##// END OF EJS Templates
Merge with branch schain_julia_drifts from rev. 803 to 995....
Merge with branch schain_julia_drifts from rev. 803 to 995. No tested

File last commit:

r568:486c66596e4c
r568:486c66596e4c
Show More
jroproc_correlation.py
245 lines | 9.8 KiB | text/x-python | PythonLexer
/ schainpy / model / proc / jroproc_correlation.py
import numpy
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Correlation
class CorrelationProc(ProcessingUnit):
def __init__(self):
ProcessingUnit.__init__(self)
self.objectDict = {}
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Correlation()
def __updateObjFromInput(self):
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
self.dataOut.utctime = self.firstdatatime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
# self.dataOut.nCohInt = self.dataIn.nCohInt
# self.dataOut.nIncohInt = 1
self.dataOut.ippSeconds = self.dataIn.ippSeconds
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nPoints
def removeDC(self, jspectra):
nChannel = jspectra.shape[0]
for i in range(nChannel):
jspectra_tmp = jspectra[i,:,:]
jspectra_DC = numpy.mean(jspectra_tmp,axis = 0)
jspectra_tmp = jspectra_tmp - jspectra_DC
jspectra[i,:,:] = jspectra_tmp
return jspectra
def removeNoise(self, mode = 2):
indR = numpy.where(self.dataOut.lagR == 0)[0][0]
indT = numpy.where(self.dataOut.lagT == 0)[0][0]
jspectra = self.dataOut.data_corr[:,:,indR,:]
num_chan = jspectra.shape[0]
num_hei = jspectra.shape[2]
freq_dc = indT
ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
NPot = self.dataOut.getNoise(mode)
jspectra[:,freq_dc,:] = jspectra[:,freq_dc,:] - NPot
SPot = jspectra[:,freq_dc,:]
pairsAutoCorr = self.dataOut.getPairsAutoCorr()
# self.dataOut.signalPotency = SPot
self.dataOut.noise = NPot
self.dataOut.SNR = (SPot/NPot)[pairsAutoCorr]
self.dataOut.data_corr[:,:,indR,:] = jspectra
return 1
def calculateNormFactor(self):
pairsList = self.dataOut.pairsList
pairsAutoCorr = self.dataOut.pairsAutoCorr
nHeights = self.dataOut.nHeights
nPairs = len(pairsList)
normFactor = numpy.zeros((nPairs,nHeights))
indR = numpy.where(self.dataOut.lagR == 0)[0][0]
indT = numpy.where(self.dataOut.lagT == 0)[0][0]
for l in range(len(pairsList)):
firstChannel = pairsList[l][0]
secondChannel = pairsList[l][1]
AC1 = pairsAutoCorr[firstChannel]
AC2 = pairsAutoCorr[secondChannel]
if (AC1 >= 0 and AC2 >= 0):
data1 = numpy.abs(self.dataOut.data_corr[AC1,:,indR,:])
data2 = numpy.abs(self.dataOut.data_corr[AC2,:,indR,:])
maxim1 = data1.max(axis = 0)
maxim2 = data1.max(axis = 0)
maxim = numpy.sqrt(maxim1*maxim2)
else:
#In case there is no autocorrelation for the pair
data = numpy.abs(self.dataOut.data_corr[l,:,indR,:])
maxim = numpy.max(data, axis = 0)
normFactor[l,:] = maxim
self.dataOut.normFactor = normFactor
return 1
def run(self, lagT=None, lagR=None, pairsList=None,
nPoints=None, nAvg=None, bufferSize=None,
fullT = False, fullR = False, removeDC = False):
self.dataOut.flagNoData = True
if self.dataIn.type == "Correlation":
self.dataOut.copy(self.dataIn)
return
if self.dataIn.type == "Voltage":
if pairsList == None:
pairsList = [numpy.array([0,0])]
if nPoints == None:
nPoints = 128
#------------------------------------------------------------
#Condicionales para calcular Correlaciones en Tiempo y Rango
if fullT:
lagT = numpy.arange(nPoints*2 - 1) - nPoints + 1
elif lagT == None:
lagT = numpy.array([0])
else:
lagT = numpy.array(lagT)
if fullR:
lagR = numpy.arange(self.dataOut.nHeights)
elif lagR == None:
lagR = numpy.array([0])
#-------------------------------------------------------------
if nAvg == None:
nAvg = 1
if bufferSize == None:
bufferSize = 0
deltaH = self.dataIn.heightList[1] - self.dataIn.heightList[0]
self.dataOut.lagR = numpy.round(numpy.array(lagR)/deltaH)
self.dataOut.pairsList = pairsList
self.dataOut.nPoints = nPoints
# channels = numpy.sort(list(set(list(itertools.chain.from_iterable(pairsList)))))
if self.buffer == None:
self.buffer = numpy.zeros((self.dataIn.nChannels,self.dataIn.nProfiles,self.dataIn.nHeights),dtype='complex')
self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()[:,:]
self.profIndex += 1
if self.firstdatatime == None:
self.firstdatatime = self.dataIn.utctime
if self.profIndex == nPoints:
tmp = self.buffer[:,0:nPoints,:]
self.buffer = None
self.buffer = tmp
#--------------- Remover DC ------------
if removeDC:
self.buffer = self.removeDC(self.buffer)
#---------------------------------------------
self.dataOut.data_volts = self.buffer
self.__updateObjFromInput()
self.dataOut.data_corr = numpy.zeros((len(pairsList),
len(lagT),len(lagR),
self.dataIn.nHeights),
dtype='complex')
for l in range(len(pairsList)):
firstChannel = pairsList[l][0]
secondChannel = pairsList[l][1]
tmp = None
tmp = numpy.zeros((len(lagT),len(lagR),self.dataIn.nHeights),dtype='complex')
for t in range(len(lagT)):
for r in range(len(lagR)):
idxT = lagT[t]
idxR = lagR[r]
if idxT >= 0:
vStacked = numpy.vstack((self.buffer[secondChannel,idxT:,:],
numpy.zeros((idxT,self.dataIn.nHeights),dtype='complex')))
else:
vStacked = numpy.vstack((numpy.zeros((-idxT,self.dataIn.nHeights),dtype='complex'),
self.buffer[secondChannel,:(nPoints + idxT),:]))
if idxR >= 0:
hStacked = numpy.hstack((vStacked[:,idxR:],numpy.zeros((nPoints,idxR),dtype='complex')))
else:
hStacked = numpy.hstack((numpy.zeros((nPoints,-idxR),dtype='complex'),vStacked[:,(self.dataOut.nHeights + idxR)]))
tmp[t,r,:] = numpy.sum((numpy.conjugate(self.buffer[firstChannel,:,:])*hStacked),axis=0)
hStacked = None
vStacked = None
self.dataOut.data_corr[l,:,:,:] = tmp[:,:,:]
#Se Calcula los factores de Normalizacion
self.dataOut.pairsAutoCorr = self.dataOut.getPairsAutoCorr()
self.dataOut.lagT = lagT*self.dataIn.ippSeconds*self.dataIn.nCohInt
self.dataOut.lagR = lagR
self.calculateNormFactor()
self.dataOut.flagNoData = False
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
return