##// END OF EJS Templates

File last commit:

r99:a87a6795637a
r99:a87a6795637a
Show More
Noise.py
112 lines | 2.9 KiB | text/x-python | PythonLexer
import numpy
from Model.Spectra import Spectra
def hildebrand_sekhon(Data, navg=1):
"""
This method is for the objective determination of de noise level in Doppler spectra. This
implementation technique is based on the fact that the standard deviation of the spectral
densities is equal to the mean spectral density for white Gaussian noise
Inputs:
Data : heights
navg : numbers of averages
Return:
-1 : any error
anoise : noise's level
"""
divisor = 8
ratio = 7 / divisor
data = Data.reshape(-1)
npts = data.size #numbers of points of the data
if npts < 32:
print "error in noise - requires at least 32 points"
return -1.0
# data sorted in ascending order
nmin = int(npts/divisor + ratio);
s = 0.0
s2 = 0.0
data2 = data[:npts]
data2.sort()
for i in range(nmin):
s += data2[i]
s2 += data2[i]**2;
icount = nmin
iflag = 0
for i in range(nmin, npts):
s += data2[i];
s2 += data2[i]**2
icount=icount+1;
p = s / float(icount);
p2 = p**2;
q = s2 / float(icount) - p2;
leftc = p2;
rightc = q * float(navg);
if leftc > rightc:
iflag = 1; #No weather signal
# Signal detect: R2 < 1 (R2 = leftc/rightc)
if(leftc < rightc):
if iflag:
break
anoise = 0.0;
for j in range(i):
anoise += data2[j];
anoise = anoise / float(i);
return anoise;
class Noise:
"""
Clase que implementa los metodos necesarios para deternimar el nivel de ruido en un Spectro Doppler
"""
m_DataObj = None
def __init__(self, m_Spectra=None):
"""
Inicializador de la clase Noise para la la determinacion del nivel de ruido en un Spectro Doppler.
Affected:
self.m_DataObj
Return:
None
"""
if m_Spectra == None:
m_Spectra = Spectra()
if not(isinstance(m_Spectra, Spectra)):
raise ValueError, "in Noise class, m_Spectra must be an Spectra class object"
self.m_DataObj = m_Spectra
def getNoiseLevelByHildebrandSekhon(self):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noise level
"""
data = self.m_DataObj.data_spc
daux = None
for channel in range(self.m_DataObj.nChannels):
daux = data[channel,:,:]
noiselevel = hildebrand_sekhon(daux)
print noiselevel
for pair in range(self.m_DataObj.nPairs):
daux = data[pair,:,:]
noiselevel = hildebrand_sekhon(daux)
print noiselevel