##// END OF EJS Templates
Merge with branch schain_julia_drifts from rev. 803 to 995....
Merge with branch schain_julia_drifts from rev. 803 to 995. No tested

File last commit:

r568:486c66596e4c
r568:486c66596e4c
Show More
jroheaderIO.py
615 lines | 20.4 KiB | text/x-python | PythonLexer
'''
$Author: murco $
$Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $
'''
import numpy
import copy
import datetime
BASIC_STRUCTURE = numpy.dtype([
('nSize','<u4'),
('nVersion','<u2'),
('nDataBlockId','<u4'),
('nUtime','<u4'),
('nMilsec','<u2'),
('nTimezone','<i2'),
('nDstflag','<i2'),
('nErrorCount','<u4')
])
SYSTEM_STRUCTURE = numpy.dtype([
('nSize','<u4'),
('nNumSamples','<u4'),
('nNumProfiles','<u4'),
('nNumChannels','<u4'),
('nADCResolution','<u4'),
('nPCDIOBusWidth','<u4'),
])
RADAR_STRUCTURE = numpy.dtype([
('nSize','<u4'),
('nExpType','<u4'),
('nNTx','<u4'),
('fIpp','<f4'),
('fTxA','<f4'),
('fTxB','<f4'),
('nNumWindows','<u4'),
('nNumTaus','<u4'),
('nCodeType','<u4'),
('nLine6Function','<u4'),
('nLine5Function','<u4'),
('fClock','<f4'),
('nPrePulseBefore','<u4'),
('nPrePulseAfter','<u4'),
('sRangeIPP','<a20'),
('sRangeTxA','<a20'),
('sRangeTxB','<a20'),
])
SAMPLING_STRUCTURE = numpy.dtype([('h0','<f4'),('dh','<f4'),('nsa','<u4')])
PROCESSING_STRUCTURE = numpy.dtype([
('nSize','<u4'),
('nDataType','<u4'),
('nSizeOfDataBlock','<u4'),
('nProfilesperBlock','<u4'),
('nDataBlocksperFile','<u4'),
('nNumWindows','<u4'),
('nProcessFlags','<u4'),
('nCoherentIntegrations','<u4'),
('nIncoherentIntegrations','<u4'),
('nTotalSpectra','<u4')
])
class Header(object):
def __init__(self):
raise
def copy(self):
return copy.deepcopy(self)
def read(self):
raise ValueError
def write(self):
raise ValueError
def printInfo(self):
print "#"*100
print self.__class__.__name__.upper()
print "#"*100
for key in self.__dict__.keys():
print "%s = %s" %(key, self.__dict__[key])
class BasicHeader(Header):
size = None
version = None
dataBlock = None
utc = None
ltc = None
miliSecond = None
timeZone = None
dstFlag = None
errorCount = None
datatime = None
__LOCALTIME = None
def __init__(self, useLocalTime=True):
self.size = 24
self.version = 0
self.dataBlock = 0
self.utc = 0
self.miliSecond = 0
self.timeZone = 0
self.dstFlag = 0
self.errorCount = 0
self.useLocalTime = useLocalTime
def read(self, fp):
try:
header = numpy.fromfile(fp, BASIC_STRUCTURE,1)
self.size = int(header['nSize'][0])
self.version = int(header['nVersion'][0])
self.dataBlock = int(header['nDataBlockId'][0])
self.utc = int(header['nUtime'][0])
self.miliSecond = int(header['nMilsec'][0])
self.timeZone = int(header['nTimezone'][0])
self.dstFlag = int(header['nDstflag'][0])
self.errorCount = int(header['nErrorCount'][0])
except Exception, e:
print "BasicHeader: "
print e
return 0
return 1
def write(self, fp):
