|
|
|
|
|
import os
|
|
|
import zmq
|
|
|
import time
|
|
|
import numpy
|
|
|
import datetime
|
|
|
import numpy as np
|
|
|
import matplotlib
|
|
|
import glob
|
|
|
matplotlib.use('TkAgg')
|
|
|
import matplotlib.pyplot as plt
|
|
|
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
|
|
from matplotlib.ticker import FuncFormatter, LinearLocator
|
|
|
from multiprocessing import Process
|
|
|
|
|
|
from schainpy.model.proc.jroproc_base import Operation
|
|
|
|
|
|
plt.ion()
|
|
|
|
|
|
func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
|
|
|
|
|
|
d1970 = datetime.datetime(1970,1,1)
|
|
|
|
|
|
class PlotData(Operation, Process):
|
|
|
|
|
|
CODE = 'Figure'
|
|
|
colormap = 'jro'
|
|
|
CONFLATE = False
|
|
|
__MAXNUMX = 80
|
|
|
__missing = 1E30
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, plot=True, **kwargs)
|
|
|
Process.__init__(self)
|
|
|
self.kwargs['code'] = self.CODE
|
|
|
self.mp = False
|
|
|
self.dataOut = None
|
|
|
self.isConfig = False
|
|
|
self.figure = None
|
|
|
self.axes = []
|
|
|
self.localtime = kwargs.pop('localtime', True)
|
|
|
self.show = kwargs.get('show', True)
|
|
|
self.save = kwargs.get('save', False)
|
|
|
self.colormap = kwargs.get('colormap', self.colormap)
|
|
|
self.colormap_coh = kwargs.get('colormap_coh', 'jet')
|
|
|
self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
|
|
|
self.showprofile = kwargs.get('showprofile', True)
|
|
|
self.title = kwargs.get('wintitle', '')
|
|
|
self.xaxis = kwargs.get('xaxis', 'frequency')
|
|
|
self.zmin = kwargs.get('zmin', None)
|
|
|
self.zmax = kwargs.get('zmax', None)
|
|
|
self.xmin = kwargs.get('xmin', None)
|
|
|
self.xmax = kwargs.get('xmax', None)
|
|
|
self.xrange = kwargs.get('xrange', 24)
|
|
|
self.ymin = kwargs.get('ymin', None)
|
|
|
self.ymax = kwargs.get('ymax', None)
|
|
|
self.__MAXNUMY = kwargs.get('decimation', 80)
|
|
|
self.throttle_value = 5
|
|
|
self.times = []
|
|
|
#self.interactive = self.kwargs['parent']
|
|
|
|
|
|
'''
|
|
|
this new parameter is created to plot data from varius channels at different figures
|
|
|
1. crear una lista de figuras donde se puedan plotear las figuras,
|
|
|
2. dar las opciones de configuracion a cada figura, estas opciones son iguales para ambas figuras
|
|
|
3. probar?
|
|
|
'''
|
|
|
self.ind_plt_ch = kwargs.get('ind_plt_ch', False)
|
|
|
self.figurelist = None
|
|
|
|
|
|
|
|
|
def fill_gaps(self, x_buffer, y_buffer, z_buffer):
|
|
|
|
|
|
if x_buffer.shape[0] < 2:
|
|
|
return x_buffer, y_buffer, z_buffer
|
|
|
|
|
|
deltas = x_buffer[1:] - x_buffer[0:-1]
|
|
|
x_median = np.median(deltas)
|
|
|
|
|
|
index = np.where(deltas > 5*x_median)
|
|
|
|
|
|
if len(index[0]) != 0:
|
|
|
z_buffer[::, index[0], ::] = self.__missing
|
|
|
z_buffer = np.ma.masked_inside(z_buffer,
|
|
|
0.99*self.__missing,
|
|
|
1.01*self.__missing)
|
|
|
|
|
|
return x_buffer, y_buffer, z_buffer
|
|
|
|
|
|
def decimate(self):
|
|
|
|
|
|
# dx = int(len(self.x)/self.__MAXNUMX) + 1
|
|
|
dy = int(len(self.y)/self.__MAXNUMY) + 1
|
|
|
|
|
|
# x = self.x[::dx]
|
|
|
x = self.x
|
|
|
y = self.y[::dy]
|
|
|
z = self.z[::, ::, ::dy]
|
|
|
|
|
|
return x, y, z
|
|
|
|
|
|
'''
|
|
|
JM:
|
|
|
elimana las otras imagenes generadas debido a que lso workers no llegan en orden y le pueden
|
|
|
poner otro tiempo a la figura q no necesariamente es el ultimo.
