##// END OF EJS Templates
Creo q no hice nada
Creo q no hice nada

File last commit:

r927:8a8ce128f618
r932:a265a93c2e58
Show More
jroplot_data.py
693 lines | 24.5 KiB | text/x-python | PythonLexer
import os
import zmq
import time
import numpy
import datetime
import numpy as np
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from matplotlib.ticker import FuncFormatter, LinearLocator
from multiprocessing import Process
from schainpy.model.proc.jroproc_base import Operation
plt.ioff()
func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M'))
d1970 = datetime.datetime(1970,1,1)
class PlotData(Operation, Process):
CODE = 'Figure'
colormap = 'jro'
CONFLATE = True
__MAXNUMX = 80
__MAXNUMY = 80
__missing = 1E30
def __init__(self, **kwargs):
Operation.__init__(self, plot=True, **kwargs)
Process.__init__(self)
self.kwargs['code'] = self.CODE
self.mp = False
self.dataOut = None
self.isConfig = False
self.figure = None
self.axes = []
self.localtime = kwargs.pop('localtime', True)
self.show = kwargs.get('show', True)
self.save = kwargs.get('save', False)
self.colormap = kwargs.get('colormap', self.colormap)
self.colormap_coh = kwargs.get('colormap_coh', 'jet')
self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
self.showprofile = kwargs.get('showprofile', True)
self.title = kwargs.get('wintitle', '')
self.xaxis = kwargs.get('xaxis', 'frequency')
self.zmin = kwargs.get('zmin', None)
self.zmax = kwargs.get('zmax', None)
self.xmin = kwargs.get('xmin', None)
self.xmax = kwargs.get('xmax', None)
self.xrange = kwargs.get('xrange', 24)
self.ymin = kwargs.get('ymin', None)
self.ymax = kwargs.get('ymax', None)
self.throttle_value = 5
def fill_gaps(self, x_buffer, y_buffer, z_buffer):
if x_buffer.shape[0] < 2:
return x_buffer, y_buffer, z_buffer
deltas = x_buffer[1:] - x_buffer[0:-1]
x_median = np.median(deltas)
index = np.where(deltas > 5*x_median)
if len(index[0]) != 0:
z_buffer[::, index[0], ::] = self.__missing
z_buffer = np.ma.masked_inside(z_buffer,
0.99*self.__missing,
1.01*self.__missing)
return x_buffer, y_buffer, z_buffer
def decimate(self):
# dx = int(len(self.x)/self.__MAXNUMX) + 1
dy = int(len(self.y)/self.__MAXNUMY) + 1
# x = self.x[::dx]
x = self.x
y = self.y[::dy]
z = self.z[::, ::, ::dy]
return x, y, z
def __plot(self):
print 'plotting...{}'.format(self.CODE)
if self.show:
print 'showing'
self.figure.show()
self.plot()
plt.tight_layout()
self.figure.canvas.manager.set_window_title('{} {} - Date:{}'.format(self.title, self.CODE.upper(),
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')))
if self.save:
figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,
datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S')))
print 'Saving figure: {}'.format(figname)
self.figure.savefig(figname)
self.figure.canvas.draw()
def plot(self):
print 'plotting...{}'.format(self.CODE.upper())
return
def run(self):
print '[Starting] {}'.format(self.name)
context = zmq.Context()
receiver = context.socket(zmq.SUB)
receiver.setsockopt(zmq.SUBSCRIBE, '')
receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
receiver.connect("ipc:///tmp/zmq.plots")
while True:
try:
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)
self.dataOut = self.data['dataOut']
self.times = self.data['times']
self.times.sort()
self.throttle_value = self.data['throttle']
self.min_time = self.times[0]
self.max_time = self.times[-1]
if self.isConfig is False:
self.setup()
self.isConfig = True
self.__plot()
if self.data['ENDED'] is True:
self.isConfig = False
except zmq.Again as e:
print 'Waiting for data...'
