|
|
'''
|
|
|
|
|
|
$Author: dsuarez $
|
|
|
$Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $
|
|
|
'''
|
|
|
import os
|
|
|
import numpy
|
|
|
import datetime
|
|
|
import time
|
|
|
|
|
|
from jrodata import *
|
|
|
from jrodataIO import *
|
|
|
from jroplot import *
|
|
|
|
|
|
class ProcessingUnit:
|
|
|
|
|
|
"""
|
|
|
Esta es la clase base para el procesamiento de datos.
|
|
|
|
|
|
Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser:
|
|
|
- Metodos internos (callMethod)
|
|
|
- Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos
|
|
|
tienen que ser agreagados con el metodo "add".
|
|
|
|
|
|
"""
|
|
|
# objeto de datos de entrada (Voltage, Spectra o Correlation)
|
|
|
dataIn = None
|
|
|
|
|
|
# objeto de datos de entrada (Voltage, Spectra o Correlation)
|
|
|
dataOut = None
|
|
|
|
|
|
|
|
|
objectDict = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.objectDict = {}
|
|
|
|
|
|
def init(self):
|
|
|
|
|
|
raise ValueError, "Not implemented"
|
|
|
|
|
|
def addOperation(self, object, objId):
|
|
|
|
|
|
"""
|
|
|
Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el
|
|
|
identificador asociado a este objeto.
|
|
|
|
|
|
Input:
|
|
|
|
|
|
object : objeto de la clase "Operation"
|
|
|
|
|
|
Return:
|
|
|
|
|
|
objId : identificador del objeto, necesario para ejecutar la operacion
|
|
|
"""
|
|
|
|
|
|
self.objectDict[objId] = object
|
|
|
|
|
|
return objId
|
|
|
|
|
|
def operation(self, **kwargs):
|
|
|
|
|
|
"""
|
|
|
Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los
|
|
|
atributos del objeto dataOut
|
|
|
|
|
|
Input:
|
|
|
|
|
|
**kwargs : Diccionario de argumentos de la funcion a ejecutar
|
|
|
"""
|
|
|
|
|
|
raise ValueError, "ImplementedError"
|
|
|
|
|
|
def callMethod(self, name, **kwargs):
|
|
|
|
|
|
"""
|
|
|
Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase.
|
|
|
|
|
|
Input:
|
|
|
name : nombre del metodo a ejecutar
|
|
|
|
|
|
**kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
|
|
|
|
|
|
"""
|
|
|
if name != 'run':
|
|
|
|
|
|
if name == 'init' and self.dataIn.isEmpty():
|
|
|
self.dataOut.flagNoData = True
|
|
|
return False
|
|
|
|
|
|
if name != 'init' and self.dataOut.isEmpty():
|
|
|
return False
|
|
|
|
|
|
methodToCall = getattr(self, name)
|
|
|
|
|
|
methodToCall(**kwargs)
|
|
|
|
|
|
if name != 'run':
|
|
|
return True
|
|
|
|
|
|
if self.dataOut.isEmpty():
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def callObject(self, objId, **kwargs):
|
|
|
|
|
|
"""
|
|
|
Ejecuta la operacion asociada al identificador del objeto "objId"
|
|
|
|
|
|
Input:
|
|
|
|
|
|
objId : identificador del objeto a ejecutar
|
|
|
|
|
|
**kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
|
|
|
|
|
|
Return:
|
|
|
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
if self.dataOut.isEmpty():
|
|
|
return False
|
|
|
|
|
|
object = self.objectDict[objId]
|
|
|
|
|
|
object.run(self.dataOut, **kwargs)
|
|
|
|
|
|
return True
|
|
|
|
|
|
def call(self, operationConf, **kwargs):
|
|
|
|
|
|
"""
|
|
|
Return True si ejecuta la operacion "operationConf.name" con los
|
|
|
argumentos "**kwargs". False si la operacion no se ha ejecutado.
|
|
|
La operacion puede ser de dos tipos:
|
|
|
|
|
|
1. Un metodo propio de esta clase:
|
|
|
|
|
|
operation.type = "self"
|
|
|
|
|
|
2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella:
|
|
|
operation.type = "other".
