|
|
import sys
|
|
|
import numpy
|
|
|
from scipy import interpolate
|
|
|
|
|
|
from jroproc_base import ProcessingUnit, Operation
|
|
|
from schainpy.model.data.jrodata import Voltage
|
|
|
|
|
|
class VoltageProc(ProcessingUnit):
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
ProcessingUnit.__init__(self, **kwargs)
|
|
|
|
|
|
# self.objectDict = {}
|
|
|
self.dataOut = Voltage()
|
|
|
self.flip = 1
|
|
|
|
|
|
def run(self):
|
|
|
if self.dataIn.type == 'AMISR':
|
|
|
self.__updateObjFromAmisrInput()
|
|
|
|
|
|
if self.dataIn.type == 'Voltage':
|
|
|
self.dataOut.copy(self.dataIn)
|
|
|
|
|
|
# self.dataOut.copy(self.dataIn)
|
|
|
|
|
|
def __updateObjFromAmisrInput(self):
|
|
|
|
|
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
|
|
|
|
self.dataOut.flagNoData = self.dataIn.flagNoData
|
|
|
self.dataOut.data = self.dataIn.data
|
|
|
self.dataOut.utctime = self.dataIn.utctime
|
|
|
self.dataOut.channelList = self.dataIn.channelList
|
|
|
# self.dataOut.timeInterval = self.dataIn.timeInterval
|
|
|
self.dataOut.heightList = self.dataIn.heightList
|
|
|
self.dataOut.nProfiles = self.dataIn.nProfiles
|
|
|
|
|
|
self.dataOut.nCohInt = self.dataIn.nCohInt
|
|
|
self.dataOut.ippSeconds = self.dataIn.ippSeconds
|
|
|
self.dataOut.frequency = self.dataIn.frequency
|
|
|
|
|
|
self.dataOut.azimuth = self.dataIn.azimuth
|
|
|
self.dataOut.zenith = self.dataIn.zenith
|
|
|
|
|
|
self.dataOut.beam.codeList = self.dataIn.beam.codeList
|
|
|
self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList
|
|
|
self.dataOut.beam.zenithList = self.dataIn.beam.zenithList
|
|
|
#
|
|
|
# pass#
|
|
|
#
|
|
|
# def init(self):
|
|
|
#
|
|
|
#
|
|
|
# if self.dataIn.type == 'AMISR':
|
|
|
# self.__updateObjFromAmisrInput()
|
|
|
#
|
|
|
# if self.dataIn.type == 'Voltage':
|
|
|
# self.dataOut.copy(self.dataIn)
|
|
|
# # No necesita copiar en cada init() los atributos de dataIn
|
|
|
# # la copia deberia hacerse por cada nuevo bloque de datos
|
|
|
|
|
|
def selectChannels(self, channelList):
|
|
|
|
|
|
channelIndexList = []
|
|
|
|
|
|
for channel in channelList:
|
|
|
if channel not in self.dataOut.channelList:
|
|
|
raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList))
|
|
|
|
|
|
index = self.dataOut.channelList.index(channel)
|
|
|
channelIndexList.append(index)
|
|
|
|
|
|
self.selectChannelsByIndex(channelIndexList)
|
|
|
|
|
|
def selectChannelsByIndex(self, channelIndexList):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a canales segun el channelIndexList
|
|
|
|
|
|
Input:
|
|
|
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data
|
|
|
self.dataOut.channelIndexList
|
|
|
self.dataOut.nChannels
|
|
|
self.dataOut.m_ProcessingHeader.totalSpectra
|
|
|
self.dataOut.systemHeaderObj.numChannels
|
|
|
self.dataOut.m_ProcessingHeader.blockSize
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
for channelIndex in channelIndexList:
|
|
|
if channelIndex not in self.dataOut.channelIndexList:
|
|
|
print channelIndexList
|
|
|
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
|
|
|
|
|
|
if self.dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
|
|
|
"""
|
|
|
data = self.dataOut.data[channelIndexList,:,:]
|
|
|
else:
|
|
|
data = self.dataOut.data[channelIndexList,:]
|
|
|
|
|
|
self.dataOut.data = data
|
|
|
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
|
|
|
# self.dataOut.nChannels = nChannels
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def selectHeights(self, minHei=None, maxHei=None):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
|
|
|
minHei <= height <= maxHei
|
|
|
|
|
|
Input:
|
|
|
minHei : valor minimo de altura a considerar
|
|
|
maxHei : valor maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
|
|
|
if minHei == None:
|
|
|
minHei = self.dataOut.heightList[0]
|
|
|
|
|
|
if maxHei == None:
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
|
|
|
if (minHei < self.dataOut.heightList[0]):
|
|
|
