##// END OF EJS Templates
merged into schain_mp
merged into schain_mp

File last commit:

r965:156d7465eee3
r969:0ac79dee3b6c merge
Show More
jroproc_parameters.py.svn-base
3021 lines | 118.8 KiB | text/plain | TextLexer
/ schainpy / model / proc / .svn / text-base / jroproc_parameters.py.svn-base
import numpy
import math
from scipy import optimize, interpolate, signal, stats, ndimage
import re
import datetime
import copy
import sys
import importlib
import itertools
from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
from scipy import asarray as ar,exp
from scipy.optimize import curve_fit
class ParametersProc(ProcessingUnit):
nSeconds = None
def __init__(self):
ProcessingUnit.__init__(self)
# self.objectDict = {}
self.buffer = None
self.firstdatatime = None
self.profIndex = 0
self.dataOut = Parameters()
def __updateObjFromInput(self):
self.dataOut.inputUnit = self.dataIn.type
self.dataOut.timeZone = self.dataIn.timeZone
self.dataOut.dstFlag = self.dataIn.dstFlag
self.dataOut.errorCount = self.dataIn.errorCount
self.dataOut.useLocalTime = self.dataIn.useLocalTime
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
self.dataOut.channelList = self.dataIn.channelList
self.dataOut.heightList = self.dataIn.heightList
self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
# self.dataOut.nHeights = self.dataIn.nHeights
# self.dataOut.nChannels = self.dataIn.nChannels
self.dataOut.nBaud = self.dataIn.nBaud
self.dataOut.nCode = self.dataIn.nCode
self.dataOut.code = self.dataIn.code
# self.dataOut.nProfiles = self.dataOut.nFFTPoints
self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
# self.dataOut.utctime = self.firstdatatime
self.dataOut.utctime = self.dataIn.utctime
self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
self.dataOut.nCohInt = self.dataIn.nCohInt
# self.dataOut.nIncohInt = 1
self.dataOut.ippSeconds = self.dataIn.ippSeconds
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
self.dataOut.timeInterval = self.dataIn.timeInterval
self.dataOut.heightList = self.dataIn.getHeiRange()
self.dataOut.frequency = self.dataIn.frequency
self.dataOut.noise = self.dataIn.noise
def run(self):
#---------------------- Voltage Data ---------------------------
if self.dataIn.type == "Voltage":
self.__updateObjFromInput()
self.dataOut.data_pre = self.dataIn.data.copy()
self.dataOut.flagNoData = False
self.dataOut.utctimeInit = self.dataIn.utctime
self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
return
#---------------------- Spectra Data ---------------------------
if self.dataIn.type == "Spectra":
self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc)
self.dataOut.abscissaList = self.dataIn.getVelRange(1)
self.dataOut.noise = self.dataIn.getNoise()
self.dataOut.normFactor = self.dataIn.normFactor
self.dataOut.outputInterval = self.dataIn.outputInterval
self.dataOut.groupList = self.dataIn.pairsList
self.dataOut.flagNoData = False
if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
self.dataOut.ChanDist = self.dataIn.ChanDist
if hasattr(self.dataIn, 'VelRange'): #Distances of receiver channels
self.dataOut.VelRange = self.dataIn.VelRange
#---------------------- Correlation Data ---------------------------
if self.dataIn.type == "Correlation":
acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
self.dataOut.groupList = (acf_pairs, ccf_pairs)
self.dataOut.abscissaList = self.dataIn.lagRange
self.dataOut.noise = self.dataIn.noise
self.dataOut.data_SNR = self.dataIn.SNR
self.dataOut.flagNoData = False
self.dataOut.nAvg = self.dataIn.nAvg
#---------------------- Parameters Data ---------------------------
if self.dataIn.type == "Parameters":
self.dataOut.copy(self.dataIn)
self.dataOut.flagNoData = False
return True
self.__updateObjFromInput()
self.dataOut.utctimeInit = self.dataIn.utctime
self.dataOut.paramInterval = self.dataIn.timeInterval
return
class FullSpectralAnalisys(Operation):
"""
Function that implements Full Spectral Analisys technique.
Input:
self.dataOut.data_pre : SelfSpectra and CrossSPectra data
self.dataOut.groupList : Pairlist of channels
self.dataOut.ChanDist : Physical distance between receivers
Output:
self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
Parameters affected: Winds, height range, SNR
"""
def run(self, dataOut):
spc = dataOut.data_pre[0].copy()
cspc = dataOut.data_pre[1].copy()
nChannel = spc.shape[0]
nProfiles = spc.shape[1]
nHeights = spc.shape[2]
pairsList = dataOut.groupList
ChanDist = dataOut.ChanDist
VelRange= dataOut.VelRange
ySamples=numpy.ones([nChannel,nProfiles])
phase=numpy.ones([nChannel,nProfiles])
CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_)
coherence=numpy.ones([nChannel,nProfiles])
PhaseSlope=numpy.ones(nChannel)
PhaseInter=numpy.ones(nChannel)
data = dataOut.data_pre
noise = dataOut.noise
FirstMoment = dataOut.data_param[0,2,:]
data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN
velocityX=[]
velocityY=[]
velocityV=[]
for Height in range(nHeights):
[Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange)
if abs(Vzon)<100 and abs(Vzon)> 0.:
velocityX=numpy.append(velocityX, Vzon)#Vmag
else:
velocityX=numpy.append(velocityX, numpy.NaN)
if abs(Vmer)<100 and abs(Vmer) > 0.:
velocityY=numpy.append(velocityY, Vmer)#Vang
else:
velocityY=numpy.append(velocityY, numpy.NaN)
if abs(GaussCenter)<2:
velocityV=numpy.append(velocityV, Vver)
else:
velocityV=numpy.append(velocityV, numpy.NaN)
data_output[0]=numpy.array(velocityX)
data_output[1]=numpy.array(velocityY)
data_output[2]=FirstMoment
dataOut.data_output=data_output
return
def moving_average(self,x, N=2):
return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
def gaus(self,xSamples,a,x0,sigma):
return a*exp(-(xSamples-x0)**2/(2*sigma**2))
def Find(self,x,value):
for index in range(len(x)):
if x[index]==value:
return index
def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange):
ySamples=numpy.ones([spc.shape[0],spc.shape[1]])
phase=numpy.ones([spc.shape[0],spc.shape[1]])
CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_)
coherence=numpy.ones([spc.shape[0],spc.shape[1]])
PhaseSlope=numpy.ones(spc.shape[0])
PhaseInter=numpy.ones(spc.shape[0])
xFrec=VelRange
'''Getting Eij and Nij'''
E01=ChanDist[0][0]
N01=ChanDist[0][1]
E02=ChanDist[1][0]
N02=ChanDist[1][1]
E12=ChanDist[2][0]
N12=ChanDist[2][1]
z = spc.copy()
z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
for i in range(spc.shape[0]):
'''****** Line of Data SPC ******'''
zline=z[i,:,Height]
'''****** SPC is normalized ******'''
FactNorm= zline.copy() / numpy.sum(zline.copy())
FactNorm= FactNorm/numpy.sum(FactNorm)
SmoothSPC=self.moving_average(FactNorm,N=3)
xSamples = ar(range(len(SmoothSPC)))
ySamples[i] = SmoothSPC-noise[i]
for i in range(spc.shape[0]):
'''****** Line of Data CSPC ******'''
cspcLine=cspc[i,:,Height].copy()
'''****** CSPC is normalized ******'''
chan_index0 = pairsList[i][0]
chan_index1 = pairsList[i][1]
CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])
CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor)
CSPCSamples[i] = CSPCNorm-noise[i]
coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
coherence[i]= self.moving_average(coherence[i],N=2)
phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
'''****** Getting fij width ******'''
yMean=[]
yMean2=[]
for j in range(len(ySamples[1])):
yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]]))
'''******* Getting fitting Gaussian ******'''
meanGauss=sum(xSamples*yMean) / len(xSamples)
sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples)
if (abs(meanGauss/sigma**2) > 0.0001) :
try:
popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma])
if numpy.amax(popt)>numpy.amax(yMean)*0.3:
FitGauss=self.gaus(xSamples,*popt)
else:
FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
print 'Verificador: Dentro', Height
except RuntimeError:
try:
for j in range(len(ySamples[1])):
yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]]))
popt,pcov = curve_fit(self.gaus,xSamples,yMean2,p0=[1,meanGauss,sigma])
FitGauss=self.gaus(xSamples,*popt)
print 'Verificador: Exepcion1', Height
except RuntimeError:
try:
popt,pcov = curve_fit(self.gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma])
FitGauss=self.gaus(xSamples,*popt)
print 'Verificador: Exepcion2', Height
except RuntimeError:
FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
print 'Verificador: Exepcion3', Height
else:
FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
Maximun=numpy.amax(yMean)
eMinus1=Maximun*numpy.exp(-1)
HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1)))
HalfWidth= xFrec[HWpos]
GCpos=self.Find(FitGauss, numpy.amax(FitGauss))
Vpos=self.Find(FactNorm, numpy.amax(FactNorm))
#Vpos=FirstMoment[]
'''****** Getting Fij ******'''
GaussCenter=xFrec[GCpos]
if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0):
Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001
else:
Fij=abs(GaussCenter-HalfWidth)+0.0000001
'''****** Getting Frecuency range of significant data ******'''
Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10)))
if Rangpos<GCpos:
Range=numpy.array([Rangpos,2*GCpos-Rangpos])
else:
Range=numpy.array([2*GCpos-Rangpos,Rangpos])
FrecRange=xFrec[Range[0]:Range[1]]
'''****** Getting SCPC Slope ******'''
for i in range(spc.shape[0]):
if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5:
PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3)
slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange)
PhaseSlope[i]=slope
PhaseInter[i]=intercept
else:
PhaseSlope[i]=0
PhaseInter[i]=0
'''Getting constant C'''
cC=(Fij*numpy.pi)**2
'''****** Getting constants F and G ******'''
MijEijNij=numpy.array([[E02,N02], [E12,N12]])
MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi)
MijResults=numpy.array([MijResult0,MijResult1])
(cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
'''****** Getting constants A, B and H ******'''
W01=numpy.amax(coherence[0])
W02=numpy.amax(coherence[1])
W12=numpy.amax(coherence[2])
WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ])
(cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
VxVy=numpy.array([[cA,cH],[cH,cB]])
VxVyResults=numpy.array([-cF,-cG])
(Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
Vzon = Vy
Vmer = Vx
Vmag=numpy.sqrt(Vzon**2+Vmer**2)
Vang=numpy.arctan2(Vmer,Vzon)
Vver=xFrec[Vpos]
return Vzon, Vmer, Vver, GaussCenter
class SpectralMoments(Operation):
'''
Function SpectralMoments()
Calculates moments (power, mean, standard deviation) and SNR of the signal
Type of dataIn: Spectra
Configuration Parameters:
dirCosx : Cosine director in X axis
dirCosy : Cosine director in Y axis
elevation :
azimuth :
Input:
channelList : simple channel list to select e.g. [2,3,7]
self.dataOut.data_pre : Spectral data
self.dataOut.abscissaList : List of frequencies
self.dataOut.noise : Noise level per channel
Affected:
self.dataOut.data_param : Parameters per channel
self.dataOut.data_SNR : SNR per channel
'''
def run(self, dataOut):
#dataOut.data_pre = dataOut.data_pre[0]
data = dataOut.data_pre[0]
absc = dataOut.abscissaList[:-1]
noise = dataOut.noise
nChannel = data.shape[0]
data_param = numpy.zeros((nChannel, 4, data.shape[2]))
for ind in range(nChannel):
data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
dataOut.data_param = data_param[:,1:,:]
dataOut.data_SNR = data_param[:,0]
return
def __calculateMoments(self, oldspec, oldfreq, n0,
nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
if (nicoh == None): nicoh = 1
if (graph == None): graph = 0
if (smooth == None): smooth = 0
elif (self.smooth < 3): smooth = 0
if (type1 == None): type1 = 0
if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1
if (snrth == None): snrth = -3
if (dc == None): dc = 0
if (aliasing == None): aliasing = 0
if (oldfd == None): oldfd = 0
if (wwauto == None): wwauto = 0
if (n0 < 1.e-20): n0 = 1.e-20
freq = oldfreq
vec_power = numpy.zeros(oldspec.shape[1])
vec_fd = numpy.zeros(oldspec.shape[1])
vec_w = numpy.zeros(oldspec.shape[1])
vec_snr = numpy.zeros(oldspec.shape[1])
for ind in range(oldspec.shape[1]):
spec = oldspec[:,ind]
aux = spec*fwindow
max_spec = aux.max()
m = list(aux).index(max_spec)
#Smooth
if (smooth == 0): spec2 = spec
else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
# Calculo de Momentos
bb = spec2[range(m,spec2.size)]
bb = (bb<n0).nonzero()
bb = bb[0]
ss = spec2[range(0,m + 1)]
ss = (ss<n0).nonzero()
ss = ss[0]
if (bb.size == 0):
bb0 = spec.size - 1 - m
else:
bb0 = bb[0] - 1
if (bb0 < 0):
bb0 = 0
if (ss.size == 0): ss1 = 1
else: ss1 = max(ss) + 1
if (ss1 > m): ss1 = m
valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
power = ((spec2[valid] - n0)*fwindow[valid]).sum()
fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
snr = (spec2.mean()-n0)/n0
if (snr < 1.e-20) :
snr = 1.e-20
vec_power[ind] = power
vec_fd[ind] = fd
vec_w[ind] = w
vec_snr[ind] = snr
moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
return moments
#------------------ Get SA Parameters --------------------------
def GetSAParameters(self):
#SA en frecuencia
pairslist = self.dataOut.groupList
num_pairs = len(pairslist)
vel = self.dataOut.abscissaList
spectra = self.dataOut.data_pre
cspectra = self.dataIn.data_cspc
delta_v = vel[1] - vel[0]
#Calculating the power spectrum
spc_pow = numpy.sum(spectra, 3)*delta_v
#Normalizing Spectra
norm_spectra = spectra/spc_pow
#Calculating the norm_spectra at peak
max_spectra = numpy.max(norm_spectra, 3)
#Normalizing Cross Spectra
norm_cspectra = numpy.zeros(cspectra.shape)
for i in range(num_chan):
norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
max_cspectra = numpy.max(norm_cspectra,2)
max_cspectra_index = numpy.argmax(norm_cspectra, 2)
for i in range(num_pairs):
cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
#------------------- Get Lags ----------------------------------
class SALags(Operation):
'''
Function GetMoments()
Input:
self.dataOut.data_pre
self.dataOut.abscissaList
self.dataOut.noise
self.dataOut.normFactor
self.dataOut.data_SNR
self.dataOut.groupList
self.dataOut.nChannels
Affected:
self.dataOut.data_param
'''
def run(self, dataOut):
data_acf = dataOut.data_pre[0]
data_ccf = dataOut.data_pre[1]
normFactor_acf = dataOut.normFactor[0]
normFactor_ccf = dataOut.normFactor[1]
pairs_acf = dataOut.groupList[0]
pairs_ccf = dataOut.groupList[1]
nHeights = dataOut.nHeights
absc = dataOut.abscissaList
noise = dataOut.noise
SNR = dataOut.data_SNR
nChannels = dataOut.nChannels
# pairsList = dataOut.groupList
# pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
for l in range(len(pairs_acf)):
data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
for l in range(len(pairs_ccf)):
data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
return
# def __getPairsAutoCorr(self, pairsList, nChannels):
#
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
#
# for l in range(len(pairsList)):
# firstChannel = pairsList[l][0]
# secondChannel = pairsList[l][1]
#
# #Obteniendo pares de Autocorrelacion
# if firstChannel == secondChannel:
# pairsAutoCorr[firstChannel] = int(l)
#
# pairsAutoCorr = pairsAutoCorr.astype(int)
#
# pairsCrossCorr = range(len(pairsList))
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
#
# return pairsAutoCorr, pairsCrossCorr
def __calculateTaus(self, data_acf, data_ccf, lagRange):
lag0 = data_acf.shape[1]/2
#Funcion de Autocorrelacion
mean_acf = stats.nanmean(data_acf, axis = 0)
#Obtencion Indice de TauCross
ind_ccf = data_ccf.argmax(axis = 1)
#Obtencion Indice de TauAuto
ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
ccf_lag0 = data_ccf[:,lag0,:]
for i in range(ccf_lag0.shape[0]):
ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
#Obtencion de TauCross y TauAuto
tau_ccf = lagRange[ind_ccf]
tau_acf = lagRange[ind_acf]
Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
tau_ccf[Nan1,Nan2] = numpy.nan
tau_acf[Nan1,Nan2] = numpy.nan
tau = numpy.vstack((tau_ccf,tau_acf))
return tau
def __calculateLag1Phase(self, data, lagTRange):
data1 = stats.nanmean(data, axis = 0)
lag1 = numpy.where(lagTRange == 0)[0][0] + 1
phase = numpy.angle(data1[lag1,:])
return phase
class SpectralFitting(Operation):
'''
Function GetMoments()
Input:
Output:
Variables modified:
'''
def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
if path != None:
sys.path.append(path)
self.dataOut.library = importlib.import_module(file)
#To be inserted as a parameter
groupArray = numpy.array(groupList)
# groupArray = numpy.array([[0,1],[2,3]])
self.dataOut.groupList = groupArray
nGroups = groupArray.shape[0]
nChannels = self.dataIn.nChannels
nHeights=self.dataIn.heightList.size
#Parameters Array
self.dataOut.data_param = None
#Set constants
constants = self.dataOut.library.setConstants(self.dataIn)
self.dataOut.constants = constants
M = self.dataIn.normFactor
N = self.dataIn.nFFTPoints
ippSeconds = self.dataIn.ippSeconds
K = self.dataIn.nIncohInt
pairsArray = numpy.array(self.dataIn.pairsList)
#List of possible combinations
listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
if getSNR:
listChannels = groupArray.reshape((groupArray.size))
listChannels.sort()
noise = self.dataIn.getNoise()
self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
for i in range(nGroups):
coord = groupArray[i,:]
#Input data array
data = self.dataIn.data_spc[coord,:,:]/(M*N)
data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
#Cross Spectra data array for Covariance Matrixes
ind = 0
for pairs in listComb:
pairsSel = numpy.array([coord[x],coord[y]])
indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
ind += 1
dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
dataCross = dataCross**2/K
for h in range(nHeights):
# print self.dataOut.heightList[h]
#Input
d = data[:,h]
#Covariance Matrix
D = numpy.diag(d**2/K)
ind = 0
for pairs in listComb:
#Coordinates in Covariance Matrix
x = pairs[0]
y = pairs[1]
#Channel Index
S12 = dataCross[ind,:,h]
D12 = numpy.diag(S12)
#Completing Covariance Matrix with Cross Spectras
