@@ -1,348 +1,354 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: jroproc_base.py 1 2012-11-12 18:56:07Z murco $ |
|
4 | $Id: jroproc_base.py 1 2012-11-12 18:56:07Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 | import inspect |
|
6 | import inspect | |
7 | from fuzzywuzzy import process |
|
7 | from fuzzywuzzy import process | |
8 |
|
8 | |||
9 | def checkKwargs(method, kwargs): |
|
9 | def checkKwargs(method, kwargs): | |
10 | currentKwargs = kwargs |
|
10 | currentKwargs = kwargs | |
11 | choices = inspect.getargspec(method).args |
|
11 | choices = inspect.getargspec(method).args | |
12 | try: |
|
12 | try: | |
13 | choices.remove('self') |
|
13 | choices.remove('self') | |
14 | except Exception as e: |
|
14 | except Exception as e: | |
15 | pass |
|
15 | pass | |
16 |
|
16 | |||
17 | try: |
|
17 | try: | |
18 | choices.remove('dataOut') |
|
18 | choices.remove('dataOut') | |
19 | except Exception as e: |
|
19 | except Exception as e: | |
20 | pass |
|
20 | pass | |
21 |
|
21 | |||
22 | for kwarg in kwargs: |
|
22 | for kwarg in kwargs: | |
23 | fuzz = process.extractOne(kwarg, choices) |
|
23 | fuzz = process.extractOne(kwarg, choices) | |
24 | if fuzz is None: |
|
24 | if fuzz is None: | |
25 | continue |
|
25 | continue | |
26 | if fuzz[1] < 100: |
|
26 | if fuzz[1] < 100: | |
27 | raise Exception('\x1b[0;32;40mDid you mean {} instead of {} in {}? \x1b[0m'. |
|
27 | raise Exception('\x1b[0;32;40mDid you mean {} instead of {} in {}? \x1b[0m'. | |
28 | format(fuzz[0], kwarg, method.__self__.__class__.__name__)) |
|
28 | format(fuzz[0], kwarg, method.__self__.__class__.__name__)) | |
29 |
|
29 | |||
30 | class ProcessingUnit(object): |
|
30 | class ProcessingUnit(object): | |
31 |
|
31 | |||
32 | """ |
|
32 | """ | |
33 | Esta es la clase base para el procesamiento de datos. |
|
33 | Esta es la clase base para el procesamiento de datos. | |
34 |
|
34 | |||
35 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
35 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: | |
36 | - Metodos internos (callMethod) |
|
36 | - Metodos internos (callMethod) | |
37 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
37 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos | |
38 | tienen que ser agreagados con el metodo "add". |
|
38 | tienen que ser agreagados con el metodo "add". | |
39 |
|
39 | |||
40 | """ |
|
40 | """ | |
41 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
41 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
42 | dataIn = None |
|
42 | dataIn = None | |
43 | dataInList = [] |
|
43 | dataInList = [] | |
44 |
|
44 | |||
45 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
45 | # objeto de datos de entrada (Voltage, Spectra o Correlation) | |
46 | dataOut = None |
|
46 | dataOut = None | |
47 |
|
47 | |||
48 | operations2RunDict = None |
|
48 | operations2RunDict = None | |
49 |
|
49 | |||
50 | isConfig = False |
|
50 | isConfig = False | |
51 |
|
51 | |||
52 |
|
52 | |||
53 | def __init__(self, *args, **kwargs): |
|
53 | def __init__(self, *args, **kwargs): | |
54 |
|
54 | |||
55 | self.dataIn = None |
|
55 | self.dataIn = None | |
56 | self.dataInList = [] |
|
56 | self.dataInList = [] | |
57 |
|
57 | |||
58 | self.dataOut = None |
|
58 | self.dataOut = None | |
59 |
|
59 | |||
60 | self.operations2RunDict = {} |
|
60 | self.operations2RunDict = {} | |
