import numpy
import math
from scipy import optimize, interpolate, signal, stats, ndimage
import re
import datetime
import copy
import sys
import importlib
import itertools

from jroproc_base import ProcessingUnit, Operation
from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
from scipy import asarray as ar,exp
from scipy.optimize import curve_fit

SPEED_OF_LIGHT = 299792458

class ParametersProc(ProcessingUnit):
    
    nSeconds = None

    def __init__(self):
        ProcessingUnit.__init__(self)
        
#         self.objectDict = {}
        self.buffer = None
        self.firstdatatime = None
        self.profIndex = 0
        self.dataOut = Parameters()
        
    def __updateObjFromInput(self):
        
        self.dataOut.inputUnit = self.dataIn.type
        
        self.dataOut.timeZone = self.dataIn.timeZone
        self.dataOut.dstFlag = self.dataIn.dstFlag
        self.dataOut.errorCount = self.dataIn.errorCount
        self.dataOut.useLocalTime = self.dataIn.useLocalTime
        
        self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
        self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
        self.dataOut.channelList = self.dataIn.channelList
        self.dataOut.heightList = self.dataIn.heightList
        self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
#         self.dataOut.nHeights = self.dataIn.nHeights
#         self.dataOut.nChannels = self.dataIn.nChannels
        self.dataOut.nBaud = self.dataIn.nBaud
        self.dataOut.nCode = self.dataIn.nCode
        self.dataOut.code = self.dataIn.code
#        self.dataOut.nProfiles = self.dataOut.nFFTPoints
        self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
#         self.dataOut.utctime = self.firstdatatime
        self.dataOut.utctime = self.dataIn.utctime
        self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
        self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
        self.dataOut.nCohInt = self.dataIn.nCohInt
#        self.dataOut.nIncohInt = 1
        self.dataOut.ippSeconds = self.dataIn.ippSeconds
#        self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
        self.dataOut.timeInterval = self.dataIn.timeInterval
        self.dataOut.heightList = self.dataIn.getHeiRange()   
        self.dataOut.frequency = self.dataIn.frequency
        self.dataOut.noise = self.dataIn.noise
        
    def run(self):
        
        #----------------------    Voltage Data    ---------------------------
        
        if self.dataIn.type == "Voltage":

            self.__updateObjFromInput()
            self.dataOut.data_pre = self.dataIn.data.copy()
            self.dataOut.flagNoData = False
            self.dataOut.utctimeInit = self.dataIn.utctime
            self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds  
            return
        
        #----------------------    Spectra Data    ---------------------------
        
        if self.dataIn.type == "Spectra":

            self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc)
            self.dataOut.abscissaList = self.dataIn.getVelRange(1)
            self.dataOut.noise = self.dataIn.getNoise()
            self.dataOut.normFactor = self.dataIn.normFactor
            self.dataOut.outputInterval = self.dataIn.outputInterval
            self.dataOut.groupList = self.dataIn.pairsList
            self.dataOut.flagNoData = False
            
            if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
                self.dataOut.ChanDist = self.dataIn.ChanDist
            
            if hasattr(self.dataIn, 'VelRange'): #Velocities range
                self.dataOut.VelRange = self.dataIn.VelRange
            
            if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
                self.dataOut.RadarConst = self.dataIn.RadarConst
                
            if hasattr(self.dataIn, 'NPW'): #NPW
                self.dataOut.NPW = self.dataIn.NPW
                
            if hasattr(self.dataIn, 'COFA'): #COFA
                self.dataOut.COFA = self.dataIn.COFA
                
                
                
        #----------------------    Correlation Data    ---------------------------
        
        if self.dataIn.type == "Correlation":
            acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
            
            self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
            self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
            self.dataOut.groupList = (acf_pairs, ccf_pairs)
            
            self.dataOut.abscissaList = self.dataIn.lagRange
            self.dataOut.noise = self.dataIn.noise
            self.dataOut.data_SNR = self.dataIn.SNR
            self.dataOut.flagNoData = False
            self.dataOut.nAvg = self.dataIn.nAvg
        
        #----------------------    Parameters Data    ---------------------------
        
        if self.dataIn.type == "Parameters":
            self.dataOut.copy(self.dataIn)
            self.dataOut.flagNoData = False
            
            return True
            
        self.__updateObjFromInput()
        self.dataOut.utctimeInit = self.dataIn.utctime
        self.dataOut.paramInterval = self.dataIn.timeInterval
        
        return
    

class PrecipitationProc(Operation):
    
    '''
         Funtion that uses Reflectivity factor (Z), and estimates rainfall Rate
         
         Input:    
            self.dataOut.data_pre    :    SelfSpectra
            
        
        Output:    
        
            self.dataOut.data_output :    Reflectivity factor, rainfall Rate 
        
        
        Parameters affected:    Winds, height range, SNR
    '''
    
    def run(self, dataOut):
        
        #numpy.set_printoptions(threshold=numpy.NaN)
        
        spc = dataOut.data_pre[0].copy()
        NPW = dataOut.NPW
        COFA = dataOut.COFA
        #print 'COFA',COFA.shape
        #spc = numpy.where(spc<0,spc, numpy.NaN )
        
        SNR = numpy.array([spc[0,:,:] / NPW[0] , spc[1,:,:] / NPW[1]])
        
        
        #print 'SNR',SNR.shape
        #print ' '
        RadarConst = dataOut.RadarConst
        #frequency = 34.85*10**9
        #Lambda = SPEED_OF_LIGHT/frequency
        
        Num_Hei = spc.shape[2]
        Num_Bin = spc.shape[1]
        Num_Chn = spc.shape[0]
        ETA = numpy.zeros(([Num_Chn ,Num_Hei]))
        data_output = numpy.ones([Num_Chn ,Num_Hei])*numpy.NaN
        
        Km = 0.93
        
        ETA = numpy.sum(SNR,1)
        ETA = numpy.where(ETA > 0. , ETA, numpy.NaN)
        
        Ze = numpy.ones([Num_Chn,Num_Hei] )
        
        for r in range(Num_Hei):
            
            Ze[0,r] =  ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
            Ze[1,r] =  ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
            
        
        dBZe = 10*numpy.log10(Ze)
        dataOut.data_output = Ze
        dataOut.data_param = dBZe
        
        print 'dBZe',dBZe[0,:]
    
        
    
    
class FullSpectralAnalysis(Operation): 
    
    """
        Function that implements Full Spectral Analisys technique.
        
        Input:    
            self.dataOut.data_pre    :    SelfSpectra and CrossSPectra data
            self.dataOut.groupList   :    Pairlist of channels
            self.dataOut.ChanDist    :    Physical distance between receivers
        
        
        Output:    
        
            self.dataOut.data_output :    Zonal wind, Meridional wind and Vertical wind 
        
        
        Parameters affected:    Winds, height range, SNR
        
    """
    def run(self, dataOut):
        
        spc = dataOut.data_pre[0].copy()
        cspc = dataOut.data_pre[1].copy()
        
        nChannel = spc.shape[0]
        nProfiles = spc.shape[1]
        nHeights = spc.shape[2]
        
        pairsList = dataOut.groupList 
        ChanDist = dataOut.ChanDist
        VelRange= dataOut.VelRange
        
        ySamples=numpy.ones([nChannel,nProfiles])
        phase=numpy.ones([nChannel,nProfiles])
        CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_)
        coherence=numpy.ones([nChannel,nProfiles])
        PhaseSlope=numpy.ones(nChannel)
        PhaseInter=numpy.ones(nChannel)
        
        data = dataOut.data_pre
        noise = dataOut.noise
        SNRdB = 10*numpy.log10(dataOut.data_SNR)
        
        FirstMoment = []
        SNRdBMean = []
        
        for j in range(nHeights):
            FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]]))
            SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]]))
            
        data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN
        
        velocityX=[]
        velocityY=[]
        velocityV=[]
        
        for Height in range(nHeights):
            
            
            
            [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange)
            
            if abs(Vzon)<100 and abs(Vzon)> 0.:
                velocityX=numpy.append(velocityX, Vzon)#Vmag
               
            else:
                velocityX=numpy.append(velocityX, numpy.NaN)
            
            if abs(Vmer)<100 and abs(Vmer) > 0.:
                velocityY=numpy.append(velocityY, Vmer)#Vang
                
            else:
                velocityY=numpy.append(velocityY, numpy.NaN)
            
            if abs(GaussCenter)<10:
                velocityV=numpy.append(velocityV, Vver)
            else:
                velocityV=numpy.append(velocityV, numpy.NaN)
                #FirstMoment[Height]= numpy.NaN
            if SNRdBMean[Height]  <12:
                FirstMoment[Height] = numpy.NaN
                velocityX[Height] = numpy.NaN
                velocityY[Height] = numpy.NaN
                
        
        data_output[0]=numpy.array(velocityX)
        data_output[1]=numpy.array(velocityY)
        data_output[2]=-FirstMoment
        
        print ' '
        #print 'FirstMoment'
        #print FirstMoment
        print ' '
        #print 'velocityY'
        #print numpy.array(velocityY)
        print ' '
        #print 'SNR'
        #print 10*numpy.log10(dataOut.data_SNR)
        #print numpy.shape(10*numpy.log10(dataOut.data_SNR))
        print ' '
        
        
        dataOut.data_output=data_output
        return
    
    
    def moving_average(self,x, N=2):
        return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
    
    def gaus(self,xSamples,a,x0,sigma):
        return a*exp(-(xSamples-x0)**2/(2*sigma**2))
    
    def Find(self,x,value):
        for index in range(len(x)):
            if x[index]==value:
                return index
    
    def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange):
        
        ySamples=numpy.ones([spc.shape[0],spc.shape[1]])
        phase=numpy.ones([spc.shape[0],spc.shape[1]])
        CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_)
        coherence=numpy.ones([spc.shape[0],spc.shape[1]])
        PhaseSlope=numpy.ones(spc.shape[0])
        PhaseInter=numpy.ones(spc.shape[0])
        xFrec=VelRange
        
        '''Getting Eij and Nij'''
        
        E01=ChanDist[0][0]
        N01=ChanDist[0][1]
        
        E02=ChanDist[1][0]
        N02=ChanDist[1][1]
        
        E12=ChanDist[2][0]
        N12=ChanDist[2][1]
        
        z = spc.copy()
        z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
        
        for i in range(spc.shape[0]):  
            
            '''****** Line of Data SPC ******'''
            zline=z[i,:,Height]
            
            '''****** SPC is normalized ******'''
            FactNorm= zline.copy() / numpy.sum(zline.copy())
            FactNorm= FactNorm/numpy.sum(FactNorm)
            
            SmoothSPC=self.moving_average(FactNorm,N=3)
            
            xSamples = ar(range(len(SmoothSPC)))
            ySamples[i] = SmoothSPC-noise[i]
            
        for i in range(spc.shape[0]):
                
            '''****** Line of Data CSPC ******'''
            cspcLine=cspc[i,:,Height].copy()
            
            '''****** CSPC is normalized ******'''
            chan_index0 = pairsList[i][0]
            chan_index1 = pairsList[i][1]
            CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])
            
            CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor)
            
            CSPCSamples[i] = CSPCNorm-noise[i]
            coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
            
            coherence[i]= self.moving_average(coherence[i],N=2)
            
            phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
            
        '''****** Getting fij width ******'''
        
        yMean=[]
        yMean2=[]    
        
        for j in range(len(ySamples[1])):
            yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]]))
        
