##// END OF EJS Templates
Hot fix
Hot fix

File last commit:

r1162:8e271e9ed53c
r1166:ce0987c48654
Show More
jroproc_spectra.py
952 lines | 31.9 KiB | text/x-python | PythonLexer
import itertools
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Spectra
from schainpy.model.data.jrodata import hildebrand_sekhon
class SpectraProc(ProcessingUnit):
def __init__(self, **kwargs):
ProcessingUnit.__init__(self, **kwargs)
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Spectra()
self.id_min = None
self.id_max = None
def __updateSpecFromVoltage(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
try:
self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy()
except:
pass
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.firstdatatime
# asumo q la data esta decodificada
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData
# asumo q la data esta sin flip
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData
self.dataOut.flagShiftFFT = False
self.dataOut.nCohInt = self.dataIn.nCohInt
self.dataOut.nIncohInt = 1
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.realtime = self.dataIn.realtime
self.dataOut.azimuth = self.dataIn.azimuth
self.dataOut.zenith = self.dataIn.zenith
self.dataOut.beam.codeList = self.dataIn.beam.codeList
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
def __getFft(self):
"""
Convierte valores de Voltaje a Spectra
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
self.profIndex
self.buffer
self.dataOut.flagNoData
"""
fft_volt = numpy.fft.fft(
self.buffer, n=self.dataOut.nFFTPoints, axis=1)
fft_volt = fft_volt.astype(numpy.dtype('complex'))
dc = fft_volt[:, 0, :]
# calculo de self-spectra
fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,))
spc = fft_volt * numpy.conjugate(fft_volt)
spc = spc.real
blocksize = 0
blocksize += dc.size
blocksize += spc.size
cspc = None
pairIndex = 0
if self.dataOut.pairsList != None:
# calculo de cross-spectra
cspc = numpy.zeros(
(self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
for pair in self.dataOut.pairsList:
if pair[0] not in self.dataOut.channelList:
raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % (
str(pair), str(self.dataOut.channelList))
if pair[1] not in self.dataOut.channelList:
raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % (
str(pair), str(self.dataOut.channelList))
cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \
numpy.conjugate(fft_volt[pair[1], :, :])
pairIndex += 1
blocksize += cspc.size
self.dataOut.data_spc = spc
self.dataOut.data_cspc = cspc
self.dataOut.data_dc = dc
self.dataOut.blockSize = blocksize
self.dataOut.flagShiftFFT = True
def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False):
self.dataOut.flagNoData = True
if self.dataIn.type == "Spectra":
self.dataOut.copy(self.dataIn)
# if not pairsList:
# pairsList = itertools.combinations(self.dataOut.channelList, 2)
# if self.dataOut.data_cspc is not None:
# self.__selectPairs(pairsList)
if shift_fft:
#desplaza a la derecha en el eje 2 determinadas posiciones
shift = int(self.dataOut.nFFTPoints/2)
self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1)
if self.dataOut.data_cspc is not None:
#desplaza a la derecha en el eje 2 determinadas posiciones
self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1)
return True
if self.dataIn.type == "Voltage":
if nFFTPoints == None:
raise ValueError, "This SpectraProc.run() need nFFTPoints input variable"
if nProfiles == None:
nProfiles = nFFTPoints
if ippFactor == None:
ippFactor = 1
self.dataOut.ippFactor = ippFactor
self.dataOut.nFFTPoints = nFFTPoints
self.dataOut.pairsList = pairsList
if self.buffer is None:
self.buffer = numpy.zeros((self.dataIn.nChannels,
nProfiles,
self.dataIn.nHeights),
dtype='complex')
if self.dataIn.flagDataAsBlock:
# data dimension: [nChannels, nProfiles, nSamples]
nVoltProfiles = self.dataIn.data.shape[1]
# nVoltProfiles = self.dataIn.nProfiles
if nVoltProfiles == nProfiles:
self.buffer = self.dataIn.data.copy()
self.profIndex = nVoltProfiles
elif nVoltProfiles < nProfiles:
if self.profIndex == 0:
self.id_min = 0
self.id_max = nVoltProfiles
self.buffer[:, self.id_min:self.id_max,
:] = self.dataIn.data
self.profIndex += nVoltProfiles
self.id_min += nVoltProfiles
self.id_max += nVoltProfiles
else:
raise ValueError, "The type object %s has %d profiles, it should just has %d profiles" % (
self.dataIn.type, self.dataIn.data.shape[1], nProfiles)
self.dataOut.flagNoData = True
return 0
else:
self.buffer[:, self.profIndex, :] = self.dataIn.data.copy()
self.profIndex += 1
if self.firstdatatime == None:
self.firstdatatime = self.dataIn.utctime
if self.profIndex == nProfiles:
self.__updateSpecFromVoltage()
self.__getFft()
self.dataOut.flagNoData = False
self.firstdatatime = None
self.profIndex = 0
return True
raise ValueError, "The type of input object '%s' is not valid" % (