minHei = self.dataOut.heightList[0]
|
|
|
|
|
|
if (maxHei > self.dataOut.heightList[-1]):
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
|
|
|
minIndex = 0
|
|
|
maxIndex = 0
|
|
|
heights = self.dataOut.heightList
|
|
|
|
|
|
inda = numpy.where(heights >= minHei)
|
|
|
indb = numpy.where(heights <= maxHei)
|
|
|
|
|
|
try:
|
|
|
minIndex = inda[0][0]
|
|
|
except:
|
|
|
minIndex = 0
|
|
|
|
|
|
try:
|
|
|
maxIndex = indb[0][-1]
|
|
|
except:
|
|
|
maxIndex = len(heights)
|
|
|
|
|
|
self.selectHeightsByIndex(minIndex, maxIndex)
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def selectHeightsByIndex(self, minIndex, maxIndex):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
|
|
|
minIndex <= index <= maxIndex
|
|
|
|
|
|
Input:
|
|
|
minIndex : valor de indice minimo de altura a considerar
|
|
|
maxIndex : valor de indice maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data
|
|
|
self.dataOut.heightList
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
|
|
|
if (minIndex < 0) or (minIndex > maxIndex):
|
|
|
raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex)
|
|
|
|
|
|
if (maxIndex >= self.dataOut.nHeights):
|
|
|
maxIndex = self.dataOut.nHeights
|
|
|
|
|
|
#voltage
|
|
|
if self.dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
|
|
|
"""
|
|
|
data = self.dataOut.data[:,:, minIndex:maxIndex]
|
|
|
else:
|
|
|
data = self.dataOut.data[:, minIndex:maxIndex]
|
|
|
|
|
|
# firstHeight = self.dataOut.heightList[minIndex]
|
|
|
|
|
|
self.dataOut.data = data
|
|
|
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex]
|
|
|
|
|
|
if self.dataOut.nHeights <= 1:
|
|
|
raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def filterByHeights(self, window):
|
|
|
|
|
|
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
|
|
|
|
|
|
if window == None:
|
|
|
window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
|
|
|
|
|
|
newdelta = deltaHeight * window
|
|
|
r = self.dataOut.nHeights % window
|
|
|
newheights = (self.dataOut.nHeights-r)/window
|
|
|
|
|
|
if newheights <= 1:
|
|
|
raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)
|
|
|
|
|
|
if self.dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis]
|
|
|
"""
|
|
|
buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r]
|
|
|
buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window)
|
|
|
buffer = numpy.sum(buffer,3)
|
|
|
|
|
|
else:
|
|
|
buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r]
|
|
|
buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window)
|
|
|
buffer = numpy.sum(buffer,2)
|
|
|
|
|
|
self.dataOut.data = buffer
|
|
|
self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta
|
|
|
self.dataOut.windowOfFilter = window
|
|
|
|
|
|
def setH0(self, h0, deltaHeight = None):
|
|
|
|
|
|
if not deltaHeight:
|
|
|
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
|
|
|
|
|
|
nHeights = self.dataOut.nHeights
|
|
|
|
|
|
newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight
|
|
|
|
|
|
self.dataOut.heightList = newHeiRange
|
|
|
|
|
|
def deFlip(self, channelList = []):
|
|
|
|
|
|
data = self.dataOut.data.copy()
|
|
|
|
|
|
if self.dataOut.flagDataAsBlock:
|
|
|
flip = self.flip
|
|
|
profileList = range(self.dataOut.nProfiles)
|
|
|
|
|
|
if not channelList:
|
|
|
for thisProfile in profileList:
|
|
|
data[:,thisProfile,:] = data[:,thisProfile,:]*flip
|
|
|
flip *= -1.0
|
|
|
else:
|
|
|
for thisChannel in channelList:
|
|
|
if thisChannel not in self.dataOut.channelList:
|
|
|
continue
|
|
|
|
|
|
for thisProfile in profileList:
|
|
|
data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip
|
|
|
flip *= -1.0
|
|
|
|
|
|
self.flip = flip
|
|
|
|
|
|
else:
|
|
|
if not channelList:
|
|
|
data[:,:] = data[:,:]*self.flip
|
|
|
else:
|
|
|
for thisChannel in channelList:
|
|
|
if thisChannel not in self.dataOut.channelList:
|
|
|
continue
|
|
|
|
|
|
data[thisChannel,:] = data[thisChannel,:]*self.flip
|
|
|
|
|
|
self.flip *= -1.
