|
|
|
|
|
import os
|
|
|
import time
|
|
|
import glob
|
|
|
import datetime
|
|
|
from multiprocessing import Process
|
|
|
|
|
|
import zmq
|
|
|
import numpy
|
|
|
import matplotlib
|
|
|
import matplotlib.pyplot as plt
|
|
|
from matplotlib.patches import Polygon
|
|
|
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
|
|
from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator
|
|
|
|
|
|
from schainpy.model.proc.jroproc_base import Operation
|
|
|
from schainpy.utils import log
|
|
|
|
|
|
jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90]
|
|
|
blu_values = matplotlib.pyplot.get_cmap(
|
|
|
'seismic_r', 20)(numpy.arange(20))[10:15]
|
|
|
ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
|
|
|
'jro', numpy.vstack((blu_values, jet_values)))
|
|
|
matplotlib.pyplot.register_cmap(cmap=ncmap)
|
|
|
|
|
|
CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')]
|
|
|
|
|
|
EARTH_RADIUS = 6.3710e3
|
|
|
|
|
|
def ll2xy(lat1, lon1, lat2, lon2):
|
|
|
|
|
|
p = 0.017453292519943295
|
|
|
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2
|
|
|
r = 12742 * numpy.arcsin(numpy.sqrt(a))
|
|
|
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p)*numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p))
|
|
|
theta = -theta + numpy.pi/2
|
|
|
return r*numpy.cos(theta), r*numpy.sin(theta)
|
|
|
|
|
|
def km2deg(km):
|
|
|
'''
|
|
|
Convert distance in km to degrees
|
|
|
'''
|
|
|
|
|
|
return numpy.rad2deg(km/EARTH_RADIUS)
|
|
|
|
|
|
def figpause(interval):
|
|
|
backend = plt.rcParams['backend']
|
|
|
if backend in matplotlib.rcsetup.interactive_bk:
|
|
|
figManager = matplotlib._pylab_helpers.Gcf.get_active()
|
|
|
if figManager is not None:
|
|
|
canvas = figManager.canvas
|
|
|
if canvas.figure.stale:
|
|
|
canvas.draw()
|
|
|
try:
|
|
|
canvas.start_event_loop(interval)
|
|
|
except:
|
|
|
pass
|
|
|
return
|
|
|
|
|
|
def popup(message):
|
|
|
'''
|
|
|
'''
|
|
|
|
|
|
fig = plt.figure(figsize=(12, 8), facecolor='r')
|
|
|
text = '\n'.join([s.strip() for s in message.split(':')])
|
|
|
fig.text(0.01, 0.5, text, ha='left', va='center', size='20', weight='heavy', color='w')
|
|
|
fig.show()
|
|
|
figpause(1000)
|
|
|
|
|
|
|
|
|
class PlotData(Operation, Process):
|
|
|
'''
|
|
|
Base class for Schain plotting operations
|
|
|
'''
|
|
|
|
|
|
CODE = 'Figure'
|
|
|
colormap = 'jro'
|
|
|
bgcolor = 'white'
|
|
|
CONFLATE = False
|
|
|
__missing = 1E30
|
|
|
|
|
|
__attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax',
|
|
|
'zlimits', 'xlabel', 'ylabel', 'xaxis','cb_label', 'title',
|
|
|
'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure',
|
|
|
'showprofile', 'decimation', 'ftp']
|
|
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
|
|
Operation.__init__(self, plot=True, **kwargs)
|
|
|
Process.__init__(self)
|
|
|
|
|
|
self.kwargs['code'] = self.CODE
|
|
|
self.mp = False
|
|
|
self.data = None
|
|
|
self.isConfig = False
|
|
|
self.figures = []
|
|
|
self.axes = []
|
|
|
self.cb_axes = []
|
|
|
self.localtime = kwargs.pop('localtime', True)
|
|
|
self.show = kwargs.get('show', True)
|
|
|
self.save = kwargs.get('save', False)
|
|
|
self.ftp = kwargs.get('ftp', False)
|
|
|
self.colormap = kwargs.get('colormap', self.colormap)
|
|
|
self.colormap_coh = kwargs.get('colormap_coh', 'jet')
|
|
|
self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r')
|
|
|
self.colormaps = kwargs.get('colormaps', None)
|
|
|
self.bgcolor = kwargs.get('bgcolor', self.bgcolor)
|
|
|
self.showprofile = kwargs.get('showprofile', False)
|
|
|