        '''******* Getting fitting Gaussian ******'''
        meanGauss=sum(xSamples*yMean) / len(xSamples)
        sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples)
        
        if (abs(meanGauss/sigma**2) > 0.00001) :
        
            try:    
                popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma])
                
                if numpy.amax(popt)>numpy.amax(yMean)*0.3:
                    FitGauss=self.gaus(xSamples,*popt)
                    
                else: 
                    FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
                    print 'Verificador:     Dentro', Height
            except RuntimeError:
                FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
                
#                
        else:
            FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
        
        Maximun=numpy.amax(yMean)
        eMinus1=Maximun*numpy.exp(-1)*0.8
        
        HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1)))
        HalfWidth= xFrec[HWpos]
        GCpos=self.Find(FitGauss, numpy.amax(FitGauss))
        Vpos=self.Find(FactNorm, numpy.amax(FactNorm))
        
        #Vpos=FirstMoment[]
        
        '''****** Getting Fij ******'''
        
        GaussCenter=xFrec[GCpos]
        if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0):
            Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001
        else:
            Fij=abs(GaussCenter-HalfWidth)+0.0000001
        
        '''****** Getting Frecuency range of significant data ******'''
        
        Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10)))
        
        if Rangpos<GCpos:
            Range=numpy.array([Rangpos,2*GCpos-Rangpos])
        else:
            Range=numpy.array([2*GCpos-Rangpos,Rangpos])
        
        FrecRange=xFrec[Range[0]:Range[1]]
        
        '''****** Getting SCPC Slope ******'''
        
        for i in range(spc.shape[0]):
            
            if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5:
                PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) 
            
                slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange)
                PhaseSlope[i]=slope
                PhaseInter[i]=intercept
            else:
                PhaseSlope[i]=0
                PhaseInter[i]=0
        
            '''Getting constant C'''
            cC=(Fij*numpy.pi)**2
            
            '''****** Getting constants F and G ******'''
            MijEijNij=numpy.array([[E02,N02], [E12,N12]])
            MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
            MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) 
            MijResults=numpy.array([MijResult0,MijResult1])
            (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
            
            '''****** Getting constants A, B and H ******'''
            W01=numpy.amax(coherence[0])
            W02=numpy.amax(coherence[1])
            W12=numpy.amax(coherence[2])
            
            WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
            WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
            WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
            
            WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
            
            WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ])    
            (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
            
            VxVy=numpy.array([[cA,cH],[cH,cB]])
            
            VxVyResults=numpy.array([-cF,-cG])
            (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
            Vzon = Vy
            Vmer = Vx
            Vmag=numpy.sqrt(Vzon**2+Vmer**2)
            Vang=numpy.arctan2(Vmer,Vzon)
            Vver=xFrec[Vpos]
        
        return Vzon, Vmer, Vver, GaussCenter
            
class SpectralMoments(Operation):
    
    '''
        Function SpectralMoments()
        
        Calculates moments (power, mean, standard deviation) and SNR of the signal
        
        Type of dataIn:    Spectra
        
        Configuration Parameters:
        
            dirCosx    :     Cosine director in X axis
            dirCosy    :     Cosine director in Y axis
        
            elevation  :
            azimuth    :
        
        Input:
            channelList    :    simple channel list to select e.g. [2,3,7] 
            self.dataOut.data_pre        :    Spectral data
            self.dataOut.abscissaList    :    List of frequencies
            self.dataOut.noise           :    Noise level per channel
            
        Affected:
            self.dataOut.data_param      :    Parameters per channel
            self.dataOut.data_SNR        :    SNR per channel
            
    '''
    
    def run(self, dataOut):
        
        #dataOut.data_pre = dataOut.data_pre[0]
        data = dataOut.data_pre[0]
        absc = dataOut.abscissaList[:-1]
        noise = dataOut.noise
        nChannel = data.shape[0]
        data_param = numpy.zeros((nChannel, 4, data.shape[2]))
                
        for ind in range(nChannel):
            data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
        
        dataOut.data_param = data_param[:,1:,:]
        dataOut.data_SNR = data_param[:,0]
        return
    
    def __calculateMoments(self, oldspec, oldfreq, n0, 
                           nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
        
        if (nicoh == None): nicoh = 1
        if (graph == None): graph = 0    
        if (smooth == None): smooth = 0
        elif (self.smooth < 3): smooth = 0

        if (type1 == None): type1 = 0
        if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1
        if (snrth == None): snrth = -3
        if (dc == None): dc = 0
        if (aliasing == None): aliasing = 0
        if (oldfd == None): oldfd = 0
        if (wwauto == None): wwauto = 0
         
        if (n0 < 1.e-20):   n0 = 1.e-20
        
        freq = oldfreq
        vec_power = numpy.zeros(oldspec.shape[1])
        vec_fd = numpy.zeros(oldspec.shape[1])
        vec_w = numpy.zeros(oldspec.shape[1])
        vec_snr = numpy.zeros(oldspec.shape[1])

        for ind in range(oldspec.shape[1]):
                        
            spec = oldspec[:,ind]
            aux = spec*fwindow
            max_spec = aux.max()
            m = list(aux).index(max_spec)
                       
            #Smooth    
            if (smooth == 0):   spec2 = spec
            else:   spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
    
            #    Calculo de Momentos
            bb = spec2[range(m,spec2.size)]
            bb = (bb<n0).nonzero()
            bb = bb[0]
            
            ss = spec2[range(0,m + 1)]
            ss = (ss<n0).nonzero()
            ss = ss[0]
            
            if (bb.size == 0):
                bb0 = spec.size - 1 - m
            else:   
                bb0 = bb[0] - 1
                if (bb0 < 0):
                    bb0 = 0
                    
            if (ss.size == 0):   ss1 = 1
            else: ss1 = max(ss) + 1
            
            if (ss1 > m):   ss1 = m
            
            valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1               
            power = ((spec2[valid] - n0)*fwindow[valid]).sum()
            fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
            w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
            snr = (spec2.mean()-n0)/n0               
                      
            if (snr < 1.e-20) :  
                snr = 1.e-20
            
            vec_power[ind] = power
            vec_fd[ind] = fd
            vec_w[ind] = w
            vec_snr[ind] = snr
         
        moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
        return moments
    
    #------------------    Get SA Parameters    --------------------------
    
    def GetSAParameters(self):
        #SA en frecuencia
        pairslist = self.dataOut.groupList
        num_pairs = len(pairslist)
        
        vel = self.dataOut.abscissaList
        spectra = self.dataOut.data_pre
        cspectra = self.dataIn.data_cspc
        delta_v = vel[1] - vel[0] 
        
        #Calculating the power spectrum
        spc_pow = numpy.sum(spectra, 3)*delta_v
        #Normalizing Spectra
        norm_spectra = spectra/spc_pow
        #Calculating the norm_spectra at peak
        max_spectra = numpy.max(norm_spectra, 3)  
        
        #Normalizing Cross Spectra
        norm_cspectra = numpy.zeros(cspectra.shape)
        
        for i in range(num_chan):
            norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
        
        max_cspectra = numpy.max(norm_cspectra,2)
        max_cspectra_index = numpy.argmax(norm_cspectra, 2)
        
        for i in range(num_pairs):
            cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
    #-------------------    Get Lags    ----------------------------------
    
class SALags(Operation):
    '''
    Function GetMoments()

    Input:
        self.dataOut.data_pre
        self.dataOut.abscissaList
        self.dataOut.noise
        self.dataOut.normFactor
        self.dataOut.data_SNR
        self.dataOut.groupList
        self.dataOut.nChannels
        
    Affected:
        self.dataOut.data_param
    
    '''
    def run(self, dataOut):    
        data_acf = dataOut.data_pre[0]
        data_ccf = dataOut.data_pre[1]
        normFactor_acf = dataOut.normFactor[0]
        normFactor_ccf = dataOut.normFactor[1]
        pairs_acf = dataOut.groupList[0]
        pairs_ccf = dataOut.groupList[1]
        
        nHeights = dataOut.nHeights
        absc = dataOut.abscissaList
        noise = dataOut.noise
        SNR = dataOut.data_SNR
        nChannels = dataOut.nChannels
#         pairsList = dataOut.groupList
#         pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)

        for l in range(len(pairs_acf)):
            data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
            
        for l in range(len(pairs_ccf)):
            data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
        
        dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
        dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
        dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
        return
    
#     def __getPairsAutoCorr(self, pairsList, nChannels):
# 
#         pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
#             
#         for l in range(len(pairsList)):    
#             firstChannel = pairsList[l][0]
#             secondChannel = pairsList[l][1]
#                 
#             #Obteniendo pares de Autocorrelacion     
#             if firstChannel == secondChannel:
#                 pairsAutoCorr[firstChannel] = int(l)
#              
#         pairsAutoCorr = pairsAutoCorr.astype(int)
#         
#         pairsCrossCorr = range(len(pairsList))
#         pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
#         
#         return pairsAutoCorr, pairsCrossCorr
    
    def __calculateTaus(self, data_acf, data_ccf, lagRange):
        
        lag0 = data_acf.shape[1]/2
        #Funcion de Autocorrelacion
        mean_acf = stats.nanmean(data_acf, axis = 0)
        
        #Obtencion Indice de TauCross
        ind_ccf = data_ccf.argmax(axis = 1)
        #Obtencion Indice de TauAuto
        ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
        ccf_lag0 = data_ccf[:,lag0,:]
        
        for i in range(ccf_lag0.shape[0]):
            ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
            
        #Obtencion de TauCross y TauAuto
        tau_ccf = lagRange[ind_ccf]
        tau_acf  = lagRange[ind_acf]
        
        Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
        
        tau_ccf[Nan1,Nan2] = numpy.nan
        tau_acf[Nan1,Nan2] = numpy.nan
        tau = numpy.vstack((tau_ccf,tau_acf))
        
        return tau
    
    def __calculateLag1Phase(self, data, lagTRange):
        data1 = stats.nanmean(data, axis = 0)
        lag1 = numpy.where(lagTRange == 0)[0][0] + 1

        phase = numpy.angle(data1[lag1,:])
        
        return phase
    
class SpectralFitting(Operation):
    '''
        Function GetMoments()
        
        Input:
        Output:
        Variables modified:
    '''
    
    def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):    
        
        
        if path != None:
            sys.path.append(path)
        self.dataOut.library = importlib.import_module(file)
        
        #To be inserted as a parameter
        groupArray = numpy.array(groupList)
#         groupArray = numpy.array([[0,1],[2,3]]) 
        self.dataOut.groupList = groupArray
        
        nGroups = groupArray.shape[0]
        nChannels = self.dataIn.nChannels
        nHeights=self.dataIn.heightList.size
        
        #Parameters Array
        self.dataOut.data_param = None
        
        #Set constants
        constants = self.dataOut.library.setConstants(self.dataIn)
        self.dataOut.constants = constants
        M = self.dataIn.normFactor
        N = self.dataIn.nFFTPoints
        ippSeconds = self.dataIn.ippSeconds
        K = self.dataIn.nIncohInt
        pairsArray = numpy.array(self.dataIn.pairsList)
        
        #List of possible combinations
        listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
        indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
        
        if getSNR:
            listChannels = groupArray.reshape((groupArray.size))
            listChannels.sort()
            noise = self.dataIn.getNoise()
            self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
        
        for i in range(nGroups): 
            coord = groupArray[i,:]
            
            #Input data array
            data = self.dataIn.data_spc[coord,:,:]/(M*N)
            data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
            
            #Cross Spectra data array for Covariance Matrixes
            ind = 0
            for pairs in listComb:
                pairsSel = numpy.array([coord[x],coord[y]])
                indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
                ind += 1
            dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
            dataCross = dataCross**2/K
            
            for h in range(nHeights):
#                 print self.dataOut.heightList[h]
                
                #Input
                d = data[:,h]

                #Covariance Matrix
                D = numpy.diag(d**2/K)
                ind = 0
                for pairs in listComb:
                    #Coordinates in Covariance Matrix
                    x = pairs[0]    
                    y = pairs[1]
                    #Channel Index
                    S12 = dataCross[ind,:,h]
                    D12 = numpy.diag(S12)
                    #Completing Covariance Matrix with Cross Spectras
                    D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
                    D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
                    ind += 1
                Dinv=numpy.linalg.inv(D)
                L=numpy.linalg.cholesky(Dinv)
                LT=L.T

                dp = numpy.dot(LT,d)
                
                #Initial values
                data_spc = self.dataIn.data_spc[coord,:,h]
                
                if (h>0)and(error1[3]<5):
                    p0 = self.dataOut.data_param[i,:,h-1]
                else:
                    p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
                
                try:
                    #Least Squares
                    minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
#                   minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
                    #Chi square error
                    error0 = numpy.sum(infodict['fvec']**2)/(2*N)
                    #Error with Jacobian
                    error1 = self.dataOut.library.errorFunction(minp,constants,LT)
                except:
                    minp = p0*numpy.nan
                    error0 = numpy.nan
                    error1 = p0*numpy.nan
                                         
                #Save
                if self.dataOut.data_param == None:
                    self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
                    self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
                
                self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
                self.dataOut.data_param[i,:,h] = minp
        return
    
    def __residFunction(self, p, dp, LT, constants):

        fm = self.dataOut.library.modelFunction(p, constants)
        fmp=numpy.dot(LT,fm)
                    
        return  dp-fmp

    def __getSNR(self, z, noise):
        
        avg = numpy.average(z, axis=1)
        SNR = (avg.T-noise)/noise
        SNR = SNR.T
        return SNR
    
    def __chisq(p,chindex,hindex):
        #similar to Resid but calculates CHI**2
        [LT,d,fm]=setupLTdfm(p,chindex,hindex)
        dp=numpy.dot(LT,d)
        fmp=numpy.dot(LT,fm)
        chisq=numpy.dot((dp-fmp).T,(dp-fmp))
        return chisq
    
class WindProfiler(Operation):
       
    __isConfig = False
        
    __initime = None
    __lastdatatime = None
    __integrationtime = None
    
    __buffer = None
    
    __dataReady = False
    
    __firstdata = None
    
    n = None
    
    def __init__(self):    
        Operation.__init__(self)
    
    def __calculateCosDir(self, elev, azim):
        zen = (90 - elev)*numpy.pi/180
        azim = azim*numpy.pi/180
        cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) 
        cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
        
        signX = numpy.sign(numpy.cos(azim))
        signY = numpy.sign(numpy.sin(azim))
        
        cosDirX = numpy.copysign(cosDirX, signX)
        cosDirY = numpy.copysign(cosDirY, signY)
        return cosDirX, cosDirY
    
    def __calculateAngles(self, theta_x, theta_y, azimuth):
   
        dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
        zenith_arr = numpy.arccos(dir_cosw)
        azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
        
        dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
        dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
        
        return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw

    def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
        
#         
        if horOnly:
            A = numpy.c_[dir_cosu,dir_cosv]
        else:
            A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
        A = numpy.asmatrix(A)
        A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()

        return A1

    def __correctValues(self, heiRang, phi, velRadial, SNR):
        listPhi = phi.tolist()
        maxid = listPhi.index(max(listPhi))
        minid = listPhi.index(min(listPhi))
        
        rango = range(len(phi))       
   #     rango = numpy.delete(rango,maxid)
        
        heiRang1 = heiRang*math.cos(phi[maxid])
        heiRangAux = heiRang*math.cos(phi[minid])
        indOut = (heiRang1 < heiRangAux[0]).nonzero()
        heiRang1 = numpy.delete(heiRang1,indOut)
        
        velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
        SNR1 = numpy.zeros([len(phi),len(heiRang1)])
        
        for i in rango:
            x = heiRang*math.cos(phi[i])
            y1 = velRadial[i,:]
            f1 = interpolate.interp1d(x,y1,kind = 'cubic')
            
            x1 = heiRang1
            y11 = f1(x1)
            
            y2 = SNR[i,:]
            f2 = interpolate.interp1d(x,y2,kind = 'cubic')
            y21 = f2(x1)
            
            velRadial1[i,:] = y11
            SNR1[i,:] = y21
             
        return heiRang1, velRadial1, SNR1

    def __calculateVelUVW(self, A, velRadial):
        
        #Operacion Matricial
#         velUVW = numpy.zeros((velRadial.shape[1],3))
#         for ind in range(velRadial.shape[1]):
#             velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
#         velUVW = velUVW.transpose()
        velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
        velUVW[:,:] = numpy.dot(A,velRadial)
        
        
        return velUVW
    
#     def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
    
    def techniqueDBS(self, kwargs):
        """
        Function that implements Doppler Beam Swinging (DBS) technique.
        
        Input:    Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
                    Direction correction (if necessary), Ranges and SNR
        
        Output:    Winds estimation (Zonal, Meridional and Vertical)
        
        Parameters affected:    Winds, height range, SNR
        """
        velRadial0 = kwargs['velRadial']
        heiRang = kwargs['heightList']
        SNR0 = kwargs['SNR']
        
        if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
            theta_x = numpy.array(kwargs['dirCosx'])
            theta_y = numpy.array(kwargs['dirCosy'])
        else:
            elev = numpy.array(kwargs['elevation'])
            azim = numpy.array(kwargs['azimuth'])
            theta_x, theta_y = self.__calculateCosDir(elev, azim)
        azimuth = kwargs['correctAzimuth']    
        if kwargs.has_key('horizontalOnly'):
            horizontalOnly = kwargs['horizontalOnly']
        else:   horizontalOnly = False
        if kwargs.has_key('correctFactor'):
            correctFactor = kwargs['correctFactor']
        else:   correctFactor = 1
        if kwargs.has_key('channelList'):
            channelList = kwargs['channelList']
            if len(channelList) == 2:
                horizontalOnly = True
            arrayChannel = numpy.array(channelList)
            param = param[arrayChannel,:,:]
            theta_x = theta_x[arrayChannel]
            theta_y = theta_y[arrayChannel]
    
        azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) 
        heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)  
        A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
          
        #Calculo de Componentes de la velocidad con DBS
        winds = self.__calculateVelUVW(A,velRadial1)
        
        return winds, heiRang1, SNR1
    
    def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
        
        nPairs = len(pairs_ccf)
        posx = numpy.asarray(posx)
        posy = numpy.asarray(posy)
        
        #Rotacion Inversa para alinear con el azimuth
        if azimuth!= None:
            azimuth = azimuth*math.pi/180
            posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
            posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
        else:
            posx1 = posx
            posy1 = posy
        
        #Calculo de Distancias
        distx = numpy.zeros(nPairs)
        disty = numpy.zeros(nPairs)
        dist = numpy.zeros(nPairs)
        ang = numpy.zeros(nPairs)
        
        for i in range(nPairs):
            distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
            disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] 
            dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
            ang[i] = numpy.arctan2(disty[i],distx[i])
        
        return distx, disty, dist, ang
        #Calculo de Matrices   
#         nPairs = len(pairs)
#         ang1 = numpy.zeros((nPairs, 2, 1))
#         dist1 = numpy.zeros((nPairs, 2, 1))
#         
#         for j in range(nPairs):
#             dist1[j,0,0] = dist[pairs[j][0]]
#             dist1[j,1,0] = dist[pairs[j][1]]
#             ang1[j,0,0] = ang[pairs[j][0]]
#             ang1[j,1,0] = ang[pairs[j][1]]
#             
#         return distx,disty, dist1,ang1

    
    def __calculateVelVer(self, phase, lagTRange, _lambda):

        Ts = lagTRange[1] - lagTRange[0]
        velW = -_lambda*phase/(4*math.pi*Ts)
        
        return velW
    
    def __calculateVelHorDir(self, dist, tau1, tau2, ang):
        nPairs = tau1.shape[0]
        nHeights = tau1.shape[1]
        vel = numpy.zeros((nPairs,3,nHeights))       
        dist1 = numpy.reshape(dist, (dist.size,1))
        
        angCos = numpy.cos(ang)
        angSin = numpy.sin(ang)
        
        vel0 = dist1*tau1/(2*tau2**2) 
        vel[:,0,:] = (vel0*angCos).sum(axis = 1)
        vel[:,1,:] = (vel0*angSin).sum(axis = 1)
        
        ind = numpy.where(numpy.isinf(vel))
        vel[ind] = numpy.nan
                
        return vel
    
#     def __getPairsAutoCorr(self, pairsList, nChannels):
# 
#         pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
#             
#         for l in range(len(pairsList)):    
#             firstChannel = pairsList[l][0]
#             secondChannel = pairsList[l][1]
#                 
#             #Obteniendo pares de Autocorrelacion     
#             if firstChannel == secondChannel:
#                 pairsAutoCorr[firstChannel] = int(l)
#              
#         pairsAutoCorr = pairsAutoCorr.astype(int)
#         
#         pairsCrossCorr = range(len(pairsList))
#         pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
#         
#         return pairsAutoCorr, pairsCrossCorr
    
#     def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
    def techniqueSA(self, kwargs):
        
        """ 
        Function that implements Spaced Antenna (SA) technique.
        
        Input:    Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
                    Direction correction (if necessary), Ranges and SNR
        
        Output:    Winds estimation (Zonal, Meridional and Vertical)
        
        Parameters affected:    Winds
        """
        position_x = kwargs['positionX']
        position_y = kwargs['positionY']
        azimuth = kwargs['azimuth']
        
        if kwargs.has_key('correctFactor'):
            correctFactor = kwargs['correctFactor']
        else:
            correctFactor = 1
        
        groupList = kwargs['groupList']
        pairs_ccf = groupList[1]
        tau = kwargs['tau']
        _lambda = kwargs['_lambda']
        
        #Cross Correlation pairs obtained
#         pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
#         pairsArray = numpy.array(pairsList)[pairsCrossCorr]
#         pairsSelArray = numpy.array(pairsSelected)
#         pairs = []
#         
#         #Wind estimation pairs obtained
#         for i in range(pairsSelArray.shape[0]/2):
#             ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
#             ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
#             pairs.append((ind1,ind2))
        
        indtau = tau.shape[0]/2
        tau1 = tau[:indtau,:]
        tau2 = tau[indtau:-1,:]
#         tau1 = tau1[pairs,:]
#         tau2 = tau2[pairs,:]
        phase1 = tau[-1,:]
        
        #---------------------------------------------------------------------
        #Metodo Directo    
        distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
        winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
        winds = stats.nanmean(winds, axis=0)
        #---------------------------------------------------------------------
        #Metodo General
#         distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
#         #Calculo Coeficientes de Funcion de Correlacion
#         F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
#         #Calculo de Velocidades
#         winds = self.calculateVelUV(F,G,A,B,H)

        #---------------------------------------------------------------------
        winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
        winds = correctFactor*winds
        return winds
    
    def __checkTime(self, currentTime, paramInterval, outputInterval):
        
        dataTime = currentTime + paramInterval
        deltaTime = dataTime - self.__initime
        
        if deltaTime >= outputInterval or deltaTime < 0:
            self.__dataReady = True
        return 
    
    def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
        '''
        Function that implements winds estimation technique with detected meteors.
        
        Input:    Detected meteors, Minimum meteor quantity to wind estimation
        
        Output:    Winds estimation (Zonal and Meridional)
        
        Parameters affected:    Winds
        '''      
#         print arrayMeteor.shape  
        #Settings
        nInt = (heightMax - heightMin)/2
#         print nInt
        nInt = int(nInt)
#         print nInt
        winds = numpy.zeros((2,nInt))*numpy.nan    
        
        #Filter errors
        error = numpy.where(arrayMeteor[:,-1] == 0)[0]
        finalMeteor = arrayMeteor[error,:]
        
        #Meteor Histogram
        finalHeights = finalMeteor[:,2]
        hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
        nMeteorsPerI = hist[0]
        heightPerI = hist[1]
        
        #Sort of meteors
        indSort = finalHeights.argsort()
        finalMeteor2 = finalMeteor[indSort,:]
        
        #    Calculating winds
        ind1 = 0
        ind2 = 0   
        
        for i in range(nInt):
            nMet = nMeteorsPerI[i]
            ind1 = ind2
            ind2 = ind1 + nMet
            
            meteorAux = finalMeteor2[ind1:ind2,:]
            
            if meteorAux.shape[0] >= meteorThresh:
                vel = meteorAux[:, 6]
                zen = meteorAux[:, 4]*numpy.pi/180
                azim = meteorAux[:, 3]*numpy.pi/180
                
                n = numpy.cos(zen)
        #         m = (1 - n**2)/(1 - numpy.tan(azim)**2)
        #         l = m*numpy.tan(azim)
                l = numpy.sin(zen)*numpy.sin(azim)
                m = numpy.sin(zen)*numpy.cos(azim)
                
                A = numpy.vstack((l, m)).transpose()
                A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
                windsAux = numpy.dot(A1, vel)
                
                winds[0,i] = windsAux[0]
                winds[1,i] = windsAux[1]
                
        return winds, heightPerI[:-1]
    
    def techniqueNSM_SA(self, **kwargs):
        metArray = kwargs['metArray']
        heightList = kwargs['heightList']
        timeList = kwargs['timeList']
        
        rx_location = kwargs['rx_location']
        groupList = kwargs['groupList']
        azimuth = kwargs['azimuth']
        dfactor = kwargs['dfactor']
        k = kwargs['k']
        
        azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
        d = dist*dfactor
        #Phase calculation
        metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
        
        metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
        
        velEst = numpy.zeros((heightList.size,2))*numpy.nan
        azimuth1 = azimuth1*numpy.pi/180
        
        for i in range(heightList.size):
            h = heightList[i]
            indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
            metHeight = metArray1[indH,:]
            if metHeight.shape[0] >= 2:
                velAux = numpy.asmatrix(metHeight[:,-2]).T    #Radial Velocities
                iazim = metHeight[:,1].astype(int)
                azimAux = numpy.asmatrix(azimuth1[iazim]).T    #Azimuths
                A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
                A = numpy.asmatrix(A)
                A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
                velHor = numpy.dot(A1,velAux)
                
                velEst[i,:] = numpy.squeeze(velHor)
        return velEst
    
    def __getPhaseSlope(self, metArray, heightList, timeList):
        meteorList = []
        #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
        #Putting back together the meteor matrix
        utctime = metArray[:,0]
        uniqueTime = numpy.unique(utctime)
        
        phaseDerThresh = 0.5
        ippSeconds = timeList[1] - timeList[0]
        sec = numpy.where(timeList>1)[0][0]
        nPairs = metArray.shape[1] - 6
        nHeights = len(heightList)
        
        for t in uniqueTime:
            metArray1 = metArray[utctime==t,:]
#         phaseDerThresh = numpy.pi/4 #reducir Phase thresh
            tmet = metArray1[:,1].astype(int)
            hmet = metArray1[:,2].astype(int)
            
            metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
            metPhase[:,:] = numpy.nan
            metPhase[:,hmet,tmet] = metArray1[:,6:].T
            
            #Delete short trails
            metBool = ~numpy.isnan(metPhase[0,:,:])
            heightVect = numpy.sum(metBool, axis = 1)
            metBool[heightVect<sec,:] = False
            metPhase[:,heightVect<sec,:] = numpy.nan
            
            #Derivative
            metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
            phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
            metPhase[phDerAux] = numpy.nan
                
            #--------------------------METEOR DETECTION    -----------------------------------------
            indMet = numpy.where(numpy.any(metBool,axis=1))[0]
            
            for p in numpy.arange(nPairs):
                phase = metPhase[p,:,:]
                phDer = metDer[p,:,:]
                
                for h in indMet:
                    height = heightList[h]
                    phase1 = phase[h,:] #82
                    phDer1 = phDer[h,:]
                       
                    phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)])   #Unwrap
                       
                    indValid = numpy.where(~numpy.isnan(phase1))[0]
                    initMet = indValid[0]
                    endMet = 0
                                           
                    for i in range(len(indValid)-1):
                           
                        #Time difference
                        inow = indValid[i]
                        inext = indValid[i+1]
                        idiff = inext - inow
                        #Phase difference
                        phDiff = numpy.abs(phase1[inext] - phase1[inow]) 
                       
                        if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]:   #End of Meteor
                            sizeTrail = inow - initMet + 1
                            if sizeTrail>3*sec:  #Too short meteors
                                x = numpy.arange(initMet,inow+1)*ippSeconds
                                y = phase1[initMet:inow+1]
                                ynnan = ~numpy.isnan(y)
                                x = x[ynnan]
                                y = y[ynnan]
                                slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
                                ylin = x*slope + intercept
                                rsq = r_value**2
                                if rsq > 0.5:
                                    vel = slope#*height*1000/(k*d)
                                    estAux = numpy.array([utctime,p,height, vel, rsq])
                                    meteorList.append(estAux)
                            initMet = inext         
        metArray2 = numpy.array(meteorList)
        
        return metArray2
    
    def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
        
        azimuth1 = numpy.zeros(len(pairslist))
        dist = numpy.zeros(len(pairslist))
        
        for i in range(len(rx_location)):
            ch0 = pairslist[i][0]
            ch1 = pairslist[i][1]
            
            diffX = rx_location[ch0][0] - rx_location[ch1][0]
            diffY = rx_location[ch0][1] - rx_location[ch1][1]
            azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
            dist[i] = numpy.sqrt(diffX**2 + diffY**2)
        
        azimuth1 -= azimuth0
        return azimuth1, dist
    
    def techniqueNSM_DBS(self, **kwargs):
        metArray = kwargs['metArray']
        heightList = kwargs['heightList']
        timeList = kwargs['timeList']
        zenithList = kwargs['zenithList']
        nChan = numpy.max(cmet) + 1
        nHeights = len(heightList)
        
        utctime = metArray[:,0]
        cmet = metArray[:,1]
        hmet = metArray1[:,3].astype(int)
        h1met = heightList[hmet]*zenithList[cmet]
        vmet = metArray1[:,5]
        
        for i in range(nHeights - 1):
            hmin = heightList[i]
            hmax = heightList[i + 1]
            
            vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
            
            
            
        return data_output
            
    def run(self, dataOut, technique, **kwargs):
        
        param = dataOut.data_param
        if dataOut.abscissaList != None:
            absc = dataOut.abscissaList[:-1]
        noise = dataOut.noise
        heightList = dataOut.heightList
        SNR = dataOut.data_SNR
        
        if technique == 'DBS':
     
            kwargs['velRadial'] = param[:,1,:] #Radial velocity  
            kwargs['heightList'] = heightList
            kwargs['SNR'] = SNR
    
            dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
            dataOut.utctimeInit = dataOut.utctime
            dataOut.outputInterval = dataOut.paramInterval
            
        elif technique == 'SA':
        
            #Parameters
#             position_x = kwargs['positionX']
#             position_y = kwargs['positionY']
#             azimuth = kwargs['azimuth']
#             
#             if kwargs.has_key('crosspairsList'):
#                 pairs = kwargs['crosspairsList']
#             else:
#                 pairs = None   
# 
#             if kwargs.has_key('correctFactor'):
#                 correctFactor = kwargs['correctFactor']
#             else:
#                 correctFactor = 1
        
#             tau = dataOut.data_param
#             _lambda = dataOut.C/dataOut.frequency
#             pairsList = dataOut.groupList
#             nChannels = dataOut.nChannels
            
            kwargs['groupList'] = dataOut.groupList
            kwargs['tau'] = dataOut.data_param
            kwargs['_lambda'] = dataOut.C/dataOut.frequency
#             dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
            dataOut.data_output = self.techniqueSA(kwargs)
            dataOut.utctimeInit = dataOut.utctime
            dataOut.outputInterval = dataOut.timeInterval
            
        elif technique == 'Meteors':        
            dataOut.flagNoData = True
            self.__dataReady = False
            
            if kwargs.has_key('nHours'):
                nHours = kwargs['nHours']
            else: 
                nHours = 1
                
            if kwargs.has_key('meteorsPerBin'):
                meteorThresh = kwargs['meteorsPerBin']
            else:
                meteorThresh = 6
                
            if kwargs.has_key('hmin'):
                hmin = kwargs['hmin']
            else:   hmin = 70
            if kwargs.has_key('hmax'):
                hmax = kwargs['hmax']
            else:   hmax = 110
                     
            dataOut.outputInterval = nHours*3600
            
            if self.__isConfig == False:
#                 self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
                #Get Initial LTC time
                self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
                self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()

                self.__isConfig = True
                
            if self.__buffer == None:
                self.__buffer = dataOut.data_param
                self.__firstdata = copy.copy(dataOut)

            else:
                self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
            
            self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
            
            if self.__dataReady:
                dataOut.utctimeInit = self.__initime
                
                self.__initime += dataOut.outputInterval #to erase time offset
                
                dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
                dataOut.flagNoData = False
                self.__buffer = None
                
        elif technique == 'Meteors1':
            dataOut.flagNoData = True
            self.__dataReady = False
            
            if kwargs.has_key('nMins'):
                nMins = kwargs['nMins']
            else: nMins = 20
            if kwargs.has_key('rx_location'):
                rx_location = kwargs['rx_location']
            else: rx_location = [(0,1),(1,1),(1,0)]
            if kwargs.has_key('azimuth'):
                azimuth = kwargs['azimuth']
            else: azimuth = 51
            if kwargs.has_key('dfactor'):
                dfactor = kwargs['dfactor']
            if kwargs.has_key('mode'):
                mode = kwargs['mode']
            else: mode = 'SA' 
            
            #Borrar luego esto
            if dataOut.groupList == None:
                dataOut.groupList = [(0,1),(0,2),(1,2)]
            groupList = dataOut.groupList
            C = 3e8
            freq = 50e6
            lamb = C/freq
            k = 2*numpy.pi/lamb
            
            timeList = dataOut.abscissaList
            heightList = dataOut.heightList
            
            if self.__isConfig == False:
                dataOut.outputInterval = nMins*60
#                 self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
                #Get Initial LTC time
                initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
                minuteAux = initime.minute
                minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
                self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()

                self.__isConfig = True
                
            if self.__buffer == None:
                self.__buffer = dataOut.data_param
                self.__firstdata = copy.copy(dataOut)

            else:
                self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
            
            self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
            
            if self.__dataReady:
                dataOut.utctimeInit = self.__initime
                self.__initime += dataOut.outputInterval #to erase time offset
                
                metArray = self.__buffer
                if mode == 'SA':
                    dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
                elif mode == 'DBS':
                    dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList)
                dataOut.data_output = dataOut.data_output.T
                dataOut.flagNoData = False
                self.__buffer = None

        return
    
class EWDriftsEstimation(Operation):
       
    def __init__(self):    
        Operation.__init__(self)    
    
    def __correctValues(self, heiRang, phi, velRadial, SNR):
        listPhi = phi.tolist()
        maxid = listPhi.index(max(listPhi))
        minid = listPhi.index(min(listPhi))
        
        rango = range(len(phi))       
   #     rango = numpy.delete(rango,maxid)
        
        heiRang1 = heiRang*math.cos(phi[maxid])
        heiRangAux = heiRang*math.cos(phi[minid])
        indOut = (heiRang1 < heiRangAux[0]).nonzero()
        heiRang1 = numpy.delete(heiRang1,indOut)
        
        velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
        SNR1 = numpy.zeros([len(phi),len(heiRang1)])
        
        for i in rango:
            x = heiRang*math.cos(phi[i])
            y1 = velRadial[i,:]
            f1 = interpolate.interp1d(x,y1,kind = 'cubic')
            
            x1 = heiRang1
            y11 = f1(x1)
            
            y2 = SNR[i,:]
            f2 = interpolate.interp1d(x,y2,kind = 'cubic')
            y21 = f2(x1)
            
            velRadial1[i,:] = y11
            SNR1[i,:] = y21
             
        return heiRang1, velRadial1, SNR1

    def run(self, dataOut, zenith, zenithCorrection):
        heiRang = dataOut.heightList
        velRadial = dataOut.data_param[:,3,:]
        SNR = dataOut.data_SNR
        
        zenith = numpy.array(zenith)
        zenith -= zenithCorrection 
        zenith *= numpy.pi/180
        
        heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
 
        alp = zenith[0]
        bet = zenith[1]
        
        w_w = velRadial1[0,:]
        w_e = velRadial1[1,:]
        
        w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))   
        u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))   
        
        winds = numpy.vstack((u,w))
        
        dataOut.heightList = heiRang1
        dataOut.data_output = winds
        dataOut.data_SNR = SNR1
        
        dataOut.utctimeInit = dataOut.utctime
        dataOut.outputInterval = dataOut.timeInterval
        return

#---------------    Non Specular Meteor    ----------------

class NonSpecularMeteorDetection(Operation):

    def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
        data_acf = self.dataOut.data_pre[0]
        data_ccf = self.dataOut.data_pre[1]
        
        lamb = self.dataOut.C/self.dataOut.frequency
        tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
        paramInterval = self.dataOut.paramInterval
        
        nChannels = data_acf.shape[0]
        nLags = data_acf.shape[1]
        nProfiles = data_acf.shape[2]
        nHeights = self.dataOut.nHeights
        nCohInt = self.dataOut.nCohInt
        sec = numpy.round(nProfiles/self.dataOut.paramInterval)
        heightList = self.dataOut.heightList
        ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
        utctime = self.dataOut.utctime
        
        self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
        
        #------------------------    SNR    --------------------------------------
        power = data_acf[:,0,:,:].real
        noise = numpy.zeros(nChannels)
        SNR = numpy.zeros(power.shape)
        for i in range(nChannels):
            noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
            SNR[i] = (power[i]-noise[i])/noise[i]
        SNRm = numpy.nanmean(SNR, axis = 0)
        SNRdB = 10*numpy.log10(SNR)
            
        if mode == 'SA':
            nPairs = data_ccf.shape[0]  
            #----------------------    Coherence and Phase   --------------------------
            phase = numpy.zeros(data_ccf[:,0,:,:].shape)
#             phase1 = numpy.copy(phase)
            coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
            
            for p in range(nPairs):
                ch0 = self.dataOut.groupList[p][0]
                ch1 = self.dataOut.groupList[p][1]
                ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
                phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter 
#                 phase1[p,:,:] = numpy.angle(ccf) #median filter 
                coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter 
#                 coh1[p,:,:] = numpy.abs(ccf) #median filter 
            coh = numpy.nanmax(coh1, axis = 0)
#             struc = numpy.ones((5,1))
#             coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
            #----------------------    Radial Velocity    ----------------------------
            phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
            velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
            
            if allData:
                boolMetFin = ~numpy.isnan(SNRm)
#                 coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
            else:
                #------------------------    Meteor mask    ---------------------------------
#                 #SNR mask
#                 boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
#                 
#                 #Erase small objects
#                 boolMet1 = self.__erase_small(boolMet, 2*sec, 5)   
#                 
#                 auxEEJ = numpy.sum(boolMet1,axis=0)
#                 indOver = auxEEJ>nProfiles*0.8  #Use this later
#                 indEEJ = numpy.where(indOver)[0]
#                 indNEEJ = numpy.where(~indOver)[0]
#                 
#                 boolMetFin = boolMet1
#                 
#                 if indEEJ.size > 0:
#                     boolMet1[:,indEEJ] = False  #Erase heights with EEJ            
#                     
#                     boolMet2 = coh > cohThresh
#                     boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
#                                   
#                     #Final Meteor mask
#                     boolMetFin = boolMet1|boolMet2
                
                #Coherence mask
                boolMet1 = coh > 0.75
                struc = numpy.ones((30,1))
                boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
                
                #Derivative mask
                derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
                boolMet2 = derPhase < 0.2
#                 boolMet2 = ndimage.morphology.binary_opening(boolMet2)
#                 boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
                boolMet2 = ndimage.median_filter(boolMet2,size=5)
                boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
#                 #Final mask
#                 boolMetFin = boolMet2
                boolMetFin = boolMet1&boolMet2
#                 boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
            #Creating data_param
            coordMet = numpy.where(boolMetFin)

            tmet = coordMet[0]
            hmet = coordMet[1]
            
            data_param = numpy.zeros((tmet.size, 6 + nPairs))
            data_param[:,0] = utctime
            data_param[:,1] = tmet
            data_param[:,2] = hmet
            data_param[:,3] = SNRm[tmet,hmet]
            data_param[:,4] = velRad[tmet,hmet]
            data_param[:,5] = coh[tmet,hmet]
            data_param[:,6:] = phase[:,tmet,hmet].T
        
        elif mode == 'DBS':
            self.dataOut.groupList = numpy.arange(nChannels)
            
            #Radial Velocities
#             phase = numpy.angle(data_acf[:,1,:,:])
            phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
            velRad = phase*lamb/(4*numpy.pi*tSamp)
            
            #Spectral width
            acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
            acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
            
            spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
#             velRad = ndimage.median_filter(velRad, size = (1,5,1))
            if allData:
                boolMetFin = ~numpy.isnan(SNRdB)
            else:
                #SNR
                boolMet1 = (SNRdB>SNRthresh) #SNR mask
                boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
              
                #Radial velocity
                boolMet2 = numpy.abs(velRad) < 30
                boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
                
                #Spectral Width
                boolMet3 = spcWidth < 30
                boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
#                 boolMetFin = self.__erase_small(boolMet1, 10,5)
                boolMetFin = boolMet1&boolMet2&boolMet3
                
            #Creating data_param
            coordMet = numpy.where(boolMetFin)

            cmet = coordMet[0]
            tmet = coordMet[1]
            hmet = coordMet[2]
            
            data_param = numpy.zeros((tmet.size, 7))
            data_param[:,0] = utctime
            data_param[:,1] = cmet
            data_param[:,2] = tmet
            data_param[:,3] = hmet
            data_param[:,4] = SNR[cmet,tmet,hmet].T
            data_param[:,5] = velRad[cmet,tmet,hmet].T
            data_param[:,6] = spcWidth[cmet,tmet,hmet].T
            
#         self.dataOut.data_param = data_int
        if len(data_param) == 0:
            self.dataOut.flagNoData = True
        else:
            self.dataOut.data_param = data_param

    def __erase_small(self, binArray, threshX, threshY):
        labarray, numfeat = ndimage.measurements.label(binArray)
        binArray1 = numpy.copy(binArray)
        
        for i in range(1,numfeat + 1):
            auxBin = (labarray==i)
            auxSize = auxBin.sum()
            
            x,y = numpy.where(auxBin)
            widthX = x.max() - x.min()
            widthY = y.max() - y.min()
            
            #width X: 3 seg -> 12.5*3
            #width Y: 
            
            if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
                binArray1[auxBin] = False
            
        return binArray1

#---------------    Specular Meteor    ----------------

class SMDetection(Operation):
    '''
        Function DetectMeteors()
            Project developed with paper:
            HOLDSWORTH ET AL. 2004
            
        Input:
            self.dataOut.data_pre
        
            centerReceiverIndex:      From the channels, which is the center receiver
            
            hei_ref:                  Height reference for the Beacon signal extraction
            tauindex:
            predefinedPhaseShifts:    Predefined phase offset for the voltge signals
            
            cohDetection:             Whether to user Coherent detection or not
            cohDet_timeStep:          Coherent Detection calculation time step
            cohDet_thresh:            Coherent Detection phase threshold to correct phases
            
            noise_timeStep:           Noise calculation time step
            noise_multiple:           Noise multiple to define signal threshold
            
            multDet_timeLimit:        Multiple Detection Removal time limit in seconds
            multDet_rangeLimit:       Multiple Detection Removal range limit in km
            
            phaseThresh:              Maximum phase difference between receiver to be consider a meteor
            SNRThresh:                Minimum SNR threshold of the meteor signal to be consider a meteor 
            
            hmin:                     Minimum Height of the meteor to use it in the further wind estimations
            hmax:                     Maximum Height of the meteor to use it in the further wind estimations
            azimuth:                  Azimuth angle correction
            
        Affected:
            self.dataOut.data_param
        
        Rejection Criteria (Errors):
            0: No error; analysis OK
            1: SNR < SNR threshold
            2: angle of arrival (AOA) ambiguously determined
            3: AOA estimate not feasible
            4: Large difference in AOAs obtained from different antenna baselines
            5: echo at start or end of time series
            6: echo less than 5 examples long; too short for analysis
            7: echo rise exceeds 0.3s
            8: echo decay time less than twice rise time
            9: large power level before echo
            10: large power level after echo
            11: poor fit to amplitude for estimation of decay time
            12: poor fit to CCF phase variation for estimation of radial drift velocity
            13: height unresolvable echo: not valid height within 70 to 110 km
            14: height ambiguous echo: more then one possible height within 70 to 110 km
            15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
            16: oscilatory echo, indicating event most likely not an underdense echo
            
            17: phase difference in meteor Reestimation
        
        Data Storage:
            Meteors for Wind Estimation   (8):
            Utc Time   |    Range    Height
            Azimuth    Zenith    errorCosDir
            VelRad    errorVelRad
            Phase0 Phase1 Phase2 Phase3
            TypeError
        
         ''' 
    
    def run(self, dataOut, hei_ref = None, tauindex = 0,
                      phaseOffsets = None,
                      cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, 
                      noise_timeStep = 4, noise_multiple = 4,
                      multDet_timeLimit = 1, multDet_rangeLimit = 3,
                      phaseThresh = 20, SNRThresh = 5,
                      hmin = 50, hmax=150, azimuth = 0,
                      channelPositions = None) :
        
           
        #Getting Pairslist
        if channelPositions == None:
#             channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)]   #T
            channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)]   #Estrella
        meteorOps = SMOperations()
        pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
        heiRang = dataOut.getHeiRange()
        #Get Beacon signal - No Beacon signal anymore
#         newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
#         
#         if hei_ref != None:
#             newheis = numpy.where(self.dataOut.heightList>hei_ref)
#         
        
            
        #****************REMOVING HARDWARE PHASE DIFFERENCES***************
        # see if the user put in pre defined phase shifts
        voltsPShift = dataOut.data_pre.copy()
        
#         if predefinedPhaseShifts != None:
#             hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
#         
# #         elif beaconPhaseShifts:
# #             #get hardware phase shifts using beacon signal
# #             hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
# #             hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
#             
#         else:
#             hardwarePhaseShifts = numpy.zeros(5)                     
# 
#         voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
#         for i in range(self.dataOut.data_pre.shape[0]):
#             voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])

        #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
    
        #Remove DC
        voltsDC = numpy.mean(voltsPShift,1)
        voltsDC = numpy.mean(voltsDC,1)
        for i in range(voltsDC.shape[0]):
            voltsPShift[i] = voltsPShift[i] - voltsDC[i]
            
        #Don't considerate last heights, theyre used to calculate Hardware Phase Shift    
#         voltsPShift = voltsPShift[:,:,:newheis[0][0]]
        
        #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
        #Coherent Detection
        if cohDetection:
            #use coherent detection to get the net power
            cohDet_thresh = cohDet_thresh*numpy.pi/180
            voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
        
        #Non-coherent detection!
        powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
        #********** END OF COH/NON-COH POWER CALCULATION**********************
    
        #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
        #Get noise
        noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
#         noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
        #Get signal threshold
        signalThresh = noise_multiple*noise
        #Meteor echoes detection
        listMeteors = self.__findMeteors(powerNet, signalThresh)
        #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
        
        #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
        #Parameters
        heiRange = dataOut.getHeiRange()
        rangeInterval = heiRange[1] - heiRange[0]
        rangeLimit = multDet_rangeLimit/rangeInterval
        timeLimit = multDet_timeLimit/dataOut.timeInterval
        #Multiple detection removals
        listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
        #************ END OF REMOVE MULTIPLE DETECTIONS **********************
        
        #*********************     METEOR REESTIMATION  (3.7, 3.8, 3.9, 3.10)   ********************
        #Parameters
        phaseThresh = phaseThresh*numpy.pi/180
        thresh = [phaseThresh, noise_multiple, SNRThresh]
        #Meteor reestimation  (Errors N 1, 6, 12, 17)
        listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
#         listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
        #Estimation of decay times (Errors N 7, 8, 11)
        listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
        #*******************     END OF METEOR REESTIMATION    *******************
        
        #*********************    METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13)    **************************
        #Calculating Radial Velocity (Error N 15)
        radialStdThresh = 10
        listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)    

        if len(listMeteors4) > 0:
            #Setting New Array
            date = dataOut.utctime
            arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
            
            #Correcting phase offset
            if phaseOffsets != None:
                phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
                arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
            
            #Second Pairslist
            pairsList = []
            pairx = (0,1)
            pairy = (2,3)
            pairsList.append(pairx)
            pairsList.append(pairy)
            
            jph = numpy.array([0,0,0,0])
            h = (hmin,hmax)
            arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
            
#             #Calculate AOA (Error N 3, 4)
#             #JONES ET AL. 1998
#             error = arrayParameters[:,-1]
#             AOAthresh = numpy.pi/8
#             phases = -arrayParameters[:,9:13]
#             arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
#             
#             #Calculate Heights (Error N 13 and 14)
#             error = arrayParameters[:,-1]
#             Ranges = arrayParameters[:,2]
#             zenith = arrayParameters[:,5]
#             arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
#             error = arrayParameters[:,-1]
        #*********************    END OF PARAMETERS CALCULATION    **************************
                
        #***************************+     PASS DATA TO NEXT STEP    **********************                       
#             arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
            dataOut.data_param = arrayParameters
            
            if arrayParameters == None:
                dataOut.flagNoData = True
        else:
            dataOut.flagNoData = True
            
        return
        
    def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
           
        minIndex = min(newheis[0])
        maxIndex = max(newheis[0])
        
        voltage = voltage0[:,:,minIndex:maxIndex+1]
        nLength = voltage.shape[1]/n
        nMin = 0
        nMax = 0
        phaseOffset = numpy.zeros((len(pairslist),n))
        
        for i in range(n):
            nMax += nLength
            phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
            phaseCCF = numpy.mean(phaseCCF, axis = 2)
            phaseOffset[:,i] = phaseCCF.transpose() 
            nMin = nMax
#         phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
        
        #Remove Outliers
        factor = 2
        wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
        dw = numpy.std(wt,axis = 1)
        dw = dw.reshape((dw.size,1))
        ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) 
        phaseOffset[ind] = numpy.nan
        phaseOffset = stats.nanmean(phaseOffset, axis=1) 
        
        return phaseOffset
    
    def __shiftPhase(self, data, phaseShift):
        #this will shift the phase of a complex number
        dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)   
        return dataShifted
    
    def __estimatePhaseDifference(self, array, pairslist):
        nChannel = array.shape[0]
        nHeights = array.shape[2]
        numPairs = len(pairslist)
#         phaseCCF = numpy.zeros((nChannel, 5, nHeights))
        phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
        
        #Correct phases
        derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
        indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
        
        if indDer[0].shape[0] > 0:  
            for i in range(indDer[0].shape[0]):
                signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
                phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
    
#         for j in range(numSides):
#             phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
#             phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
#             
        #Linear
        phaseInt = numpy.zeros((numPairs,1))
        angAllCCF = phaseCCF[:,[0,1,3,4],0]
        for j in range(numPairs):
            fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
            phaseInt[j] = fit[1]
        #Phase Differences
        phaseDiff = phaseInt - phaseCCF[:,2,:]
        phaseArrival = phaseInt.reshape(phaseInt.size)
        
        #Dealias
        phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
#         indAlias = numpy.where(phaseArrival > numpy.pi)
#         phaseArrival[indAlias] -= 2*numpy.pi
#         indAlias = numpy.where(phaseArrival < -numpy.pi)
#         phaseArrival[indAlias] += 2*numpy.pi
        
        return phaseDiff, phaseArrival
    
    def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
        #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
        #find the phase shifts of each channel over 1 second intervals
        #only look at ranges below the beacon signal
        numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
        numBlocks = int(volts.shape[1]/numProfPerBlock)
        numHeights = volts.shape[2]
        nChannel = volts.shape[0]
        voltsCohDet = volts.copy()
        
        pairsarray = numpy.array(pairslist)
        indSides = pairsarray[:,1]
#         indSides = numpy.array(range(nChannel))
#         indSides = numpy.delete(indSides, indCenter)
#         
#         listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
        listBlocks = numpy.array_split(volts, numBlocks, 1)
        
        startInd = 0
        endInd = 0
            
        for i in range(numBlocks):
            startInd = endInd
            endInd = endInd + listBlocks[i].shape[1]   
            
            arrayBlock = listBlocks[i]
#             arrayBlockCenter = listCenter[i]
            
            #Estimate the Phase Difference
            phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
            #Phase Difference RMS
            arrayPhaseRMS = numpy.abs(phaseDiff)
            phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
            indPhase = numpy.where(phaseRMSaux==4)
            #Shifting
            if indPhase[0].shape[0] > 0:
                for j in range(indSides.size):
                    arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
                voltsCohDet[:,startInd:endInd,:] = arrayBlock
         
        return voltsCohDet
   
    def __calculateCCF(self, volts, pairslist ,laglist):
        
        nHeights = volts.shape[2]
        nPoints = volts.shape[1] 
        voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
        
        for i in range(len(pairslist)):
            volts1 = volts[pairslist[i][0]]
            volts2 = volts[pairslist[i][1]]   
            
            for t in range(len(laglist)):
                idxT = laglist[t]                     
                if idxT >= 0:
                    vStacked = numpy.vstack((volts2[idxT:,:],
                                           numpy.zeros((idxT, nHeights),dtype='complex')))
                else:
                    vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
                                           volts2[:(nPoints + idxT),:]))
                voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
    
                vStacked = None
        return voltsCCF
        
    def __getNoise(self, power, timeSegment, timeInterval):
        numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
        numBlocks = int(power.shape[0]/numProfPerBlock)
        numHeights = power.shape[1]

        listPower = numpy.array_split(power, numBlocks, 0)
        noise = numpy.zeros((power.shape[0], power.shape[1]))
        noise1 = numpy.zeros((power.shape[0], power.shape[1]))
        
        startInd = 0
        endInd = 0
        
        for i in range(numBlocks):             #split por canal
            startInd = endInd
            endInd = endInd + listPower[i].shape[0]  
            
            arrayBlock = listPower[i]
            noiseAux = numpy.mean(arrayBlock, 0)
#             noiseAux = numpy.median(noiseAux)
#             noiseAux = numpy.mean(arrayBlock)
            noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux 
            
            noiseAux1 = numpy.mean(arrayBlock)
            noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 
            
        return noise, noise1
      
    def __findMeteors(self, power, thresh):
        nProf = power.shape[0]
        nHeights = power.shape[1]
        listMeteors = []
        
        for i in range(nHeights):
            powerAux = power[:,i]
            threshAux = thresh[:,i]
            
            indUPthresh = numpy.where(powerAux > threshAux)[0]
            indDNthresh = numpy.where(powerAux <= threshAux)[0]
            
            j = 0
            
            while (j < indUPthresh.size - 2):
                if (indUPthresh[j + 2] == indUPthresh[j] + 2):
                    indDNAux = numpy.where(indDNthresh > indUPthresh[j])
                    indDNthresh = indDNthresh[indDNAux]
                    
                    if (indDNthresh.size > 0):
                        indEnd = indDNthresh[0] - 1
                        indInit = indUPthresh[j]
                        
                        meteor = powerAux[indInit:indEnd + 1]
                        indPeak = meteor.argmax() + indInit
                        FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
                        
                        listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
                        j = numpy.where(indUPthresh == indEnd)[0] + 1
                    else: j+=1
                else: j+=1
                    
        return listMeteors
    
    def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
        
        arrayMeteors = numpy.asarray(listMeteors) 
        listMeteors1 = []
        
        while arrayMeteors.shape[0] > 0:
            FLAs = arrayMeteors[:,4]
            maxFLA = FLAs.argmax()
            listMeteors1.append(arrayMeteors[maxFLA,:])
            
            MeteorInitTime = arrayMeteors[maxFLA,1]
            MeteorEndTime = arrayMeteors[maxFLA,3]
            MeteorHeight = arrayMeteors[maxFLA,0]
            
            #Check neighborhood
            maxHeightIndex = MeteorHeight + rangeLimit
            minHeightIndex = MeteorHeight - rangeLimit
            minTimeIndex = MeteorInitTime - timeLimit
            maxTimeIndex = MeteorEndTime + timeLimit
            
            #Check Heights
            indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
            indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
            indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
            
            arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
        
        return listMeteors1
    
    def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
        numHeights = volts.shape[2]
        nChannel = volts.shape[0]
        
        thresholdPhase = thresh[0]
        thresholdNoise = thresh[1]
        thresholdDB = float(thresh[2])
        
        thresholdDB1 = 10**(thresholdDB/10)
        pairsarray = numpy.array(pairslist)
        indSides = pairsarray[:,1]
        
        pairslist1 = list(pairslist)
        pairslist1.append((0,1))
        pairslist1.append((3,4))

        listMeteors1 = []
        listPowerSeries = []
        listVoltageSeries = []
        #volts has the war data
        
        if frequency == 30e6:
            timeLag = 45*10**-3
        else:
            timeLag = 15*10**-3
        lag = numpy.ceil(timeLag/timeInterval)
        
        for i in range(len(listMeteors)):
            
            ######################   3.6 - 3.7 PARAMETERS REESTIMATION    #########################
            meteorAux = numpy.zeros(16)
            
            #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
            mHeight = listMeteors[i][0]
            mStart = listMeteors[i][1]
            mPeak = listMeteors[i][2]
            mEnd = listMeteors[i][3]
            
            #get the volt data between the start and end times of the meteor
            meteorVolts = volts[:,mStart:mEnd+1,mHeight]
            meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
            
            #3.6. Phase Difference estimation
            phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
            
            #3.7. Phase difference removal & meteor start, peak and end times reestimated
            #meteorVolts0.- all Channels, all Profiles
            meteorVolts0 = volts[:,:,mHeight]
            meteorThresh = noise[:,mHeight]*thresholdNoise
            meteorNoise = noise[:,mHeight]
            meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
            powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0)  #Power
            
            #Times reestimation
            mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
            if mStart1.size > 0:
                mStart1 = mStart1[-1] + 1
                
            else: 
                mStart1 = mPeak
                
            mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
            mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
            if mEndDecayTime1.size == 0:
                mEndDecayTime1 = powerNet0.size
            else:
                mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
#             mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
            
            #meteorVolts1.- all Channels, from start to end
            meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
            meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
            if meteorVolts2.shape[1] == 0:
                meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
            meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
            meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
            #####################    END PARAMETERS REESTIMATION    #########################
            
            #####################   3.8 PHASE DIFFERENCE REESTIMATION  ########################
#             if mEnd1 - mStart1 > 4:       #Error Number 6: echo less than 5 samples long; too short for analysis
            if meteorVolts2.shape[1] > 0:        
                #Phase Difference re-estimation
                phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1)   #Phase Difference Estimation
#                 phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
                meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
                phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
                meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4])     #Phase Shifting
                
                #Phase Difference RMS
                phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
                powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
                #Data from Meteor
                mPeak1 = powerNet1.argmax() + mStart1
                mPeakPower1 = powerNet1.max()
                noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
                mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
                Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
                Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
                PowerSeries  = powerNet0[mStart1:mEndDecayTime1 + 1]
                #Vectorize
                meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
                meteorAux[7:11] = phaseDiffint[0:4]
                
                #Rejection Criterions
                if phaseRMS1 > thresholdPhase:  #Error Number 17: Phase variation
                    meteorAux[-1] = 17
                elif mSNR1 < thresholdDB1:      #Error Number 1: SNR < threshold dB
                    meteorAux[-1] = 1
                
            
            else:       
                meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
                meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
                PowerSeries = 0
                    
            listMeteors1.append(meteorAux)
            listPowerSeries.append(PowerSeries)
            listVoltageSeries.append(meteorVolts1)
                      
        return listMeteors1, listPowerSeries, listVoltageSeries       
         
    def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
        
        threshError = 10
        #Depending if it is 30 or 50 MHz
        if frequency == 30e6:
            timeLag = 45*10**-3
        else:
            timeLag = 15*10**-3
        lag = numpy.ceil(timeLag/timeInterval)
        
        listMeteors1 = []
        
        for i in range(len(listMeteors)):
            meteorPower = listPower[i]
            meteorAux = listMeteors[i]
            
            if meteorAux[-1] == 0:

                try:                    
                    indmax = meteorPower.argmax()
                    indlag = indmax + lag
                    
                    y = meteorPower[indlag:]
                    x = numpy.arange(0, y.size)*timeLag
                    
                    #first guess
                    a = y[0]
                    tau = timeLag
                    #exponential fit
                    popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
                    y1 = self.__exponential_function(x, *popt)
                    #error estimation
                    error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
                    
                    decayTime = popt[1]
                    riseTime = indmax*timeInterval
                    meteorAux[11:13] = [decayTime, error]
                    
                    #Table items 7, 8 and 11
                    if (riseTime > 0.3):            #Number 7: Echo rise exceeds 0.3s
                        meteorAux[-1] = 7 
                    elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
                        meteorAux[-1] = 8
                    if (error > threshError):       #Number 11: Poor fit to amplitude for estimation of decay time
                        meteorAux[-1] = 11   
                    
                   
                except:
                    meteorAux[-1] = 11 
                
            
            listMeteors1.append(meteorAux)
        
        return listMeteors1

    #Exponential Function

    def __exponential_function(self, x, a, tau):
        y = a*numpy.exp(-x/tau)
        return y
    
    def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist,  timeInterval):
        
        pairslist1 = list(pairslist)
        pairslist1.append((0,1))
        pairslist1.append((3,4))
        numPairs = len(pairslist1)
        #Time Lag
        timeLag = 45*10**-3
        c = 3e8
        lag = numpy.ceil(timeLag/timeInterval)
        freq = 30e6
        
        listMeteors1 = []
        
        for i in range(len(listMeteors)):
            meteorAux = listMeteors[i]
            if meteorAux[-1] == 0:
                mStart = listMeteors[i][1]
                mPeak = listMeteors[i][2]         
                mLag = mPeak - mStart + lag
                
                #get the volt data between the start and end times of the meteor
                meteorVolts = listVolts[i]
                meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)

                #Get CCF
                allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
                
                #Method 2
                slopes = numpy.zeros(numPairs)
                time = numpy.array([-2,-1,1,2])*timeInterval
                angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
                
                #Correct phases
                derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
                indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
                
                if indDer[0].shape[0] > 0:  
                    for i in range(indDer[0].shape[0]):
                        signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
                        angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi

#                     fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
                for j in range(numPairs):
                    fit = stats.linregress(time, angAllCCF[j,:])
                    slopes[j] = fit[0]
                
                #Remove Outlier
#                 indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
#                 slopes = numpy.delete(slopes,indOut)
#                 indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
#                 slopes = numpy.delete(slopes,indOut)
                   
                radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
                radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
                meteorAux[-2] = radialError
                meteorAux[-3] = radialVelocity
                
                #Setting Error
                #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
                if numpy.abs(radialVelocity) > 200: 
                    meteorAux[-1] = 15
                #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
                elif radialError > radialStdThresh:
                    meteorAux[-1] = 12
                
            listMeteors1.append(meteorAux)
        return listMeteors1
    
    def __setNewArrays(self, listMeteors, date, heiRang):
        
        #New arrays
        arrayMeteors = numpy.array(listMeteors)
        arrayParameters = numpy.zeros((len(listMeteors), 13))
        
        #Date inclusion
#         date = re.findall(r'\((.*?)\)', date)
#         date = date[0].split(',')
#         date = map(int, date)
#         
#         if len(date)<6:
#             date.append(0)
#             
#         date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
#         arrayDate = numpy.tile(date, (len(listMeteors), 1))
        arrayDate = numpy.tile(date, (len(listMeteors)))
        
        #Meteor array
#         arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
#         arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
        
        #Parameters Array
        arrayParameters[:,0] = arrayDate #Date
        arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
        arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
        arrayParameters[:,8:12] = arrayMeteors[:,7:11]  #Phases
        arrayParameters[:,-1] = arrayMeteors[:,-1]  #Error

        
        return arrayParameters
           
class CorrectSMPhases(Operation):
    
    def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
    
        arrayParameters = dataOut.data_param
        pairsList = []
        pairx = (0,1)
        pairy = (2,3)
        pairsList.append(pairx)
        pairsList.append(pairy)
        jph = numpy.zeros(4)
        
        phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
    #         arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
        arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
        
        meteorOps = SMOperations()
        if channelPositions == None:
    #             channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)]   #T
            channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)]   #Estrella
    
        pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
        h = (hmin,hmax)
    
        arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
        
        dataOut.data_param = arrayParameters
        return

class SMPhaseCalibration(Operation):
    
    __buffer = None

    __initime = None

    __dataReady = False
    
    __isConfig = False
    
    def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
        
        dataTime = currentTime + paramInterval
        deltaTime = dataTime - initTime
        
        if deltaTime >= outputInterval or deltaTime < 0:
            return True
        
        return False
    
    def __getGammas(self, pairs, d, phases):
        gammas = numpy.zeros(2)
    
        for i in range(len(pairs)):
     
            pairi = pairs[i]
            
            phip3 = phases[:,pairi[1]]
            d3 = d[pairi[1]]
            phip2 = phases[:,pairi[0]]
            d2 = d[pairi[0]]
            #Calculating gamma
#             jdcos = alp1/(k*d1)
#             jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
            jgamma = -phip2*d3/d2 - phip3
            jgamma = numpy.angle(numpy.exp(1j*jgamma))
#             jgamma[jgamma>numpy.pi] -= 2*numpy.pi
#             jgamma[jgamma<-numpy.pi] += 2*numpy.pi
            
            #Revised distribution
            jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))

            #Histogram
            nBins = 64.0
            rmin = -0.5*numpy.pi
            rmax = 0.5*numpy.pi
            phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
        
            meteorsY = phaseHisto[0]
            phasesX = phaseHisto[1][:-1]
            width = phasesX[1] - phasesX[0]
            phasesX += width/2
            
            #Gaussian aproximation
            bpeak = meteorsY.argmax()
            peak = meteorsY.max()
            jmin = bpeak - 5
            jmax = bpeak + 5 + 1
            
            if jmin<0:
                jmin = 0
                jmax = 6
            elif jmax > meteorsY.size:
                jmin = meteorsY.size - 6
                jmax = meteorsY.size
            
            x0 = numpy.array([peak,bpeak,50])
            coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
            
            #Gammas
            gammas[i] = coeff[0][1]
        
        return gammas
    
    def __residualFunction(self, coeffs, y, t):
    
        return y - self.__gauss_function(t, coeffs)

    def __gauss_function(self, t, coeffs):
    
        return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)

    def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
        meteorOps = SMOperations()
        nchan = 4
        pairx = pairsList[0]
        pairy = pairsList[1]
        center_xangle = 0
        center_yangle = 0
        range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
        ntimes = len(range_angle)
        
        nstepsx = 20.0
        nstepsy = 20.0
        
        for iz in range(ntimes):
            min_xangle = -range_angle[iz]/2 + center_xangle
            max_xangle = range_angle[iz]/2 + center_xangle
            min_yangle = -range_angle[iz]/2 + center_yangle
            max_yangle = range_angle[iz]/2 + center_yangle
        
            inc_x = (max_xangle-min_xangle)/nstepsx
            inc_y = (max_yangle-min_yangle)/nstepsy
             
            alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
            alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
            penalty = numpy.zeros((nstepsx,nstepsy))
            jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
            jph = numpy.zeros(nchan)
             
            # Iterations looking for the offset
            for iy in range(int(nstepsy)):
                for ix in range(int(nstepsx)):
                    jph[pairy[1]] = alpha_y[iy]
                    jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] 
                       
                    jph[pairx[1]] = alpha_x[ix]
                    jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
                        
                    jph_array[:,ix,iy] = jph
                        
                    meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
                    error = meteorsArray1[:,-1]
                    ind1 = numpy.where(error==0)[0]
                    penalty[ix,iy] = ind1.size
             
            i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
            phOffset = jph_array[:,i,j]
        
            center_xangle = phOffset[pairx[1]]
            center_yangle = phOffset[pairy[1]]
        
        phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
        phOffset = phOffset*180/numpy.pi        
        return phOffset
            
       
    def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
        
        dataOut.flagNoData = True
        self.__dataReady = False                             
        dataOut.outputInterval = nHours*3600
        
        if self.__isConfig == False:
#                 self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
            #Get Initial LTC time
            self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
            self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()

            self.__isConfig = True
            
        if self.__buffer == None:
            self.__buffer = dataOut.data_param.copy()

        else:
            self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
        
        self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
        
        if self.__dataReady:
            dataOut.utctimeInit = self.__initime
            self.__initime += dataOut.outputInterval #to erase time offset
            
            freq = dataOut.frequency
            c = dataOut.C #m/s
            lamb = c/freq
            k = 2*numpy.pi/lamb
            azimuth = 0
            h = (hmin, hmax)
            pairs = ((0,1),(2,3))
            
            if channelPositions == None:
#             channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)]   #T
                channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)]   #Estrella
            meteorOps = SMOperations()
            pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
        
#             distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
            
            meteorsArray = self.__buffer
            error = meteorsArray[:,-1]
            boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
            ind1 = numpy.where(boolError)[0]
            meteorsArray = meteorsArray[ind1,:]
            meteorsArray[:,-1] = 0
            phases = meteorsArray[:,8:12]
            
            #Calculate Gammas
            gammas = self.__getGammas(pairs, distances, phases)
#             gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
            #Calculate Phases
            phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
            phasesOff = phasesOff.reshape((1,phasesOff.size))
            dataOut.data_output = -phasesOff
            dataOut.flagNoData = False
            self.__buffer = None
        
        
        return
    
class SMOperations():
    
    def __init__(self):
        
        return
    
    def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
        
        arrayParameters = arrayParameters0.copy()
        hmin = h[0]
        hmax = h[1]
                
        #Calculate AOA (Error N 3, 4)
        #JONES ET AL. 1998
        AOAthresh = numpy.pi/8
        error = arrayParameters[:,-1]
        phases = -arrayParameters[:,8:12] + jph
#         phases = numpy.unwrap(phases)
        arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
        
        #Calculate Heights (Error N 13 and 14)
        error = arrayParameters[:,-1]
        Ranges = arrayParameters[:,1]
        zenith = arrayParameters[:,4]
        arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
        
        #----------------------- Get Final data    ------------------------------------
#         error = arrayParameters[:,-1]
#         ind1 = numpy.where(error==0)[0]
#         arrayParameters = arrayParameters[ind1,:]
        
        return arrayParameters
    
    def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
        
        arrayAOA = numpy.zeros((phases.shape[0],3))
        cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
        
        arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
        cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
        arrayAOA[:,2] = cosDirError
        
        azimuthAngle = arrayAOA[:,0]
        zenithAngle = arrayAOA[:,1]
        
        #Setting Error
        indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
        error[indError] = 0
        #Number 3: AOA not fesible
        indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
        error[indInvalid] = 3 
        #Number 4: Large difference in AOAs obtained from different antenna baselines
        indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
        error[indInvalid] = 4 
        return arrayAOA, error
    
    def __getDirectionCosines(self, arrayPhase, pairsList, distances):
    
        #Initializing some variables
        ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
        ang_aux = ang_aux.reshape(1,ang_aux.size)
        
        cosdir = numpy.zeros((arrayPhase.shape[0],2))
        cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
        
        
        for i in range(2):
            ph0 = arrayPhase[:,pairsList[i][0]]
            ph1 = arrayPhase[:,pairsList[i][1]]
            d0 = distances[pairsList[i][0]]
            d1 = distances[pairsList[i][1]]
            
            ph0_aux = ph0 + ph1 
            ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
#             ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
#             ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi 
            #First Estimation
            cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
        
            #Most-Accurate Second Estimation
            phi1_aux =  ph0 - ph1
            phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
            #Direction Cosine 1
            cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
            
            #Searching the correct Direction Cosine
            cosdir0_aux = cosdir0[:,i]
            cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
            #Minimum Distance
            cosDiff = (cosdir1 - cosdir0_aux)**2
            indcos = cosDiff.argmin(axis = 1)
            #Saving Value obtained
            cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
            
        return cosdir0, cosdir
    
    def __calculateAOA(self, cosdir, azimuth):
        cosdirX = cosdir[:,0]
        cosdirY = cosdir[:,1]
        
        zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
        azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
        angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
        
        return angles
    
    def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
    
        Ramb = 375  #Ramb = c/(2*PRF)
        Re = 6371   #Earth Radius
        heights = numpy.zeros(Ranges.shape)
        
        R_aux = numpy.array([0,1,2])*Ramb
        R_aux = R_aux.reshape(1,R_aux.size)

        Ranges = Ranges.reshape(Ranges.size,1)
        
        Ri = Ranges + R_aux
        hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
        
        #Check if there is a height between 70 and 110 km
        h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
        ind_h = numpy.where(h_bool == 1)[0]
        
        hCorr = hi[ind_h, :]
        ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
           
        hCorr = hi[ind_hCorr]   
        heights[ind_h] = hCorr
        
        #Setting Error
        #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
        #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km 
        indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
        error[indError] = 0
        indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]    
        error[indInvalid2] = 14
        indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
        error[indInvalid1] = 13 
        
        return heights, error
    
    def getPhasePairs(self, channelPositions):
        chanPos = numpy.array(channelPositions)
        listOper = list(itertools.combinations(range(5),2))
        
        distances = numpy.zeros(4)
        axisX = []
        axisY = []
        distX = numpy.zeros(3)
        distY = numpy.zeros(3)
        ix = 0
        iy = 0
        
        pairX = numpy.zeros((2,2))
        pairY = numpy.zeros((2,2))
        
        for i in range(len(listOper)):
            pairi = listOper[i]
                
            posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
            
            if posDif[0] == 0:
                axisY.append(pairi)
                distY[iy] = posDif[1]
                iy += 1
            elif posDif[1] == 0:
                axisX.append(pairi)
                distX[ix] = posDif[0]
                ix += 1
 
        for i in range(2):
            if i==0:
                dist0 = distX
                axis0 = axisX
            else:
                dist0 = distY
                axis0 = axisY
            
            side = numpy.argsort(dist0)[:-1]
            axis0 = numpy.array(axis0)[side,:]
            chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
            axis1 = numpy.unique(numpy.reshape(axis0,4))
            side = axis1[axis1 != chanC]
            diff1 = chanPos[chanC,i] - chanPos[side[0],i]
            diff2 = chanPos[chanC,i] - chanPos[side[1],i]
            if diff1<0: 
                chan2 = side[0]
                d2 = numpy.abs(diff1)
                chan1 = side[1]
                d1 = numpy.abs(diff2)
            else:
                chan2 = side[1]
                d2 = numpy.abs(diff2)
                chan1 = side[0]
                d1 = numpy.abs(diff1)
                
            if i==0:
                chanCX = chanC
                chan1X = chan1
                chan2X = chan2
                distances[0:2] = numpy.array([d1,d2])
            else:
                chanCY = chanC
                chan1Y = chan1
                chan2Y = chan2
                distances[2:4] = numpy.array([d1,d2])
#         axisXsides = numpy.reshape(axisX[ix,:],4)
#         
#         channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
#         channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
#         
#         ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
#         ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
#         channel25X = int(pairX[0,ind25X])
#         channel20X = int(pairX[1,ind20X])
#         ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
#         ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
#         channel25Y = int(pairY[0,ind25Y])
#         channel20Y = int(pairY[1,ind20Y])
        
#         pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
        pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]      
        
        return pairslist, distances
#     def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
#         
#         arrayAOA = numpy.zeros((phases.shape[0],3))
#         cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
#         
#         arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
#         cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
#         arrayAOA[:,2] = cosDirError
#         
#         azimuthAngle = arrayAOA[:,0]
#         zenithAngle = arrayAOA[:,1]
#         
#         #Setting Error
#         #Number 3: AOA not fesible
#         indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
#         error[indInvalid] = 3 
#         #Number 4: Large difference in AOAs obtained from different antenna baselines
#         indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
#         error[indInvalid] = 4 
#         return arrayAOA, error
#     
#     def __getDirectionCosines(self, arrayPhase, pairsList):
#     
#         #Initializing some variables
#         ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
#         ang_aux = ang_aux.reshape(1,ang_aux.size)
#         
#         cosdir = numpy.zeros((arrayPhase.shape[0],2))
#         cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
#         
#         
#         for i in range(2):
#             #First Estimation
#             phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
#             #Dealias
#             indcsi = numpy.where(phi0_aux > numpy.pi)
#             phi0_aux[indcsi] -= 2*numpy.pi 
#             indcsi = numpy.where(phi0_aux < -numpy.pi)
#             phi0_aux[indcsi] += 2*numpy.pi 
#             #Direction Cosine 0
#             cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
#         
#             #Most-Accurate Second Estimation
#             phi1_aux =  arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
#             phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
#             #Direction Cosine 1
#             cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
#             
#             #Searching the correct Direction Cosine
#             cosdir0_aux = cosdir0[:,i]
#             cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
#             #Minimum Distance
#             cosDiff = (cosdir1 - cosdir0_aux)**2
#             indcos = cosDiff.argmin(axis = 1)
#             #Saving Value obtained
#             cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
#             
#         return cosdir0, cosdir
#     
#     def __calculateAOA(self, cosdir, azimuth):
#         cosdirX = cosdir[:,0]
#         cosdirY = cosdir[:,1]
#         
#         zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
#         azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
#         angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
#         
#         return angles
#     
#     def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
#     
#         Ramb = 375  #Ramb = c/(2*PRF)
#         Re = 6371   #Earth Radius
#         heights = numpy.zeros(Ranges.shape)
#         
#         R_aux = numpy.array([0,1,2])*Ramb
#         R_aux = R_aux.reshape(1,R_aux.size)
# 
#         Ranges = Ranges.reshape(Ranges.size,1)
#         
#         Ri = Ranges + R_aux
#         hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
#         
#         #Check if there is a height between 70 and 110 km
#         h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
#         ind_h = numpy.where(h_bool == 1)[0]
#         
#         hCorr = hi[ind_h, :]
#         ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
#            
#         hCorr = hi[ind_hCorr]   
#         heights[ind_h] = hCorr
#         
#         #Setting Error
#         #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
#         #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km 
#         
#         indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]    
#         error[indInvalid2] = 14
#         indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
#         error[indInvalid1] = 13 
#         
#         return heights, error     
    