|
|
|
|
|
|
self.dataOut.data = data
|
|
|
|
|
|
def setRadarFrequency(self, frequency=None):
|
|
|
|
|
|
if frequency != None:
|
|
|
self.dataOut.frequency = frequency
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def interpolateHeights(self, topLim, botLim):
|
|
|
#69 al 72 para julia
|
|
|
#82-84 para meteoros
|
|
|
if len(numpy.shape(self.dataOut.data))==2:
|
|
|
sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2
|
|
|
sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1)))
|
|
|
#self.dataOut.data[:,botLim:limSup+1] = sampInterp
|
|
|
self.dataOut.data[:,botLim:topLim+1] = sampInterp
|
|
|
else:
|
|
|
nHeights = self.dataOut.data.shape[2]
|
|
|
x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights)))
|
|
|
y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)]
|
|
|
f = interpolate.interp1d(x, y, axis = 2)
|
|
|
xnew = numpy.arange(botLim,topLim+1)
|
|
|
ynew = f(xnew)
|
|
|
|
|
|
self.dataOut.data[:,:,botLim:topLim+1] = ynew
|
|
|
|
|
|
# import collections
|
|
|
|
|
|
class CohInt(Operation):
|
|
|
|
|
|
isConfig = False
|
|
|
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
n = None
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
# self.isConfig = False
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False, byblock=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
self.__buffer = None
|
|
|
self.__dataReady = False
|
|
|
self.byblock = byblock
|
|
|
|
|
|
if n == None and timeInterval == None:
|
|
|
raise ValueError, "n or timeInterval should be specified ..."
|
|
|
|
|
|
if n != None:
|
|
|
self.n = n
|
|
|
self.__byTime = False
|
|
|
else:
|
|
|
self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
|
|
|
self.n = 9999
|
|
|
self.__byTime = True
|
|
|
|
|
|
if overlapping:
|
|
|
self.__withOverapping = True
|
|
|
self.__buffer = None
|
|
|
else:
|
|
|
self.__withOverapping = False
|
|
|
self.__buffer = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
def putData(self, data):
|
|
|
|
|
|
"""
|
|
|
Add a profile to the __buffer and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__buffer += data.copy()
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#Overlapping data
|
|
|
nChannels, nHeis = data.shape
|
|
|
data = numpy.reshape(data, (1, nChannels, nHeis))
|
|
|
|
|
|
#If the buffer is empty then it takes the data value
|
|
|
if self.__buffer is None:
|
|
|
self.__buffer = data
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is lower than n then stakcing the data value
|
|
|
if self.__profIndex < self.n:
|
|
|
self.__buffer = numpy.vstack((self.__buffer, data))
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is equal to n then replacing the last buffer value with the data value
|
|
|
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
|
|
|
self.__buffer[self.n-1] = data
|
|
|
self.__profIndex = self.n
|
|
|
return
|
|
|
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
data = self.__buffer
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data, n
|
|
|
|
|
|
#Integration with Overlapping
|
|
|
data = numpy.sum(self.__buffer, axis=0)
|
|
|
n = self.__profIndex
|
|
|
|
|
|
return data, n
|
|
|
|
|
|
def byProfiles(self, data):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata = None
|
|
|
# n = None
|
|
|
|
|
|
self.putData(data)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata, n = self.pushData()
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata
|
|
|
|
|
|
def byTime(self, data, datatime):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata = None
|
|
|
n = None
|
|
|
|
|
|
self.putData(data)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata
|
|
|
|
|
|
def integrate(self, data, datatime=None):
|
|
|
|
|
|
if self.__initime == None:
|
|
|
self.__initime = datatime
|
|
|
|
|
|
if self.__byTime:
|
|
|
avgdata = self.byTime(data, datatime)
|
|
|
else:
|
|
|
avgdata = self.byProfiles(data)
|
|
|
|
|
|
|
|
|
self.__lastdatatime = datatime
|
|
|
|
|
|
if avgdata is None:
|
|
|
return None, None
|
|
|
|
|
|
avgdatatime = self.__initime
|
|
|
|
|
|
deltatime = datatime -self.__lastdatatime
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__initime = datatime
|
|
|
else:
|
|
|
self.__initime += deltatime
|
|
|
|
|
|
return avgdata, avgdatatime
|
|
|
|
|
|
def integrateByBlock(self, dataOut):
|
|
|
|
|
|
times = int(dataOut.data.shape[1]/self.n)
|
|
|
avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex)
|
|
|
|
|
|
id_min = 0
|
|
|
id_max = self.n
|
|
|
|
|
|
for i in range(times):
|
|
|
junk = dataOut.data[:,id_min:id_max,:]
|
|
|
avgdata[:,i,:] = junk.sum(axis=1)
|
|
|
