|
|
import numpy
|
|
|
|
|
|
from jroproc_base import ProcessingUnit, Operation
|
|
|
from schainpy.model.data.jrodata import Correlation, hildebrand_sekhon
|
|
|
|
|
|
class CorrelationProc(ProcessingUnit):
|
|
|
|
|
|
pairsList = None
|
|
|
|
|
|
data_cf = None
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
ProcessingUnit.__init__(self, **kwargs)
|
|
|
|
|
|
self.objectDict = {}
|
|
|
self.buffer = None
|
|
|
self.firstdatatime = None
|
|
|
self.profIndex = 0
|
|
|
self.dataOut = Correlation()
|
|
|
|
|
|
def __updateObjFromVoltage(self):
|
|
|
|
|
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
|
|
|
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
|
self.dataOut.channelList = self.dataIn.channelList
|
|
|
self.dataOut.heightList = self.dataIn.heightList
|
|
|
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
|
|
|
# self.dataOut.nHeights = self.dataIn.nHeights
|
|
|
# self.dataOut.nChannels = self.dataIn.nChannels
|
|
|
self.dataOut.nBaud = self.dataIn.nBaud
|
|
|
self.dataOut.nCode = self.dataIn.nCode
|
|
|
self.dataOut.code = self.dataIn.code
|
|
|
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
|
|
|
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
|
|
|
self.dataOut.utctime = self.firstdatatime
|
|
|
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
|
|
|
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
|
|
|
self.dataOut.nCohInt = self.dataIn.nCohInt
|
|
|
# self.dataOut.nIncohInt = 1
|
|
|
self.dataOut.ippSeconds = self.dataIn.ippSeconds
|
|
|
self.dataOut.nProfiles = self.dataIn.nProfiles
|
|
|
self.dataOut.utctime = self.dataIn.utctime
|
|
|
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
|
|
|
|
# self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nPoints
|
|
|
|
|
|
|
|
|
def removeDC(self, jspectra):
|
|
|
|
|
|
nChannel = jspectra.shape[0]
|
|
|
|
|
|
for i in range(nChannel):
|
|
|
jspectra_tmp = jspectra[i,:,:]
|
|
|
jspectra_DC = numpy.mean(jspectra_tmp,axis = 0)
|
|
|
|
|
|
jspectra_tmp = jspectra_tmp - jspectra_DC
|
|
|
jspectra[i,:,:] = jspectra_tmp
|
|
|
|
|
|
return jspectra
|
|
|
|
|
|
|
|
|
def removeNoise(self, mode = 2):
|
|
|
indR = numpy.where(self.dataOut.lagR == 0)[0][0]
|
|
|
indT = numpy.where(self.dataOut.lagT == 0)[0][0]
|
|
|
|
|
|
jspectra = self.dataOut.data_corr[:,:,indR,:]
|
|
|
|
|
|
num_chan = jspectra.shape[0]
|
|
|
num_hei = jspectra.shape[2]
|
|
|
|
|
|
freq_dc = indT
|
|
|
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
|
|
|
|
|
|
NPot = self.dataOut.getNoise(mode)
|
|
|
jspectra[:,freq_dc,:] = jspectra[:,freq_dc,:] - NPot
|
|
|
SPot = jspectra[:,freq_dc,:]
|
|
|
pairsAutoCorr = self.dataOut.getPairsAutoCorr()
|
|
|
# self.dataOut.signalPotency = SPot
|
|
|
self.dataOut.noise = NPot
|
|
|
self.dataOut.SNR = (SPot/NPot)[pairsAutoCorr]
|
|
|
self.dataOut.data_corr[:,:,indR,:] = jspectra
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def run(self, lags=None, mode = 'time', pairsList=None, fullBuffer=False, nAvg = 1, removeDC = False, splitCF=False):