D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
ind += 1
Dinv=numpy.linalg.inv(D)
L=numpy.linalg.cholesky(Dinv)
LT=L.T
dp = numpy.dot(LT,d)
#Initial values
data_spc = self.dataIn.data_spc[coord,:,h]
if (h>0)and(error1[3]<5):
p0 = self.dataOut.data_param[i,:,h-1]
else:
p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
try:
#Least Squares
minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
# minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
#Chi square error
error0 = numpy.sum(infodict['fvec']**2)/(2*N)
#Error with Jacobian
error1 = self.dataOut.library.errorFunction(minp,constants,LT)
except:
minp = p0*numpy.nan
error0 = numpy.nan
error1 = p0*numpy.nan
#Save
if self.dataOut.data_param == None:
self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
self.dataOut.data_param[i,:,h] = minp
return
def __residFunction(self, p, dp, LT, constants):
fm = self.dataOut.library.modelFunction(p, constants)
fmp=numpy.dot(LT,fm)
return dp-fmp
def __getSNR(self, z, noise):
avg = numpy.average(z, axis=1)
SNR = (avg.T-noise)/noise
SNR = SNR.T
return SNR
def __chisq(p,chindex,hindex):
#similar to Resid but calculates CHI**2
[LT,d,fm]=setupLTdfm(p,chindex,hindex)
dp=numpy.dot(LT,d)
fmp=numpy.dot(LT,fm)
chisq=numpy.dot((dp-fmp).T,(dp-fmp))
return chisq
class WindProfiler(Operation):
__isConfig = False
__initime = None
__lastdatatime = None
__integrationtime = None
__buffer = None
__dataReady = False
__firstdata = None
n = None
def __init__(self):
Operation.__init__(self)
def __calculateCosDir(self, elev, azim):
zen = (90 - elev)*numpy.pi/180
azim = azim*numpy.pi/180
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
signX = numpy.sign(numpy.cos(azim))
signY = numpy.sign(numpy.sin(azim))
cosDirX = numpy.copysign(cosDirX, signX)
cosDirY = numpy.copysign(cosDirY, signY)
return cosDirX, cosDirY
def __calculateAngles(self, theta_x, theta_y, azimuth):
dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
zenith_arr = numpy.arccos(dir_cosw)
azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
#
if horOnly:
A = numpy.c_[dir_cosu,dir_cosv]
else:
A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
A = numpy.asmatrix(A)
A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
return A1
def __correctValues(self, heiRang, phi, velRadial, SNR):
listPhi = phi.tolist()
maxid = listPhi.index(max(listPhi))
minid = listPhi.index(min(listPhi))
rango = range(len(phi))
# rango = numpy.delete(rango,maxid)
heiRang1 = heiRang*math.cos(phi[maxid])
heiRangAux = heiRang*math.cos(phi[minid])
indOut = (heiRang1 < heiRangAux[0]).nonzero()
heiRang1 = numpy.delete(heiRang1,indOut)
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
for i in rango:
x = heiRang*math.cos(phi[i])
y1 = velRadial[i,:]
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
x1 = heiRang1
y11 = f1(x1)
y2 = SNR[i,:]
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
y21 = f2(x1)
velRadial1[i,:] = y11
SNR1[i,:] = y21
return heiRang1, velRadial1, SNR1
def __calculateVelUVW(self, A, velRadial):
#Operacion Matricial
# velUVW = numpy.zeros((velRadial.shape[1],3))
# for ind in range(velRadial.shape[1]):
# velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
# velUVW = velUVW.transpose()
velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
velUVW[:,:] = numpy.dot(A,velRadial)
return velUVW
# def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
def techniqueDBS(self, kwargs):
"""
Function that implements Doppler Beam Swinging (DBS) technique.
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
Direction correction (if necessary), Ranges and SNR
Output: Winds estimation (Zonal, Meridional and Vertical)
Parameters affected: Winds, height range, SNR
"""
velRadial0 = kwargs['velRadial']
heiRang = kwargs['heightList']
SNR0 = kwargs['SNR']
if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
theta_x = numpy.array(kwargs['dirCosx'])
theta_y = numpy.array(kwargs['dirCosy'])
else:
elev = numpy.array(kwargs['elevation'])
azim = numpy.array(kwargs['azimuth'])
theta_x, theta_y = self.__calculateCosDir(elev, azim)
azimuth = kwargs['correctAzimuth']
if kwargs.has_key('horizontalOnly'):
horizontalOnly = kwargs['horizontalOnly']
else: horizontalOnly = False
if kwargs.has_key('correctFactor'):
correctFactor = kwargs['correctFactor']
else: correctFactor = 1
if kwargs.has_key('channelList'):
channelList = kwargs['channelList']
if len(channelList) == 2:
horizontalOnly = True
arrayChannel = numpy.array(channelList)
param = param[arrayChannel,:,:]
theta_x = theta_x[arrayChannel]
theta_y = theta_y[arrayChannel]
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
#Calculo de Componentes de la velocidad con DBS
winds = self.__calculateVelUVW(A,velRadial1)
return winds, heiRang1, SNR1
def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
nPairs = len(pairs_ccf)
posx = numpy.asarray(posx)
posy = numpy.asarray(posy)
#Rotacion Inversa para alinear con el azimuth
if azimuth!= None:
azimuth = azimuth*math.pi/180
posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
else:
posx1 = posx
posy1 = posy
#Calculo de Distancias
distx = numpy.zeros(nPairs)
disty = numpy.zeros(nPairs)
dist = numpy.zeros(nPairs)
ang = numpy.zeros(nPairs)
for i in range(nPairs):
distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
ang[i] = numpy.arctan2(disty[i],distx[i])
return distx, disty, dist, ang
#Calculo de Matrices
# nPairs = len(pairs)
# ang1 = numpy.zeros((nPairs, 2, 1))
# dist1 = numpy.zeros((nPairs, 2, 1))
#
# for j in range(nPairs):
# dist1[j,0,0] = dist[pairs[j][0]]
# dist1[j,1,0] = dist[pairs[j][1]]
# ang1[j,0,0] = ang[pairs[j][0]]
# ang1[j,1,0] = ang[pairs[j][1]]
#
# return distx,disty, dist1,ang1
def __calculateVelVer(self, phase, lagTRange, _lambda):
Ts = lagTRange[1] - lagTRange[0]
velW = -_lambda*phase/(4*math.pi*Ts)
return velW
def __calculateVelHorDir(self, dist, tau1, tau2, ang):
nPairs = tau1.shape[0]
nHeights = tau1.shape[1]
vel = numpy.zeros((nPairs,3,nHeights))
dist1 = numpy.reshape(dist, (dist.size,1))
angCos = numpy.cos(ang)
angSin = numpy.sin(ang)
vel0 = dist1*tau1/(2*tau2**2)
vel[:,0,:] = (vel0*angCos).sum(axis = 1)
vel[:,1,:] = (vel0*angSin).sum(axis = 1)
ind = numpy.where(numpy.isinf(vel))
vel[ind] = numpy.nan
return vel
# def __getPairsAutoCorr(self, pairsList, nChannels):
#
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
#
# for l in range(len(pairsList)):
# firstChannel = pairsList[l][0]
# secondChannel = pairsList[l][1]
#
# #Obteniendo pares de Autocorrelacion
# if firstChannel == secondChannel:
# pairsAutoCorr[firstChannel] = int(l)
#
# pairsAutoCorr = pairsAutoCorr.astype(int)
#
# pairsCrossCorr = range(len(pairsList))
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
#
# return pairsAutoCorr, pairsCrossCorr
# def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
def techniqueSA(self, kwargs):
"""
Function that implements Spaced Antenna (SA) technique.
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
Direction correction (if necessary), Ranges and SNR
Output: Winds estimation (Zonal, Meridional and Vertical)
Parameters affected: Winds
"""
position_x = kwargs['positionX']
position_y = kwargs['positionY']
azimuth = kwargs['azimuth']
if kwargs.has_key('correctFactor'):
correctFactor = kwargs['correctFactor']
else:
correctFactor = 1
groupList = kwargs['groupList']
pairs_ccf = groupList[1]
tau = kwargs['tau']
_lambda = kwargs['_lambda']
#Cross Correlation pairs obtained
# pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
# pairsArray = numpy.array(pairsList)[pairsCrossCorr]
# pairsSelArray = numpy.array(pairsSelected)
# pairs = []
#
# #Wind estimation pairs obtained
# for i in range(pairsSelArray.shape[0]/2):
# ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
# ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
# pairs.append((ind1,ind2))
indtau = tau.shape[0]/2
tau1 = tau[:indtau,:]
tau2 = tau[indtau:-1,:]
# tau1 = tau1[pairs,:]
# tau2 = tau2[pairs,:]
phase1 = tau[-1,:]
#---------------------------------------------------------------------
#Metodo Directo
distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
winds = stats.nanmean(winds, axis=0)
#---------------------------------------------------------------------
#Metodo General
# distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
# #Calculo Coeficientes de Funcion de Correlacion
# F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
# #Calculo de Velocidades
# winds = self.calculateVelUV(F,G,A,B,H)
#---------------------------------------------------------------------
winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
winds = correctFactor*winds
return winds
def __checkTime(self, currentTime, paramInterval, outputInterval):
dataTime = currentTime + paramInterval
deltaTime = dataTime - self.__initime
if deltaTime >= outputInterval or deltaTime < 0:
self.__dataReady = True
return
def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
'''
Function that implements winds estimation technique with detected meteors.