id_min += self.n
|
|
|
id_max += self.n
|
|
|
|
|
|
timeInterval = dataOut.ippSeconds*self.n
|
|
|
avgdatatime = (times - 1) * timeInterval + dataOut.utctime
|
|
|
self.__dataReady = True
|
|
|
return avgdata, avgdatatime
|
|
|
|
|
|
|
|
|
def run(self, dataOut, n=None, timeInterval=None, overlapping=False, byblock=False, **kwargs):
|
|
|
if not self.isConfig:
|
|
|
self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs)
|
|
|
self.isConfig = True
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis]
|
|
|
"""
|
|
|
avgdata, avgdatatime = self.integrateByBlock(dataOut)
|
|
|
dataOut.nProfiles /= self.n
|
|
|
else:
|
|
|
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
|
|
|
|
|
|
# dataOut.timeInterval *= n
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if self.__dataReady:
|
|
|
dataOut.data = avgdata
|
|
|
dataOut.nCohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
# dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
class Decoder(Operation):
|
|
|
|
|
|
isConfig = False
|
|
|
__profIndex = 0
|
|
|
|
|
|
code = None
|
|
|
|
|
|
nCode = None
|
|
|
nBaud = None
|
|
|
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.times = None
|
|
|
self.osamp = None
|
|
|
# self.__setValues = False
|
|
|
self.isConfig = False
|
|
|
|
|
|
def setup(self, code, osamp, dataOut):
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
self.code = code
|
|
|
|
|
|
self.nCode = len(code)
|
|
|
self.nBaud = len(code[0])
|
|
|
|
|
|
if (osamp != None) and (osamp >1):
|
|
|
self.osamp = osamp
|
|
|
self.code = numpy.repeat(code, repeats=self.osamp, axis=1)
|
|
|
self.nBaud = self.nBaud*self.osamp
|
|
|
|
|
|
self.__nChannels = dataOut.nChannels
|
|
|
self.__nProfiles = dataOut.nProfiles
|
|
|
self.__nHeis = dataOut.nHeights
|
|
|
|
|
|
if self.__nHeis < self.nBaud:
|
|
|
raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)
|
|
|
|
|
|
#Frequency
|
|
|
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
|
|
|
|
|
|
__codeBuffer[:,0:self.nBaud] = self.code
|
|
|
|
|
|
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
|
|
|
self.ndatadec = self.__nHeis #- self.nBaud + 1
|
|
|
|
|
|
self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex)
|
|
|
|
|
|
else:
|
|
|
|
|
|
#Time
|
|
|
self.ndatadec = self.__nHeis #- self.nBaud + 1
|
|
|
|
|
|
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
|
|
|
|
|
|
def __convolutionInFreq(self, data):
|
|
|
|
|
|
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
|
|
|
|
|
|
fft_data = numpy.fft.fft(data, axis=1)
|
|
|
|
|
|
conv = fft_data*fft_code
|
|
|
|
|
|
data = numpy.fft.ifft(conv,axis=1)
|
|
|
|
|
|
return data
|
|
|
|
|
|
def __convolutionInFreqOpt(self, data):
|
|
|
|
|
|
raise NotImplementedError
|
|
|
|
|
|
def __convolutionInTime(self, data):
|
|
|
|
|
|
code = self.code[self.__profIndex]
|
|
|
|
|
|
for i in range(self.__nChannels):
|
|
|
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:]
|
|
|
|
|
|
return self.datadecTime
|
|
|
|
|
|
def __convolutionByBlockInTime(self, data):
|
|
|
|
|
|
repetitions = self.__nProfiles / self.nCode
|
|
|
|
|
|
junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize))
|
|
|
junk = junk.flatten()
|
|
|
code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud))
|
|
|
|
|
|
for i in range(self.__nChannels):
|
|
|
for j in range(self.__nProfiles):
|
|
|
self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:]
|
|
|
|
|
|
return self.datadecTime
|
|
|
|
|
|
def __convolutionByBlockInFreq(self, data):
|
|
|
|
|
|
raise NotImplementedError, "Decoder by frequency fro Blocks not implemented"
|
|
|
|
|
|
|
|
|
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
|
|
|
|
|
|
fft_data = numpy.fft.fft(data, axis=2)
|
|
|
|
|
|
conv = fft_data*fft_code
|
|
|
|
|
|
data = numpy.fft.ifft(conv,axis=2)
|
|
|
|
|
|
return data
|
|
|
|
|
|
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None):
|
|
|
|
|
|
if dataOut.flagDecodeData:
|
|
|
print "This data is already decoded, recoding again ..."
|
|
|
|
|
|
if not self.isConfig:
|
|
|
|
|
|
if code is None:
|
|
|
if dataOut.code is None:
|
|
|
raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type
|
|
|
|
|
|
code = dataOut.code
|
|
|
else:
|
|
|
code = numpy.array(code).reshape(nCode,nBaud)
|
|
|
|
|
|
self.setup(code, osamp, dataOut)
|
|
|
|
|
|
self.isConfig = True
|
|
|
|
|
|
if mode == 3:
|
|
|
sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode)
|
|
|
|
|
|
if times != None:
|
|
|
sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n")
|
|
|
|
|
|
if self.code is None:
|
|
|
print "Fail decoding: Code is not defined."