self.title = kwargs.get('wintitle', self.CODE.upper())
|
|
|
self.cb_label = kwargs.get('cb_label', None)
|
|
|
self.cb_labels = kwargs.get('cb_labels', None)
|
|
|
self.labels = kwargs.get('labels', None)
|
|
|
self.xaxis = kwargs.get('xaxis', 'frequency')
|
|
|
self.zmin = kwargs.get('zmin', None)
|
|
|
self.zmax = kwargs.get('zmax', None)
|
|
|
self.zlimits = kwargs.get('zlimits', None)
|
|
|
self.xmin = kwargs.get('xmin', None)
|
|
|
self.xmax = kwargs.get('xmax', None)
|
|
|
self.xrange = kwargs.get('xrange', 24)
|
|
|
self.xscale = kwargs.get('xscale', None)
|
|
|
self.ymin = kwargs.get('ymin', None)
|
|
|
self.ymax = kwargs.get('ymax', None)
|
|
|
self.yscale = kwargs.get('yscale', None)
|
|
|
self.xlabel = kwargs.get('xlabel', None)
|
|
|
self.decimation = kwargs.get('decimation', None)
|
|
|
self.showSNR = kwargs.get('showSNR', False)
|
|
|
self.oneFigure = kwargs.get('oneFigure', True)
|
|
|
self.width = kwargs.get('width', None)
|
|
|
self.height = kwargs.get('height', None)
|
|
|
self.colorbar = kwargs.get('colorbar', True)
|
|
|
self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1])
|
|
|
self.channels = kwargs.get('channels', None)
|
|
|
self.titles = kwargs.get('titles', [])
|
|
|
self.polar = False
|
|
|
self.grid = kwargs.get('grid', False)
|
|
|
|
|
|
def __fmtTime(self, x, pos):
|
|
|
'''
|
|
|
'''
|
|
|
|
|
|
return '{}'.format(self.getDateTime(x).strftime('%H:%M'))
|
|
|
|
|
|
def __setup(self):
|
|
|
'''
|
|
|
Common setup for all figures, here figures and axes are created
|
|
|
'''
|
|
|
|
|
|
if self.CODE not in self.data:
|
|
|
raise ValueError(log.error('Missing data for {}'.format(self.CODE),
|
|
|
self.name))
|
|
|
|
|
|
self.setup()
|
|
|
|
|
|
self.time_label = 'LT' if self.localtime else 'UTC'
|
|
|
if self.data.localtime:
|
|
|
self.getDateTime = datetime.datetime.fromtimestamp
|
|
|
else:
|
|
|
self.getDateTime = datetime.datetime.utcfromtimestamp
|
|
|
|
|
|
if self.width is None:
|
|
|
self.width = 8
|
|
|
|
|
|
self.figures = []
|
|
|
self.axes = []
|
|
|
self.cb_axes = []
|
|
|
self.pf_axes = []
|
|
|
self.cmaps = []
|
|
|
|
|
|
size = '15%' if self.ncols == 1 else '30%'
|
|
|
pad = '4%' if self.ncols == 1 else '8%'
|
|
|
|
|
|
if self.oneFigure:
|
|
|
if self.height is None:
|
|
|
self.height = 1.4 * self.nrows + 1
|
|
|
fig = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
self.figures.append(fig)
|
|
|
for n in range(self.nplots):
|
|
|
ax = fig.add_subplot(self.nrows, self.ncols,
|
|
|
n + 1, polar=self.polar)
|
|
|
ax.tick_params(labelsize=8)
|
|
|
ax.firsttime = True
|
|
|
ax.index = 0
|
|
|
ax.press = None
|
|
|
self.axes.append(ax)
|
|
|
if self.showprofile:
|
|
|
cax = self.__add_axes(ax, size=size, pad=pad)
|
|
|
cax.tick_params(labelsize=8)
|
|
|
self.pf_axes.append(cax)
|
|
|
else:
|
|
|
if self.height is None:
|
|
|
self.height = 3
|
|
|
for n in range(self.nplots):
|
|
|
fig = plt.figure(figsize=(self.width, self.height),
|
|
|
edgecolor='k',
|
|
|
facecolor='w')
|
|
|
ax = fig.add_subplot(1, 1, 1, polar=self.polar)
|
|
|
ax.tick_params(labelsize=8)
|
|
|
ax.firsttime = True
|
|
|
ax.index = 0
|
|
|
ax.press = None
|
|
|
self.figures.append(fig)
|
|
|
self.axes.append(ax)
|
|
|
if self.showprofile:
|
|
|
cax = self.__add_axes(ax, size=size, pad=pad)
|
|
|
cax.tick_params(labelsize=8)
|
|
|
self.pf_axes.append(cax)
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
if self.colormaps is not None:
|
|
|
cmap = plt.get_cmap(self.colormaps[n])
|
|
|
else:
|
|
|
cmap = plt.get_cmap(self.colormap)
|
|
|
cmap.set_bad(self.bgcolor, 1.)