|
|
|
|
|
|
self.dataOut.flagNoData = True
|
|
|
|
|
|
if self.dataIn.type == "Correlation":
|
|
|
|
|
|
self.dataOut.copy(self.dataIn)
|
|
|
|
|
|
return
|
|
|
|
|
|
if self.dataIn.type == "Voltage":
|
|
|
|
|
|
nChannels = self.dataIn.nChannels
|
|
|
nProfiles = self.dataIn.nProfiles
|
|
|
nHeights = self.dataIn.nHeights
|
|
|
data_pre = self.dataIn.data
|
|
|
|
|
|
#--------------- Remover DC ------------
|
|
|
if removeDC:
|
|
|
data_pre = self.removeDC(data_pre)
|
|
|
|
|
|
#---------------------------------------------
|
|
|
# pairsList = list(ccfList)
|
|
|
# for i in acfList:
|
|
|
# pairsList.append((i,i))
|
|
|
#
|
|
|
# ccf_pairs = numpy.arange(len(ccfList))
|
|
|
# acf_pairs = numpy.arange(len(ccfList),len(pairsList))
|
|
|
self.__updateObjFromVoltage()
|
|
|
#----------------------------------------------------------------------
|
|
|
#Creating temporal buffers
|
|
|
if fullBuffer:
|
|
|
tmp = numpy.zeros((len(pairsList), len(lags), nProfiles, nHeights), dtype = 'complex')*numpy.nan
|
|
|
elif mode == 'time':
|
|
|
if lags == None:
|
|
|
lags = numpy.arange(-nProfiles+1, nProfiles)
|
|
|
tmp = numpy.zeros((len(pairsList), len(lags), nHeights),dtype='complex')
|
|
|
elif mode == 'height':
|
|
|
if lags == None:
|
|
|
lags = numpy.arange(-nHeights+1, nHeights)
|
|
|
tmp = numpy.zeros(len(pairsList), (len(lags), nProfiles),dtype='complex')
|
|
|
|
|
|
#For loop
|
|
|
for l in range(len(pairsList)):
|
|
|
|
|
|
ch0 = pairsList[l][0]
|
|
|
ch1 = pairsList[l][1]
|
|
|
|
|
|
for i in range(len(lags)):
|
|
|
idx = lags[i]
|
|
|
|
|
|
if idx >= 0:
|
|
|
if mode == 'time':
|
|
|
ccf0 = data_pre[ch0,:nProfiles-idx,:]*numpy.conj(data_pre[ch1,idx:,:]) #time
|
|
|
else:
|
|
|
ccf0 = data_pre[ch0,:,nHeights-idx]*numpy.conj(data_pre[ch1,:,idx:]) #heights
|
|
|
else:
|
|
|
if mode == 'time':
|
|
|
ccf0 = data_pre[ch0,-idx:,:]*numpy.conj(data_pre[ch1,:nProfiles+idx,:]) #time
|
|
|
else:
|
|
|
ccf0 = data_pre[ch0,:,-idx:]*numpy.conj(data_pre[ch1,:,:nHeights+idx]) #heights
|
|
|
|
|
|
if fullBuffer:
|
|
|
tmp[l,i,:ccf0.shape[0],:] = ccf0
|
|
|
else:
|
|
|
tmp[l,i,:] = numpy.sum(ccf0, axis=0)
|
|
|
|
|
|
#-----------------------------------------------------------------
|
|
|
if fullBuffer:
|
|
|
tmp = numpy.sum(numpy.reshape(tmp,(tmp.shape[0],tmp.shape[1],tmp.shape[2]/nAvg,nAvg,tmp.shape[3])),axis=3)
|
|
|
self.dataOut.nAvg = nAvg
|
|
|
|
|
|
self.dataOut.data_cf = tmp
|
|
|
self.dataOut.mode = mode
|
|
|
self.dataOut.nLags = len(lags)
|
|
|
self.dataOut.pairsList = pairsList
|
|
|
self.dataOut.nPairs = len(pairsList)
|
|
|
|
|
|
#Se Calcula los factores de Normalizacion
|
|
|
if mode == 'time':
|
|
|
delta = self.dataIn.ippSeconds*self.dataIn.nCohInt
|
|
|
else:
|
|
|
delta = self.dataIn.heightList[1] - self.dataIn.heightList[0]
|
|
|
self.dataOut.lagRange = numpy.array(lags)*delta
|
|
|
# self.dataOut.nCohInt = self.dataIn.nCohInt*nAvg
|
|
|
self.dataOut.flagNoData = False
|
|
|
# a = self.dataOut.normFactor
|
|
|
return
|
|
|
|