61 | self.operationKwargs = {} |
|
61 | self.operationKwargs = {} | |
62 |
|
62 | |||
63 | self.isConfig = False |
|
63 | self.isConfig = False | |
64 |
|
64 | |||
65 | self.args = args |
|
65 | self.args = args | |
66 | self.kwargs = kwargs |
|
66 | self.kwargs = kwargs | |
|
67 | ||||
|
68 | if not hasattr(self, 'name'): | |||
|
69 | self.name = self.__class__.__name__ | |||
|
70 | ||||
67 | checkKwargs(self.run, kwargs) |
|
71 | checkKwargs(self.run, kwargs) | |
68 |
|
72 | |||
69 | def getAllowedArgs(self): |
|
73 | def getAllowedArgs(self): | |
70 | return inspect.getargspec(self.run).args |
|
74 | return inspect.getargspec(self.run).args | |
71 |
|
75 | |||
72 | def addOperationKwargs(self, objId, **kwargs): |
|
76 | def addOperationKwargs(self, objId, **kwargs): | |
73 | ''' |
|
77 | ''' | |
74 | ''' |
|
78 | ''' | |
75 |
|
79 | |||
76 | self.operationKwargs[objId] = kwargs |
|
80 | self.operationKwargs[objId] = kwargs | |
77 |
|
81 | |||
78 |
|
82 | |||
79 | def addOperation(self, opObj, objId): |
|
83 | def addOperation(self, opObj, objId): | |
80 |
|
84 | |||
81 | """ |
|
85 | """ | |
82 | Agrega un objeto del tipo "Operation" (opObj) a la lista de objetos "self.objectList" y retorna el |
|
86 | Agrega un objeto del tipo "Operation" (opObj) a la lista de objetos "self.objectList" y retorna el | |
83 | identificador asociado a este objeto. |
|
87 | identificador asociado a este objeto. | |
84 |
|
88 | |||
85 | Input: |
|
89 | Input: | |
86 |
|
90 | |||
87 | object : objeto de la clase "Operation" |
|
91 | object : objeto de la clase "Operation" | |
88 |
|
92 | |||
89 | Return: |
|
93 | Return: | |
90 |
|
94 | |||
91 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
95 | objId : identificador del objeto, necesario para ejecutar la operacion | |
92 | """ |
|
96 | """ | |
93 |
|
97 | |||
94 | self.operations2RunDict[objId] = opObj |
|
98 | self.operations2RunDict[objId] = opObj | |
95 |
|
99 | |||
96 | return objId |
|
100 | return objId | |
97 |
|
101 | |||
98 | def getOperationObj(self, objId): |
|
102 | def getOperationObj(self, objId): | |
99 |
|
103 | |||
100 | if objId not in self.operations2RunDict.keys(): |
|
104 | if objId not in self.operations2RunDict.keys(): | |
101 | return None |
|
105 | return None | |
102 |
|
106 | |||
103 | return self.operations2RunDict[objId] |
|
107 | return self.operations2RunDict[objId] | |
104 |
|
108 | |||
105 | def operation(self, **kwargs): |
|
109 | def operation(self, **kwargs): | |
106 |
|
110 | |||
107 | """ |
|
111 | """ | |
108 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
112 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los | |
109 | atributos del objeto dataOut |
|
113 | atributos del objeto dataOut | |
110 |
|
114 | |||
111 | Input: |
|
115 | Input: | |
112 |
|
116 | |||
113 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
117 | **kwargs : Diccionario de argumentos de la funcion a ejecutar | |
114 | """ |
|
118 | """ | |
115 |
|
119 | |||
116 | raise NotImplementedError |
|
120 | raise NotImplementedError | |
117 |
|
121 | |||
118 | def callMethod(self, name, opId): |
|
122 | def callMethod(self, name, opId): | |
119 |
|
123 | |||
120 | """ |
|
124 | """ | |
121 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
125 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. | |
122 |
|