|
|
|
self.cmaps.append(cmap)
|
|
|
|
|
|
for fig in self.figures:
|
|
|
fig.canvas.mpl_connect('key_press_event', self.OnKeyPress)
|
|
|
fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll)
|
|
|
fig.canvas.mpl_connect('button_press_event', self.onBtnPress)
|
|
|
fig.canvas.mpl_connect('motion_notify_event', self.onMotion)
|
|
|
fig.canvas.mpl_connect('button_release_event', self.onBtnRelease)
|
|
|
if self.show:
|
|
|
fig.show()
|
|
|
|
|
|
def OnKeyPress(self, event):
|
|
|
'''
|
|
|
Event for pressing keys (up, down) change colormap
|
|
|
'''
|
|
|
ax = event.inaxes
|
|
|
if ax in self.axes:
|
|
|
if event.key == 'down':
|
|
|
ax.index += 1
|
|
|
elif event.key == 'up':
|
|
|
ax.index -= 1
|
|
|
if ax.index < 0:
|
|
|
ax.index = len(CMAPS) - 1
|
|
|
elif ax.index == len(CMAPS):
|
|
|
ax.index = 0
|
|
|
cmap = CMAPS[ax.index]
|
|
|
ax.cbar.set_cmap(cmap)
|
|
|
ax.cbar.draw_all()
|
|
|
ax.plt.set_cmap(cmap)
|
|
|
ax.cbar.patch.figure.canvas.draw()
|
|
|
self.colormap = cmap.name
|
|
|
|
|
|
def OnBtnScroll(self, event):
|
|
|
'''
|
|
|
Event for scrolling, scale figure
|
|
|
'''
|
|
|
cb_ax = event.inaxes
|
|
|
if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]:
|
|
|
ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0]
|
|
|
pt = ax.cbar.ax.bbox.get_points()[:, 1]
|
|
|
nrm = ax.cbar.norm
|
|
|
vmin, vmax, p0, p1, pS = (
|
|
|
nrm.vmin, nrm.vmax, pt[0], pt[1], event.y)
|
|
|
scale = 2 if event.step == 1 else 0.5
|
|
|
point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0)
|
|
|
ax.cbar.norm.vmin = point - scale * (point - vmin)
|
|
|
ax.cbar.norm.vmax = point - scale * (point - vmax)
|
|
|
ax.plt.set_norm(ax.cbar.norm)
|
|
|
ax.cbar.draw_all()
|
|
|
ax.cbar.patch.figure.canvas.draw()
|
|
|
|
|
|
def onBtnPress(self, event):
|
|
|
'''
|
|
|
Event for mouse button press
|
|
|
'''
|
|
|
cb_ax = event.inaxes
|
|
|
if cb_ax is None:
|
|
|
return
|
|
|
|
|
|
if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]:
|
|
|
cb_ax.press = event.x, event.y
|
|
|
else:
|
|
|
cb_ax.press = None
|
|
|
|
|
|
def onMotion(self, event):
|
|
|
'''
|
|
|
Event for move inside colorbar
|
|
|
'''
|
|
|
cb_ax = event.inaxes
|
|
|
if cb_ax is None:
|
|
|
return
|
|
|
if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]:
|
|
|
return
|
|
|
if cb_ax.press is None:
|
|
|
return
|
|
|
|
|
|
ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0]
|
|
|
xprev, yprev = cb_ax.press
|
|
|
dx = event.x - xprev
|
|
|
dy = event.y - yprev
|
|
|
cb_ax.press = event.x, event.y
|
|
|
scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin
|
|
|
perc = 0.03
|
|
|
|
|
|
if event.button == 1:
|
|
|
ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy)
|
|
|
ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy)
|
|
|
elif event.button == 3:
|
|
|
ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy)
|
|
|
ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy)
|
|
|
|
|
|
ax.cbar.draw_all()
|
|
|
ax.plt.set_norm(ax.cbar.norm)
|
|
|
ax.cbar.patch.figure.canvas.draw()
|
|
|
|
|
|
def onBtnRelease(self, event):
|
|
|
'''
|
|
|
Event for mouse button release
|
|
|
'''
|
|
|
cb_ax = event.inaxes
|
|
|
if cb_ax is not None:
|
|
|
cb_ax.press = None
|
|
|
|
|
|
def __add_axes(self, ax, size='30%', pad='8%'):
|
|
|
'''
|
|
|
Add new axes to the given figure
|
|
|
'''
|
|
|
divider = make_axes_locatable(ax)
|
|
|
nax = divider.new_horizontal(size=size, pad=pad)
|
|
|
ax.figure.add_axes(nax)
|
|
|
return nax
|
|
|
|
|
|
self.setup()
|
|
|
|
|
|
def setup(self):
|
|
|
'''
|
|
|
This method should be implemented in the child class, the following
|
|
|
attributes should be set:
|
|
|
|
|
|
self.nrows: number of rows
|
|
|
self.ncols: number of cols
|
|
|
self.nplots: number of plots (channels or pairs)
|
|
|
self.ylabel: label for Y axes
|
|
|
self.titles: list of axes title
|
|
|
|
|
|
'''
|
|
|
raise NotImplementedError
|
|
|
|
|
|
def fill_gaps(self, x_buffer, y_buffer, z_buffer):
|
|
|
'''
|
|
|
Create a masked array for missing data
|
|
|
'''
|
|
|
if x_buffer.shape[0] < 2:
|
|
|
return x_buffer, y_buffer, z_buffer
|
|
|
|
|
|
deltas = x_buffer[1:] - x_buffer[0:-1]
|
|
|
x_median = numpy.median(deltas)
|
|
|
|
|
|
index = numpy.where(deltas > 5 * x_median)