self.dataIn.type)
def __selectPairs(self, pairsList):
if not pairsList:
return
pairs = []
pairsIndex = []
for pair in pairsList:
if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList:
continue
pairs.append(pair)
pairsIndex.append(pairs.index(pair))
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex]
self.dataOut.pairsList = pairs
return
def __selectPairsByChannel(self, channelList=None):
if channelList == None:
return
pairsIndexListSelected = []
for pairIndex in self.dataOut.pairsIndexList:
# First pair
if self.dataOut.pairsList[pairIndex][0] not in channelList:
continue
# Second pair
if self.dataOut.pairsList[pairIndex][1] not in channelList:
continue
pairsIndexListSelected.append(pairIndex)
if not pairsIndexListSelected:
self.dataOut.data_cspc = None
self.dataOut.pairsList = []
return
self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected]
self.dataOut.pairsList = [self.dataOut.pairsList[i]
for i in pairsIndexListSelected]
return
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
if channel not in self.dataOut.channelList:
raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % (
channel, str(self.dataOut.channelList))
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data_spc
self.dataOut.channelIndexList
self.dataOut.nChannels
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % (
channelIndex, self.dataOut.channelIndexList)
# nChannels = len(channelIndexList)
data_spc = self.dataOut.data_spc[channelIndexList, :]
data_dc = self.dataOut.data_dc[channelIndexList, :]
self.dataOut.data_spc = data_spc
self.dataOut.data_dc = data_dc
self.dataOut.channelList = [
self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
self.__selectPairsByChannel(self.dataOut.channelList)
return 1
def selectHeights(self, minHei, maxHei):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minHei > maxHei):
raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (
minHei, maxHei)
if (minHei < self.dataOut.heightList[0]):
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None):
newheis = numpy.where(
self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex])
if hei_ref != None:
newheis = numpy.where(self.dataOut.heightList > hei_ref)
minIndex = min(newheis[0])
maxIndex = max(newheis[0])
data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
# determina indices
nheis = int(self.dataOut.radarControllerHeaderObj.txB /
(self.dataOut.heightList[1] - self.dataOut.heightList[0]))
avg_dB = 10 * \
numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0))
beacon_dB = numpy.sort(avg_dB)[-nheis:]
beacon_heiIndexList = []
for val in avg_dB.tolist():
if val >= beacon_dB[0]:
beacon_heiIndexList.append(avg_dB.tolist().index(val))
#data_spc = data_spc[:,:,beacon_heiIndexList]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
#data_cspc = data_cspc[:,:,beacon_heiIndexList]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
#data_dc = data_dc[:,beacon_heiIndexList]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = heightList
self.dataOut.beacon_heiIndexList = beacon_heiIndexList
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data_spc
self.dataOut.data_cspc
self.dataOut.data_dc
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (
minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights - 1
# Spectra
data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1]
data_cspc = None
if self.dataOut.data_cspc is not None:
data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1]
data_dc = None
if self.dataOut.data_dc is not None:
data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1]
self.dataOut.data_spc = data_spc
self.dataOut.data_cspc = data_cspc
self.dataOut.data_dc = data_dc
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1]
return 1
def removeDC(self, mode=2):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
if jcspectra is not None:
jcspectraExist = True
num_pairs = jcspectra.shape[0]
else:
jcspectraExist = False
freq_dc = jspectra.shape[1] / 2
ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
if ind_vel[0] < 0:
ind_vel[range(0, 1)] = ind_vel[range(0, 1)] + self.num_prof
if mode == 1:
jspectra[:, freq_dc, :] = (
jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
if jcspectraExist:
jcspectra[:, freq_dc, :] = (
jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2
if mode == 2:
vel = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for fil in range(4):
xx[fil, :] = vel[fil]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx_aux = xx_inv[0, :]
for ich in range(num_chan):
yy = jspectra[ich, ind_vel, :]
jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
junkid = jspectra[ich, freq_dc, :] <= 0
cjunkid = sum(junkid)
if cjunkid.any():
jspectra[ich, freq_dc, junkid.nonzero()] = (
jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
if jcspectraExist:
for ip in range(num_pairs):
