxIndex = 0
|
|
|
heights = self.dataOut.heightList
|
|
|
|
|
|
inda = numpy.where(heights >= minHei)
|
|
|
indb = numpy.where(heights <= maxHei)
|
|
|
|
|
|
try:
|
|
|
minIndex = inda[0][0]
|
|
|
except:
|
|
|
minIndex = 0
|
|
|
|
|
|
try:
|
|
|
maxIndex = indb[0][-1]
|
|
|
except:
|
|
|
maxIndex = len(heights)
|
|
|
|
|
|
if (minIndex < 0) or (minIndex > maxIndex):
|
|
|
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
|
|
|
|
|
|
if (maxIndex >= self.dataOut.nHeights):
|
|
|
maxIndex = self.dataOut.nHeights-1
|
|
|
|
|
|
# seleccion de indices para velocidades
|
|
|
indminvel = numpy.where(velrange >= minVel)
|
|
|
indmaxvel = numpy.where(velrange <= maxVel)
|
|
|
try:
|
|
|
minIndexVel = indminvel[0][0]
|
|
|
except:
|
|
|
minIndexVel = 0
|
|
|
|
|
|
try:
|
|
|
maxIndexVel = indmaxvel[0][-1]
|
|
|
except:
|
|
|
maxIndexVel = len(velrange)
|
|
|
|
|
|
#seleccion del espectro
|
|
|
data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
|
|
|
#estimacion de ruido
|
|
|
noise = numpy.zeros(self.dataOut.nChannels)
|
|
|
|
|
|
for channel in range(self.dataOut.nChannels):
|
|
|
daux = data_spc[channel,:,:]
|
|
|
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
|
|
|
|
|
|
self.dataOut.noise_estimation = noise.copy()
|
|
|
|
|
|
return 1
|
|
|
|