|
|
|
|
|
|
Este objeto de tipo Operation debe de haber sido agregado antes con el metodo:
|
|
|
"addOperation" e identificado con el operation.id
|
|
|
|
|
|
|
|
|
con el id de la operacion.
|
|
|
|
|
|
Input:
|
|
|
|
|
|
Operation : Objeto del tipo operacion con los atributos: name, type y id.
|
|
|
|
|
|
"""
|
|
|
|
|
|
if operationConf.type == 'self':
|
|
|
sts = self.callMethod(operationConf.name, **kwargs)
|
|
|
|
|
|
if operationConf.type == 'other':
|
|
|
sts = self.callObject(operationConf.id, **kwargs)
|
|
|
|
|
|
return sts
|
|
|
|
|
|
def setInput(self, dataIn):
|
|
|
|
|
|
self.dataIn = dataIn
|
|
|
|
|
|
def getOutput(self):
|
|
|
|
|
|
return self.dataOut
|
|
|
|
|
|
class Operation():
|
|
|
|
|
|
"""
|
|
|
Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit
|
|
|
y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de
|
|
|
acumulacion dentro de esta clase
|
|
|
|
|
|
Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer)
|
|
|
|
|
|
"""
|
|
|
|
|
|
__buffer = None
|
|
|
__isConfig = False
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
pass
|
|
|
|
|
|
def run(self, dataIn, **kwargs):
|
|
|
|
|
|
"""
|
|
|
Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn.
|
|
|
|
|
|
Input:
|
|
|
|
|
|
dataIn : objeto del tipo JROData
|
|
|
|
|
|
Return:
|
|
|
|
|
|
None
|
|
|
|
|
|
Affected:
|
|
|
__buffer : buffer de recepcion de datos.
|
|
|
|
|
|
"""
|
|
|
|
|
|
raise ValueError, "ImplementedError"
|
|
|
|
|
|
class VoltageProc(ProcessingUnit):
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.objectDict = {}
|
|
|
self.dataOut = Voltage()
|
|
|
self.flip = 1
|
|
|
|
|
|
def init(self):
|
|
|
|
|
|
self.dataOut.copy(self.dataIn)
|
|
|
# No necesita copiar en cada init() los atributos de dataIn
|
|
|
# la copia deberia hacerse por cada nuevo bloque de datos
|
|
|
|
|
|
def selectChannels(self, channelList):
|
|
|
|
|
|
channelIndexList = []
|
|
|
|
|
|
for channel in channelList:
|
|
|
index = self.dataOut.channelList.index(channel)
|
|
|
channelIndexList.append(index)
|
|
|
|
|
|
self.selectChannelsByIndex(channelIndexList)
|
|
|
|
|
|
def selectChannelsByIndex(self, channelIndexList):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a canales segun el channelIndexList
|
|
|
|
|
|
Input:
|
|
|
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data
|
|
|
self.dataOut.channelIndexList
|
|
|
self.dataOut.nChannels
|
|
|
self.dataOut.m_ProcessingHeader.totalSpectra
|
|
|
self.dataOut.systemHeaderObj.numChannels
|
|
|
self.dataOut.m_ProcessingHeader.blockSize
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
for channelIndex in channelIndexList:
|
|
|
if channelIndex not in self.dataOut.channelIndexList:
|
|
|
print channelIndexList
|
|
|
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
|
|
|
|
|
|
nChannels = len(channelIndexList)
|
|
|
|
|
|
data = self.dataOut.data[channelIndexList,:]
|
|
|
|
|
|
self.dataOut.data = data
|
|
|
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
|
|
|
# self.dataOut.nChannels = nChannels
|
|
|
|
|
|
return 1
|
|
|
|
|
|
def selectHeights(self, minHei, maxHei):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
|
|
|
minHei <= height <= maxHei
|
|
|
|
|
|
Input:
|
|
|
minHei : valor minimo de altura a considerar
|
|
|
maxHei : valor maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
|
|
|
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
|
|
|
|
|
|
if (maxHei > self.dataOut.heightList[-1]):
|
|
|
maxHei = self.dataOut.heightList[-1]
|
|
|
# raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
|
