##// END OF EJS Templates
update ui_workspace
update ui_workspace

File last commit:

r245:0a5b40329524
r262:4645eec0199f
Show More
jrodata.py
536 lines | 12.9 KiB | text/x-python | PythonLexer
'''
$Author: murco $
$Id: JROData.py 173 2012-11-20 15:06:21Z murco $
'''
import os, sys
import copy
import numpy
import datetime
from jroheaderIO import SystemHeader, RadarControllerHeader
def hildebrand_sekhon(data, navg):
"""
This method is for the objective determination of de noise level in Doppler spectra. This
implementation technique is based on the fact that the standard deviation of the spectral
densities is equal to the mean spectral density for white Gaussian noise
Inputs:
Data : heights
navg : numbers of averages
Return:
-1 : any error
anoise : noise's level
"""
dataflat = data.copy().reshape(-1)
dataflat.sort()
npts = dataflat.size #numbers of points of the data
npts_noise = 0.2*npts
if npts < 32:
print "error in noise - requires at least 32 points"
return -1.0
dataflat2 = numpy.power(dataflat,2)
cs = numpy.cumsum(dataflat)
cs2 = numpy.cumsum(dataflat2)
# data sorted in ascending order
nmin = int((npts + 7.)/8)
for i in range(nmin, npts):
s = cs[i]
s2 = cs2[i]
p = s / float(i);
p2 = p**2;
q = s2 / float(i) - p2;
leftc = p2;
rightc = q * float(navg);
R2 = leftc/rightc
# Signal detect: R2 < 1 (R2 = leftc/rightc)
if R2 < 1:
npts_noise = i
break
anoise = numpy.average(dataflat[0:npts_noise])
return anoise;
def sorting_bruce(data, navg):
data = data.copy()
sortdata = numpy.sort(data)
lenOfData = len(data)
nums_min = lenOfData/10
if (lenOfData/10) > 0:
nums_min = lenOfData/10
else:
nums_min = 0
rtest = 1.0 + 1.0/navg
sum = 0.
sumq = 0.
j = 0
cont = 1
while((cont==1)and(j<lenOfData)):
sum += sortdata[j]
sumq += sortdata[j]**2
j += 1
if j > nums_min:
if ((sumq*j) <= (rtest*sum**2)):
lnoise = sum / j
else:
j = j - 1
sum = sum - sordata[j]
sumq = sumq - sordata[j]**2
cont = 0
if j == nums_min:
lnoise = sum /j
return lnoise
class JROData:
# m_BasicHeader = BasicHeader()
# m_ProcessingHeader = ProcessingHeader()
systemHeaderObj = SystemHeader()
radarControllerHeaderObj = RadarControllerHeader()
# data = None
type = None
dtype = None
# nChannels = None
# nHeights = None
nProfiles = None
heightList = None
channelList = None
flagNoData = True
flagTimeBlock = False
utctime = None
blocksize = None
nCode = None
nBaud = None
code = None
flagDecodeData = False #asumo q la data no esta decodificada
flagDeflipData = False #asumo q la data no esta sin flip
flagShiftFFT = False
ippSeconds = None
timeInterval = None
nCohInt = None
noise = None
windowOfFilter = 1
#Speed of ligth
C = 3e8
frequency = 49.92e6
def __init__(self):
raise ValueError, "This class has not been implemented"
def copy(self, inputObj=None):
if inputObj == None:
return copy.deepcopy(self)
for key in inputObj.__dict__.keys():
self.__dict__[key] = inputObj.__dict__[key]
def deepcopy(self):
return copy.deepcopy(self)
def isEmpty(self):
return self.flagNoData
def getNoise(self):
raise ValueError, "Not implemented"
def getNChannels(self):
return len(self.channelList)
def getChannelIndexList(self):
return range(self.nChannels)
def getNHeights(self):
return len(self.heightList)
def getHeiRange(self, extrapoints=0):
heis = self.heightList
# deltah = self.heightList[1] - self.heightList[0]
#
# heis.append(self.heightList[-1])
return heis
def getDatatime(self):
datatime = datetime.datetime.utcfromtimestamp(self.utctime)
return datatime
def getTimeRange(self):
datatime = []
datatime.append(self.utctime)
datatime.append(self.utctime + self.timeInterval)
datatime = numpy.array(datatime)
return datatime
def getFmax(self):
PRF = 1./(self.ippSeconds * self.nCohInt)
fmax = PRF/2.
return fmax
def getVmax(self):
_lambda = self.C/self.frequency
vmax = self.getFmax() * _lambda
return vmax
nChannels = property(getNChannels, "I'm the 'nChannel' property.")
channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
nHeights = property(getNHeights, "I'm the 'nHeights' property.")
noise = property(getNoise, "I'm the 'nHeights' property.")
datatime = property(getDatatime, "I'm the 'datatime' property")
class Voltage(JROData):
#data es un numpy array de 2 dmensiones (canales, alturas)
data = None
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Voltage"
self.data = None
self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.flagTimeBlock = False
self.utctime = None
self.nCohInt = None
self.blocksize = None
self.flagDecodeData = False #asumo q la data no esta decodificada
self.flagDeflipData = False #asumo q la data no esta sin flip
self.flagShiftFFT = False
def getNoisebyHildebrand(self):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noiselevel
"""
for channel in range(self.nChannels):
daux = self.data_spc[channel,:,:]
self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt)
return self.noise
def getNoise(self, type = 1):
self.noise = numpy.zeros(self.nChannels)
if type == 1:
noise = self.getNoisebyHildebrand()
return 10*numpy.log10(noise)
class Spectra(JROData):
#data es un numpy array de 2 dmensiones (canales, perfiles, alturas)
data_spc = None
#data es un numpy array de 2 dmensiones (canales, pares, alturas)
data_cspc = None
#data es un numpy array de 2 dmensiones (canales, alturas)
data_dc = None
nFFTPoints = None
nPairs = None
pairsList = None
nIncohInt = None
wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
nCohInt = None #se requiere para determinar el valor de timeInterval
def __init__(self):
'''
Constructor
'''
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "Spectra"
# self.data = None
self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.flagTimeBlock = False
self.utctime = None
self.nCohInt = None
self.nIncohInt = None
self.blocksize = None
self.nFFTPoints = None
self.wavelength = None
self.flagDecodeData = False #asumo q la data no esta decodificada
self.flagDeflipData = False #asumo q la data no esta sin flip
self.flagShiftFFT = False
def getNoisebyHildebrand(self):
"""
Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
Return:
noiselevel
"""
for channel in range(self.nChannels):
daux = self.data_spc[channel,:,:]
self.noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
return self.noise
def getNoisebyWindow(self, heiIndexMin=0, heiIndexMax=-1, freqIndexMin=0, freqIndexMax=-1):
"""
Determina el ruido del canal utilizando la ventana indicada con las coordenadas:
(heiIndexMIn, freqIndexMin) hasta (heiIndexMax, freqIndexMAx)
Inputs:
heiIndexMin: Limite inferior del eje de alturas
heiIndexMax: Limite superior del eje de alturas
freqIndexMin: Limite inferior del eje de frecuencia
freqIndexMax: Limite supoerior del eje de frecuencia
"""
data = self.data_spc[:, heiIndexMin:heiIndexMax, freqIndexMin:freqIndexMax]
for channel in range(self.nChannels):
daux = data[channel,:,:]
self.noise[channel] = numpy.average(daux)
return self.noise
def getNoisebySort(self):
for channel in range(self.nChannels):
daux = self.data_spc[channel,:,:]
self.noise[channel] = sorting_bruce(daux, self.nIncohInt)
return self.noise
def getNoise(self, type = 1):
self.noise = numpy.zeros(self.nChannels)
if type == 1:
noise = self.getNoisebyHildebrand()
if type == 2:
noise = self.getNoisebySort()
if type == 3:
noise = self.getNoisebyWindow()
return noise
def getFreqRange(self, extrapoints=0):
deltafreq = self.getFmax() / self.nFFTPoints
freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
return freqrange
def getVelRange(self, extrapoints=0):
deltav = self.getVmax() / self.nFFTPoints
velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2
return velrange
def getNPairs(self):
return len(self.pairsList)
def getPairsIndexList(self):
return range(self.nPairs)
def getNormFactor(self):
pwcode = 1
if self.flagDecodeData:
pwcode = numpy.sum(self.code[0]**2)
normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*self.windowOfFilter*pwcode
return normFactor
nPairs = property(getNPairs, "I'm the 'nPairs' property.")
pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.")
normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
class SpectraHeis(JROData):
data_spc = None
data_cspc = None
data_dc = None
nFFTPoints = None
nPairs = None
pairsList = None
nIncohInt = None
def __init__(self):
self.radarControllerHeaderObj = RadarControllerHeader()
self.systemHeaderObj = SystemHeader()
self.type = "SpectraHeis"
self.dtype = None
# self.nChannels = 0
# self.nHeights = 0
self.nProfiles = None
self.heightList = None
self.channelList = None
# self.channelIndexList = None
self.flagNoData = True
self.flagTimeBlock = False
self.nPairs = 0
self.utctime = None
self.blocksize = None