|
|
|
return
|
|
|
|
|
|
self.__nProfiles = dataOut.nProfiles
|
|
|
datadec = None
|
|
|
|
|
|
if mode == 3:
|
|
|
mode = 0
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
Decoding when data have been read as block,
|
|
|
"""
|
|
|
|
|
|
if mode == 0:
|
|
|
datadec = self.__convolutionByBlockInTime(dataOut.data)
|
|
|
if mode == 1:
|
|
|
datadec = self.__convolutionByBlockInFreq(dataOut.data)
|
|
|
else:
|
|
|
"""
|
|
|
Decoding when data have been read profile by profile
|
|
|
"""
|
|
|
if mode == 0:
|
|
|
datadec = self.__convolutionInTime(dataOut.data)
|
|
|
|
|
|
if mode == 1:
|
|
|
datadec = self.__convolutionInFreq(dataOut.data)
|
|
|
|
|
|
if mode == 2:
|
|
|
datadec = self.__convolutionInFreqOpt(dataOut.data)
|
|
|
|
|
|
if datadec is None:
|
|
|
raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode
|
|
|
|
|
|
dataOut.code = self.code
|
|
|
dataOut.nCode = self.nCode
|
|
|
dataOut.nBaud = self.nBaud
|
|
|
|
|
|
dataOut.data = datadec
|
|
|
|
|
|
dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]]
|
|
|
|
|
|
dataOut.flagDecodeData = True #asumo q la data esta decodificada
|
|
|
|
|
|
if self.__profIndex == self.nCode-1:
|
|
|
self.__profIndex = 0
|
|
|
return 1
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return 1
|
|
|
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip
|
|
|
|
|
|
|
|
|
class ProfileConcat(Operation):
|
|
|
|
|
|
isConfig = False
|
|
|
buffer = None
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
self.profileIndex = 0
|
|
|
|
|
|
def reset(self):
|
|
|
self.buffer = numpy.zeros_like(self.buffer)
|
|
|
self.start_index = 0
|
|
|
self.times = 1
|
|
|
|
|
|
def setup(self, data, m, n=1):
|
|
|
self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
|
|
|
self.nHeights = data.shape[1]#.nHeights
|
|
|
self.start_index = 0
|
|
|
self.times = 1
|
|
|
|
|
|
def concat(self, data):
|
|
|
|
|
|
self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy()
|
|
|
self.start_index = self.start_index + self.nHeights
|
|
|
|
|
|
def run(self, dataOut, m):
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if not self.isConfig:
|
|
|
self.setup(dataOut.data, m, 1)
|
|
|
self.isConfig = True
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False"
|
|
|
|
|
|
else:
|
|
|
self.concat(dataOut.data)
|
|
|
self.times += 1
|
|
|
if self.times > m:
|
|
|
dataOut.data = self.buffer
|
|
|
self.reset()
|
|
|
dataOut.flagNoData = False
|
|
|
# se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
|
|
|
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
|
|
|
xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m
|
|
|
dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
|
|
|
dataOut.ippSeconds *= m
|
|
|
|
|
|
class ProfileSelector(Operation):
|
|
|
|
|
|
profileIndex = None
|
|
|
# Tamanho total de los perfiles
|
|
|
nProfiles = None
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
self.profileIndex = 0
|
|
|
|
|
|
def incProfileIndex(self):
|
|
|
|
|
|
self.profileIndex += 1
|
|
|
|
|
|
if self.profileIndex >= self.nProfiles:
|
|
|
self.profileIndex = 0
|
|
|
|
|
|
def isThisProfileInRange(self, profileIndex, minIndex, maxIndex):
|
|
|
|
|
|
if profileIndex < minIndex:
|
|
|
return False
|
|
|
|
|
|
if profileIndex > maxIndex:
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def isThisProfileInList(self, profileIndex, profileList):
|
|
|
|
|
|
if profileIndex not in profileList:
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None):
|
|
|
|
|
|
"""
|
|
|
ProfileSelector:
|
|
|
|
|
|
Inputs:
|
|
|
profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8)
|
|
|
|
|
|
profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30)
|
|
|
|
|
|
rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256))
|
|
|
|
|
|
"""
|
|
|
|
|
|
if rangeList is not None:
|
|
|
if type(rangeList[0]) not in (tuple, list):
|
|
|
rangeList = [rangeList]
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
"""
|
|
|
data dimension = [nChannels, nProfiles, nHeis]
|
|
|
"""
|
|
|
if profileList != None:
|
|
|
dataOut.data = dataOut.data[:,profileList,:]