|
|
|
|
|
minIndex = 0
|
|
|
maxIndex = 0
|
|
|
heights = self.dataOut.heightList
|
|
|
|
|
|
inda = numpy.where(heights >= minHei)
|
|
|
indb = numpy.where(heights <= maxHei)
|
|
|
|
|
|
try:
|
|
|
minIndex = inda[0][0]
|
|
|
except:
|
|
|
minIndex = 0
|
|
|
|
|
|
try:
|
|
|
maxIndex = indb[0][-1]
|
|
|
except:
|
|
|
maxIndex = len(heights)
|
|
|
|
|
|
self.selectHeightsByIndex(minIndex, maxIndex)
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def selectHeightsByIndex(self, minIndex, maxIndex):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
|
|
|
minIndex <= index <= maxIndex
|
|
|
|
|
|
Input:
|
|
|
minIndex : valor de indice minimo de altura a considerar
|
|
|
maxIndex : valor de indice maximo de altura a considerar
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data
|
|
|
self.dataOut.heightList
|
|
|
|
|
|
Return:
|
|
|
1 si el metodo se ejecuto con exito caso contrario devuelve 0
|
|
|
"""
|
|
|
|
|
|
if (minIndex < 0) or (minIndex > maxIndex):
|
|
|
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
|
|
|
|
|
|
if (maxIndex >= self.dataOut.nHeights):
|
|
|
maxIndex = self.dataOut.nHeights-1
|
|
|
# raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
|
|
|
|
|
|
nHeights = maxIndex - minIndex + 1
|
|
|
|
|
|
#voltage
|
|
|
data = self.dataOut.data[:,minIndex:maxIndex+1]
|
|
|
|
|
|
firstHeight = self.dataOut.heightList[minIndex]
|
|
|
|
|
|
self.dataOut.data = data
|
|
|
self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
def filterByHeights(self, window):
|
|
|
deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
|
|
|
|
|
|
if window == None:
|
|
|
window = self.dataOut.radarControllerHeaderObj.txA / deltaHeight
|
|
|
|
|
|
newdelta = deltaHeight * window
|
|
|
r = self.dataOut.data.shape[1] % window
|
|
|
buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
|
|
|
buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
|
|
|
buffer = numpy.sum(buffer,2)
|
|
|
self.dataOut.data = buffer
|
|
|
self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*self.dataOut.nHeights/window-newdelta,newdelta)
|
|
|
self.dataOut.windowOfFilter = window
|
|
|
|
|
|
def deFlip(self):
|
|
|
self.dataOut.data *= self.flip
|
|
|
self.flip *= -1.
|
|
|
|
|
|
|
|
|
class CohInt(Operation):
|
|
|
|
|
|
__isConfig = False
|
|
|
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
n = None
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.__isConfig = False
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
self.__buffer = None
|
|
|
self.__dataReady = False
|
|
|
|
|
|
|
|
|
if n == None and timeInterval == None:
|
|
|
raise ValueError, "n or timeInterval should be specified ..."
|
|
|
|
|
|
if n != None:
|
|
|
self.n = n
|
|
|
self.__byTime = False
|
|
|
else:
|
|
|
self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
|
|
|
self.n = 9999
|
|
|
self.__byTime = True
|
|
|
|
|
|
if overlapping:
|
|
|
self.__withOverapping = True
|
|
|
self.__buffer = None
|
|
|
else:
|
|
|
self.__withOverapping = False
|
|
|
self.__buffer = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
def putData(self, data):
|
|
|
|
|
|
"""
|
|
|
Add a profile to the __buffer and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__buffer += data.copy()
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#Overlapping data
|
|
|
nChannels, nHeis = data.shape
|
|
|
data = numpy.reshape(data, (1, nChannels, nHeis))
|
|
|
|
|
|
#If the buffer is empty then it takes the data value
|
|
|
if self.__buffer == None:
|
|
|
self.__buffer = data
