|
|
'''
|
|
|
|
|
|
$Author: murco $
|
|
|
$Id: JROData.py 173 2012-11-20 15:06:21Z murco $
|
|
|
'''
|
|
|
|
|
|
import os, sys
|
|
|
import copy
|
|
|
import numpy
|
|
|
|
|
|
from jroheaderIO import SystemHeader, RadarControllerHeader
|
|
|
|
|
|
def hildebrand_sekhon(data, navg):
|
|
|
"""
|
|
|
This method is for the objective determination of de noise level in Doppler spectra. This
|
|
|
implementation technique is based on the fact that the standard deviation of the spectral
|
|
|
densities is equal to the mean spectral density for white Gaussian noise
|
|
|
|
|
|
Inputs:
|
|
|
Data : heights
|
|
|
navg : numbers of averages
|
|
|
|
|
|
Return:
|
|
|
-1 : any error
|
|
|
anoise : noise's level
|
|
|
"""
|
|
|
|
|
|
dataflat = data.reshape(-1)
|
|
|
dataflat.sort()
|
|
|
npts = dataflat.size #numbers of points of the data
|
|
|
|
|
|
if npts < 32:
|
|
|
print "error in noise - requires at least 32 points"
|
|
|
return -1.0
|
|
|
|
|
|
dataflat2 = numpy.power(dataflat,2)
|
|
|
|
|
|
cs = numpy.cumsum(dataflat)
|
|
|
cs2 = numpy.cumsum(dataflat2)
|
|
|
|
|
|
# data sorted in ascending order
|
|
|
nmin = int((npts + 7.)/8)
|
|
|
|
|
|
for i in range(nmin, npts):
|
|
|
s = cs[i]
|
|
|
s2 = cs2[i]
|
|
|
p = s / float(i);
|
|
|
p2 = p**2;
|
|
|
q = s2 / float(i) - p2;
|
|
|
leftc = p2;
|
|
|
rightc = q * float(navg);
|
|
|
R2 = leftc/rightc
|
|
|
|
|
|
# Signal detect: R2 < 1 (R2 = leftc/rightc)
|
|
|
if R2 < 1:
|
|
|
npts_noise = i
|
|
|
break
|
|
|
|
|
|
|
|
|
anoise = numpy.average(dataflat[0:npts_noise])
|
|
|
|
|
|
return anoise;
|
|
|
|
|
|
def sorting_bruce(Data, navg):
|
|
|
sortdata = numpy.sort(Data)
|
|
|
lenOfData = len(Data)
|
|
|
nums_min = lenOfData/10
|
|
|
|
|
|
if (lenOfData/10) > 0:
|
|
|
nums_min = lenOfData/10
|
|
|
else:
|
|
|
nums_min = 0
|
|
|
|
|
|
rtest = 1.0 + 1.0/navg
|
|
|
|
|
|
sum = 0.
|
|
|
|
|
|
sumq = 0.
|
|
|
|
|
|
j = 0
|
|
|
|
|
|
cont = 1
|
|
|
|
|
|
while((cont==1)and(j<lenOfData)):
|
|
|
|
|
|
sum += sortdata[j]
|
|
|
|
|
|
sumq += sortdata[j]**2
|
|
|
|
|
|
j += 1
|
|
|
|
|
|
if j > nums_min:
|
|
|
if ((sumq*j) <= (rtest*sum**2)):
|
|
|
lnoise = sum / j
|
|
|
else:
|
|
|
j = j - 1
|
|
|
sum = sum - sordata[j]
|
|
|
sumq = sumq - sordata[j]**2
|
|
|
cont = 0
|
|
|
|
|
|
if j == nums_min:
|
|
|
lnoise = sum /j
|
|
|
|
|
|
return lnoise
|
|
|
|
|
|
class JROData:
|
|
|
|
|
|
# m_BasicHeader = BasicHeader()
|
|
|
# m_ProcessingHeader = ProcessingHeader()
|
|
|
|
|
|
systemHeaderObj = SystemHeader()
|
|
|
|
|
|
radarControllerHeaderObj = RadarControllerHeader()
|
|
|
|
|
|
# data = None
|
|
|
|
|
|
type = None
|
|
|
|
|
|
dtype = None
|
|
|
|
|
|
# nChannels = None
|
|
|
|
|
|
nHeights = None
|
|
|
|
|
|
nProfiles = None
|
|
|
|
|
|
heightList = None
|
|
|
|
|
|
channelList = None
|
|
|
|
|
|
flagNoData = True
|
|
|
|
|
|
flagTimeBlock = False
|
|
|
|
|
|
utctime = None
|
|
|
|
|
|
blocksize = None
|
|
|
|
|
|
nCode = None
|
|
|
|
|
|
nBaud = None
|
|
|
|
|
|
code = None
|
|
|
|
|
|
flagDecodeData = True #asumo q la data esta decodificada