|
|
|
|
|
|
if len(index[0]) != 0:
|
|
|
z_buffer[::, index[0], ::] = self.__missing
|
|
|
z_buffer = numpy.ma.masked_inside(z_buffer,
|
|
|
0.99 * self.__missing,
|
|
|
1.01 * self.__missing)
|
|
|
|
|
|
return x_buffer, y_buffer, z_buffer
|
|
|
|
|
|
def decimate(self):
|
|
|
|
|
|
# dx = int(len(self.x)/self.__MAXNUMX) + 1
|
|
|
dy = int(len(self.y) / self.decimation) + 1
|
|
|
|
|
|
# x = self.x[::dx]
|
|
|
x = self.x
|
|
|
y = self.y[::dy]
|
|
|
z = self.z[::, ::, ::dy]
|
|
|
|
|
|
return x, y, z
|
|
|
|
|
|
def format(self):
|
|
|
'''
|
|
|
Set min and max values, labels, ticks and titles
|
|
|
'''
|
|
|
|
|
|
if self.xmin is None:
|
|
|
xmin = self.min_time
|
|
|
else:
|
|
|
if self.xaxis is 'time':
|
|
|
dt = self.getDateTime(self.min_time)
|
|
|
xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) -
|
|
|
datetime.datetime(1970, 1, 1)).total_seconds()
|
|
|
if self.data.localtime:
|
|
|
xmin += time.timezone
|
|
|
else:
|
|
|
xmin = self.xmin
|
|
|
|
|
|
if self.xmax is None:
|
|
|
xmax = xmin + self.xrange * 60 * 60
|
|
|
else:
|
|
|
if self.xaxis is 'time':
|
|
|
dt = self.getDateTime(self.max_time)
|
|
|
xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) -
|
|
|
datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds()
|
|
|
if self.data.localtime:
|
|
|
xmax += time.timezone
|
|
|
else:
|
|
|
xmax = self.xmax
|
|
|
|
|
|
ymin = self.ymin if self.ymin else numpy.nanmin(self.y)
|
|
|
ymax = self.ymax if self.ymax else numpy.nanmax(self.y)
|
|
|
|
|
|
Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000])
|
|
|
i = 1 if numpy.where(abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0]
|
|
|
ystep = Y[i] / 10.
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
if ax.firsttime:
|
|
|
ax.set_facecolor(self.bgcolor)
|
|
|
ax.yaxis.set_major_locator(MultipleLocator(ystep))
|
|
|
ax.xaxis.set_major_locator(MultipleLocator(ystep))
|
|
|
if self.xscale:
|
|
|
ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.xscale)))
|
|
|
if self.xscale:
|
|
|
ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.yscale)))
|
|
|
if self.xaxis is 'time':
|
|
|
ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime))
|
|
|
ax.xaxis.set_major_locator(LinearLocator(9))
|
|
|
if self.xlabel is not None:
|
|
|
ax.set_xlabel(self.xlabel)
|
|
|
ax.set_ylabel(self.ylabel)
|
|
|
ax.firsttime = False
|
|
|
if self.showprofile:
|
|
|
self.pf_axes[n].set_ylim(ymin, ymax)
|
|
|
self.pf_axes[n].set_xlim(self.zmin, self.zmax)
|
|
|
self.pf_axes[n].set_xlabel('dB')
|
|
|
self.pf_axes[n].grid(b=True, axis='x')
|
|
|
[tick.set_visible(False)
|
|
|
for tick in self.pf_axes[n].get_yticklabels()]
|
|
|
if self.colorbar:
|
|
|
ax.cbar = plt.colorbar(
|
|
|
ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10)
|
|
|
ax.cbar.ax.tick_params(labelsize=8)
|
|
|
ax.cbar.ax.press = None
|
|
|
if self.cb_label:
|
|
|
ax.cbar.set_label(self.cb_label, size=8)
|
|
|
elif self.cb_labels:
|
|
|
ax.cbar.set_label(self.cb_labels[n], size=8)
|
|
|
else:
|
|
|
ax.cbar = None
|
|
|
if self.grid:
|
|
|
ax.grid(True)
|
|
|
|
|
|
if not self.polar:
|
|
|
ax.set_xlim(xmin, xmax)
|
|
|
ax.set_ylim(ymin, ymax)
|
|
|
ax.set_title('{} {} {}'.format(
|
|
|
self.titles[n],
|
|
|
self.getDateTime(self.max_time).strftime('%Y-%m-%dT%H:%M:%S'),
|
|
|
self.time_label),
|
|
|
size=8)
|
|
|
else:
|
|
|
ax.set_title('{}'.format(self.titles[n]), size=8)
|
|
|
ax.set_ylim(0, 90)
|
|
|
ax.set_yticks(numpy.arange(0, 90, 20))
|
|
|
ax.yaxis.labelpad = 40
|
|
|
|
|
|
def __plot(self):
|
|
|
'''
|
|
|
'''
|
|
|
log.log('Plotting', self.name)
|
|
|
|
|
|
try:
|
|
|
self.plot()
|
|
|
self.format()
|
|
|
except Exception as e:
|
|
|
log.warning('{} Plot could not be updated... check data'.format(self.CODE), self.name)
|
|
|
log.error(str(e), '')
|
|
|
return
|
|
|
|
|
|
for n, fig in enumerate(self.figures):
|
|
|
if self.nrows == 0 or self.nplots == 0:
|
|
|
log.warning('No data', self.name)
|
|
|
fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center')
|
|
|
fig.canvas.manager.set_window_title(self.CODE)
|
|
|
continue
|
|
|
|
|
|
fig.tight_layout()
|
|
|
fig.canvas.manager.set_window_title('{} - {}'.format(self.title,
|
|
|
self.getDateTime(self.max_time).strftime('%Y/%m/%d')))
|
|
|
fig.canvas.draw()
|
|
|
|
|
|
if self.save and (self.data.ended or not self.data.buffering):
|
|
|
|
|
|
if self.save_labels:
|
|
|
labels = self.save_labels
|
|
|
else:
|
|
|
labels = list(range(self.nrows))
|
|
|
|
|
|
if self.oneFigure:
|
|
|
label = ''
|
|
|
else:
|
|
|
label = '-{}'.format(labels[n])
|
|
|
figname = os.path.join(
|
|
|
self.save,
|
|
|
self.CODE,
|
|
|
'{}{}_{}.png'.format(
|
|
|
self.CODE,
|
|
|
label,
|
|
|
self.getDateTime(self.saveTime).strftime(
|
|
|
'%Y%m%d_%H%M%S'),
|
|
|
)
|
|
|
)
|
|
|
log.log('Saving figure: {}'.format(figname), self.name)
|
|
|
if not os.path.isdir(os.path.dirname(figname)):
|
|
|
os.makedirs(os.path.dirname(figname))
|
|
|
fig.savefig(figname)
|
|
|
|
|
|
def plot(self):
|
|
|
'''
|
|
|
'''
|
|
|
raise NotImplementedError
|
|
|
|
|
|
def run(self):
|
|
|
|
|
|
log.log('Starting', self.name)
|
|
|
|
|
|
context = zmq.Context()
|
|
|
receiver = context.socket(zmq.SUB)
|
|
|
receiver.setsockopt(zmq.SUBSCRIBE, '')
|
|
|
receiver.setsockopt(zmq.CONFLATE, self.CONFLATE)
|
|
|
|
|
|
if 'server' in self.kwargs['parent']:
|
|
|
receiver.connect(
|
|
|
'ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server']))
|
|
|
else:
|
|
|
receiver.connect("ipc:///tmp/zmq.plots")
|
|
|
|
|
|
while True:
|
|
|
try:
|
|
|
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK)
|
|
|
if self.data.localtime and self.localtime:
|
|
|
self.times = self.data.times
|
|
|
elif self.data.localtime and not self.localtime:
|
|
|
self.times = self.data.times + time.timezone
|
|
|
elif not self.data.localtime and self.localtime:
|
|
|
self.times = self.data.times - time.timezone
|
|
|
else:
|
|
|
self.times = self.data.times
|
|
|
|
|
|
self.min_time = self.times[0]
|
|
|
self.max_time = self.times[-1]
|
|
|
|
|
|
if self.isConfig is False:
|
|
|
self.__setup()
|
|
|
self.isConfig = True
|
|
|
|
|
|
self.__plot()
|
|
|
|
|
|
except zmq.Again as e:
|
|
|
if self.data and self.data.ended:
|
|
|
break
|
|
|
log.log('Waiting for data...')
|
|
|
if self.data:
|
|
|
figpause(self.data.throttle)
|
|
|
else:
|
|
|
time.sleep(2)
|
|
|
|
|
|
def close(self):
|
|
|
if self.data:
|
|
|
self.__plot()
|
|
|
|
|
|
|
|
|
class PlotSpectraData(PlotData):
|
|
|
'''
|
|
|
Plot for Spectra data
|
|
|
'''
|
|
|
|
|
|
CODE = 'spc'
|
|
|
colormap = 'jro'
|
|
|
|
|
|
def setup(self):
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ncols = int(numpy.sqrt(self.nplots) + 0.9)
|
|
|
self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9)
|
|
|
self.width = 3.4 * self.ncols
|
|
|
self.height = 3 * self.nrows
|
|
|
self.cb_label = 'dB'
|
|
|
if self.showprofile:
|
|
|
self.width += 0.8 * self.ncols
|
|
|
|
|
|
self.ylabel = 'Range [km]'
|
|
|
|
|
|
def plot(self):
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
if self.CODE == 'spc_mean':
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.heights
|
|
|
self.y = y
|
|
|
z = self.data['spc']
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
noise = self.data['noise'][n][-1]
|
|
|
if self.CODE == 'spc_mean':
|
|
|
mean = self.data['mean'][n][-1]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(z)
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile = self.pf_axes[n].plot(
|
|
|
self.data['rti'][n][-1], y)[0]
|
|
|
ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
if self.CODE == 'spc_mean':
|
|
|
ax.plt_mean = ax.plot(mean, y, color='k')[0]
|
|
|
else:
|
|
|
ax.plt.set_array(z[n].T.ravel())
|
|
|
if self.showprofile:
|
|
|
ax.plt_profile.set_data(self.data['rti'][n][-1], y)
|
|
|
ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y)
|
|
|
if self.CODE == 'spc_mean':
|
|
|
ax.plt_mean.set_data(mean, y)
|
|
|
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotCrossSpectraData(PlotData):
|
|
|
|
|
|
CODE = 'cspc'
|
|
|
zmin_coh = None
|
|
|
zmax_coh = None
|
|
|
zmin_phase = None
|
|
|
zmax_phase = None
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 4
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = self.nrows * 4
|
|
|
self.width = 3.4 * self.ncols
|
|
|
self.height = 3 * self.nrows
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.showprofile = False
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
if self.xaxis == "frequency":
|
|
|
x = self.data.xrange[0]
|
|
|
self.xlabel = "Frequency (kHz)"
|
|
|
elif self.xaxis == "time":
|
|
|
x = self.data.xrange[1]
|
|
|
self.xlabel = "Time (ms)"
|
|
|
else:
|
|
|
x = self.data.xrange[2]
|
|
|
self.xlabel = "Velocity (m/s)"
|
|
|
|
|
|
self.titles = []
|
|
|
|
|
|
y = self.data.heights
|
|
|
self.y = y
|
|
|
spc = self.data['spc']
|
|
|
cspc = self.data['cspc']
|
|
|
|
|
|
for n in range(self.nrows):
|
|
|
noise = self.data['noise'][n][-1]
|
|
|
pair = self.data.pairs[n]
|
|
|
ax = self.axes[4 * n]
|
|
|
ax3 = self.axes[4 * n + 3]
|
|
|
if ax.firsttime:
|
|
|
self.xmax = self.xmax if self.xmax else numpy.nanmax(x)
|
|
|
self.xmin = self.xmin if self.xmin else -self.xmax
|
|
|
self.zmin = self.zmin if self.zmin else numpy.nanmin(spc)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.nanmax(spc)
|
|
|
ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(spc[pair[0]].T.ravel())
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
|
|
|
|
|
|
ax = self.axes[4 * n + 1]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(spc[pair[1]].T.ravel())
|
|
|
self.titles.append('CH {}: {:3.2f}dB'.format(n, noise))
|
|
|
|
|
|
out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]])
|
|
|
coh = numpy.abs(out)
|
|
|
phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi
|
|
|
|
|
|
ax = self.axes[4 * n + 2]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, coh.T,
|
|
|
vmin=0,
|
|
|
vmax=1,
|
|
|
cmap=plt.get_cmap(self.colormap_coh)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(coh.T.ravel())
|
|
|
self.titles.append(
|
|
|
'Coherence Ch{} * Ch{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
ax = self.axes[4 * n + 3]
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, phase.T,
|
|
|
vmin=-180,
|
|
|
vmax=180,
|
|
|
cmap=plt.get_cmap(self.colormap_phase)
|
|
|
)
|
|
|
else:
|
|
|
ax.plt.set_array(phase.T.ravel())
|
|
|
self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1]))
|
|
|
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotSpectraMeanData(PlotSpectraData):
|
|
|
'''
|
|
|
Plot for Spectra and Mean
|
|
|
'''
|
|
|
CODE = 'spc_mean'
|
|
|
colormap = 'jro'
|
|
|
|
|
|
|
|
|
class PlotRTIData(PlotData):
|
|
|
'''
|
|
|
Plot for RTI data
|
|
|
'''
|
|
|
|
|
|
CODE = 'rti'
|
|
|
colormap = 'jro'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.channels)
|
|
|
self.nplots = len(self.data.channels)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
self.cb_label = 'dB'
|
|
|
self.titles = ['{} Channel {}'.format(
|
|
|
self.CODE.upper(), x) for x in range(self.nrows)]
|
|
|
|
|
|
def plot(self):
|
|
|
self.x = self.times
|
|
|
self.y = self.data.heights
|
|
|
self.z = self.data[self.CODE]
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
self.zmin = self.zmin if self.zmin else numpy.min(self.z)
|
|
|
self.zmax = self.zmax if self.zmax else numpy.max(self.z)
|
|
|
if ax.firsttime:
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile = self.pf_axes[n].plot(
|
|
|
self.data['rti'][n][-1], self.y)[0]
|
|
|
ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y,
|
|
|
color="k", linestyle="dashed", lw=1)[0]
|
|
|
else:
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T,
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=plt.get_cmap(self.colormap)
|
|
|
)
|
|
|
if self.showprofile:
|
|
|
ax.plot_profile.set_data(self.data['rti'][n][-1], self.y)
|
|
|
ax.plot_noise.set_data(numpy.repeat(
|
|
|
self.data['noise'][n][-1], len(self.y)), self.y)
|
|
|
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotCOHData(PlotRTIData):
|
|
|
'''
|
|
|
Plot for Coherence data
|
|
|
'''
|
|
|
|
|
|
CODE = 'coh'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = len(self.data.pairs)
|
|
|
self.nplots = len(self.data.pairs)
|
|
|
self.ylabel = 'Range [km]'
|
|
|
if self.CODE == 'coh':
|
|
|
self.cb_label = ''
|
|
|
self.titles = [
|
|
|
'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
else:
|
|
|
self.cb_label = 'Degrees'
|
|
|
self.titles = [
|
|
|
'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs]
|
|
|
|
|
|
|
|
|
class PlotPHASEData(PlotCOHData):
|
|
|
'''
|
|
|
Plot for Phase map data
|
|
|
'''
|
|
|
|
|
|
CODE = 'phase'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
|
|
|
class PlotNoiseData(PlotData):
|
|
|
'''
|
|
|
Plot for noise
|
|
|
'''
|
|
|
|
|
|
CODE = 'noise'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.nplots = 1
|
|
|
self.ylabel = 'Intensity [dB]'
|
|
|
self.titles = ['Noise']
|
|
|
self.colorbar = False
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
x = self.times
|
|
|
xmin = self.min_time
|
|
|
xmax = xmin + self.xrange * 60 * 60
|
|
|
Y = self.data[self.CODE]
|
|
|
|
|
|
if self.axes[0].firsttime:
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch))
|
|
|
plt.legend()
|
|
|
else:
|
|
|
for ch in self.data.channels:
|
|
|
y = Y[ch]
|
|
|
self.axes[0].lines[ch].set_data(x, y)
|
|
|
|
|
|
self.ymin = numpy.nanmin(Y) - 5
|
|
|
self.ymax = numpy.nanmax(Y) + 5
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotSNRData(PlotRTIData):
|
|
|
'''
|
|
|
Plot for SNR Data
|
|
|
'''
|
|
|
|
|
|
CODE = 'snr'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
|
|
|
class PlotDOPData(PlotRTIData):
|
|
|
'''
|
|
|
Plot for DOPPLER Data
|
|
|
'''
|
|
|
|
|
|
CODE = 'dop'
|
|
|
colormap = 'jet'
|
|
|
|
|
|
|
|
|
class PlotSkyMapData(PlotData):
|
|
|
'''
|
|
|
Plot for meteors detection data
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
|
|
|
def setup(self):
|
|
|
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 7.2
|
|
|
self.height = 7.2
|
|
|
self.nplots = 1
|
|
|
self.xlabel = 'Zonal Zenith Angle (deg)'
|
|
|
self.ylabel = 'Meridional Zenith Angle (deg)'
|
|
|
self.polar = True
|
|
|
self.ymin = -180
|
|
|
self.ymax = 180
|
|
|
self.colorbar = False
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
arrayParameters = numpy.concatenate(self.data['param'])
|
|
|
error = arrayParameters[:, -1]
|
|
|
indValid = numpy.where(error == 0)[0]
|
|
|
finalMeteor = arrayParameters[indValid, :]
|
|
|
finalAzimuth = finalMeteor[:, 3]
|
|
|
finalZenith = finalMeteor[:, 4]
|
|
|
|
|
|
x = finalAzimuth * numpy.pi / 180
|
|
|
y = finalZenith
|
|
|
|
|
|
ax = self.axes[0]
|
|
|
|
|
|
if ax.firsttime:
|
|
|
ax.plot = ax.plot(x, y, 'bo', markersize=5)[0]
|
|
|
else:
|
|
|
ax.plot.set_data(x, y)
|
|
|
|
|
|
dt1 = self.getDateTime(self.min_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
dt2 = self.getDateTime(self.max_time).strftime('%y/%m/%d %H:%M:%S')
|
|
|
title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1,
|
|
|
dt2,
|
|
|
len(x))
|
|
|
self.titles[0] = title
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|
|
|
class PlotParamData(PlotRTIData):
|
|
|
'''
|
|
|
Plot for data_param object
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def setup(self):
|
|
|
self.xaxis = 'time'
|
|
|
self.ncols = 1
|
|
|
self.nrows = self.data.shape(self.CODE)[0]
|
|
|
self.nplots = self.nrows
|
|
|
if self.showSNR:
|
|
|
self.nrows += 1
|
|
|
self.nplots += 1
|
|
|
|
|
|
self.ylabel = 'Height [km]'
|
|
|
if not self.titles:
|
|
|
self.titles = self.data.parameters \
|
|
|
if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)]
|
|
|
if self.showSNR:
|
|
|
self.titles.append('SNR')
|
|
|
|
|
|
def plot(self):
|
|
|
self.data.normalize_heights()
|
|
|
self.x = self.times
|
|
|
self.y = self.data.heights
|
|
|
if self.showSNR:
|
|
|
self.z = numpy.concatenate(
|
|
|
(self.data[self.CODE], self.data['snr'])
|
|
|
)
|
|
|
else:
|
|
|
self.z = self.data[self.CODE]
|
|
|
|
|
|
self.z = numpy.ma.masked_invalid(self.z)
|
|
|
|
|
|
if self.decimation is None:
|
|
|
x, y, z = self.fill_gaps(self.x, self.y, self.z)
|
|
|
else:
|
|
|
x, y, z = self.fill_gaps(*self.decimate())
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
|
|
|
self.zmax = self.zmax if self.zmax is not None else numpy.max(
|
|
|
self.z[n])
|
|
|
self.zmin = self.zmin if self.zmin is not None else numpy.min(
|
|
|
self.z[n])
|
|
|
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n],
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n]
|
|
|
)
|
|
|
|
|
|
self.saveTime = self.min_time
|
|
|
|
|
|
|
|
|
class PlotOutputData(PlotParamData):
|
|
|
'''
|
|
|
Plot data_output object
|
|
|
'''
|
|
|
|
|
|
CODE = 'output'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
|
|
|
class PlotPolarMapData(PlotData):
|
|
|
'''
|
|
|
Plot for meteors detection data
|
|
|
'''
|
|
|
|
|
|
CODE = 'param'
|
|
|
colormap = 'seismic'
|
|
|
|
|
|