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is lower than n then stakcing the data value
|
|
|
if self.__profIndex < self.n:
|
|
|
self.__buffer = numpy.vstack((self.__buffer, data))
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is equal to n then replacing the last buffer value with the data value
|
|
|
self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
|
|
|
self.__buffer[self.n-1] = data
|
|
|
self.__profIndex = self.n
|
|
|
return
|
|
|
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
data = self.__buffer
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data, n
|
|
|
|
|
|
#Integration with Overlapping
|
|
|
data = numpy.sum(self.__buffer, axis=0)
|
|
|
n = self.__profIndex
|
|
|
|
|
|
return data, n
|
|
|
|
|
|
def byProfiles(self, data):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata = None
|
|
|
n = None
|
|
|
|
|
|
self.putData(data)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata, n = self.pushData()
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata
|
|
|
|
|
|
def byTime(self, data, datatime):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata = None
|
|
|
n = None
|
|
|
|
|
|
self.putData(data)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata
|
|
|
|
|
|
def integrate(self, data, datatime=None):
|
|
|
|
|
|
if self.__initime == None:
|
|
|
self.__initime = datatime
|
|
|
|
|
|
if self.__byTime:
|
|
|
avgdata = self.byTime(data, datatime)
|
|
|
else:
|
|
|
avgdata = self.byProfiles(data)
|
|
|
|
|
|
|
|
|
self.__lastdatatime = datatime
|
|
|
|
|
|
if avgdata == None:
|
|
|
return None, None
|
|
|
|
|
|
avgdatatime = self.__initime
|
|
|
|
|
|
deltatime = datatime -self.__lastdatatime
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__initime = datatime
|
|
|
else:
|
|
|
self.__initime += deltatime
|
|
|
|
|
|
return avgdata, avgdatatime
|
|
|
|
|
|
def run(self, dataOut, **kwargs):
|
|
|
|
|
|
if not self.__isConfig:
|
|
|
self.setup(**kwargs)
|
|
|
self.__isConfig = True
|
|
|
|
|
|
avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
|
|
|
|
|
|
# dataOut.timeInterval *= n
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if self.__dataReady:
|
|
|
dataOut.data = avgdata
|
|
|
dataOut.nCohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
|
|
|
class Decoder(Operation):
|
|
|
|
|
|
__isConfig = False
|
|
|
__profIndex = 0
|
|
|
|
|
|
code = None
|
|
|
|
|
|
nCode = None
|
|
|
nBaud = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.__isConfig = False
|
|
|
|
|
|
def setup(self, code):
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
self.code = code
|
|
|
|
|
|
self.nCode = len(code)
|
|
|
self.nBaud = len(code[0])
|
|
|
|
|
|
def convolutionInFreq(self, data):
|
|
|
|
|
|
nchannel, ndata = data.shape
|
|
|
newcode = numpy.zeros(ndata)
|
|
|
newcode[0:self.nBaud] = self.code[self.__profIndex]
|
|
|
|
|
|
fft_data = numpy.fft.fft(data, axis=1)
|
|
|
fft_code = numpy.conj(numpy.fft.fft(newcode))
|
|
|
fft_code = fft_code.reshape(1,len(fft_code))
|
|
|
|
|
|
# conv = fft_data.copy()
|
|
|
# conv.fill(0)
|
|
|
|
|
|
conv = fft_data*fft_code
|
|
|
|
|
|
data = numpy.fft.ifft(conv,axis=1)
|
|
|
|
|
|
datadec = data[:,:-self.nBaud+1]
|
|
|
ndatadec = ndata - self.nBaud + 1
|
|
|
|
|
|
if self.__profIndex == self.nCode-1:
|
|
|
self.__profIndex = 0
|
|
|
return ndatadec, datadec
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return ndatadec, datadec
|
|
|
|
|
|
|
|
|
def convolutionInTime(self, data):
|
|
|
|
|
|
nchannel, ndata = data.shape
|
|
|
newcode = self.code[self.__profIndex]
|
|
|
ndatadec = ndata - self.nBaud + 1