yy = jcspectra[ip, ind_vel, :]
jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy)
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None):
jspectra = self.dataOut.data_spc
jcspectra = self.dataOut.data_cspc
jnoise = self.dataOut.getNoise()
num_incoh = self.dataOut.nIncohInt
num_channel = jspectra.shape[0]
num_prof = jspectra.shape[1]
num_hei = jspectra.shape[2]
# hei_interf
if hei_interf is None:
count_hei = num_hei / 2 # Como es entero no importa
hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
hei_interf = numpy.asarray(hei_interf)[0]
# nhei_interf
if (nhei_interf == None):
nhei_interf = 5
if (nhei_interf < 1):
nhei_interf = 1
if (nhei_interf > count_hei):
nhei_interf = count_hei
if (offhei_interf == None):
offhei_interf = 0
ind_hei = range(num_hei)
# mask_prof = numpy.asarray(range(num_prof - 2)) + 1
# mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
mask_prof = numpy.asarray(range(num_prof))
num_mask_prof = mask_prof.size
comp_mask_prof = [0, num_prof / 2]
# noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
jnoise = numpy.nan
noise_exist = jnoise[0] < numpy.Inf
# Subrutina de Remocion de la Interferencia
for ich in range(num_channel):
# Se ordena los espectros segun su potencia (menor a mayor)
power = jspectra[ich, mask_prof, :]
power = power[:, hei_interf]
power = power.sum(axis=0)
psort = power.ravel().argsort()
# Se estima la interferencia promedio en los Espectros de Potencia empleando
junkspc_interf = jspectra[ich, :, hei_interf[psort[range(
offhei_interf, nhei_interf + offhei_interf)]]]
if noise_exist:
# tmp_noise = jnoise[ich] / num_prof
tmp_noise = jnoise[ich]
junkspc_interf = junkspc_interf - tmp_noise
#junkspc_interf[:,comp_mask_prof] = 0
jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf
jspc_interf = jspc_interf.transpose()
# Calculando el espectro de interferencia promedio
noiseid = numpy.where(
jspc_interf <= tmp_noise / numpy.sqrt(num_incoh))
noiseid = noiseid[0]
cnoiseid = noiseid.size
interfid = numpy.where(
jspc_interf > tmp_noise / numpy.sqrt(num_incoh))
interfid = interfid[0]
cinterfid = interfid.size
if (cnoiseid > 0):
jspc_interf[noiseid] = 0
# Expandiendo los perfiles a limpiar
if (cinterfid > 0):
new_interfid = (
numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof
new_interfid = numpy.asarray(new_interfid)
new_interfid = {x for x in new_interfid}
new_interfid = numpy.array(list(new_interfid))
new_cinterfid = new_interfid.size
else:
new_cinterfid = 0
for ip in range(new_cinterfid):
ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort()
jspc_interf[new_interfid[ip]
] = junkspc_interf[ind[nhei_interf / 2], new_interfid[ip]]
jspectra[ich, :, ind_hei] = jspectra[ich, :,
ind_hei] - jspc_interf # Corregir indices
# Removiendo la interferencia del punto de mayor interferencia
ListAux = jspc_interf[mask_prof].tolist()
maxid = ListAux.index(max(ListAux))
if cinterfid > 0:
for ip in range(cinterfid * (interf == 2) - 1):
ind = (jspectra[ich, interfid[ip], :] < tmp_noise *
(1 + 1 / numpy.sqrt(num_incoh))).nonzero()
cind = len(ind)
if (cind > 0):
jspectra[ich, interfid[ip], ind] = tmp_noise * \
(1 + (numpy.random.uniform(cind) - 0.5) /
numpy.sqrt(num_incoh))
ind = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for id1 in range(4):
xx[:, id1] = ind[id1]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:, 0]
ind = (ind + maxid + num_mask_prof) % num_mask_prof
yy = jspectra[ich, mask_prof[ind], :]
jspectra[ich, mask_prof[maxid], :] = numpy.dot(
yy.transpose(), xx)
indAux = (jspectra[ich, :, :] < tmp_noise *
(1 - 1 / numpy.sqrt(num_incoh))).nonzero()
jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \
(1 - 1 / numpy.sqrt(num_incoh))
# Remocion de Interferencia en el Cross Spectra
if jcspectra is None:
return jspectra, jcspectra
num_pairs = jcspectra.size / (num_prof * num_hei)
jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
for ip in range(num_pairs):
#-------------------------------------------
cspower = numpy.abs(jcspectra[ip, mask_prof, :])
cspower = cspower[:, hei_interf]
cspower = cspower.sum(axis=0)
cspsort = cspower.ravel().argsort()
junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[range(
offhei_interf, nhei_interf + offhei_interf)]]]
junkcspc_interf = junkcspc_interf.transpose()
jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf
ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
median_real = numpy.median(numpy.real(
junkcspc_interf[mask_prof[ind[range(3 * num_prof / 4)]], :]))
median_imag = numpy.median(numpy.imag(
junkcspc_interf[mask_prof[ind[range(3 * num_prof / 4)]], :]))
junkcspc_interf[comp_mask_prof, :] = numpy.complex(
median_real, median_imag)
for iprof in range(num_prof):
ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort()
jcspc_interf[iprof] = junkcspc_interf[iprof,
ind[nhei_interf / 2]]
# Removiendo la Interferencia
jcspectra[ip, :, ind_hei] = jcspectra[ip,
