##// END OF EJS Templates
El numero de alturas son actualizadas cuando se realiza la decodificación nHeigths = nHeigths - nBauds + 1
El numero de alturas son actualizadas cuando se realiza la decodificación nHeigths = nHeigths - nBauds + 1

File last commit:

r116:0a45d4fb137d
r116:0a45d4fb137d
Show More
SpectraProcessor.py
699 lines | 23.3 KiB | text/x-python | PythonLexer
'''
Created on Feb 7, 2012
@author $Author$
@version $Id$
'''
import os, sys
import numpy
import time
path = os.path.split(os.getcwd())[0]
sys.path.append(path)
from Model.Spectra import Spectra
from IO.SpectraIO import SpectraWriter
from Graphics.SpectraPlot import Spectrum
from JRONoise import Noise
class SpectraProcessor:
'''
classdocs
'''
dataInObj = None
dataOutObj = None
noiseObj = None
integratorObjList = []
decoderObjList = []
writerObjList = []
plotterObjList = []
integratorObjIndex = None
decoderObjIndex = None
writerObjIndex = None
plotterObjIndex = None
buffer = None
profIndex = 0
nFFTPoints = None
nChannels = None
nHeights = None
nPairs = None
pairList = None
def __init__(self):
'''
Constructor
'''
self.integratorObjIndex = None
self.decoderObjIndex = None
self.writerObjIndex = None
self.plotterObjIndex = None
self.integratorObjList = []
self.decoderObjList = []
self.writerObjList = []
self.plotterObjList = []
self.noiseObj = None
self.buffer = None
self.profIndex = 0
def setup(self, dataInObj=None, dataOutObj=None, nFFTPoints=None, pairList=None):
if dataInObj == None:
raise ValueError, ""
if nFFTPoints == None:
raise ValueError, ""
self.dataInObj = dataInObj
if dataOutObj == None:
dataOutObj = Spectra()
self.dataOutObj = dataOutObj
self.noiseObj = Noise()
##########################################
self.nFFTPoints = nFFTPoints
self.nChannels = self.dataInObj.nChannels
self.nHeights = self.dataInObj.nHeights
self.pairList = pairList
if pairList != None:
self.nPairs = len(pairList)
else:
self.nPairs = 0
self.dataOutObj.heightList = self.dataInObj.heightList
self.dataOutObj.channelIndexList = self.dataInObj.channelIndexList
self.dataOutObj.m_BasicHeader = self.dataInObj.m_BasicHeader.copy()
self.dataOutObj.m_ProcessingHeader = self.dataInObj.m_ProcessingHeader.copy()
self.dataOutObj.m_RadarControllerHeader = self.dataInObj.m_RadarControllerHeader.copy()
self.dataOutObj.m_SystemHeader = self.dataInObj.m_SystemHeader.copy()
self.dataOutObj.dataType = self.dataInObj.dataType
self.dataOutObj.nPairs = self.nPairs
self.dataOutObj.nChannels = self.nChannels
self.dataOutObj.nProfiles = self.nFFTPoints
self.dataOutObj.nHeights = self.nHeights
self.dataOutObj.nFFTPoints = self.nFFTPoints
#self.dataOutObj.data = None
self.dataOutObj.m_SystemHeader.numChannels = self.nChannels
self.dataOutObj.m_SystemHeader.nProfiles = self.nFFTPoints
self.dataOutObj.m_ProcessingHeader.totalSpectra = self.nChannels + self.nPairs
self.dataOutObj.m_ProcessingHeader.profilesPerBlock = self.nFFTPoints
self.dataOutObj.m_ProcessingHeader.numHeights = self.nHeights
self.dataOutObj.m_ProcessingHeader.shif_fft = True
spectraComb = numpy.zeros( (self.nChannels+self.nPairs)*2,numpy.dtype('u1'))
k = 0
for i in range( 0,self.nChannels*2,2 ):
spectraComb[i] = k
spectraComb[i+1] = k
k += 1
k *= 2
if self.pairList != None:
for pair in self.pairList:
spectraComb[k] = pair[0]
spectraComb[k+1] = pair[1]
k += 2
self.dataOutObj.m_ProcessingHeader.spectraComb = spectraComb
return self.dataOutObj
def init(self):
self.nHeights = self.dataInObj.nHeights
self.dataOutObj.nHeights = self.nHeights
self.dataOutObj.heightList = self.dataInObj.heightList
self.integratorObjIndex = 0
self.decoderObjIndex = 0
self.writerObjIndex = 0
self.plotterObjIndex = 0
if self.dataInObj.type == "Voltage":
if self.buffer == None:
self.buffer = numpy.zeros((self.nChannels,
self.nFFTPoints,
self.dataInObj.nHeights),
dtype='complex')
self.buffer[:,self.profIndex,:] = self.dataInObj.data
self.profIndex += 1
if self.profIndex == self.nFFTPoints:
self.__getFft()
self.dataOutObj.flagNoData = False
self.buffer = None
self.profIndex = 0
return
self.dataOutObj.flagNoData = True
return
#Other kind of data
if self.dataInObj.type == "Spectra":
self.dataOutObj.copy(self.dataInObj)
self.dataOutObj.flagNoData = False
return
raise ValueError, "The datatype is not valid"
def __getFft(self):
"""
Convierte valores de Voltaje a Spectra
Affected:
self.dataOutObj.data_spc
self.dataOutObj.data_cspc
self.dataOutObj.data_dc
self.dataOutObj.heightList
self.dataOutObj.m_BasicHeader
self.dataOutObj.m_ProcessingHeader
self.dataOutObj.m_RadarControllerHeader
self.dataOutObj.m_SystemHeader
self.profIndex
self.buffer
self.dataOutObj.flagNoData
self.dataOutObj.dataType
self.dataOutObj.nPairs
self.dataOutObj.nChannels
self.dataOutObj.nProfiles
self.dataOutObj.m_SystemHeader.numChannels
self.dataOutObj.m_ProcessingHeader.totalSpectra
self.dataOutObj.m_ProcessingHeader.profilesPerBlock
self.dataOutObj.m_ProcessingHeader.numHeights
self.dataOutObj.m_ProcessingHeader.spectraComb
self.dataOutObj.m_ProcessingHeader.shif_fft
"""
if self.dataInObj.flagNoData:
return 0
fft_volt = numpy.fft.fft(self.buffer,axis=1)
dc = fft_volt[:,0,:]
#calculo de self-spectra
fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
spc = fft_volt * numpy.conjugate(fft_volt)
spc = spc.real
blocksize = 0
blocksize += dc.size
blocksize += spc.size
cspc = None
pairIndex = 0
if self.pairList != None:
#calculo de cross-spectra
cspc = numpy.zeros((self.nPairs, self.nFFTPoints, self.nHeights), dtype='complex')
for pair in self.pairList:
cspc[pairIndex,:,:] = numpy.abs(fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]))
pairIndex += 1
blocksize += cspc.size
self.dataOutObj.data_spc = spc
self.dataOutObj.data_cspc = cspc
self.dataOutObj.data_dc = dc
self.dataOutObj.m_ProcessingHeader.blockSize = blocksize
self.dataOutObj.m_BasicHeader.utc = self.dataInObj.m_BasicHeader.utc
# self.getNoise()
def addWriter(self,wrpath):
objWriter = SpectraWriter(self.dataOutObj)
objWriter.setup(wrpath)
self.writerObjList.append(objWriter)
def addPlotter(self,index=None):
if index==None:
index = self.plotterObjIndex
plotObj = Spectrum(self.dataOutObj, index)
self.plotterObjList.append(plotObj)
def addIntegrator(self,N,timeInterval):
objIncohInt = IncoherentIntegration(N,timeInterval)
self.integratorObjList.append(objIncohInt)
def writeData(self, wrpath):
if self.dataOutObj.flagNoData:
return 0
if len(self.writerObjList) <= self.writerObjIndex:
self.addWriter(wrpath)
self.writerObjList[self.writerObjIndex].putData()
self.writerObjIndex += 1
def plotData(self,
xmin=None,
xmax=None,
ymin=None,
ymax=None,
zmin=None,
zmax=None,
titleList=None,
xlabelList=None,
ylabelList=None,
winTitle='',
colormap="br_green",
showColorbar=False,
showPowerProfile=False,
XAxisAsTime=False,
save=False,
index=None,
channelList=[]):
if self.dataOutObj.flagNoData:
return 0
if len(self.plotterObjList) <= self.plotterObjIndex:
self.addPlotter(index)
self.plotterObjList[self.plotterObjIndex].plotData(xmin,
xmax,
ymin,
ymax,
zmin,
zmax,
titleList,
xlabelList,
ylabelList,
winTitle,
colormap,
showColorbar,
showPowerProfile,
XAxisAsTime,
save,
channelList)
self.plotterObjIndex += 1
def integrator(self, N=None, timeInterval=None):
if self.dataOutObj.flagNoData:
return 0
if len(self.integratorObjList) <= self.integratorObjIndex:
self.addIntegrator(N,timeInterval)
myIncohIntObj = self.integratorObjList[self.integratorObjIndex]
myIncohIntObj.exe(data=self.dataOutObj.data_spc,timeOfData=self.dataOutObj.m_BasicHeader.utc)
if myIncohIntObj.isReady:
self.dataOutObj.data_spc = myIncohIntObj.data
self.dataOutObj.nAvg = myIncohIntObj.navg
self.dataOutObj.m_ProcessingHeader.incoherentInt = self.dataInObj.m_ProcessingHeader.incoherentInt*myIncohIntObj.navg
#print "myIncohIntObj.navg: ",myIncohIntObj.navg
self.dataOutObj.flagNoData = False
"""Calcular el ruido"""
self.getNoise()
else:
self.dataOutObj.flagNoData = True
self.integratorObjIndex += 1
def removeDC(self, type):
if self.dataOutObj.flagNoData:
return 0
def removeInterference(self):
if self.dataOutObj.flagNoData:
return 0
def removeSatellites(self):
if self.dataOutObj.flagNoData:
return 0
def getNoise(self, type="hildebrand", parm=None):
if parm == None:
parm =self.dataOutObj.m_ProcessingHeader.incoherentInt
self.noiseObj.setNoise(self.dataOutObj.data_spc)
if type == "hildebrand":
noise = self.noiseObj.byHildebrand(parm)
if type == "window":
noise = self.noiseObj.byWindow(parm)
if type == "sort":
noise = self.noiseObj.bySort(parm)
self.dataOutObj.noise = noise
# print 10*numpy.log10(noise)
def selectChannels(self, channelList, pairList=[]):
channelIndexList = []
for channel in channelList:
if channel in self.dataOutObj.channelList:
index = self.dataOutObj.channelList.index(channel)
channelIndexList.append(index)
pairIndexList = []
for pair in pairList:
if pair in self.dataOutObj.pairList:
index = self.dataOutObj.pairList.index(pair)
pairIndexList.append(index)
self.selectChannelsByIndex(channelIndexList, pairIndexList)
def selectChannelsByIndex(self, channelIndexList, pairIndexList=[]):
"""
Selecciona un bloque de datos en base a canales y pares segun el
channelIndexList y el pairIndexList
Input:
channelIndexList : lista de indices de los canales a seleccionar por ej.
Si tenemos los canales
self.channelList = (2,3,5,7)
y deseamos escoger los canales (3,7)
entonces colocaremos el parametro
channelndexList = (1,3)
pairIndexList : tupla de indice depares que se desea selecionar por ej.
Si tenemos los pares :
( (0,1), (0,2), (1,3), (2,5) )
y deseamos seleccionar los pares ((0,2), (2,5))
entonces colocaremos el parametro
pairIndexList = (1,3)
Affected:
self.dataOutObj.data_spc
self.dataOutObj.data_cspc
self.dataOutObj.data_dc
self.dataOutObj.nChannels
self.dataOutObj.nPairs
self.dataOutObj.m_ProcessingHeader.spectraComb
self.dataOutObj.m_SystemHeader.numChannels
self.dataOutObj.noise
Return:
None
"""
if self.dataOutObj.flagNoData:
return 0
if pairIndexList == []:
pairIndexList = numpy.arange(len(self.dataOutObj.pairList))
nChannels = len(channelIndexList)
nPairs = len(pairIndexList)
blocksize = 0
#self spectra
spc = self.dataOutObj.data_spc[channelIndexList,:,:]
blocksize += spc.size
cspc = None
if pairIndexList != []:
cspc = self.dataOutObj.data_cspc[pairIndexList,:,:]
blocksize += cspc.size
#DC channel
dc = None
if self.dataOutObj.m_ProcessingHeader.flag_dc:
dc = self.dataOutObj.data_dc[channelIndexList,:]
blocksize += dc.size
#Almacenar las combinaciones de canales y cros espectros
spectraComb = numpy.zeros( (nChannels+nPairs)*2,numpy.dtype('u1'))
i = 0
for spcChannel in channelIndexList:
spectraComb[i] = spcChannel
spectraComb[i+1] = spcChannel
i += 2
if pairList != None:
for pair in pairList:
spectraComb[i] = pair[0]
spectraComb[i+1] = pair[1]
i += 2
#######
self.dataOutObj.data_spc = spc
self.dataOutObj.data_cspc = cspc
self.dataOutObj.data_dc = dc
self.dataOutObj.nChannels = nChannels
self.dataOutObj.nPairs = nPairs
self.dataOutObj.channelIndexList = channelIndexList
self.dataOutObj.m_ProcessingHeader.spectraComb = spectraComb
self.dataOutObj.m_ProcessingHeader.totalSpectra = nChannels + nPairs
self.dataOutObj.m_SystemHeader.numChannels = nChannels
self.dataOutObj.nChannels = nChannels
self.dataOutObj.m_ProcessingHeader.blockSize = blocksize
if cspc == None:
self.dataOutObj.m_ProcessingHeader.flag_dc = False
if dc == None:
self.dataOutObj.m_ProcessingHeader.flag_cpsc = False
def selectHeightsByValue(self, minHei, maxHei):
"""
Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
minHei <= height <= maxHei
Input:
minHei : valor minimo de altura a considerar
maxHei : valor maximo de altura a considerar
Affected:
Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
Return:
None
"""
if self.dataOutObj.flagNoData:
return 0
if (minHei < self.dataOutObj.heightList[0]) or (minHei > maxHei):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
if (maxHei > self.dataOutObj.heightList[-1]):
raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
minIndex = 0
maxIndex = 0
data = self.dataOutObj.heightList
for i,val in enumerate(data):
if val < minHei:
continue
else:
minIndex = i;
break
for i,val in enumerate(data):
if val <= maxHei:
maxIndex = i;
else:
break
self.selectHeightsByIndex(minIndex, maxIndex)
def selectHeightsByIndex(self, minIndex, maxIndex):
"""
Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
minIndex <= index <= maxIndex
Input:
minIndex : valor minimo de altura a considerar
maxIndex : valor maximo de altura a considerar
Affected:
self.dataOutObj.data_spc
self.dataOutObj.data_cspc
self.dataOutObj.data_dc
self.dataOutObj.heightList
self.dataOutObj.nHeights
self.dataOutObj.m_ProcessingHeader.numHeights
self.dataOutObj.m_ProcessingHeader.blockSize
self.dataOutObj.m_ProcessingHeader.firstHeight
self.dataOutObj.m_RadarControllerHeader.numHeights
Return:
None
"""
if self.dataOutObj.flagNoData:
return 0
if (minIndex < 0) or (minIndex > maxIndex):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
if (maxIndex >= self.dataOutObj.nHeights):
raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
nChannels = self.dataOutObj.nChannels
nPairs = self.dataOutObj.nPairs
nProfiles = self.dataOutObj.nProfiles
dataType = self.dataOutObj.dataType
nHeights = maxIndex - minIndex + 1
blockSize = 0
#self spectra
spc = self.dataOutObj.data_spc[:,:,minIndex:maxIndex+1]
blockSize += spc.size
#cross spectra
cspc = None
if self.dataOutObj.data_cspc != None:
cspc = self.dataOutObj.data_cspc[:,:,minIndex:maxIndex+1]
blockSize += cspc.size
#DC channel
dc = self.dataOutObj.data_dc[:,minIndex:maxIndex+1]
blockSize += dc.size
self.dataOutObj.data_spc = spc
if cspc != None:
self.dataOutObj.data_cspc = cspc
self.dataOutObj.data_dc = dc
firstHeight = self.dataOutObj.heightList[minIndex]
self.dataOutObj.nHeights = nHeights
self.dataOutObj.m_ProcessingHeader.blockSize = blockSize
self.dataOutObj.m_ProcessingHeader.numHeights = nHeights
self.dataOutObj.m_ProcessingHeader.firstHeight = firstHeight
self.dataOutObj.m_RadarControllerHeader.numHeights = nHeights
self.dataOutObj.heightList = self.dataOutObj.heightList[minIndex:maxIndex+1]
class IncoherentIntegration:
integ_counter = None
data = None
navg = None
buffer = None
nIncohInt = None
def __init__(self, N = None, timeInterval = None):
"""
N
timeInterval - interval time [min], integer value
"""
self.data = None
self.navg = None
self.buffer = None
self.timeOut = None
self.exitCondition = False
self.isReady = False
self.nIncohInt = N
self.integ_counter = 0
if timeInterval!=None:
self.timeIntervalInSeconds = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
if ((timeInterval==None) and (N==None)):
print 'N = None ; timeInterval = None'
sys.exit(0)
elif timeInterval == None:
self.timeFlag = False
else:
self.timeFlag = True
def exe(self,data,timeOfData):
"""
data
timeOfData [seconds]
"""
if self.timeFlag:
if self.timeOut == None:
self.timeOut = timeOfData + self.timeIntervalInSeconds
if timeOfData < self.timeOut:
if self.buffer == None:
self.buffer = data
else:
self.buffer = self.buffer + data
self.integ_counter += 1
else:
self.exitCondition = True
else:
if self.integ_counter < self.nIncohInt:
if self.buffer == None:
self.buffer = data
else:
self.buffer = self.buffer + data
self.integ_counter += 1
if self.integ_counter == self.nIncohInt:
self.exitCondition = True
if self.exitCondition:
self.data = self.buffer
self.navg = self.integ_counter
self.isReady = True
self.buffer = None
self.timeOut = None
self.integ_counter = 0
self.exitCondition = False
if self.timeFlag:
self.buffer = data
self.timeOut = timeOfData + self.timeIntervalInSeconds
else:
self.isReady = False