|
|
|
Solo se realiza cuando termina la imagen.
|
|
|
Problemas:
|
|
|
|
|
|
File "/home/ci-81/workspace/schainv2.3/schainpy/model/graphics/jroplot_data.py", line 145, in __plot
|
|
|
for n, eachfigure in enumerate(self.figurelist):
|
|
|
TypeError: 'NoneType' object is not iterable
|
|
|
|
|
|
'''
|
|
|
def deleteanotherfiles(self):
|
|
|
figurenames=[]
|
|
|
if self.figurelist != None:
|
|
|
for n, eachfigure in enumerate(self.figurelist):
|
|
|
#add specific name for each channel in channelList
|
|
|
ghostfigname = os.path.join(self.save, '{}_{}_{}'.format(self.titles[n].replace(' ',''),self.CODE,
|
|
|
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d')))
|
|
|
figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE,
|
|
|
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
|
|
|
for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures
|
|
|
if ghostfigure != figname:
|
|
|
os.remove(ghostfigure)
|
|
|
print 'Removing GhostFigures:' , figname
|
|
|
else :
|
|
|
'''Erasing ghost images for just on******************'''
|
|
|
ghostfigname = os.path.join(self.save, '{}_{}'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d')))
|
|
|
figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures
|
|
|
if ghostfigure != figname:
|
|
|
os.remove(ghostfigure)
|
|
|
print 'Removing GhostFigures:' , figname
|
|
|
|
|
|
def __plot(self):
|
|
|
|
|
|
print 'plotting...{}'.format(self.CODE)
|
|
|
if self.ind_plt_ch is False : #standard
|
|
|
if self.show:
|
|
|
self.figure.show()
|
|
|
self.plot()
|
|
|
plt.tight_layout()
|
|
|
self.figure.canvas.manager.set_window_title('{} {} - {}'.format(self.title, self.CODE.upper(),
|
|
|
datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
|
|
|
else :
|
|
|
print 'len(self.figurelist): ',len(self.figurelist)
|
|
|
for n, eachfigure in enumerate(self.figurelist):
|
|
|
if self.show:
|
|
|
eachfigure.show()
|
|
|
|
|
|
self.plot()
|
|
|
eachfigure.tight_layout() # ajuste de cada subplot
|
|
|
eachfigure.canvas.manager.set_window_title('{} {} - {}'.format(self.title[n], self.CODE.upper(),
|
|
|
datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d')))
|
|
|
|
|
|
# if self.save:
|
|
|
# if self.ind_plt_ch is False : #standard
|
|
|
# figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
|
|
|
# datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
# print 'Saving figure: {}'.format(figname)
|
|
|
# self.figure.savefig(figname)
|
|
|
# else :
|
|
|
# for n, eachfigure in enumerate(self.figurelist):
|
|
|
# #add specific name for each channel in channelList
|
|
|
# figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n],self.CODE,
|
|
|
# datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
#
|
|
|
# print 'Saving figure: {}'.format(figname)
|
|
|
# eachfigure.savefig(figname)
|
|
|
|
|
|
if self.ind_plt_ch is False :
|
|
|
self.figure.canvas.draw()
|
|
|
else :
|
|
|
for eachfigure in self.figurelist:
|
|
|
eachfigure.canvas.draw()
|
|
|
|
|
|
if self.save:
|
|
|
if self.ind_plt_ch is False : #standard
|
|
|
figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
|
|
|
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