126 | |||
123 | Input: |
|
127 | Input: | |
124 | name : nombre del metodo a ejecutar |
|
128 | name : nombre del metodo a ejecutar | |
125 |
|
129 | |||
126 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
130 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
127 |
|
131 | |||
128 | """ |
|
132 | """ | |
129 |
|
133 | |||
130 | #Checking the inputs |
|
134 | #Checking the inputs | |
131 | if name == 'run': |
|
135 | if name == 'run': | |
132 |
|
136 | |||
133 | if not self.checkInputs(): |
|
137 | if not self.checkInputs(): | |
134 | self.dataOut.flagNoData = True |
|
138 | self.dataOut.flagNoData = True | |
135 | return False |
|
139 | return False | |
136 | else: |
|
140 | else: | |
137 | #Si no es un metodo RUN la entrada es la misma dataOut (interna) |
|
141 | #Si no es un metodo RUN la entrada es la misma dataOut (interna) | |
138 | if self.dataOut is not None and self.dataOut.isEmpty(): |
|
142 | if self.dataOut is not None and self.dataOut.isEmpty(): | |
139 | return False |
|
143 | return False | |
140 |
|
144 | |||
141 | #Getting the pointer to method |
|
145 | #Getting the pointer to method | |
142 | methodToCall = getattr(self, name) |
|
146 | methodToCall = getattr(self, name) | |
143 |
|
147 | |||
144 | #Executing the self method |
|
148 | #Executing the self method | |
145 |
|
149 | |||
146 | if hasattr(self, 'mp'): |
|
150 | if hasattr(self, 'mp'): | |
147 | if name=='run': |
|
151 | if name=='run': | |
148 | if self.mp is False: |
|
152 | if self.mp is False: | |
149 | self.mp = True |
|
153 | self.mp = True | |
150 | self.start() |
|
154 | self.start() | |
151 | else: |
|
155 | else: | |
152 | self.operationKwargs[opId]['parent'] = self.kwargs |
|
156 | self.operationKwargs[opId]['parent'] = self.kwargs | |
153 | methodToCall(**self.operationKwargs[opId]) |
|
157 | methodToCall(**self.operationKwargs[opId]) | |
154 | else: |
|
158 | else: | |
155 | if name=='run': |
|
159 | if name=='run': | |
156 | methodToCall(**self.kwargs) |
|
160 | methodToCall(**self.kwargs) | |
157 | else: |
|
161 | else: | |
158 | methodToCall(**self.operationKwargs[opId]) |
|
162 | methodToCall(**self.operationKwargs[opId]) | |
159 |
|
163 | |||
160 | if self.dataOut is None: |
|
164 | if self.dataOut is None: | |
161 | return False |
|
165 | return False | |
162 |
|
166 | |||
163 | if self.dataOut.isEmpty(): |
|
167 | if self.dataOut.isEmpty(): | |
164 | return False |
|
168 | return False | |
165 |
|
169 | |||
166 | return True |
|
170 | return True | |
167 |
|
171 | |||
168 | def callObject(self, objId): |
|
172 | def callObject(self, objId): | |
169 |
|
173 | |||
170 | """ |
|
174 | """ | |
171 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
175 | Ejecuta la operacion asociada al identificador del objeto "objId" | |
172 |
|
176 | |||
173 | Input: |
|
177 | Input: | |
174 |
|
178 | |||
175 | objId : identificador del objeto a ejecutar |
|
179 | objId : identificador del objeto a ejecutar | |
176 |
|
180 | |||
177 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
181 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. | |
178 |
|
182 | |||
179 | Return: |
|
183 | Return: | |
180 |
|
184 | |||
181 | None |
|
185 | None | |
182 | """ |
|
186 | """ | |
183 |
|
187 | |||
184 | if self.dataOut is not None and self.dataOut.isEmpty(): |
|
188 | if self.dataOut is not None and self.dataOut.isEmpty(): | |
185 | return False |
|
189 | return False | |
186 |
|
190 | |||
187 | externalProcObj = self.operations2RunDict[objId] |
|
191 | externalProcObj = self.operations2RunDict[objId] | |
188 |
|
192 | |||
189 | if hasattr(externalProcObj, 'mp'): |
|
193 | if hasattr(externalProcObj, 'mp'): | |
190 | if externalProcObj.mp is False: |
|
194 | if externalProcObj.mp is False: | |
191 | externalProcObj.kwargs['parent'] = self.kwargs |
|
195 | externalProcObj.kwargs['parent'] = self.kwargs | |
192 | self.operationKwargs[objId] = externalProcObj.kwargs |
|
196 | self.operationKwargs[objId] = externalProcObj.kwargs | |
193 | externalProcObj.mp = True |
|
197 | externalProcObj.mp = True | |
194 | externalProcObj.start() |
|
198 | externalProcObj.start() | |
195 | else: |
|
199 | else: | |
196 | externalProcObj.run(self.dataOut, **externalProcObj.kwargs) |
|
200 | externalProcObj.run(self.dataOut, **externalProcObj.kwargs) | |
197 | self.operationKwargs[objId] = externalProcObj.kwargs |
|
201 | self.operationKwargs[objId] = externalProcObj.kwargs | |
198 |
|
202 | |||
199 |
|
203 | |||
200 | return True |
|
204 | return True | |
201 |
|
205 | |||
202 | def call(self, opType, opName=None, opId=None): |
|
206 | def call(self, opType, opName=None, opId=None): | |
203 | """ |
|
207 | """ | |
204 | Return True si ejecuta la operacion interna nombrada "opName" o la operacion externa |
|
208 | Return True si ejecuta la operacion interna nombrada "opName" o la operacion externa | |
205 | identificada con el id "opId"; con los argumentos "**kwargs". |
|
209 | identificada con el id "opId"; con los argumentos "**kwargs". | |
206 |
|
210 | |||
207 | False si la operacion no se ha ejecutado. |
|
211 | False si la operacion no se ha ejecutado. | |
208 |
|
212 | |||
209 | Input: |
|
213 | Input: | |
210 |
|
214 | |||
211 | opType : Puede ser "self" o "external" |
|
215 | opType : Puede ser "self" o "external" | |
212 |
|
216 | |||
213 | Depende del tipo de operacion para llamar a:callMethod or callObject: |
|
217 | Depende del tipo de operacion para llamar a:callMethod or callObject: | |
214 |
|
218 | |||
215 | 1. If opType = "self": Llama a un metodo propio de esta clase: |
|
219 | 1. If opType = "self": Llama a un metodo propio de esta clase: | |
216 |
|
220 | |||
217 | name_method = getattr(self, name) |
|
221 | name_method = getattr(self, name) | |
218 | name_method(**kwargs) |
|
222 | name_method(**kwargs) | |
219 |
|
223 | |||
220 |
|
224 | |||
221 | 2. If opType = "other" o"external": Llama al metodo "run()" de una instancia de la |
|
225 | 2. If opType = "other" o"external": Llama al metodo "run()" de una instancia de la | |
222 | clase "Operation" o de un derivado de ella: |
|
226 | clase "Operation" o de un derivado de ella: | |
223 |
|
227 | |||
224 | instanceName = self.operationList[opId] |
|
228 | instanceName = self.operationList[opId] | |
225 | instanceName.run(**kwargs) |
|
229 | instanceName.run(**kwargs) | |
226 |
|
230 | |||
227 | opName : Si la operacion es interna (opType = 'self'), entonces el "opName" sera |
|
231 | opName : Si la operacion es interna (opType = 'self'), entonces el "opName" sera | |
228 | usada para llamar a un metodo interno de la clase Processing |
|
232 | usada para llamar a un metodo interno de la clase Processing | |
229 |
|
233 | |||