|
|
|
|
|
|
if profileRangeList != None:
|
|
|
minIndex = profileRangeList[0]
|
|
|
maxIndex = profileRangeList[1]
|
|
|
profileList = range(minIndex, maxIndex+1)
|
|
|
|
|
|
dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:]
|
|
|
|
|
|
if rangeList != None:
|
|
|
|
|
|
profileList = []
|
|
|
|
|
|
for thisRange in rangeList:
|
|
|
minIndex = thisRange[0]
|
|
|
maxIndex = thisRange[1]
|
|
|
|
|
|
profileList.extend(range(minIndex, maxIndex+1))
|
|
|
|
|
|
dataOut.data = dataOut.data[:,profileList,:]
|
|
|
|
|
|
dataOut.nProfiles = len(profileList)
|
|
|
dataOut.profileIndex = dataOut.nProfiles - 1
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
return True
|
|
|
|
|
|
"""
|
|
|
data dimension = [nChannels, nHeis]
|
|
|
"""
|
|
|
|
|
|
if profileList != None:
|
|
|
|
|
|
if self.isThisProfileInList(dataOut.profileIndex, profileList):
|
|
|
|
|
|
self.nProfiles = len(profileList)
|
|
|
dataOut.nProfiles = self.nProfiles
|
|
|
dataOut.profileIndex = self.profileIndex
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
self.incProfileIndex()
|
|
|
return True
|
|
|
|
|
|
if profileRangeList != None:
|
|
|
|
|
|
minIndex = profileRangeList[0]
|
|
|
maxIndex = profileRangeList[1]
|
|
|
|
|
|
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
|
|
|
|
|
|
self.nProfiles = maxIndex - minIndex + 1
|
|
|
dataOut.nProfiles = self.nProfiles
|
|
|
dataOut.profileIndex = self.profileIndex
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
self.incProfileIndex()
|
|
|
return True
|
|
|
|
|
|
if rangeList != None:
|
|
|
|
|
|
nProfiles = 0
|
|
|
|
|
|
for thisRange in rangeList:
|
|
|
minIndex = thisRange[0]
|
|
|
maxIndex = thisRange[1]
|
|
|
|
|
|
nProfiles += maxIndex - minIndex + 1
|
|
|
|
|
|
for thisRange in rangeList:
|
|
|
|
|
|
minIndex = thisRange[0]
|
|
|
maxIndex = thisRange[1]
|
|
|
|
|
|
if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex):
|
|
|
|
|
|
self.nProfiles = nProfiles
|
|
|
dataOut.nProfiles = self.nProfiles
|
|
|
dataOut.profileIndex = self.profileIndex
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
self.incProfileIndex()
|
|
|
|
|
|
break
|
|
|
|
|
|
return True
|
|
|
|
|
|
|
|
|
if beam != None: #beam is only for AMISR data
|
|
|
if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]):
|
|
|
dataOut.flagNoData = False
|
|
|
dataOut.profileIndex = self.profileIndex
|
|
|
|
|
|
self.incProfileIndex()
|
|
|
|
|
|
return True
|
|
|
|
|
|
raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter"
|
|
|
|
|
|
return False
|
|
|
|
|
|
class Reshaper(Operation):
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.__buffer = None
|
|
|
self.__nitems = 0
|
|
|
|
|
|
def __appendProfile(self, dataOut, nTxs):
|
|
|
|
|
|
if self.__buffer is None:
|
|
|
shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) )
|
|
|
self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype)
|
|
|
|
|
|
ini = dataOut.nHeights * self.__nitems
|
|
|
end = ini + dataOut.nHeights
|
|
|
|
|
|
self.__buffer[:, ini:end] = dataOut.data
|
|
|
|
|
|
self.__nitems += 1
|
|
|
|
|
|
return int(self.__nitems*nTxs)
|
|
|
|
|
|
def __getBuffer(self):
|
|
|
|
|
|
if self.__nitems == int(1./self.__nTxs):
|
|
|
|
|
|
self.__nitems = 0
|
|
|
|
|
|
return self.__buffer.copy()
|
|
|
|
|
|
return None
|
|
|
|
|
|
def __checkInputs(self, dataOut, shape, nTxs):
|
|
|
|
|
|
if shape is None and nTxs is None:
|
|
|
raise ValueError, "Reshaper: shape of factor should be defined"
|
|
|
|
|
|
if nTxs:
|
|
|
if nTxs < 0:
|
|
|
raise ValueError, "nTxs should be greater than 0"
|
|
|
|
|
|
if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0:
|
|
|
raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))
|
|
|
|
|
|
shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs]
|
|
|
|
|
|
return shape, nTxs
|
|
|
|
|
|
if len(shape) != 2 and len(shape) != 3:
|
|
|
raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)
|
|
|
|
|
|
if len(shape) == 2:
|
|
|
shape_tuple = [dataOut.nChannels]
|
|
|
shape_tuple.extend(shape)
|
|
|
else:
|
|
|
shape_tuple = list(shape)
|
|
|
|
|
|
nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles
|
|
|
|
|
|
return shape_tuple, nTxs
|
|
|
|
|
|
def run(self, dataOut, shape=None, nTxs=None):
|
|
|
|
|
|
shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs)
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
profileIndex = None
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
|
|
|
dataOut.data = numpy.reshape(dataOut.data, shape_tuple)
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1
|
|
|
|
|
|
else:
|
|
|
|
|
|
if self.__nTxs < 1:
|
|
|
|
|
|
self.__appendProfile(dataOut, self.__nTxs)
|
|
|
new_data = self.__getBuffer()
|
|
|
|
|
|
if new_data is not None:
|
|
|
dataOut.data = new_data
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
profileIndex = dataOut.profileIndex*nTxs
|
|
|
|
|
|
else:
|
|
|
raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)"
|
|
|
|
|
|
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
|
|
|
|
|
|
dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0]
|
|
|
|
|
|
dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs)
|
|
|
|
|
|
dataOut.profileIndex = profileIndex
|
|
|
|
|
|
dataOut.ippSeconds /= self.__nTxs
|
|
|
|
|
|
class SplitProfiles(Operation):
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
def run(self, dataOut, n):
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
profileIndex = None
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
|
|
|
#nchannels, nprofiles, nsamples
|
|
|
shape = dataOut.data.shape
|
|
|
|
|
|
if shape[2] % n != 0:
|
|
|
raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])
|
|
|
|
|
|
new_shape = shape[0], shape[1]*n, shape[2]/n
|
|
|
|
|
|
dataOut.data = numpy.reshape(dataOut.data, new_shape)
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
profileIndex = int(dataOut.nProfiles/n) - 1
|
|
|
|
|
|
else:
|
|
|
|
|
|
raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)"
|
|
|
|
|
|
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
|
|
|
|
|
|
dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0]
|
|
|
|
|
|
dataOut.nProfiles = int(dataOut.nProfiles*n)
|
|
|
|
|
|
dataOut.profileIndex = profileIndex
|
|
|
|
|
|
dataOut.ippSeconds /= n
|
|
|
|
|
|
class CombineProfiles(Operation):
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, **kwargs)
|
|
|
|
|
|
self.__remData = None
|
|
|
self.__profileIndex = 0
|
|
|
|
|
|
def run(self, dataOut, n):
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
profileIndex = None
|
|
|
|
|
|
if dataOut.flagDataAsBlock:
|
|
|
|
|
|
#nchannels, nprofiles, nsamples
|
|
|
shape = dataOut.data.shape
|
|
|
new_shape = shape[0], shape[1]/n, shape[2]*n
|
|
|
|
|
|
if shape[1] % n != 0:
|
|
|
raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])
|
|
|
|
|
|
dataOut.data = numpy.reshape(dataOut.data, new_shape)
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
profileIndex = int(dataOut.nProfiles*n) - 1
|
|
|
|
|
|
else:
|
|
|
|
|
|
#nchannels, nsamples
|
|
|
if self.__remData is None:
|
|
|
newData = dataOut.data
|
|
|
else:
|
|
|
newData = numpy.concatenate((self.__remData, dataOut.data), axis=1)
|
|
|
|
|
|
self.__profileIndex += 1
|
|
|
|
|
|
if self.__profileIndex < n:
|
|
|
self.__remData = newData
|
|
|
#continue
|
|
|
return
|
|
|
|
|
|
self.__profileIndex = 0
|
|
|
self.__remData = None
|
|
|
|
|
|
dataOut.data = newData
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
profileIndex = dataOut.profileIndex/n
|
|
|
|
|
|
|
|
|
deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
|
|
|
|
|
|
dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0]
|
|
|
|
|
|
dataOut.nProfiles = int(dataOut.nProfiles/n)
|
|
|
|
|
|
dataOut.profileIndex = profileIndex
|
|
|
|
|
|
dataOut.ippSeconds *= n
|
|
|
|
|
|
# import collections
|
|
|
# from scipy.stats import mode
|
|
|
#
|
|
|
# class Synchronize(Operation):
|
|
|
#
|
|
|
# isConfig = False
|
|
|
# __profIndex = 0
|
|
|
#
|
|
|
# def __init__(self, **kwargs):
|
|
|
#
|
|
|
# Operation.__init__(self, **kwargs)
|
|
|
# # self.isConfig = False
|
|
|
# self.__powBuffer = None
|
|
|