print 'Saving figure: {}'.format(figname)
|
|
|
self.figure.savefig(figname)
|
|
|
else :
|
|
|
for n, eachfigure in enumerate(self.figurelist):
|
|
|
#add specific name for each channel in channelList
|
|
|
figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE,
|
|
|
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
|
|
|
|
|
|
print 'Saving figure: {}'.format(figname)
|
|
|
eachfigure.savefig(figname)
|
|
|
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
print 'plotting...{}'.format(self.CODE.upper())
|
|
|
return
|
|
|
|
|
|
def run(self):
|
|
|
|
|
|
print '[Starting] {}'.format(self.name)
|
|
|
|
|
|
context = zmq.Context()
|
|
|
receiver = context.socket(zmq.SUB)
|
|
|
receiver.setsockopt(zmq.SUBSCRIBE, '')
|
|
|
receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
|
|
|
|
|
|
if 'server' in self.kwargs['parent']:
|
|
|
receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server']))
|
|
|
else:
|
|
|
receiver.connect("ipc:///tmp/zmq.plots")
|
|
|
|
|
|
seconds_passed = 0
|
|
|
|
|
|
while True:
|
|
|
try:
|
|
|
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)#flags=zmq.NOBLOCK
|
|
|
self.started = self.data['STARTED']
|
|
|
self.dataOut = self.data['dataOut']
|
|
|
|
|
|
if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']):
|
|
|
continue
|
|
|
|
|
|
self.times = self.data['times']
|
|
|
self.times.sort()
|
|
|
self.throttle_value = self.data['throttle']
|
|
|
self.min_time = self.times[0]
|
|
|
self.max_time = self.times[-1]
|
|
|
|
|
|
if self.isConfig is False:
|
|
|
print 'setting up'
|
|
|
self.setup()
|
|
|
self.isConfig = True
|
|
|
self.__plot()
|
|
|
|
|
|
if self.data['ENDED'] is True:
|
|
|
print '********GRAPHIC ENDED********'
|
|
|
self.ended = True
|
|
|
self.isConfig = False
|
|
|
self.__plot()
|
|
|
self.deleteanotherfiles() #CLPDG
|
|
|
elif seconds_passed >= self.data['throttle']:
|
|
|
print 'passed', seconds_passed
|
|
|
self.__plot()
|
|
|
seconds_passed = 0
|
|
|
|
|
|
except zmq.Again as e:
|
|
|
print 'Waiting for data...'
|
|
|
plt.pause(2)
|
|
|
seconds_passed += 2
|
|
|
|
|
|
def close(self):
|
|
|
if self.dataOut:
|
|
|
self.__plot()
|
|
|
|
|
|
|
|
|
class PlotSpectraData(PlotData):
|
|
|
|
|
|
CODE = 'spc'
|
|
|
colormap = 'jro'
|
|
|
CONFLATE = False
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
ncolspan = 1
|
|
|
colspan = 1
|
|
|
self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
|
|
|
self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
|
|
|
self.width = 3.6*self.ncols
|
|
|
self.height = 3.2*self.nrows
|
|
|
if self.showprofile:
|
|
|
ncolspan = 3
|
|
|
colspan = 2
|
|
|
self.width += 1.2*self.ncols
|
|
|
|
|
|
self.ylabel = 'Range [Km]'
|
|
|
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
|
|
|
n = 0
|
|
|
for y in range(self.nrows):
|
|
|
for x in range(self.ncols):
|
|
|
if n >= self.dataOut.nChannels:
|
|
|
break
|
|
|
ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
|
|
|
if self.showprofile:
|
|
|
ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
|
|
|
|
|
|
ax.firsttime = True
|
|
|
self.axes.append(ax)
|
|
|
n += 1
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.dataOut.getFreqRange(1)/1000.