|
|
|
|
|
|
datadec = numpy.zeros((nchannel, ndatadec))
|
|
|
|
|
|
for i in range(nchannel):
|
|
|
datadec[i,:] = numpy.correlate(data[i,:], newcode)
|
|
|
|
|
|
if self.__profIndex == self.nCode-1:
|
|
|
self.__profIndex = 0
|
|
|
return ndatadec, datadec
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
|
|
|
return ndatadec, datadec
|
|
|
|
|
|
def run(self, dataOut, code=None, mode = 0):
|
|
|
|
|
|
if not self.__isConfig:
|
|
|
|
|
|
if code == None:
|
|
|
code = dataOut.code
|
|
|
|
|
|
self.setup(code)
|
|
|
self.__isConfig = True
|
|
|
|
|
|
if mode == 0:
|
|
|
ndatadec, datadec = self.convolutionInFreq(dataOut.data)
|
|
|
|
|
|
if mode == 1:
|
|
|
print "This function is not implemented"
|
|
|
# ndatadec, datadec = self.convolutionInTime(dataOut.data)
|
|
|
|
|
|
dataOut.data = datadec
|
|
|
|
|
|
dataOut.heightList = dataOut.heightList[0:ndatadec]
|
|
|
|
|
|
dataOut.flagDecodeData = True #asumo q la data no esta decodificada
|
|
|
|
|
|
# dataOut.flagDeflipData = True #asumo q la data no esta sin flip
|
|
|
|
|
|
|
|
|
class SpectraProc(ProcessingUnit):
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.objectDict = {}
|
|
|
self.buffer = None
|
|
|
self.firstdatatime = None
|
|
|
self.profIndex = 0
|
|
|
self.dataOut = Spectra()
|
|
|
|
|
|
def __updateObjFromInput(self):
|
|
|
|
|
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
|
self.dataOut.channelList = self.dataIn.channelList
|
|
|
self.dataOut.heightList = self.dataIn.heightList
|
|
|
self.dataOut.dtype = self.dataIn.dtype
|
|
|
# self.dataOut.nHeights = self.dataIn.nHeights
|
|
|
# self.dataOut.nChannels = self.dataIn.nChannels
|
|
|
self.dataOut.nBaud = self.dataIn.nBaud
|
|
|
self.dataOut.nCode = self.dataIn.nCode
|
|
|
self.dataOut.code = self.dataIn.code
|
|
|
self.dataOut.nProfiles = self.dataOut.nFFTPoints
|
|
|
# self.dataOut.channelIndexList = self.dataIn.channelIndexList
|
|
|
self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
|
|
|
self.dataOut.utctime = self.firstdatatime
|
|
|
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
|
|
|
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
|
|
|
self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
|
|
|
self.dataOut.nCohInt = self.dataIn.nCohInt
|
|
|
self.dataOut.nIncohInt = 1
|
|
|
self.dataOut.ippSeconds = self.dataIn.ippSeconds
|
|
|
self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
|
|
|
|
self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt
|
|
|
|
|
|
def __getFft(self):
|
|
|
"""
|
|
|
Convierte valores de Voltaje a Spectra
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.data_cspc
|
|
|
self.dataOut.data_dc
|
|
|
self.dataOut.heightList
|
|
|
self.profIndex
|
|
|
self.buffer
|
|
|
self.dataOut.flagNoData
|
|
|
"""
|
|
|
fft_volt = numpy.fft.fft(self.buffer,axis=1)
|
|
|
dc = fft_volt[:,0,:]
|
|
|
|
|
|
#calculo de self-spectra
|
|
|
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
|
|
|
spc = fft_volt * numpy.conjugate(fft_volt)
|
|
|
spc = spc.real
|
|
|
|
|
|
blocksize = 0
|
|
|
blocksize += dc.size
|
|
|
blocksize += spc.size
|
|
|
|
|
|
cspc = None
|
|
|
pairIndex = 0
|
|
|
if self.dataOut.pairsList != None:
|
|
|
#calculo de cross-spectra
|
|
|
cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
|
|
|
for pair in self.dataOut.pairsList:
|
|
|
cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
|
|
|
pairIndex += 1
|
|
|
blocksize += cspc.size
|
|
|
|
|
|
self.dataOut.data_spc = spc
|
|
|
self.dataOut.data_cspc = cspc
|
|
|
self.dataOut.data_dc = dc
|
|
|
self.dataOut.blockSize = blocksize