headerTuple = (self.size,self.version,self.dataBlock,self.utc,self.miliSecond,self.timeZone,self.dstFlag,self.errorCount)
header = numpy.array(headerTuple, BASIC_STRUCTURE)
header.tofile(fp)
return 1
def get_ltc(self):
return self.utc - self.timeZone*60
def set_ltc(self, value):
self.utc = value + self.timeZone*60
def get_datatime(self):
return datetime.datetime.utcfromtimestamp(self.ltc)
ltc = property(get_ltc, set_ltc)
datatime = property(get_datatime)
class SystemHeader(Header):
size = None
nSamples = None
nProfiles = None
nChannels = None
adcResolution = None
pciDioBusWidth = None
def __init__(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWith=0):
self.size = 24
self.nSamples = nSamples
self.nProfiles = nProfiles
self.nChannels = nChannels
self.adcResolution = adcResolution
self.pciDioBusWidth = pciDioBusWith
def read(self, fp):
try:
header = numpy.fromfile(fp,SYSTEM_STRUCTURE,1)
self.size = header['nSize'][0]
self.nSamples = header['nNumSamples'][0]
self.nProfiles = header['nNumProfiles'][0]
self.nChannels = header['nNumChannels'][0]
self.adcResolution = header['nADCResolution'][0]
self.pciDioBusWidth = header['nPCDIOBusWidth'][0]
except Exception, e:
print "SystemHeader: " + e
return 0
return 1
def write(self, fp):
headerTuple = (self.size,self.nSamples,self.nProfiles,self.nChannels,self.adcResolution,self.pciDioBusWidth)
header = numpy.array(headerTuple,SYSTEM_STRUCTURE)
header.tofile(fp)
return 1
class RadarControllerHeader(Header):
size = None
expType = None
nTx = None
ipp = None
txA = None
txB = None
nWindows = None
numTaus = None
codeType = None
line6Function = None
line5Function = None
fClock = None
prePulseBefore = None
prePulserAfter = None
rangeIpp = None
rangeTxA = None
rangeTxB = None
__C = 3e8
def __init__(self, expType=2, nTx=1,
ippKm=None, txA=0, txB=0,
nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None,
numTaus=0, line6Function=0, line5Function=0, fClock=0,
prePulseBefore=0, prePulseAfter=0,
codeType=0, nCode=0, nBaud=0, code=None,
flip1=0, flip2=0):
self.size = 116
self.expType = expType
self.nTx = nTx
self.ipp = ippKm
self.txA = txA
self.txB = txB
self.rangeIpp = ippKm
self.rangeTxA = txA
self.rangeTxB = txB
self.nWindows = nWindows
self.numTaus = numTaus
self.codeType = codeType
self.line6Function = line6Function
self.line5Function = line5Function
self.fClock = fClock
self.prePulseBefore = prePulseBefore
self.prePulserAfter = prePulseAfter
self.nHeights = nHeights
self.firstHeight = firstHeight
self.deltaHeight = deltaHeight
self.samplesWin = nHeights
self.nCode = nCode
self.nBaud = nBaud
self.code = code
self.flip1 = flip1
self.flip2 = flip2
# self.dynamic = numpy.array([],numpy.dtype('byte'))
def read(self, fp):
try:
startFp = fp.tell()
header = numpy.fromfile(fp,RADAR_STRUCTURE,1)
self.size = int(header['nSize'][0])
self.expType = int(header['nExpType'][0])
