##// END OF EJS Templates
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014
This is the new organization by packages and scripts for Signal Chain, this version contains new features and bugs fixed until August 2014

File last commit:

r487:89975db10cce
r487:89975db10cce
Show More
jroproc_voltage.py
518 lines | 15.1 KiB | text/x-python | PythonLexer
import numpy
from jroproc_base import ProcessingUnit, Operation
from model.data.jrodata import Voltage
class VoltageProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
# self.objectDict = {}
self.dataOut = Voltage()
self.flip = 1
def run(self):
self.dataOut.copy(self.dataIn)
# def __updateObjFromAmisrInput(self):
#
# self.dataOut.timeZone = self.dataIn.timeZone
# self.dataOut.dstFlag = self.dataIn.dstFlag
# self.dataOut.errorCount = self.dataIn.errorCount
# self.dataOut.useLocalTime = self.dataIn.useLocalTime
#
# self.dataOut.flagNoData = self.dataIn.flagNoData
# self.dataOut.data = self.dataIn.data
# self.dataOut.utctime = self.dataIn.utctime
# self.dataOut.channelList = self.dataIn.channelList
# self.dataOut.timeInterval = self.dataIn.timeInterval
# self.dataOut.heightList = self.dataIn.heightList
# self.dataOut.nProfiles = self.dataIn.nProfiles
#
# self.dataOut.nCohInt = self.dataIn.nCohInt
# self.dataOut.ippSeconds = self.dataIn.ippSeconds
# self.dataOut.frequency = self.dataIn.frequency
#
# pass#
#
# def init(self):
#
#
# if self.dataIn.type == 'AMISR':
# self.__updateObjFromAmisrInput()
#
# if self.dataIn.type == 'Voltage':
# self.dataOut.copy(self.dataIn)
# # No necesita copiar en cada init() los atributos de dataIn
# # la copia deberia hacerse por cada nuevo bloque de datos
def selectChannels(self, channelList):
channelIndexList = []
for channel in channelList:
index = self.dataOut.channelList.index(channel)
channelIndexList.append(index)
self.selectChannelsByIndex(channelIndexList)
def selectChannelsByIndex(self, channelIndexList):
"""
Selecciona un bloque de datos en base a canales segun el channelIndexList
Input:
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
Affected:
self.dataOut.data
self.dataOut.channelIndexList
self.dataOut.nChannels
self.dataOut.m_ProcessingHeader.totalSpectra
self.dataOut.systemHeaderObj.numChannels
self.dataOut.m_ProcessingHeader.blockSize
Return:
None
"""
for channelIndex in channelIndexList:
if channelIndex not in self.dataOut.channelIndexList:
print channelIndexList
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
# nChannels = len(channelIndexList)
data = self.dataOut.data[channelIndexList,:]
self.dataOut.data = data
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
# self.dataOut.nChannels = nChannels
return 1
def selectHeights(self, minHei=None, maxHei=None):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if minHei == None:
minHei = self.dataOut.heightList[0]
if maxHei == None:
maxHei = self.dataOut.heightList[-1]
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOut.heightList[-1]):
maxHei = self.dataOut.heightList[-1]
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
heights = self.dataOut.heightList
inda = numpy.where(heights >= minHei)
indb = numpy.where(heights <= maxHei)
try:
minIndex = inda[0][0]
except:
minIndex = 0
try:
maxIndex = indb[0][-1]
except:
maxIndex = len(heights)
self.selectHeightsByIndex(minIndex, maxIndex)
return 1
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor de indice minimo de altura a considerar
maxIndex : valor de indice maximo de altura a considerar
Affected:
self.dataOut.data
self.dataOut.heightList
Return:
1 si el metodo se ejecuto con exito caso contrario devuelve 0
"""
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOut.nHeights):
maxIndex = self.dataOut.nHeights-1
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
# nHeights = maxIndex - minIndex + 1
#voltage
data = self.dataOut.data[:,minIndex:maxIndex+1]
# firstHeight = self.dataOut.heightList[minIndex]
self.dataOut.data = data
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
return 1
def filterByHeights(self, window):
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
if window == None:
window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
newdelta = deltaHeight * window
r = self.dataOut.data.shape[1] % window
buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
buffer = numpy.sum(buffer,2)
self.dataOut.data = buffer
self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta)
self.dataOut.windowOfFilter = window
def deFlip(self):
self.dataOut.data *= self.flip
self.flip *= -1.
def setRadarFrequency(self, frequency=None):
if frequency != None:
self.dataOut.frequency = frequency
return 1
class CohInt(Operation):
isConfig = False
__profIndex = 0
__withOverapping = False
__byTime = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
n = None
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
def setup(self, n=None, timeInterval=None, overlapping=False):
"""
Set the parameters of the integration class.