# self.__startIndex = 0
|
|
|
# self.__pulseFound = False
|
|
|
#
|
|
|
# def __findTxPulse(self, dataOut, channel=0, pulse_with = None):
|
|
|
#
|
|
|
# #Read data
|
|
|
#
|
|
|
# powerdB = dataOut.getPower(channel = channel)
|
|
|
# noisedB = dataOut.getNoise(channel = channel)[0]
|
|
|
#
|
|
|
# self.__powBuffer.extend(powerdB.flatten())
|
|
|
#
|
|
|
# dataArray = numpy.array(self.__powBuffer)
|
|
|
#
|
|
|
# filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same")
|
|
|
#
|
|
|
# maxValue = numpy.nanmax(filteredPower)
|
|
|
#
|
|
|
# if maxValue < noisedB + 10:
|
|
|
# #No se encuentra ningun pulso de transmision
|
|
|
# return None
|
|
|
#
|
|
|
# maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0]
|
|
|
#
|
|
|
# if len(maxValuesIndex) < 2:
|
|
|
# #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX
|
|
|
# return None
|
|
|
#
|
|
|
# phasedMaxValuesIndex = maxValuesIndex - self.__nSamples
|
|
|
#
|
|
|
# #Seleccionar solo valores con un espaciamiento de nSamples
|
|
|
# pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex)
|
|
|
#
|
|
|
# if len(pulseIndex) < 2:
|
|
|
# #Solo se encontro un pulso de transmision con ancho mayor a 1
|
|
|
# return None
|
|
|
#
|
|
|
# spacing = pulseIndex[1:] - pulseIndex[:-1]
|
|
|
#
|
|
|
# #remover senales que se distancien menos de 10 unidades o muestras
|
|
|
# #(No deberian existir IPP menor a 10 unidades)
|
|
|
#
|
|
|
# realIndex = numpy.where(spacing > 10 )[0]
|
|
|
#
|
|
|
# if len(realIndex) < 2:
|
|
|
# #Solo se encontro un pulso de transmision con ancho mayor a 1
|
|
|
# return None
|
|
|
#
|
|
|
# #Eliminar pulsos anchos (deja solo la diferencia entre IPPs)
|
|
|
# realPulseIndex = pulseIndex[realIndex]
|
|
|
#
|
|
|
# period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0]
|
|
|
#
|
|
|
# print "IPP = %d samples" %period
|
|
|
#
|
|
|
# self.__newNSamples = dataOut.nHeights #int(period)
|
|
|
# self.__startIndex = int(realPulseIndex[0])
|
|
|
#
|
|
|
# return 1
|
|
|
#
|
|
|
#
|
|
|
# def setup(self, nSamples, nChannels, buffer_size = 4):
|
|
|
#
|
|
|
# self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float),
|
|
|
# maxlen = buffer_size*nSamples)
|
|
|
#
|
|
|
# bufferList = []
|
|
|
#
|
|
|
# for i in range(nChannels):
|
|
|
# bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN,
|
|
|
# maxlen = buffer_size*nSamples)
|
|
|
#
|
|
|
# bufferList.append(bufferByChannel)
|
|
|
#
|
|
|
# self.__nSamples = nSamples
|
|
|
# self.__nChannels = nChannels
|
|
|
# self.__bufferList = bufferList
|
|
|
#
|
|
|
# def run(self, dataOut, channel = 0):
|
|
|
#
|
|
|
# if not self.isConfig:
|
|
|
# nSamples = dataOut.nHeights
|
|
|
# nChannels = dataOut.nChannels
|
|
|
# self.setup(nSamples, nChannels)
|
|
|
# self.isConfig = True
|
|
|
#
|
|
|
# #Append new data to internal buffer
|
|
|
# for thisChannel in range(self.__nChannels):
|
|
|
# bufferByChannel = self.__bufferList[thisChannel]
|
|
|
# bufferByChannel.extend(dataOut.data[thisChannel])
|
|
|
#
|
|
|
# if self.__pulseFound:
|
|
|
# self.__startIndex -= self.__nSamples
|
|
|
#
|
|
|
# #Finding Tx Pulse
|
|
|
# if not self.__pulseFound:
|
|
|
# indexFound = self.__findTxPulse(dataOut, channel)
|
|
|
#
|
|
|
# if indexFound == None:
|
|
|
# dataOut.flagNoData = True
|
|
|
# return
|
|
|
#
|
|
|
# self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex)
|
|
|
# self.__pulseFound = True
|
|
|
# self.__startIndex = indexFound
|
|
|
#
|
|
|
# #If pulse was found ...
|
|
|
# for thisChannel in range(self.__nChannels):
|
|
|
# bufferByChannel = self.__bufferList[thisChannel]
|
|
|
# #print self.__startIndex
|
|
|
# x = numpy.array(bufferByChannel)
|
|
|
# self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples]
|
|
|
#
|
|
|
# deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
|
|
|
# dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight
|
|
|
# # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6
|
|
|
#
|
|
|
# dataOut.data = self.__arrayBuffer
|
|
|
#
|
|
|
# self.__startIndex += self.__newNSamples
|
|
|
#
|
|
|
# return
|
|
|
|