Input: Detected meteors, Minimum meteor quantity to wind estimation
Output: Winds estimation (Zonal and Meridional)
Parameters affected: Winds
'''
# print arrayMeteor.shape
#Settings
nInt = (heightMax - heightMin)/2
# print nInt
nInt = int(nInt)
# print nInt
winds = numpy.zeros((2,nInt))*numpy.nan
#Filter errors
error = numpy.where(arrayMeteor[:,-1] == 0)[0]
finalMeteor = arrayMeteor[error,:]
#Meteor Histogram
finalHeights = finalMeteor[:,2]
hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
nMeteorsPerI = hist[0]
heightPerI = hist[1]
#Sort of meteors
indSort = finalHeights.argsort()
finalMeteor2 = finalMeteor[indSort,:]
# Calculating winds
ind1 = 0
ind2 = 0
for i in range(nInt):
nMet = nMeteorsPerI[i]
ind1 = ind2
ind2 = ind1 + nMet
meteorAux = finalMeteor2[ind1:ind2,:]
if meteorAux.shape[0] >= meteorThresh:
vel = meteorAux[:, 6]
zen = meteorAux[:, 4]*numpy.pi/180
azim = meteorAux[:, 3]*numpy.pi/180
n = numpy.cos(zen)
# m = (1 - n**2)/(1 - numpy.tan(azim)**2)
# l = m*numpy.tan(azim)
l = numpy.sin(zen)*numpy.sin(azim)
m = numpy.sin(zen)*numpy.cos(azim)
A = numpy.vstack((l, m)).transpose()
A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
windsAux = numpy.dot(A1, vel)
winds[0,i] = windsAux[0]
winds[1,i] = windsAux[1]
return winds, heightPerI[:-1]
def techniqueNSM_SA(self, **kwargs):
metArray = kwargs['metArray']
heightList = kwargs['heightList']
timeList = kwargs['timeList']
rx_location = kwargs['rx_location']
groupList = kwargs['groupList']
azimuth = kwargs['azimuth']
dfactor = kwargs['dfactor']
k = kwargs['k']
azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
d = dist*dfactor
#Phase calculation
metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
velEst = numpy.zeros((heightList.size,2))*numpy.nan
azimuth1 = azimuth1*numpy.pi/180
for i in range(heightList.size):
h = heightList[i]
indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
metHeight = metArray1[indH,:]
if metHeight.shape[0] >= 2:
velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
iazim = metHeight[:,1].astype(int)
azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
A = numpy.asmatrix(A)
A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
velHor = numpy.dot(A1,velAux)
velEst[i,:] = numpy.squeeze(velHor)
return velEst
def __getPhaseSlope(self, metArray, heightList, timeList):
meteorList = []
#utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
#Putting back together the meteor matrix
utctime = metArray[:,0]
uniqueTime = numpy.unique(utctime)
phaseDerThresh = 0.5
ippSeconds = timeList[1] - timeList[0]
sec = numpy.where(timeList>1)[0][0]
nPairs = metArray.shape[1] - 6
nHeights = len(heightList)
for t in uniqueTime:
metArray1 = metArray[utctime==t,:]
# phaseDerThresh = numpy.pi/4 #reducir Phase thresh
tmet = metArray1[:,1].astype(int)
hmet = metArray1[:,2].astype(int)
metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
metPhase[:,:] = numpy.nan
metPhase[:,hmet,tmet] = metArray1[:,6:].T
#Delete short trails
metBool = ~numpy.isnan(metPhase[0,:,:])
heightVect = numpy.sum(metBool, axis = 1)
metBool[heightVect<sec,:] = False
metPhase[:,heightVect<sec,:] = numpy.nan
#Derivative
metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
metPhase[phDerAux] = numpy.nan
#--------------------------METEOR DETECTION -----------------------------------------
indMet = numpy.where(numpy.any(metBool,axis=1))[0]
for p in numpy.arange(nPairs):
phase = metPhase[p,:,:]
phDer = metDer[p,:,:]
for h in indMet:
height = heightList[h]
phase1 = phase[h,:] #82
phDer1 = phDer[h,:]
phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
indValid = numpy.where(~numpy.isnan(phase1))[0]
initMet = indValid[0]
endMet = 0
for i in range(len(indValid)-1):
#Time difference
inow = indValid[i]
inext = indValid[i+1]
idiff = inext - inow
#Phase difference
phDiff = numpy.abs(phase1[inext] - phase1[inow])
if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
sizeTrail = inow - initMet + 1
if sizeTrail>3*sec: #Too short meteors
x = numpy.arange(initMet,inow+1)*ippSeconds
y = phase1[initMet:inow+1]
ynnan = ~numpy.isnan(y)
x = x[ynnan]
y = y[ynnan]
slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
ylin = x*slope + intercept
rsq = r_value**2
if rsq > 0.5:
vel = slope#*height*1000/(k*d)
estAux = numpy.array([utctime,p,height, vel, rsq])
meteorList.append(estAux)
initMet = inext
metArray2 = numpy.array(meteorList)
return metArray2
def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
azimuth1 = numpy.zeros(len(pairslist))
dist = numpy.zeros(len(pairslist))
for i in range(len(rx_location)):
ch0 = pairslist[i][0]
ch1 = pairslist[i][1]
diffX = rx_location[ch0][0] - rx_location[ch1][0]
diffY = rx_location[ch0][1] - rx_location[ch1][1]
azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
dist[i] = numpy.sqrt(diffX**2 + diffY**2)
azimuth1 -= azimuth0
return azimuth1, dist
def techniqueNSM_DBS(self, **kwargs):
metArray = kwargs['metArray']
heightList = kwargs['heightList']
timeList = kwargs['timeList']
zenithList = kwargs['zenithList']
nChan = numpy.max(cmet) + 1
nHeights = len(heightList)
utctime = metArray[:,0]
cmet = metArray[:,1]
hmet = metArray1[:,3].astype(int)
h1met = heightList[hmet]*zenithList[cmet]
vmet = metArray1[:,5]
for i in range(nHeights - 1):
hmin = heightList[i]
hmax = heightList[i + 1]
vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
return data_output
def run(self, dataOut, technique, **kwargs):
param = dataOut.data_param
if dataOut.abscissaList != None:
absc = dataOut.abscissaList[:-1]
noise = dataOut.noise
heightList = dataOut.heightList
SNR = dataOut.data_SNR
if technique == 'DBS':
kwargs['velRadial'] = param[:,1,:] #Radial velocity
kwargs['heightList'] = heightList
kwargs['SNR'] = SNR
dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
dataOut.utctimeInit = dataOut.utctime
dataOut.outputInterval = dataOut.paramInterval
elif technique == 'SA':
#Parameters
# position_x = kwargs['positionX']
# position_y = kwargs['positionY']
# azimuth = kwargs['azimuth']
#
# if kwargs.has_key('crosspairsList'):
# pairs = kwargs['crosspairsList']
# else:
# pairs = None
#
# if kwargs.has_key('correctFactor'):
# correctFactor = kwargs['correctFactor']
# else:
# correctFactor = 1
# tau = dataOut.data_param
# _lambda = dataOut.C/dataOut.frequency
# pairsList = dataOut.groupList
# nChannels = dataOut.nChannels
kwargs['groupList'] = dataOut.groupList
kwargs['tau'] = dataOut.data_param
kwargs['_lambda'] = dataOut.C/dataOut.frequency
# dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
dataOut.data_output = self.techniqueSA(kwargs)
dataOut.utctimeInit = dataOut.utctime
dataOut.outputInterval = dataOut.timeInterval
elif technique == 'Meteors':
dataOut.flagNoData = True
self.__dataReady = False
if kwargs.has_key('nHours'):
nHours = kwargs['nHours']
else:
nHours = 1
if kwargs.has_key('meteorsPerBin'):
meteorThresh = kwargs['meteorsPerBin']
else:
meteorThresh = 6
if kwargs.has_key('hmin'):
hmin = kwargs['hmin']
else: hmin = 70
if kwargs.has_key('hmax'):
hmax = kwargs['hmax']
else: hmax = 110
dataOut.outputInterval = nHours*3600
if self.__isConfig == False:
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
#Get Initial LTC time
self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
self.__isConfig = True
if self.__buffer == None:
self.__buffer = dataOut.data_param
self.__firstdata = copy.copy(dataOut)
else:
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
if self.__dataReady:
dataOut.utctimeInit = self.__initime
self.__initime += dataOut.outputInterval #to erase time offset
dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
dataOut.flagNoData = False
self.__buffer = None
elif technique == 'Meteors1':
dataOut.flagNoData = True
self.__dataReady = False
if kwargs.has_key('nMins'):
nMins = kwargs['nMins']
else: nMins = 20
if kwargs.has_key('rx_location'):
rx_location = kwargs['rx_location']
else: rx_location = [(0,1),(1,1),(1,0)]
if kwargs.has_key('azimuth'):
azimuth = kwargs['azimuth']
else: azimuth = 51
if kwargs.has_key('dfactor'):
dfactor = kwargs['dfactor']
if kwargs.has_key('mode'):
mode = kwargs['mode']
else: mode = 'SA'
#Borrar luego esto
if dataOut.groupList == None:
dataOut.groupList = [(0,1),(0,2),(1,2)]
groupList = dataOut.groupList
C = 3e8
freq = 50e6
lamb = C/freq
k = 2*numpy.pi/lamb
timeList = dataOut.abscissaList
heightList = dataOut.heightList
if self.__isConfig == False:
dataOut.outputInterval = nMins*60
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
#Get Initial LTC time
initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
minuteAux = initime.minute
minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
self.__isConfig = True
if self.__buffer == None:
self.__buffer = dataOut.data_param
self.__firstdata = copy.copy(dataOut)
else:
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
if self.__dataReady:
dataOut.utctimeInit = self.__initime
self.__initime += dataOut.outputInterval #to erase time offset
metArray = self.__buffer
if mode == 'SA':
dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
elif mode == 'DBS':
dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList)
dataOut.data_output = dataOut.data_output.T
dataOut.flagNoData = False
self.__buffer = None
return
class EWDriftsEstimation(Operation):
def __init__(self):
Operation.__init__(self)
def __correctValues(self, heiRang, phi, velRadial, SNR):
listPhi = phi.tolist()
maxid = listPhi.index(max(listPhi))
minid = listPhi.index(min(listPhi))
rango = range(len(phi))
# rango = numpy.delete(rango,maxid)
heiRang1 = heiRang*math.cos(phi[maxid])
heiRangAux = heiRang*math.cos(phi[minid])
indOut = (heiRang1 < heiRangAux[0]).nonzero()
heiRang1 = numpy.delete(heiRang1,indOut)
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
for i in rango:
x = heiRang*math.cos(phi[i])
y1 = velRadial[i,:]
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
x1 = heiRang1
y11 = f1(x1)
y2 = SNR[i,:]
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
y21 = f2(x1)
velRadial1[i,:] = y11
SNR1[i,:] = y21
return heiRang1, velRadial1, SNR1
def run(self, dataOut, zenith, zenithCorrection):
heiRang = dataOut.heightList
velRadial = dataOut.data_param[:,3,:]
SNR = dataOut.data_SNR
zenith = numpy.array(zenith)
zenith -= zenithCorrection
zenith *= numpy.pi/180
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
alp = zenith[0]
bet = zenith[1]
w_w = velRadial1[0,:]
w_e = velRadial1[1,:]
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
winds = numpy.vstack((u,w))
dataOut.heightList = heiRang1
dataOut.data_output = winds
dataOut.data_SNR = SNR1
dataOut.utctimeInit = dataOut.utctime
dataOut.outputInterval = dataOut.timeInterval
return
#--------------- Non Specular Meteor ----------------
class NonSpecularMeteorDetection(Operation):
def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
data_acf = self.dataOut.data_pre[0]
data_ccf = self.dataOut.data_pre[1]
lamb = self.dataOut.C/self.dataOut.frequency
tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
paramInterval = self.dataOut.paramInterval
nChannels = data_acf.shape[0]
nLags = data_acf.shape[1]
nProfiles = data_acf.shape[2]
nHeights = self.dataOut.nHeights
nCohInt = self.dataOut.nCohInt
sec = numpy.round(nProfiles/self.dataOut.paramInterval)
heightList = self.dataOut.heightList
ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
utctime = self.dataOut.utctime
self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
#------------------------ SNR --------------------------------------
power = data_acf[:,0,:,:].real
noise = numpy.zeros(nChannels)
SNR = numpy.zeros(power.shape)
for i in range(nChannels):
noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
SNR[i] = (power[i]-noise[i])/noise[i]
SNRm = numpy.nanmean(SNR, axis = 0)
SNRdB = 10*numpy.log10(SNR)
if mode == 'SA':
nPairs = data_ccf.shape[0]
#---------------------- Coherence and Phase --------------------------
phase = numpy.zeros(data_ccf[:,0,:,:].shape)
# phase1 = numpy.copy(phase)
coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
for p in range(nPairs):
ch0 = self.dataOut.groupList[p][0]
ch1 = self.dataOut.groupList[p][1]
ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
# phase1[p,:,:] = numpy.angle(ccf) #median filter
coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
# coh1[p,:,:] = numpy.abs(ccf) #median filter
coh = numpy.nanmax(coh1, axis = 0)
# struc = numpy.ones((5,1))
# coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
#---------------------- Radial Velocity ----------------------------
phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
if allData:
boolMetFin = ~numpy.isnan(SNRm)
# coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
else:
#------------------------ Meteor mask ---------------------------------
# #SNR mask
# boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
#
# #Erase small objects
# boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
#
# auxEEJ = numpy.sum(boolMet1,axis=0)
# indOver = auxEEJ>nProfiles*0.8 #Use this later
# indEEJ = numpy.where(indOver)[0]
# indNEEJ = numpy.where(~indOver)[0]
#
# boolMetFin = boolMet1
#
# if indEEJ.size > 0:
# boolMet1[:,indEEJ] = False #Erase heights with EEJ
#
# boolMet2 = coh > cohThresh
# boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
#
# #Final Meteor mask
# boolMetFin = boolMet1|boolMet2
#Coherence mask
boolMet1 = coh > 0.75
struc = numpy.ones((30,1))
boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
#Derivative mask
derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
boolMet2 = derPhase < 0.2
# boolMet2 = ndimage.morphology.binary_opening(boolMet2)
# boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
boolMet2 = ndimage.median_filter(boolMet2,size=5)
boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
# #Final mask
# boolMetFin = boolMet2
boolMetFin = boolMet1&boolMet2
# boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
#Creating data_param
coordMet = numpy.where(boolMetFin)
tmet = coordMet[0]
hmet = coordMet[1]
data_param = numpy.zeros((tmet.size, 6 + nPairs))
data_param[:,0] = utctime
data_param[:,1] = tmet
data_param[:,2] = hmet
data_param[:,3] = SNRm[tmet,hmet]
data_param[:,4] = velRad[tmet,hmet]
data_param[:,5] = coh[tmet,hmet]
data_param[:,6:] = phase[:,tmet,hmet].T
elif mode == 'DBS':
self.dataOut.groupList = numpy.arange(nChannels)
#Radial Velocities
# phase = numpy.angle(data_acf[:,1,:,:])
phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
velRad = phase*lamb/(4*numpy.pi*tSamp)
#Spectral width
acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
# velRad = ndimage.median_filter(velRad, size = (1,5,1))
if allData:
boolMetFin = ~numpy.isnan(SNRdB)
else:
#SNR
boolMet1 = (SNRdB>SNRthresh) #SNR mask
boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
#Radial velocity
boolMet2 = numpy.abs(velRad) < 30
boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
#Spectral Width
boolMet3 = spcWidth < 30
boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
# boolMetFin = self.__erase_small(boolMet1, 10,5)
boolMetFin = boolMet1&boolMet2&boolMet3
#Creating data_param
coordMet = numpy.where(boolMetFin)
cmet = coordMet[0]
tmet = coordMet[1]
hmet = coordMet[2]
data_param = numpy.zeros((tmet.size, 7))
data_param[:,0] = utctime
data_param[:,1] = cmet
data_param[:,2] = tmet
data_param[:,3] = hmet
data_param[:,4] = SNR[cmet,tmet,hmet].T
data_param[:,5] = velRad[cmet,tmet,hmet].T
data_param[:,6] = spcWidth[cmet,tmet,hmet].T
# self.dataOut.data_param = data_int
if len(data_param) == 0:
self.dataOut.flagNoData = True
else:
self.dataOut.data_param = data_param
def __erase_small(self, binArray, threshX, threshY):
labarray, numfeat = ndimage.measurements.label(binArray)
binArray1 = numpy.copy(binArray)
for i in range(1,numfeat + 1):
auxBin = (labarray==i)
auxSize = auxBin.sum()
x,y = numpy.where(auxBin)
widthX = x.max() - x.min()
widthY = y.max() - y.min()
#width X: 3 seg -> 12.5*3
#width Y:
if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
binArray1[auxBin] = False
return binArray1
#--------------- Specular Meteor ----------------
class SMDetection(Operation):
'''
Function DetectMeteors()
Project developed with paper:
HOLDSWORTH ET AL. 2004
Input:
self.dataOut.data_pre
centerReceiverIndex: From the channels, which is the center receiver
hei_ref: Height reference for the Beacon signal extraction
tauindex:
predefinedPhaseShifts: Predefined phase offset for the voltge signals
cohDetection: Whether to user Coherent detection or not
cohDet_timeStep: Coherent Detection calculation time step
cohDet_thresh: Coherent Detection phase threshold to correct phases
noise_timeStep: Noise calculation time step
noise_multiple: Noise multiple to define signal threshold
multDet_timeLimit: Multiple Detection Removal time limit in seconds
multDet_rangeLimit: Multiple Detection Removal range limit in km
phaseThresh: Maximum phase difference between receiver to be consider a meteor
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
hmin: Minimum Height of the meteor to use it in the further wind estimations
hmax: Maximum Height of the meteor to use it in the further wind estimations
azimuth: Azimuth angle correction
Affected:
self.dataOut.data_param
Rejection Criteria (Errors):
0: No error; analysis OK
1: SNR < SNR threshold
2: angle of arrival (AOA) ambiguously determined
3: AOA estimate not feasible
4: Large difference in AOAs obtained from different antenna baselines
5: echo at start or end of time series
6: echo less than 5 examples long; too short for analysis
7: echo rise exceeds 0.3s
8: echo decay time less than twice rise time
9: large power level before echo
10: large power level after echo
11: poor fit to amplitude for estimation of decay time
12: poor fit to CCF phase variation for estimation of radial drift velocity
13: height unresolvable echo: not valid height within 70 to 110 km
14: height ambiguous echo: more then one possible height within 70 to 110 km
15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
16: oscilatory echo, indicating event most likely not an underdense echo
17: phase difference in meteor Reestimation
Data Storage:
Meteors for Wind Estimation (8):
Utc Time | Range Height
Azimuth Zenith errorCosDir
VelRad errorVelRad
Phase0 Phase1 Phase2 Phase3
TypeError
'''
def run(self, dataOut, hei_ref = None, tauindex = 0,
phaseOffsets = None,
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
noise_timeStep = 4, noise_multiple = 4,
multDet_timeLimit = 1, multDet_rangeLimit = 3,
phaseThresh = 20, SNRThresh = 5,
hmin = 50, hmax=150, azimuth = 0,
channelPositions = None) :
#Getting Pairslist
if channelPositions == None:
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
meteorOps = SMOperations()
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
heiRang = dataOut.getHeiRange()
#Get Beacon signal - No Beacon signal anymore
# newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
#
# if hei_ref != None:
# newheis = numpy.where(self.dataOut.heightList>hei_ref)
#
#****************REMOVING HARDWARE PHASE DIFFERENCES***************
# see if the user put in pre defined phase shifts
voltsPShift = dataOut.data_pre.copy()
# if predefinedPhaseShifts != None:
# hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
#
# # elif beaconPhaseShifts:
# # #get hardware phase shifts using beacon signal
# # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
# # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
#
# else:
# hardwarePhaseShifts = numpy.zeros(5)
#
# voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
# for i in range(self.dataOut.data_pre.shape[0]):
# voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
#******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
#Remove DC
voltsDC = numpy.mean(voltsPShift,1)
voltsDC = numpy.mean(voltsDC,1)
for i in range(voltsDC.shape[0]):
voltsPShift[i] = voltsPShift[i] - voltsDC[i]
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift
# voltsPShift = voltsPShift[:,:,:newheis[0][0]]
#************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
#Coherent Detection
if cohDetection:
#use coherent detection to get the net power
cohDet_thresh = cohDet_thresh*numpy.pi/180
voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
#Non-coherent detection!
powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
#********** END OF COH/NON-COH POWER CALCULATION**********************
#********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
#Get noise
noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
# noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
#Get signal threshold
signalThresh = noise_multiple*noise
#Meteor echoes detection
listMeteors = self.__findMeteors(powerNet, signalThresh)
#******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
#************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
#Parameters
heiRange = dataOut.getHeiRange()
rangeInterval = heiRange[1] - heiRange[0]
rangeLimit = multDet_rangeLimit/rangeInterval
timeLimit = multDet_timeLimit/dataOut.timeInterval
#Multiple detection removals
listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
#************ END OF REMOVE MULTIPLE DETECTIONS **********************
#********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
#Parameters
phaseThresh = phaseThresh*numpy.pi/180
thresh = [phaseThresh, noise_multiple, SNRThresh]
#Meteor reestimation (Errors N 1, 6, 12, 17)
listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
# listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
#Estimation of decay times (Errors N 7, 8, 11)
listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
#******************* END OF METEOR REESTIMATION *******************
#********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
#Calculating Radial Velocity (Error N 15)
radialStdThresh = 10
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
if len(listMeteors4) > 0:
#Setting New Array
date = dataOut.utctime
arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
#Correcting phase offset
if phaseOffsets != None:
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
#Second Pairslist
pairsList = []
pairx = (0,1)
pairy = (2,3)
pairsList.append(pairx)
pairsList.append(pairy)
jph = numpy.array([0,0,0,0])
h = (hmin,hmax)
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
# #Calculate AOA (Error N 3, 4)
# #JONES ET AL. 1998
# error = arrayParameters[:,-1]
# AOAthresh = numpy.pi/8
# phases = -arrayParameters[:,9:13]
# arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
#
# #Calculate Heights (Error N 13 and 14)
# error = arrayParameters[:,-1]
# Ranges = arrayParameters[:,2]
# zenith = arrayParameters[:,5]
# arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
# error = arrayParameters[:,-1]
#********************* END OF PARAMETERS CALCULATION **************************
#***************************+ PASS DATA TO NEXT STEP **********************
# arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
dataOut.data_param = arrayParameters
if arrayParameters == None:
dataOut.flagNoData = True
else:
dataOut.flagNoData = True
return
def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
minIndex = min(newheis[0])
maxIndex = max(newheis[0])
voltage = voltage0[:,:,minIndex:maxIndex+1]
nLength = voltage.shape[1]/n
nMin = 0
nMax = 0
phaseOffset = numpy.zeros((len(pairslist),n))
for i in range(n):
nMax += nLength
phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
phaseCCF = numpy.mean(phaseCCF, axis = 2)
phaseOffset[:,i] = phaseCCF.transpose()
nMin = nMax
# phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
#Remove Outliers
factor = 2
wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
dw = numpy.std(wt,axis = 1)
dw = dw.reshape((dw.size,1))
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
phaseOffset[ind] = numpy.nan
phaseOffset = stats.nanmean(phaseOffset, axis=1)
return phaseOffset
def __shiftPhase(self, data, phaseShift):
#this will shift the phase of a complex number
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
return dataShifted
def __estimatePhaseDifference(self, array, pairslist):
nChannel = array.shape[0]
nHeights = array.shape[2]
numPairs = len(pairslist)
# phaseCCF = numpy.zeros((nChannel, 5, nHeights))
phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
#Correct phases
derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
if indDer[0].shape[0] > 0:
for i in range(indDer[0].shape[0]):
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
# for j in range(numSides):
# phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
# phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
#
#Linear
phaseInt = numpy.zeros((numPairs,1))
angAllCCF = phaseCCF[:,[0,1,3,4],0]
for j in range(numPairs):
fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
phaseInt[j] = fit[1]
#Phase Differences
phaseDiff = phaseInt - phaseCCF[:,2,:]
phaseArrival = phaseInt.reshape(phaseInt.size)
#Dealias
phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
# indAlias = numpy.where(phaseArrival > numpy.pi)
# phaseArrival[indAlias] -= 2*numpy.pi
# indAlias = numpy.where(phaseArrival < -numpy.pi)
# phaseArrival[indAlias] += 2*numpy.pi
return phaseDiff, phaseArrival
def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
#this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
#find the phase shifts of each channel over 1 second intervals
#only look at ranges below the beacon signal
numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
numBlocks = int(volts.shape[1]/numProfPerBlock)
numHeights = volts.shape[2]
nChannel = volts.shape[0]
voltsCohDet = volts.copy()
pairsarray = numpy.array(pairslist)
indSides = pairsarray[:,1]
# indSides = numpy.array(range(nChannel))
# indSides = numpy.delete(indSides, indCenter)
#
# listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
listBlocks = numpy.array_split(volts, numBlocks, 1)
startInd = 0
endInd = 0
for i in range(numBlocks):
startInd = endInd
endInd = endInd + listBlocks[i].shape[1]
arrayBlock = listBlocks[i]
# arrayBlockCenter = listCenter[i]
#Estimate the Phase Difference
phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
#Phase Difference RMS
arrayPhaseRMS = numpy.abs(phaseDiff)
phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
indPhase = numpy.where(phaseRMSaux==4)
#Shifting
if indPhase[0].shape[0] > 0:
for j in range(indSides.size):
arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
voltsCohDet[:,startInd:endInd,:] = arrayBlock
return voltsCohDet
def __calculateCCF(self, volts, pairslist ,laglist):
nHeights = volts.shape[2]
nPoints = volts.shape[1]
voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
for i in range(len(pairslist)):
volts1 = volts[pairslist[i][0]]
volts2 = volts[pairslist[i][1]]
for t in range(len(laglist)):
idxT = laglist[t]
if idxT >= 0:
vStacked = numpy.vstack((volts2[idxT:,:],
numpy.zeros((idxT, nHeights),dtype='complex')))
else:
vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
volts2[:(nPoints + idxT),:]))
voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
vStacked = None
return voltsCCF
def __getNoise(self, power, timeSegment, timeInterval):
numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
numBlocks = int(power.shape[0]/numProfPerBlock)
numHeights = power.shape[1]
listPower = numpy.array_split(power, numBlocks, 0)
noise = numpy.zeros((power.shape[0], power.shape[1]))
noise1 = numpy.zeros((power.shape[0], power.shape[1]))
startInd = 0
endInd = 0
for i in range(numBlocks): #split por canal
startInd = endInd
endInd = endInd + listPower[i].shape[0]
arrayBlock = listPower[i]
noiseAux = numpy.mean(arrayBlock, 0)
# noiseAux = numpy.median(noiseAux)
# noiseAux = numpy.mean(arrayBlock)
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
noiseAux1 = numpy.mean(arrayBlock)
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
return noise, noise1
def __findMeteors(self, power, thresh):
nProf = power.shape[0]
nHeights = power.shape[1]
listMeteors = []
for i in range(nHeights):
powerAux = power[:,i]
threshAux = thresh[:,i]
indUPthresh = numpy.where(powerAux > threshAux)[0]
indDNthresh = numpy.where(powerAux <= threshAux)[0]
j = 0
while (j < indUPthresh.size - 2):
if (indUPthresh[j + 2] == indUPthresh[j] + 2):
indDNAux = numpy.where(indDNthresh > indUPthresh[j])
indDNthresh = indDNthresh[indDNAux]
if (indDNthresh.size > 0):
indEnd = indDNthresh[0] - 1
indInit = indUPthresh[j]
meteor = powerAux[indInit:indEnd + 1]
indPeak = meteor.argmax() + indInit
FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
j = numpy.where(indUPthresh == indEnd)[0] + 1
else: j+=1
else: j+=1
return listMeteors
def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
arrayMeteors = numpy.asarray(listMeteors)
listMeteors1 = []
while arrayMeteors.shape[0] > 0:
FLAs = arrayMeteors[:,4]
maxFLA = FLAs.argmax()
listMeteors1.append(arrayMeteors[maxFLA,:])
MeteorInitTime = arrayMeteors[maxFLA,1]
MeteorEndTime = arrayMeteors[maxFLA,3]
MeteorHeight = arrayMeteors[maxFLA,0]
#Check neighborhood
maxHeightIndex = MeteorHeight + rangeLimit
minHeightIndex = MeteorHeight - rangeLimit
minTimeIndex = MeteorInitTime - timeLimit
maxTimeIndex = MeteorEndTime + timeLimit
#Check Heights
indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
return listMeteors1
def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
numHeights = volts.shape[2]
nChannel = volts.shape[0]
thresholdPhase = thresh[0]
thresholdNoise = thresh[1]
thresholdDB = float(thresh[2])
thresholdDB1 = 10**(thresholdDB/10)
pairsarray = numpy.array(pairslist)
indSides = pairsarray[:,1]
pairslist1 = list(pairslist)
pairslist1.append((0,1))
pairslist1.append((3,4))
listMeteors1 = []
listPowerSeries = []
listVoltageSeries = []
#volts has the war data
if frequency == 30e6:
timeLag = 45*10**-3
else:
timeLag = 15*10**-3
lag = numpy.ceil(timeLag/timeInterval)
for i in range(len(listMeteors)):
###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
meteorAux = numpy.zeros(16)
#Loading meteor Data (mHeight, mStart, mPeak, mEnd)
mHeight = listMeteors[i][0]
mStart = listMeteors[i][1]
mPeak = listMeteors[i][2]
mEnd = listMeteors[i][3]
#get the volt data between the start and end times of the meteor
meteorVolts = volts[:,mStart:mEnd+1,mHeight]
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
#3.6. Phase Difference estimation
phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
#3.7. Phase difference removal & meteor start, peak and end times reestimated
#meteorVolts0.- all Channels, all Profiles
meteorVolts0 = volts[:,:,mHeight]
meteorThresh = noise[:,mHeight]*thresholdNoise
meteorNoise = noise[:,mHeight]
meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
#Times reestimation
mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
if mStart1.size > 0:
mStart1 = mStart1[-1] + 1
else:
mStart1 = mPeak
mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
if mEndDecayTime1.size == 0:
mEndDecayTime1 = powerNet0.size
else:
mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
# mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
#meteorVolts1.- all Channels, from start to end
meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
if meteorVolts2.shape[1] == 0:
meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
##################### END PARAMETERS REESTIMATION #########################
##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
# if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
if meteorVolts2.shape[1] > 0:
#Phase Difference re-estimation
phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
# phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
#Phase Difference RMS
phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
#Data from Meteor
mPeak1 = powerNet1.argmax() + mStart1
mPeakPower1 = powerNet1.max()
noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
#Vectorize
meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
meteorAux[7:11] = phaseDiffint[0:4]
#Rejection Criterions
if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
meteorAux[-1] = 17
elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
meteorAux[-1] = 1
else:
meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
PowerSeries = 0
listMeteors1.append(meteorAux)
listPowerSeries.append(PowerSeries)
listVoltageSeries.append(meteorVolts1)
return listMeteors1, listPowerSeries, listVoltageSeries
def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
threshError = 10
#Depending if it is 30 or 50 MHz
if frequency == 30e6:
timeLag = 45*10**-3
else:
timeLag = 15*10**-3
lag = numpy.ceil(timeLag/timeInterval)
listMeteors1 = []
for i in range(len(listMeteors)):
meteorPower = listPower[i]
meteorAux = listMeteors[i]
if meteorAux[-1] == 0:
try:
indmax = meteorPower.argmax()
indlag = indmax + lag
y = meteorPower[indlag:]
x = numpy.arange(0, y.size)*timeLag
#first guess
a = y[0]
tau = timeLag
#exponential fit
popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
y1 = self.__exponential_function(x, *popt)
#error estimation
error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
decayTime = popt[1]
riseTime = indmax*timeInterval
meteorAux[11:13] = [decayTime, error]
#Table items 7, 8 and 11
if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
meteorAux[-1] = 7
elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
meteorAux[-1] = 8
if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
meteorAux[-1] = 11
except:
meteorAux[-1] = 11
listMeteors1.append(meteorAux)
return listMeteors1
#Exponential Function
def __exponential_function(self, x, a, tau):
y = a*numpy.exp(-x/tau)
return y
def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
pairslist1 = list(pairslist)
pairslist1.append((0,1))
pairslist1.append((3,4))
numPairs = len(pairslist1)
#Time Lag
timeLag = 45*10**-3
c = 3e8
lag = numpy.ceil(timeLag/timeInterval)
freq = 30e6
listMeteors1 = []
for i in range(len(listMeteors)):
meteorAux = listMeteors[i]
if meteorAux[-1] == 0:
mStart = listMeteors[i][1]
mPeak = listMeteors[i][2]
mLag = mPeak - mStart + lag
#get the volt data between the start and end times of the meteor
meteorVolts = listVolts[i]
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
#Get CCF
allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
#Method 2
slopes = numpy.zeros(numPairs)
time = numpy.array([-2,-1,1,2])*timeInterval
angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
#Correct phases
derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
if indDer[0].shape[0] > 0:
for i in range(indDer[0].shape[0]):
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
# fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
for j in range(numPairs):
fit = stats.linregress(time, angAllCCF[j,:])
slopes[j] = fit[0]
#Remove Outlier
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
# slopes = numpy.delete(slopes,indOut)
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
# slopes = numpy.delete(slopes,indOut)
radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
meteorAux[-2] = radialError
meteorAux[-3] = radialVelocity
#Setting Error
#Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
if numpy.abs(radialVelocity) > 200:
meteorAux[-1] = 15
#Number 12: Poor fit to CCF variation for estimation of radial drift velocity
elif radialError > radialStdThresh:
meteorAux[-1] = 12
listMeteors1.append(meteorAux)
return listMeteors1
def __setNewArrays(self, listMeteors, date, heiRang):
#New arrays
arrayMeteors = numpy.array(listMeteors)
arrayParameters = numpy.zeros((len(listMeteors), 13))
#Date inclusion
# date = re.findall(r'\((.*?)\)', date)
# date = date[0].split(',')
# date = map(int, date)
#
# if len(date)<6:
# date.append(0)
#
# date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
# arrayDate = numpy.tile(date, (len(listMeteors), 1))
arrayDate = numpy.tile(date, (len(listMeteors)))
#Meteor array
# arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
# arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
#Parameters Array
arrayParameters[:,0] = arrayDate #Date
arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
return arrayParameters
class CorrectSMPhases(Operation):
def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
arrayParameters = dataOut.data_param
pairsList = []
pairx = (0,1)
pairy = (2,3)
pairsList.append(pairx)
pairsList.append(pairy)
jph = numpy.zeros(4)
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
# arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
meteorOps = SMOperations()
if channelPositions == None:
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
h = (hmin,hmax)
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
dataOut.data_param = arrayParameters
return
class SMPhaseCalibration(Operation):
__buffer = None
__initime = None
__dataReady = False
__isConfig = False
def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
dataTime = currentTime + paramInterval
deltaTime = dataTime - initTime
if deltaTime >= outputInterval or deltaTime < 0:
return True
return False
def __getGammas(self, pairs, d, phases):
gammas = numpy.zeros(2)
for i in range(len(pairs)):
pairi = pairs[i]
phip3 = phases[:,pairi[1]]
d3 = d[pairi[1]]
phip2 = phases[:,pairi[0]]
d2 = d[pairi[0]]
#Calculating gamma
# jdcos = alp1/(k*d1)
# jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
jgamma = -phip2*d3/d2 - phip3
jgamma = numpy.angle(numpy.exp(1j*jgamma))
# jgamma[jgamma>numpy.pi] -= 2*numpy.pi
# jgamma[jgamma<-numpy.pi] += 2*numpy.pi
#Revised distribution
jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
#Histogram
nBins = 64.0
rmin = -0.5*numpy.pi
rmax = 0.5*numpy.pi
phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
meteorsY = phaseHisto[0]
phasesX = phaseHisto[1][:-1]
width = phasesX[1] - phasesX[0]
phasesX += width/2
#Gaussian aproximation
bpeak = meteorsY.argmax()
peak = meteorsY.max()
jmin = bpeak - 5
jmax = bpeak + 5 + 1
if jmin<0:
jmin = 0
jmax = 6
elif jmax > meteorsY.size:
jmin = meteorsY.size - 6
jmax = meteorsY.size
x0 = numpy.array([peak,bpeak,50])
coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
#Gammas
gammas[i] = coeff[0][1]
return gammas
def __residualFunction(self, coeffs, y, t):
return y - self.__gauss_function(t, coeffs)
def __gauss_function(self, t, coeffs):
return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
meteorOps = SMOperations()
nchan = 4
pairx = pairsList[0]
pairy = pairsList[1]
center_xangle = 0
center_yangle = 0
range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
ntimes = len(range_angle)
nstepsx = 20.0
nstepsy = 20.0
for iz in range(ntimes):
min_xangle = -range_angle[iz]/2 + center_xangle
max_xangle = range_angle[iz]/2 + center_xangle
min_yangle = -range_angle[iz]/2 + center_yangle
max_yangle = range_angle[iz]/2 + center_yangle
inc_x = (max_xangle-min_xangle)/nstepsx
inc_y = (max_yangle-min_yangle)/nstepsy
alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
penalty = numpy.zeros((nstepsx,nstepsy))
jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
jph = numpy.zeros(nchan)
# Iterations looking for the offset
for iy in range(int(nstepsy)):
for ix in range(int(nstepsx)):
jph[pairy[1]] = alpha_y[iy]
jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
jph[pairx[1]] = alpha_x[ix]
jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
jph_array[:,ix,iy] = jph
meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
error = meteorsArray1[:,-1]
ind1 = numpy.where(error==0)[0]
penalty[ix,iy] = ind1.size
i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
phOffset = jph_array[:,i,j]
center_xangle = phOffset[pairx[1]]
center_yangle = phOffset[pairy[1]]
phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
phOffset = phOffset*180/numpy.pi
return phOffset
def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
dataOut.flagNoData = True
self.__dataReady = False
dataOut.outputInterval = nHours*3600
if self.__isConfig == False:
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
#Get Initial LTC time
self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
self.__isConfig = True
if self.__buffer == None:
self.__buffer = dataOut.data_param.copy()
else:
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
if self.__dataReady:
dataOut.utctimeInit = self.__initime
self.__initime += dataOut.outputInterval #to erase time offset
freq = dataOut.frequency
c = dataOut.C #m/s
lamb = c/freq
k = 2*numpy.pi/lamb
azimuth = 0
h = (hmin, hmax)
pairs = ((0,1),(2,3))
if channelPositions == None:
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
meteorOps = SMOperations()
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
# distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
meteorsArray = self.__buffer
error = meteorsArray[:,-1]
boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
ind1 = numpy.where(boolError)[0]
meteorsArray = meteorsArray[ind1,:]
meteorsArray[:,-1] = 0
phases = meteorsArray[:,8:12]
#Calculate Gammas
gammas = self.__getGammas(pairs, distances, phases)
# gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
#Calculate Phases
phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
phasesOff = phasesOff.reshape((1,phasesOff.size))
dataOut.data_output = -phasesOff
dataOut.flagNoData = False
self.__buffer = None
return
class SMOperations():
def __init__(self):
return
def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
arrayParameters = arrayParameters0.copy()
hmin = h[0]
hmax = h[1]
#Calculate AOA (Error N 3, 4)
#JONES ET AL. 1998
AOAthresh = numpy.pi/8
error = arrayParameters[:,-1]
phases = -arrayParameters[:,8:12] + jph
# phases = numpy.unwrap(phases)
arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
#Calculate Heights (Error N 13 and 14)
error = arrayParameters[:,-1]
Ranges = arrayParameters[:,1]
zenith = arrayParameters[:,4]
arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
#----------------------- Get Final data ------------------------------------
# error = arrayParameters[:,-1]
# ind1 = numpy.where(error==0)[0]
# arrayParameters = arrayParameters[ind1,:]
return arrayParameters
def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
arrayAOA = numpy.zeros((phases.shape[0],3))
cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
arrayAOA[:,2] = cosDirError
azimuthAngle = arrayAOA[:,0]
zenithAngle = arrayAOA[:,1]
#Setting Error
indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
error[indError] = 0
#Number 3: AOA not fesible
indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
error[indInvalid] = 3
#Number 4: Large difference in AOAs obtained from different antenna baselines
indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
error[indInvalid] = 4
return arrayAOA, error
def __getDirectionCosines(self, arrayPhase, pairsList, distances):
#Initializing some variables
ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
ang_aux = ang_aux.reshape(1,ang_aux.size)
cosdir = numpy.zeros((arrayPhase.shape[0],2))
cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
for i in range(2):
ph0 = arrayPhase[:,pairsList[i][0]]
ph1 = arrayPhase[:,pairsList[i][1]]
d0 = distances[pairsList[i][0]]
d1 = distances[pairsList[i][1]]
ph0_aux = ph0 + ph1
ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
# ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
# ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
#First Estimation
cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
#Most-Accurate Second Estimation
phi1_aux = ph0 - ph1
phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
#Direction Cosine 1
cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
#Searching the correct Direction Cosine
cosdir0_aux = cosdir0[:,i]
cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
#Minimum Distance
cosDiff = (cosdir1 - cosdir0_aux)**2
indcos = cosDiff.argmin(axis = 1)
#Saving Value obtained
cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
return cosdir0, cosdir
def __calculateAOA(self, cosdir, azimuth):
cosdirX = cosdir[:,0]
cosdirY = cosdir[:,1]
zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
return angles
def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
Ramb = 375 #Ramb = c/(2*PRF)
Re = 6371 #Earth Radius
heights = numpy.zeros(Ranges.shape)
R_aux = numpy.array([0,1,2])*Ramb
R_aux = R_aux.reshape(1,R_aux.size)
Ranges = Ranges.reshape(Ranges.size,1)
Ri = Ranges + R_aux
hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
#Check if there is a height between 70 and 110 km
h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
ind_h = numpy.where(h_bool == 1)[0]
hCorr = hi[ind_h, :]
ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
hCorr = hi[ind_hCorr]
heights[ind_h] = hCorr
#Setting Error
#Number 13: Height unresolvable echo: not valid height within 70 to 110 km
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
error[indError] = 0
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
error[indInvalid2] = 14
indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
error[indInvalid1] = 13
return heights, error
def getPhasePairs(self, channelPositions):
chanPos = numpy.array(channelPositions)
listOper = list(itertools.combinations(range(5),2))
distances = numpy.zeros(4)
axisX = []
axisY = []
distX = numpy.zeros(3)
distY = numpy.zeros(3)
ix = 0
iy = 0
pairX = numpy.zeros((2,2))
pairY = numpy.zeros((2,2))
for i in range(len(listOper)):
pairi = listOper[i]
posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
if posDif[0] == 0:
axisY.append(pairi)
distY[iy] = posDif[1]
iy += 1
elif posDif[1] == 0:
axisX.append(pairi)
distX[ix] = posDif[0]
ix += 1
for i in range(2):
if i==0:
dist0 = distX
axis0 = axisX
else:
dist0 = distY
axis0 = axisY
side = numpy.argsort(dist0)[:-1]
axis0 = numpy.array(axis0)[side,:]
chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
axis1 = numpy.unique(numpy.reshape(axis0,4))
side = axis1[axis1 != chanC]
diff1 = chanPos[chanC,i] - chanPos[side[0],i]
diff2 = chanPos[chanC,i] - chanPos[side[1],i]
if diff1<0:
chan2 = side[0]
d2 = numpy.abs(diff1)
chan1 = side[1]
d1 = numpy.abs(diff2)
else:
chan2 = side[1]
d2 = numpy.abs(diff2)
chan1 = side[0]
d1 = numpy.abs(diff1)
if i==0:
chanCX = chanC
chan1X = chan1
chan2X = chan2
distances[0:2] = numpy.array([d1,d2])
else:
chanCY = chanC
chan1Y = chan1
chan2Y = chan2
distances[2:4] = numpy.array([d1,d2])
# axisXsides = numpy.reshape(axisX[ix,:],4)
#
# channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
# channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
#
# ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
# ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
# channel25X = int(pairX[0,ind25X])
# channel20X = int(pairX[1,ind20X])
# ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
# ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
# channel25Y = int(pairY[0,ind25Y])
# channel20Y = int(pairY[1,ind20Y])
# pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
return pairslist, distances
# def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
#
# arrayAOA = numpy.zeros((phases.shape[0],3))
# cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
#
# arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
# cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
# arrayAOA[:,2] = cosDirError
#
# azimuthAngle = arrayAOA[:,0]
# zenithAngle = arrayAOA[:,1]
#
# #Setting Error
# #Number 3: AOA not fesible
# indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
# error[indInvalid] = 3
# #Number 4: Large difference in AOAs obtained from different antenna baselines
# indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
# error[indInvalid] = 4
# return arrayAOA, error
#
# def __getDirectionCosines(self, arrayPhase, pairsList):
#
# #Initializing some variables
# ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
# ang_aux = ang_aux.reshape(1,ang_aux.size)
#
# cosdir = numpy.zeros((arrayPhase.shape[0],2))
# cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
#
#
# for i in range(2):
# #First Estimation
# phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
# #Dealias
# indcsi = numpy.where(phi0_aux > numpy.pi)
# phi0_aux[indcsi] -= 2*numpy.pi
# indcsi = numpy.where(phi0_aux < -numpy.pi)
# phi0_aux[indcsi] += 2*numpy.pi
# #Direction Cosine 0
# cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
#
# #Most-Accurate Second Estimation
# phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
# phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
# #Direction Cosine 1
# cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
#
# #Searching the correct Direction Cosine
# cosdir0_aux = cosdir0[:,i]
# cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
# #Minimum Distance
# cosDiff = (cosdir1 - cosdir0_aux)**2
# indcos = cosDiff.argmin(axis = 1)
# #Saving Value obtained
# cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
#
# return cosdir0, cosdir
#
# def __calculateAOA(self, cosdir, azimuth):
# cosdirX = cosdir[:,0]
# cosdirY = cosdir[:,1]
#
# zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
# azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
# angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
#
# return angles
#
# def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
#
# Ramb = 375 #Ramb = c/(2*PRF)
# Re = 6371 #Earth Radius
# heights = numpy.zeros(Ranges.shape)
#
# R_aux = numpy.array([0,1,2])*Ramb
# R_aux = R_aux.reshape(1,R_aux.size)
#
# Ranges = Ranges.reshape(Ranges.size,1)
#
# Ri = Ranges + R_aux
# hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
#
# #Check if there is a height between 70 and 110 km
# h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
# ind_h = numpy.where(h_bool == 1)[0]
#
# hCorr = hi[ind_h, :]
# ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
#
# hCorr = hi[ind_hCorr]
# heights[ind_h] = hCorr
#
# #Setting Error
# #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
# #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
#
# indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
# error[indInvalid2] = 14
# indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
# error[indInvalid1] = 13
#
# return heights, error