Inputs:
n : Number of coherent integrations
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
overlapping :
"""
self.__initime = None
self.__lastdatatime = 0
self.__buffer = None
self.__dataReady = False
if n == None and timeInterval == None:
raise ValueError, "n or timeInterval should be specified ..."
if n != None:
self.n = n
self.__byTime = False
else:
self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
self.n = 9999
self.__byTime = True
if overlapping:
self.__withOverapping = True
self.__buffer = None
else:
self.__withOverapping = False
self.__buffer = 0
self.__profIndex = 0
def putData(self, data):
"""
Add a profile to the __buffer and increase in one the __profileIndex
"""
if not self.__withOverapping:
self.__buffer += data.copy()
self.__profIndex += 1
return
#Overlapping data
nChannels, nHeis = data.shape
data = numpy.reshape(data, (1, nChannels, nHeis))
#If the buffer is empty then it takes the data value
if self.__buffer == None:
self.__buffer = data
self.__profIndex += 1
return
#If the buffer length is lower than n then stakcing the data value
if self.__profIndex < self.n:
self.__buffer = numpy.vstack((self.__buffer, data))
self.__profIndex += 1
return
#If the buffer length is equal to n then replacing the last buffer value with the data value
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
self.__buffer[self.n-1] = data
self.__profIndex = self.n
return
def pushData(self):
"""
Return the sum of the last profiles and the profiles used in the sum.
Affected:
self.__profileIndex
"""
if not self.__withOverapping:
data = self.__buffer
n = self.__profIndex
self.__buffer = 0
self.__profIndex = 0
return data, n
#Integration with Overlapping
data = numpy.sum(self.__buffer, axis=0)
n = self.__profIndex
return data, n
def byProfiles(self, data):
self.__dataReady = False
avgdata = None
# n = None
self.putData(data)
if self.__profIndex == self.n:
avgdata, n = self.pushData()
self.__dataReady = True
return avgdata
def byTime(self, data, datatime):
self.__dataReady = False
avgdata = None
n = None
self.putData(data)
if (datatime - self.__initime) >= self.__integrationtime:
avgdata, n = self.pushData()
self.n = n
self.__dataReady = True
return avgdata
def integrate(self, data, datatime=None):
if self.__initime == None:
self.__initime = datatime
if self.__byTime:
avgdata = self.byTime(data, datatime)
else:
avgdata = self.byProfiles(data)
self.__lastdatatime = datatime
if avgdata == None:
return None, None
avgdatatime = self.__initime
deltatime = datatime -self.__lastdatatime
if not self.__withOverapping:
self.__initime = datatime
else:
self.__initime += deltatime
return avgdata, avgdatatime
def run(self, dataOut, **kwargs):
if not self.isConfig:
self.setup(**kwargs)
self.isConfig = True
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
# dataOut.timeInterval *= n
dataOut.flagNoData = True
if self.__dataReady:
dataOut.data = avgdata
dataOut.nCohInt *= self.n
dataOut.utctime = avgdatatime
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
dataOut.flagNoData = False
class Decoder(Operation):
isConfig = False
__profIndex = 0
code = None
nCode = None
nBaud = None
def __init__(self):
Operation.__init__(self)
# self.isConfig = False
def setup(self, code, shape):
self.__profIndex = 0
self.code = code
self.nCode = len(code)
self.nBaud = len(code[0])
self.__nChannels, self.__nHeis = shape
__codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
__codeBuffer[:,0:self.nBaud] = self.code
self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
self.ndatadec = self.__nHeis - self.nBaud + 1
self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
def convolutionInFreq(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
fft_data = numpy.fft.fft(data, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv,axis=1)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInFreqOpt(self, data):
fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
data = cfunctions.decoder(fft_code, data)
datadec = data[:,:-self.nBaud+1]
return datadec
def convolutionInTime(self, data):
code = self.code[self.__profIndex]
for i in range(self.__nChannels):
self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid')
return self.datadecTime
def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0):
if code == None:
code = dataOut.code
else:
code = numpy.array(code).reshape(nCode,nBaud)
dataOut.code = code
dataOut.nCode = nCode
dataOut.nBaud = nBaud
dataOut.radarControllerHeaderObj.code = code
dataOut.radarControllerHeaderObj.nCode = nCode
dataOut.radarControllerHeaderObj.nBaud = nBaud
if not self.isConfig:
self.setup(code, dataOut.data.shape)
self.isConfig = True
if mode == 0:
datadec = self.convolutionInTime(dataOut.data)
if mode == 1:
datadec = self.convolutionInFreq(dataOut.data)
if mode == 2:
datadec = self.convolutionInFreqOpt(dataOut.data)
dataOut.data = datadec
dataOut.heightList = dataOut.heightList[0:self.ndatadec]
dataOut.flagDecodeData = True #asumo q la data no esta decodificada
if self.__profIndex == self.nCode-1:
self.__profIndex = 0
return 1
self.__profIndex += 1
return 1
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip