The requested changes are too big and content was truncated. Show full diff
@@ -1,1231 +1,1229 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | def getDataTypeCode(numpyDtype): |
|
35 | 35 | |
|
36 | 36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
37 | 37 | datatype = 0 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
39 | 39 | datatype = 1 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
41 | 41 | datatype = 2 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
43 | 43 | datatype = 3 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
45 | 45 | datatype = 4 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
47 | 47 | datatype = 5 |
|
48 | 48 | else: |
|
49 | 49 | datatype = None |
|
50 | 50 | |
|
51 | 51 | return datatype |
|
52 | 52 | |
|
53 | 53 | def hildebrand_sekhon(data, navg): |
|
54 | 54 | """ |
|
55 | 55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
56 | 56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
57 | 57 | densities is equal to the mean spectral density for white Gaussian noise |
|
58 | 58 | |
|
59 | 59 | Inputs: |
|
60 | 60 | Data : heights |
|
61 | 61 | navg : numbers of averages |
|
62 | 62 | |
|
63 | 63 | Return: |
|
64 | 64 | -1 : any error |
|
65 | 65 | anoise : noise's level |
|
66 | 66 | """ |
|
67 | 67 | |
|
68 | 68 | sortdata = numpy.sort(data, axis=None) |
|
69 | 69 | # lenOfData = len(sortdata) |
|
70 | 70 | # nums_min = lenOfData*0.2 |
|
71 | 71 | # |
|
72 | 72 | # if nums_min <= 5: |
|
73 | 73 | # nums_min = 5 |
|
74 | 74 | # |
|
75 | 75 | # sump = 0. |
|
76 | 76 | # |
|
77 | 77 | # sumq = 0. |
|
78 | 78 | # |
|
79 | 79 | # j = 0 |
|
80 | 80 | # |
|
81 | 81 | # cont = 1 |
|
82 | 82 | # |
|
83 | 83 | # while((cont==1)and(j<lenOfData)): |
|
84 | 84 | # |
|
85 | 85 | # sump += sortdata[j] |
|
86 | 86 | # |
|
87 | 87 | # sumq += sortdata[j]**2 |
|
88 | 88 | # |
|
89 | 89 | # if j > nums_min: |
|
90 | 90 | # rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | # if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | # j = j - 1 |
|
93 | 93 | # sump = sump - sortdata[j] |
|
94 | 94 | # sumq = sumq - sortdata[j]**2 |
|
95 | 95 | # cont = 0 |
|
96 | 96 | # |
|
97 | 97 | # j += 1 |
|
98 | 98 | # |
|
99 | 99 | # lnoise = sump /j |
|
100 | 100 | # |
|
101 | 101 | # return lnoise |
|
102 | 102 | |
|
103 | 103 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
104 | 104 | |
|
105 | 105 | |
|
106 | 106 | class Beam: |
|
107 | 107 | |
|
108 | 108 | def __init__(self): |
|
109 | 109 | self.codeList = [] |
|
110 | 110 | self.azimuthList = [] |
|
111 | 111 | self.zenithList = [] |
|
112 | 112 | |
|
113 | 113 | class GenericData(object): |
|
114 | 114 | |
|
115 | 115 | flagNoData = True |
|
116 | 116 | |
|
117 | 117 | def copy(self, inputObj=None): |
|
118 | 118 | |
|
119 | 119 | if inputObj == None: |
|
120 | 120 | return copy.deepcopy(self) |
|
121 | 121 | |
|
122 | 122 | for key in inputObj.__dict__.keys(): |
|
123 | 123 | |
|
124 | 124 | attribute = inputObj.__dict__[key] |
|
125 | 125 | |
|
126 | 126 | #If this attribute is a tuple or list |
|
127 | 127 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
128 | 128 | self.__dict__[key] = attribute[:] |
|
129 | 129 | continue |
|
130 | 130 | |
|
131 | 131 | #If this attribute is another object or instance |
|
132 | 132 | if hasattr(attribute, '__dict__'): |
|
133 | 133 | self.__dict__[key] = attribute.copy() |
|
134 | 134 | continue |
|
135 | 135 | |
|
136 | 136 | self.__dict__[key] = inputObj.__dict__[key] |
|
137 | 137 | |
|
138 | 138 | def deepcopy(self): |
|
139 | 139 | |
|
140 | 140 | return copy.deepcopy(self) |
|
141 | 141 | |
|
142 | 142 | def isEmpty(self): |
|
143 | 143 | |
|
144 | 144 | return self.flagNoData |
|
145 | 145 | |
|
146 | 146 | class JROData(GenericData): |
|
147 | 147 | |
|
148 | 148 | # m_BasicHeader = BasicHeader() |
|
149 | 149 | # m_ProcessingHeader = ProcessingHeader() |
|
150 | 150 | |
|
151 | 151 | systemHeaderObj = SystemHeader() |
|
152 | 152 | |
|
153 | 153 | radarControllerHeaderObj = RadarControllerHeader() |
|
154 | 154 | |
|
155 | 155 | # data = None |
|
156 | 156 | |
|
157 | 157 | type = None |
|
158 | 158 | |
|
159 | 159 | datatype = None #dtype but in string |
|
160 | 160 | |
|
161 | 161 | # dtype = None |
|
162 | 162 | |
|
163 | 163 | # nChannels = None |
|
164 | 164 | |
|
165 | 165 | # nHeights = None |
|
166 | 166 | |
|
167 | 167 | nProfiles = None |
|
168 | 168 | |
|
169 | 169 | heightList = None |
|
170 | 170 | |
|
171 | 171 | channelList = None |
|
172 | 172 | |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | |
|
175 | 175 | useLocalTime = False |
|
176 | 176 | |
|
177 | 177 | utctime = None |
|
178 | 178 | |
|
179 | 179 | timeZone = None |
|
180 | 180 | |
|
181 | 181 | dstFlag = None |
|
182 | 182 | |
|
183 | 183 | errorCount = None |
|
184 | 184 | |
|
185 | 185 | blocksize = None |
|
186 | 186 | |
|
187 | 187 | # nCode = None |
|
188 | 188 | # |
|
189 | 189 | # nBaud = None |
|
190 | 190 | # |
|
191 | 191 | # code = None |
|
192 | 192 | |
|
193 | 193 | flagDecodeData = False #asumo q la data no esta decodificada |
|
194 | 194 | |
|
195 | 195 | flagDeflipData = False #asumo q la data no esta sin flip |
|
196 | 196 | |
|
197 | 197 | flagShiftFFT = False |
|
198 | 198 | |
|
199 | 199 | # ippSeconds = None |
|
200 | 200 | |
|
201 | 201 | # timeInterval = None |
|
202 | 202 | |
|
203 | 203 | nCohInt = None |
|
204 | 204 | |
|
205 | 205 | # noise = None |
|
206 | 206 | |
|
207 | 207 | windowOfFilter = 1 |
|
208 | 208 | |
|
209 | 209 | #Speed of ligth |
|
210 | 210 | C = 3e8 |
|
211 | 211 | |
|
212 | 212 | frequency = 49.92e6 |
|
213 | 213 | |
|
214 | 214 | realtime = False |
|
215 | 215 | |
|
216 | 216 | beacon_heiIndexList = None |
|
217 | 217 | |
|
218 | 218 | last_block = None |
|
219 | 219 | |
|
220 | 220 | blocknow = None |
|
221 | 221 | |
|
222 | 222 | azimuth = None |
|
223 | 223 | |
|
224 | 224 | zenith = None |
|
225 | 225 | |
|
226 | 226 | beam = Beam() |
|
227 | 227 | |
|
228 | 228 | profileIndex = None |
|
229 | 229 | |
|
230 | 230 | def getNoise(self): |
|
231 | 231 | |
|
232 | 232 | raise NotImplementedError |
|
233 | 233 | |
|
234 | 234 | def getNChannels(self): |
|
235 | 235 | |
|
236 | 236 | return len(self.channelList) |
|
237 | 237 | |
|
238 | 238 | def getChannelIndexList(self): |
|
239 | 239 | |
|
240 | 240 | return range(self.nChannels) |
|
241 | 241 | |
|
242 | 242 | def getNHeights(self): |
|
243 | 243 | |
|
244 | 244 | return len(self.heightList) |
|
245 | 245 | |
|
246 | 246 | def getHeiRange(self, extrapoints=0): |
|
247 | 247 | |
|
248 | 248 | heis = self.heightList |
|
249 | 249 | # deltah = self.heightList[1] - self.heightList[0] |
|
250 | 250 | # |
|
251 | 251 | # heis.append(self.heightList[-1]) |
|
252 | 252 | |
|
253 | 253 | return heis |
|
254 | 254 | |
|
255 | 255 | def getDeltaH(self): |
|
256 | 256 | |
|
257 | 257 | delta = self.heightList[1] - self.heightList[0] |
|
258 | 258 | |
|
259 | 259 | return delta |
|
260 | 260 | |
|
261 | 261 | def getltctime(self): |
|
262 | 262 | |
|
263 | 263 | if self.useLocalTime: |
|
264 | 264 | return self.utctime - self.timeZone*60 |
|
265 | 265 | |
|
266 | 266 | return self.utctime |
|
267 | 267 | |
|
268 | 268 | def getDatatime(self): |
|
269 | 269 | |
|
270 | 270 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
271 | 271 | return datatimeValue |
|
272 | 272 | |
|
273 | 273 | def getTimeRange(self): |
|
274 | 274 | |
|
275 | 275 | datatime = [] |
|
276 | 276 | |
|
277 | 277 | datatime.append(self.ltctime) |
|
278 | 278 | datatime.append(self.ltctime + self.timeInterval+1) |
|
279 | 279 | |
|
280 | 280 | datatime = numpy.array(datatime) |
|
281 | 281 | |
|
282 | 282 | return datatime |
|
283 | 283 | |
|
284 | 284 | def getFmaxTimeResponse(self): |
|
285 | 285 | |
|
286 | 286 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
287 | 287 | |
|
288 | 288 | PRF = 1./(period * self.nCohInt) |
|
289 | 289 | |
|
290 | 290 | fmax = PRF |
|
291 | 291 | |
|
292 | 292 | return fmax |
|
293 | 293 | |
|
294 | 294 | def getFmax(self): |
|
295 | 295 | |
|
296 | 296 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
297 | 297 | |
|
298 | 298 | fmax = PRF |
|
299 | 299 | |
|
300 | 300 | return fmax |
|
301 | 301 | |
|
302 | 302 | def getVmax(self): |
|
303 | 303 | |
|
304 | 304 | _lambda = self.C/self.frequency |
|
305 | 305 | |
|
306 | 306 | vmax = self.getFmax() * _lambda/2 |
|
307 | 307 | |
|
308 | 308 | return vmax |
|
309 | 309 | |
|
310 | 310 | def get_ippSeconds(self): |
|
311 | 311 | ''' |
|
312 | 312 | ''' |
|
313 | 313 | return self.radarControllerHeaderObj.ippSeconds |
|
314 | 314 | |
|
315 | 315 | def set_ippSeconds(self, ippSeconds): |
|
316 | 316 | ''' |
|
317 | 317 | ''' |
|
318 | 318 | |
|
319 | 319 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
320 | 320 | |
|
321 | 321 | return |
|
322 | 322 | |
|
323 | 323 | def get_dtype(self): |
|
324 | 324 | ''' |
|
325 | 325 | ''' |
|
326 | 326 | return getNumpyDtype(self.datatype) |
|
327 | 327 | |
|
328 | 328 | def set_dtype(self, numpyDtype): |
|
329 | 329 | ''' |
|
330 | 330 | ''' |
|
331 | 331 | |
|
332 | 332 | self.datatype = getDataTypeCode(numpyDtype) |
|
333 | 333 | |
|
334 | 334 | def get_code(self): |
|
335 | 335 | ''' |
|
336 | 336 | ''' |
|
337 | 337 | return self.radarControllerHeaderObj.code |
|
338 | 338 | |
|
339 | 339 | def set_code(self, code): |
|
340 | 340 | ''' |
|
341 | 341 | ''' |
|
342 | 342 | self.radarControllerHeaderObj.code = code |
|
343 | 343 | |
|
344 | 344 | return |
|
345 | 345 | |
|
346 | 346 | def get_ncode(self): |
|
347 | 347 | ''' |
|
348 | 348 | ''' |
|
349 | 349 | return self.radarControllerHeaderObj.nCode |
|
350 | 350 | |
|
351 | 351 | def set_ncode(self, nCode): |
|
352 | 352 | ''' |
|
353 | 353 | ''' |
|
354 | 354 | self.radarControllerHeaderObj.nCode = nCode |
|
355 | 355 | |
|
356 | 356 | return |
|
357 | 357 | |
|
358 | 358 | def get_nbaud(self): |
|
359 | 359 | ''' |
|
360 | 360 | ''' |
|
361 | 361 | return self.radarControllerHeaderObj.nBaud |
|
362 | 362 | |
|
363 | 363 | def set_nbaud(self, nBaud): |
|
364 | 364 | ''' |
|
365 | 365 | ''' |
|
366 | 366 | self.radarControllerHeaderObj.nBaud = nBaud |
|
367 | 367 | |
|
368 | 368 | return |
|
369 | 369 | |
|
370 | 370 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
371 | 371 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
372 | 372 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
373 | 373 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
374 | 374 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
375 | 375 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
376 | 376 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
377 | 377 | dtype = property(get_dtype, set_dtype) |
|
378 | 378 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
379 | 379 | code = property(get_code, set_code) |
|
380 | 380 | nCode = property(get_ncode, set_ncode) |
|
381 | 381 | nBaud = property(get_nbaud, set_nbaud) |
|
382 | 382 | |
|
383 | 383 | class Voltage(JROData): |
|
384 | 384 | |
|
385 | 385 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
386 | 386 | data = None |
|
387 | 387 | |
|
388 | 388 | def __init__(self): |
|
389 | 389 | ''' |
|
390 | 390 | Constructor |
|
391 | 391 | ''' |
|
392 | 392 | |
|
393 | 393 | self.useLocalTime = True |
|
394 | 394 | |
|
395 | 395 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
396 | 396 | |
|
397 | 397 | self.systemHeaderObj = SystemHeader() |
|
398 | 398 | |
|
399 | 399 | self.type = "Voltage" |
|
400 | 400 | |
|
401 | 401 | self.data = None |
|
402 | 402 | |
|
403 | 403 | # self.dtype = None |
|
404 | 404 | |
|
405 | 405 | # self.nChannels = 0 |
|
406 | 406 | |
|
407 | 407 | # self.nHeights = 0 |
|
408 | 408 | |
|
409 | 409 | self.nProfiles = None |
|
410 | 410 | |
|
411 | 411 | self.heightList = None |
|
412 | 412 | |
|
413 | 413 | self.channelList = None |
|
414 | 414 | |
|
415 | 415 | # self.channelIndexList = None |
|
416 | 416 | |
|
417 | 417 | self.flagNoData = True |
|
418 | 418 | |
|
419 | 419 | self.flagDiscontinuousBlock = False |
|
420 | 420 | |
|
421 | 421 | self.utctime = None |
|
422 | 422 | |
|
423 | 423 | self.timeZone = None |
|
424 | 424 | |
|
425 | 425 | self.dstFlag = None |
|
426 | 426 | |
|
427 | 427 | self.errorCount = None |
|
428 | 428 | |
|
429 | 429 | self.nCohInt = None |
|
430 | 430 | |
|
431 | 431 | self.blocksize = None |
|
432 | 432 | |
|
433 | 433 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
434 | 434 | |
|
435 | 435 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
436 | 436 | |
|
437 | 437 | self.flagShiftFFT = False |
|
438 | 438 | |
|
439 | 439 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
440 | 440 | |
|
441 | 441 | self.profileIndex = 0 |
|
442 | 442 | |
|
443 | 443 | def getNoisebyHildebrand(self, channel = None): |
|
444 | 444 | """ |
|
445 | 445 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
446 | 446 | |
|
447 | 447 | Return: |
|
448 | 448 | noiselevel |
|
449 | 449 | """ |
|
450 | 450 | |
|
451 | 451 | if channel != None: |
|
452 | 452 | data = self.data[channel] |
|
453 | 453 | nChannels = 1 |
|
454 | 454 | else: |
|
455 | 455 | data = self.data |
|
456 | 456 | nChannels = self.nChannels |
|
457 | 457 | |
|
458 | 458 | noise = numpy.zeros(nChannels) |
|
459 | 459 | power = data * numpy.conjugate(data) |
|
460 | 460 | |
|
461 | 461 | for thisChannel in range(nChannels): |
|
462 | 462 | if nChannels == 1: |
|
463 | 463 | daux = power[:].real |
|
464 | 464 | else: |
|
465 | 465 | daux = power[thisChannel,:].real |
|
466 | 466 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
467 | 467 | |
|
468 | 468 | return noise |
|
469 | 469 | |
|
470 | 470 | def getNoise(self, type = 1, channel = None): |
|
471 | 471 | |
|
472 | 472 | if type == 1: |
|
473 | 473 | noise = self.getNoisebyHildebrand(channel) |
|
474 | 474 | |
|
475 | 475 | return noise |
|
476 | 476 | |
|
477 | 477 | def getPower(self, channel = None): |
|
478 | 478 | |
|
479 | 479 | if channel != None: |
|
480 | 480 | data = self.data[channel] |
|
481 | 481 | else: |
|
482 | 482 | data = self.data |
|
483 | 483 | |
|
484 | 484 | power = data * numpy.conjugate(data) |
|
485 | 485 | powerdB = 10*numpy.log10(power.real) |
|
486 | 486 | powerdB = numpy.squeeze(powerdB) |
|
487 | 487 | |
|
488 | 488 | return powerdB |
|
489 | 489 | |
|
490 | 490 | def getTimeInterval(self): |
|
491 | 491 | |
|
492 | 492 | timeInterval = self.ippSeconds * self.nCohInt |
|
493 | 493 | |
|
494 | 494 | return timeInterval |
|
495 | 495 | |
|
496 | 496 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
497 | 497 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
498 | 498 | |
|
499 | 499 | class Spectra(JROData): |
|
500 | 500 | |
|
501 | 501 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
502 | 502 | data_spc = None |
|
503 | 503 | |
|
504 | 504 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
505 | 505 | data_cspc = None |
|
506 | 506 | |
|
507 | 507 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
508 | 508 | data_dc = None |
|
509 | 509 | |
|
510 | 510 | #data power |
|
511 | 511 | data_pwr = None |
|
512 | 512 | |
|
513 | 513 | nFFTPoints = None |
|
514 | 514 | |
|
515 | 515 | # nPairs = None |
|
516 | 516 | |
|
517 | 517 | pairsList = None |
|
518 | 518 | |
|
519 | 519 | nIncohInt = None |
|
520 | 520 | |
|
521 | 521 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
522 | 522 | |
|
523 | 523 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
524 | 524 | |
|
525 | 525 | ippFactor = None |
|
526 | 526 | |
|
527 | 527 | profileIndex = 0 |
|
528 | 528 | |
|
529 | 529 | plotting = "spectra" |
|
530 | 530 | |
|
531 | 531 | def __init__(self): |
|
532 | 532 | ''' |
|
533 | 533 | Constructor |
|
534 | 534 | ''' |
|
535 | 535 | |
|
536 | 536 | self.useLocalTime = True |
|
537 | 537 | |
|
538 | 538 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
539 | 539 | |
|
540 | 540 | self.systemHeaderObj = SystemHeader() |
|
541 | 541 | |
|
542 | 542 | self.type = "Spectra" |
|
543 | 543 | |
|
544 | 544 | # self.data = None |
|
545 | 545 | |
|
546 | 546 | # self.dtype = None |
|
547 | 547 | |
|
548 | 548 | # self.nChannels = 0 |
|
549 | 549 | |
|
550 | 550 | # self.nHeights = 0 |
|
551 | 551 | |
|
552 | 552 | self.nProfiles = None |
|
553 | 553 | |
|
554 | 554 | self.heightList = None |
|
555 | 555 | |
|
556 | 556 | self.channelList = None |
|
557 | 557 | |
|
558 | 558 | # self.channelIndexList = None |
|
559 | 559 | |
|
560 | 560 | self.pairsList = None |
|
561 | 561 | |
|
562 | 562 | self.flagNoData = True |
|
563 | 563 | |
|
564 | 564 | self.flagDiscontinuousBlock = False |
|
565 | 565 | |
|
566 | 566 | self.utctime = None |
|
567 | 567 | |
|
568 | 568 | self.nCohInt = None |
|
569 | 569 | |
|
570 | 570 | self.nIncohInt = None |
|
571 | 571 | |
|
572 | 572 | self.blocksize = None |
|
573 | 573 | |
|
574 | 574 | self.nFFTPoints = None |
|
575 | 575 | |
|
576 | 576 | self.wavelength = None |
|
577 | 577 | |
|
578 | 578 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
579 | 579 | |
|
580 | 580 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
581 | 581 | |
|
582 | 582 | self.flagShiftFFT = False |
|
583 | 583 | |
|
584 | 584 | self.ippFactor = 1 |
|
585 | 585 | |
|
586 | 586 | #self.noise = None |
|
587 | 587 | |
|
588 | 588 | self.beacon_heiIndexList = [] |
|
589 | 589 | |
|
590 | 590 | self.noise_estimation = None |
|
591 | 591 | |
|
592 | 592 | |
|
593 | 593 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
594 | 594 | """ |
|
595 | 595 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
596 | 596 | |
|
597 | 597 | Return: |
|
598 | 598 | noiselevel |
|
599 | 599 | """ |
|
600 | 600 | |
|
601 | 601 | noise = numpy.zeros(self.nChannels) |
|
602 | 602 | |
|
603 | 603 | for channel in range(self.nChannels): |
|
604 | 604 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
605 | 605 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
606 | 606 | |
|
607 | 607 | return noise |
|
608 | 608 | |
|
609 | 609 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
610 | 610 | |
|
611 | 611 | if self.noise_estimation is not None: |
|
612 | 612 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
613 | 613 | else: |
|
614 | 614 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
615 | 615 | return noise |
|
616 | 616 | |
|
617 | 617 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
618 | 618 | |
|
619 | 619 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
620 | 620 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
621 | 621 | |
|
622 | 622 | return freqrange |
|
623 | 623 | |
|
624 | 624 | def getAcfRange(self, extrapoints=0): |
|
625 | 625 | |
|
626 | 626 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
627 | 627 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
628 | 628 | |
|
629 | 629 | return freqrange |
|
630 | 630 | |
|
631 | 631 | def getFreqRange(self, extrapoints=0): |
|
632 | 632 | |
|
633 | 633 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
634 | 634 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
635 | 635 | |
|
636 | 636 | return freqrange |
|
637 | 637 | |
|
638 | 638 | def getVelRange(self, extrapoints=0): |
|
639 | 639 | |
|
640 | print 'VELMAX', self.getVmax() | |
|
641 | asdasdasd | |
|
642 | 640 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
643 | 641 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
644 | 642 | |
|
645 | 643 | return velrange |
|
646 | 644 | |
|
647 | 645 | def getNPairs(self): |
|
648 | 646 | |
|
649 | 647 | return len(self.pairsList) |
|
650 | 648 | |
|
651 | 649 | def getPairsIndexList(self): |
|
652 | 650 | |
|
653 | 651 | return range(self.nPairs) |
|
654 | 652 | |
|
655 | 653 | def getNormFactor(self): |
|
656 | 654 | |
|
657 | 655 | pwcode = 1 |
|
658 | 656 | |
|
659 | 657 | if self.flagDecodeData: |
|
660 | 658 | pwcode = numpy.sum(self.code[0]**2) |
|
661 | 659 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
662 | 660 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
663 | 661 | |
|
664 | 662 | return normFactor |
|
665 | 663 | |
|
666 | 664 | def getFlagCspc(self): |
|
667 | 665 | |
|
668 | 666 | if self.data_cspc is None: |
|
669 | 667 | return True |
|
670 | 668 | |
|
671 | 669 | return False |
|
672 | 670 | |
|
673 | 671 | def getFlagDc(self): |
|
674 | 672 | |
|
675 | 673 | if self.data_dc is None: |
|
676 | 674 | return True |
|
677 | 675 | |
|
678 | 676 | return False |
|
679 | 677 | |
|
680 | 678 | def getTimeInterval(self): |
|
681 | 679 | |
|
682 | 680 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
683 | 681 | |
|
684 | 682 | return timeInterval |
|
685 | 683 | |
|
686 | 684 | def getPower(self): |
|
687 | 685 | |
|
688 | 686 | factor = self.normFactor |
|
689 | 687 | z = self.data_spc/factor |
|
690 | 688 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
691 | 689 | avg = numpy.average(z, axis=1) |
|
692 | 690 | |
|
693 | 691 | return 10*numpy.log10(avg) |
|
694 | 692 | |
|
695 | 693 | def getCoherence(self, pairsList=None, phase=False): |
|
696 | 694 | |
|
697 | 695 | z = [] |
|
698 | 696 | if pairsList is None: |
|
699 | 697 | pairsIndexList = self.pairsIndexList |
|
700 | 698 | else: |
|
701 | 699 | pairsIndexList = [] |
|
702 | 700 | for pair in pairsList: |
|
703 | 701 | if pair not in self.pairsList: |
|
704 | 702 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
705 | 703 | pairsIndexList.append(self.pairsList.index(pair)) |
|
706 | 704 | for i in range(len(pairsIndexList)): |
|
707 | 705 | pair = self.pairsList[pairsIndexList[i]] |
|
708 | 706 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
709 | 707 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
710 | 708 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
711 | 709 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
712 | 710 | if phase: |
|
713 | 711 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
714 | 712 | avgcoherenceComplex.real)*180/numpy.pi |
|
715 | 713 | else: |
|
716 | 714 | data = numpy.abs(avgcoherenceComplex) |
|
717 | 715 | |
|
718 | 716 | z.append(data) |
|
719 | 717 | |
|
720 | 718 | return numpy.array(z) |
|
721 | 719 | |
|
722 | 720 | def setValue(self, value): |
|
723 | 721 | |
|
724 | 722 | print "This property should not be initialized" |
|
725 | 723 | |
|
726 | 724 | return |
|
727 | 725 | |
|
728 | 726 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
729 | 727 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
730 | 728 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
731 | 729 | flag_cspc = property(getFlagCspc, setValue) |
|
732 | 730 | flag_dc = property(getFlagDc, setValue) |
|
733 | 731 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
734 | 732 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
735 | 733 | |
|
736 | 734 | class SpectraHeis(Spectra): |
|
737 | 735 | |
|
738 | 736 | data_spc = None |
|
739 | 737 | |
|
740 | 738 | data_cspc = None |
|
741 | 739 | |
|
742 | 740 | data_dc = None |
|
743 | 741 | |
|
744 | 742 | nFFTPoints = None |
|
745 | 743 | |
|
746 | 744 | # nPairs = None |
|
747 | 745 | |
|
748 | 746 | pairsList = None |
|
749 | 747 | |
|
750 | 748 | nCohInt = None |
|
751 | 749 | |
|
752 | 750 | nIncohInt = None |
|
753 | 751 | |
|
754 | 752 | def __init__(self): |
|
755 | 753 | |
|
756 | 754 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
757 | 755 | |
|
758 | 756 | self.systemHeaderObj = SystemHeader() |
|
759 | 757 | |
|
760 | 758 | self.type = "SpectraHeis" |
|
761 | 759 | |
|
762 | 760 | # self.dtype = None |
|
763 | 761 | |
|
764 | 762 | # self.nChannels = 0 |
|
765 | 763 | |
|
766 | 764 | # self.nHeights = 0 |
|
767 | 765 | |
|
768 | 766 | self.nProfiles = None |
|
769 | 767 | |
|
770 | 768 | self.heightList = None |
|
771 | 769 | |
|
772 | 770 | self.channelList = None |
|
773 | 771 | |
|
774 | 772 | # self.channelIndexList = None |
|
775 | 773 | |
|
776 | 774 | self.flagNoData = True |
|
777 | 775 | |
|
778 | 776 | self.flagDiscontinuousBlock = False |
|
779 | 777 | |
|
780 | 778 | # self.nPairs = 0 |
|
781 | 779 | |
|
782 | 780 | self.utctime = None |
|
783 | 781 | |
|
784 | 782 | self.blocksize = None |
|
785 | 783 | |
|
786 | 784 | self.profileIndex = 0 |
|
787 | 785 | |
|
788 | 786 | self.nCohInt = 1 |
|
789 | 787 | |
|
790 | 788 | self.nIncohInt = 1 |
|
791 | 789 | |
|
792 | 790 | def getNormFactor(self): |
|
793 | 791 | pwcode = 1 |
|
794 | 792 | if self.flagDecodeData: |
|
795 | 793 | pwcode = numpy.sum(self.code[0]**2) |
|
796 | 794 | |
|
797 | 795 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
798 | 796 | |
|
799 | 797 | return normFactor |
|
800 | 798 | |
|
801 | 799 | def getTimeInterval(self): |
|
802 | 800 | |
|
803 | 801 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
804 | 802 | |
|
805 | 803 | return timeInterval |
|
806 | 804 | |
|
807 | 805 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
808 | 806 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
809 | 807 | |
|
810 | 808 | class Fits(JROData): |
|
811 | 809 | |
|
812 | 810 | heightList = None |
|
813 | 811 | |
|
814 | 812 | channelList = None |
|
815 | 813 | |
|
816 | 814 | flagNoData = True |
|
817 | 815 | |
|
818 | 816 | flagDiscontinuousBlock = False |
|
819 | 817 | |
|
820 | 818 | useLocalTime = False |
|
821 | 819 | |
|
822 | 820 | utctime = None |
|
823 | 821 | |
|
824 | 822 | timeZone = None |
|
825 | 823 | |
|
826 | 824 | # ippSeconds = None |
|
827 | 825 | |
|
828 | 826 | # timeInterval = None |
|
829 | 827 | |
|
830 | 828 | nCohInt = None |
|
831 | 829 | |
|
832 | 830 | nIncohInt = None |
|
833 | 831 | |
|
834 | 832 | noise = None |
|
835 | 833 | |
|
836 | 834 | windowOfFilter = 1 |
|
837 | 835 | |
|
838 | 836 | #Speed of ligth |
|
839 | 837 | C = 3e8 |
|
840 | 838 | |
|
841 | 839 | frequency = 49.92e6 |
|
842 | 840 | |
|
843 | 841 | realtime = False |
|
844 | 842 | |
|
845 | 843 | |
|
846 | 844 | def __init__(self): |
|
847 | 845 | |
|
848 | 846 | self.type = "Fits" |
|
849 | 847 | |
|
850 | 848 | self.nProfiles = None |
|
851 | 849 | |
|
852 | 850 | self.heightList = None |
|
853 | 851 | |
|
854 | 852 | self.channelList = None |
|
855 | 853 | |
|
856 | 854 | # self.channelIndexList = None |
|
857 | 855 | |
|
858 | 856 | self.flagNoData = True |
|
859 | 857 | |
|
860 | 858 | self.utctime = None |
|
861 | 859 | |
|
862 | 860 | self.nCohInt = 1 |
|
863 | 861 | |
|
864 | 862 | self.nIncohInt = 1 |
|
865 | 863 | |
|
866 | 864 | self.useLocalTime = True |
|
867 | 865 | |
|
868 | 866 | self.profileIndex = 0 |
|
869 | 867 | |
|
870 | 868 | # self.utctime = None |
|
871 | 869 | # self.timeZone = None |
|
872 | 870 | # self.ltctime = None |
|
873 | 871 | # self.timeInterval = None |
|
874 | 872 | # self.header = None |
|
875 | 873 | # self.data_header = None |
|
876 | 874 | # self.data = None |
|
877 | 875 | # self.datatime = None |
|
878 | 876 | # self.flagNoData = False |
|
879 | 877 | # self.expName = '' |
|
880 | 878 | # self.nChannels = None |
|
881 | 879 | # self.nSamples = None |
|
882 | 880 | # self.dataBlocksPerFile = None |
|
883 | 881 | # self.comments = '' |
|
884 | 882 | # |
|
885 | 883 | |
|
886 | 884 | |
|
887 | 885 | def getltctime(self): |
|
888 | 886 | |
|
889 | 887 | if self.useLocalTime: |
|
890 | 888 | return self.utctime - self.timeZone*60 |
|
891 | 889 | |
|
892 | 890 | return self.utctime |
|
893 | 891 | |
|
894 | 892 | def getDatatime(self): |
|
895 | 893 | |
|
896 | 894 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
897 | 895 | return datatime |
|
898 | 896 | |
|
899 | 897 | def getTimeRange(self): |
|
900 | 898 | |
|
901 | 899 | datatime = [] |
|
902 | 900 | |
|
903 | 901 | datatime.append(self.ltctime) |
|
904 | 902 | datatime.append(self.ltctime + self.timeInterval) |
|
905 | 903 | |
|
906 | 904 | datatime = numpy.array(datatime) |
|
907 | 905 | |
|
908 | 906 | return datatime |
|
909 | 907 | |
|
910 | 908 | def getHeiRange(self): |
|
911 | 909 | |
|
912 | 910 | heis = self.heightList |
|
913 | 911 | |
|
914 | 912 | return heis |
|
915 | 913 | |
|
916 | 914 | def getNHeights(self): |
|
917 | 915 | |
|
918 | 916 | return len(self.heightList) |
|
919 | 917 | |
|
920 | 918 | def getNChannels(self): |
|
921 | 919 | |
|
922 | 920 | return len(self.channelList) |
|
923 | 921 | |
|
924 | 922 | def getChannelIndexList(self): |
|
925 | 923 | |
|
926 | 924 | return range(self.nChannels) |
|
927 | 925 | |
|
928 | 926 | def getNoise(self, type = 1): |
|
929 | 927 | |
|
930 | 928 | #noise = numpy.zeros(self.nChannels) |
|
931 | 929 | |
|
932 | 930 | if type == 1: |
|
933 | 931 | noise = self.getNoisebyHildebrand() |
|
934 | 932 | |
|
935 | 933 | if type == 2: |
|
936 | 934 | noise = self.getNoisebySort() |
|
937 | 935 | |
|
938 | 936 | if type == 3: |
|
939 | 937 | noise = self.getNoisebyWindow() |
|
940 | 938 | |
|
941 | 939 | return noise |
|
942 | 940 | |
|
943 | 941 | def getTimeInterval(self): |
|
944 | 942 | |
|
945 | 943 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
946 | 944 | |
|
947 | 945 | return timeInterval |
|
948 | 946 | |
|
949 | 947 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
950 | 948 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
951 | 949 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
952 | 950 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
953 | 951 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
954 | 952 | |
|
955 | 953 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
956 | 954 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
957 | 955 | |
|
958 | 956 | |
|
959 | 957 | class Correlation(JROData): |
|
960 | 958 | |
|
961 | 959 | noise = None |
|
962 | 960 | |
|
963 | 961 | SNR = None |
|
964 | 962 | |
|
965 | 963 | #-------------------------------------------------- |
|
966 | 964 | |
|
967 | 965 | mode = None |
|
968 | 966 | |
|
969 | 967 | split = False |
|
970 | 968 | |
|
971 | 969 | data_cf = None |
|
972 | 970 | |
|
973 | 971 | lags = None |
|
974 | 972 | |
|
975 | 973 | lagRange = None |
|
976 | 974 | |
|
977 | 975 | pairsList = None |
|
978 | 976 | |
|
979 | 977 | normFactor = None |
|
980 | 978 | |
|
981 | 979 | #-------------------------------------------------- |
|
982 | 980 | |
|
983 | 981 | # calculateVelocity = None |
|
984 | 982 | |
|
985 | 983 | nLags = None |
|
986 | 984 | |
|
987 | 985 | nPairs = None |
|
988 | 986 | |
|
989 | 987 | nAvg = None |
|
990 | 988 | |
|
991 | 989 | |
|
992 | 990 | def __init__(self): |
|
993 | 991 | ''' |
|
994 | 992 | Constructor |
|
995 | 993 | ''' |
|
996 | 994 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
997 | 995 | |
|
998 | 996 | self.systemHeaderObj = SystemHeader() |
|
999 | 997 | |
|
1000 | 998 | self.type = "Correlation" |
|
1001 | 999 | |
|
1002 | 1000 | self.data = None |
|
1003 | 1001 | |
|
1004 | 1002 | self.dtype = None |
|
1005 | 1003 | |
|
1006 | 1004 | self.nProfiles = None |
|
1007 | 1005 | |
|
1008 | 1006 | self.heightList = None |
|
1009 | 1007 | |
|
1010 | 1008 | self.channelList = None |
|
1011 | 1009 | |
|
1012 | 1010 | self.flagNoData = True |
|
1013 | 1011 | |
|
1014 | 1012 | self.flagDiscontinuousBlock = False |
|
1015 | 1013 | |
|
1016 | 1014 | self.utctime = None |
|
1017 | 1015 | |
|
1018 | 1016 | self.timeZone = None |
|
1019 | 1017 | |
|
1020 | 1018 | self.dstFlag = None |
|
1021 | 1019 | |
|
1022 | 1020 | self.errorCount = None |
|
1023 | 1021 | |
|
1024 | 1022 | self.blocksize = None |
|
1025 | 1023 | |
|
1026 | 1024 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1027 | 1025 | |
|
1028 | 1026 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1029 | 1027 | |
|
1030 | 1028 | self.pairsList = None |
|
1031 | 1029 | |
|
1032 | 1030 | self.nPoints = None |
|
1033 | 1031 | |
|
1034 | 1032 | def getPairsList(self): |
|
1035 | 1033 | |
|
1036 | 1034 | return self.pairsList |
|
1037 | 1035 | |
|
1038 | 1036 | def getNoise(self, mode = 2): |
|
1039 | 1037 | |
|
1040 | 1038 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1041 | 1039 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1042 | 1040 | |
|
1043 | 1041 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1044 | 1042 | jspectra = copy.copy(jspectra0) |
|
1045 | 1043 | |
|
1046 | 1044 | num_chan = jspectra.shape[0] |
|
1047 | 1045 | num_hei = jspectra.shape[2] |
|
1048 | 1046 | |
|
1049 | 1047 | freq_dc = jspectra.shape[1]/2 |
|
1050 | 1048 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1051 | 1049 | |
|
1052 | 1050 | if ind_vel[0]<0: |
|
1053 | 1051 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1054 | 1052 | |
|
1055 | 1053 | if mode == 1: |
|
1056 | 1054 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1057 | 1055 | |
|
1058 | 1056 | if mode == 2: |
|
1059 | 1057 | |
|
1060 | 1058 | vel = numpy.array([-2,-1,1,2]) |
|
1061 | 1059 | xx = numpy.zeros([4,4]) |
|
1062 | 1060 | |
|
1063 | 1061 | for fil in range(4): |
|
1064 | 1062 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1065 | 1063 | |
|
1066 | 1064 | xx_inv = numpy.linalg.inv(xx) |
|
1067 | 1065 | xx_aux = xx_inv[0,:] |
|
1068 | 1066 | |
|
1069 | 1067 | for ich in range(num_chan): |
|
1070 | 1068 | yy = jspectra[ich,ind_vel,:] |
|
1071 | 1069 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1072 | 1070 | |
|
1073 | 1071 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1074 | 1072 | cjunkid = sum(junkid) |
|
1075 | 1073 | |
|
1076 | 1074 | if cjunkid.any(): |
|
1077 | 1075 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1078 | 1076 | |
|
1079 | 1077 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1080 | 1078 | |
|
1081 | 1079 | return noise |
|
1082 | 1080 | |
|
1083 | 1081 | def getTimeInterval(self): |
|
1084 | 1082 | |
|
1085 | 1083 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1086 | 1084 | |
|
1087 | 1085 | return timeInterval |
|
1088 | 1086 | |
|
1089 | 1087 | def splitFunctions(self): |
|
1090 | 1088 | |
|
1091 | 1089 | pairsList = self.pairsList |
|
1092 | 1090 | ccf_pairs = [] |
|
1093 | 1091 | acf_pairs = [] |
|
1094 | 1092 | ccf_ind = [] |
|
1095 | 1093 | acf_ind = [] |
|
1096 | 1094 | for l in range(len(pairsList)): |
|
1097 | 1095 | chan0 = pairsList[l][0] |
|
1098 | 1096 | chan1 = pairsList[l][1] |
|
1099 | 1097 | |
|
1100 | 1098 | #Obteniendo pares de Autocorrelacion |
|
1101 | 1099 | if chan0 == chan1: |
|
1102 | 1100 | acf_pairs.append(chan0) |
|
1103 | 1101 | acf_ind.append(l) |
|
1104 | 1102 | else: |
|
1105 | 1103 | ccf_pairs.append(pairsList[l]) |
|
1106 | 1104 | ccf_ind.append(l) |
|
1107 | 1105 | |
|
1108 | 1106 | data_acf = self.data_cf[acf_ind] |
|
1109 | 1107 | data_ccf = self.data_cf[ccf_ind] |
|
1110 | 1108 | |
|
1111 | 1109 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1112 | 1110 | |
|
1113 | 1111 | def getNormFactor(self): |
|
1114 | 1112 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1115 | 1113 | acf_pairs = numpy.array(acf_pairs) |
|
1116 | 1114 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1117 | 1115 | |
|
1118 | 1116 | for p in range(self.nPairs): |
|
1119 | 1117 | pair = self.pairsList[p] |
|
1120 | 1118 | |
|
1121 | 1119 | ch0 = pair[0] |
|
1122 | 1120 | ch1 = pair[1] |
|
1123 | 1121 | |
|
1124 | 1122 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1125 | 1123 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1126 | 1124 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1127 | 1125 | |
|
1128 | 1126 | return normFactor |
|
1129 | 1127 | |
|
1130 | 1128 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1131 | 1129 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1132 | 1130 | |
|
1133 | 1131 | class Parameters(Spectra): |
|
1134 | 1132 | |
|
1135 | 1133 | experimentInfo = None #Information about the experiment |
|
1136 | 1134 | |
|
1137 | 1135 | #Information from previous data |
|
1138 | 1136 | |
|
1139 | 1137 | inputUnit = None #Type of data to be processed |
|
1140 | 1138 | |
|
1141 | 1139 | operation = None #Type of operation to parametrize |
|
1142 | 1140 | |
|
1143 | 1141 | #normFactor = None #Normalization Factor |
|
1144 | 1142 | |
|
1145 | 1143 | groupList = None #List of Pairs, Groups, etc |
|
1146 | 1144 | |
|
1147 | 1145 | #Parameters |
|
1148 | 1146 | |
|
1149 | 1147 | data_param = None #Parameters obtained |
|
1150 | 1148 | |
|
1151 | 1149 | data_pre = None #Data Pre Parametrization |
|
1152 | 1150 | |
|
1153 | 1151 | data_SNR = None #Signal to Noise Ratio |
|
1154 | 1152 | |
|
1155 | 1153 | # heightRange = None #Heights |
|
1156 | 1154 | |
|
1157 | 1155 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1158 | 1156 | |
|
1159 | 1157 | # noise = None #Noise Potency |
|
1160 | 1158 | |
|
1161 | 1159 | utctimeInit = None #Initial UTC time |
|
1162 | 1160 | |
|
1163 | 1161 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1164 | 1162 | |
|
1165 | 1163 | useLocalTime = True |
|
1166 | 1164 | |
|
1167 | 1165 | #Fitting |
|
1168 | 1166 | |
|
1169 | 1167 | data_error = None #Error of the estimation |
|
1170 | 1168 | |
|
1171 | 1169 | constants = None |
|
1172 | 1170 | |
|
1173 | 1171 | library = None |
|
1174 | 1172 | |
|
1175 | 1173 | #Output signal |
|
1176 | 1174 | |
|
1177 | 1175 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1178 | 1176 | |
|
1179 | 1177 | data_output = None #Out signal |
|
1180 | 1178 | |
|
1181 | 1179 | nAvg = None |
|
1182 | 1180 | |
|
1183 | 1181 | noise_estimation = None |
|
1184 | 1182 | |
|
1185 | 1183 | GauSPC = None #Fit gaussian SPC |
|
1186 | 1184 | |
|
1187 | 1185 | |
|
1188 | 1186 | def __init__(self): |
|
1189 | 1187 | ''' |
|
1190 | 1188 | Constructor |
|
1191 | 1189 | ''' |
|
1192 | 1190 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1193 | 1191 | |
|
1194 | 1192 | self.systemHeaderObj = SystemHeader() |
|
1195 | 1193 | |
|
1196 | 1194 | self.type = "Parameters" |
|
1197 | 1195 | |
|
1198 | 1196 | def getTimeRange1(self, interval): |
|
1199 | 1197 | |
|
1200 | 1198 | datatime = [] |
|
1201 | 1199 | |
|
1202 | 1200 | if self.useLocalTime: |
|
1203 | 1201 | time1 = self.utctimeInit - self.timeZone*60 |
|
1204 | 1202 | else: |
|
1205 | 1203 | time1 = self.utctimeInit |
|
1206 | 1204 | |
|
1207 | 1205 | datatime.append(time1) |
|
1208 | 1206 | datatime.append(time1 + interval) |
|
1209 | 1207 | datatime = numpy.array(datatime) |
|
1210 | 1208 | |
|
1211 | 1209 | return datatime |
|
1212 | 1210 | |
|
1213 | 1211 | def getTimeInterval(self): |
|
1214 | 1212 | |
|
1215 | 1213 | if hasattr(self, 'timeInterval1'): |
|
1216 | 1214 | return self.timeInterval1 |
|
1217 | 1215 | else: |
|
1218 | 1216 | return self.paramInterval |
|
1219 | 1217 | |
|
1220 | 1218 | def setValue(self, value): |
|
1221 | 1219 | |
|
1222 | 1220 | print "This property should not be initialized" |
|
1223 | 1221 | |
|
1224 | 1222 | return |
|
1225 | 1223 | |
|
1226 | 1224 | def getNoise(self): |
|
1227 | 1225 | |
|
1228 | 1226 | return self.spc_noise |
|
1229 | 1227 | |
|
1230 | 1228 | timeInterval = property(getTimeInterval) |
|
1231 | 1229 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
@@ -1,2160 +1,2160 | |||
|
1 | 1 | import os |
|
2 | 2 | import datetime |
|
3 | 3 | import numpy |
|
4 | 4 | import inspect |
|
5 | 5 | from figure import Figure, isRealtime, isTimeInHourRange |
|
6 | 6 | from plotting_codes import * |
|
7 | 7 | |
|
8 | 8 | |
|
9 |
class |
|
|
9 | class SpcParamPlot(Figure): | |
|
10 | 10 | |
|
11 | 11 | isConfig = None |
|
12 | 12 | __nsubplots = None |
|
13 | 13 | |
|
14 | 14 | WIDTHPROF = None |
|
15 | 15 | HEIGHTPROF = None |
|
16 |
PREFIX = ' |
|
|
16 | PREFIX = 'SpcParam' | |
|
17 | 17 | |
|
18 | 18 | def __init__(self, **kwargs): |
|
19 | 19 | Figure.__init__(self, **kwargs) |
|
20 | 20 | self.isConfig = False |
|
21 | 21 | self.__nsubplots = 1 |
|
22 | 22 | |
|
23 | 23 | self.WIDTH = 250 |
|
24 | 24 | self.HEIGHT = 250 |
|
25 | 25 | self.WIDTHPROF = 120 |
|
26 | 26 | self.HEIGHTPROF = 0 |
|
27 | 27 | self.counter_imagwr = 0 |
|
28 | 28 | |
|
29 | 29 | self.PLOT_CODE = SPEC_CODE |
|
30 | 30 | |
|
31 | 31 | self.FTP_WEI = None |
|
32 | 32 | self.EXP_CODE = None |
|
33 | 33 | self.SUB_EXP_CODE = None |
|
34 | 34 | self.PLOT_POS = None |
|
35 | 35 | |
|
36 | 36 | self.__xfilter_ena = False |
|
37 | 37 | self.__yfilter_ena = False |
|
38 | 38 | |
|
39 | 39 | def getSubplots(self): |
|
40 | 40 | |
|
41 | 41 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
42 | 42 | nrow = int(self.nplots*1./ncol + 0.9) |
|
43 | 43 | |
|
44 | 44 | return nrow, ncol |
|
45 | 45 | |
|
46 | 46 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
47 | 47 | |
|
48 | 48 | self.__showprofile = showprofile |
|
49 | 49 | self.nplots = nplots |
|
50 | 50 | |
|
51 | 51 | ncolspan = 1 |
|
52 | 52 | colspan = 1 |
|
53 | 53 | if showprofile: |
|
54 | 54 | ncolspan = 3 |
|
55 | 55 | colspan = 2 |
|
56 | 56 | self.__nsubplots = 2 |
|
57 | 57 | |
|
58 | 58 | self.createFigure(id = id, |
|
59 | 59 | wintitle = wintitle, |
|
60 | 60 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
61 | 61 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
62 | 62 | show=show) |
|
63 | 63 | |
|
64 | 64 | nrow, ncol = self.getSubplots() |
|
65 | 65 | |
|
66 | 66 | counter = 0 |
|
67 | 67 | for y in range(nrow): |
|
68 | 68 | for x in range(ncol): |
|
69 | 69 | |
|
70 | 70 | if counter >= self.nplots: |
|
71 | 71 | break |
|
72 | 72 | |
|
73 | 73 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
74 | 74 | |
|
75 | 75 | if showprofile: |
|
76 | 76 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
77 | 77 | |
|
78 | 78 | counter += 1 |
|
79 | 79 | |
|
80 | 80 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
81 | 81 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
82 | 82 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
83 | 83 | server=None, folder=None, username=None, password=None, |
|
84 | 84 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
85 |
xaxis="frequency", colormap='jet', normFactor=None , |
|
|
85 | xaxis="frequency", colormap='jet', normFactor=None , Selector = 0): | |
|
86 | 86 | |
|
87 | 87 | """ |
|
88 | 88 | |
|
89 | 89 | Input: |
|
90 | 90 | dataOut : |
|
91 | 91 | id : |
|
92 | 92 | wintitle : |
|
93 | 93 | channelList : |
|
94 | 94 | showProfile : |
|
95 | 95 | xmin : None, |
|
96 | 96 | xmax : None, |
|
97 | 97 | ymin : None, |
|
98 | 98 | ymax : None, |
|
99 | 99 | zmin : None, |
|
100 | 100 | zmax : None |
|
101 | 101 | """ |
|
102 | 102 | if realtime: |
|
103 | 103 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
104 | 104 | print 'Skipping this plot function' |
|
105 | 105 | return |
|
106 | 106 | |
|
107 | 107 | if channelList == None: |
|
108 | 108 | channelIndexList = dataOut.channelIndexList |
|
109 | 109 | else: |
|
110 | 110 | channelIndexList = [] |
|
111 | 111 | for channel in channelList: |
|
112 | 112 | if channel not in dataOut.channelList: |
|
113 | 113 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
114 | 114 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
115 | 115 | |
|
116 | 116 | # if normFactor is None: |
|
117 | 117 | # factor = dataOut.normFactor |
|
118 | 118 | # else: |
|
119 | 119 | # factor = normFactor |
|
120 | 120 | if xaxis == "frequency": |
|
121 | x = dataOut.spc_range[0] | |
|
121 | x = dataOut.spcparam_range[0] | |
|
122 | 122 | xlabel = "Frequency (kHz)" |
|
123 | 123 | |
|
124 | 124 | elif xaxis == "time": |
|
125 | x = dataOut.spc_range[1] | |
|
125 | x = dataOut.spcparam_range[1] | |
|
126 | 126 | xlabel = "Time (ms)" |
|
127 | 127 | |
|
128 | 128 | else: |
|
129 | x = dataOut.spc_range[2] | |
|
129 | x = dataOut.spcparam_range[2] | |
|
130 | 130 | xlabel = "Velocity (m/s)" |
|
131 | 131 | |
|
132 | 132 | ylabel = "Range (Km)" |
|
133 | 133 | |
|
134 | 134 | y = dataOut.getHeiRange() |
|
135 | 135 | |
|
136 |
z = dataOut. |
|
|
137 | print 'GausSPC', z[0,32,10:40] | |
|
136 | z = dataOut.SPCparam[Selector] #GauSelector] #dataOut.data_spc/factor | |
|
137 | #print 'GausSPC', z[0,32,10:40] | |
|
138 | 138 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
139 | 139 | zdB = 10*numpy.log10(z) |
|
140 | 140 | |
|
141 | 141 | avg = numpy.average(z, axis=1) |
|
142 | 142 | avgdB = 10*numpy.log10(avg) |
|
143 | 143 | |
|
144 | 144 | noise = dataOut.spc_noise |
|
145 | 145 | noisedB = 10*numpy.log10(noise) |
|
146 | 146 | |
|
147 | 147 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
148 | 148 | title = wintitle + " Spectra" |
|
149 | 149 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
150 | 150 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
151 | 151 | |
|
152 | 152 | if not self.isConfig: |
|
153 | 153 | |
|
154 | 154 | nplots = len(channelIndexList) |
|
155 | 155 | |
|
156 | 156 | self.setup(id=id, |
|
157 | 157 | nplots=nplots, |
|
158 | 158 | wintitle=wintitle, |
|
159 | 159 | showprofile=showprofile, |
|
160 | 160 | show=show) |
|
161 | 161 | |
|
162 | 162 | if xmin == None: xmin = numpy.nanmin(x) |
|
163 | 163 | if xmax == None: xmax = numpy.nanmax(x) |
|
164 | 164 | if ymin == None: ymin = numpy.nanmin(y) |
|
165 | 165 | if ymax == None: ymax = numpy.nanmax(y) |
|
166 | 166 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
167 | 167 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
168 | 168 | |
|
169 | 169 | self.FTP_WEI = ftp_wei |
|
170 | 170 | self.EXP_CODE = exp_code |
|
171 | 171 | self.SUB_EXP_CODE = sub_exp_code |
|
172 | 172 | self.PLOT_POS = plot_pos |
|
173 | 173 | |
|
174 | 174 | self.isConfig = True |
|
175 | 175 | |
|
176 | 176 | self.setWinTitle(title) |
|
177 | 177 | |
|
178 | 178 | for i in range(self.nplots): |
|
179 | 179 | index = channelIndexList[i] |
|
180 | 180 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
181 | 181 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
182 | 182 | if len(dataOut.beam.codeList) != 0: |
|
183 | 183 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
184 | 184 | |
|
185 | 185 | axes = self.axesList[i*self.__nsubplots] |
|
186 | 186 | axes.pcolor(x, y, zdB[index,:,:], |
|
187 | 187 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
188 | 188 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
189 | 189 | ticksize=9, cblabel='') |
|
190 | 190 | |
|
191 | 191 | if self.__showprofile: |
|
192 | 192 | axes = self.axesList[i*self.__nsubplots +1] |
|
193 | 193 | axes.pline(avgdB[index,:], y, |
|
194 | 194 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
195 | 195 | xlabel='dB', ylabel='', title='', |
|
196 | 196 | ytick_visible=False, |
|
197 | 197 | grid='x') |
|
198 | 198 | |
|
199 | 199 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
200 | 200 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
201 | 201 | |
|
202 | 202 | self.draw() |
|
203 | 203 | |
|
204 | 204 | if figfile == None: |
|
205 | 205 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
206 | 206 | name = str_datetime |
|
207 | 207 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
208 | 208 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
209 | 209 | figfile = self.getFilename(name) |
|
210 | 210 | |
|
211 | 211 | self.save(figpath=figpath, |
|
212 | 212 | figfile=figfile, |
|
213 | 213 | save=save, |
|
214 | 214 | ftp=ftp, |
|
215 | 215 | wr_period=wr_period, |
|
216 | 216 | thisDatetime=thisDatetime) |
|
217 | 217 | |
|
218 | 218 | |
|
219 | 219 | |
|
220 | 220 | class MomentsPlot(Figure): |
|
221 | 221 | |
|
222 | 222 | isConfig = None |
|
223 | 223 | __nsubplots = None |
|
224 | 224 | |
|
225 | 225 | WIDTHPROF = None |
|
226 | 226 | HEIGHTPROF = None |
|
227 | 227 | PREFIX = 'prm' |
|
228 | 228 | |
|
229 | 229 | def __init__(self, **kwargs): |
|
230 | 230 | Figure.__init__(self, **kwargs) |
|
231 | 231 | self.isConfig = False |
|
232 | 232 | self.__nsubplots = 1 |
|
233 | 233 | |
|
234 | 234 | self.WIDTH = 280 |
|
235 | 235 | self.HEIGHT = 250 |
|
236 | 236 | self.WIDTHPROF = 120 |
|
237 | 237 | self.HEIGHTPROF = 0 |
|
238 | 238 | self.counter_imagwr = 0 |
|
239 | 239 | |
|
240 | 240 | self.PLOT_CODE = MOMENTS_CODE |
|
241 | 241 | |
|
242 | 242 | self.FTP_WEI = None |
|
243 | 243 | self.EXP_CODE = None |
|
244 | 244 | self.SUB_EXP_CODE = None |
|
245 | 245 | self.PLOT_POS = None |
|
246 | 246 | |
|
247 | 247 | def getSubplots(self): |
|
248 | 248 | |
|
249 | 249 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
250 | 250 | nrow = int(self.nplots*1./ncol + 0.9) |
|
251 | 251 | |
|
252 | 252 | return nrow, ncol |
|
253 | 253 | |
|
254 | 254 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
255 | 255 | |
|
256 | 256 | self.__showprofile = showprofile |
|
257 | 257 | self.nplots = nplots |
|
258 | 258 | |
|
259 | 259 | ncolspan = 1 |
|
260 | 260 | colspan = 1 |
|
261 | 261 | if showprofile: |
|
262 | 262 | ncolspan = 3 |
|
263 | 263 | colspan = 2 |
|
264 | 264 | self.__nsubplots = 2 |
|
265 | 265 | |
|
266 | 266 | self.createFigure(id = id, |
|
267 | 267 | wintitle = wintitle, |
|
268 | 268 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
269 | 269 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
270 | 270 | show=show) |
|
271 | 271 | |
|
272 | 272 | nrow, ncol = self.getSubplots() |
|
273 | 273 | |
|
274 | 274 | counter = 0 |
|
275 | 275 | for y in range(nrow): |
|
276 | 276 | for x in range(ncol): |
|
277 | 277 | |
|
278 | 278 | if counter >= self.nplots: |
|
279 | 279 | break |
|
280 | 280 | |
|
281 | 281 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
282 | 282 | |
|
283 | 283 | if showprofile: |
|
284 | 284 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
285 | 285 | |
|
286 | 286 | counter += 1 |
|
287 | 287 | |
|
288 | 288 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
289 | 289 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
290 | 290 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
291 | 291 | server=None, folder=None, username=None, password=None, |
|
292 | 292 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
293 | 293 | |
|
294 | 294 | """ |
|
295 | 295 | |
|
296 | 296 | Input: |
|
297 | 297 | dataOut : |
|
298 | 298 | id : |
|
299 | 299 | wintitle : |
|
300 | 300 | channelList : |
|
301 | 301 | showProfile : |
|
302 | 302 | xmin : None, |
|
303 | 303 | xmax : None, |
|
304 | 304 | ymin : None, |
|
305 | 305 | ymax : None, |
|
306 | 306 | zmin : None, |
|
307 | 307 | zmax : None |
|
308 | 308 | """ |
|
309 | 309 | |
|
310 | 310 | if dataOut.flagNoData: |
|
311 | 311 | return None |
|
312 | 312 | |
|
313 | 313 | if realtime: |
|
314 | 314 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
315 | 315 | print 'Skipping this plot function' |
|
316 | 316 | return |
|
317 | 317 | |
|
318 | 318 | if channelList == None: |
|
319 | 319 | channelIndexList = dataOut.channelIndexList |
|
320 | 320 | else: |
|
321 | 321 | channelIndexList = [] |
|
322 | 322 | for channel in channelList: |
|
323 | 323 | if channel not in dataOut.channelList: |
|
324 | 324 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
325 | 325 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
326 | 326 | |
|
327 | 327 | factor = dataOut.normFactor |
|
328 | 328 | x = dataOut.abscissaList |
|
329 | 329 | y = dataOut.heightList |
|
330 | 330 | |
|
331 | 331 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
332 | 332 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
333 | 333 | avg = numpy.average(z, axis=1) |
|
334 | 334 | noise = dataOut.noise/factor |
|
335 | 335 | |
|
336 | 336 | zdB = 10*numpy.log10(z) |
|
337 | 337 | avgdB = 10*numpy.log10(avg) |
|
338 | 338 | noisedB = 10*numpy.log10(noise) |
|
339 | 339 | |
|
340 | 340 | #thisDatetime = dataOut.datatime |
|
341 | 341 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
342 | 342 | title = wintitle + " Parameters" |
|
343 | 343 | xlabel = "Velocity (m/s)" |
|
344 | 344 | ylabel = "Range (Km)" |
|
345 | 345 | |
|
346 | 346 | update_figfile = False |
|
347 | 347 | |
|
348 | 348 | if not self.isConfig: |
|
349 | 349 | |
|
350 | 350 | nplots = len(channelIndexList) |
|
351 | 351 | |
|
352 | 352 | self.setup(id=id, |
|
353 | 353 | nplots=nplots, |
|
354 | 354 | wintitle=wintitle, |
|
355 | 355 | showprofile=showprofile, |
|
356 | 356 | show=show) |
|
357 | 357 | |
|
358 | 358 | if xmin == None: xmin = numpy.nanmin(x) |
|
359 | 359 | if xmax == None: xmax = numpy.nanmax(x) |
|
360 | 360 | if ymin == None: ymin = numpy.nanmin(y) |
|
361 | 361 | if ymax == None: ymax = numpy.nanmax(y) |
|
362 | 362 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 |
|
363 | 363 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 |
|
364 | 364 | |
|
365 | 365 | self.FTP_WEI = ftp_wei |
|
366 | 366 | self.EXP_CODE = exp_code |
|
367 | 367 | self.SUB_EXP_CODE = sub_exp_code |
|
368 | 368 | self.PLOT_POS = plot_pos |
|
369 | 369 | |
|
370 | 370 | self.isConfig = True |
|
371 | 371 | update_figfile = True |
|
372 | 372 | |
|
373 | 373 | self.setWinTitle(title) |
|
374 | 374 | |
|
375 | 375 | for i in range(self.nplots): |
|
376 | 376 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
377 | 377 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime) |
|
378 | 378 | axes = self.axesList[i*self.__nsubplots] |
|
379 | 379 | axes.pcolor(x, y, zdB[i,:,:], |
|
380 | 380 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
381 | 381 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
382 | 382 | ticksize=9, cblabel='') |
|
383 | 383 | #Mean Line |
|
384 | 384 | mean = dataOut.data_param[i, 1, :] |
|
385 | 385 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) |
|
386 | 386 | |
|
387 | 387 | if self.__showprofile: |
|
388 | 388 | axes = self.axesList[i*self.__nsubplots +1] |
|
389 | 389 | axes.pline(avgdB[i], y, |
|
390 | 390 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
391 | 391 | xlabel='dB', ylabel='', title='', |
|
392 | 392 | ytick_visible=False, |
|
393 | 393 | grid='x') |
|
394 | 394 | |
|
395 | 395 | noiseline = numpy.repeat(noisedB[i], len(y)) |
|
396 | 396 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
397 | 397 | |
|
398 | 398 | self.draw() |
|
399 | 399 | |
|
400 | 400 | self.save(figpath=figpath, |
|
401 | 401 | figfile=figfile, |
|
402 | 402 | save=save, |
|
403 | 403 | ftp=ftp, |
|
404 | 404 | wr_period=wr_period, |
|
405 | 405 | thisDatetime=thisDatetime) |
|
406 | 406 | |
|
407 | 407 | |
|
408 | 408 | |
|
409 | 409 | class SkyMapPlot(Figure): |
|
410 | 410 | |
|
411 | 411 | __isConfig = None |
|
412 | 412 | __nsubplots = None |
|
413 | 413 | |
|
414 | 414 | WIDTHPROF = None |
|
415 | 415 | HEIGHTPROF = None |
|
416 | 416 | PREFIX = 'mmap' |
|
417 | 417 | |
|
418 | 418 | def __init__(self, **kwargs): |
|
419 | 419 | Figure.__init__(self, **kwargs) |
|
420 | 420 | self.isConfig = False |
|
421 | 421 | self.__nsubplots = 1 |
|
422 | 422 | |
|
423 | 423 | # self.WIDTH = 280 |
|
424 | 424 | # self.HEIGHT = 250 |
|
425 | 425 | self.WIDTH = 600 |
|
426 | 426 | self.HEIGHT = 600 |
|
427 | 427 | self.WIDTHPROF = 120 |
|
428 | 428 | self.HEIGHTPROF = 0 |
|
429 | 429 | self.counter_imagwr = 0 |
|
430 | 430 | |
|
431 | 431 | self.PLOT_CODE = MSKYMAP_CODE |
|
432 | 432 | |
|
433 | 433 | self.FTP_WEI = None |
|
434 | 434 | self.EXP_CODE = None |
|
435 | 435 | self.SUB_EXP_CODE = None |
|
436 | 436 | self.PLOT_POS = None |
|
437 | 437 | |
|
438 | 438 | def getSubplots(self): |
|
439 | 439 | |
|
440 | 440 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
441 | 441 | nrow = int(self.nplots*1./ncol + 0.9) |
|
442 | 442 | |
|
443 | 443 | return nrow, ncol |
|
444 | 444 | |
|
445 | 445 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
446 | 446 | |
|
447 | 447 | self.__showprofile = showprofile |
|
448 | 448 | self.nplots = nplots |
|
449 | 449 | |
|
450 | 450 | ncolspan = 1 |
|
451 | 451 | colspan = 1 |
|
452 | 452 | |
|
453 | 453 | self.createFigure(id = id, |
|
454 | 454 | wintitle = wintitle, |
|
455 | 455 | widthplot = self.WIDTH, #+ self.WIDTHPROF, |
|
456 | 456 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, |
|
457 | 457 | show=show) |
|
458 | 458 | |
|
459 | 459 | nrow, ncol = 1,1 |
|
460 | 460 | counter = 0 |
|
461 | 461 | x = 0 |
|
462 | 462 | y = 0 |
|
463 | 463 | self.addAxes(1, 1, 0, 0, 1, 1, True) |
|
464 | 464 | |
|
465 | 465 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
466 | 466 | tmin=0, tmax=24, timerange=None, |
|
467 | 467 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
468 | 468 | server=None, folder=None, username=None, password=None, |
|
469 | 469 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
470 | 470 | |
|
471 | 471 | """ |
|
472 | 472 | |
|
473 | 473 | Input: |
|
474 | 474 | dataOut : |
|
475 | 475 | id : |
|
476 | 476 | wintitle : |
|
477 | 477 | channelList : |
|
478 | 478 | showProfile : |
|
479 | 479 | xmin : None, |
|
480 | 480 | xmax : None, |
|
481 | 481 | ymin : None, |
|
482 | 482 | ymax : None, |
|
483 | 483 | zmin : None, |
|
484 | 484 | zmax : None |
|
485 | 485 | """ |
|
486 | 486 | |
|
487 | 487 | arrayParameters = dataOut.data_param |
|
488 | 488 | error = arrayParameters[:,-1] |
|
489 | 489 | indValid = numpy.where(error == 0)[0] |
|
490 | 490 | finalMeteor = arrayParameters[indValid,:] |
|
491 | 491 | finalAzimuth = finalMeteor[:,3] |
|
492 | 492 | finalZenith = finalMeteor[:,4] |
|
493 | 493 | |
|
494 | 494 | x = finalAzimuth*numpy.pi/180 |
|
495 | 495 | y = finalZenith |
|
496 | 496 | x1 = [dataOut.ltctime, dataOut.ltctime] |
|
497 | 497 | |
|
498 | 498 | #thisDatetime = dataOut.datatime |
|
499 | 499 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
500 | 500 | title = wintitle + " Parameters" |
|
501 | 501 | xlabel = "Zonal Zenith Angle (deg) " |
|
502 | 502 | ylabel = "Meridional Zenith Angle (deg)" |
|
503 | 503 | update_figfile = False |
|
504 | 504 | |
|
505 | 505 | if not self.isConfig: |
|
506 | 506 | |
|
507 | 507 | nplots = 1 |
|
508 | 508 | |
|
509 | 509 | self.setup(id=id, |
|
510 | 510 | nplots=nplots, |
|
511 | 511 | wintitle=wintitle, |
|
512 | 512 | showprofile=showprofile, |
|
513 | 513 | show=show) |
|
514 | 514 | |
|
515 | 515 | if self.xmin is None and self.xmax is None: |
|
516 | 516 | self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange) |
|
517 | 517 | |
|
518 | 518 | if timerange != None: |
|
519 | 519 | self.timerange = timerange |
|
520 | 520 | else: |
|
521 | 521 | self.timerange = self.xmax - self.xmin |
|
522 | 522 | |
|
523 | 523 | self.FTP_WEI = ftp_wei |
|
524 | 524 | self.EXP_CODE = exp_code |
|
525 | 525 | self.SUB_EXP_CODE = sub_exp_code |
|
526 | 526 | self.PLOT_POS = plot_pos |
|
527 | 527 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
528 | 528 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
529 | 529 | self.isConfig = True |
|
530 | 530 | update_figfile = True |
|
531 | 531 | |
|
532 | 532 | self.setWinTitle(title) |
|
533 | 533 | |
|
534 | 534 | i = 0 |
|
535 | 535 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
536 | 536 | |
|
537 | 537 | axes = self.axesList[i*self.__nsubplots] |
|
538 | 538 | nevents = axes.x_buffer.shape[0] + x.shape[0] |
|
539 | 539 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) |
|
540 | 540 | axes.polar(x, y, |
|
541 | 541 | title=title, xlabel=xlabel, ylabel=ylabel, |
|
542 | 542 | ticksize=9, cblabel='') |
|
543 | 543 | |
|
544 | 544 | self.draw() |
|
545 | 545 | |
|
546 | 546 | self.save(figpath=figpath, |
|
547 | 547 | figfile=figfile, |
|
548 | 548 | save=save, |
|
549 | 549 | ftp=ftp, |
|
550 | 550 | wr_period=wr_period, |
|
551 | 551 | thisDatetime=thisDatetime, |
|
552 | 552 | update_figfile=update_figfile) |
|
553 | 553 | |
|
554 | 554 | if dataOut.ltctime >= self.xmax: |
|
555 | 555 | self.isConfigmagwr = wr_period |
|
556 | 556 | self.isConfig = False |
|
557 | 557 | update_figfile = True |
|
558 | 558 | axes.__firsttime = True |
|
559 | 559 | self.xmin += self.timerange |
|
560 | 560 | self.xmax += self.timerange |
|
561 | 561 | |
|
562 | 562 | |
|
563 | 563 | |
|
564 | 564 | |
|
565 | 565 | class WindProfilerPlot(Figure): |
|
566 | 566 | |
|
567 | 567 | __isConfig = None |
|
568 | 568 | __nsubplots = None |
|
569 | 569 | |
|
570 | 570 | WIDTHPROF = None |
|
571 | 571 | HEIGHTPROF = None |
|
572 | 572 | PREFIX = 'wind' |
|
573 | 573 | |
|
574 | 574 | def __init__(self, **kwargs): |
|
575 | 575 | Figure.__init__(self, **kwargs) |
|
576 | 576 | self.timerange = None |
|
577 | 577 | self.isConfig = False |
|
578 | 578 | self.__nsubplots = 1 |
|
579 | 579 | |
|
580 | 580 | self.WIDTH = 800 |
|
581 | 581 | self.HEIGHT = 300 |
|
582 | 582 | self.WIDTHPROF = 120 |
|
583 | 583 | self.HEIGHTPROF = 0 |
|
584 | 584 | self.counter_imagwr = 0 |
|
585 | 585 | |
|
586 | 586 | self.PLOT_CODE = WIND_CODE |
|
587 | 587 | |
|
588 | 588 | self.FTP_WEI = None |
|
589 | 589 | self.EXP_CODE = None |
|
590 | 590 | self.SUB_EXP_CODE = None |
|
591 | 591 | self.PLOT_POS = None |
|
592 | 592 | self.tmin = None |
|
593 | 593 | self.tmax = None |
|
594 | 594 | |
|
595 | 595 | self.xmin = None |
|
596 | 596 | self.xmax = None |
|
597 | 597 | |
|
598 | 598 | self.figfile = None |
|
599 | 599 | |
|
600 | 600 | def getSubplots(self): |
|
601 | 601 | |
|
602 | 602 | ncol = 1 |
|
603 | 603 | nrow = self.nplots |
|
604 | 604 | |
|
605 | 605 | return nrow, ncol |
|
606 | 606 | |
|
607 | 607 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
608 | 608 | |
|
609 | 609 | self.__showprofile = showprofile |
|
610 | 610 | self.nplots = nplots |
|
611 | 611 | |
|
612 | 612 | ncolspan = 1 |
|
613 | 613 | colspan = 1 |
|
614 | 614 | |
|
615 | 615 | self.createFigure(id = id, |
|
616 | 616 | wintitle = wintitle, |
|
617 | 617 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
618 | 618 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
619 | 619 | show=show) |
|
620 | 620 | |
|
621 | 621 | nrow, ncol = self.getSubplots() |
|
622 | 622 | |
|
623 | 623 | counter = 0 |
|
624 | 624 | for y in range(nrow): |
|
625 | 625 | if counter >= self.nplots: |
|
626 | 626 | break |
|
627 | 627 | |
|
628 | 628 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
629 | 629 | counter += 1 |
|
630 | 630 | |
|
631 | 631 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', |
|
632 | 632 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
633 | 633 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, |
|
634 | 634 | timerange=None, SNRthresh = None, |
|
635 | 635 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
636 | 636 | server=None, folder=None, username=None, password=None, |
|
637 | 637 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
638 | 638 | """ |
|
639 | 639 | |
|
640 | 640 | Input: |
|
641 | 641 | dataOut : |
|
642 | 642 | id : |
|
643 | 643 | wintitle : |
|
644 | 644 | channelList : |
|
645 | 645 | showProfile : |
|
646 | 646 | xmin : None, |
|
647 | 647 | xmax : None, |
|
648 | 648 | ymin : None, |
|
649 | 649 | ymax : None, |
|
650 | 650 | zmin : None, |
|
651 | 651 | zmax : None |
|
652 | 652 | """ |
|
653 | 653 | |
|
654 | 654 | # if timerange is not None: |
|
655 | 655 | # self.timerange = timerange |
|
656 | 656 | # |
|
657 | 657 | # tmin = None |
|
658 | 658 | # tmax = None |
|
659 | 659 | |
|
660 | 660 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
661 | 661 | y = dataOut.heightList |
|
662 | 662 | z = dataOut.data_output.copy() |
|
663 | 663 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
664 | 664 | nplotsw = nplots |
|
665 | 665 | |
|
666 | 666 | |
|
667 | 667 | #If there is a SNR function defined |
|
668 | 668 | if dataOut.data_SNR is not None: |
|
669 | 669 | nplots += 1 |
|
670 | 670 | SNR = dataOut.data_SNR[0] |
|
671 | 671 | SNRavg = SNR#numpy.average(SNR, axis=0) |
|
672 | 672 | |
|
673 | 673 | SNRdB = 10*numpy.log10(SNR) |
|
674 | 674 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
675 | 675 | |
|
676 | 676 | if SNRthresh == None: |
|
677 | 677 | SNRthresh = -5.0 |
|
678 | 678 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
679 | 679 | |
|
680 | 680 | for i in range(nplotsw): |
|
681 | 681 | z[i,ind] = numpy.nan |
|
682 | 682 | |
|
683 | 683 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
684 | 684 | #thisDatetime = datetime.datetime.now() |
|
685 | 685 | title = wintitle + "Wind" |
|
686 | 686 | xlabel = "" |
|
687 | 687 | ylabel = "Height (km)" |
|
688 | 688 | update_figfile = False |
|
689 | 689 | |
|
690 | 690 | if not self.isConfig: |
|
691 | 691 | |
|
692 | 692 | self.setup(id=id, |
|
693 | 693 | nplots=nplots, |
|
694 | 694 | wintitle=wintitle, |
|
695 | 695 | showprofile=showprofile, |
|
696 | 696 | show=show) |
|
697 | 697 | |
|
698 | 698 | if timerange is not None: |
|
699 | 699 | self.timerange = timerange |
|
700 | 700 | |
|
701 | 701 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
702 | 702 | |
|
703 | 703 | if ymin == None: ymin = numpy.nanmin(y) |
|
704 | 704 | if ymax == None: ymax = numpy.nanmax(y) |
|
705 | 705 | |
|
706 | 706 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) |
|
707 | 707 | #if numpy.isnan(zmax): zmax = 50 |
|
708 | 708 | if zmin == None: zmin = -zmax |
|
709 | 709 | |
|
710 | 710 | if nplotsw == 3: |
|
711 | 711 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) |
|
712 | 712 | if zmin_ver == None: zmin_ver = -zmax_ver |
|
713 | 713 | |
|
714 | 714 | if dataOut.data_SNR is not None: |
|
715 | 715 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
716 | 716 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
717 | 717 | |
|
718 | 718 | |
|
719 | 719 | self.FTP_WEI = ftp_wei |
|
720 | 720 | self.EXP_CODE = exp_code |
|
721 | 721 | self.SUB_EXP_CODE = sub_exp_code |
|
722 | 722 | self.PLOT_POS = plot_pos |
|
723 | 723 | |
|
724 | 724 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
725 | 725 | self.isConfig = True |
|
726 | 726 | self.figfile = figfile |
|
727 | 727 | update_figfile = True |
|
728 | 728 | |
|
729 | 729 | self.setWinTitle(title) |
|
730 | 730 | |
|
731 | 731 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
732 | 732 | x[1] = self.xmax |
|
733 | 733 | |
|
734 | 734 | strWind = ['Zonal', 'Meridional', 'Vertical'] |
|
735 | 735 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
736 | 736 | zmaxVector = [zmax, zmax, zmax_ver] |
|
737 | 737 | zminVector = [zmin, zmin, zmin_ver] |
|
738 | 738 | windFactor = [1,1,100] |
|
739 | 739 | |
|
740 | 740 | for i in range(nplotsw): |
|
741 | 741 | |
|
742 | 742 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
743 | 743 | axes = self.axesList[i*self.__nsubplots] |
|
744 | 744 | |
|
745 | 745 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
746 | 746 | |
|
747 | 747 | print 'x', x |
|
748 | 748 | print datetime.datetime.utcfromtimestamp(x[0]) |
|
749 | 749 | print datetime.datetime.utcfromtimestamp(x[1]) |
|
750 | 750 | |
|
751 | 751 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
752 | 752 | |
|
753 | 753 | axes.pcolorbuffer(x, y, z1, |
|
754 | 754 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
755 | 755 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
756 | 756 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" ) |
|
757 | 757 | |
|
758 | 758 | if dataOut.data_SNR is not None: |
|
759 | 759 | i += 1 |
|
760 | 760 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
761 | 761 | axes = self.axesList[i*self.__nsubplots] |
|
762 | 762 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
763 | 763 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
764 | 764 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
765 | 765 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
766 | 766 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
767 | 767 | |
|
768 | 768 | self.draw() |
|
769 | 769 | |
|
770 | 770 | self.save(figpath=figpath, |
|
771 | 771 | figfile=figfile, |
|
772 | 772 | save=save, |
|
773 | 773 | ftp=ftp, |
|
774 | 774 | wr_period=wr_period, |
|
775 | 775 | thisDatetime=thisDatetime, |
|
776 | 776 | update_figfile=update_figfile) |
|
777 | 777 | |
|
778 | 778 | if dataOut.ltctime + dataOut.paramInterval >= self.xmax: |
|
779 | 779 | self.counter_imagwr = wr_period |
|
780 | 780 | self.isConfig = False |
|
781 | 781 | update_figfile = True |
|
782 | 782 | |
|
783 | 783 | |
|
784 | 784 | class ParametersPlot(Figure): |
|
785 | 785 | |
|
786 | 786 | __isConfig = None |
|
787 | 787 | __nsubplots = None |
|
788 | 788 | |
|
789 | 789 | WIDTHPROF = None |
|
790 | 790 | HEIGHTPROF = None |
|
791 | 791 | PREFIX = 'param' |
|
792 | 792 | |
|
793 | 793 | nplots = None |
|
794 | 794 | nchan = None |
|
795 | 795 | |
|
796 | 796 | def __init__(self, **kwargs): |
|
797 | 797 | Figure.__init__(self, **kwargs) |
|
798 | 798 | self.timerange = None |
|
799 | 799 | self.isConfig = False |
|
800 | 800 | self.__nsubplots = 1 |
|
801 | 801 | |
|
802 | 802 | self.WIDTH = 800 |
|
803 | 803 | self.HEIGHT = 180 |
|
804 | 804 | self.WIDTHPROF = 120 |
|
805 | 805 | self.HEIGHTPROF = 0 |
|
806 | 806 | self.counter_imagwr = 0 |
|
807 | 807 | |
|
808 | 808 | self.PLOT_CODE = RTI_CODE |
|
809 | 809 | |
|
810 | 810 | self.FTP_WEI = None |
|
811 | 811 | self.EXP_CODE = None |
|
812 | 812 | self.SUB_EXP_CODE = None |
|
813 | 813 | self.PLOT_POS = None |
|
814 | 814 | self.tmin = None |
|
815 | 815 | self.tmax = None |
|
816 | 816 | |
|
817 | 817 | self.xmin = None |
|
818 | 818 | self.xmax = None |
|
819 | 819 | |
|
820 | 820 | self.figfile = None |
|
821 | 821 | |
|
822 | 822 | def getSubplots(self): |
|
823 | 823 | |
|
824 | 824 | ncol = 1 |
|
825 | 825 | nrow = self.nplots |
|
826 | 826 | |
|
827 | 827 | return nrow, ncol |
|
828 | 828 | |
|
829 | 829 | def setup(self, id, nplots, wintitle, show=True): |
|
830 | 830 | |
|
831 | 831 | self.nplots = nplots |
|
832 | 832 | |
|
833 | 833 | ncolspan = 1 |
|
834 | 834 | colspan = 1 |
|
835 | 835 | |
|
836 | 836 | self.createFigure(id = id, |
|
837 | 837 | wintitle = wintitle, |
|
838 | 838 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
839 | 839 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
840 | 840 | show=show) |
|
841 | 841 | |
|
842 | 842 | nrow, ncol = self.getSubplots() |
|
843 | 843 | |
|
844 | 844 | counter = 0 |
|
845 | 845 | for y in range(nrow): |
|
846 | 846 | for x in range(ncol): |
|
847 | 847 | |
|
848 | 848 | if counter >= self.nplots: |
|
849 | 849 | break |
|
850 | 850 | |
|
851 | 851 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
852 | 852 | |
|
853 | 853 | counter += 1 |
|
854 | 854 | |
|
855 | 855 | def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet", |
|
856 | 856 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None, |
|
857 | 857 | showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None, |
|
858 | 858 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
859 | 859 | server=None, folder=None, username=None, password=None, |
|
860 | 860 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None): |
|
861 | 861 | """ |
|
862 | 862 | |
|
863 | 863 | Input: |
|
864 | 864 | dataOut : |
|
865 | 865 | id : |
|
866 | 866 | wintitle : |
|
867 | 867 | channelList : |
|
868 | 868 | showProfile : |
|
869 | 869 | xmin : None, |
|
870 | 870 | xmax : None, |
|
871 | 871 | ymin : None, |
|
872 | 872 | ymax : None, |
|
873 | 873 | zmin : None, |
|
874 | 874 | zmax : None |
|
875 | 875 | """ |
|
876 | 876 | |
|
877 | 877 | if HEIGHT is not None: |
|
878 | 878 | self.HEIGHT = HEIGHT |
|
879 | 879 | |
|
880 | 880 | |
|
881 | 881 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
882 | 882 | return |
|
883 | 883 | |
|
884 | 884 | if channelList == None: |
|
885 | 885 | channelIndexList = range(dataOut.data_param.shape[0]) |
|
886 | 886 | else: |
|
887 | 887 | channelIndexList = [] |
|
888 | 888 | for channel in channelList: |
|
889 | 889 | if channel not in dataOut.channelList: |
|
890 | 890 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
891 | 891 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
892 | 892 | |
|
893 | 893 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
894 | 894 | y = dataOut.getHeiRange() |
|
895 | 895 | |
|
896 | 896 | if dataOut.data_param.ndim == 3: |
|
897 | 897 | z = dataOut.data_param[channelIndexList,paramIndex,:] |
|
898 | 898 | else: |
|
899 | 899 | z = dataOut.data_param[channelIndexList,:] |
|
900 | 900 | |
|
901 | 901 | if showSNR: |
|
902 | 902 | #SNR data |
|
903 | 903 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
904 | 904 | SNRdB = 10*numpy.log10(SNRarray) |
|
905 | 905 | ind = numpy.where(SNRdB < SNRthresh) |
|
906 | 906 | z[ind] = numpy.nan |
|
907 | 907 | |
|
908 | 908 | thisDatetime = dataOut.datatime |
|
909 | 909 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
910 | 910 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
911 | 911 | xlabel = "" |
|
912 | 912 | ylabel = "Range (Km)" |
|
913 | 913 | |
|
914 | 914 | update_figfile = False |
|
915 | 915 | |
|
916 | 916 | if not self.isConfig: |
|
917 | 917 | |
|
918 | 918 | nchan = len(channelIndexList) |
|
919 | 919 | self.nchan = nchan |
|
920 | 920 | self.plotFact = 1 |
|
921 | 921 | nplots = nchan |
|
922 | 922 | |
|
923 | 923 | if showSNR: |
|
924 | 924 | nplots = nchan*2 |
|
925 | 925 | self.plotFact = 2 |
|
926 | 926 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
927 | 927 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
928 | 928 | |
|
929 | 929 | self.setup(id=id, |
|
930 | 930 | nplots=nplots, |
|
931 | 931 | wintitle=wintitle, |
|
932 | 932 | show=show) |
|
933 | 933 | |
|
934 | 934 | if timerange != None: |
|
935 | 935 | self.timerange = timerange |
|
936 | 936 | |
|
937 | 937 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
938 | 938 | |
|
939 | 939 | if ymin == None: ymin = numpy.nanmin(y) |
|
940 | 940 | if ymax == None: ymax = numpy.nanmax(y) |
|
941 | 941 | if zmin == None: zmin = numpy.nanmin(z) |
|
942 | 942 | if zmax == None: zmax = numpy.nanmax(z) |
|
943 | 943 | |
|
944 | 944 | self.FTP_WEI = ftp_wei |
|
945 | 945 | self.EXP_CODE = exp_code |
|
946 | 946 | self.SUB_EXP_CODE = sub_exp_code |
|
947 | 947 | self.PLOT_POS = plot_pos |
|
948 | 948 | |
|
949 | 949 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
950 | 950 | self.isConfig = True |
|
951 | 951 | self.figfile = figfile |
|
952 | 952 | update_figfile = True |
|
953 | 953 | |
|
954 | 954 | self.setWinTitle(title) |
|
955 | 955 | |
|
956 | 956 | for i in range(self.nchan): |
|
957 | 957 | index = channelIndexList[i] |
|
958 | 958 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
959 | 959 | axes = self.axesList[i*self.plotFact] |
|
960 | 960 | z1 = z[i,:].reshape((1,-1)) |
|
961 | 961 | axes.pcolorbuffer(x, y, z1, |
|
962 | 962 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
963 | 963 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
964 | 964 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) |
|
965 | 965 | |
|
966 | 966 | if showSNR: |
|
967 | 967 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
968 | 968 | axes = self.axesList[i*self.plotFact + 1] |
|
969 | 969 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) |
|
970 | 970 | axes.pcolorbuffer(x, y, SNRdB1, |
|
971 | 971 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
972 | 972 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
973 | 973 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') |
|
974 | 974 | |
|
975 | 975 | |
|
976 | 976 | self.draw() |
|
977 | 977 | |
|
978 | 978 | if dataOut.ltctime >= self.xmax: |
|
979 | 979 | self.counter_imagwr = wr_period |
|
980 | 980 | self.isConfig = False |
|
981 | 981 | update_figfile = True |
|
982 | 982 | |
|
983 | 983 | self.save(figpath=figpath, |
|
984 | 984 | figfile=figfile, |
|
985 | 985 | save=save, |
|
986 | 986 | ftp=ftp, |
|
987 | 987 | wr_period=wr_period, |
|
988 | 988 | thisDatetime=thisDatetime, |
|
989 | 989 | update_figfile=update_figfile) |
|
990 | 990 | |
|
991 | 991 | |
|
992 | 992 | |
|
993 | 993 | class Parameters1Plot(Figure): |
|
994 | 994 | |
|
995 | 995 | __isConfig = None |
|
996 | 996 | __nsubplots = None |
|
997 | 997 | |
|
998 | 998 | WIDTHPROF = None |
|
999 | 999 | HEIGHTPROF = None |
|
1000 | 1000 | PREFIX = 'prm' |
|
1001 | 1001 | |
|
1002 | 1002 | def __init__(self, **kwargs): |
|
1003 | 1003 | Figure.__init__(self, **kwargs) |
|
1004 | 1004 | self.timerange = 2*60*60 |
|
1005 | 1005 | self.isConfig = False |
|
1006 | 1006 | self.__nsubplots = 1 |
|
1007 | 1007 | |
|
1008 | 1008 | self.WIDTH = 800 |
|
1009 | 1009 | self.HEIGHT = 180 |
|
1010 | 1010 | self.WIDTHPROF = 120 |
|
1011 | 1011 | self.HEIGHTPROF = 0 |
|
1012 | 1012 | self.counter_imagwr = 0 |
|
1013 | 1013 | |
|
1014 | 1014 | self.PLOT_CODE = PARMS_CODE |
|
1015 | 1015 | |
|
1016 | 1016 | self.FTP_WEI = None |
|
1017 | 1017 | self.EXP_CODE = None |
|
1018 | 1018 | self.SUB_EXP_CODE = None |
|
1019 | 1019 | self.PLOT_POS = None |
|
1020 | 1020 | self.tmin = None |
|
1021 | 1021 | self.tmax = None |
|
1022 | 1022 | |
|
1023 | 1023 | self.xmin = None |
|
1024 | 1024 | self.xmax = None |
|
1025 | 1025 | |
|
1026 | 1026 | self.figfile = None |
|
1027 | 1027 | |
|
1028 | 1028 | def getSubplots(self): |
|
1029 | 1029 | |
|
1030 | 1030 | ncol = 1 |
|
1031 | 1031 | nrow = self.nplots |
|
1032 | 1032 | |
|
1033 | 1033 | return nrow, ncol |
|
1034 | 1034 | |
|
1035 | 1035 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1036 | 1036 | |
|
1037 | 1037 | self.__showprofile = showprofile |
|
1038 | 1038 | self.nplots = nplots |
|
1039 | 1039 | |
|
1040 | 1040 | ncolspan = 1 |
|
1041 | 1041 | colspan = 1 |
|
1042 | 1042 | |
|
1043 | 1043 | self.createFigure(id = id, |
|
1044 | 1044 | wintitle = wintitle, |
|
1045 | 1045 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1046 | 1046 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1047 | 1047 | show=show) |
|
1048 | 1048 | |
|
1049 | 1049 | nrow, ncol = self.getSubplots() |
|
1050 | 1050 | |
|
1051 | 1051 | counter = 0 |
|
1052 | 1052 | for y in range(nrow): |
|
1053 | 1053 | for x in range(ncol): |
|
1054 | 1054 | |
|
1055 | 1055 | if counter >= self.nplots: |
|
1056 | 1056 | break |
|
1057 | 1057 | |
|
1058 | 1058 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1059 | 1059 | |
|
1060 | 1060 | if showprofile: |
|
1061 | 1061 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
1062 | 1062 | |
|
1063 | 1063 | counter += 1 |
|
1064 | 1064 | |
|
1065 | 1065 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
1066 | 1066 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
1067 | 1067 | parameterIndex = None, onlyPositive = False, |
|
1068 | 1068 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, |
|
1069 | 1069 | DOP = True, |
|
1070 | 1070 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
1071 | 1071 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1072 | 1072 | server=None, folder=None, username=None, password=None, |
|
1073 | 1073 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1074 | 1074 | #print inspect.getargspec(self.run).args |
|
1075 | 1075 | """ |
|
1076 | 1076 | |
|
1077 | 1077 | Input: |
|
1078 | 1078 | dataOut : |
|
1079 | 1079 | id : |
|
1080 | 1080 | wintitle : |
|
1081 | 1081 | channelList : |
|
1082 | 1082 | showProfile : |
|
1083 | 1083 | xmin : None, |
|
1084 | 1084 | xmax : None, |
|
1085 | 1085 | ymin : None, |
|
1086 | 1086 | ymax : None, |
|
1087 | 1087 | zmin : None, |
|
1088 | 1088 | zmax : None |
|
1089 | 1089 | """ |
|
1090 | 1090 | |
|
1091 | 1091 | data_param = getattr(dataOut, parameterObject) |
|
1092 | 1092 | |
|
1093 | 1093 | if channelList == None: |
|
1094 | 1094 | channelIndexList = numpy.arange(data_param.shape[0]) |
|
1095 | 1095 | else: |
|
1096 | 1096 | channelIndexList = numpy.array(channelList) |
|
1097 | 1097 | |
|
1098 | 1098 | nchan = len(channelIndexList) #Number of channels being plotted |
|
1099 | 1099 | |
|
1100 | 1100 | if nchan < 1: |
|
1101 | 1101 | return |
|
1102 | 1102 | |
|
1103 | 1103 | nGraphsByChannel = 0 |
|
1104 | 1104 | |
|
1105 | 1105 | if SNR: |
|
1106 | 1106 | nGraphsByChannel += 1 |
|
1107 | 1107 | if DOP: |
|
1108 | 1108 | nGraphsByChannel += 1 |
|
1109 | 1109 | |
|
1110 | 1110 | if nGraphsByChannel < 1: |
|
1111 | 1111 | return |
|
1112 | 1112 | |
|
1113 | 1113 | nplots = nGraphsByChannel*nchan |
|
1114 | 1114 | |
|
1115 | 1115 | if timerange is not None: |
|
1116 | 1116 | self.timerange = timerange |
|
1117 | 1117 | |
|
1118 | 1118 | #tmin = None |
|
1119 | 1119 | #tmax = None |
|
1120 | 1120 | if parameterIndex == None: |
|
1121 | 1121 | parameterIndex = 1 |
|
1122 | 1122 | |
|
1123 | 1123 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
1124 | 1124 | y = dataOut.heightList |
|
1125 | 1125 | z = data_param[channelIndexList,parameterIndex,:].copy() |
|
1126 | 1126 | |
|
1127 | 1127 | zRange = dataOut.abscissaList |
|
1128 | 1128 | # nChannels = z.shape[0] #Number of wind dimensions estimated |
|
1129 | 1129 | # thisDatetime = dataOut.datatime |
|
1130 | 1130 | |
|
1131 | 1131 | if dataOut.data_SNR is not None: |
|
1132 | 1132 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
1133 | 1133 | SNRdB = 10*numpy.log10(SNRarray) |
|
1134 | 1134 | # SNRavgdB = 10*numpy.log10(SNRavg) |
|
1135 | 1135 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) |
|
1136 | 1136 | z[ind] = numpy.nan |
|
1137 | 1137 | |
|
1138 | 1138 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1139 | 1139 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1140 | 1140 | xlabel = "" |
|
1141 | 1141 | ylabel = "Range (Km)" |
|
1142 | 1142 | |
|
1143 | 1143 | if (SNR and not onlySNR): nplots = 2*nplots |
|
1144 | 1144 | |
|
1145 | 1145 | if onlyPositive: |
|
1146 | 1146 | colormap = "jet" |
|
1147 | 1147 | zmin = 0 |
|
1148 | 1148 | else: colormap = "RdBu_r" |
|
1149 | 1149 | |
|
1150 | 1150 | if not self.isConfig: |
|
1151 | 1151 | |
|
1152 | 1152 | self.setup(id=id, |
|
1153 | 1153 | nplots=nplots, |
|
1154 | 1154 | wintitle=wintitle, |
|
1155 | 1155 | showprofile=showprofile, |
|
1156 | 1156 | show=show) |
|
1157 | 1157 | |
|
1158 | 1158 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1159 | 1159 | |
|
1160 | 1160 | if ymin == None: ymin = numpy.nanmin(y) |
|
1161 | 1161 | if ymax == None: ymax = numpy.nanmax(y) |
|
1162 | 1162 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
1163 | 1163 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
1164 | 1164 | |
|
1165 | 1165 | if SNR: |
|
1166 | 1166 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
1167 | 1167 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
1168 | 1168 | |
|
1169 | 1169 | self.FTP_WEI = ftp_wei |
|
1170 | 1170 | self.EXP_CODE = exp_code |
|
1171 | 1171 | self.SUB_EXP_CODE = sub_exp_code |
|
1172 | 1172 | self.PLOT_POS = plot_pos |
|
1173 | 1173 | |
|
1174 | 1174 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1175 | 1175 | self.isConfig = True |
|
1176 | 1176 | self.figfile = figfile |
|
1177 | 1177 | |
|
1178 | 1178 | self.setWinTitle(title) |
|
1179 | 1179 | |
|
1180 | 1180 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1181 | 1181 | x[1] = self.xmax |
|
1182 | 1182 | |
|
1183 | 1183 | for i in range(nchan): |
|
1184 | 1184 | |
|
1185 | 1185 | if (SNR and not onlySNR): j = 2*i |
|
1186 | 1186 | else: j = i |
|
1187 | 1187 | |
|
1188 | 1188 | j = nGraphsByChannel*i |
|
1189 | 1189 | |
|
1190 | 1190 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1191 | 1191 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
1192 | 1192 | |
|
1193 | 1193 | if not onlySNR: |
|
1194 | 1194 | axes = self.axesList[j*self.__nsubplots] |
|
1195 | 1195 | z1 = z[i,:].reshape((1,-1)) |
|
1196 | 1196 | axes.pcolorbuffer(x, y, z1, |
|
1197 | 1197 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1198 | 1198 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
1199 | 1199 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1200 | 1200 | |
|
1201 | 1201 | if DOP: |
|
1202 | 1202 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1203 | 1203 | |
|
1204 | 1204 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1205 | 1205 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
1206 | 1206 | axes = self.axesList[j] |
|
1207 | 1207 | z1 = z[i,:].reshape((1,-1)) |
|
1208 | 1208 | axes.pcolorbuffer(x, y, z1, |
|
1209 | 1209 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1210 | 1210 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
1211 | 1211 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1212 | 1212 | |
|
1213 | 1213 | if SNR: |
|
1214 | 1214 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1215 | 1215 | axes = self.axesList[(j)*self.__nsubplots] |
|
1216 | 1216 | if not onlySNR: |
|
1217 | 1217 | axes = self.axesList[(j + 1)*self.__nsubplots] |
|
1218 | 1218 | |
|
1219 | 1219 | axes = self.axesList[(j + nGraphsByChannel-1)] |
|
1220 | 1220 | |
|
1221 | 1221 | z1 = SNRdB[i,:].reshape((1,-1)) |
|
1222 | 1222 | axes.pcolorbuffer(x, y, z1, |
|
1223 | 1223 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1224 | 1224 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", |
|
1225 | 1225 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
1226 | 1226 | |
|
1227 | 1227 | |
|
1228 | 1228 | |
|
1229 | 1229 | self.draw() |
|
1230 | 1230 | |
|
1231 | 1231 | if x[1] >= self.axesList[0].xmax: |
|
1232 | 1232 | self.counter_imagwr = wr_period |
|
1233 | 1233 | self.isConfig = False |
|
1234 | 1234 | self.figfile = None |
|
1235 | 1235 | |
|
1236 | 1236 | self.save(figpath=figpath, |
|
1237 | 1237 | figfile=figfile, |
|
1238 | 1238 | save=save, |
|
1239 | 1239 | ftp=ftp, |
|
1240 | 1240 | wr_period=wr_period, |
|
1241 | 1241 | thisDatetime=thisDatetime, |
|
1242 | 1242 | update_figfile=False) |
|
1243 | 1243 | |
|
1244 | 1244 | class SpectralFittingPlot(Figure): |
|
1245 | 1245 | |
|
1246 | 1246 | __isConfig = None |
|
1247 | 1247 | __nsubplots = None |
|
1248 | 1248 | |
|
1249 | 1249 | WIDTHPROF = None |
|
1250 | 1250 | HEIGHTPROF = None |
|
1251 | 1251 | PREFIX = 'prm' |
|
1252 | 1252 | |
|
1253 | 1253 | |
|
1254 | 1254 | N = None |
|
1255 | 1255 | ippSeconds = None |
|
1256 | 1256 | |
|
1257 | 1257 | def __init__(self, **kwargs): |
|
1258 | 1258 | Figure.__init__(self, **kwargs) |
|
1259 | 1259 | self.isConfig = False |
|
1260 | 1260 | self.__nsubplots = 1 |
|
1261 | 1261 | |
|
1262 | 1262 | self.PLOT_CODE = SPECFIT_CODE |
|
1263 | 1263 | |
|
1264 | 1264 | self.WIDTH = 450 |
|
1265 | 1265 | self.HEIGHT = 250 |
|
1266 | 1266 | self.WIDTHPROF = 0 |
|
1267 | 1267 | self.HEIGHTPROF = 0 |
|
1268 | 1268 | |
|
1269 | 1269 | def getSubplots(self): |
|
1270 | 1270 | |
|
1271 | 1271 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
1272 | 1272 | nrow = int(self.nplots*1./ncol + 0.9) |
|
1273 | 1273 | |
|
1274 | 1274 | return nrow, ncol |
|
1275 | 1275 | |
|
1276 | 1276 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
1277 | 1277 | |
|
1278 | 1278 | showprofile = False |
|
1279 | 1279 | self.__showprofile = showprofile |
|
1280 | 1280 | self.nplots = nplots |
|
1281 | 1281 | |
|
1282 | 1282 | ncolspan = 5 |
|
1283 | 1283 | colspan = 4 |
|
1284 | 1284 | if showprofile: |
|
1285 | 1285 | ncolspan = 5 |
|
1286 | 1286 | colspan = 4 |
|
1287 | 1287 | self.__nsubplots = 2 |
|
1288 | 1288 | |
|
1289 | 1289 | self.createFigure(id = id, |
|
1290 | 1290 | wintitle = wintitle, |
|
1291 | 1291 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1292 | 1292 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1293 | 1293 | show=show) |
|
1294 | 1294 | |
|
1295 | 1295 | nrow, ncol = self.getSubplots() |
|
1296 | 1296 | |
|
1297 | 1297 | counter = 0 |
|
1298 | 1298 | for y in range(nrow): |
|
1299 | 1299 | for x in range(ncol): |
|
1300 | 1300 | |
|
1301 | 1301 | if counter >= self.nplots: |
|
1302 | 1302 | break |
|
1303 | 1303 | |
|
1304 | 1304 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1305 | 1305 | |
|
1306 | 1306 | if showprofile: |
|
1307 | 1307 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
1308 | 1308 | |
|
1309 | 1309 | counter += 1 |
|
1310 | 1310 | |
|
1311 | 1311 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, |
|
1312 | 1312 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1313 | 1313 | save=False, figpath='./', figfile=None, show=True): |
|
1314 | 1314 | |
|
1315 | 1315 | """ |
|
1316 | 1316 | |
|
1317 | 1317 | Input: |
|
1318 | 1318 | dataOut : |
|
1319 | 1319 | id : |
|
1320 | 1320 | wintitle : |
|
1321 | 1321 | channelList : |
|
1322 | 1322 | showProfile : |
|
1323 | 1323 | xmin : None, |
|
1324 | 1324 | xmax : None, |
|
1325 | 1325 | zmin : None, |
|
1326 | 1326 | zmax : None |
|
1327 | 1327 | """ |
|
1328 | 1328 | |
|
1329 | 1329 | if cutHeight==None: |
|
1330 | 1330 | h=270 |
|
1331 | 1331 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() |
|
1332 | 1332 | cutHeight = dataOut.heightList[heightindex] |
|
1333 | 1333 | |
|
1334 | 1334 | factor = dataOut.normFactor |
|
1335 | 1335 | x = dataOut.abscissaList[:-1] |
|
1336 | 1336 | #y = dataOut.getHeiRange() |
|
1337 | 1337 | |
|
1338 | 1338 | z = dataOut.data_pre[:,:,heightindex]/factor |
|
1339 | 1339 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1340 | 1340 | avg = numpy.average(z, axis=1) |
|
1341 | 1341 | listChannels = z.shape[0] |
|
1342 | 1342 | |
|
1343 | 1343 | #Reconstruct Function |
|
1344 | 1344 | if fit==True: |
|
1345 | 1345 | groupArray = dataOut.groupList |
|
1346 | 1346 | listChannels = groupArray.reshape((groupArray.size)) |
|
1347 | 1347 | listChannels.sort() |
|
1348 | 1348 | spcFitLine = numpy.zeros(z.shape) |
|
1349 | 1349 | constants = dataOut.constants |
|
1350 | 1350 | |
|
1351 | 1351 | nGroups = groupArray.shape[0] |
|
1352 | 1352 | nChannels = groupArray.shape[1] |
|
1353 | 1353 | nProfiles = z.shape[1] |
|
1354 | 1354 | |
|
1355 | 1355 | for f in range(nGroups): |
|
1356 | 1356 | groupChann = groupArray[f,:] |
|
1357 | 1357 | p = dataOut.data_param[f,:,heightindex] |
|
1358 | 1358 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) |
|
1359 | 1359 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles |
|
1360 | 1360 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) |
|
1361 | 1361 | spcFitLine[groupChann,:] = fitLineAux |
|
1362 | 1362 | # spcFitLine = spcFitLine/factor |
|
1363 | 1363 | |
|
1364 | 1364 | z = z[listChannels,:] |
|
1365 | 1365 | spcFitLine = spcFitLine[listChannels,:] |
|
1366 | 1366 | spcFitLinedB = 10*numpy.log10(spcFitLine) |
|
1367 | 1367 | |
|
1368 | 1368 | zdB = 10*numpy.log10(z) |
|
1369 | 1369 | #thisDatetime = dataOut.datatime |
|
1370 | 1370 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1371 | 1371 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1372 | 1372 | xlabel = "Velocity (m/s)" |
|
1373 | 1373 | ylabel = "Spectrum" |
|
1374 | 1374 | |
|
1375 | 1375 | if not self.isConfig: |
|
1376 | 1376 | |
|
1377 | 1377 | nplots = listChannels.size |
|
1378 | 1378 | |
|
1379 | 1379 | self.setup(id=id, |
|
1380 | 1380 | nplots=nplots, |
|
1381 | 1381 | wintitle=wintitle, |
|
1382 | 1382 | showprofile=showprofile, |
|
1383 | 1383 | show=show) |
|
1384 | 1384 | |
|
1385 | 1385 | if xmin == None: xmin = numpy.nanmin(x) |
|
1386 | 1386 | if xmax == None: xmax = numpy.nanmax(x) |
|
1387 | 1387 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1388 | 1388 | if ymax == None: ymax = numpy.nanmax(zdB)+2 |
|
1389 | 1389 | |
|
1390 | 1390 | self.isConfig = True |
|
1391 | 1391 | |
|
1392 | 1392 | self.setWinTitle(title) |
|
1393 | 1393 | for i in range(self.nplots): |
|
1394 | 1394 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) |
|
1395 | 1395 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]) |
|
1396 | 1396 | axes = self.axesList[i*self.__nsubplots] |
|
1397 | 1397 | if fit == False: |
|
1398 | 1398 | axes.pline(x, zdB[i,:], |
|
1399 | 1399 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1400 | 1400 | xlabel=xlabel, ylabel=ylabel, title=title |
|
1401 | 1401 | ) |
|
1402 | 1402 | if fit == True: |
|
1403 | 1403 | fitline=spcFitLinedB[i,:] |
|
1404 | 1404 | y=numpy.vstack([zdB[i,:],fitline] ) |
|
1405 | 1405 | legendlabels=['Data','Fitting'] |
|
1406 | 1406 | axes.pmultilineyaxis(x, y, |
|
1407 | 1407 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1408 | 1408 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
1409 | 1409 | legendlabels=legendlabels, marker=None, |
|
1410 | 1410 | linestyle='solid', grid='both') |
|
1411 | 1411 | |
|
1412 | 1412 | self.draw() |
|
1413 | 1413 | |
|
1414 | 1414 | self.save(figpath=figpath, |
|
1415 | 1415 | figfile=figfile, |
|
1416 | 1416 | save=save, |
|
1417 | 1417 | ftp=ftp, |
|
1418 | 1418 | wr_period=wr_period, |
|
1419 | 1419 | thisDatetime=thisDatetime) |
|
1420 | 1420 | |
|
1421 | 1421 | |
|
1422 | 1422 | class EWDriftsPlot(Figure): |
|
1423 | 1423 | |
|
1424 | 1424 | __isConfig = None |
|
1425 | 1425 | __nsubplots = None |
|
1426 | 1426 | |
|
1427 | 1427 | WIDTHPROF = None |
|
1428 | 1428 | HEIGHTPROF = None |
|
1429 | 1429 | PREFIX = 'drift' |
|
1430 | 1430 | |
|
1431 | 1431 | def __init__(self, **kwargs): |
|
1432 | 1432 | Figure.__init__(self, **kwargs) |
|
1433 | 1433 | self.timerange = 2*60*60 |
|
1434 | 1434 | self.isConfig = False |
|
1435 | 1435 | self.__nsubplots = 1 |
|
1436 | 1436 | |
|
1437 | 1437 | self.WIDTH = 800 |
|
1438 | 1438 | self.HEIGHT = 150 |
|
1439 | 1439 | self.WIDTHPROF = 120 |
|
1440 | 1440 | self.HEIGHTPROF = 0 |
|
1441 | 1441 | self.counter_imagwr = 0 |
|
1442 | 1442 | |
|
1443 | 1443 | self.PLOT_CODE = EWDRIFT_CODE |
|
1444 | 1444 | |
|
1445 | 1445 | self.FTP_WEI = None |
|
1446 | 1446 | self.EXP_CODE = None |
|
1447 | 1447 | self.SUB_EXP_CODE = None |
|
1448 | 1448 | self.PLOT_POS = None |
|
1449 | 1449 | self.tmin = None |
|
1450 | 1450 | self.tmax = None |
|
1451 | 1451 | |
|
1452 | 1452 | self.xmin = None |
|
1453 | 1453 | self.xmax = None |
|
1454 | 1454 | |
|
1455 | 1455 | self.figfile = None |
|
1456 | 1456 | |
|
1457 | 1457 | def getSubplots(self): |
|
1458 | 1458 | |
|
1459 | 1459 | ncol = 1 |
|
1460 | 1460 | nrow = self.nplots |
|
1461 | 1461 | |
|
1462 | 1462 | return nrow, ncol |
|
1463 | 1463 | |
|
1464 | 1464 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1465 | 1465 | |
|
1466 | 1466 | self.__showprofile = showprofile |
|
1467 | 1467 | self.nplots = nplots |
|
1468 | 1468 | |
|
1469 | 1469 | ncolspan = 1 |
|
1470 | 1470 | colspan = 1 |
|
1471 | 1471 | |
|
1472 | 1472 | self.createFigure(id = id, |
|
1473 | 1473 | wintitle = wintitle, |
|
1474 | 1474 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1475 | 1475 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1476 | 1476 | show=show) |
|
1477 | 1477 | |
|
1478 | 1478 | nrow, ncol = self.getSubplots() |
|
1479 | 1479 | |
|
1480 | 1480 | counter = 0 |
|
1481 | 1481 | for y in range(nrow): |
|
1482 | 1482 | if counter >= self.nplots: |
|
1483 | 1483 | break |
|
1484 | 1484 | |
|
1485 | 1485 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
1486 | 1486 | counter += 1 |
|
1487 | 1487 | |
|
1488 | 1488 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1489 | 1489 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
1490 | 1490 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, |
|
1491 | 1491 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, |
|
1492 | 1492 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1493 | 1493 | server=None, folder=None, username=None, password=None, |
|
1494 | 1494 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1495 | 1495 | """ |
|
1496 | 1496 | |
|
1497 | 1497 | Input: |
|
1498 | 1498 | dataOut : |
|
1499 | 1499 | id : |
|
1500 | 1500 | wintitle : |
|
1501 | 1501 | channelList : |
|
1502 | 1502 | showProfile : |
|
1503 | 1503 | xmin : None, |
|
1504 | 1504 | xmax : None, |
|
1505 | 1505 | ymin : None, |
|
1506 | 1506 | ymax : None, |
|
1507 | 1507 | zmin : None, |
|
1508 | 1508 | zmax : None |
|
1509 | 1509 | """ |
|
1510 | 1510 | |
|
1511 | 1511 | if timerange is not None: |
|
1512 | 1512 | self.timerange = timerange |
|
1513 | 1513 | |
|
1514 | 1514 | tmin = None |
|
1515 | 1515 | tmax = None |
|
1516 | 1516 | |
|
1517 | 1517 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1518 | 1518 | # y = dataOut.heightList |
|
1519 | 1519 | y = dataOut.heightList |
|
1520 | 1520 | |
|
1521 | 1521 | z = dataOut.data_output |
|
1522 | 1522 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
1523 | 1523 | nplotsw = nplots |
|
1524 | 1524 | |
|
1525 | 1525 | #If there is a SNR function defined |
|
1526 | 1526 | if dataOut.data_SNR is not None: |
|
1527 | 1527 | nplots += 1 |
|
1528 | 1528 | SNR = dataOut.data_SNR |
|
1529 | 1529 | |
|
1530 | 1530 | if SNR_1: |
|
1531 | 1531 | SNR += 1 |
|
1532 | 1532 | |
|
1533 | 1533 | SNRavg = numpy.average(SNR, axis=0) |
|
1534 | 1534 | |
|
1535 | 1535 | SNRdB = 10*numpy.log10(SNR) |
|
1536 | 1536 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
1537 | 1537 | |
|
1538 | 1538 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
1539 | 1539 | |
|
1540 | 1540 | for i in range(nplotsw): |
|
1541 | 1541 | z[i,ind] = numpy.nan |
|
1542 | 1542 | |
|
1543 | 1543 | |
|
1544 | 1544 | showprofile = False |
|
1545 | 1545 | # thisDatetime = dataOut.datatime |
|
1546 | 1546 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) |
|
1547 | 1547 | title = wintitle + " EW Drifts" |
|
1548 | 1548 | xlabel = "" |
|
1549 | 1549 | ylabel = "Height (Km)" |
|
1550 | 1550 | |
|
1551 | 1551 | if not self.isConfig: |
|
1552 | 1552 | |
|
1553 | 1553 | self.setup(id=id, |
|
1554 | 1554 | nplots=nplots, |
|
1555 | 1555 | wintitle=wintitle, |
|
1556 | 1556 | showprofile=showprofile, |
|
1557 | 1557 | show=show) |
|
1558 | 1558 | |
|
1559 | 1559 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1560 | 1560 | |
|
1561 | 1561 | if ymin == None: ymin = numpy.nanmin(y) |
|
1562 | 1562 | if ymax == None: ymax = numpy.nanmax(y) |
|
1563 | 1563 | |
|
1564 | 1564 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) |
|
1565 | 1565 | if zminZonal == None: zminZonal = -zmaxZonal |
|
1566 | 1566 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) |
|
1567 | 1567 | if zminVertical == None: zminVertical = -zmaxVertical |
|
1568 | 1568 | |
|
1569 | 1569 | if dataOut.data_SNR is not None: |
|
1570 | 1570 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
1571 | 1571 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
1572 | 1572 | |
|
1573 | 1573 | self.FTP_WEI = ftp_wei |
|
1574 | 1574 | self.EXP_CODE = exp_code |
|
1575 | 1575 | self.SUB_EXP_CODE = sub_exp_code |
|
1576 | 1576 | self.PLOT_POS = plot_pos |
|
1577 | 1577 | |
|
1578 | 1578 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1579 | 1579 | self.isConfig = True |
|
1580 | 1580 | |
|
1581 | 1581 | |
|
1582 | 1582 | self.setWinTitle(title) |
|
1583 | 1583 | |
|
1584 | 1584 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1585 | 1585 | x[1] = self.xmax |
|
1586 | 1586 | |
|
1587 | 1587 | strWind = ['Zonal','Vertical'] |
|
1588 | 1588 | strCb = 'Velocity (m/s)' |
|
1589 | 1589 | zmaxVector = [zmaxZonal, zmaxVertical] |
|
1590 | 1590 | zminVector = [zminZonal, zminVertical] |
|
1591 | 1591 | |
|
1592 | 1592 | for i in range(nplotsw): |
|
1593 | 1593 | |
|
1594 | 1594 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1595 | 1595 | axes = self.axesList[i*self.__nsubplots] |
|
1596 | 1596 | |
|
1597 | 1597 | z1 = z[i,:].reshape((1,-1)) |
|
1598 | 1598 | |
|
1599 | 1599 | axes.pcolorbuffer(x, y, z1, |
|
1600 | 1600 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
1601 | 1601 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1602 | 1602 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") |
|
1603 | 1603 | |
|
1604 | 1604 | if dataOut.data_SNR is not None: |
|
1605 | 1605 | i += 1 |
|
1606 | 1606 | if SNR_1: |
|
1607 | 1607 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1608 | 1608 | else: |
|
1609 | 1609 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1610 | 1610 | axes = self.axesList[i*self.__nsubplots] |
|
1611 | 1611 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
1612 | 1612 | |
|
1613 | 1613 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
1614 | 1614 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1615 | 1615 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1616 | 1616 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
1617 | 1617 | |
|
1618 | 1618 | self.draw() |
|
1619 | 1619 | |
|
1620 | 1620 | if x[1] >= self.axesList[0].xmax: |
|
1621 | 1621 | self.counter_imagwr = wr_period |
|
1622 | 1622 | self.isConfig = False |
|
1623 | 1623 | self.figfile = None |
|
1624 | 1624 | |
|
1625 | 1625 | |
|
1626 | 1626 | |
|
1627 | 1627 | |
|
1628 | 1628 | class PhasePlot(Figure): |
|
1629 | 1629 | |
|
1630 | 1630 | __isConfig = None |
|
1631 | 1631 | __nsubplots = None |
|
1632 | 1632 | |
|
1633 | 1633 | PREFIX = 'mphase' |
|
1634 | 1634 | |
|
1635 | 1635 | def __init__(self, **kwargs): |
|
1636 | 1636 | Figure.__init__(self, **kwargs) |
|
1637 | 1637 | self.timerange = 24*60*60 |
|
1638 | 1638 | self.isConfig = False |
|
1639 | 1639 | self.__nsubplots = 1 |
|
1640 | 1640 | self.counter_imagwr = 0 |
|
1641 | 1641 | self.WIDTH = 600 |
|
1642 | 1642 | self.HEIGHT = 300 |
|
1643 | 1643 | self.WIDTHPROF = 120 |
|
1644 | 1644 | self.HEIGHTPROF = 0 |
|
1645 | 1645 | self.xdata = None |
|
1646 | 1646 | self.ydata = None |
|
1647 | 1647 | |
|
1648 | 1648 | self.PLOT_CODE = MPHASE_CODE |
|
1649 | 1649 | |
|
1650 | 1650 | self.FTP_WEI = None |
|
1651 | 1651 | self.EXP_CODE = None |
|
1652 | 1652 | self.SUB_EXP_CODE = None |
|
1653 | 1653 | self.PLOT_POS = None |
|
1654 | 1654 | |
|
1655 | 1655 | |
|
1656 | 1656 | self.filename_phase = None |
|
1657 | 1657 | |
|
1658 | 1658 | self.figfile = None |
|
1659 | 1659 | |
|
1660 | 1660 | def getSubplots(self): |
|
1661 | 1661 | |
|
1662 | 1662 | ncol = 1 |
|
1663 | 1663 | nrow = 1 |
|
1664 | 1664 | |
|
1665 | 1665 | return nrow, ncol |
|
1666 | 1666 | |
|
1667 | 1667 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1668 | 1668 | |
|
1669 | 1669 | self.__showprofile = showprofile |
|
1670 | 1670 | self.nplots = nplots |
|
1671 | 1671 | |
|
1672 | 1672 | ncolspan = 7 |
|
1673 | 1673 | colspan = 6 |
|
1674 | 1674 | self.__nsubplots = 2 |
|
1675 | 1675 | |
|
1676 | 1676 | self.createFigure(id = id, |
|
1677 | 1677 | wintitle = wintitle, |
|
1678 | 1678 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1679 | 1679 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1680 | 1680 | show=show) |
|
1681 | 1681 | |
|
1682 | 1682 | nrow, ncol = self.getSubplots() |
|
1683 | 1683 | |
|
1684 | 1684 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1685 | 1685 | |
|
1686 | 1686 | |
|
1687 | 1687 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1688 | 1688 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1689 | 1689 | timerange=None, |
|
1690 | 1690 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1691 | 1691 | server=None, folder=None, username=None, password=None, |
|
1692 | 1692 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1693 | 1693 | |
|
1694 | 1694 | |
|
1695 | 1695 | tmin = None |
|
1696 | 1696 | tmax = None |
|
1697 | 1697 | x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
1698 | 1698 | y = dataOut.getHeiRange() |
|
1699 | 1699 | |
|
1700 | 1700 | |
|
1701 | 1701 | #thisDatetime = dataOut.datatime |
|
1702 | 1702 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1703 | 1703 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1704 | 1704 | xlabel = "Local Time" |
|
1705 | 1705 | ylabel = "Phase" |
|
1706 | 1706 | |
|
1707 | 1707 | |
|
1708 | 1708 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1709 | 1709 | phase_beacon = dataOut.data_output |
|
1710 | 1710 | update_figfile = False |
|
1711 | 1711 | |
|
1712 | 1712 | if not self.isConfig: |
|
1713 | 1713 | |
|
1714 | 1714 | self.nplots = phase_beacon.size |
|
1715 | 1715 | |
|
1716 | 1716 | self.setup(id=id, |
|
1717 | 1717 | nplots=self.nplots, |
|
1718 | 1718 | wintitle=wintitle, |
|
1719 | 1719 | showprofile=showprofile, |
|
1720 | 1720 | show=show) |
|
1721 | 1721 | |
|
1722 | 1722 | if timerange is not None: |
|
1723 | 1723 | self.timerange = timerange |
|
1724 | 1724 | |
|
1725 | 1725 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1726 | 1726 | |
|
1727 | 1727 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 |
|
1728 | 1728 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 |
|
1729 | 1729 | |
|
1730 | 1730 | self.FTP_WEI = ftp_wei |
|
1731 | 1731 | self.EXP_CODE = exp_code |
|
1732 | 1732 | self.SUB_EXP_CODE = sub_exp_code |
|
1733 | 1733 | self.PLOT_POS = plot_pos |
|
1734 | 1734 | |
|
1735 | 1735 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1736 | 1736 | self.isConfig = True |
|
1737 | 1737 | self.figfile = figfile |
|
1738 | 1738 | self.xdata = numpy.array([]) |
|
1739 | 1739 | self.ydata = numpy.array([]) |
|
1740 | 1740 | |
|
1741 | 1741 | #open file beacon phase |
|
1742 | 1742 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1743 | 1743 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1744 | 1744 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1745 | 1745 | update_figfile = True |
|
1746 | 1746 | |
|
1747 | 1747 | |
|
1748 | 1748 | #store data beacon phase |
|
1749 | 1749 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1750 | 1750 | |
|
1751 | 1751 | self.setWinTitle(title) |
|
1752 | 1752 | |
|
1753 | 1753 | |
|
1754 | 1754 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1755 | 1755 | |
|
1756 | 1756 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] |
|
1757 | 1757 | |
|
1758 | 1758 | axes = self.axesList[0] |
|
1759 | 1759 | |
|
1760 | 1760 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1761 | 1761 | |
|
1762 | 1762 | if len(self.ydata)==0: |
|
1763 | 1763 | self.ydata = phase_beacon.reshape(-1,1) |
|
1764 | 1764 | else: |
|
1765 | 1765 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1766 | 1766 | |
|
1767 | 1767 | |
|
1768 | 1768 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1769 | 1769 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1770 | 1770 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1771 | 1771 | XAxisAsTime=True, grid='both' |
|
1772 | 1772 | ) |
|
1773 | 1773 | |
|
1774 | 1774 | self.draw() |
|
1775 | 1775 | |
|
1776 | 1776 | self.save(figpath=figpath, |
|
1777 | 1777 | figfile=figfile, |
|
1778 | 1778 | save=save, |
|
1779 | 1779 | ftp=ftp, |
|
1780 | 1780 | wr_period=wr_period, |
|
1781 | 1781 | thisDatetime=thisDatetime, |
|
1782 | 1782 | update_figfile=update_figfile) |
|
1783 | 1783 | |
|
1784 | 1784 | if dataOut.ltctime + dataOut.outputInterval >= self.xmax: |
|
1785 | 1785 | self.counter_imagwr = wr_period |
|
1786 | 1786 | self.isConfig = False |
|
1787 | 1787 | update_figfile = True |
|
1788 | 1788 | |
|
1789 | 1789 | |
|
1790 | 1790 | |
|
1791 | 1791 | class NSMeteorDetection1Plot(Figure): |
|
1792 | 1792 | |
|
1793 | 1793 | isConfig = None |
|
1794 | 1794 | __nsubplots = None |
|
1795 | 1795 | |
|
1796 | 1796 | WIDTHPROF = None |
|
1797 | 1797 | HEIGHTPROF = None |
|
1798 | 1798 | PREFIX = 'nsm' |
|
1799 | 1799 | |
|
1800 | 1800 | zminList = None |
|
1801 | 1801 | zmaxList = None |
|
1802 | 1802 | cmapList = None |
|
1803 | 1803 | titleList = None |
|
1804 | 1804 | nPairs = None |
|
1805 | 1805 | nChannels = None |
|
1806 | 1806 | nParam = None |
|
1807 | 1807 | |
|
1808 | 1808 | def __init__(self, **kwargs): |
|
1809 | 1809 | Figure.__init__(self, **kwargs) |
|
1810 | 1810 | self.isConfig = False |
|
1811 | 1811 | self.__nsubplots = 1 |
|
1812 | 1812 | |
|
1813 | 1813 | self.WIDTH = 750 |
|
1814 | 1814 | self.HEIGHT = 250 |
|
1815 | 1815 | self.WIDTHPROF = 120 |
|
1816 | 1816 | self.HEIGHTPROF = 0 |
|
1817 | 1817 | self.counter_imagwr = 0 |
|
1818 | 1818 | |
|
1819 | 1819 | self.PLOT_CODE = SPEC_CODE |
|
1820 | 1820 | |
|
1821 | 1821 | self.FTP_WEI = None |
|
1822 | 1822 | self.EXP_CODE = None |
|
1823 | 1823 | self.SUB_EXP_CODE = None |
|
1824 | 1824 | self.PLOT_POS = None |
|
1825 | 1825 | |
|
1826 | 1826 | self.__xfilter_ena = False |
|
1827 | 1827 | self.__yfilter_ena = False |
|
1828 | 1828 | |
|
1829 | 1829 | def getSubplots(self): |
|
1830 | 1830 | |
|
1831 | 1831 | ncol = 3 |
|
1832 | 1832 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
1833 | 1833 | |
|
1834 | 1834 | return nrow, ncol |
|
1835 | 1835 | |
|
1836 | 1836 | def setup(self, id, nplots, wintitle, show=True): |
|
1837 | 1837 | |
|
1838 | 1838 | self.nplots = nplots |
|
1839 | 1839 | |
|
1840 | 1840 | ncolspan = 1 |
|
1841 | 1841 | colspan = 1 |
|
1842 | 1842 | |
|
1843 | 1843 | self.createFigure(id = id, |
|
1844 | 1844 | wintitle = wintitle, |
|
1845 | 1845 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1846 | 1846 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1847 | 1847 | show=show) |
|
1848 | 1848 | |
|
1849 | 1849 | nrow, ncol = self.getSubplots() |
|
1850 | 1850 | |
|
1851 | 1851 | counter = 0 |
|
1852 | 1852 | for y in range(nrow): |
|
1853 | 1853 | for x in range(ncol): |
|
1854 | 1854 | |
|
1855 | 1855 | if counter >= self.nplots: |
|
1856 | 1856 | break |
|
1857 | 1857 | |
|
1858 | 1858 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1859 | 1859 | |
|
1860 | 1860 | counter += 1 |
|
1861 | 1861 | |
|
1862 | 1862 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
1863 | 1863 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
1864 | 1864 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
1865 | 1865 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1866 | 1866 | server=None, folder=None, username=None, password=None, |
|
1867 | 1867 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
1868 | 1868 | xaxis="frequency"): |
|
1869 | 1869 | |
|
1870 | 1870 | """ |
|
1871 | 1871 | |
|
1872 | 1872 | Input: |
|
1873 | 1873 | dataOut : |
|
1874 | 1874 | id : |
|
1875 | 1875 | wintitle : |
|
1876 | 1876 | channelList : |
|
1877 | 1877 | showProfile : |
|
1878 | 1878 | xmin : None, |
|
1879 | 1879 | xmax : None, |
|
1880 | 1880 | ymin : None, |
|
1881 | 1881 | ymax : None, |
|
1882 | 1882 | zmin : None, |
|
1883 | 1883 | zmax : None |
|
1884 | 1884 | """ |
|
1885 | 1885 | #SEPARAR EN DOS PLOTS |
|
1886 | 1886 | nParam = dataOut.data_param.shape[1] - 3 |
|
1887 | 1887 | |
|
1888 | 1888 | utctime = dataOut.data_param[0,0] |
|
1889 | 1889 | tmet = dataOut.data_param[:,1].astype(int) |
|
1890 | 1890 | hmet = dataOut.data_param[:,2].astype(int) |
|
1891 | 1891 | |
|
1892 | 1892 | x = dataOut.abscissaList |
|
1893 | 1893 | y = dataOut.heightList |
|
1894 | 1894 | |
|
1895 | 1895 | z = numpy.zeros((nParam, y.size, x.size - 1)) |
|
1896 | 1896 | z[:,:] = numpy.nan |
|
1897 | 1897 | z[:,hmet,tmet] = dataOut.data_param[:,3:].T |
|
1898 | 1898 | z[0,:,:] = 10*numpy.log10(z[0,:,:]) |
|
1899 | 1899 | |
|
1900 | 1900 | xlabel = "Time (s)" |
|
1901 | 1901 | ylabel = "Range (km)" |
|
1902 | 1902 | |
|
1903 | 1903 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
1904 | 1904 | |
|
1905 | 1905 | if not self.isConfig: |
|
1906 | 1906 | |
|
1907 | 1907 | nplots = nParam |
|
1908 | 1908 | |
|
1909 | 1909 | self.setup(id=id, |
|
1910 | 1910 | nplots=nplots, |
|
1911 | 1911 | wintitle=wintitle, |
|
1912 | 1912 | show=show) |
|
1913 | 1913 | |
|
1914 | 1914 | if xmin is None: xmin = numpy.nanmin(x) |
|
1915 | 1915 | if xmax is None: xmax = numpy.nanmax(x) |
|
1916 | 1916 | if ymin is None: ymin = numpy.nanmin(y) |
|
1917 | 1917 | if ymax is None: ymax = numpy.nanmax(y) |
|
1918 | 1918 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
1919 | 1919 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
1920 | 1920 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
1921 | 1921 | if vmin is None: vmin = -vmax |
|
1922 | 1922 | if wmin is None: wmin = 0 |
|
1923 | 1923 | if wmax is None: wmax = 50 |
|
1924 | 1924 | |
|
1925 | 1925 | pairsList = dataOut.groupList |
|
1926 | 1926 | self.nPairs = len(dataOut.groupList) |
|
1927 | 1927 | |
|
1928 | 1928 | zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs |
|
1929 | 1929 | zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs |
|
1930 | 1930 | titleList = ["SNR","Radial Velocity","Coherence"] |
|
1931 | 1931 | cmapList = ["jet","RdBu_r","jet"] |
|
1932 | 1932 | |
|
1933 | 1933 | for i in range(self.nPairs): |
|
1934 | 1934 | strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1]) |
|
1935 | 1935 | titleList = titleList + [strAux1] |
|
1936 | 1936 | cmapList = cmapList + ["RdBu_r"] |
|
1937 | 1937 | |
|
1938 | 1938 | self.zminList = zminList |
|
1939 | 1939 | self.zmaxList = zmaxList |
|
1940 | 1940 | self.cmapList = cmapList |
|
1941 | 1941 | self.titleList = titleList |
|
1942 | 1942 | |
|
1943 | 1943 | self.FTP_WEI = ftp_wei |
|
1944 | 1944 | self.EXP_CODE = exp_code |
|
1945 | 1945 | self.SUB_EXP_CODE = sub_exp_code |
|
1946 | 1946 | self.PLOT_POS = plot_pos |
|
1947 | 1947 | |
|
1948 | 1948 | self.isConfig = True |
|
1949 | 1949 | |
|
1950 | 1950 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
1951 | 1951 | |
|
1952 | 1952 | for i in range(nParam): |
|
1953 | 1953 | title = self.titleList[i] + ": " +str_datetime |
|
1954 | 1954 | axes = self.axesList[i] |
|
1955 | 1955 | axes.pcolor(x, y, z[i,:].T, |
|
1956 | 1956 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
1957 | 1957 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
1958 | 1958 | self.draw() |
|
1959 | 1959 | |
|
1960 | 1960 | if figfile == None: |
|
1961 | 1961 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1962 | 1962 | name = str_datetime |
|
1963 | 1963 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
1964 | 1964 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
1965 | 1965 | figfile = self.getFilename(name) |
|
1966 | 1966 | |
|
1967 | 1967 | self.save(figpath=figpath, |
|
1968 | 1968 | figfile=figfile, |
|
1969 | 1969 | save=save, |
|
1970 | 1970 | ftp=ftp, |
|
1971 | 1971 | wr_period=wr_period, |
|
1972 | 1972 | thisDatetime=thisDatetime) |
|
1973 | 1973 | |
|
1974 | 1974 | |
|
1975 | 1975 | class NSMeteorDetection2Plot(Figure): |
|
1976 | 1976 | |
|
1977 | 1977 | isConfig = None |
|
1978 | 1978 | __nsubplots = None |
|
1979 | 1979 | |
|
1980 | 1980 | WIDTHPROF = None |
|
1981 | 1981 | HEIGHTPROF = None |
|
1982 | 1982 | PREFIX = 'nsm' |
|
1983 | 1983 | |
|
1984 | 1984 | zminList = None |
|
1985 | 1985 | zmaxList = None |
|
1986 | 1986 | cmapList = None |
|
1987 | 1987 | titleList = None |
|
1988 | 1988 | nPairs = None |
|
1989 | 1989 | nChannels = None |
|
1990 | 1990 | nParam = None |
|
1991 | 1991 | |
|
1992 | 1992 | def __init__(self, **kwargs): |
|
1993 | 1993 | Figure.__init__(self, **kwargs) |
|
1994 | 1994 | self.isConfig = False |
|
1995 | 1995 | self.__nsubplots = 1 |
|
1996 | 1996 | |
|
1997 | 1997 | self.WIDTH = 750 |
|
1998 | 1998 | self.HEIGHT = 250 |
|
1999 | 1999 | self.WIDTHPROF = 120 |
|
2000 | 2000 | self.HEIGHTPROF = 0 |
|
2001 | 2001 | self.counter_imagwr = 0 |
|
2002 | 2002 | |
|
2003 | 2003 | self.PLOT_CODE = SPEC_CODE |
|
2004 | 2004 | |
|
2005 | 2005 | self.FTP_WEI = None |
|
2006 | 2006 | self.EXP_CODE = None |
|
2007 | 2007 | self.SUB_EXP_CODE = None |
|
2008 | 2008 | self.PLOT_POS = None |
|
2009 | 2009 | |
|
2010 | 2010 | self.__xfilter_ena = False |
|
2011 | 2011 | self.__yfilter_ena = False |
|
2012 | 2012 | |
|
2013 | 2013 | def getSubplots(self): |
|
2014 | 2014 | |
|
2015 | 2015 | ncol = 3 |
|
2016 | 2016 | nrow = int(numpy.ceil(self.nplots/3.0)) |
|
2017 | 2017 | |
|
2018 | 2018 | return nrow, ncol |
|
2019 | 2019 | |
|
2020 | 2020 | def setup(self, id, nplots, wintitle, show=True): |
|
2021 | 2021 | |
|
2022 | 2022 | self.nplots = nplots |
|
2023 | 2023 | |
|
2024 | 2024 | ncolspan = 1 |
|
2025 | 2025 | colspan = 1 |
|
2026 | 2026 | |
|
2027 | 2027 | self.createFigure(id = id, |
|
2028 | 2028 | wintitle = wintitle, |
|
2029 | 2029 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
2030 | 2030 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
2031 | 2031 | show=show) |
|
2032 | 2032 | |
|
2033 | 2033 | nrow, ncol = self.getSubplots() |
|
2034 | 2034 | |
|
2035 | 2035 | counter = 0 |
|
2036 | 2036 | for y in range(nrow): |
|
2037 | 2037 | for x in range(ncol): |
|
2038 | 2038 | |
|
2039 | 2039 | if counter >= self.nplots: |
|
2040 | 2040 | break |
|
2041 | 2041 | |
|
2042 | 2042 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
2043 | 2043 | |
|
2044 | 2044 | counter += 1 |
|
2045 | 2045 | |
|
2046 | 2046 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
2047 | 2047 | xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None, |
|
2048 | 2048 | vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA', |
|
2049 | 2049 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
2050 | 2050 | server=None, folder=None, username=None, password=None, |
|
2051 | 2051 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
2052 | 2052 | xaxis="frequency"): |
|
2053 | 2053 | |
|
2054 | 2054 | """ |
|
2055 | 2055 | |
|
2056 | 2056 | Input: |
|
2057 | 2057 | dataOut : |
|
2058 | 2058 | id : |
|
2059 | 2059 | wintitle : |
|
2060 | 2060 | channelList : |
|
2061 | 2061 | showProfile : |
|
2062 | 2062 | xmin : None, |
|
2063 | 2063 | xmax : None, |
|
2064 | 2064 | ymin : None, |
|
2065 | 2065 | ymax : None, |
|
2066 | 2066 | zmin : None, |
|
2067 | 2067 | zmax : None |
|
2068 | 2068 | """ |
|
2069 | 2069 | #Rebuild matrix |
|
2070 | 2070 | utctime = dataOut.data_param[0,0] |
|
2071 | 2071 | cmet = dataOut.data_param[:,1].astype(int) |
|
2072 | 2072 | tmet = dataOut.data_param[:,2].astype(int) |
|
2073 | 2073 | hmet = dataOut.data_param[:,3].astype(int) |
|
2074 | 2074 | |
|
2075 | 2075 | nParam = 3 |
|
2076 | 2076 | nChan = len(dataOut.groupList) |
|
2077 | 2077 | x = dataOut.abscissaList |
|
2078 | 2078 | y = dataOut.heightList |
|
2079 | 2079 | |
|
2080 | 2080 | z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan) |
|
2081 | 2081 | z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:] |
|
2082 | 2082 | z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale |
|
2083 | 2083 | z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1)) |
|
2084 | 2084 | |
|
2085 | 2085 | xlabel = "Time (s)" |
|
2086 | 2086 | ylabel = "Range (km)" |
|
2087 | 2087 | |
|
2088 | 2088 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
2089 | 2089 | |
|
2090 | 2090 | if not self.isConfig: |
|
2091 | 2091 | |
|
2092 | 2092 | nplots = nParam*nChan |
|
2093 | 2093 | |
|
2094 | 2094 | self.setup(id=id, |
|
2095 | 2095 | nplots=nplots, |
|
2096 | 2096 | wintitle=wintitle, |
|
2097 | 2097 | show=show) |
|
2098 | 2098 | |
|
2099 | 2099 | if xmin is None: xmin = numpy.nanmin(x) |
|
2100 | 2100 | if xmax is None: xmax = numpy.nanmax(x) |
|
2101 | 2101 | if ymin is None: ymin = numpy.nanmin(y) |
|
2102 | 2102 | if ymax is None: ymax = numpy.nanmax(y) |
|
2103 | 2103 | if SNRmin is None: SNRmin = numpy.nanmin(z[0,:]) |
|
2104 | 2104 | if SNRmax is None: SNRmax = numpy.nanmax(z[0,:]) |
|
2105 | 2105 | if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:])) |
|
2106 | 2106 | if vmin is None: vmin = -vmax |
|
2107 | 2107 | if wmin is None: wmin = 0 |
|
2108 | 2108 | if wmax is None: wmax = 50 |
|
2109 | 2109 | |
|
2110 | 2110 | self.nChannels = nChan |
|
2111 | 2111 | |
|
2112 | 2112 | zminList = [] |
|
2113 | 2113 | zmaxList = [] |
|
2114 | 2114 | titleList = [] |
|
2115 | 2115 | cmapList = [] |
|
2116 | 2116 | for i in range(self.nChannels): |
|
2117 | 2117 | strAux1 = "SNR Channel "+ str(i) |
|
2118 | 2118 | strAux2 = "Radial Velocity Channel "+ str(i) |
|
2119 | 2119 | strAux3 = "Spectral Width Channel "+ str(i) |
|
2120 | 2120 | |
|
2121 | 2121 | titleList = titleList + [strAux1,strAux2,strAux3] |
|
2122 | 2122 | cmapList = cmapList + ["jet","RdBu_r","jet"] |
|
2123 | 2123 | zminList = zminList + [SNRmin,vmin,wmin] |
|
2124 | 2124 | zmaxList = zmaxList + [SNRmax,vmax,wmax] |
|
2125 | 2125 | |
|
2126 | 2126 | self.zminList = zminList |
|
2127 | 2127 | self.zmaxList = zmaxList |
|
2128 | 2128 | self.cmapList = cmapList |
|
2129 | 2129 | self.titleList = titleList |
|
2130 | 2130 | |
|
2131 | 2131 | self.FTP_WEI = ftp_wei |
|
2132 | 2132 | self.EXP_CODE = exp_code |
|
2133 | 2133 | self.SUB_EXP_CODE = sub_exp_code |
|
2134 | 2134 | self.PLOT_POS = plot_pos |
|
2135 | 2135 | |
|
2136 | 2136 | self.isConfig = True |
|
2137 | 2137 | |
|
2138 | 2138 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
2139 | 2139 | |
|
2140 | 2140 | for i in range(self.nplots): |
|
2141 | 2141 | title = self.titleList[i] + ": " +str_datetime |
|
2142 | 2142 | axes = self.axesList[i] |
|
2143 | 2143 | axes.pcolor(x, y, z[i,:].T, |
|
2144 | 2144 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i], |
|
2145 | 2145 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='') |
|
2146 | 2146 | self.draw() |
|
2147 | 2147 | |
|
2148 | 2148 | if figfile == None: |
|
2149 | 2149 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
2150 | 2150 | name = str_datetime |
|
2151 | 2151 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
2152 | 2152 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
2153 | 2153 | figfile = self.getFilename(name) |
|
2154 | 2154 | |
|
2155 | 2155 | self.save(figpath=figpath, |
|
2156 | 2156 | figfile=figfile, |
|
2157 | 2157 | save=save, |
|
2158 | 2158 | ftp=ftp, |
|
2159 | 2159 | wr_period=wr_period, |
|
2160 | 2160 | thisDatetime=thisDatetime) |
@@ -1,1611 +1,1605 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | import matplotlib.pyplot as plt |
|
11 | 11 | |
|
12 | 12 | from figure import Figure, isRealtime, isTimeInHourRange |
|
13 | 13 | from plotting_codes import * |
|
14 | 14 | from matplotlib.pyplot import savefig |
|
15 | 15 | |
|
16 | 16 | class SpectraPlot(Figure): |
|
17 | 17 | |
|
18 | 18 | isConfig = None |
|
19 | 19 | __nsubplots = None |
|
20 | 20 | |
|
21 | 21 | WIDTHPROF = None |
|
22 | 22 | HEIGHTPROF = None |
|
23 | 23 | PREFIX = 'spc' |
|
24 | 24 | |
|
25 | 25 | def __init__(self, **kwargs): |
|
26 | 26 | Figure.__init__(self, **kwargs) |
|
27 | 27 | self.isConfig = False |
|
28 | 28 | self.__nsubplots = 1 |
|
29 | 29 | |
|
30 | 30 | self.WIDTH = 300 |
|
31 | 31 | self.HEIGHT = 300 |
|
32 | 32 | self.WIDTHPROF = 120 |
|
33 | 33 | self.HEIGHTPROF = 0 |
|
34 | 34 | self.counter_imagwr = 0 |
|
35 | 35 | |
|
36 | 36 | self.PLOT_CODE = SPEC_CODE |
|
37 | 37 | |
|
38 | 38 | self.FTP_WEI = None |
|
39 | 39 | self.EXP_CODE = None |
|
40 | 40 | self.SUB_EXP_CODE = None |
|
41 | 41 | self.PLOT_POS = None |
|
42 | 42 | |
|
43 | 43 | self.__xfilter_ena = False |
|
44 | 44 | self.__yfilter_ena = False |
|
45 | 45 | |
|
46 | 46 | self.indice=1 |
|
47 | 47 | |
|
48 | 48 | def getSubplots(self): |
|
49 | 49 | |
|
50 | 50 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
51 | 51 | nrow = int(self.nplots*1./ncol + 0.9) |
|
52 | 52 | |
|
53 | 53 | return nrow, ncol |
|
54 | 54 | |
|
55 | 55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
56 | 56 | |
|
57 | 57 | self.__showprofile = showprofile |
|
58 | 58 | self.nplots = nplots |
|
59 | 59 | |
|
60 | 60 | ncolspan = 1 |
|
61 | 61 | colspan = 1 |
|
62 | 62 | if showprofile: |
|
63 | 63 | ncolspan = 3 |
|
64 | 64 | colspan = 2 |
|
65 | 65 | self.__nsubplots = 2 |
|
66 | 66 | |
|
67 | 67 | self.createFigure(id = id, |
|
68 | 68 | wintitle = wintitle, |
|
69 | 69 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
70 | 70 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
71 | 71 | show=show) |
|
72 | 72 | |
|
73 | 73 | nrow, ncol = self.getSubplots() |
|
74 | 74 | |
|
75 | 75 | counter = 0 |
|
76 | 76 | for y in range(nrow): |
|
77 | 77 | for x in range(ncol): |
|
78 | 78 | |
|
79 | 79 | if counter >= self.nplots: |
|
80 | 80 | break |
|
81 | 81 | |
|
82 | 82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
83 | 83 | |
|
84 | 84 | if showprofile: |
|
85 | 85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
86 | 86 | |
|
87 | 87 | counter += 1 |
|
88 | 88 | |
|
89 | 89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
90 | 90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
91 | 91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
92 | 92 | server=None, folder=None, username=None, password=None, |
|
93 | 93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
94 | 94 | xaxis="frequency", colormap='jet', normFactor=None): |
|
95 | 95 | |
|
96 | 96 | """ |
|
97 | 97 | |
|
98 | 98 | Input: |
|
99 | 99 | dataOut : |
|
100 | 100 | id : |
|
101 | 101 | wintitle : |
|
102 | 102 | channelList : |
|
103 | 103 | showProfile : |
|
104 | 104 | xmin : None, |
|
105 | 105 | xmax : None, |
|
106 | 106 | ymin : None, |
|
107 | 107 | ymax : None, |
|
108 | 108 | zmin : None, |
|
109 | 109 | zmax : None |
|
110 | 110 | """ |
|
111 | 111 | if realtime: |
|
112 | 112 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
113 | 113 | print 'Skipping this plot function' |
|
114 | 114 | return |
|
115 | 115 | |
|
116 | 116 | if channelList == None: |
|
117 | 117 | channelIndexList = dataOut.channelIndexList |
|
118 | 118 | else: |
|
119 | 119 | channelIndexList = [] |
|
120 | 120 | for channel in channelList: |
|
121 | 121 | if channel not in dataOut.channelList: |
|
122 | 122 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
123 | 123 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
124 | 124 | |
|
125 | 125 | if normFactor is None: |
|
126 | 126 | factor = dataOut.normFactor |
|
127 | 127 | else: |
|
128 | 128 | factor = normFactor |
|
129 | 129 | if xaxis == "frequency": |
|
130 | 130 | x = dataOut.getFreqRange(1)/1000. |
|
131 | print 'FRECUENCIA MAXIMA', numpy.amax(x) | |
|
132 | asfasfasdfaf | |
|
133 | print '#######################################################' | |
|
134 | print 'xlen', len(x) | |
|
135 | print x | |
|
136 | print '#######################################################' | |
|
137 | 131 | xlabel = "Frequency (kHz)" |
|
138 | 132 | |
|
139 | 133 | elif xaxis == "time": |
|
140 | 134 | x = dataOut.getAcfRange(1) |
|
141 | 135 | xlabel = "Time (ms)" |
|
142 | 136 | |
|
143 | 137 | else: |
|
144 | 138 | x = dataOut.getVelRange(1) |
|
145 | 139 | xlabel = "Velocity (m/s)" |
|
146 | 140 | |
|
147 | 141 | ylabel = "Range (Km)" |
|
148 | 142 | |
|
149 | 143 | y = dataOut.getHeiRange() |
|
150 | 144 | |
|
151 | 145 | z = dataOut.data_spc/factor |
|
152 | 146 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
153 | 147 | zdB = 10*numpy.log10(z) |
|
154 | 148 | |
|
155 | 149 | avg = numpy.average(z, axis=1) |
|
156 | 150 | avgdB = 10*numpy.log10(avg) |
|
157 | 151 | |
|
158 | 152 | noise = dataOut.getNoise()/factor |
|
159 | 153 | noisedB = 10*numpy.log10(noise) |
|
160 | 154 | |
|
161 | 155 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
162 | 156 | title = wintitle + " Spectra" |
|
163 | 157 | |
|
164 | 158 | |
|
165 | 159 | |
|
166 | 160 | print 'len de X',len(x), numpy.shape(x), 'len de spc line',len(dataOut.data_spc[1,:,15]), numpy.shape(dataOut.data_spc) |
|
167 | 161 | print 'Altura:', y[0], y[1], y[13], y[14], y[10] |
|
168 | 162 | #a=z[1,:,15] |
|
169 | 163 | |
|
170 | 164 | # fig = plt.figure(10+self.indice) |
|
171 | 165 | # plt.plot( x[0:128], zdB[0,:,10] ) |
|
172 | 166 | # plt.axis([-12, 12, 15, 50]) |
|
173 | 167 | # plt.title(" %s" %( '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))) ) |
|
174 | 168 | # plt.ylabel('Intensidad [dB]') |
|
175 | 169 | # plt.xlabel('Velocidad [m/s]') |
|
176 | 170 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
177 | 171 | # |
|
178 | 172 | # plt.show() |
|
179 | 173 | # |
|
180 | 174 | # self.indice=self.indice+1 |
|
181 | 175 | |
|
182 | 176 | |
|
183 | 177 | |
|
184 | 178 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
185 | 179 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
186 | 180 | |
|
187 | 181 | if not self.isConfig: |
|
188 | 182 | |
|
189 | 183 | nplots = len(channelIndexList) |
|
190 | 184 | |
|
191 | 185 | self.setup(id=id, |
|
192 | 186 | nplots=nplots, |
|
193 | 187 | wintitle=wintitle, |
|
194 | 188 | showprofile=showprofile, |
|
195 | 189 | show=show) |
|
196 | 190 | |
|
197 | 191 | if xmin == None: xmin = numpy.nanmin(x) |
|
198 | 192 | if xmax == None: xmax = numpy.nanmax(x) |
|
199 | 193 | if ymin == None: ymin = numpy.nanmin(y) |
|
200 | 194 | if ymax == None: ymax = numpy.nanmax(y) |
|
201 | 195 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
202 | 196 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
203 | 197 | |
|
204 | 198 | self.FTP_WEI = ftp_wei |
|
205 | 199 | self.EXP_CODE = exp_code |
|
206 | 200 | self.SUB_EXP_CODE = sub_exp_code |
|
207 | 201 | self.PLOT_POS = plot_pos |
|
208 | 202 | |
|
209 | 203 | self.isConfig = True |
|
210 | 204 | |
|
211 | 205 | self.setWinTitle(title) |
|
212 | 206 | |
|
213 | 207 | for i in range(self.nplots): |
|
214 | 208 | index = channelIndexList[i] |
|
215 | 209 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
216 | 210 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
217 | 211 | if len(dataOut.beam.codeList) != 0: |
|
218 | 212 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
219 | 213 | |
|
220 | 214 | axes = self.axesList[i*self.__nsubplots] |
|
221 | 215 | axes.pcolor(x, y, zdB[index,:,:], |
|
222 | 216 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
223 | 217 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
224 | 218 | ticksize=9, cblabel='') |
|
225 | 219 | |
|
226 | 220 | if self.__showprofile: |
|
227 | 221 | axes = self.axesList[i*self.__nsubplots +1] |
|
228 | 222 | axes.pline(avgdB[index,:], y, |
|
229 | 223 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
230 | 224 | xlabel='dB', ylabel='', title='', |
|
231 | 225 | ytick_visible=False, |
|
232 | 226 | grid='x') |
|
233 | 227 | |
|
234 | 228 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
235 | 229 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
236 | 230 | |
|
237 | 231 | self.draw() |
|
238 | 232 | |
|
239 | 233 | if figfile == None: |
|
240 | 234 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
241 | 235 | name = str_datetime |
|
242 | 236 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
243 | 237 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
244 | 238 | figfile = self.getFilename(name) |
|
245 | 239 | |
|
246 | 240 | self.save(figpath=figpath, |
|
247 | 241 | figfile=figfile, |
|
248 | 242 | save=save, |
|
249 | 243 | ftp=ftp, |
|
250 | 244 | wr_period=wr_period, |
|
251 | 245 | thisDatetime=thisDatetime) |
|
252 | 246 | |
|
253 | 247 | |
|
254 | 248 | class CrossSpectraPlot(Figure): |
|
255 | 249 | |
|
256 | 250 | isConfig = None |
|
257 | 251 | __nsubplots = None |
|
258 | 252 | |
|
259 | 253 | WIDTH = None |
|
260 | 254 | HEIGHT = None |
|
261 | 255 | WIDTHPROF = None |
|
262 | 256 | HEIGHTPROF = None |
|
263 | 257 | PREFIX = 'cspc' |
|
264 | 258 | |
|
265 | 259 | def __init__(self, **kwargs): |
|
266 | 260 | Figure.__init__(self, **kwargs) |
|
267 | 261 | self.isConfig = False |
|
268 | 262 | self.__nsubplots = 4 |
|
269 | 263 | self.counter_imagwr = 0 |
|
270 | 264 | self.WIDTH = 250 |
|
271 | 265 | self.HEIGHT = 250 |
|
272 | 266 | self.WIDTHPROF = 0 |
|
273 | 267 | self.HEIGHTPROF = 0 |
|
274 | 268 | |
|
275 | 269 | self.PLOT_CODE = CROSS_CODE |
|
276 | 270 | self.FTP_WEI = None |
|
277 | 271 | self.EXP_CODE = None |
|
278 | 272 | self.SUB_EXP_CODE = None |
|
279 | 273 | self.PLOT_POS = None |
|
280 | 274 | |
|
281 | 275 | self.indice=0 |
|
282 | 276 | |
|
283 | 277 | def getSubplots(self): |
|
284 | 278 | |
|
285 | 279 | ncol = 4 |
|
286 | 280 | nrow = self.nplots |
|
287 | 281 | |
|
288 | 282 | return nrow, ncol |
|
289 | 283 | |
|
290 | 284 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
291 | 285 | |
|
292 | 286 | self.__showprofile = showprofile |
|
293 | 287 | self.nplots = nplots |
|
294 | 288 | |
|
295 | 289 | ncolspan = 1 |
|
296 | 290 | colspan = 1 |
|
297 | 291 | |
|
298 | 292 | self.createFigure(id = id, |
|
299 | 293 | wintitle = wintitle, |
|
300 | 294 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
301 | 295 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
302 | 296 | show=True) |
|
303 | 297 | |
|
304 | 298 | nrow, ncol = self.getSubplots() |
|
305 | 299 | |
|
306 | 300 | counter = 0 |
|
307 | 301 | for y in range(nrow): |
|
308 | 302 | for x in range(ncol): |
|
309 | 303 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
310 | 304 | |
|
311 | 305 | counter += 1 |
|
312 | 306 | |
|
313 | 307 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
314 | 308 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
315 | 309 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
316 | 310 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
317 | 311 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
318 | 312 | server=None, folder=None, username=None, password=None, |
|
319 | 313 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
320 | 314 | xaxis='frequency'): |
|
321 | 315 | |
|
322 | 316 | """ |
|
323 | 317 | |
|
324 | 318 | Input: |
|
325 | 319 | dataOut : |
|
326 | 320 | id : |
|
327 | 321 | wintitle : |
|
328 | 322 | channelList : |
|
329 | 323 | showProfile : |
|
330 | 324 | xmin : None, |
|
331 | 325 | xmax : None, |
|
332 | 326 | ymin : None, |
|
333 | 327 | ymax : None, |
|
334 | 328 | zmin : None, |
|
335 | 329 | zmax : None |
|
336 | 330 | """ |
|
337 | 331 | |
|
338 | 332 | if pairsList == None: |
|
339 | 333 | pairsIndexList = dataOut.pairsIndexList |
|
340 | 334 | else: |
|
341 | 335 | pairsIndexList = [] |
|
342 | 336 | for pair in pairsList: |
|
343 | 337 | if pair not in dataOut.pairsList: |
|
344 | 338 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
345 | 339 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
346 | 340 | |
|
347 | 341 | if not pairsIndexList: |
|
348 | 342 | return |
|
349 | 343 | |
|
350 | 344 | if len(pairsIndexList) > 4: |
|
351 | 345 | pairsIndexList = pairsIndexList[0:4] |
|
352 | 346 | |
|
353 | 347 | if normFactor is None: |
|
354 | 348 | factor = dataOut.normFactor |
|
355 | 349 | else: |
|
356 | 350 | factor = normFactor |
|
357 | 351 | x = dataOut.getVelRange(1) |
|
358 | 352 | y = dataOut.getHeiRange() |
|
359 | 353 | z = dataOut.data_spc[:,:,:]/factor |
|
360 | 354 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
361 | 355 | |
|
362 | 356 | noise = dataOut.noise/factor |
|
363 | 357 | |
|
364 | 358 | zdB = 10*numpy.log10(z) |
|
365 | 359 | noisedB = 10*numpy.log10(noise) |
|
366 | 360 | |
|
367 | 361 | if coh_min == None: |
|
368 | 362 | coh_min = 0.0 |
|
369 | 363 | if coh_max == None: |
|
370 | 364 | coh_max = 1.0 |
|
371 | 365 | |
|
372 | 366 | if phase_min == None: |
|
373 | 367 | phase_min = -180 |
|
374 | 368 | if phase_max == None: |
|
375 | 369 | phase_max = 180 |
|
376 | 370 | |
|
377 | 371 | #thisDatetime = dataOut.datatime |
|
378 | 372 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
379 | 373 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
380 | 374 | # xlabel = "Velocity (m/s)" |
|
381 | 375 | ylabel = "Range (Km)" |
|
382 | 376 | |
|
383 | 377 | if xaxis == "frequency": |
|
384 | 378 | x = dataOut.getFreqRange(1)/1000. |
|
385 | 379 | xlabel = "Frequency (kHz)" |
|
386 | 380 | |
|
387 | 381 | elif xaxis == "time": |
|
388 | 382 | x = dataOut.getAcfRange(1) |
|
389 | 383 | xlabel = "Time (ms)" |
|
390 | 384 | |
|
391 | 385 | else: |
|
392 | 386 | x = dataOut.getVelRange(1) |
|
393 | 387 | xlabel = "Velocity (m/s)" |
|
394 | 388 | |
|
395 | 389 | if not self.isConfig: |
|
396 | 390 | |
|
397 | 391 | nplots = len(pairsIndexList) |
|
398 | 392 | |
|
399 | 393 | self.setup(id=id, |
|
400 | 394 | nplots=nplots, |
|
401 | 395 | wintitle=wintitle, |
|
402 | 396 | showprofile=False, |
|
403 | 397 | show=show) |
|
404 | 398 | |
|
405 | 399 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
406 | 400 | avgdB = 10*numpy.log10(avg) |
|
407 | 401 | |
|
408 | 402 | if xmin == None: xmin = numpy.nanmin(x) |
|
409 | 403 | if xmax == None: xmax = numpy.nanmax(x) |
|
410 | 404 | if ymin == None: ymin = numpy.nanmin(y) |
|
411 | 405 | if ymax == None: ymax = numpy.nanmax(y) |
|
412 | 406 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
413 | 407 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
414 | 408 | |
|
415 | 409 | self.FTP_WEI = ftp_wei |
|
416 | 410 | self.EXP_CODE = exp_code |
|
417 | 411 | self.SUB_EXP_CODE = sub_exp_code |
|
418 | 412 | self.PLOT_POS = plot_pos |
|
419 | 413 | |
|
420 | 414 | self.isConfig = True |
|
421 | 415 | |
|
422 | 416 | self.setWinTitle(title) |
|
423 | 417 | |
|
424 | 418 | |
|
425 | 419 | for i in range(self.nplots): |
|
426 | 420 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
427 | 421 | |
|
428 | 422 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
429 | 423 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
430 | 424 | |
|
431 | 425 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
432 | 426 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
433 | 427 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
434 | 428 | axes0 = self.axesList[i*self.__nsubplots] |
|
435 | 429 | axes0.pcolor(x, y, zdB, |
|
436 | 430 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
437 | 431 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
438 | 432 | ticksize=9, colormap=power_cmap, cblabel='') |
|
439 | 433 | |
|
440 | 434 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
441 | 435 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
442 | 436 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
443 | 437 | axes0.pcolor(x, y, zdB, |
|
444 | 438 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
445 | 439 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
446 | 440 | ticksize=9, colormap=power_cmap, cblabel='') |
|
447 | 441 | |
|
448 | 442 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) |
|
449 | 443 | coherence = numpy.abs(coherenceComplex) |
|
450 | 444 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
451 | 445 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
452 | 446 | |
|
453 | 447 | |
|
454 | 448 | |
|
455 | 449 | |
|
456 | 450 | # #print 'FASE', numpy.shape(phase), y[25] |
|
457 | 451 | # fig = plt.figure(10+self.indice) |
|
458 | 452 | # #plt.plot( x[0:256],coherence[:,25] ) |
|
459 | 453 | # cohAv = numpy.average(coherence,1) |
|
460 | 454 | # |
|
461 | 455 | # plt.plot( x[0:256],cohAv ) |
|
462 | 456 | # #plt.axis([-12, 12, 15, 50]) |
|
463 | 457 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
464 | 458 | # plt.ylabel('Desfase [grados]') |
|
465 | 459 | # plt.xlabel('Velocidad [m/s]') |
|
466 | 460 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
467 | 461 | # |
|
468 | 462 | # plt.show() |
|
469 | 463 | # self.indice=self.indice+1 |
|
470 | 464 | |
|
471 | 465 | |
|
472 | 466 | # print 'FASE', numpy.shape(phase), y[25] |
|
473 | 467 | # fig = plt.figure(10+self.indice) |
|
474 | 468 | # plt.plot( x[0:256],phase[:,25] ) |
|
475 | 469 | # #plt.axis([-12, 12, 15, 50]) |
|
476 | 470 | # plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
477 | 471 | # plt.ylabel('Desfase [grados]') |
|
478 | 472 | # plt.xlabel('Velocidad [m/s]') |
|
479 | 473 | # fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
480 | 474 | # |
|
481 | 475 | # plt.show() |
|
482 | 476 | # self.indice=self.indice+1 |
|
483 | 477 | |
|
484 | 478 | |
|
485 | 479 | |
|
486 | 480 | |
|
487 | 481 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
488 | 482 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
489 | 483 | axes0.pcolor(x, y, coherence, |
|
490 | 484 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
491 | 485 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
492 | 486 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
493 | 487 | |
|
494 | 488 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
495 | 489 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
496 | 490 | axes0.pcolor(x, y, phase, |
|
497 | 491 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
498 | 492 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
499 | 493 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
500 | 494 | |
|
501 | 495 | |
|
502 | 496 | |
|
503 | 497 | self.draw() |
|
504 | 498 | |
|
505 | 499 | self.save(figpath=figpath, |
|
506 | 500 | figfile=figfile, |
|
507 | 501 | save=save, |
|
508 | 502 | ftp=ftp, |
|
509 | 503 | wr_period=wr_period, |
|
510 | 504 | thisDatetime=thisDatetime) |
|
511 | 505 | |
|
512 | 506 | |
|
513 | 507 | class RTIPlot(Figure): |
|
514 | 508 | |
|
515 | 509 | __isConfig = None |
|
516 | 510 | __nsubplots = None |
|
517 | 511 | |
|
518 | 512 | WIDTHPROF = None |
|
519 | 513 | HEIGHTPROF = None |
|
520 | 514 | PREFIX = 'rti' |
|
521 | 515 | |
|
522 | 516 | def __init__(self, **kwargs): |
|
523 | 517 | |
|
524 | 518 | Figure.__init__(self, **kwargs) |
|
525 | 519 | self.timerange = None |
|
526 | 520 | self.isConfig = False |
|
527 | 521 | self.__nsubplots = 1 |
|
528 | 522 | |
|
529 | 523 | self.WIDTH = 800 |
|
530 | 524 | self.HEIGHT = 250 |
|
531 | 525 | self.WIDTHPROF = 120 |
|
532 | 526 | self.HEIGHTPROF = 0 |
|
533 | 527 | self.counter_imagwr = 0 |
|
534 | 528 | |
|
535 | 529 | self.PLOT_CODE = RTI_CODE |
|
536 | 530 | |
|
537 | 531 | self.FTP_WEI = None |
|
538 | 532 | self.EXP_CODE = None |
|
539 | 533 | self.SUB_EXP_CODE = None |
|
540 | 534 | self.PLOT_POS = None |
|
541 | 535 | self.tmin = None |
|
542 | 536 | self.tmax = None |
|
543 | 537 | |
|
544 | 538 | self.xmin = None |
|
545 | 539 | self.xmax = None |
|
546 | 540 | |
|
547 | 541 | self.figfile = None |
|
548 | 542 | |
|
549 | 543 | def getSubplots(self): |
|
550 | 544 | |
|
551 | 545 | ncol = 1 |
|
552 | 546 | nrow = self.nplots |
|
553 | 547 | |
|
554 | 548 | return nrow, ncol |
|
555 | 549 | |
|
556 | 550 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
557 | 551 | |
|
558 | 552 | self.__showprofile = showprofile |
|
559 | 553 | self.nplots = nplots |
|
560 | 554 | |
|
561 | 555 | ncolspan = 1 |
|
562 | 556 | colspan = 1 |
|
563 | 557 | if showprofile: |
|
564 | 558 | ncolspan = 7 |
|
565 | 559 | colspan = 6 |
|
566 | 560 | self.__nsubplots = 2 |
|
567 | 561 | |
|
568 | 562 | self.createFigure(id = id, |
|
569 | 563 | wintitle = wintitle, |
|
570 | 564 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
571 | 565 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
572 | 566 | show=show) |
|
573 | 567 | |
|
574 | 568 | nrow, ncol = self.getSubplots() |
|
575 | 569 | |
|
576 | 570 | counter = 0 |
|
577 | 571 | for y in range(nrow): |
|
578 | 572 | for x in range(ncol): |
|
579 | 573 | |
|
580 | 574 | if counter >= self.nplots: |
|
581 | 575 | break |
|
582 | 576 | |
|
583 | 577 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
584 | 578 | |
|
585 | 579 | if showprofile: |
|
586 | 580 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
587 | 581 | |
|
588 | 582 | counter += 1 |
|
589 | 583 | |
|
590 | 584 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
591 | 585 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
592 | 586 | timerange=None, colormap='jet', |
|
593 | 587 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
594 | 588 | server=None, folder=None, username=None, password=None, |
|
595 | 589 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
596 | 590 | |
|
597 | 591 | """ |
|
598 | 592 | |
|
599 | 593 | Input: |
|
600 | 594 | dataOut : |
|
601 | 595 | id : |
|
602 | 596 | wintitle : |
|
603 | 597 | channelList : |
|
604 | 598 | showProfile : |
|
605 | 599 | xmin : None, |
|
606 | 600 | xmax : None, |
|
607 | 601 | ymin : None, |
|
608 | 602 | ymax : None, |
|
609 | 603 | zmin : None, |
|
610 | 604 | zmax : None |
|
611 | 605 | """ |
|
612 | 606 | |
|
613 | 607 | #colormap = kwargs.get('colormap', 'jet') |
|
614 | 608 | if HEIGHT is not None: |
|
615 | 609 | self.HEIGHT = HEIGHT |
|
616 | 610 | |
|
617 | 611 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
618 | 612 | return |
|
619 | 613 | |
|
620 | 614 | if channelList == None: |
|
621 | 615 | channelIndexList = dataOut.channelIndexList |
|
622 | 616 | else: |
|
623 | 617 | channelIndexList = [] |
|
624 | 618 | for channel in channelList: |
|
625 | 619 | if channel not in dataOut.channelList: |
|
626 | 620 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
627 | 621 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
628 | 622 | |
|
629 | 623 | if normFactor is None: |
|
630 | 624 | factor = dataOut.normFactor |
|
631 | 625 | else: |
|
632 | 626 | factor = normFactor |
|
633 | 627 | |
|
634 | 628 | # factor = dataOut.normFactor |
|
635 | 629 | x = dataOut.getTimeRange() |
|
636 | 630 | y = dataOut.getHeiRange() |
|
637 | 631 | |
|
638 | 632 | z = dataOut.data_spc/factor |
|
639 | 633 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
640 | 634 | avg = numpy.average(z, axis=1) |
|
641 | 635 | avgdB = 10.*numpy.log10(avg) |
|
642 | 636 | # avgdB = dataOut.getPower() |
|
643 | 637 | |
|
644 | 638 | |
|
645 | 639 | thisDatetime = dataOut.datatime |
|
646 | 640 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
647 | 641 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
648 | 642 | xlabel = "" |
|
649 | 643 | ylabel = "Range (Km)" |
|
650 | 644 | |
|
651 | 645 | update_figfile = False |
|
652 | 646 | |
|
653 | 647 | if dataOut.ltctime >= self.xmax: |
|
654 | 648 | self.counter_imagwr = wr_period |
|
655 | 649 | self.isConfig = False |
|
656 | 650 | update_figfile = True |
|
657 | 651 | |
|
658 | 652 | if not self.isConfig: |
|
659 | 653 | |
|
660 | 654 | nplots = len(channelIndexList) |
|
661 | 655 | |
|
662 | 656 | self.setup(id=id, |
|
663 | 657 | nplots=nplots, |
|
664 | 658 | wintitle=wintitle, |
|
665 | 659 | showprofile=showprofile, |
|
666 | 660 | show=show) |
|
667 | 661 | |
|
668 | 662 | if timerange != None: |
|
669 | 663 | self.timerange = timerange |
|
670 | 664 | |
|
671 | 665 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
672 | 666 | |
|
673 | 667 | noise = dataOut.noise/factor |
|
674 | 668 | noisedB = 10*numpy.log10(noise) |
|
675 | 669 | |
|
676 | 670 | if ymin == None: ymin = numpy.nanmin(y) |
|
677 | 671 | if ymax == None: ymax = numpy.nanmax(y) |
|
678 | 672 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
679 | 673 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
680 | 674 | |
|
681 | 675 | self.FTP_WEI = ftp_wei |
|
682 | 676 | self.EXP_CODE = exp_code |
|
683 | 677 | self.SUB_EXP_CODE = sub_exp_code |
|
684 | 678 | self.PLOT_POS = plot_pos |
|
685 | 679 | |
|
686 | 680 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
687 | 681 | self.isConfig = True |
|
688 | 682 | self.figfile = figfile |
|
689 | 683 | update_figfile = True |
|
690 | 684 | |
|
691 | 685 | self.setWinTitle(title) |
|
692 | 686 | |
|
693 | 687 | for i in range(self.nplots): |
|
694 | 688 | index = channelIndexList[i] |
|
695 | 689 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
696 | 690 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
697 | 691 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
698 | 692 | axes = self.axesList[i*self.__nsubplots] |
|
699 | 693 | zdB = avgdB[index].reshape((1,-1)) |
|
700 | 694 | axes.pcolorbuffer(x, y, zdB, |
|
701 | 695 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
702 | 696 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
703 | 697 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
704 | 698 | |
|
705 | 699 | if self.__showprofile: |
|
706 | 700 | axes = self.axesList[i*self.__nsubplots +1] |
|
707 | 701 | axes.pline(avgdB[index], y, |
|
708 | 702 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
709 | 703 | xlabel='dB', ylabel='', title='', |
|
710 | 704 | ytick_visible=False, |
|
711 | 705 | grid='x') |
|
712 | 706 | |
|
713 | 707 | self.draw() |
|
714 | 708 | |
|
715 | 709 | self.save(figpath=figpath, |
|
716 | 710 | figfile=figfile, |
|
717 | 711 | save=save, |
|
718 | 712 | ftp=ftp, |
|
719 | 713 | wr_period=wr_period, |
|
720 | 714 | thisDatetime=thisDatetime, |
|
721 | 715 | update_figfile=update_figfile) |
|
722 | 716 | |
|
723 | 717 | class CoherenceMap(Figure): |
|
724 | 718 | isConfig = None |
|
725 | 719 | __nsubplots = None |
|
726 | 720 | |
|
727 | 721 | WIDTHPROF = None |
|
728 | 722 | HEIGHTPROF = None |
|
729 | 723 | PREFIX = 'cmap' |
|
730 | 724 | |
|
731 | 725 | def __init__(self, **kwargs): |
|
732 | 726 | Figure.__init__(self, **kwargs) |
|
733 | 727 | self.timerange = 2*60*60 |
|
734 | 728 | self.isConfig = False |
|
735 | 729 | self.__nsubplots = 1 |
|
736 | 730 | |
|
737 | 731 | self.WIDTH = 800 |
|
738 | 732 | self.HEIGHT = 180 |
|
739 | 733 | self.WIDTHPROF = 120 |
|
740 | 734 | self.HEIGHTPROF = 0 |
|
741 | 735 | self.counter_imagwr = 0 |
|
742 | 736 | |
|
743 | 737 | self.PLOT_CODE = COH_CODE |
|
744 | 738 | |
|
745 | 739 | self.FTP_WEI = None |
|
746 | 740 | self.EXP_CODE = None |
|
747 | 741 | self.SUB_EXP_CODE = None |
|
748 | 742 | self.PLOT_POS = None |
|
749 | 743 | self.counter_imagwr = 0 |
|
750 | 744 | |
|
751 | 745 | self.xmin = None |
|
752 | 746 | self.xmax = None |
|
753 | 747 | |
|
754 | 748 | def getSubplots(self): |
|
755 | 749 | ncol = 1 |
|
756 | 750 | nrow = self.nplots*2 |
|
757 | 751 | |
|
758 | 752 | return nrow, ncol |
|
759 | 753 | |
|
760 | 754 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
761 | 755 | self.__showprofile = showprofile |
|
762 | 756 | self.nplots = nplots |
|
763 | 757 | |
|
764 | 758 | ncolspan = 1 |
|
765 | 759 | colspan = 1 |
|
766 | 760 | if showprofile: |
|
767 | 761 | ncolspan = 7 |
|
768 | 762 | colspan = 6 |
|
769 | 763 | self.__nsubplots = 2 |
|
770 | 764 | |
|
771 | 765 | self.createFigure(id = id, |
|
772 | 766 | wintitle = wintitle, |
|
773 | 767 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
774 | 768 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
775 | 769 | show=True) |
|
776 | 770 | |
|
777 | 771 | nrow, ncol = self.getSubplots() |
|
778 | 772 | |
|
779 | 773 | for y in range(nrow): |
|
780 | 774 | for x in range(ncol): |
|
781 | 775 | |
|
782 | 776 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
783 | 777 | |
|
784 | 778 | if showprofile: |
|
785 | 779 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
786 | 780 | |
|
787 | 781 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
788 | 782 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
789 | 783 | timerange=None, phase_min=None, phase_max=None, |
|
790 | 784 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
791 | 785 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
792 | 786 | server=None, folder=None, username=None, password=None, |
|
793 | 787 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
794 | 788 | |
|
795 | 789 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
796 | 790 | return |
|
797 | 791 | |
|
798 | 792 | if pairsList == None: |
|
799 | 793 | pairsIndexList = dataOut.pairsIndexList |
|
800 | 794 | else: |
|
801 | 795 | pairsIndexList = [] |
|
802 | 796 | for pair in pairsList: |
|
803 | 797 | if pair not in dataOut.pairsList: |
|
804 | 798 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
805 | 799 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
806 | 800 | |
|
807 | 801 | if pairsIndexList == []: |
|
808 | 802 | return |
|
809 | 803 | |
|
810 | 804 | if len(pairsIndexList) > 4: |
|
811 | 805 | pairsIndexList = pairsIndexList[0:4] |
|
812 | 806 | |
|
813 | 807 | if phase_min == None: |
|
814 | 808 | phase_min = -180 |
|
815 | 809 | if phase_max == None: |
|
816 | 810 | phase_max = 180 |
|
817 | 811 | |
|
818 | 812 | x = dataOut.getTimeRange() |
|
819 | 813 | y = dataOut.getHeiRange() |
|
820 | 814 | |
|
821 | 815 | thisDatetime = dataOut.datatime |
|
822 | 816 | |
|
823 | 817 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
824 | 818 | xlabel = "" |
|
825 | 819 | ylabel = "Range (Km)" |
|
826 | 820 | update_figfile = False |
|
827 | 821 | |
|
828 | 822 | if not self.isConfig: |
|
829 | 823 | nplots = len(pairsIndexList) |
|
830 | 824 | self.setup(id=id, |
|
831 | 825 | nplots=nplots, |
|
832 | 826 | wintitle=wintitle, |
|
833 | 827 | showprofile=showprofile, |
|
834 | 828 | show=show) |
|
835 | 829 | |
|
836 | 830 | if timerange != None: |
|
837 | 831 | self.timerange = timerange |
|
838 | 832 | |
|
839 | 833 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
840 | 834 | |
|
841 | 835 | if ymin == None: ymin = numpy.nanmin(y) |
|
842 | 836 | if ymax == None: ymax = numpy.nanmax(y) |
|
843 | 837 | if zmin == None: zmin = 0. |
|
844 | 838 | if zmax == None: zmax = 1. |
|
845 | 839 | |
|
846 | 840 | self.FTP_WEI = ftp_wei |
|
847 | 841 | self.EXP_CODE = exp_code |
|
848 | 842 | self.SUB_EXP_CODE = sub_exp_code |
|
849 | 843 | self.PLOT_POS = plot_pos |
|
850 | 844 | |
|
851 | 845 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
852 | 846 | |
|
853 | 847 | self.isConfig = True |
|
854 | 848 | update_figfile = True |
|
855 | 849 | |
|
856 | 850 | self.setWinTitle(title) |
|
857 | 851 | |
|
858 | 852 | for i in range(self.nplots): |
|
859 | 853 | |
|
860 | 854 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
861 | 855 | |
|
862 | 856 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
863 | 857 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
864 | 858 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
865 | 859 | |
|
866 | 860 | |
|
867 | 861 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
868 | 862 | coherence = numpy.abs(avgcoherenceComplex) |
|
869 | 863 | |
|
870 | 864 | z = coherence.reshape((1,-1)) |
|
871 | 865 | |
|
872 | 866 | counter = 0 |
|
873 | 867 | |
|
874 | 868 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
875 | 869 | axes = self.axesList[i*self.__nsubplots*2] |
|
876 | 870 | axes.pcolorbuffer(x, y, z, |
|
877 | 871 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
878 | 872 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
879 | 873 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
880 | 874 | |
|
881 | 875 | if self.__showprofile: |
|
882 | 876 | counter += 1 |
|
883 | 877 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
884 | 878 | axes.pline(coherence, y, |
|
885 | 879 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
886 | 880 | xlabel='', ylabel='', title='', ticksize=7, |
|
887 | 881 | ytick_visible=False, nxticks=5, |
|
888 | 882 | grid='x') |
|
889 | 883 | |
|
890 | 884 | counter += 1 |
|
891 | 885 | |
|
892 | 886 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
893 | 887 | |
|
894 | 888 | z = phase.reshape((1,-1)) |
|
895 | 889 | |
|
896 | 890 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
897 | 891 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
898 | 892 | axes.pcolorbuffer(x, y, z, |
|
899 | 893 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
900 | 894 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
901 | 895 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
902 | 896 | |
|
903 | 897 | if self.__showprofile: |
|
904 | 898 | counter += 1 |
|
905 | 899 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
906 | 900 | axes.pline(phase, y, |
|
907 | 901 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
908 | 902 | xlabel='', ylabel='', title='', ticksize=7, |
|
909 | 903 | ytick_visible=False, nxticks=4, |
|
910 | 904 | grid='x') |
|
911 | 905 | |
|
912 | 906 | self.draw() |
|
913 | 907 | |
|
914 | 908 | if dataOut.ltctime >= self.xmax: |
|
915 | 909 | self.counter_imagwr = wr_period |
|
916 | 910 | self.isConfig = False |
|
917 | 911 | update_figfile = True |
|
918 | 912 | |
|
919 | 913 | self.save(figpath=figpath, |
|
920 | 914 | figfile=figfile, |
|
921 | 915 | save=save, |
|
922 | 916 | ftp=ftp, |
|
923 | 917 | wr_period=wr_period, |
|
924 | 918 | thisDatetime=thisDatetime, |
|
925 | 919 | update_figfile=update_figfile) |
|
926 | 920 | |
|
927 | 921 | class PowerProfilePlot(Figure): |
|
928 | 922 | |
|
929 | 923 | isConfig = None |
|
930 | 924 | __nsubplots = None |
|
931 | 925 | |
|
932 | 926 | WIDTHPROF = None |
|
933 | 927 | HEIGHTPROF = None |
|
934 | 928 | PREFIX = 'spcprofile' |
|
935 | 929 | |
|
936 | 930 | def __init__(self, **kwargs): |
|
937 | 931 | Figure.__init__(self, **kwargs) |
|
938 | 932 | self.isConfig = False |
|
939 | 933 | self.__nsubplots = 1 |
|
940 | 934 | |
|
941 | 935 | self.PLOT_CODE = POWER_CODE |
|
942 | 936 | |
|
943 | 937 | self.WIDTH = 300 |
|
944 | 938 | self.HEIGHT = 500 |
|
945 | 939 | self.counter_imagwr = 0 |
|
946 | 940 | |
|
947 | 941 | def getSubplots(self): |
|
948 | 942 | ncol = 1 |
|
949 | 943 | nrow = 1 |
|
950 | 944 | |
|
951 | 945 | return nrow, ncol |
|
952 | 946 | |
|
953 | 947 | def setup(self, id, nplots, wintitle, show): |
|
954 | 948 | |
|
955 | 949 | self.nplots = nplots |
|
956 | 950 | |
|
957 | 951 | ncolspan = 1 |
|
958 | 952 | colspan = 1 |
|
959 | 953 | |
|
960 | 954 | self.createFigure(id = id, |
|
961 | 955 | wintitle = wintitle, |
|
962 | 956 | widthplot = self.WIDTH, |
|
963 | 957 | heightplot = self.HEIGHT, |
|
964 | 958 | show=show) |
|
965 | 959 | |
|
966 | 960 | nrow, ncol = self.getSubplots() |
|
967 | 961 | |
|
968 | 962 | counter = 0 |
|
969 | 963 | for y in range(nrow): |
|
970 | 964 | for x in range(ncol): |
|
971 | 965 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
972 | 966 | |
|
973 | 967 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
974 | 968 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
975 | 969 | save=False, figpath='./', figfile=None, show=True, |
|
976 | 970 | ftp=False, wr_period=1, server=None, |
|
977 | 971 | folder=None, username=None, password=None): |
|
978 | 972 | |
|
979 | 973 | |
|
980 | 974 | if channelList == None: |
|
981 | 975 | channelIndexList = dataOut.channelIndexList |
|
982 | 976 | channelList = dataOut.channelList |
|
983 | 977 | else: |
|
984 | 978 | channelIndexList = [] |
|
985 | 979 | for channel in channelList: |
|
986 | 980 | if channel not in dataOut.channelList: |
|
987 | 981 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
988 | 982 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
989 | 983 | |
|
990 | 984 | factor = dataOut.normFactor |
|
991 | 985 | |
|
992 | 986 | y = dataOut.getHeiRange() |
|
993 | 987 | |
|
994 | 988 | #for voltage |
|
995 | 989 | if dataOut.type == 'Voltage': |
|
996 | 990 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
997 | 991 | x = x.real |
|
998 | 992 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
999 | 993 | |
|
1000 | 994 | #for spectra |
|
1001 | 995 | if dataOut.type == 'Spectra': |
|
1002 | 996 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
1003 | 997 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
1004 | 998 | x = numpy.average(x, axis=1) |
|
1005 | 999 | |
|
1006 | 1000 | |
|
1007 | 1001 | xdB = 10*numpy.log10(x) |
|
1008 | 1002 | |
|
1009 | 1003 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1010 | 1004 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1011 | 1005 | xlabel = "dB" |
|
1012 | 1006 | ylabel = "Range (Km)" |
|
1013 | 1007 | |
|
1014 | 1008 | if not self.isConfig: |
|
1015 | 1009 | |
|
1016 | 1010 | nplots = 1 |
|
1017 | 1011 | |
|
1018 | 1012 | self.setup(id=id, |
|
1019 | 1013 | nplots=nplots, |
|
1020 | 1014 | wintitle=wintitle, |
|
1021 | 1015 | show=show) |
|
1022 | 1016 | |
|
1023 | 1017 | if ymin == None: ymin = numpy.nanmin(y) |
|
1024 | 1018 | if ymax == None: ymax = numpy.nanmax(y) |
|
1025 | 1019 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
1026 | 1020 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
1027 | 1021 | |
|
1028 | 1022 | self.isConfig = True |
|
1029 | 1023 | |
|
1030 | 1024 | self.setWinTitle(title) |
|
1031 | 1025 | |
|
1032 | 1026 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1033 | 1027 | axes = self.axesList[0] |
|
1034 | 1028 | |
|
1035 | 1029 | legendlabels = ["channel %d"%x for x in channelList] |
|
1036 | 1030 | axes.pmultiline(xdB, y, |
|
1037 | 1031 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1038 | 1032 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1039 | 1033 | ytick_visible=True, nxticks=5, |
|
1040 | 1034 | grid='x') |
|
1041 | 1035 | |
|
1042 | 1036 | self.draw() |
|
1043 | 1037 | |
|
1044 | 1038 | self.save(figpath=figpath, |
|
1045 | 1039 | figfile=figfile, |
|
1046 | 1040 | save=save, |
|
1047 | 1041 | ftp=ftp, |
|
1048 | 1042 | wr_period=wr_period, |
|
1049 | 1043 | thisDatetime=thisDatetime) |
|
1050 | 1044 | |
|
1051 | 1045 | class SpectraCutPlot(Figure): |
|
1052 | 1046 | |
|
1053 | 1047 | isConfig = None |
|
1054 | 1048 | __nsubplots = None |
|
1055 | 1049 | |
|
1056 | 1050 | WIDTHPROF = None |
|
1057 | 1051 | HEIGHTPROF = None |
|
1058 | 1052 | PREFIX = 'spc_cut' |
|
1059 | 1053 | |
|
1060 | 1054 | def __init__(self, **kwargs): |
|
1061 | 1055 | Figure.__init__(self, **kwargs) |
|
1062 | 1056 | self.isConfig = False |
|
1063 | 1057 | self.__nsubplots = 1 |
|
1064 | 1058 | |
|
1065 | 1059 | self.PLOT_CODE = POWER_CODE |
|
1066 | 1060 | |
|
1067 | 1061 | self.WIDTH = 700 |
|
1068 | 1062 | self.HEIGHT = 500 |
|
1069 | 1063 | self.counter_imagwr = 0 |
|
1070 | 1064 | |
|
1071 | 1065 | def getSubplots(self): |
|
1072 | 1066 | ncol = 1 |
|
1073 | 1067 | nrow = 1 |
|
1074 | 1068 | |
|
1075 | 1069 | return nrow, ncol |
|
1076 | 1070 | |
|
1077 | 1071 | def setup(self, id, nplots, wintitle, show): |
|
1078 | 1072 | |
|
1079 | 1073 | self.nplots = nplots |
|
1080 | 1074 | |
|
1081 | 1075 | ncolspan = 1 |
|
1082 | 1076 | colspan = 1 |
|
1083 | 1077 | |
|
1084 | 1078 | self.createFigure(id = id, |
|
1085 | 1079 | wintitle = wintitle, |
|
1086 | 1080 | widthplot = self.WIDTH, |
|
1087 | 1081 | heightplot = self.HEIGHT, |
|
1088 | 1082 | show=show) |
|
1089 | 1083 | |
|
1090 | 1084 | nrow, ncol = self.getSubplots() |
|
1091 | 1085 | |
|
1092 | 1086 | counter = 0 |
|
1093 | 1087 | for y in range(nrow): |
|
1094 | 1088 | for x in range(ncol): |
|
1095 | 1089 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1096 | 1090 | |
|
1097 | 1091 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1098 | 1092 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1099 | 1093 | save=False, figpath='./', figfile=None, show=True, |
|
1100 | 1094 | ftp=False, wr_period=1, server=None, |
|
1101 | 1095 | folder=None, username=None, password=None, |
|
1102 | 1096 | xaxis="frequency"): |
|
1103 | 1097 | |
|
1104 | 1098 | |
|
1105 | 1099 | if channelList == None: |
|
1106 | 1100 | channelIndexList = dataOut.channelIndexList |
|
1107 | 1101 | channelList = dataOut.channelList |
|
1108 | 1102 | else: |
|
1109 | 1103 | channelIndexList = [] |
|
1110 | 1104 | for channel in channelList: |
|
1111 | 1105 | if channel not in dataOut.channelList: |
|
1112 | 1106 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1113 | 1107 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1114 | 1108 | |
|
1115 | 1109 | factor = dataOut.normFactor |
|
1116 | 1110 | |
|
1117 | 1111 | y = dataOut.getHeiRange() |
|
1118 | 1112 | |
|
1119 | 1113 | z = dataOut.data_spc/factor |
|
1120 | 1114 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1121 | 1115 | |
|
1122 | 1116 | hei_index = numpy.arange(25)*3 + 20 |
|
1123 | 1117 | |
|
1124 | 1118 | if xaxis == "frequency": |
|
1125 | 1119 | x = dataOut.getFreqRange()/1000. |
|
1126 | 1120 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1127 | 1121 | xlabel = "Frequency (kHz)" |
|
1128 | 1122 | ylabel = "Power (dB)" |
|
1129 | 1123 | |
|
1130 | 1124 | elif xaxis == "time": |
|
1131 | 1125 | x = dataOut.getAcfRange() |
|
1132 | 1126 | zdB = z[0,:,hei_index] |
|
1133 | 1127 | xlabel = "Time (ms)" |
|
1134 | 1128 | ylabel = "ACF" |
|
1135 | 1129 | |
|
1136 | 1130 | else: |
|
1137 | 1131 | x = dataOut.getVelRange() |
|
1138 | 1132 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1139 | 1133 | xlabel = "Velocity (m/s)" |
|
1140 | 1134 | ylabel = "Power (dB)" |
|
1141 | 1135 | |
|
1142 | 1136 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1143 | 1137 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1144 | 1138 | |
|
1145 | 1139 | if not self.isConfig: |
|
1146 | 1140 | |
|
1147 | 1141 | nplots = 1 |
|
1148 | 1142 | |
|
1149 | 1143 | self.setup(id=id, |
|
1150 | 1144 | nplots=nplots, |
|
1151 | 1145 | wintitle=wintitle, |
|
1152 | 1146 | show=show) |
|
1153 | 1147 | |
|
1154 | 1148 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1155 | 1149 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1156 | 1150 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1157 | 1151 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1158 | 1152 | |
|
1159 | 1153 | self.isConfig = True |
|
1160 | 1154 | |
|
1161 | 1155 | self.setWinTitle(title) |
|
1162 | 1156 | |
|
1163 | 1157 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1164 | 1158 | axes = self.axesList[0] |
|
1165 | 1159 | |
|
1166 | 1160 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1167 | 1161 | |
|
1168 | 1162 | axes.pmultilineyaxis( x, zdB, |
|
1169 | 1163 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1170 | 1164 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1171 | 1165 | ytick_visible=True, nxticks=5, |
|
1172 | 1166 | grid='x') |
|
1173 | 1167 | |
|
1174 | 1168 | self.draw() |
|
1175 | 1169 | |
|
1176 | 1170 | self.save(figpath=figpath, |
|
1177 | 1171 | figfile=figfile, |
|
1178 | 1172 | save=save, |
|
1179 | 1173 | ftp=ftp, |
|
1180 | 1174 | wr_period=wr_period, |
|
1181 | 1175 | thisDatetime=thisDatetime) |
|
1182 | 1176 | |
|
1183 | 1177 | class Noise(Figure): |
|
1184 | 1178 | |
|
1185 | 1179 | isConfig = None |
|
1186 | 1180 | __nsubplots = None |
|
1187 | 1181 | |
|
1188 | 1182 | PREFIX = 'noise' |
|
1189 | 1183 | |
|
1190 | 1184 | |
|
1191 | 1185 | def __init__(self, **kwargs): |
|
1192 | 1186 | Figure.__init__(self, **kwargs) |
|
1193 | 1187 | self.timerange = 24*60*60 |
|
1194 | 1188 | self.isConfig = False |
|
1195 | 1189 | self.__nsubplots = 1 |
|
1196 | 1190 | self.counter_imagwr = 0 |
|
1197 | 1191 | self.WIDTH = 800 |
|
1198 | 1192 | self.HEIGHT = 400 |
|
1199 | 1193 | self.WIDTHPROF = 120 |
|
1200 | 1194 | self.HEIGHTPROF = 0 |
|
1201 | 1195 | self.xdata = None |
|
1202 | 1196 | self.ydata = None |
|
1203 | 1197 | |
|
1204 | 1198 | self.PLOT_CODE = NOISE_CODE |
|
1205 | 1199 | |
|
1206 | 1200 | self.FTP_WEI = None |
|
1207 | 1201 | self.EXP_CODE = None |
|
1208 | 1202 | self.SUB_EXP_CODE = None |
|
1209 | 1203 | self.PLOT_POS = None |
|
1210 | 1204 | self.figfile = None |
|
1211 | 1205 | |
|
1212 | 1206 | self.xmin = None |
|
1213 | 1207 | self.xmax = None |
|
1214 | 1208 | |
|
1215 | 1209 | def getSubplots(self): |
|
1216 | 1210 | |
|
1217 | 1211 | ncol = 1 |
|
1218 | 1212 | nrow = 1 |
|
1219 | 1213 | |
|
1220 | 1214 | return nrow, ncol |
|
1221 | 1215 | |
|
1222 | 1216 | def openfile(self, filename): |
|
1223 | 1217 | dirname = os.path.dirname(filename) |
|
1224 | 1218 | |
|
1225 | 1219 | if not os.path.exists(dirname): |
|
1226 | 1220 | os.mkdir(dirname) |
|
1227 | 1221 | |
|
1228 | 1222 | f = open(filename,'w+') |
|
1229 | 1223 | f.write('\n\n') |
|
1230 | 1224 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1231 | 1225 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1232 | 1226 | f.close() |
|
1233 | 1227 | |
|
1234 | 1228 | def save_data(self, filename_phase, data, data_datetime): |
|
1235 | 1229 | |
|
1236 | 1230 | f=open(filename_phase,'a') |
|
1237 | 1231 | |
|
1238 | 1232 | timetuple_data = data_datetime.timetuple() |
|
1239 | 1233 | day = str(timetuple_data.tm_mday) |
|
1240 | 1234 | month = str(timetuple_data.tm_mon) |
|
1241 | 1235 | year = str(timetuple_data.tm_year) |
|
1242 | 1236 | hour = str(timetuple_data.tm_hour) |
|
1243 | 1237 | minute = str(timetuple_data.tm_min) |
|
1244 | 1238 | second = str(timetuple_data.tm_sec) |
|
1245 | 1239 | |
|
1246 | 1240 | data_msg = '' |
|
1247 | 1241 | for i in range(len(data)): |
|
1248 | 1242 | data_msg += str(data[i]) + ' ' |
|
1249 | 1243 | |
|
1250 | 1244 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1251 | 1245 | f.close() |
|
1252 | 1246 | |
|
1253 | 1247 | |
|
1254 | 1248 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1255 | 1249 | |
|
1256 | 1250 | self.__showprofile = showprofile |
|
1257 | 1251 | self.nplots = nplots |
|
1258 | 1252 | |
|
1259 | 1253 | ncolspan = 7 |
|
1260 | 1254 | colspan = 6 |
|
1261 | 1255 | self.__nsubplots = 2 |
|
1262 | 1256 | |
|
1263 | 1257 | self.createFigure(id = id, |
|
1264 | 1258 | wintitle = wintitle, |
|
1265 | 1259 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1266 | 1260 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1267 | 1261 | show=show) |
|
1268 | 1262 | |
|
1269 | 1263 | nrow, ncol = self.getSubplots() |
|
1270 | 1264 | |
|
1271 | 1265 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1272 | 1266 | |
|
1273 | 1267 | |
|
1274 | 1268 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1275 | 1269 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1276 | 1270 | timerange=None, |
|
1277 | 1271 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1278 | 1272 | server=None, folder=None, username=None, password=None, |
|
1279 | 1273 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1280 | 1274 | |
|
1281 | 1275 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1282 | 1276 | return |
|
1283 | 1277 | |
|
1284 | 1278 | if channelList == None: |
|
1285 | 1279 | channelIndexList = dataOut.channelIndexList |
|
1286 | 1280 | channelList = dataOut.channelList |
|
1287 | 1281 | else: |
|
1288 | 1282 | channelIndexList = [] |
|
1289 | 1283 | for channel in channelList: |
|
1290 | 1284 | if channel not in dataOut.channelList: |
|
1291 | 1285 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1292 | 1286 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1293 | 1287 | |
|
1294 | 1288 | x = dataOut.getTimeRange() |
|
1295 | 1289 | #y = dataOut.getHeiRange() |
|
1296 | 1290 | factor = dataOut.normFactor |
|
1297 | 1291 | noise = dataOut.noise[channelIndexList]/factor |
|
1298 | 1292 | noisedB = 10*numpy.log10(noise) |
|
1299 | 1293 | |
|
1300 | 1294 | thisDatetime = dataOut.datatime |
|
1301 | 1295 | |
|
1302 | 1296 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1303 | 1297 | xlabel = "" |
|
1304 | 1298 | ylabel = "Intensity (dB)" |
|
1305 | 1299 | update_figfile = False |
|
1306 | 1300 | |
|
1307 | 1301 | if not self.isConfig: |
|
1308 | 1302 | |
|
1309 | 1303 | nplots = 1 |
|
1310 | 1304 | |
|
1311 | 1305 | self.setup(id=id, |
|
1312 | 1306 | nplots=nplots, |
|
1313 | 1307 | wintitle=wintitle, |
|
1314 | 1308 | showprofile=showprofile, |
|
1315 | 1309 | show=show) |
|
1316 | 1310 | |
|
1317 | 1311 | if timerange != None: |
|
1318 | 1312 | self.timerange = timerange |
|
1319 | 1313 | |
|
1320 | 1314 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1321 | 1315 | |
|
1322 | 1316 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1323 | 1317 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1324 | 1318 | |
|
1325 | 1319 | self.FTP_WEI = ftp_wei |
|
1326 | 1320 | self.EXP_CODE = exp_code |
|
1327 | 1321 | self.SUB_EXP_CODE = sub_exp_code |
|
1328 | 1322 | self.PLOT_POS = plot_pos |
|
1329 | 1323 | |
|
1330 | 1324 | |
|
1331 | 1325 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1332 | 1326 | self.isConfig = True |
|
1333 | 1327 | self.figfile = figfile |
|
1334 | 1328 | self.xdata = numpy.array([]) |
|
1335 | 1329 | self.ydata = numpy.array([]) |
|
1336 | 1330 | |
|
1337 | 1331 | update_figfile = True |
|
1338 | 1332 | |
|
1339 | 1333 | #open file beacon phase |
|
1340 | 1334 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1341 | 1335 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1342 | 1336 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1343 | 1337 | |
|
1344 | 1338 | self.setWinTitle(title) |
|
1345 | 1339 | |
|
1346 | 1340 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1347 | 1341 | |
|
1348 | 1342 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1349 | 1343 | axes = self.axesList[0] |
|
1350 | 1344 | |
|
1351 | 1345 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1352 | 1346 | |
|
1353 | 1347 | if len(self.ydata)==0: |
|
1354 | 1348 | self.ydata = noisedB.reshape(-1,1) |
|
1355 | 1349 | else: |
|
1356 | 1350 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1357 | 1351 | |
|
1358 | 1352 | |
|
1359 | 1353 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1360 | 1354 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1361 | 1355 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1362 | 1356 | XAxisAsTime=True, grid='both' |
|
1363 | 1357 | ) |
|
1364 | 1358 | |
|
1365 | 1359 | self.draw() |
|
1366 | 1360 | |
|
1367 | 1361 | if dataOut.ltctime >= self.xmax: |
|
1368 | 1362 | self.counter_imagwr = wr_period |
|
1369 | 1363 | self.isConfig = False |
|
1370 | 1364 | update_figfile = True |
|
1371 | 1365 | |
|
1372 | 1366 | self.save(figpath=figpath, |
|
1373 | 1367 | figfile=figfile, |
|
1374 | 1368 | save=save, |
|
1375 | 1369 | ftp=ftp, |
|
1376 | 1370 | wr_period=wr_period, |
|
1377 | 1371 | thisDatetime=thisDatetime, |
|
1378 | 1372 | update_figfile=update_figfile) |
|
1379 | 1373 | |
|
1380 | 1374 | #store data beacon phase |
|
1381 | 1375 | if save: |
|
1382 | 1376 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1383 | 1377 | |
|
1384 | 1378 | class BeaconPhase(Figure): |
|
1385 | 1379 | |
|
1386 | 1380 | __isConfig = None |
|
1387 | 1381 | __nsubplots = None |
|
1388 | 1382 | |
|
1389 | 1383 | PREFIX = 'beacon_phase' |
|
1390 | 1384 | |
|
1391 | 1385 | def __init__(self, **kwargs): |
|
1392 | 1386 | Figure.__init__(self, **kwargs) |
|
1393 | 1387 | self.timerange = 24*60*60 |
|
1394 | 1388 | self.isConfig = False |
|
1395 | 1389 | self.__nsubplots = 1 |
|
1396 | 1390 | self.counter_imagwr = 0 |
|
1397 | 1391 | self.WIDTH = 800 |
|
1398 | 1392 | self.HEIGHT = 400 |
|
1399 | 1393 | self.WIDTHPROF = 120 |
|
1400 | 1394 | self.HEIGHTPROF = 0 |
|
1401 | 1395 | self.xdata = None |
|
1402 | 1396 | self.ydata = None |
|
1403 | 1397 | |
|
1404 | 1398 | self.PLOT_CODE = BEACON_CODE |
|
1405 | 1399 | |
|
1406 | 1400 | self.FTP_WEI = None |
|
1407 | 1401 | self.EXP_CODE = None |
|
1408 | 1402 | self.SUB_EXP_CODE = None |
|
1409 | 1403 | self.PLOT_POS = None |
|
1410 | 1404 | |
|
1411 | 1405 | self.filename_phase = None |
|
1412 | 1406 | |
|
1413 | 1407 | self.figfile = None |
|
1414 | 1408 | |
|
1415 | 1409 | self.xmin = None |
|
1416 | 1410 | self.xmax = None |
|
1417 | 1411 | |
|
1418 | 1412 | def getSubplots(self): |
|
1419 | 1413 | |
|
1420 | 1414 | ncol = 1 |
|
1421 | 1415 | nrow = 1 |
|
1422 | 1416 | |
|
1423 | 1417 | return nrow, ncol |
|
1424 | 1418 | |
|
1425 | 1419 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1426 | 1420 | |
|
1427 | 1421 | self.__showprofile = showprofile |
|
1428 | 1422 | self.nplots = nplots |
|
1429 | 1423 | |
|
1430 | 1424 | ncolspan = 7 |
|
1431 | 1425 | colspan = 6 |
|
1432 | 1426 | self.__nsubplots = 2 |
|
1433 | 1427 | |
|
1434 | 1428 | self.createFigure(id = id, |
|
1435 | 1429 | wintitle = wintitle, |
|
1436 | 1430 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1437 | 1431 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1438 | 1432 | show=show) |
|
1439 | 1433 | |
|
1440 | 1434 | nrow, ncol = self.getSubplots() |
|
1441 | 1435 | |
|
1442 | 1436 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1443 | 1437 | |
|
1444 | 1438 | def save_phase(self, filename_phase): |
|
1445 | 1439 | f = open(filename_phase,'w+') |
|
1446 | 1440 | f.write('\n\n') |
|
1447 | 1441 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1448 | 1442 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1449 | 1443 | f.close() |
|
1450 | 1444 | |
|
1451 | 1445 | def save_data(self, filename_phase, data, data_datetime): |
|
1452 | 1446 | f=open(filename_phase,'a') |
|
1453 | 1447 | timetuple_data = data_datetime.timetuple() |
|
1454 | 1448 | day = str(timetuple_data.tm_mday) |
|
1455 | 1449 | month = str(timetuple_data.tm_mon) |
|
1456 | 1450 | year = str(timetuple_data.tm_year) |
|
1457 | 1451 | hour = str(timetuple_data.tm_hour) |
|
1458 | 1452 | minute = str(timetuple_data.tm_min) |
|
1459 | 1453 | second = str(timetuple_data.tm_sec) |
|
1460 | 1454 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1461 | 1455 | f.close() |
|
1462 | 1456 | |
|
1463 | 1457 | |
|
1464 | 1458 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1465 | 1459 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1466 | 1460 | timerange=None, |
|
1467 | 1461 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1468 | 1462 | server=None, folder=None, username=None, password=None, |
|
1469 | 1463 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1470 | 1464 | |
|
1471 | 1465 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1472 | 1466 | return |
|
1473 | 1467 | |
|
1474 | 1468 | if pairsList == None: |
|
1475 | 1469 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1476 | 1470 | else: |
|
1477 | 1471 | pairsIndexList = [] |
|
1478 | 1472 | for pair in pairsList: |
|
1479 | 1473 | if pair not in dataOut.pairsList: |
|
1480 | 1474 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1481 | 1475 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1482 | 1476 | |
|
1483 | 1477 | if pairsIndexList == []: |
|
1484 | 1478 | return |
|
1485 | 1479 | |
|
1486 | 1480 | # if len(pairsIndexList) > 4: |
|
1487 | 1481 | # pairsIndexList = pairsIndexList[0:4] |
|
1488 | 1482 | |
|
1489 | 1483 | hmin_index = None |
|
1490 | 1484 | hmax_index = None |
|
1491 | 1485 | |
|
1492 | 1486 | if hmin != None and hmax != None: |
|
1493 | 1487 | indexes = numpy.arange(dataOut.nHeights) |
|
1494 | 1488 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1495 | 1489 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1496 | 1490 | |
|
1497 | 1491 | if hmin_list.any(): |
|
1498 | 1492 | hmin_index = hmin_list[0] |
|
1499 | 1493 | |
|
1500 | 1494 | if hmax_list.any(): |
|
1501 | 1495 | hmax_index = hmax_list[-1]+1 |
|
1502 | 1496 | |
|
1503 | 1497 | x = dataOut.getTimeRange() |
|
1504 | 1498 | #y = dataOut.getHeiRange() |
|
1505 | 1499 | |
|
1506 | 1500 | |
|
1507 | 1501 | thisDatetime = dataOut.datatime |
|
1508 | 1502 | |
|
1509 | 1503 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1510 | 1504 | xlabel = "Local Time" |
|
1511 | 1505 | ylabel = "Phase (degrees)" |
|
1512 | 1506 | |
|
1513 | 1507 | update_figfile = False |
|
1514 | 1508 | |
|
1515 | 1509 | nplots = len(pairsIndexList) |
|
1516 | 1510 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1517 | 1511 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1518 | 1512 | for i in range(nplots): |
|
1519 | 1513 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1520 | 1514 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1521 | 1515 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1522 | 1516 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1523 | 1517 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1524 | 1518 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1525 | 1519 | |
|
1526 | 1520 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1527 | 1521 | #print phase[dataOut.beacon_heiIndexList] |
|
1528 | 1522 | |
|
1529 | 1523 | if dataOut.beacon_heiIndexList: |
|
1530 | 1524 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1531 | 1525 | else: |
|
1532 | 1526 | phase_beacon[i] = numpy.average(phase) |
|
1533 | 1527 | |
|
1534 | 1528 | if not self.isConfig: |
|
1535 | 1529 | |
|
1536 | 1530 | nplots = len(pairsIndexList) |
|
1537 | 1531 | |
|
1538 | 1532 | self.setup(id=id, |
|
1539 | 1533 | nplots=nplots, |
|
1540 | 1534 | wintitle=wintitle, |
|
1541 | 1535 | showprofile=showprofile, |
|
1542 | 1536 | show=show) |
|
1543 | 1537 | |
|
1544 | 1538 | if timerange != None: |
|
1545 | 1539 | self.timerange = timerange |
|
1546 | 1540 | |
|
1547 | 1541 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1548 | 1542 | |
|
1549 | 1543 | if ymin == None: ymin = 0 |
|
1550 | 1544 | if ymax == None: ymax = 360 |
|
1551 | 1545 | |
|
1552 | 1546 | self.FTP_WEI = ftp_wei |
|
1553 | 1547 | self.EXP_CODE = exp_code |
|
1554 | 1548 | self.SUB_EXP_CODE = sub_exp_code |
|
1555 | 1549 | self.PLOT_POS = plot_pos |
|
1556 | 1550 | |
|
1557 | 1551 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1558 | 1552 | self.isConfig = True |
|
1559 | 1553 | self.figfile = figfile |
|
1560 | 1554 | self.xdata = numpy.array([]) |
|
1561 | 1555 | self.ydata = numpy.array([]) |
|
1562 | 1556 | |
|
1563 | 1557 | update_figfile = True |
|
1564 | 1558 | |
|
1565 | 1559 | #open file beacon phase |
|
1566 | 1560 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1567 | 1561 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1568 | 1562 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1569 | 1563 | #self.save_phase(self.filename_phase) |
|
1570 | 1564 | |
|
1571 | 1565 | |
|
1572 | 1566 | #store data beacon phase |
|
1573 | 1567 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1574 | 1568 | |
|
1575 | 1569 | self.setWinTitle(title) |
|
1576 | 1570 | |
|
1577 | 1571 | |
|
1578 | 1572 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1579 | 1573 | |
|
1580 | 1574 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1581 | 1575 | |
|
1582 | 1576 | axes = self.axesList[0] |
|
1583 | 1577 | |
|
1584 | 1578 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1585 | 1579 | |
|
1586 | 1580 | if len(self.ydata)==0: |
|
1587 | 1581 | self.ydata = phase_beacon.reshape(-1,1) |
|
1588 | 1582 | else: |
|
1589 | 1583 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1590 | 1584 | |
|
1591 | 1585 | |
|
1592 | 1586 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1593 | 1587 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1594 | 1588 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1595 | 1589 | XAxisAsTime=True, grid='both' |
|
1596 | 1590 | ) |
|
1597 | 1591 | |
|
1598 | 1592 | self.draw() |
|
1599 | 1593 | |
|
1600 | 1594 | if dataOut.ltctime >= self.xmax: |
|
1601 | 1595 | self.counter_imagwr = wr_period |
|
1602 | 1596 | self.isConfig = False |
|
1603 | 1597 | update_figfile = True |
|
1604 | 1598 | |
|
1605 | 1599 | self.save(figpath=figpath, |
|
1606 | 1600 | figfile=figfile, |
|
1607 | 1601 | save=save, |
|
1608 | 1602 | ftp=ftp, |
|
1609 | 1603 | wr_period=wr_period, |
|
1610 | 1604 | thisDatetime=thisDatetime, |
|
1611 | 1605 | update_figfile=update_figfile) |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,1068 +1,1067 | |||
|
1 | 1 | import numpy |
|
2 | 2 | |
|
3 | 3 | from jroproc_base import ProcessingUnit, Operation |
|
4 | 4 | from schainpy.model.data.jrodata import Spectra |
|
5 | 5 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
6 | 6 | |
|
7 | 7 | import matplotlib.pyplot as plt |
|
8 | 8 | |
|
9 | 9 | class SpectraProc(ProcessingUnit): |
|
10 | 10 | |
|
11 | 11 | def __init__(self, **kwargs): |
|
12 | 12 | |
|
13 | 13 | ProcessingUnit.__init__(self, **kwargs) |
|
14 | 14 | |
|
15 | 15 | self.buffer = None |
|
16 | 16 | self.firstdatatime = None |
|
17 | 17 | self.profIndex = 0 |
|
18 | 18 | self.dataOut = Spectra() |
|
19 | 19 | self.id_min = None |
|
20 | 20 | self.id_max = None |
|
21 | 21 | |
|
22 | 22 | def __updateSpecFromVoltage(self): |
|
23 | 23 | |
|
24 | 24 | self.dataOut.timeZone = self.dataIn.timeZone |
|
25 | 25 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
26 | 26 | self.dataOut.errorCount = self.dataIn.errorCount |
|
27 | 27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
28 | 28 | |
|
29 | 29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
30 | 30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
31 | 31 | self.dataOut.channelList = self.dataIn.channelList |
|
32 | 32 | self.dataOut.heightList = self.dataIn.heightList |
|
33 | 33 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
34 | 34 | |
|
35 | 35 | self.dataOut.nBaud = self.dataIn.nBaud |
|
36 | 36 | self.dataOut.nCode = self.dataIn.nCode |
|
37 | 37 | self.dataOut.code = self.dataIn.code |
|
38 | 38 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
39 | 39 | |
|
40 | 40 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
41 | 41 | self.dataOut.utctime = self.firstdatatime |
|
42 | 42 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
43 | 43 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
44 | 44 | self.dataOut.flagShiftFFT = False |
|
45 | 45 | |
|
46 | 46 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
47 | 47 | self.dataOut.nIncohInt = 1 |
|
48 | 48 | |
|
49 | 49 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
50 | 50 | |
|
51 | 51 | self.dataOut.frequency = self.dataIn.frequency |
|
52 | 52 | self.dataOut.realtime = self.dataIn.realtime |
|
53 | 53 | |
|
54 | 54 | self.dataOut.azimuth = self.dataIn.azimuth |
|
55 | 55 | self.dataOut.zenith = self.dataIn.zenith |
|
56 | 56 | |
|
57 | 57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
58 | 58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
59 | 59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
60 | 60 | |
|
61 | 61 | def __getFft(self): |
|
62 | 62 | """ |
|
63 | 63 | Convierte valores de Voltaje a Spectra |
|
64 | 64 | |
|
65 | 65 | Affected: |
|
66 | 66 | self.dataOut.data_spc |
|
67 | 67 | self.dataOut.data_cspc |
|
68 | 68 | self.dataOut.data_dc |
|
69 | 69 | self.dataOut.heightList |
|
70 | 70 | self.profIndex |
|
71 | 71 | self.buffer |
|
72 | 72 | self.dataOut.flagNoData |
|
73 | 73 | """ |
|
74 | 74 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) |
|
75 | 75 | |
|
76 | 76 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
77 | 77 | dc = fft_volt[:,0,:] |
|
78 | 78 | |
|
79 | 79 | #calculo de self-spectra |
|
80 | 80 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
81 | 81 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
82 | 82 | spc = spc.real |
|
83 | 83 | |
|
84 | 84 | blocksize = 0 |
|
85 | 85 | blocksize += dc.size |
|
86 | 86 | blocksize += spc.size |
|
87 | 87 | |
|
88 | 88 | cspc = None |
|
89 | 89 | pairIndex = 0 |
|
90 | 90 | if self.dataOut.pairsList != None: |
|
91 | 91 | #calculo de cross-spectra |
|
92 | 92 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
93 | 93 | for pair in self.dataOut.pairsList: |
|
94 | 94 | if pair[0] not in self.dataOut.channelList: |
|
95 | 95 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
96 | 96 | if pair[1] not in self.dataOut.channelList: |
|
97 | 97 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
98 | 98 | |
|
99 | 99 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
100 | 100 | pairIndex += 1 |
|
101 | 101 | blocksize += cspc.size |
|
102 | 102 | |
|
103 | 103 | self.dataOut.data_spc = spc |
|
104 | 104 | self.dataOut.data_cspc = cspc |
|
105 | 105 | self.dataOut.data_dc = dc |
|
106 | 106 | self.dataOut.blockSize = blocksize |
|
107 | 107 | self.dataOut.flagShiftFFT = True |
|
108 | 108 | |
|
109 | 109 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): |
|
110 | 110 | |
|
111 | 111 | self.dataOut.flagNoData = True |
|
112 | 112 | |
|
113 | 113 | if self.dataIn.type == "Spectra": |
|
114 | 114 | self.dataOut.copy(self.dataIn) |
|
115 | 115 | # self.__selectPairs(pairsList) |
|
116 | 116 | return True |
|
117 | 117 | |
|
118 | 118 | if self.dataIn.type == "Voltage": |
|
119 | 119 | |
|
120 | 120 | if nFFTPoints == None: |
|
121 | 121 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
122 | 122 | |
|
123 | 123 | if nProfiles == None: |
|
124 | 124 | nProfiles = nFFTPoints |
|
125 | 125 | |
|
126 | 126 | if ippFactor == None: |
|
127 | 127 | ippFactor = 1 |
|
128 | 128 | |
|
129 | 129 | self.dataOut.ippFactor = ippFactor |
|
130 | 130 | |
|
131 | 131 | self.dataOut.nFFTPoints = nFFTPoints |
|
132 | 132 | self.dataOut.pairsList = pairsList |
|
133 | 133 | |
|
134 | 134 | if self.buffer is None: |
|
135 | 135 | self.buffer = numpy.zeros( (self.dataIn.nChannels, |
|
136 | 136 | nProfiles, |
|
137 | 137 | self.dataIn.nHeights), |
|
138 | 138 | dtype='complex') |
|
139 | 139 | |
|
140 | 140 | if self.dataIn.flagDataAsBlock: |
|
141 | 141 | #data dimension: [nChannels, nProfiles, nSamples] |
|
142 | 142 | |
|
143 | 143 | nVoltProfiles = self.dataIn.data.shape[1] |
|
144 | 144 | # nVoltProfiles = self.dataIn.nProfiles |
|
145 | 145 | |
|
146 | 146 | if nVoltProfiles == nProfiles: |
|
147 | 147 | self.buffer = self.dataIn.data.copy() |
|
148 | 148 | self.profIndex = nVoltProfiles |
|
149 | 149 | |
|
150 | 150 | elif nVoltProfiles < nProfiles: |
|
151 | 151 | |
|
152 | 152 | if self.profIndex == 0: |
|
153 | 153 | self.id_min = 0 |
|
154 | 154 | self.id_max = nVoltProfiles |
|
155 | 155 | |
|
156 | 156 | self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data |
|
157 | 157 | self.profIndex += nVoltProfiles |
|
158 | 158 | self.id_min += nVoltProfiles |
|
159 | 159 | self.id_max += nVoltProfiles |
|
160 | 160 | else: |
|
161 | 161 | raise ValueError, "The type object %s has %d profiles, it should just has %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) |
|
162 | 162 | self.dataOut.flagNoData = True |
|
163 | 163 | return 0 |
|
164 | 164 | else: |
|
165 | print 'DATA shape', self.dataIn.data.shape | |
|
166 | sadsdf | |
|
165 | ||
|
167 | 166 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
168 | 167 | self.profIndex += 1 |
|
169 | 168 | |
|
170 | 169 | if self.firstdatatime == None: |
|
171 | 170 | self.firstdatatime = self.dataIn.utctime |
|
172 | 171 | |
|
173 | 172 | if self.profIndex == nProfiles: |
|
174 | 173 | self.__updateSpecFromVoltage() |
|
175 | 174 | self.__getFft() |
|
176 | 175 | |
|
177 | 176 | self.dataOut.flagNoData = False |
|
178 | 177 | self.firstdatatime = None |
|
179 | 178 | self.profIndex = 0 |
|
180 | 179 | |
|
181 | 180 | return True |
|
182 | 181 | |
|
183 | 182 | raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type) |
|
184 | 183 | |
|
185 | 184 | def __selectPairs(self, pairsList): |
|
186 | 185 | |
|
187 | 186 | if channelList == None: |
|
188 | 187 | return |
|
189 | 188 | |
|
190 | 189 | pairsIndexListSelected = [] |
|
191 | 190 | |
|
192 | 191 | for thisPair in pairsList: |
|
193 | 192 | |
|
194 | 193 | if thisPair not in self.dataOut.pairsList: |
|
195 | 194 | continue |
|
196 | 195 | |
|
197 | 196 | pairIndex = self.dataOut.pairsList.index(thisPair) |
|
198 | 197 | |
|
199 | 198 | pairsIndexListSelected.append(pairIndex) |
|
200 | 199 | |
|
201 | 200 | if not pairsIndexListSelected: |
|
202 | 201 | self.dataOut.data_cspc = None |
|
203 | 202 | self.dataOut.pairsList = [] |
|
204 | 203 | return |
|
205 | 204 | |
|
206 | 205 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
207 | 206 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
208 | 207 | |
|
209 | 208 | return |
|
210 | 209 | |
|
211 | 210 | def __selectPairsByChannel(self, channelList=None): |
|
212 | 211 | |
|
213 | 212 | if channelList == None: |
|
214 | 213 | return |
|
215 | 214 | |
|
216 | 215 | pairsIndexListSelected = [] |
|
217 | 216 | for pairIndex in self.dataOut.pairsIndexList: |
|
218 | 217 | #First pair |
|
219 | 218 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
220 | 219 | continue |
|
221 | 220 | #Second pair |
|
222 | 221 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
223 | 222 | continue |
|
224 | 223 | |
|
225 | 224 | pairsIndexListSelected.append(pairIndex) |
|
226 | 225 | |
|
227 | 226 | if not pairsIndexListSelected: |
|
228 | 227 | self.dataOut.data_cspc = None |
|
229 | 228 | self.dataOut.pairsList = [] |
|
230 | 229 | return |
|
231 | 230 | |
|
232 | 231 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
233 | 232 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
234 | 233 | |
|
235 | 234 | return |
|
236 | 235 | |
|
237 | 236 | def selectChannels(self, channelList): |
|
238 | 237 | |
|
239 | 238 | channelIndexList = [] |
|
240 | 239 | |
|
241 | 240 | for channel in channelList: |
|
242 | 241 | if channel not in self.dataOut.channelList: |
|
243 | 242 | raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)) |
|
244 | 243 | |
|
245 | 244 | index = self.dataOut.channelList.index(channel) |
|
246 | 245 | channelIndexList.append(index) |
|
247 | 246 | |
|
248 | 247 | self.selectChannelsByIndex(channelIndexList) |
|
249 | 248 | |
|
250 | 249 | def selectChannelsByIndex(self, channelIndexList): |
|
251 | 250 | """ |
|
252 | 251 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
253 | 252 | |
|
254 | 253 | Input: |
|
255 | 254 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
256 | 255 | |
|
257 | 256 | Affected: |
|
258 | 257 | self.dataOut.data_spc |
|
259 | 258 | self.dataOut.channelIndexList |
|
260 | 259 | self.dataOut.nChannels |
|
261 | 260 | |
|
262 | 261 | Return: |
|
263 | 262 | None |
|
264 | 263 | """ |
|
265 | 264 | |
|
266 | 265 | for channelIndex in channelIndexList: |
|
267 | 266 | if channelIndex not in self.dataOut.channelIndexList: |
|
268 | 267 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList) |
|
269 | 268 | |
|
270 | 269 | # nChannels = len(channelIndexList) |
|
271 | 270 | |
|
272 | 271 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
273 | 272 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
274 | 273 | |
|
275 | 274 | self.dataOut.data_spc = data_spc |
|
276 | 275 | self.dataOut.data_dc = data_dc |
|
277 | 276 | |
|
278 | 277 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
279 | 278 | # self.dataOut.nChannels = nChannels |
|
280 | 279 | |
|
281 | 280 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
282 | 281 | |
|
283 | 282 | return 1 |
|
284 | 283 | |
|
285 | 284 | |
|
286 | 285 | def selectFFTs(self, minFFT, maxFFT ): |
|
287 | 286 | """ |
|
288 | 287 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
289 | 288 | minFFT<= FFT <= maxFFT |
|
290 | 289 | """ |
|
291 | 290 | |
|
292 | 291 | if (minFFT > maxFFT): |
|
293 | 292 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT) |
|
294 | 293 | |
|
295 | 294 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
296 | 295 | minFFT = self.dataOut.getFreqRange()[0] |
|
297 | 296 | |
|
298 | 297 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
299 | 298 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
300 | 299 | |
|
301 | 300 | minIndex = 0 |
|
302 | 301 | maxIndex = 0 |
|
303 | 302 | FFTs = self.dataOut.getFreqRange() |
|
304 | 303 | |
|
305 | 304 | inda = numpy.where(FFTs >= minFFT) |
|
306 | 305 | indb = numpy.where(FFTs <= maxFFT) |
|
307 | 306 | |
|
308 | 307 | try: |
|
309 | 308 | minIndex = inda[0][0] |
|
310 | 309 | except: |
|
311 | 310 | minIndex = 0 |
|
312 | 311 | |
|
313 | 312 | try: |
|
314 | 313 | maxIndex = indb[0][-1] |
|
315 | 314 | except: |
|
316 | 315 | maxIndex = len(FFTs) |
|
317 | 316 | |
|
318 | 317 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
319 | 318 | |
|
320 | 319 | return 1 |
|
321 | 320 | |
|
322 | 321 | |
|
323 | 322 | |
|
324 | 323 | def selectHeights(self, minHei, maxHei): |
|
325 | 324 | """ |
|
326 | 325 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
327 | 326 | minHei <= height <= maxHei |
|
328 | 327 | |
|
329 | 328 | Input: |
|
330 | 329 | minHei : valor minimo de altura a considerar |
|
331 | 330 | maxHei : valor maximo de altura a considerar |
|
332 | 331 | |
|
333 | 332 | Affected: |
|
334 | 333 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
335 | 334 | |
|
336 | 335 | Return: |
|
337 | 336 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
338 | 337 | """ |
|
339 | 338 | |
|
340 | 339 | |
|
341 | 340 | if (minHei > maxHei): |
|
342 | 341 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei) |
|
343 | 342 | |
|
344 | 343 | if (minHei < self.dataOut.heightList[0]): |
|
345 | 344 | minHei = self.dataOut.heightList[0] |
|
346 | 345 | |
|
347 | 346 | if (maxHei > self.dataOut.heightList[-1]): |
|
348 | 347 | maxHei = self.dataOut.heightList[-1] |
|
349 | 348 | |
|
350 | 349 | minIndex = 0 |
|
351 | 350 | maxIndex = 0 |
|
352 | 351 | heights = self.dataOut.heightList |
|
353 | 352 | |
|
354 | 353 | inda = numpy.where(heights >= minHei) |
|
355 | 354 | indb = numpy.where(heights <= maxHei) |
|
356 | 355 | |
|
357 | 356 | try: |
|
358 | 357 | minIndex = inda[0][0] |
|
359 | 358 | except: |
|
360 | 359 | minIndex = 0 |
|
361 | 360 | |
|
362 | 361 | try: |
|
363 | 362 | maxIndex = indb[0][-1] |
|
364 | 363 | except: |
|
365 | 364 | maxIndex = len(heights) |
|
366 | 365 | |
|
367 | 366 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
368 | 367 | |
|
369 | 368 | |
|
370 | 369 | return 1 |
|
371 | 370 | |
|
372 | 371 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
373 | 372 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
374 | 373 | |
|
375 | 374 | if hei_ref != None: |
|
376 | 375 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
377 | 376 | |
|
378 | 377 | minIndex = min(newheis[0]) |
|
379 | 378 | maxIndex = max(newheis[0]) |
|
380 | 379 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
381 | 380 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
382 | 381 | |
|
383 | 382 | # determina indices |
|
384 | 383 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
385 | 384 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
386 | 385 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
387 | 386 | beacon_heiIndexList = [] |
|
388 | 387 | for val in avg_dB.tolist(): |
|
389 | 388 | if val >= beacon_dB[0]: |
|
390 | 389 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
391 | 390 | |
|
392 | 391 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
393 | 392 | data_cspc = None |
|
394 | 393 | if self.dataOut.data_cspc is not None: |
|
395 | 394 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
396 | 395 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
397 | 396 | |
|
398 | 397 | data_dc = None |
|
399 | 398 | if self.dataOut.data_dc is not None: |
|
400 | 399 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
401 | 400 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
402 | 401 | |
|
403 | 402 | self.dataOut.data_spc = data_spc |
|
404 | 403 | self.dataOut.data_cspc = data_cspc |
|
405 | 404 | self.dataOut.data_dc = data_dc |
|
406 | 405 | self.dataOut.heightList = heightList |
|
407 | 406 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
408 | 407 | |
|
409 | 408 | return 1 |
|
410 | 409 | |
|
411 | 410 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
412 | 411 | """ |
|
413 | 412 | |
|
414 | 413 | """ |
|
415 | 414 | |
|
416 | 415 | if (minIndex < 0) or (minIndex > maxIndex): |
|
417 | 416 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
418 | 417 | |
|
419 | 418 | if (maxIndex >= self.dataOut.nProfiles): |
|
420 | 419 | maxIndex = self.dataOut.nProfiles-1 |
|
421 | 420 | |
|
422 | 421 | #Spectra |
|
423 | 422 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
424 | 423 | |
|
425 | 424 | data_cspc = None |
|
426 | 425 | if self.dataOut.data_cspc is not None: |
|
427 | 426 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
428 | 427 | |
|
429 | 428 | data_dc = None |
|
430 | 429 | if self.dataOut.data_dc is not None: |
|
431 | 430 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
432 | 431 | |
|
433 | 432 | self.dataOut.data_spc = data_spc |
|
434 | 433 | self.dataOut.data_cspc = data_cspc |
|
435 | 434 | self.dataOut.data_dc = data_dc |
|
436 | 435 | |
|
437 | 436 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
438 | 437 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
439 | 438 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
440 | 439 | |
|
441 | 440 | #self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
442 | 441 | |
|
443 | 442 | return 1 |
|
444 | 443 | |
|
445 | 444 | |
|
446 | 445 | |
|
447 | 446 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
448 | 447 | """ |
|
449 | 448 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
450 | 449 | minIndex <= index <= maxIndex |
|
451 | 450 | |
|
452 | 451 | Input: |
|
453 | 452 | minIndex : valor de indice minimo de altura a considerar |
|
454 | 453 | maxIndex : valor de indice maximo de altura a considerar |
|
455 | 454 | |
|
456 | 455 | Affected: |
|
457 | 456 | self.dataOut.data_spc |
|
458 | 457 | self.dataOut.data_cspc |
|
459 | 458 | self.dataOut.data_dc |
|
460 | 459 | self.dataOut.heightList |
|
461 | 460 | |
|
462 | 461 | Return: |
|
463 | 462 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
464 | 463 | """ |
|
465 | 464 | |
|
466 | 465 | if (minIndex < 0) or (minIndex > maxIndex): |
|
467 | 466 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
468 | 467 | |
|
469 | 468 | if (maxIndex >= self.dataOut.nHeights): |
|
470 | 469 | maxIndex = self.dataOut.nHeights-1 |
|
471 | 470 | |
|
472 | 471 | #Spectra |
|
473 | 472 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
474 | 473 | |
|
475 | 474 | data_cspc = None |
|
476 | 475 | if self.dataOut.data_cspc is not None: |
|
477 | 476 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
478 | 477 | |
|
479 | 478 | data_dc = None |
|
480 | 479 | if self.dataOut.data_dc is not None: |
|
481 | 480 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
482 | 481 | |
|
483 | 482 | self.dataOut.data_spc = data_spc |
|
484 | 483 | self.dataOut.data_cspc = data_cspc |
|
485 | 484 | self.dataOut.data_dc = data_dc |
|
486 | 485 | |
|
487 | 486 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
488 | 487 | |
|
489 | 488 | return 1 |
|
490 | 489 | |
|
491 | 490 | |
|
492 | 491 | def removeDC(self, mode = 2): |
|
493 | 492 | jspectra = self.dataOut.data_spc |
|
494 | 493 | jcspectra = self.dataOut.data_cspc |
|
495 | 494 | |
|
496 | 495 | |
|
497 | 496 | num_chan = jspectra.shape[0] |
|
498 | 497 | num_hei = jspectra.shape[2] |
|
499 | 498 | |
|
500 | 499 | if jcspectra is not None: |
|
501 | 500 | jcspectraExist = True |
|
502 | 501 | num_pairs = jcspectra.shape[0] |
|
503 | 502 | else: jcspectraExist = False |
|
504 | 503 | |
|
505 | 504 | freq_dc = jspectra.shape[1]/2 |
|
506 | 505 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
507 | 506 | |
|
508 | 507 | if ind_vel[0]<0: |
|
509 | 508 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
510 | 509 | |
|
511 | 510 | if mode == 1: |
|
512 | 511 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
513 | 512 | |
|
514 | 513 | if jcspectraExist: |
|
515 | 514 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
516 | 515 | |
|
517 | 516 | if mode == 2: |
|
518 | 517 | |
|
519 | 518 | vel = numpy.array([-2,-1,1,2]) |
|
520 | 519 | xx = numpy.zeros([4,4]) |
|
521 | 520 | |
|
522 | 521 | for fil in range(4): |
|
523 | 522 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
524 | 523 | |
|
525 | 524 | xx_inv = numpy.linalg.inv(xx) |
|
526 | 525 | xx_aux = xx_inv[0,:] |
|
527 | 526 | |
|
528 | 527 | for ich in range(num_chan): |
|
529 | 528 | yy = jspectra[ich,ind_vel,:] |
|
530 | 529 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
531 | 530 | |
|
532 | 531 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
533 | 532 | cjunkid = sum(junkid) |
|
534 | 533 | |
|
535 | 534 | if cjunkid.any(): |
|
536 | 535 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
537 | 536 | |
|
538 | 537 | if jcspectraExist: |
|
539 | 538 | for ip in range(num_pairs): |
|
540 | 539 | yy = jcspectra[ip,ind_vel,:] |
|
541 | 540 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
542 | 541 | |
|
543 | 542 | |
|
544 | 543 | self.dataOut.data_spc = jspectra |
|
545 | 544 | self.dataOut.data_cspc = jcspectra |
|
546 | 545 | |
|
547 | 546 | return 1 |
|
548 | 547 | |
|
549 | 548 | def removeInterference2(self): |
|
550 | 549 | |
|
551 | 550 | cspc = self.dataOut.data_cspc |
|
552 | 551 | spc = self.dataOut.data_spc |
|
553 | 552 | print numpy.shape(spc) |
|
554 | 553 | Heights = numpy.arange(cspc.shape[2]) |
|
555 | 554 | realCspc = numpy.abs(cspc) |
|
556 | 555 | |
|
557 | 556 | for i in range(cspc.shape[0]): |
|
558 | 557 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
559 | 558 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
560 | 559 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
561 | 560 | #print numpy.shape(realCspc) |
|
562 | 561 | #print '',SelectedHeights, '', numpy.shape(realCspc[i,:,SelectedHeights]) |
|
563 | 562 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
564 | 563 | print SelectedHeights |
|
565 | 564 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
566 | 565 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
567 | 566 | |
|
568 | 567 | |
|
569 | 568 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
570 | 569 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
571 | 570 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
572 | 571 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
573 | 572 | |
|
574 | 573 | print '########################################################################################' |
|
575 | 574 | print 'Len interference sum',len(InterferenceSum) |
|
576 | 575 | print 'InterferenceThresholdMin', InterferenceThresholdMin, 'InterferenceThresholdMax', InterferenceThresholdMax |
|
577 | 576 | print 'InterferenceRange',InterferenceRange |
|
578 | 577 | print '########################################################################################' |
|
579 | 578 | |
|
580 | 579 | ''' Ploteo ''' |
|
581 | 580 | |
|
582 | 581 | #for i in range(3): |
|
583 | 582 | #print 'FASE', numpy.shape(phase), y[25] |
|
584 | 583 | #print numpy.shape(coherence) |
|
585 | 584 | #fig = plt.figure(10+ int(numpy.random.rand()*100)) |
|
586 | 585 | #plt.plot( x[0:256],coherence[:,25] ) |
|
587 | 586 | #cohAv = numpy.average(coherence[i],1) |
|
588 | 587 | #Pendiente = FrecRange * PhaseSlope[i] |
|
589 | 588 | #plt.plot( InterferenceSum) |
|
590 | 589 | #plt.plot( numpy.sort(InterferenceSum)) |
|
591 | 590 | #plt.plot( LinePower ) |
|
592 | 591 | #plt.plot( xFrec,phase[i]) |
|
593 | 592 | |
|
594 | 593 | #CSPCmean = numpy.mean(numpy.abs(CSPCSamples),0) |
|
595 | 594 | #plt.plot(xFrec, FitGauss01) |
|
596 | 595 | #plt.plot(xFrec, CSPCmean) |
|
597 | 596 | #plt.plot(xFrec, numpy.abs(CSPCSamples[0])) |
|
598 | 597 | #plt.plot(xFrec, FitGauss) |
|
599 | 598 | #plt.plot(xFrec, yMean) |
|
600 | 599 | #plt.plot(xFrec, numpy.abs(coherence[0])) |
|
601 | 600 | |
|
602 | 601 | #plt.axis([-12, 12, 15, 50]) |
|
603 | 602 | #plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
604 | 603 | |
|
605 | 604 | |
|
606 | 605 | #fig.savefig('/home/erick/Documents/Pics/nom{}.png'.format(int(numpy.random.rand()*100))) |
|
607 | 606 | |
|
608 | 607 | #plt.show() |
|
609 | 608 | #self.indice=self.indice+1 |
|
610 | 609 | #raise |
|
611 | 610 | |
|
612 | 611 | |
|
613 | 612 | self.dataOut.data_cspc = cspc |
|
614 | 613 | |
|
615 | 614 | # for i in range(spc.shape[0]): |
|
616 | 615 | # LinePower= numpy.sum(spc[i], axis=0) |
|
617 | 616 | # Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
618 | 617 | # SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
619 | 618 | # #print numpy.shape(realCspc) |
|
620 | 619 | # #print '',SelectedHeights, '', numpy.shape(realCspc[i,:,SelectedHeights]) |
|
621 | 620 | # InterferenceSum = numpy.sum( spc[i,:,SelectedHeights], axis=0 ) |
|
622 | 621 | # InterferenceThreshold = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
623 | 622 | # InterferenceRange = numpy.where( InterferenceSum > InterferenceThreshold ) |
|
624 | 623 | # if len(InterferenceRange)<int(spc.shape[1]*0.03): |
|
625 | 624 | # spc[i,InterferenceRange,:] = numpy.NaN |
|
626 | 625 | |
|
627 | 626 | #self.dataOut.data_spc = spc |
|
628 | 627 | |
|
629 | 628 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
630 | 629 | |
|
631 | 630 | jspectra = self.dataOut.data_spc |
|
632 | 631 | jcspectra = self.dataOut.data_cspc |
|
633 | 632 | jnoise = self.dataOut.getNoise() |
|
634 | 633 | num_incoh = self.dataOut.nIncohInt |
|
635 | 634 | |
|
636 | 635 | num_channel = jspectra.shape[0] |
|
637 | 636 | num_prof = jspectra.shape[1] |
|
638 | 637 | num_hei = jspectra.shape[2] |
|
639 | 638 | |
|
640 | 639 | #hei_interf |
|
641 | 640 | if hei_interf is None: |
|
642 | 641 | count_hei = num_hei/2 #Como es entero no importa |
|
643 | 642 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
644 | 643 | hei_interf = numpy.asarray(hei_interf)[0] |
|
645 | 644 | #nhei_interf |
|
646 | 645 | if (nhei_interf == None): |
|
647 | 646 | nhei_interf = 5 |
|
648 | 647 | if (nhei_interf < 1): |
|
649 | 648 | nhei_interf = 1 |
|
650 | 649 | if (nhei_interf > count_hei): |
|
651 | 650 | nhei_interf = count_hei |
|
652 | 651 | if (offhei_interf == None): |
|
653 | 652 | offhei_interf = 0 |
|
654 | 653 | |
|
655 | 654 | ind_hei = range(num_hei) |
|
656 | 655 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
657 | 656 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
658 | 657 | mask_prof = numpy.asarray(range(num_prof)) |
|
659 | 658 | num_mask_prof = mask_prof.size |
|
660 | 659 | comp_mask_prof = [0, num_prof/2] |
|
661 | 660 | |
|
662 | 661 | |
|
663 | 662 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
664 | 663 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
665 | 664 | jnoise = numpy.nan |
|
666 | 665 | noise_exist = jnoise[0] < numpy.Inf |
|
667 | 666 | |
|
668 | 667 | #Subrutina de Remocion de la Interferencia |
|
669 | 668 | for ich in range(num_channel): |
|
670 | 669 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
671 | 670 | power = jspectra[ich,mask_prof,:] |
|
672 | 671 | power = power[:,hei_interf] |
|
673 | 672 | power = power.sum(axis = 0) |
|
674 | 673 | psort = power.ravel().argsort() |
|
675 | 674 | |
|
676 | 675 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
677 | 676 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
678 | 677 | |
|
679 | 678 | if noise_exist: |
|
680 | 679 | # tmp_noise = jnoise[ich] / num_prof |
|
681 | 680 | tmp_noise = jnoise[ich] |
|
682 | 681 | junkspc_interf = junkspc_interf - tmp_noise |
|
683 | 682 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
684 | 683 | |
|
685 | 684 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
686 | 685 | jspc_interf = jspc_interf.transpose() |
|
687 | 686 | #Calculando el espectro de interferencia promedio |
|
688 | 687 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) |
|
689 | 688 | noiseid = noiseid[0] |
|
690 | 689 | cnoiseid = noiseid.size |
|
691 | 690 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) |
|
692 | 691 | interfid = interfid[0] |
|
693 | 692 | cinterfid = interfid.size |
|
694 | 693 | |
|
695 | 694 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
696 | 695 | |
|
697 | 696 | #Expandiendo los perfiles a limpiar |
|
698 | 697 | if (cinterfid > 0): |
|
699 | 698 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
700 | 699 | new_interfid = numpy.asarray(new_interfid) |
|
701 | 700 | new_interfid = {x for x in new_interfid} |
|
702 | 701 | new_interfid = numpy.array(list(new_interfid)) |
|
703 | 702 | new_cinterfid = new_interfid.size |
|
704 | 703 | else: new_cinterfid = 0 |
|
705 | 704 | |
|
706 | 705 | for ip in range(new_cinterfid): |
|
707 | 706 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
708 | 707 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
709 | 708 | |
|
710 | 709 | |
|
711 | 710 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
712 | 711 | |
|
713 | 712 | #Removiendo la interferencia del punto de mayor interferencia |
|
714 | 713 | ListAux = jspc_interf[mask_prof].tolist() |
|
715 | 714 | maxid = ListAux.index(max(ListAux)) |
|
716 | 715 | |
|
717 | 716 | |
|
718 | 717 | if cinterfid > 0: |
|
719 | 718 | for ip in range(cinterfid*(interf == 2) - 1): |
|
720 | 719 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() |
|
721 | 720 | cind = len(ind) |
|
722 | 721 | |
|
723 | 722 | if (cind > 0): |
|
724 | 723 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) |
|
725 | 724 | |
|
726 | 725 | ind = numpy.array([-2,-1,1,2]) |
|
727 | 726 | xx = numpy.zeros([4,4]) |
|
728 | 727 | |
|
729 | 728 | for id1 in range(4): |
|
730 | 729 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
731 | 730 | |
|
732 | 731 | xx_inv = numpy.linalg.inv(xx) |
|
733 | 732 | xx = xx_inv[:,0] |
|
734 | 733 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
735 | 734 | yy = jspectra[ich,mask_prof[ind],:] |
|
736 | 735 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
737 | 736 | |
|
738 | 737 | |
|
739 | 738 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() |
|
740 | 739 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) |
|
741 | 740 | |
|
742 | 741 | #Remocion de Interferencia en el Cross Spectra |
|
743 | 742 | if jcspectra is None: return jspectra, jcspectra |
|
744 | 743 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
745 | 744 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
746 | 745 | |
|
747 | 746 | for ip in range(num_pairs): |
|
748 | 747 | |
|
749 | 748 | #------------------------------------------- |
|
750 | 749 | |
|
751 | 750 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
752 | 751 | cspower = cspower[:,hei_interf] |
|
753 | 752 | cspower = cspower.sum(axis = 0) |
|
754 | 753 | |
|
755 | 754 | cspsort = cspower.ravel().argsort() |
|
756 | 755 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
757 | 756 | junkcspc_interf = junkcspc_interf.transpose() |
|
758 | 757 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
759 | 758 | |
|
760 | 759 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
761 | 760 | |
|
762 | 761 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
763 | 762 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
764 | 763 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
765 | 764 | |
|
766 | 765 | for iprof in range(num_prof): |
|
767 | 766 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
768 | 767 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
769 | 768 | |
|
770 | 769 | #Removiendo la Interferencia |
|
771 | 770 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
772 | 771 | |
|
773 | 772 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
774 | 773 | maxid = ListAux.index(max(ListAux)) |
|
775 | 774 | |
|
776 | 775 | ind = numpy.array([-2,-1,1,2]) |
|
777 | 776 | xx = numpy.zeros([4,4]) |
|
778 | 777 | |
|
779 | 778 | for id1 in range(4): |
|
780 | 779 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
781 | 780 | |
|
782 | 781 | xx_inv = numpy.linalg.inv(xx) |
|
783 | 782 | xx = xx_inv[:,0] |
|
784 | 783 | |
|
785 | 784 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
786 | 785 | yy = jcspectra[ip,mask_prof[ind],:] |
|
787 | 786 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
788 | 787 | |
|
789 | 788 | #Guardar Resultados |
|
790 | 789 | self.dataOut.data_spc = jspectra |
|
791 | 790 | self.dataOut.data_cspc = jcspectra |
|
792 | 791 | |
|
793 | 792 | return 1 |
|
794 | 793 | |
|
795 | 794 | def setRadarFrequency(self, frequency=None): |
|
796 | 795 | |
|
797 | 796 | if frequency != None: |
|
798 | 797 | self.dataOut.frequency = frequency |
|
799 | 798 | |
|
800 | 799 | return 1 |
|
801 | 800 | |
|
802 | 801 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
803 | 802 | #validacion de rango |
|
804 | 803 | if minHei == None: |
|
805 | 804 | minHei = self.dataOut.heightList[0] |
|
806 | 805 | |
|
807 | 806 | if maxHei == None: |
|
808 | 807 | maxHei = self.dataOut.heightList[-1] |
|
809 | 808 | |
|
810 | 809 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
811 | 810 | print 'minHei: %.2f is out of the heights range'%(minHei) |
|
812 | 811 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) |
|
813 | 812 | minHei = self.dataOut.heightList[0] |
|
814 | 813 | |
|
815 | 814 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
816 | 815 | print 'maxHei: %.2f is out of the heights range'%(maxHei) |
|
817 | 816 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) |
|
818 | 817 | maxHei = self.dataOut.heightList[-1] |
|
819 | 818 | |
|
820 | 819 | # validacion de velocidades |
|
821 | 820 | velrange = self.dataOut.getVelRange(1) |
|
822 | 821 | |
|
823 | 822 | if minVel == None: |
|
824 | 823 | minVel = velrange[0] |
|
825 | 824 | |
|
826 | 825 | if maxVel == None: |
|
827 | 826 | maxVel = velrange[-1] |
|
828 | 827 | |
|
829 | 828 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
830 | 829 | print 'minVel: %.2f is out of the velocity range'%(minVel) |
|
831 | 830 | print 'minVel is setting to %.2f'%(velrange[0]) |
|
832 | 831 | minVel = velrange[0] |
|
833 | 832 | |
|
834 | 833 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
835 | 834 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) |
|
836 | 835 | print 'maxVel is setting to %.2f'%(velrange[-1]) |
|
837 | 836 | maxVel = velrange[-1] |
|
838 | 837 | |
|
839 | 838 | # seleccion de indices para rango |
|
840 | 839 | minIndex = 0 |
|
841 | 840 | maxIndex = 0 |
|
842 | 841 | heights = self.dataOut.heightList |
|
843 | 842 | |
|
844 | 843 | inda = numpy.where(heights >= minHei) |
|
845 | 844 | indb = numpy.where(heights <= maxHei) |
|
846 | 845 | |
|
847 | 846 | try: |
|
848 | 847 | minIndex = inda[0][0] |
|
849 | 848 | except: |
|
850 | 849 | minIndex = 0 |
|
851 | 850 | |
|
852 | 851 | try: |
|
853 | 852 | maxIndex = indb[0][-1] |
|
854 | 853 | except: |
|
855 | 854 | maxIndex = len(heights) |
|
856 | 855 | |
|
857 | 856 | if (minIndex < 0) or (minIndex > maxIndex): |
|
858 | 857 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
859 | 858 | |
|
860 | 859 | if (maxIndex >= self.dataOut.nHeights): |
|
861 | 860 | maxIndex = self.dataOut.nHeights-1 |
|
862 | 861 | |
|
863 | 862 | # seleccion de indices para velocidades |
|
864 | 863 | indminvel = numpy.where(velrange >= minVel) |
|
865 | 864 | indmaxvel = numpy.where(velrange <= maxVel) |
|
866 | 865 | try: |
|
867 | 866 | minIndexVel = indminvel[0][0] |
|
868 | 867 | except: |
|
869 | 868 | minIndexVel = 0 |
|
870 | 869 | |
|
871 | 870 | try: |
|
872 | 871 | maxIndexVel = indmaxvel[0][-1] |
|
873 | 872 | except: |
|
874 | 873 | maxIndexVel = len(velrange) |
|
875 | 874 | |
|
876 | 875 | #seleccion del espectro |
|
877 | 876 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
878 | 877 | #estimacion de ruido |
|
879 | 878 | noise = numpy.zeros(self.dataOut.nChannels) |
|
880 | 879 | |
|
881 | 880 | for channel in range(self.dataOut.nChannels): |
|
882 | 881 | daux = data_spc[channel,:,:] |
|
883 | 882 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
884 | 883 | |
|
885 | 884 | self.dataOut.noise_estimation = noise.copy() |
|
886 | 885 | |
|
887 | 886 | return 1 |
|
888 | 887 | |
|
889 | 888 | class IncohInt(Operation): |
|
890 | 889 | |
|
891 | 890 | |
|
892 | 891 | __profIndex = 0 |
|
893 | 892 | __withOverapping = False |
|
894 | 893 | |
|
895 | 894 | __byTime = False |
|
896 | 895 | __initime = None |
|
897 | 896 | __lastdatatime = None |
|
898 | 897 | __integrationtime = None |
|
899 | 898 | |
|
900 | 899 | __buffer_spc = None |
|
901 | 900 | __buffer_cspc = None |
|
902 | 901 | __buffer_dc = None |
|
903 | 902 | |
|
904 | 903 | __dataReady = False |
|
905 | 904 | |
|
906 | 905 | __timeInterval = None |
|
907 | 906 | |
|
908 | 907 | n = None |
|
909 | 908 | |
|
910 | 909 | |
|
911 | 910 | |
|
912 | 911 | def __init__(self, **kwargs): |
|
913 | 912 | |
|
914 | 913 | Operation.__init__(self, **kwargs) |
|
915 | 914 | # self.isConfig = False |
|
916 | 915 | |
|
917 | 916 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
918 | 917 | """ |
|
919 | 918 | Set the parameters of the integration class. |
|
920 | 919 | |
|
921 | 920 | Inputs: |
|
922 | 921 | |
|
923 | 922 | n : Number of coherent integrations |
|
924 | 923 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
925 | 924 | overlapping : |
|
926 | 925 | |
|
927 | 926 | """ |
|
928 | 927 | |
|
929 | 928 | self.__initime = None |
|
930 | 929 | self.__lastdatatime = 0 |
|
931 | 930 | |
|
932 | 931 | self.__buffer_spc = 0 |
|
933 | 932 | self.__buffer_cspc = 0 |
|
934 | 933 | self.__buffer_dc = 0 |
|
935 | 934 | |
|
936 | 935 | self.__profIndex = 0 |
|
937 | 936 | self.__dataReady = False |
|
938 | 937 | self.__byTime = False |
|
939 | 938 | |
|
940 | 939 | if n is None and timeInterval is None: |
|
941 | 940 | raise ValueError, "n or timeInterval should be specified ..." |
|
942 | 941 | |
|
943 | 942 | if n is not None: |
|
944 | 943 | self.n = int(n) |
|
945 | 944 | else: |
|
946 | 945 | self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line |
|
947 | 946 | self.n = None |
|
948 | 947 | self.__byTime = True |
|
949 | 948 | |
|
950 | 949 | def putData(self, data_spc, data_cspc, data_dc): |
|
951 | 950 | |
|
952 | 951 | """ |
|
953 | 952 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
954 | 953 | |
|
955 | 954 | """ |
|
956 | 955 | |
|
957 | 956 | self.__buffer_spc += data_spc |
|
958 | 957 | |
|
959 | 958 | if data_cspc is None: |
|
960 | 959 | self.__buffer_cspc = None |
|
961 | 960 | else: |
|
962 | 961 | self.__buffer_cspc += data_cspc |
|
963 | 962 | |
|
964 | 963 | if data_dc is None: |
|
965 | 964 | self.__buffer_dc = None |
|
966 | 965 | else: |
|
967 | 966 | self.__buffer_dc += data_dc |
|
968 | 967 | |
|
969 | 968 | self.__profIndex += 1 |
|
970 | 969 | |
|
971 | 970 | return |
|
972 | 971 | |
|
973 | 972 | def pushData(self): |
|
974 | 973 | """ |
|
975 | 974 | Return the sum of the last profiles and the profiles used in the sum. |
|
976 | 975 | |
|
977 | 976 | Affected: |
|
978 | 977 | |
|
979 | 978 | self.__profileIndex |
|
980 | 979 | |
|
981 | 980 | """ |
|
982 | 981 | |
|
983 | 982 | data_spc = self.__buffer_spc |
|
984 | 983 | data_cspc = self.__buffer_cspc |
|
985 | 984 | data_dc = self.__buffer_dc |
|
986 | 985 | n = self.__profIndex |
|
987 | 986 | |
|
988 | 987 | self.__buffer_spc = 0 |
|
989 | 988 | self.__buffer_cspc = 0 |
|
990 | 989 | self.__buffer_dc = 0 |
|
991 | 990 | self.__profIndex = 0 |
|
992 | 991 | |
|
993 | 992 | return data_spc, data_cspc, data_dc, n |
|
994 | 993 | |
|
995 | 994 | def byProfiles(self, *args): |
|
996 | 995 | |
|
997 | 996 | self.__dataReady = False |
|
998 | 997 | avgdata_spc = None |
|
999 | 998 | avgdata_cspc = None |
|
1000 | 999 | avgdata_dc = None |
|
1001 | 1000 | |
|
1002 | 1001 | self.putData(*args) |
|
1003 | 1002 | |
|
1004 | 1003 | if self.__profIndex == self.n: |
|
1005 | 1004 | |
|
1006 | 1005 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1007 | 1006 | self.n = n |
|
1008 | 1007 | self.__dataReady = True |
|
1009 | 1008 | |
|
1010 | 1009 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1011 | 1010 | |
|
1012 | 1011 | def byTime(self, datatime, *args): |
|
1013 | 1012 | |
|
1014 | 1013 | self.__dataReady = False |
|
1015 | 1014 | avgdata_spc = None |
|
1016 | 1015 | avgdata_cspc = None |
|
1017 | 1016 | avgdata_dc = None |
|
1018 | 1017 | |
|
1019 | 1018 | self.putData(*args) |
|
1020 | 1019 | |
|
1021 | 1020 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1022 | 1021 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1023 | 1022 | self.n = n |
|
1024 | 1023 | self.__dataReady = True |
|
1025 | 1024 | |
|
1026 | 1025 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1027 | 1026 | |
|
1028 | 1027 | def integrate(self, datatime, *args): |
|
1029 | 1028 | |
|
1030 | 1029 | if self.__profIndex == 0: |
|
1031 | 1030 | self.__initime = datatime |
|
1032 | 1031 | |
|
1033 | 1032 | if self.__byTime: |
|
1034 | 1033 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
1035 | 1034 | else: |
|
1036 | 1035 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1037 | 1036 | |
|
1038 | 1037 | if not self.__dataReady: |
|
1039 | 1038 | return None, None, None, None |
|
1040 | 1039 | |
|
1041 | 1040 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1042 | 1041 | |
|
1043 | 1042 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1044 | 1043 | |
|
1045 | 1044 | if n==1: |
|
1046 | 1045 | return |
|
1047 | 1046 | |
|
1048 | 1047 | dataOut.flagNoData = True |
|
1049 | 1048 | |
|
1050 | 1049 | if not self.isConfig: |
|
1051 | 1050 | self.setup(n, timeInterval, overlapping) |
|
1052 | 1051 | self.isConfig = True |
|
1053 | 1052 | |
|
1054 | 1053 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1055 | 1054 | dataOut.data_spc, |
|
1056 | 1055 | dataOut.data_cspc, |
|
1057 | 1056 | dataOut.data_dc) |
|
1058 | 1057 | |
|
1059 | 1058 | if self.__dataReady: |
|
1060 | 1059 | |
|
1061 | 1060 | dataOut.data_spc = avgdata_spc |
|
1062 | 1061 | dataOut.data_cspc = avgdata_cspc |
|
1063 | 1062 | dataOut.data_dc = avgdata_dc |
|
1064 | 1063 | |
|
1065 | 1064 | dataOut.nIncohInt *= self.n |
|
1066 | 1065 | dataOut.utctime = avgdatatime |
|
1067 | 1066 | dataOut.flagNoData = False |
|
1068 | 1067 |
@@ -1,1 +1,1 | |||
|
1 | <Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdatatest/test1024/d2017234" /><Parameter format="date" id="191113" name="startDate" value="2017/08/22" /><Parameter format="date" id="191114" name="endDate" value="2017/08/22" /><Parameter format="time" id="191115" name="startTime" value="02:00:00" /><Parameter format="time" id="191116" name="endTime" value="06:00:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="0" /></Operation><Operation id="19112" name="printInfo" priority="2" type="self" /><Operation id="19113" name="printNumberOfBlock" priority="3" type="self" /></ReadUnit><ProcUnit datatype="Parameters" id="1913" inputId="1912" name="ParametersProc"><Operation id="19131" name="run" priority="1" type="self" /><Operation id="19132" name="SpectralMoments" priority="2" type="other" /><Operation id="19133" name="FullSpectralAnalysis" priority="3" type="other"><Parameter format="float" id="191331" name="SNRlimit" value="-16" /><Parameter format="float" id="191332" name="E01" value="1.500" /><Parameter format="float" id="191333" name="E02" value="1.500" /><Parameter format="float" id="191334" name="E12" value="0" /><Parameter format="float" id="191335" name="N01" value="0.875" /><Parameter format="float" id="191336" name="N02" value="-0.875" /><Parameter format="float" id="191337" name="N12" value="-1.750" /></Operation><Operation id="19134" name="ParamWriter" priority="4" type="other"><Parameter format="str" id="191341" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdatatest/test1024" /><Parameter format="int" id="191342" name="blocksPerFile" value="100" /><Parameter format="list" id="191343" name="metadataList" value="heightList,timeZone,paramInterval" /><Parameter format="list" id="191344" name="dataList" value="data_output,data_SNR,utctime,utctimeInit" /></Operation></ProcUnit><ProcUnit datatype="SpectraProc" id="1912" inputId="1911" name="SpectraProc"><Operation id="19121" name="run" priority="1" type="self"><Parameter format="pairslist" id="191211" name="pairsList" value="(0,1),(0,2),(1,2)" /></Operation><Operation id="19122" name="setRadarFrequency" priority="2" type="self"><Parameter format="float" id="191221" name="frequency" value="445.09e6" /></Operation><Operation id="19123" name="IncohInt" priority="3" type="external"><Parameter format="float" id="191231" name="n" value="5" /></Operation><Operation id="19124" name="SpectraPlot" priority="4" type="external"><Parameter format="int" id="191241" name="id" value="11" /><Parameter format="str" id="191242" name="wintitle" value="SpectraPlot" /><Parameter format="str" id="191243" name="xaxis" value="frequency" /><Parameter format="float" id="191244" name="ymin" value="1" /><Parameter format="int" id="191245" name="ymax" value="5" /><Parameter format="int" id="191246" name="zmin" value="15" /><Parameter format="int" id="191247" name="zmax" value="50" /><Parameter format="int" id="191248" name="save" value="2" /><Parameter format="int" id="191249" name="save" value="5" /><Parameter format="str" id="191250" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/Images/FirstResults1024" /></Operation><Operation id="19125" name="CrossSpectraPlot" priority="5" type="other"><Parameter format="int" id="191251" name="id" value="2005" /><Parameter format="str" id="191252" name="wintitle" value="CrossSpectraPlot_ShortPulse" /><Parameter format="str" id="191253" name="xaxis" value="Velocity" /><Parameter format="float" id="191254" name="xmin" value="-10" /><Parameter format="float" id="191255" name="xmax" value="10" /><Parameter format="int" id="191256" name="zmin" value="15" /><Parameter format="int" id="191257" name="zmax" value="50" /><Parameter format="str" id="191258" name="phase_cmap" value="bwr" /><Parameter format="float" id="191259" name="ymin" value="1" /><Parameter format="float" id="191260" name="ymax" value="5" /></Operation></ProcUnit></Project> No newline at end of file | |
|
1 | <Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /><Parameter format="date" id="191113" name="startDate" value="2018/02/01" /><Parameter format="date" id="191114" name="endDate" value="2018/02/01" /><Parameter format="time" id="191115" name="startTime" value="17:00:00" /><Parameter format="time" id="191116" name="endTime" value="20:00:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="1" /></Operation><Operation id="19112" name="printInfo" priority="2" type="self" /><Operation id="19113" name="printNumberOfBlock" priority="3" type="self" /></ReadUnit><ProcUnit datatype="Parameters" id="1913" inputId="1912" name="ParametersProc"><Operation id="19131" name="run" priority="1" type="self" /><Operation id="19132" name="SpectralFilters" priority="2" type="other"><Parameter format="float" id="191321" name="Wind_Velocity_Limit" value="2.5" /><Parameter format="float" id="191322" name="Rain_Velocity_Limit" value="1.5" /></Operation><Operation id="19133" name="FullSpectralAnalysis" priority="3" type="other"><Parameter format="float" id="191331" name="SNRlimit" value="-16" /><Parameter format="float" id="191332" name="E01" value="1.500" /><Parameter format="float" id="191333" name="E02" value="1.500" /><Parameter format="float" id="191334" name="E12" value="0" /><Parameter format="float" id="191335" name="N01" value="0.875" /><Parameter format="float" id="191336" name="N02" value="-0.875" /><Parameter format="float" id="191337" name="N12" value="-1.750" /></Operation><Operation id="19134" name="WindProfilerPlot" priority="4" type="other"><Parameter format="int" id="191341" name="id" value="4" /><Parameter format="str" id="191342" name="wintitle" value="Wind Profiler" /><Parameter format="float" id="191343" name="xmin" value="17" /><Parameter format="float" id="191344" name="xmax" value="20" /><Parameter format="float" id="191345" name="ymin" value="0" /><Parameter format="int" id="191346" name="ymax" value="8" /><Parameter format="float" id="191347" name="zmin" value="-20" /><Parameter format="float" id="191348" name="zmax" value="20" /><Parameter format="float" id="191349" name="SNRmin" value="-20" /><Parameter format="float" id="191350" name="SNRmax" value="20" /><Parameter format="float" id="191351" name="zmin_ver" value="-200" /><Parameter format="float" id="191352" name="zmax_ver" value="200" /><Parameter format="float" id="191353" name="SNRthresh" value="-20" /><Parameter format="int" id="191354" name="save" value="1" /><Parameter format="str" id="191355" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /></Operation><Operation id="19135" name="PrecipitationProc" priority="5" type="other" /><Operation id="19136" name="ParametersPlot" priority="6" type="other"><Parameter format="int" id="191361" name="id" value="10" /><Parameter format="str" id="191362" name="wintitle" value="First_gg" /><Parameter format="int" id="191363" name="zmin" value="-20" /><Parameter format="int" id="191364" name="zmax" value="60" /><Parameter format="int" id="191365" name="ymin" value="0" /><Parameter format="int" id="191366" name="ymax" value="8" /><Parameter format="int" id="191367" name="xmin" value="17" /><Parameter format="int" id="191368" name="xmax" value="20" /><Parameter format="int" id="191369" name="save" value="1" /><Parameter format="str" id="191370" name="figpath" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /></Operation><Operation id="19137" name="ParamWriter" priority="7" type="other"><Parameter format="str" id="191371" name="path" value="/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdatatest/test1024" /><Parameter format="int" id="191372" name="blocksPerFile" value="100" /><Parameter format="list" id="191373" name="metadataList" value="heightList,timeZone,paramInterval" /><Parameter format="list" id="191374" name="dataList" value="data_output,data_SNR,utctime,utctimeInit" /></Operation></ProcUnit><ProcUnit datatype="SpectraProc" id="1912" inputId="1911" name="SpectraProc"><Operation id="19121" name="run" priority="1" type="self" /><Operation id="19122" name="setRadarFrequency" priority="2" type="self"><Parameter format="float" id="191221" name="frequency" value="445.09e6" /></Operation></ProcUnit></Project> No newline at end of file |
@@ -1,238 +1,239 | |||
|
1 | 1 | import os, sys |
|
2 | 2 | |
|
3 | 3 | from schainpy.controller import Project |
|
4 | 4 | |
|
5 | 5 | if __name__ == '__main__': |
|
6 | 6 | |
|
7 | 7 | desc = "Segundo Test" |
|
8 | 8 | filename = "schain.xml" |
|
9 | 9 | |
|
10 |
pathW='/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdata |
|
|
11 |
figpath = '/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/ |
|
|
10 | pathW='/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra' | |
|
11 | figpath = '/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra' | |
|
12 | 12 | |
|
13 | 13 | controllerObj = Project() |
|
14 | 14 | |
|
15 | 15 | controllerObj.setup(id='191', name='test01', description=desc) |
|
16 | 16 | |
|
17 | 17 | readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader', |
|
18 | 18 | path='/media/erick/6F60F7113095A154/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/', |
|
19 | 19 | #path='/home/erick/Documents/Data/Claire_Data/raw', |
|
20 |
startDate='201 |
|
|
21 |
endDate='201 |
|
|
22 |
startTime=' |
|
|
23 |
endTime='0 |
|
|
20 | startDate='2018/02/01', | |
|
21 | endDate='2018/02/01', | |
|
22 | startTime='12:00:00', | |
|
23 | endTime='20:00:00', | |
|
24 | 24 | online=0, |
|
25 | 25 | walk=1) |
|
26 | 26 | |
|
27 | 27 | opObj00 = readUnitConfObj.addOperation(name='printInfo') |
|
28 | 28 | # |
|
29 | 29 | # procUnitConfObj0 = controllerObj.addProcUnit(datatype='VoltageProc', |
|
30 | 30 | # inputId=readUnitConfObj.getId()) |
|
31 | 31 | # |
|
32 | 32 | # opObj10 = procUnitConfObj0.addOperation(name='selectHeights') |
|
33 | 33 | # opObj10.addParameter(name='minHei', value='0', format='float') |
|
34 | 34 | # opObj10.addParameter(name='maxHei', value='8', format='float') |
|
35 | 35 | # |
|
36 | 36 | # opObj10 = procUnitConfObj0.addOperation(name='filterByHeights') |
|
37 | 37 | # opObj10.addParameter(name='window', value='2', format='float') |
|
38 | 38 | # |
|
39 | 39 | # opObj10 = procUnitConfObj0.addOperation(name='Decoder', optype='external') |
|
40 | 40 | # opObj10.addParameter(name='code', value='1,-1', format='intlist') |
|
41 | 41 | # opObj10.addParameter(name='nCode', value='2', format='float') |
|
42 | 42 | # opObj10.addParameter(name='nBaud', value='1', format='float') |
|
43 | 43 | # |
|
44 | 44 | # |
|
45 | 45 | # opObj10 = procUnitConfObj0.addOperation(name='CohInt', optype='external') |
|
46 | 46 | # opObj10.addParameter(name='n', value='1296', format='float') |
|
47 | 47 | |
|
48 | 48 | opObj00 = readUnitConfObj.addOperation(name='printNumberOfBlock') |
|
49 | 49 | |
|
50 | 50 | procUnitConfObj0 = controllerObj.addProcUnit(datatype='VoltageProc', |
|
51 | 51 | inputId=readUnitConfObj.getId()) |
|
52 | 52 | |
|
53 | 53 | |
|
54 | 54 | opObj10 = procUnitConfObj0.addOperation(name='setRadarFrequency') |
|
55 | 55 | opObj10.addParameter(name='frequency', value='445.09e6', format='float') |
|
56 | 56 | |
|
57 |
|
|
|
58 |
|
|
|
57 | opObj10 = procUnitConfObj0.addOperation(name='CohInt', optype='external') | |
|
58 | opObj10.addParameter(name='n', value='2', format='float') | |
|
59 | 59 | |
|
60 | 60 | #opObj10 = procUnitConfObj0.addOperation(name='selectHeights') |
|
61 | 61 | #opObj10.addParameter(name='minHei', value='1', format='float') |
|
62 | 62 | #opObj10.addParameter(name='maxHei', value='15', format='float') |
|
63 | 63 | |
|
64 | 64 | #opObj10 = procUnitConfObj0.addOperation(name='selectFFTs') |
|
65 | 65 | #opObj10.addParameter(name='minHei', value='', format='float') |
|
66 | 66 | #opObj10.addParameter(name='maxHei', value='', format='float') |
|
67 | 67 | |
|
68 | 68 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='SpectraProc', |
|
69 | 69 | inputId=procUnitConfObj0.getId()) |
|
70 | 70 | |
|
71 | 71 | # Creating a processing object with its parameters |
|
72 | 72 | # schainpy.model.proc.jroproc_spectra.SpectraProc.run() |
|
73 | 73 | # If you need to add more parameters can use the "addParameter method" |
|
74 |
procUnitConfObj1.addParameter(name='nFFTPoints', value=' |
|
|
74 | procUnitConfObj1.addParameter(name='nFFTPoints', value='256', format='int') | |
|
75 | 75 | |
|
76 | 76 | |
|
77 | 77 | opObj10 = procUnitConfObj1.addOperation(name='removeDC') |
|
78 | 78 | #opObj10 = procUnitConfObj1.addOperation(name='removeInterference') |
|
79 |
|
|
|
80 |
|
|
|
79 | opObj10 = procUnitConfObj1.addOperation(name='IncohInt', optype='external') | |
|
80 | opObj10.addParameter(name='n', value='10', format='float') | |
|
81 | 81 | |
|
82 | 82 | |
|
83 | 83 | |
|
84 | 84 | #opObj10 = procUnitConfObj1.addOperation(name='selectFFTs') |
|
85 | 85 | #opObj10.addParameter(name='minFFT', value='-15', format='float') |
|
86 | 86 | #opObj10.addParameter(name='maxFFT', value='15', format='float') |
|
87 | 87 | |
|
88 | 88 | |
|
89 | 89 | |
|
90 | 90 | opObj10 = procUnitConfObj1.addOperation(name='SpectraWriter', optype='other') |
|
91 | 91 | opObj10.addParameter(name='blocksPerFile', value='64', format = 'int') |
|
92 | 92 | opObj10.addParameter(name='path', value=pathW) |
|
93 | 93 | # Using internal methods |
|
94 | 94 | # schainpy.model.proc.jroproc_spectra.SpectraProc.selectChannels() |
|
95 | 95 | # opObj10 = procUnitConfObj1.addOperation(name='selectChannels') |
|
96 | 96 | # opObj10.addParameter(name='channelList', value='0,1', format='intlist') |
|
97 | 97 | |
|
98 | 98 | # Using internal methods |
|
99 | 99 | # schainpy.model.proc.jroproc_spectra.SpectraProc.selectHeights() |
|
100 | 100 | # opObj10 = procUnitConfObj1.addOperation(name='selectHeights') |
|
101 | 101 | # opObj10.addParameter(name='minHei', value='90', format='float') |
|
102 | 102 | # opObj10.addParameter(name='maxHei', value='180', format='float') |
|
103 | 103 | |
|
104 | 104 | # Using external methods (new modules) |
|
105 | 105 | # #schainpy.model.proc.jroproc_spectra.IncohInt.setup() |
|
106 | 106 | # opObj12 = procUnitConfObj1.addOperation(name='IncohInt', optype='other') |
|
107 | 107 | # opObj12.addParameter(name='n', value='1', format='int') |
|
108 | 108 | |
|
109 | 109 | # Using external methods (new modules) |
|
110 | 110 | # schainpy.model.graphics.jroplot_spectra.SpectraPlot.setup() |
|
111 | 111 | opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='external') |
|
112 | 112 | opObj11.addParameter(name='id', value='11', format='int') |
|
113 | 113 | opObj11.addParameter(name='wintitle', value='SpectraPlot', format='str') |
|
114 | 114 | opObj11.addParameter(name='xaxis', value='velocity', format='str') |
|
115 | 115 | # opObj11.addParameter(name='xmin', value='-10', format='int') |
|
116 | 116 | # opObj11.addParameter(name='xmax', value='10', format='int') |
|
117 | 117 | |
|
118 | 118 | # opObj11.addParameter(name='ymin', value='1', format='float') |
|
119 | 119 | # opObj11.addParameter(name='ymax', value='3', format='int') |
|
120 | 120 | #opObj11.addParameter(name='zmin', value='10', format='int') |
|
121 | 121 | #opObj11.addParameter(name='zmax', value='35', format='int') |
|
122 | 122 | # opObj11.addParameter(name='save', value='2', format='int') |
|
123 | 123 | # opObj11.addParameter(name='save', value='5', format='int') |
|
124 | 124 | # opObj11.addParameter(name='figpath', value=figpath, format='str') |
|
125 | 125 | |
|
126 | 126 | |
|
127 | 127 | opObj11 = procUnitConfObj1.addOperation(name='CrossSpectraPlot', optype='other') |
|
128 | 128 | procUnitConfObj1.addParameter(name='pairsList', value='(0,1),(0,2),(1,2)', format='pairsList') |
|
129 | 129 | opObj11.addParameter(name='id', value='2005', format='int') |
|
130 | 130 | #opObj11.addParameter(name='wintitle', value='CrossSpectraPlot_ShortPulse', format='str') |
|
131 | 131 | #opObj11.addParameter(name='exp_code', value='13', format='int') |
|
132 | 132 | opObj11.addParameter(name='xaxis', value='Velocity', format='str') |
|
133 | 133 | #opObj11.addParameter(name='xmin', value='-6', format='float') |
|
134 | 134 | #opObj11.addParameter(name='xmax', value='6', format='float') |
|
135 | 135 | opObj11.addParameter(name='zmin', value='15', format='float') |
|
136 | 136 | opObj11.addParameter(name='zmax', value='50', format='float') |
|
137 | 137 | opObj11.addParameter(name='ymin', value='0', format='float') |
|
138 | 138 | opObj11.addParameter(name='ymax', value='7', format='float') |
|
139 | 139 | #opObj11.addParameter(name='phase_min', value='-4', format='int') |
|
140 | 140 | #opObj11.addParameter(name='phase_max', value='4', format='int') |
|
141 | 141 | # |
|
142 | 142 | |
|
143 | 143 | # Using external methods (new modules) |
|
144 | 144 | # schainpy.model.graphics.jroplot_spectra.RTIPlot.setup() |
|
145 | 145 | opObj11 = procUnitConfObj1.addOperation(name='RTIPlot', optype='other') |
|
146 | 146 | opObj11.addParameter(name='id', value='30', format='int') |
|
147 | 147 | opObj11.addParameter(name='wintitle', value='RTI', format='str') |
|
148 | 148 | opObj11.addParameter(name='zmin', value='15', format='int') |
|
149 | 149 | opObj11.addParameter(name='zmax', value='40', format='int') |
|
150 | 150 | opObj11.addParameter(name='ymin', value='1', format='int') |
|
151 | 151 | opObj11.addParameter(name='ymax', value='7', format='int') |
|
152 | 152 | opObj11.addParameter(name='showprofile', value='1', format='int') |
|
153 | 153 | # opObj11.addParameter(name='timerange', value=str(5*60*60*60), format='int') |
|
154 | opObj11.addParameter(name='xmin', value='1', format='float') | |
|
155 | opObj11.addParameter(name='xmax', value='6', format='float') | |
|
154 | #opObj11.addParameter(name='xmin', value='1', format='float') | |
|
155 | #opObj11.addParameter(name='xmax', value='6', format='float') | |
|
156 | 156 | opObj11.addParameter(name='save', value='1', format='int') |
|
157 | opObj11.addParameter(name='figpath', value=figpath, format='str') | |
|
157 | 158 | |
|
158 | 159 | |
|
159 | 160 | # '''#########################################################################################''' |
|
160 | 161 | # |
|
161 | 162 | # |
|
162 | 163 | # procUnitConfObj2 = controllerObj.addProcUnit(datatype='Parameters', inputId=procUnitConfObj1.getId()) |
|
163 | 164 | # opObj11 = procUnitConfObj2.addOperation(name='SpectralMoments', optype='other') |
|
164 | 165 | # |
|
165 | 166 | # ''' |
|
166 | 167 | # # Discriminacion de ecos |
|
167 | 168 | # opObj11 = procUnitConfObj2.addOperation(name='GaussianFit', optype='other') |
|
168 | 169 | # opObj11.addParameter(name='SNRlimit', value='0', format='int') |
|
169 | 170 | # ''' |
|
170 | 171 | # |
|
171 | 172 | # ''' |
|
172 | 173 | # # Estimacion de Precipitacion |
|
173 | 174 | # opObj11 = procUnitConfObj2.addOperation(name='PrecipitationProc', optype='other') |
|
174 | 175 | # ''' |
|
175 | 176 | # |
|
176 | 177 | # opObj22 = procUnitConfObj2.addOperation(name='FullSpectralAnalysis', optype='other') |
|
177 | 178 | # |
|
178 | 179 | # opObj22.addParameter(name='SNRlimit', value='-10', format='float') |
|
179 | 180 | # opObj22.addParameter(name='E01', value='1.500', format='float') |
|
180 | 181 | # opObj22.addParameter(name='E02', value='1.500', format='float') |
|
181 | 182 | # opObj22.addParameter(name='E12', value='0', format='float') |
|
182 | 183 | # opObj22.addParameter(name='N01', value='0.875', format='float') |
|
183 | 184 | # opObj22.addParameter(name='N02', value='-0.875', format='float') |
|
184 | 185 | # opObj22.addParameter(name='N12', value='-1.750', format='float') |
|
185 | 186 | # |
|
186 | 187 | # |
|
187 | 188 | # opObj22 = procUnitConfObj2.addOperation(name='WindProfilerPlot', optype='other') |
|
188 | 189 | # opObj22.addParameter(name='id', value='4', format='int') |
|
189 | 190 | # opObj22.addParameter(name='wintitle', value='Wind Profiler', format='str') |
|
190 | 191 | # opObj22.addParameter(name='save', value='1', format='bool') |
|
191 | 192 | # opObj22.addParameter(name='xmin', value='0', format='float') |
|
192 | 193 | # opObj22.addParameter(name='xmax', value='6', format='float') |
|
193 | 194 | # opObj22.addParameter(name='ymin', value='1', format='float') |
|
194 | 195 | # opObj22.addParameter(name='ymax', value='3.5', format='float') |
|
195 | 196 | # opObj22.addParameter(name='zmin', value='-1', format='float') |
|
196 | 197 | # opObj22.addParameter(name='zmax', value='1', format='float') |
|
197 | 198 | # opObj22.addParameter(name='SNRmin', value='-15', format='float') |
|
198 | 199 | # opObj22.addParameter(name='SNRmax', value='20', format='float') |
|
199 | 200 | # opObj22.addParameter(name='zmin_ver', value='-200', format='float') |
|
200 | 201 | # opObj22.addParameter(name='zmax_ver', value='200', format='float') |
|
201 | 202 | # opObj22.addParameter(name='save', value='1', format='int') |
|
202 | 203 | # opObj22.addParameter(name='figpath', value=figpath, format='str') |
|
203 | 204 | # |
|
204 | 205 | # |
|
205 | 206 | # |
|
206 | 207 | # #opObj11.addParameter(name='zmin', value='75', format='int') |
|
207 | 208 | # |
|
208 | 209 | # #opObj12 = procUnitConfObj2.addOperation(name='ParametersPlot', optype='other') |
|
209 | 210 | # #opObj12.addParameter(name='id',value='4',format='int') |
|
210 | 211 | # #opObj12.addParameter(name='wintitle',value='First_gg',format='str') |
|
211 | 212 | # ''' |
|
212 | 213 | # #Ploteo de Discriminacion de Gaussianas |
|
213 | 214 | # |
|
214 | 215 | # opObj11 = procUnitConfObj2.addOperation(name='FitGauPlot', optype='other') |
|
215 | 216 | # opObj11.addParameter(name='id', value='21', format='int') |
|
216 | 217 | # opObj11.addParameter(name='wintitle', value='Rainfall Gaussian', format='str') |
|
217 | 218 | # opObj11.addParameter(name='xaxis', value='velocity', format='str') |
|
218 | 219 | # opObj11.addParameter(name='showprofile', value='1', format='int') |
|
219 | 220 | # opObj11.addParameter(name='zmin', value='75', format='int') |
|
220 | 221 | # opObj11.addParameter(name='zmax', value='100', format='int') |
|
221 | 222 | # opObj11.addParameter(name='GauSelector', value='1', format='int') |
|
222 | 223 | # #opObj11.addParameter(name='save', value='1', format='int') |
|
223 | 224 | # #opObj11.addParameter(name='figpath', value='/home/erick/Documents/Data/d2015106') |
|
224 | 225 | # |
|
225 | 226 | # opObj11 = procUnitConfObj2.addOperation(name='FitGauPlot', optype='other') |
|
226 | 227 | # opObj11.addParameter(name='id', value='22', format='int') |
|
227 | 228 | # opObj11.addParameter(name='wintitle', value='Wind Gaussian', format='str') |
|
228 | 229 | # opObj11.addParameter(name='xaxis', value='velocity', format='str') |
|
229 | 230 | # opObj11.addParameter(name='showprofile', value='1', format='int') |
|
230 | 231 | # opObj11.addParameter(name='zmin', value='75', format='int') |
|
231 | 232 | # opObj11.addParameter(name='zmax', value='100', format='int') |
|
232 | 233 | # opObj11.addParameter(name='GauSelector', value='0', format='int') |
|
233 | 234 | # ''' |
|
234 | 235 | # |
|
235 | 236 | # |
|
236 | 237 | |
|
237 | 238 | |
|
238 | 239 | controllerObj.start() |
General Comments 0
You need to be logged in to leave comments.
Login now