def setup(self):
|
|
|
self.ncols = 1
|
|
|
self.nrows = 1
|
|
|
self.width = 9
|
|
|
self.height = 8
|
|
|
self.mode = self.data.meta['mode']
|
|
|
if self.channels is not None:
|
|
|
self.nplots = len(self.channels)
|
|
|
self.nrows = len(self.channels)
|
|
|
else:
|
|
|
self.nplots = self.data.shape(self.CODE)[0]
|
|
|
self.nrows = self.nplots
|
|
|
self.channels = list(range(self.nplots))
|
|
|
if self.mode == 'E':
|
|
|
self.xlabel = 'Longitude'
|
|
|
self.ylabel = 'Latitude'
|
|
|
else:
|
|
|
self.xlabel = 'Range (km)'
|
|
|
self.ylabel = 'Height (km)'
|
|
|
self.bgcolor = 'white'
|
|
|
self.cb_labels = self.data.meta['units']
|
|
|
self.lat = self.data.meta['latitude']
|
|
|
self.lon = self.data.meta['longitude']
|
|
|
self.xmin, self.xmax = float(km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon)
|
|
|
self.ymin, self.ymax = float(km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat)
|
|
|
# self.polar = True
|
|
|
|
|
|
def plot(self):
|
|
|
|
|
|
for n, ax in enumerate(self.axes):
|
|
|
data = self.data['param'][self.channels[n]]
|
|
|
|
|
|
zeniths = numpy.linspace(0, self.data.meta['max_range'], data.shape[1])
|
|
|
if self.mode == 'E':
|
|
|
azimuths = -numpy.radians(self.data.heights)+numpy.pi/2
|
|
|
r, theta = numpy.meshgrid(zeniths, azimuths)
|
|
|
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin(theta)*numpy.cos(numpy.radians(self.data.meta['elevation']))
|
|
|
x = km2deg(x) + self.lon
|
|
|
y = km2deg(y) + self.lat
|
|
|
else:
|
|
|
azimuths = numpy.radians(self.data.heights)
|
|
|
r, theta = numpy.meshgrid(zeniths, azimuths)
|
|
|
x, y = r*numpy.cos(theta), r*numpy.sin(theta)
|
|
|
self.y = zeniths
|
|
|
|
|
|
if ax.firsttime:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.plt = ax.pcolormesh(#r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n])
|
|
|
else:
|
|
|
if self.zlimits is not None:
|
|
|
self.zmin, self.zmax = self.zlimits[n]
|
|
|
ax.collections.remove(ax.collections[0])
|
|
|
ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
x, y, numpy.ma.array(data, mask=numpy.isnan(data)),
|
|
|
vmin=self.zmin,
|
|
|
vmax=self.zmax,
|
|
|
cmap=self.cmaps[n])
|
|
|
|
|
|
if self.mode == 'A':
|
|
|
continue
|
|
|
|
|
|
# plot district names
|
|
|
f = open('/data/workspace/schain_scripts/distrito.csv')
|
|
|
for line in f:
|
|
|
label, lon, lat = [s.strip() for s in line.split(',') if s]
|
|
|
lat = float(lat)
|
|
|
lon = float(lon)
|
|
|
# ax.plot(lon, lat, '.b', ms=2)
|
|
|
ax.text(lon, lat, label.decode('utf8'), ha='center', va='bottom', size='8', color='black')
|
|
|
|
|
|
# plot limites
|
|
|
limites =[]
|
|
|
tmp = []
|
|
|
for line in open('/data/workspace/schain_scripts/lima.csv'):
|
|
|
if '#' in line:
|
|
|
if tmp:
|
|
|
limites.append(tmp)
|
|
|
tmp = []
|
|
|
continue
|
|
|
values = line.strip().split(',')
|
|
|
tmp.append((float(values[0]), float(values[1])))
|
|
|
for points in limites:
|
|
|
ax.add_patch(Polygon(points, ec='k', fc='none', ls='--', lw=0.5))
|
|
|
|
|
|
# plot Cuencas
|
|
|
for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'):
|
|
|
f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca))
|
|
|
values = [line.strip().split(',') for line in f]
|
|
|
points = [(float(s[0]), float(s[1])) for s in values]
|
|
|
ax.add_patch(Polygon(points, ec='b', fc='none'))
|
|
|
|
|
|
# plot grid
|
|
|
for r in (15, 30, 45, 60):
|
|
|
ax.add_artist(plt.Circle((self.lon, self.lat), km2deg(r), color='0.6', fill=False, lw=0.2))
|
|
|
ax.text(
|
|
|
self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180),
|
|
|
self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180),
|
|
|
'{}km'.format(r),
|
|
|
ha='center', va='bottom', size='8', color='0.6', weight='heavy')
|
|
|
|
|
|
if self.mode == 'E':
|
|
|
title = 'El={}$^\circ$'.format(self.data.meta['elevation'])
|
|
|
label = 'E{:02d}'.format(int(self.data.meta['elevation']))
|
|
|
else:
|
|
|
title = 'Az={}$^\circ$'.format(self.data.meta['azimuth'])
|
|
|
label = 'A{:02d}'.format(int(self.data.meta['azimuth']))
|
|
|
|
|
|
self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels]
|
|
|
self.titles = ['{} {}'.format(self.data.parameters[x], title) for x in self.channels]
|
|
|
self.saveTime = self.max_time
|
|
|
|
|
|
|