|
|
|
|
|
|
flagDeflipData = True #asumo q la data esta sin flip
|
|
|
|
|
|
flagShiftFFT = False
|
|
|
|
|
|
ippSeconds = None
|
|
|
|
|
|
timeInterval = None
|
|
|
|
|
|
nCohInt = None
|
|
|
|
|
|
noise = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
raise ValueError, "This class has not been implemented"
|
|
|
|
|
|
def copy(self, inputObj=None):
|
|
|
|
|
|
if inputObj == None:
|
|
|
return copy.deepcopy(self)
|
|
|
|
|
|
for key in inputObj.__dict__.keys():
|
|
|
self.__dict__[key] = inputObj.__dict__[key]
|
|
|
|
|
|
def deepcopy(self):
|
|
|
|
|
|
return copy.deepcopy(self)
|
|
|
|
|
|
def isEmpty(self):
|
|
|
|
|
|
return self.flagNoData
|
|
|
|
|
|
def getNChannels(self):
|
|
|
|
|
|
return len(self.channelList)
|
|
|
|
|
|
def getChannelIndexList(self):
|
|
|
|
|
|
return range(self.nChannels)
|
|
|
|
|
|
nChannels = property(getNChannels, "I'm the 'nChannel' property.")
|
|
|
channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
|
|
|
|
|
|
class Voltage(JROData):
|
|
|
|
|
|
#data es un numpy array de 2 dmensiones (canales, alturas)
|
|
|
data = None
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
|
|
|
self.type = "Voltage"
|
|
|
|
|
|
self.data = None
|
|
|
|
|
|
self.dtype = None
|
|
|
|
|
|
# self.nChannels = 0
|
|
|
|
|
|
self.nHeights = 0
|
|
|
|
|
|
self.nProfiles = None
|
|
|
|
|
|
self.heightList = None
|
|
|
|
|
|
self.channelList = None
|
|
|
|
|
|
# self.channelIndexList = None
|
|
|
|
|
|
self.flagNoData = True
|
|
|
|
|
|
self.flagTimeBlock = False
|
|
|
|
|
|
self.utctime = None
|
|
|
|
|
|
self.nCohInt = None
|
|
|
|
|
|
self.blocksize = None
|
|
|
|
|
|
def getNoisebyHildebrand(self):
|
|
|
"""
|
|
|
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
|
|
|
|
|
|
Return:
|
|
|
noiselevel
|
|
|
"""
|
|
|
|
|
|
for channel in range(self.nChannels):
|
|
|
daux = self.data_spc[channel,:,:]
|
|
|
self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt)
|
|
|
|
|
|
return self.noise
|
|
|
|
|
|
def getNoise(self, type = 1):
|
|
|
|
|
|
self.noise = numpy.zeros(self.nChannels)
|
|
|
|
|
|
if type == 1:
|
|
|
noise = self.getNoisebyHildebrand()
|
|
|
|
|
|
return 10*numpy.log10(noise)
|
|
|
|
|
|
class Spectra(JROData):
|
|
|
|
|
|
#data es un numpy array de 2 dmensiones (canales, perfiles, alturas)
|
|
|
data_spc = None
|
|
|
|
|
|
#data es un numpy array de 2 dmensiones (canales, pares, alturas)
|
|
|
data_cspc = None
|
|
|
|
|
|
#data es un numpy array de 2 dmensiones (canales, alturas)
|
|
|
data_dc = None
|
|
|
|
|
|
nFFTPoints = None
|
|
|
|
|
|
nPairs = None
|
|
|
|
|
|
pairsList = None
|
|
|
|
|
|
nIncohInt = None
|
|
|
|
|
|
wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
|
|
|
|
|
|
nCohInt = None #se requiere para determinar el valor de timeInterval
|
|
|
|
|
|
def __init__(self):
|
|
|
'''
|
|
|
Constructor
|
|
|
'''
|
|
|
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
|
|
|
self.type = "Spectra"
|
|
|
|
|
|
# self.data = None
|
|
|
|
|
|
self.dtype = None
|
|
|
|
|
|
# self.nChannels = 0
|
|
|
|
|
|