|
|
|
xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.dataOut.getAcfRange(1)
|
|
|
xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.dataOut.getVelRange(1)
|
|
|
xlabel = "Velocity (m/s)"
|
|
|
|
|
|
y = self.dataOut.getHeiRange()
|
|
|
z = self.data[self.CODE]
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else np.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(y)
|
|
|
self.zmin = self.zmin if self.zmin else np.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else np.nanmax(z)
|
|
|
ax.plot = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
divider = make_axes_locatable(ax)
|
|
|
cax = divider.new_horizontal(size='3%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
plt.colorbar(ax.plot, cax)
|
|
|
|
|
|
ax.set_xlim(self.xmin, self.xmax)
|
|
|
ax.set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
|
ax.firsttime = False
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
|
|
|
ax.ax_profile.set_xlim(self.zmin, self.zmax)
|
|
|
ax.ax_profile.set_ylim(self.ymin, self.ymax)
|
|
|
ax.ax_profile.set_xlabel('dB')
|
|
|
ax.ax_profile.grid(b=True, axis='x')
|
|
|
ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=2)[0]
|
|
|
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
|
|
|
else:
|
|
|
ax.plot.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
|
|
|
ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
|
|
|
|
|
|
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
|
|
|
size=8)
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotCrossSpectraData(PlotData):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
CONFLATE = False
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
ncolspan = 1
|
|
|
colspan = 1
|
|
|
self.ncols = 2
|
|
|
self.nrows = self.dataOut.nPairs
|
|
|
self.width = 3.6*self.ncols
|
|
|
self.height = 3.2*self.nrows
|
|
|
|
|
|
self.ylabel = 'Range [Km]'
|
|
|
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
|
|
|
for y in range(self.nrows):
|
|
|
for x in range(self.ncols):
|
|
|
ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
|
|
|
ax.firsttime = True
|
|
|
self.axes.append(ax)
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.dataOut.getFreqRange(1)/1000.
|
|
|
xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.dataOut.getAcfRange(1)
|
|
|
xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.dataOut.getVelRange(1)
|
|
|
xlabel = "Velocity (m/s)"
|
|
|
|
|
|
y = self.dataOut.getHeiRange()
|
|
|
z_coh = self.data['cspc_coh']
|
|
|
z_phase = self.data['cspc_phase']
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
ax = self.axes[2*n]
|
|
|
ax1 = self.axes[2*n+1]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else np.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(y)
|
|
|
self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
|
|
|
self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
|
|
|
self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
|
|
|
self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
|
|
|
|
|
|
ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
|
|
|
vmin=self.zmin_coh,
|
|
|
vmax=self.zmax_coh,
|
|
|
cmap=plt.get_cmap(self.colormap_coh)
|
|
|
)
|
|
|
divider = make_axes_locatable(ax)
|
|
|
cax = divider.new_horizontal(size='3%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
plt.colorbar(ax.plot, cax)
|
|
|
|
|
|
ax.set_xlim(self.xmin, self.xmax)
|
|
|
ax.set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
ax.set_xlabel(xlabel)
|
|
|
ax.firsttime = False
|
|
|
|
|
|
ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
|
|
|
vmin=self.zmin_phase,
|
|
|
vmax=self.zmax_phase,
|
|
|
cmap=plt.get_cmap(self.colormap_phase)
|
|
|
)
|
|
|
divider = make_axes_locatable(ax1)
|
|
|
cax = divider.new_horizontal(size='3%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
plt.colorbar(ax1.plot, cax)
|
|
|
|
|
|
ax1.set_xlim(self.xmin, self.xmax)
|
|
|
ax1.set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
ax1.set_ylabel(self.ylabel)
|
|
|
ax1.set_xlabel(xlabel)
|
|
|
ax1.firsttime = False
|
|
|
else:
|
|
|
ax.plot.set_array(z_coh[n].T.ravel())
|
|
|
ax1.plot.set_array(z_phase[n].T.ravel())
|
|
|
|
|
|
ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
|
|
|
ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotSpectraMeanData(PlotSpectraData):
|
|
|
|
|
|
CODE = 'spc_mean'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.dataOut.getFreqRange(1)/1000.
|
|
|
xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.dataOut.getAcfRange(1)
|
|
|
xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.dataOut.getVelRange(1)
|
|
|
xlabel = "Velocity (m/s)"
|
|
|
|
|
|
y = self.dataOut.getHeiRange()
|
|
|
z = self.data['spc']
|
|
|
mean = self.data['mean'][self.max_time]
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else np.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(y)
|
|
|
self.zmin = self.zmin if self.zmin else np.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else np.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
ax.plt_dop = ax.plot(mean[n], y,
|
|
|
color='k')[0]
|
|
|
|
|
|
divider = make_axes_locatable(ax)
|
|
|
cax = divider.new_horizontal(size='3%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
plt.colorbar(ax.plt, cax)
|
|
|
|
|
|
ax.set_xlim(self.xmin, self.xmax)
|
|
|
ax.set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
ax.set_xlabel(xlabel)
|
|
|
|
|
|
ax.firsttime = False
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
|
|
|
ax.ax_profile.set_xlim(self.zmin, self.zmax)
|
|
|
ax.ax_profile.set_ylim(self.ymin, self.ymax)
|
|
|
ax.ax_profile.set_xlabel('dB')
|
|
|
ax.ax_profile.grid(b=True, axis='x')
|
|
|
ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=2)[0]
|
|
|
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
|
|
|
else:
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
ax.plt_dop.set_data(mean[n], y)
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
|
|
|
ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
|
|
|
|
|
|
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
|
|
|
size=8)
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotRTIData(PlotData):
|
|
|
|
|
|
CODE = 'rti'
|
|
|
colormap = 'jro'
|
|
|
|
|
|
def setup(self):
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.dataOut.nChannels
|
|
|
self.width = 10
|
|
|
#TODO : arreglar la altura de la figura, esta hardcodeada.