plt.pause(self.throttle_value)
def close(self):
if self.dataOut:
self.__plot()
class PlotSpectraData(PlotData):
CODE = 'spc'
colormap = 'jro'
CONFLATE = False
def setup(self):
ncolspan = 1
colspan = 1
self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9)
self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9)
self.width = 3.6*self.ncols
self.height = 3.2*self.nrows
if self.showprofile:
ncolspan = 3
colspan = 2
self.width += 1.2*self.ncols
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
n = 0
for y in range(self.nrows):
for x in range(self.ncols):
if n >= self.dataOut.nChannels:
break
ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan)
if self.showprofile:
ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1)
ax.firsttime = True
self.axes.append(ax)
n += 1
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z = self.data[self.CODE]
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin = self.zmin if self.zmin else np.nanmin(z)
self.zmax = self.zmax if self.zmax else np.nanmax(z)
ax.plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plot, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
if self.showprofile:
ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
ax.ax_profile.set_xlim(self.zmin, self.zmax)
ax.ax_profile.set_ylim(self.ymin, self.ymax)
ax.ax_profile.set_xlabel('dB')
ax.ax_profile.grid(b=True, axis='x')
ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
color="k", linestyle="dashed", lw=2)[0]
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
else:
ax.plot.set_array(z[n].T.ravel())
if self.showprofile:
ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y)
ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
size=8)
self.saveTime = self.max_time
class PlotCrossSpectraData(PlotData):
CODE = 'cspc'
zmin_coh = None
zmax_coh = None
zmin_phase = None
zmax_phase = None
CONFLATE = False
def setup(self):
ncolspan = 1
colspan = 1
self.ncols = 2
self.nrows = self.dataOut.nPairs
self.width = 3.6*self.ncols
self.height = 3.2*self.nrows
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
for y in range(self.nrows):
for x in range(self.ncols):
ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z_coh = self.data['cspc_coh']
z_phase = self.data['cspc_phase']
for n in range(self.nrows):
ax = self.axes[2*n]
ax1 = self.axes[2*n+1]
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0
self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0
self.zmin_phase = self.zmin_phase if self.zmin_phase else -180
self.zmax_phase = self.zmax_phase if self.zmax_phase else 180
ax.plot = ax.pcolormesh(x, y, z_coh[n].T,
vmin=self.zmin_coh,
vmax=self.zmax_coh,
cmap=plt.get_cmap(self.colormap_coh)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plot, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T,
vmin=self.zmin_phase,
vmax=self.zmax_phase,
cmap=plt.get_cmap(self.colormap_phase)
)
divider = make_axes_locatable(ax1)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax1.plot, cax)
ax1.set_xlim(self.xmin, self.xmax)
ax1.set_ylim(self.ymin, self.ymax)
ax1.set_ylabel(self.ylabel)
ax1.set_xlabel(xlabel)
ax1.firsttime = False
else:
ax.plot.set_array(z_coh[n].T.ravel())
ax1.plot.set_array(z_phase[n].T.ravel())
ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8)
self.saveTime = self.max_time
class PlotSpectraMeanData(PlotSpectraData):
CODE = 'spc_mean'
colormap = 'jet'
def plot(self):
if self.xaxis == "frequency":
x = self.dataOut.getFreqRange(1)/1000.
xlabel = "Frequency (kHz)"
elif self.xaxis == "time":
x = self.dataOut.getAcfRange(1)
xlabel = "Time (ms)"
else:
x = self.dataOut.getVelRange(1)
xlabel = "Velocity (m/s)"
y = self.dataOut.getHeiRange()
z = self.data['spc']
mean = self.data['mean'][self.max_time]
for n, ax in enumerate(self.axes):
if ax.firsttime:
self.xmax = self.xmax if self.xmax else np.nanmax(x)
self.xmin = self.xmin if self.xmin else -self.xmax
self.ymin = self.ymin if self.ymin else np.nanmin(y)
self.ymax = self.ymax if self.ymax else np.nanmax(y)
self.zmin = self.zmin if self.zmin else np.nanmin(z)
self.zmax = self.zmax if self.zmax else np.nanmax(z)
ax.plt = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.plt_dop = ax.plot(mean[n], y,
color='k')[0]
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='3%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(ax.plt, cax)
ax.set_xlim(self.xmin, self.xmax)
ax.set_ylim(self.ymin, self.ymax)
ax.set_ylabel(self.ylabel)
ax.set_xlabel(xlabel)
ax.firsttime = False
if self.showprofile:
ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0]
ax.ax_profile.set_xlim(self.zmin, self.zmax)
ax.ax_profile.set_ylim(self.ymin, self.ymax)
ax.ax_profile.set_xlabel('dB')
ax.ax_profile.grid(b=True, axis='x')
ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y,
color="k", linestyle="dashed", lw=2)[0]
[tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()]
else:
ax.plt.set_array(z[n].T.ravel())
ax.plt_dop.set_data(mean[n], y)
if self.showprofile:
ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y)
ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y)
ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]),
size=8)
self.saveTime = self.max_time
class PlotRTIData(PlotData):
CODE = 'rti'
colormap = 'jro'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.nChannels
self.width = 10
self.height = 2.2*self.nrows if self.nrows<6 else 12
if self.nrows==1:
self.height += 1
self.ylabel = 'Range [Km]'
self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
self.x = np.array(self.times)
self.y = self.dataOut.getHeiRange()
self.z = []
for ch in range(self.nrows):
self.z.append([self.data[self.CODE][t][ch] for t in self.times])
self.z = np.array(self.z)
for n, ax in enumerate(self.axes):
x, y, z = self.fill_gaps(*self.decimate())
xmin = self.min_time
xmax = xmin+self.xrange*60*60
if ax.firsttime:
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
self.zmin = self.zmin if self.zmin else np.nanmin(self.z)
self.zmax = self.zmax if self.zmax else np.nanmax(self.z)
plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='2%', pad=0.05)
self.figure.add_axes(cax)
plt.colorbar(plot, cax)
ax.set_ylim(self.ymin, self.ymax)
ax.xaxis.set_major_formatter(FuncFormatter(func))
ax.xaxis.set_major_locator(LinearLocator(6))
ax.set_ylabel(self.ylabel)
# if self.xmin is None:
# xmin = self.min_time
# else:
# xmin = (datetime.datetime.combine(self.dataOut.datatime.date(),
# datetime.time(self.xmin, 0, 0))-d1970).total_seconds()
ax.set_xlim(xmin, xmax)
ax.firsttime = False
else:
ax.collections.remove(ax.collections[0])
ax.set_xlim(xmin, xmax)
plot = ax.pcolormesh(x, y, z[n].T,
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.set_title('{} {}'.format(self.titles[n],
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
size=8)
self.saveTime = self.min_time
class PlotCOHData(PlotRTIData):
CODE = 'coh'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.nPairs
self.width = 10
self.height = 2.2*self.nrows if self.nrows<6 else 12
if self.nrows==1:
self.height += 1
self.ylabel = 'Range [Km]'
self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
class PlotNoiseData(PlotData):
CODE = 'noise'
def setup(self):
self.ncols = 1
self.nrows = 1
self.width = 10
self.height = 3.2
self.ylabel = 'Intensity [dB]'
self.titles = ['Noise']
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1)
self.ax.firsttime = True
def plot(self):
x = self.times
xmin = self.min_time
xmax = xmin+self.xrange*60*60
if self.ax.firsttime:
for ch in self.dataOut.channelList:
y = [self.data[self.CODE][t][ch] for t in self.times]
self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch))
self.ax.firsttime = False
self.ax.xaxis.set_major_formatter(FuncFormatter(func))
self.ax.xaxis.set_major_locator(LinearLocator(6))
self.ax.set_ylabel(self.ylabel)
plt.legend()
else:
for ch in self.dataOut.channelList:
y = [self.data[self.CODE][t][ch] for t in self.times]
self.ax.lines[ch].set_data(x, y)
self.ax.set_xlim(xmin, xmax)
self.ax.set_ylim(min(y)-5, max(y)+5)
self.saveTime = self.min_time
class PlotWindProfilerData(PlotRTIData):
CODE = 'wind'
colormap = 'seismic'
def setup(self):
self.ncols = 1
self.nrows = self.dataOut.data_output.shape[0]
self.width = 10
self.height = 2.2*self.nrows
self.ylabel = 'Height [Km]'
self.titles = ['Zonal' ,'Meridional', 'Vertical']
self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
self.windFactor = [1, 1, 100]
if self.figure is None:
self.figure = plt.figure(figsize=(self.width, self.height),
edgecolor='k',
facecolor='w')
else:
self.figure.clf()
self.axes = []
for n in range(self.nrows):
ax = self.figure.add_subplot(self.nrows, self.ncols, n+1)
ax.firsttime = True
self.axes.append(ax)
def plot(self):
self.x = np.array(self.times)
self.y = self.dataOut.heightList
self.z = []
for ch in range(self.nrows):
self.z.append([self.data[self.CODE][t][ch] for t in self.times])
self.z = np.array(self.z)
self.z = numpy.ma.masked_invalid(self.z)
cmap=plt.get_cmap(self.colormap)
cmap.set_bad('white', 1.)
for n, ax in enumerate(self.axes):
x, y, z = self.fill_gaps(*self.decimate())
xmin = self.min_time
xmax = xmin+self.xrange*60*60
if ax.firsttime:
self.ymin = self.ymin if self.ymin else np.nanmin(self.y)
self.ymax = self.ymax if self.ymax else np.nanmax(self.y)
self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :]))
self.zmin = self.zmin if self.zmin else -self.zmax
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=cmap
)
divider = make_axes_locatable(ax)
cax = divider.new_horizontal(size='2%', pad=0.05)
cax.set_ylabel(self.clabels[n])
self.figure.add_axes(cax)
plt.colorbar(plot, cax)
ax.set_ylim(self.ymin, self.ymax)
ax.xaxis.set_major_formatter(FuncFormatter(func))
ax.xaxis.set_major_locator(LinearLocator(6))
ax.set_ylabel(self.ylabel)
ax.set_xlim(xmin, xmax)
ax.firsttime = False
else:
ax.collections.remove(ax.collections[0])
ax.set_xlim(xmin, xmax)
plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n],
vmin=self.zmin,
vmax=self.zmax,
cmap=plt.get_cmap(self.colormap)
)
ax.set_title('{} {}'.format(self.titles[n],
datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')),
size=8)
self.saveTime = self.min_time
class PlotSNRData(PlotRTIData):
CODE = 'snr'
colormap = 'jet'
class PlotDOPData(PlotRTIData):
CODE = 'dop'
colormap = 'jet'
class PlotPHASEData(PlotCOHData):
CODE = 'phase'
colormap = 'seismic'