self.nHeights = 0
|
|
|
|
|
|
self.nProfiles = None
|
|
|
|
|
|
self.heightList = None
|
|
|
|
|
|
self.channelList = None
|
|
|
|
|
|
# self.channelIndexList = None
|
|
|
|
|
|
self.flagNoData = True
|
|
|
|
|
|
self.flagTimeBlock = False
|
|
|
|
|
|
self.utctime = None
|
|
|
|
|
|
self.nCohInt = None
|
|
|
|
|
|
self.nIncohInt = None
|
|
|
|
|
|
self.blocksize = None
|
|
|
|
|
|
self.nFFTPoints = None
|
|
|
|
|
|
self.wavelength = None
|
|
|
|
|
|
def getFrequencies(self):
|
|
|
|
|
|
xrange = numpy.arange(self.nFFTPoints)
|
|
|
xrange = xrange
|
|
|
return None
|
|
|
|
|
|
def getNoisebyHildebrand(self):
|
|
|
"""
|
|
|
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
|
|
|
|
|
|
Return:
|
|
|
noiselevel
|
|
|
"""
|
|
|
|
|
|
for channel in range(self.nChannels):
|
|
|
daux = self.data_spc[channel,:,:]
|
|
|
self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
|
|
|
|
|
|
return self.noise
|
|
|
|
|
|
def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1):
|
|
|
"""
|
|
|
Determina el ruido del canal utilizando la ventana indicada con las coordenadas:
|
|
|
(heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx)
|
|
|
|
|
|
Inputs:
|
|
|
heiIndexMin: Limite inferior del eje de alturas
|
|
|
heiIndexMax: Limite superior del eje de alturas
|
|
|
freqIndexMin: Limite inferior del eje de frecuencia
|
|
|
freqIndexMax: Limite supoerior del eje de frecuencia
|
|
|
"""
|
|
|
|
|
|
data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax]
|
|
|
|
|
|
for channel in range(self.nChannels):
|
|
|
daux = data[channel,:,:]
|
|
|
self.noise[channel] = numpy.average(daux)
|
|
|
|
|
|
return self.noise
|
|
|
|
|
|
def getNoisebySort(self):
|
|
|
|
|
|
for channel in range(self.nChannels):
|
|
|
daux = self.data_spc[channel,:,:]
|
|
|
self.noise[channel] = sorting_bruce(daux, self.nIncohInt)
|
|
|
|
|
|
return self.noise
|
|
|
|
|
|
def getNoise(self, type = 1):
|
|
|
|
|
|
self.noise = numpy.zeros(self.nChannels)
|
|
|
|
|
|
if type == 1:
|
|
|
noise = self.getNoisebyHildebrand()
|
|
|
|
|
|
if type == 2:
|
|
|
noise = self.getNoisebySort()
|
|
|
|
|
|
if type == 3:
|
|
|
noise = self.getNoisebyWindow()
|
|
|
|
|
|
return 10*numpy.log10(noise)
|
|
|
|
|
|
class SpectraHeis(JROData):
|
|
|
|
|
|
data_spc = None
|
|
|
|
|
|
data_cspc = None
|
|
|
|
|
|
data_dc = None
|
|
|
|
|
|
nFFTPoints = None
|
|
|
|
|
|
nPairs = None
|
|
|
|
|
|
pairsList = None
|
|
|
|
|
|
nIncohInt = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.radarControllerHeaderObj = RadarControllerHeader()
|
|
|
|
|
|
self.systemHeaderObj = SystemHeader()
|
|
|
|
|
|
self.type = "SpectraHeis"
|
|
|
|
|
|
self.dtype = None
|
|
|
|
|
|
# self.nChannels = 0
|
|
|
|
|
|
self.nHeights = 0
|
|
|
|
|
|
self.nProfiles = None
|
|
|
|
|
|
self.heightList = None
|
|
|
|
|
|
self.channelList = None
|
|
|
|
|
|
# self.channelIndexList = None
|
|
|
|
|
|
self.flagNoData = True
|
|
|
|
|
|
self.flagTimeBlock = False
|
|
|
|
|
|
self.nPairs = 0
|
|
|
|
|
|
self.utctime = None
|
|
|
|
|
|
self.blocksize = None
|
|
|
|