self.nTx = int(header['nNTx'][0])
self.ipp = float(header['fIpp'][0])
self.txA = float(header['fTxA'][0])
self.txB = float(header['fTxB'][0])
self.nWindows = int(header['nNumWindows'][0])
self.numTaus = int(header['nNumTaus'][0])
self.codeType = int(header['nCodeType'][0])
self.line6Function = int(header['nLine6Function'][0])
self.line5Function = int(header['nLine5Function'][0])
self.fClock = float(header['fClock'][0])
self.prePulseBefore = int(header['nPrePulseBefore'][0])
self.prePulserAfter = int(header['nPrePulseAfter'][0])
self.rangeIpp = header['sRangeIPP'][0]
self.rangeTxA = header['sRangeTxA'][0]
self.rangeTxB = header['sRangeTxB'][0]
# jump Dynamic Radar Controller Header
# jumpFp = self.size - 116
# self.dynamic = numpy.fromfile(fp,numpy.dtype('byte'),jumpFp)
#pointer backward to dynamic header and read
# backFp = fp.tell() - jumpFp
# fp.seek(backFp)
samplingWindow = numpy.fromfile(fp,SAMPLING_STRUCTURE,self.nWindows)
self.nHeights = int(numpy.sum(samplingWindow['nsa']))
self.firstHeight = samplingWindow['h0']
self.deltaHeight = samplingWindow['dh']
self.samplesWin = samplingWindow['nsa']
self.Taus = numpy.fromfile(fp,'<f4',self.numTaus)
if self.codeType != 0:
self.nCode = int(numpy.fromfile(fp,'<u4',1))
self.nBaud = int(numpy.fromfile(fp,'<u4',1))
self.code = numpy.empty([self.nCode,self.nBaud],dtype='i1')
for ic in range(self.nCode):
temp = numpy.fromfile(fp,'u4',int(numpy.ceil(self.nBaud/32.)))
for ib in range(self.nBaud-1,-1,-1):
self.code[ic,ib] = temp[ib/32]%2
temp[ib/32] = temp[ib/32]/2
self.code = 2.0*self.code - 1.0
self.code_size = int(numpy.ceil(self.nBaud/32.))*self.nCode*4
if self.line5Function == RCfunction.FLIP:
self.flip1 = numpy.fromfile(fp,'<u4',1)
if self.line6Function == RCfunction.FLIP:
self.flip2 = numpy.fromfile(fp,'<u4',1)
endFp = self.size + startFp
jumpFp = endFp - fp.tell()
if jumpFp > 0:
fp.seek(jumpFp)
except Exception, e:
print "RadarControllerHeader: " + e
return 0
return 1
def write(self, fp):
headerTuple = (self.size,
self.expType,
self.nTx,
self.ipp,
self.txA,
self.txB,
self.nWindows,
self.numTaus,
self.codeType,
self.line6Function,
self.line5Function,
self.fClock,
self.prePulseBefore,
self.prePulserAfter,
self.rangeIpp,
self.rangeTxA,
self.rangeTxB)
header = numpy.array(headerTuple,RADAR_STRUCTURE)
header.tofile(fp)
#dynamic = self.dynamic
#dynamic.tofile(fp)
sampleWindowTuple = (self.firstHeight,self.deltaHeight,self.samplesWin)
samplingWindow = numpy.array(sampleWindowTuple,SAMPLING_STRUCTURE)
samplingWindow.tofile(fp)
if self.numTaus > 0:
self.Taus.tofile(fp)
if self.codeType !=0:
nCode = numpy.array(self.nCode, '<u4')
nCode.tofile(fp)
nBaud = numpy.array(self.nBaud, '<u4')
nBaud.tofile(fp)
code1 = (self.code + 1.0)/2.
for ic in range(self.nCode):
tempx = numpy.zeros(numpy.ceil(self.nBaud/32.))