:, ind_hei] - jcspc_interf
ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
maxid = ListAux.index(max(ListAux))
ind = numpy.array([-2, -1, 1, 2])
xx = numpy.zeros([4, 4])
for id1 in range(4):
xx[:, id1] = ind[id1]**numpy.asarray(range(4))
xx_inv = numpy.linalg.inv(xx)
xx = xx_inv[:, 0]
ind = (ind + maxid + num_mask_prof) % num_mask_prof
yy = jcspectra[ip, mask_prof[ind], :]
jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx)
# Guardar Resultados
self.dataOut.data_spc = jspectra
self.dataOut.data_cspc = jcspectra
return 1
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
# validacion de rango
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
print 'minHei: %.2f is out of the heights range' % (minHei)
print 'minHei is setting to %.2f' % (self.dataOut.heightList[0])
minHei = self.dataOut.heightList[0]
if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
print 'maxHei: %.2f is out of the heights range' % (maxHei)
print 'maxHei is setting to %.2f' % (self.dataOut.heightList[-1])
maxHei = self.dataOut.heightList[-1]
# validacion de velocidades
velrange = self.dataOut.getVelRange(1)
if minVel == None:
minVel = velrange[0]
if maxVel == None:
maxVel = velrange[-1]
if (minVel < velrange[0]) or (minVel > maxVel):
print 'minVel: %.2f is out of the velocity range' % (minVel)
print 'minVel is setting to %.2f' % (velrange[0])
minVel = velrange[0]
if (maxVel > velrange[-1]) or (maxVel < minVel):
print 'maxVel: %.2f is out of the velocity range' % (maxVel)
print 'maxVel is setting to %.2f' % (velrange[-1])
maxVel = velrange[-1]
# seleccion de indices para rango
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (
minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights - 1
# seleccion de indices para velocidades
indminvel = numpy.where(velrange >= minVel)
indmaxvel = numpy.where(velrange <= maxVel)
try:
minIndexVel = indminvel[0][0]
except:
minIndexVel = 0
try:
maxIndexVel = indmaxvel[0][-1]
except:
maxIndexVel = len(velrange)
# seleccion del espectro
data_spc = self.dataOut.data_spc[:,
minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1]
# estimacion de ruido
noise = numpy.zeros(self.dataOut.nChannels)
for channel in range(self.dataOut.nChannels):
daux = data_spc[channel, :, :]
noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
self.dataOut.noise_estimation = noise.copy()
return 1
class IncohInt(Operation):
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer_spc = None
__buffer_cspc = None
__buffer_dc = None
__dataReady = False
__timeInterval = None
n = None
def __init__(self, **kwargs):
Operation.__init__(self, **kwargs)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
self.__dataReady = False
self.__byTime = False
if n is None and timeInterval is None:
raise ValueError, "n or timeInterval should be specified ..."
if n is not None:
self.n = int(n)
else:
# if (type(timeInterval)!=integer) -> change this line
self.__integrationtime = int(timeInterval)
self.n = None
self.__byTime = True
def putData(self, data_spc, data_cspc, data_dc):
"""
Add a profile to the __buffer_spc and increase in one the __profileIndex
"""
self.__buffer_spc += data_spc
if data_cspc is None:
self.__buffer_cspc = None
else:
self.__buffer_cspc += data_cspc
if data_dc is None:
self.__buffer_dc = None
else:
self.__buffer_dc += data_dc
self.__profIndex += 1
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
data_spc = self.__buffer_spc
data_cspc = self.__buffer_cspc
data_dc = self.__buffer_dc
n = self.__profIndex
self.__buffer_spc = 0
self.__buffer_cspc = 0
self.__buffer_dc = 0
self.__profIndex = 0
return data_spc, data_cspc, data_dc, n
def byProfiles(self, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
self.putData(*args)
if self.__profIndex == self.n:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def byTime(self, datatime, *args):
self.__dataReady = False
avgdata_spc = None
avgdata_cspc = None
avgdata_dc = None
self.putData(*args)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata_spc, avgdata_cspc, avgdata_dc
def integrate(self, datatime, *args):
if self.__profIndex == 0:
self.__initime = datatime
if self.__byTime:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(
datatime, *args)
else:
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
if not self.__dataReady:
return None, None, None, None
return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
if n == 1:
return
dataOut.flagNoData = True
if not self.isConfig:
self.setup(n, timeInterval, overlapping)
self.isConfig = True
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
dataOut.data_spc,
dataOut.data_cspc,
dataOut.data_dc)
if self.__dataReady:
dataOut.data_spc = avgdata_spc
dataOut.data_cspc = avgdata_cspc
dataOut.data_dc = avgdata_dc
dataOut.nIncohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.flagNoData = False