|
|
|
#Se arreglo, testear!
|
|
|
if self.ind_plt_ch:
|
|
|
self.height = 3.2#*self.nrows if self.nrows<6 else 12
|
|
|
else:
|
|
|
self.height = 2.2*self.nrows if self.nrows<6 else 12
|
|
|
|
|
|
'''
|
|
|
if self.nrows==1:
|
|
|
self.height += 1
|
|
|
'''
|
|
|
self.ylabel = 'Range [Km]'
|
|
|
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
|
|
|
|
|
|
'''
|
|
|
Logica:
|
|
|
1) Si la variable ind_plt_ch es True, va a crear mas de 1 figura
|
|
|
2) guardamos "Figures" en una lista y "axes" en otra, quizas se deberia guardar el
|
|
|
axis dentro de "Figures" como un diccionario.
|
|
|
'''
|
|
|
if self.ind_plt_ch is False: #standard mode
|
|
|
|
|
|
if self.figure is None: #solo para la priemra vez
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
self.axes = []
|
|
|
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
|
|
|
#ax = self.figure(n+1)
|
|
|
ax.firsttime = True
|
|
|
self.axes.append(ax)
|
|
|
|
|
|
else : #append one figure foreach channel in channelList
|
|
|
if self.figurelist == None:
|
|
|
self.figurelist = []
|
|
|
for n in range(self.nrows):
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
#add always one subplot
|
|
|
self.figurelist.append(self.figure)
|
|
|
|
|
|
else : # cada dia nuevo limpia el axes, pero mantiene el figure
|
|
|
for eachfigure in self.figurelist:
|
|
|
eachfigure.clf() # eliminaria todas las figuras de la lista?
|
|
|
self.axes = []
|
|
|
|
|
|
for eachfigure in self.figurelist:
|
|
|
ax = eachfigure.add_subplot(1,1,1) #solo 1 axis por figura
|
|
|
#ax = self.figure(n+1)
|
|
|
ax.firsttime = True
|
|
|
#Cada figura tiene un distinto puntero
|
|
|
self.axes.append(ax)
|
|
|
#plt.close(eachfigure)
|
|
|
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.ind_plt_ch is False: #standard mode
|
|
|
self.x = np.array(self.times)
|
|
|
self.y = self.dataOut.getHeiRange()
|
|
|
self.z = []
|
|
|
|
|
|
for ch in range(self.nrows):
|
|
|
self.z.append([self.data[self.CODE][t][ch] for t in self.times])
|
|
|
|
|
|
self.z = np.array(self.z)
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
xmin = self.min_time
|
|
|
xmax = xmin+self.xrange*60*60
|
|
|
self.zmin = self.zmin if self.zmin else np.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else np.max(self.z)
|
|
|
if ax.firsttime:
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
|
|
|
plot = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
divider = make_axes_locatable(ax)
|
|
|
cax = divider.new_horizontal(size='2%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
plt.colorbar(plot, cax)
|
|
|
ax.set_ylim(self.ymin, self.ymax)
|
|
|
ax.xaxis.set_major_formatter(FuncFormatter(func))
|
|
|
ax.xaxis.set_major_locator(LinearLocator(6))
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
if self.xmin is None:
|
|
|
xmin = self.min_time
|
|
|
else:
|
|
|
xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
|
|
|
datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
|
|
|
ax.set_xlim(xmin, xmax)
|
|
|
ax.firsttime = False
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.set_xlim(xmin, xmax)
|
|
|
plot = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
ax.set_title('{} {}'.format(self.titles[n],
|
|
|
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
|
|
|
size=8)
|
|
|
|
|
|
self.saveTime = self.min_time
|
|
|
else :
|
|
|
self.x = np.array(self.times)
|
|
|
self.y = self.dataOut.getHeiRange()
|
|
|
self.z = []
|
|
|
|
|
|
for ch in range(self.nrows):
|
|
|
self.z.append([self.data[self.CODE][t][ch] for t in self.times])
|
|
|
|
|
|
self.z = np.array(self.z)
|
|
|
for n, eachfigure in enumerate(self.figurelist): #estaba ax in axes
|
|
|
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
xmin = self.min_time
|
|
|
xmax = xmin+self.xrange*60*60
|
|
|
self.zmin = self.zmin if self.zmin else np.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else np.max(self.z)
|
|
|
if self.axes[n].firsttime:
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
|
|
|
plot = self.axes[n].pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
divider = make_axes_locatable(self.axes[n])
|
|
|
cax = divider.new_horizontal(size='2%', pad=0.05)
|
|
|
eachfigure.add_axes(cax)
|
|
|
#self.figure2.add_axes(cax)
|
|
|
plt.colorbar(plot, cax)
|
|
|
self.axes[n].set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
self.axes[n].xaxis.set_major_formatter(FuncFormatter(func))
|
|
|
self.axes[n].xaxis.set_major_locator(LinearLocator(6))
|
|
|
|
|
|
self.axes[n].set_ylabel(self.ylabel)
|
|
|
|
|
|
if self.xmin is None:
|
|
|
xmin = self.min_time
|
|
|
else:
|
|
|
xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
|
|
|
datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
|
|
|
|
|
|
self.axes[n].set_xlim(xmin, xmax)
|
|
|
self.axes[n].firsttime = False
|
|
|
else:
|
|
|
self.axes[n].collections.remove(self.axes[n].collections[0])
|
|
|
self.axes[n].set_xlim(xmin, xmax)
|
|
|
plot = self.axes[n].pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
self.axes[n].set_title('{} {}'.format(self.titles[n],
|
|
|
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
|
|
|
size=8)
|
|
|
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotCOHData(PlotRTIData):
|
|
|
|
|
|
CODE = 'coh'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.dataOut.nPairs
|
|
|
self.width = 10
|
|
|
self.height = 2.2*self.nrows if self.nrows<6 else 12
|
|
|
self.ind_plt_ch = False #just for coherence and phase
|
|
|
if self.nrows==1:
|
|
|
self.height += 1
|
|
|
self.ylabel = 'Range [Km]'
|
|
|
self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
self.axes = []
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
|
|
|
ax.firsttime = True
|
|
|
self.axes.append(ax)
|
|
|
|
|
|
|
|
|
class PlotNoiseData(PlotData):
|
|
|
CODE = 'noise'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 10
|
|
|
self.height = 3.2
|
|
|
self.ylabel = 'Intensity [dB]'
|
|
|
self.titles = ['Noise']
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
self.axes = []
|
|
|
|
|
|
self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
|
|
|
self.ax.firsttime = True
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
x = self.times
|
|
|
xmin = self.min_time
|
|
|
xmax = xmin+self.xrange*60*60
|
|
|
if self.ax.firsttime:
|
|
|
for ch in self.dataOut.channelList:
|
|
|
y = [self.data[self.CODE][t][ch] for t in self.times]
|
|
|
self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
|
|
|
self.ax.firsttime = False
|
|
|
self.ax.xaxis.set_major_formatter(FuncFormatter(func))
|
|
|
self.ax.xaxis.set_major_locator(LinearLocator(6))
|
|
|
self.ax.set_ylabel(self.ylabel)
|
|
|
plt.legend()
|
|
|
else:
|
|
|
for ch in self.dataOut.channelList:
|
|
|
y = [self.data[self.CODE][t][ch] for t in self.times]
|
|
|
self.ax.lines[ch].set_data(x, y)
|
|
|
|
|
|
self.ax.set_xlim(xmin, xmax)
|
|
|
self.ax.set_ylim(min(y)-5, max(y)+5)
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotWindProfilerData(PlotRTIData):
|
|
|
|
|
|
CODE = 'wind'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def setup(self):
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.dataOut.data_output.shape[0]
|
|
|
self.width = 10
|
|
|
self.height = 2.2*self.nrows
|
|
|
self.ylabel = 'Height [Km]'
|
|
|
self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind']
|
|
|
self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
|
|
|
self.windFactor = [1, 1, 100]
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
self.axes = []
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
|
|
|
ax.firsttime = True
|
|
|
self.axes.append(ax)
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
self.x = np.array(self.times)
|
|
|
self.y = self.dataOut.heightList
|
|
|
self.z = []
|
|
|
|
|
|
for ch in range(self.nrows):
|
|
|
self.z.append([self.data['output'][t][ch] for t in self.times])
|
|
|
|
|
|
self.z = np.array(self.z)
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
cmap.set_bad('black', 1.)