start = 0
end = 32
for i in range(len(tempx)):
code_selected = code1[ic,start:end]
for j in range(len(code_selected)-1,-1,-1):
if code_selected[j] == 1:
tempx[i] = tempx[i] + 2**(len(code_selected)-1-j)
start = start + 32
end = end + 32
tempx = tempx.astype('u4')
tempx.tofile(fp)
if self.line5Function == RCfunction.FLIP:
self.flip1.tofile(fp)
if self.line6Function == RCfunction.FLIP:
self.flip2.tofile(fp)
return 1
def get_ippSeconds(self):
'''
'''
ippSeconds = 2.0 * 1000 * self.ipp / self.__C
return ippSeconds
def set_ippSeconds(self, ippSeconds):
'''
'''
self.ipp = ippSeconds * self.__C / (2.0*1000)
return
ippSeconds = property(get_ippSeconds, set_ippSeconds)
class ProcessingHeader(Header):
size = None
dtype = None
blockSize = None
profilesPerBlock = None
dataBlocksPerFile = None
nWindows = None
processFlags = None
nCohInt = None
nIncohInt = None
totalSpectra = None
flag_dc = None
flag_cspc = None
def __init__(self):
self.size = 0
self.dtype = 0
self.blockSize = 0
self.profilesPerBlock = 0
self.dataBlocksPerFile = 0
self.nWindows = 0
self.processFlags = 0
self.nCohInt = 0
self.nIncohInt = 0
self.totalSpectra = 0
self.nHeights = 0
self.firstHeight = 0
self.deltaHeight = 0
self.samplesWin = 0
self.spectraComb = 0
# self.nCode = None
# self.code = None
# self.nBaud = None
self.shif_fft = False
self.flag_dc = False
self.flag_cspc = False
def read(self, fp):
# try:
header = numpy.fromfile(fp,PROCESSING_STRUCTURE,1)
self.size = int(header['nSize'][0])
self.dtype = int(header['nDataType'][0])
self.blockSize = int(header['nSizeOfDataBlock'][0])
self.profilesPerBlock = int(header['nProfilesperBlock'][0])
self.dataBlocksPerFile = int(header['nDataBlocksperFile'][0])
self.nWindows = int(header['nNumWindows'][0])
self.processFlags = header['nProcessFlags']
self.nCohInt = int(header['nCoherentIntegrations'][0])
self.nIncohInt = int(header['nIncoherentIntegrations'][0])
self.totalSpectra = int(header['nTotalSpectra'][0])
samplingWindow = numpy.fromfile(fp,SAMPLING_STRUCTURE,self.nWindows)
self.nHeights = int(numpy.sum(samplingWindow['nsa']))
self.firstHeight = float(samplingWindow['h0'][0])
self.deltaHeight = float(samplingWindow['dh'][0])
self.samplesWin = samplingWindow['nsa'][0]
self.spectraComb = numpy.fromfile(fp,'u1',2*self.totalSpectra)
# if ((self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE) == PROCFLAG.DEFINE_PROCESS_CODE):
# self.nCode = int(numpy.fromfile(fp,'<u4',1))
# self.nBaud = int(numpy.fromfile(fp,'<u4',1))
# self.code = numpy.fromfile(fp,'<f4',self.nCode*self.nBaud).reshape(self.nCode,self.nBaud)
if ((self.processFlags & PROCFLAG.SHIFT_FFT_DATA) == PROCFLAG.SHIFT_FFT_DATA):
self.shif_fft = True
else:
self.shif_fft = False
if ((self.processFlags & PROCFLAG.SAVE_CHANNELS_DC) == PROCFLAG.SAVE_CHANNELS_DC):
self.flag_dc = True
nChannels = 0
nPairs = 0
pairList = []
for i in range( 0, self.totalSpectra*2, 2 ):
if self.spectraComb[i] == self.spectraComb[i+1]:
nChannels = nChannels + 1 #par de canales iguales
else:
nPairs = nPairs + 1 #par de canales diferentes
pairList.append( (self.spectraComb[i], self.spectraComb[i+1]) )
self.flag_cspc = False
if nPairs > 0:
self.flag_cspc = True
# except Exception, e:
# print "Error ProcessingHeader: "
# return 0
return 1
def write(self, fp):
headerTuple = (self.size,
self.dtype,
self.blockSize,
self.profilesPerBlock,
self.dataBlocksPerFile,
self.nWindows,
self.processFlags,
self.nCohInt,
self.nIncohInt,
self.totalSpectra)
header = numpy.array(headerTuple,PROCESSING_STRUCTURE)
header.tofile(fp)
if self.nWindows != 0:
sampleWindowTuple = (self.firstHeight,self.deltaHeight,self.samplesWin)
samplingWindow = numpy.array(sampleWindowTuple,SAMPLING_STRUCTURE)
samplingWindow.tofile(fp)
if self.totalSpectra != 0:
spectraComb = numpy.array([],numpy.dtype('u1'))
spectraComb = self.spectraComb
spectraComb.tofile(fp)
# if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE:
# nCode = numpy.array([self.nCode], numpy.dtype('u4')) #Probar con un dato que almacene codigo, hasta el momento no se hizo la prueba
# nCode.tofile(fp)
#
# nBaud = numpy.array([self.nBaud], numpy.dtype('u4'))
# nBaud.tofile(fp)
#
# code = self.code.reshape(self.nCode*self.nBaud)
# code = code.astype(numpy.dtype('<f4'))
# code.tofile(fp)
return 1
class RCfunction:
NONE=0
FLIP=1
CODE=2
SAMPLING=3
LIN6DIV256=4
SYNCHRO=5
class nCodeType:
NONE=0
USERDEFINE=1
BARKER2=2
BARKER3=3
BARKER4=4
BARKER5=5
BARKER7=6
BARKER11=7
BARKER13=8
AC128=9
COMPLEMENTARYCODE2=10
COMPLEMENTARYCODE4=11
COMPLEMENTARYCODE8=12
COMPLEMENTARYCODE16=13
COMPLEMENTARYCODE32=14
COMPLEMENTARYCODE64=15
COMPLEMENTARYCODE128=16
CODE_BINARY28=17
class PROCFLAG:
COHERENT_INTEGRATION = numpy.uint32(0x00000001)
DECODE_DATA = numpy.uint32(0x00000002)
SPECTRA_CALC = numpy.uint32(0x00000004)
INCOHERENT_INTEGRATION = numpy.uint32(0x00000008)
POST_COHERENT_INTEGRATION = numpy.uint32(0x00000010)
SHIFT_FFT_DATA = numpy.uint32(0x00000020)
DATATYPE_CHAR = numpy.uint32(0x00000040)
DATATYPE_SHORT = numpy.uint32(0x00000080)
DATATYPE_LONG = numpy.uint32(0x00000100)
DATATYPE_INT64 = numpy.uint32(0x00000200)
DATATYPE_FLOAT = numpy.uint32(0x00000400)
DATATYPE_DOUBLE = numpy.uint32(0x00000800)
DATAARRANGE_CONTIGUOUS_CH = numpy.uint32(0x00001000)
DATAARRANGE_CONTIGUOUS_H = numpy.uint32(0x00002000)
DATAARRANGE_CONTIGUOUS_P = numpy.uint32(0x00004000)
SAVE_CHANNELS_DC = numpy.uint32(0x00008000)
DEFLIP_DATA = numpy.uint32(0x00010000)
DEFINE_PROCESS_CODE = numpy.uint32(0x00020000)
ACQ_SYS_NATALIA = numpy.uint32(0x00040000)
ACQ_SYS_ECHOTEK = numpy.uint32(0x00080000)
ACQ_SYS_ADRXD = numpy.uint32(0x000C0000)
ACQ_SYS_JULIA = numpy.uint32(0x00100000)
ACQ_SYS_XXXXXX = numpy.uint32(0x00140000)
EXP_NAME_ESP = numpy.uint32(0x00200000)
CHANNEL_NAMES_ESP = numpy.uint32(0x00400000)
OPERATION_MASK = numpy.uint32(0x0000003F)
DATATYPE_MASK = numpy.uint32(0x00000FC0)
DATAARRANGE_MASK = numpy.uint32(0x00007000)
ACQ_SYS_MASK = numpy.uint32(0x001C0000)