##// END OF EJS Templates
Bug plotting RTI fixed for jroplot_heispectra, jroplot_parameters, jroplot_spectra
Bug plotting RTI fixed for jroplot_heispectra, jroplot_parameters, jroplot_spectra

File last commit:

r328:fd0cad7e2abd
r567:753c4d780d0c
Show More
testcode.py
145 lines | 3.5 KiB | text/x-python | PythonLexer
import numpy
import scipy.signal
import matplotlib
matplotlib.use("TKAgg")
import pylab as pl
import time
def getInverseFilter(code, lenfilter=8*28):
nBauds = len(code)
if lenfilter == None:
lenfilter = 10*nBauds
codeBuffer = numpy.zeros((lenfilter), dtype=numpy.float32)
codeBuffer[0:nBauds] = code
inverse_filter = numpy.real(numpy.fft.ifft(1.0/numpy.fft.fft(codeBuffer)))
inverse_filter = numpy.roll(inverse_filter, shift=120)
# pl.plot(codeBuffer)
# pl.plot(inverse_filter)
# pl.show()
return inverse_filter
def getSignal(nChannels, nHeis):
u = numpy.complex(1,2)
u /= numpy.abs(u)
signal = numpy.random.rand(nChannels, nHeis)
signal = signal.astype(numpy.complex)
signal *= u
return signal
def time_decoding(signal, code):
ini = time.time()
nBauds = len(code)
nChannels, nHeis = signal.shape
datadec = numpy.zeros((nChannels, nHeis - nBauds + 1), dtype=numpy.complex)
tmpcode = code.astype(numpy.complex)
#######################################
ini = time.time()
for i in range(nChannels):
datadec[i,:] = numpy.correlate(signal[i,:], code, mode='valid')/nBauds
print time.time() - ini
return datadec
def freq_decoding(signal, code):
ini = time.time()
nBauds = len(code)
nChannels, nHeis = signal.shape
codeBuffer = numpy.zeros((nHeis), dtype=numpy.float32)
codeBuffer[0:nBauds] = code
fft_code = numpy.conj(numpy.fft.fft(codeBuffer)).reshape(1, -1)
######################################
ini = time.time()
fft_data = numpy.fft.fft(signal, axis=1)
conv = fft_data*fft_code
data = numpy.fft.ifft(conv, axis=1)/nBauds
datadec = data[:,:-nBauds+1]
print time.time() - ini
return datadec
def fftconvol_decoding(signal, code):
ini = time.time()
nBauds = len(code)
nChannels, nHeis = signal.shape
datadec = numpy.zeros((nChannels, nHeis - nBauds + 1), dtype=numpy.complex)
tmpcode = code.astype(numpy.complex)
#######################################
ini = time.time()
for i in range(nChannels):
datadec[i,:] = scipy.signal.fftconvolve(signal[i,:], code[-1::-1], mode='valid')/nBauds
print time.time() - ini
return datadec
def filter_decoding(signal, code):
ini = time.time()
nBauds = len(code)
nChannels, nHeis = signal.shape
inverse_filter = getInverseFilter(code)
datadec = numpy.zeros((nChannels, nHeis + len(inverse_filter) - 1), dtype=numpy.complex)
#######################################
ini = time.time()
for i in range(nChannels):
datadec[i,:] = numpy.convolve(signal[i,:], inverse_filter, mode='full')
datadec = datadec[:,120:120+nHeis]
print time.time() - ini
return datadec
nChannels, nHeis = 8, 3900
index = 300
code = numpy.array([1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1])
signal = getSignal(nChannels, nHeis)
signal[0,index:index+len(code)] = code*10
signalout = time_decoding(signal, code)
signalout1 = freq_decoding(signal, code)
signalout2 = fftconvol_decoding(signal, code)
signalout3 = filter_decoding(signal, code)
#pl.plot(numpy.abs(signal[0]))
pl.plot(numpy.abs(signalout[0]))
#pl.plot(numpy.abs(signalout1[0]))
#pl.plot(numpy.abs(signalout2[0]))
pl.plot(numpy.abs(signalout3[0])+0.5)
pl.show()