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
xmin = self.min_time
|
|
|
xmax = xmin+self.xrange*60*60
|
|
|
if ax.firsttime:
|
|
|
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
|
|
|
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :]))
|
|
|
self.zmin = self.zmin if self.zmin else -self.zmax
|
|
|
|
|
|
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=cmap
|
|
|
)
|
|
|
divider = make_axes_locatable(ax)
|
|
|
cax = divider.new_horizontal(size='2%', pad=0.05)
|
|
|
self.figure.add_axes(cax)
|
|
|
cb = plt.colorbar(plot, cax)
|
|
|
cb.set_label(self.clabels[n])
|
|
|
ax.set_ylim(self.ymin, self.ymax)
|
|
|
|
|
|
ax.xaxis.set_major_formatter(FuncFormatter(func))
|
|
|
ax.xaxis.set_major_locator(LinearLocator(6))
|
|
|
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
|
|
|
ax.set_xlim(xmin, xmax)
|
|
|
ax.firsttime = False
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.set_xlim(xmin, xmax)
|
|
|
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
ax.set_title('{} {}'.format(self.titles[n],
|
|
|
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
|
|
|
size=8)
|
|
|
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotSNRData(PlotRTIData):
|
|
|
CODE = 'snr'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
class PlotDOPData(PlotRTIData):
|
|
|
CODE = 'dop'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
|
|
|
class PlotPHASEData(PlotCOHData):
|
|
|
CODE = 'phase'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
|
|
|
class PlotSkyMapData(PlotData):
|
|
|
|
|
|
CODE = 'met'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 7.2
|
|
|
self.height = 7.2
|
|
|
|
|
|
self.xlabel = 'Zonal Zenith Angle (deg)'
|
|
|
self.ylabel = 'Meridional Zenith Angle (deg)'
|
|
|
|
|
|
if self.figure is None:
|
|
|
self.figure = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
else:
|
|
|
self.figure.clf()
|
|
|
|
|
|
self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True)
|
|
|
self.ax.firsttime = True
|
|
|
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
arrayParameters = np.concatenate([self.data['param'][t] for t in self.times])
|
|
|
error = arrayParameters[:,-1]
|
|
|
indValid = numpy.where(error == 0)[0]
|
|
|
finalMeteor = arrayParameters[indValid,:]
|
|
|
finalAzimuth = finalMeteor[:,3]
|
|
|
finalZenith = finalMeteor[:,4]
|
|
|
|
|
|
x = finalAzimuth*numpy.pi/180
|
|
|
y = finalZenith
|
|
|
|
|
|
if self.ax.firsttime:
|
|
|
self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0]
|
|
|
self.ax.set_ylim(0,90)
|
|
|
self.ax.set_yticks(numpy.arange(0,90,20))
|
|
|
self.ax.set_xlabel(self.xlabel)
|
|
|
self.ax.set_ylabel(self.ylabel)
|
|
|
self.ax.yaxis.labelpad = 40
|
|
|
self.ax.firsttime = False
|
|
|
else:
|
|
|
self.ax.plot.set_data(x, y)
|
|
|
|
|
|
|
|
|
dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
|
|
|
dt2,
|
|
|
len(x))
|
|
|
self.ax.set_title(title, size=8)
|
|
|
|
|
|
self.saveTime = self.max_time
|
|
|
|