|
|
|
|
|
|
def init(self, nFFTPoints=None, pairsList=None):
|
|
|
|
|
|
self.dataOut.flagNoData = True
|
|
|
|
|
|
if self.dataIn.type == "Spectra":
|
|
|
self.dataOut.copy(self.dataIn)
|
|
|
return
|
|
|
|
|
|
if self.dataIn.type == "Voltage":
|
|
|
|
|
|
if nFFTPoints == None:
|
|
|
raise ValueError, "This SpectraProc.init() need nFFTPoints input variable"
|
|
|
|
|
|
if pairsList == None:
|
|
|
nPairs = 0
|
|
|
else:
|
|
|
nPairs = len(pairsList)
|
|
|
|
|
|
self.dataOut.nFFTPoints = nFFTPoints
|
|
|
self.dataOut.pairsList = pairsList
|
|
|
self.dataOut.nPairs = nPairs
|
|
|
|
|
|
if self.buffer == None:
|
|
|
self.buffer = numpy.zeros((self.dataIn.nChannels,
|
|
|
self.dataOut.nFFTPoints,
|
|
|
self.dataIn.nHeights),
|
|
|
dtype='complex')
|
|
|
|
|
|
|
|
|
self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
|
|
|
self.profIndex += 1
|
|
|
|
|
|
if self.firstdatatime == None:
|
|
|
self.firstdatatime = self.dataIn.utctime
|
|
|
|
|
|
if self.profIndex == self.dataOut.nFFTPoints:
|
|
|
self.__updateObjFromInput()
|
|
|
self.__getFft()
|
|
|
|
|
|
self.dataOut.flagNoData = False
|
|
|
|
|
|
self.buffer = None
|
|
|
self.firstdatatime = None
|
|
|
self.profIndex = 0
|
|
|
|
|
|
return
|
|
|
|
|
|
raise ValuError, "The type object %s is not valid"%(self.dataIn.type)
|
|
|
|
|
|
def selectChannels(self, channelList):
|
|
|
|
|
|
channelIndexList = []
|
|
|
|
|
|
for channel in channelList:
|
|
|
index = self.dataOut.channelList.index(channel)
|
|
|
channelIndexList.append(index)
|
|
|
|
|
|
self.selectChannelsByIndex(channelIndexList)
|
|
|
|
|
|
def selectChannelsByIndex(self, channelIndexList):
|
|
|
"""
|
|
|
Selecciona un bloque de datos en base a canales segun el channelIndexList
|
|
|
|
|
|
Input:
|
|
|
channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
|
|
|
|
|
|
Affected:
|
|
|
self.dataOut.data_spc
|
|
|
self.dataOut.channelIndexList
|
|
|
self.dataOut.nChannels
|
|
|
|
|
|
Return:
|
|
|
None
|
|
|
"""
|
|
|
|
|
|
for channelIndex in channelIndexList:
|
|
|
if channelIndex not in self.dataOut.channelIndexList:
|
|
|
print channelIndexList
|
|
|
raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
|
|
|
|
|
|
nChannels = len(channelIndexList)
|
|
|
|
|
|
data_spc = self.dataOut.data_spc[channelIndexList,:]
|
|
|
|
|
|
self.dataOut.data_spc = data_spc
|
|
|
self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
|
|
|
# self.dataOut.nChannels = nChannels
|
|
|
|
|
|
return 1
|
|
|
|
|
|
|
|
|
class IncohInt(Operation):
|
|
|
|
|
|
|
|
|
__profIndex = 0
|
|
|
__withOverapping = False
|
|
|
|
|
|
__byTime = False
|
|
|
__initime = None
|
|
|
__lastdatatime = None
|
|
|
__integrationtime = None
|
|
|
|
|
|
__buffer_spc = None
|
|
|
__buffer_cspc = None
|
|
|
__buffer_dc = None
|
|
|
|
|
|
__dataReady = False
|
|
|
|
|
|
n = None
|
|
|
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.__isConfig = False
|
|
|
|
|
|
def setup(self, n=None, timeInterval=None, overlapping=False):
|
|
|
"""
|
|
|
Set the parameters of the integration class.
|
|
|
|
|
|
Inputs:
|
|
|
|
|
|
n : Number of coherent integrations
|
|
|
timeInterval : Time of integration. If the parameter "n" is selected this one does not work
|
|
|
overlapping :
|
|
|
|
|
|
"""
|
|
|
|
|
|
self.__initime = None
|
|
|
self.__lastdatatime = 0
|
|
|
self.__buffer_spc = None
|
|
|
self.__buffer_cspc = None
|
|
|
self.__buffer_dc = None
|
|
|
self.__dataReady = False
|
|
|
|
|
|
|
|
|
if n == None and timeInterval == None:
|
|
|
raise ValueError, "n or timeInterval should be specified ..."
|
|
|
|
|
|
if n != None:
|
|
|
self.n = n
|
|
|
self.__byTime = False
|
|
|
else:
|
|
|
self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
|
|
|
self.n = 9999
|
|
|
self.__byTime = True
|
|
|
|
|
|
if overlapping:
|
|
|
self.__withOverapping = True
|
|
|
else:
|
|
|
self.__withOverapping = False
|
|
|
self.__buffer_spc = 0
|
|
|
self.__buffer_cspc = 0
|
|
|
self.__buffer_dc = 0
|
|
|
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
def putData(self, data_spc, data_cspc, data_dc):
|
|
|
|
|
|
"""
|
|
|
Add a profile to the __buffer_spc and increase in one the __profileIndex
|
|
|
|
|
|
"""
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__buffer_spc += data_spc
|
|
|
|
|
|
if data_cspc == None:
|
|
|
self.__buffer_cspc = None
|
|
|
else:
|
|
|
self.__buffer_cspc += data_cspc
|
|
|
|
|
|
if data_dc == None:
|
|
|
self.__buffer_dc = None
|
|
|
else:
|
|
|
self.__buffer_dc += data_dc
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#Overlapping data
|
|
|
nChannels, nFFTPoints, nHeis = data_spc.shape
|
|
|
data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis))
|
|
|
if data_cspc != None:
|
|
|
data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis))
|
|
|
if data_dc != None:
|
|
|
data_dc = numpy.reshape(data_dc, (1, -1, nHeis))
|
|
|
|
|
|
#If the buffer is empty then it takes the data value
|
|
|
if self.__buffer_spc == None:
|
|
|
self.__buffer_spc = data_spc
|
|
|
|
|
|
if data_cspc == None:
|
|
|
self.__buffer_cspc = None
|
|
|
else:
|
|
|
self.__buffer_cspc += data_cspc
|
|
|
|
|
|
if data_dc == None:
|
|
|
self.__buffer_dc = None
|
|
|
else:
|
|
|
self.__buffer_dc += data_dc
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is lower than n then stakcing the data value
|
|
|
if self.__profIndex < self.n:
|
|
|
self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc))
|
|
|
|
|
|
if data_cspc != None:
|
|
|
self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc))
|
|
|
|
|
|
if data_dc != None:
|
|
|
self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc))
|
|
|
|
|
|
self.__profIndex += 1
|
|
|
return
|
|
|
|
|
|
#If the buffer length is equal to n then replacing the last buffer value with the data value
|
|
|
self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0)
|
|
|
self.__buffer_spc[self.n-1] = data_spc
|
|
|
|
|
|
if data_cspc != None:
|
|
|
self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0)
|
|
|
self.__buffer_cspc[self.n-1] = data_cspc
|
|
|
|
|
|
if data_dc != None:
|
|
|
self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0)
|
|
|
self.__buffer_dc[self.n-1] = data_dc
|
|
|
|
|
|
self.__profIndex = self.n
|
|
|
return
|
|
|
|
|
|
|
|
|
def pushData(self):
|
|
|
"""
|
|
|
Return the sum of the last profiles and the profiles used in the sum.
|
|
|
|
|
|
Affected:
|
|
|
|
|
|
self.__profileIndex
|
|
|
|
|
|
"""
|
|
|
data_spc = None
|
|
|
data_cspc = None
|
|
|
data_dc = None
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
data_spc = self.__buffer_spc
|
|
|
data_cspc = self.__buffer_cspc
|
|
|
data_dc = self.__buffer_dc
|
|
|
|
|
|
n = self.__profIndex
|
|
|
|
|
|
self.__buffer_spc = 0
|
|
|
self.__buffer_cspc = 0
|
|
|
self.__buffer_dc = 0
|
|
|
self.__profIndex = 0
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
#Integration with Overlapping
|
|
|
data_spc = numpy.sum(self.__buffer_spc, axis=0)
|
|
|
|
|
|
if self.__buffer_cspc != None:
|
|
|
data_cspc = numpy.sum(self.__buffer_cspc, axis=0)
|
|
|
|
|
|
if self.__buffer_dc != None:
|
|
|
data_dc = numpy.sum(self.__buffer_dc, axis=0)
|
|
|
|
|
|
n = self.__profIndex
|
|
|
|
|
|
return data_spc, data_cspc, data_dc, n
|
|
|
|
|
|
def byProfiles(self, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
n = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if self.__profIndex == self.n:
|
|
|
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def byTime(self, datatime, *args):
|
|
|
|
|
|
self.__dataReady = False
|
|
|
avgdata_spc = None
|
|
|
avgdata_cspc = None
|
|
|
avgdata_dc = None
|
|
|
n = None
|
|
|
|
|
|
self.putData(*args)
|
|
|
|
|
|
if (datatime - self.__initime) >= self.__integrationtime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
|
|
|
self.n = n
|
|
|
self.__dataReady = True
|
|
|
|
|
|
return avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def integrate(self, datatime, *args):
|
|
|
|
|
|
if self.__initime == None:
|
|
|
self.__initime = datatime
|
|
|
|
|
|
if self.__byTime:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
|
|
|
else:
|
|
|
avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
|
|
|
|
|
|
self.__lastdatatime = datatime
|
|
|
|
|
|
if avgdata_spc == None:
|
|
|
return None, None, None, None
|
|
|
|
|
|
avgdatatime = self.__initime
|
|
|
|
|
|
deltatime = datatime -self.__lastdatatime
|
|
|
|
|
|
if not self.__withOverapping:
|
|
|
self.__initime = datatime
|
|
|
else:
|
|
|
self.__initime += deltatime
|
|
|
|
|
|
return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc
|
|
|
|
|
|
def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
|
|
|
|
|
|
if not self.__isConfig:
|
|
|
self.setup(n, timeInterval, overlapping)
|
|
|
self.__isConfig = True
|
|
|
|
|
|
avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
|
|
|
dataOut.data_spc,
|
|
|
dataOut.data_cspc,
|
|
|
dataOut.data_dc)
|
|
|
|
|
|
# dataOut.timeInterval *= n
|
|
|
dataOut.flagNoData = True
|
|
|
|
|
|
if self.__dataReady:
|
|
|
|
|
|
dataOut.data_spc = avgdata_spc
|
|
|
dataOut.data_cspc = avgdata_cspc
|
|
|
dataOut.data_dc = avgdata_dc
|
|
|
|
|
|
dataOut.nIncohInt *= self.n
|
|
|
dataOut.utctime = avgdatatime
|
|
|
dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
class ProfileSelector(Operation):
|
|
|
|
|
|
profileIndex = None
|
|
|
# Tamanho total de los perfiles
|
|
|
nProfiles = None
|
|
|
|
|
|
def __init__(self):
|
|
|
|
|
|
self.profileIndex = 0
|
|
|
|
|
|
def incIndex(self):
|
|
|
self.profileIndex += 1
|
|
|
|
|
|
if self.profileIndex >= self.nProfiles:
|
|
|
self.profileIndex = 0
|
|
|
|
|
|
def isProfileInRange(self, minIndex, maxIndex):
|
|
|
|
|
|
if self.profileIndex < minIndex:
|
|
|
return False
|
|
|
|
|
|
if self.profileIndex > maxIndex:
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def isProfileInList(self, profileList):
|
|
|
|
|
|
if self.profileIndex not in profileList:
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def run(self, dataOut, profileList=None, profileRangeList=None):
|
|
|
|
|
|
dataOut.flagNoData = True
|
|
|
self.nProfiles = dataOut.nProfiles
|
|
|
|
|
|
if profileList != None:
|
|
|
if self.isProfileInList(profileList):
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
self.incIndex()
|
|
|
return 1
|
|
|
|
|
|
|
|
|
elif profileRangeList != None:
|
|
|
minIndex = profileRangeList[0]
|
|
|
maxIndex = profileRangeList[1]
|
|
|
if self.isProfileInRange(minIndex, maxIndex):
|
|
|
dataOut.flagNoData = False
|
|
|
|
|
|
self.incIndex()
|
|
|
return 1
|
|
|
|
|
|
else:
|
|
|
raise ValueError, "ProfileSelector needs profileList or profileRangeList"
|
|
|
|
|
|
return 0
|
|
|
|
|
|
|