230 | opId : Si la operacion es externa (opType = 'other' o 'external), entonces el |
|
234 | opId : Si la operacion es externa (opType = 'other' o 'external), entonces el | |
231 | "opId" sera usada para llamar al metodo "run" de la clase Operation |
|
235 | "opId" sera usada para llamar al metodo "run" de la clase Operation | |
232 | registrada anteriormente con ese Id |
|
236 | registrada anteriormente con ese Id | |
233 |
|
237 | |||
234 | Exception: |
|
238 | Exception: | |
235 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
239 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: | |
236 | "addOperation" e identificado con el valor "opId" = el id de la operacion. |
|
240 | "addOperation" e identificado con el valor "opId" = el id de la operacion. | |
237 | De lo contrario retornara un error del tipo ValueError |
|
241 | De lo contrario retornara un error del tipo ValueError | |
238 |
|
242 | |||
239 | """ |
|
243 | """ | |
240 |
|
244 | |||
241 | if opType == 'self': |
|
245 | if opType == 'self': | |
242 |
|
246 | |||
243 | if not opName: |
|
247 | if not opName: | |
244 | raise ValueError, "opName parameter should be defined" |
|
248 | raise ValueError, "opName parameter should be defined" | |
245 |
|
249 | |||
246 | sts = self.callMethod(opName, opId) |
|
250 | sts = self.callMethod(opName, opId) | |
247 |
|
251 | |||
248 | elif opType == 'other' or opType == 'external' or opType == 'plotter': |
|
252 | elif opType == 'other' or opType == 'external' or opType == 'plotter': | |
249 |
|
253 | |||
250 | if not opId: |
|
254 | if not opId: | |
251 | raise ValueError, "opId parameter should be defined" |
|
255 | raise ValueError, "opId parameter should be defined" | |
252 |
|
256 | |||
253 | if opId not in self.operations2RunDict.keys(): |
|
257 | if opId not in self.operations2RunDict.keys(): | |
254 | raise ValueError, "Any operation with id=%s has been added" %str(opId) |
|
258 | raise ValueError, "Any operation with id=%s has been added" %str(opId) | |
255 |
|
259 | |||
256 | sts = self.callObject(opId) |
|
260 | sts = self.callObject(opId) | |
257 |
|
261 | |||
258 | else: |
|
262 | else: | |
259 | raise ValueError, "opType should be 'self', 'external' or 'plotter'; and not '%s'" %opType |
|
263 | raise ValueError, "opType should be 'self', 'external' or 'plotter'; and not '%s'" %opType | |
260 |
|
264 | |||
261 | return sts |
|
265 | return sts | |
262 |
|
266 | |||
263 | def setInput(self, dataIn): |
|
267 | def setInput(self, dataIn): | |
264 |
|
268 | |||
265 | self.dataIn = dataIn |
|
269 | self.dataIn = dataIn | |
266 | self.dataInList.append(dataIn) |
|
270 | self.dataInList.append(dataIn) | |
267 |
|
271 | |||
268 | def getOutputObj(self): |
|
272 | def getOutputObj(self): | |
269 |
|
273 | |||
270 | return self.dataOut |
|
274 | return self.dataOut | |
271 |
|
275 | |||
272 | def checkInputs(self): |
|
276 | def checkInputs(self): | |
273 |
|
277 | |||
274 | for thisDataIn in self.dataInList: |
|
278 | for thisDataIn in self.dataInList: | |
275 |
|
279 | |||
276 | if thisDataIn.isEmpty(): |
|
280 | if thisDataIn.isEmpty(): | |
277 | return False |
|
281 | return False | |
278 |
|
282 | |||
279 | return True |
|
283 | return True | |
280 |
|
284 | |||
281 | def setup(self): |
|
285 | def setup(self): | |
282 |
|
286 | |||
283 | raise NotImplementedError |
|
287 | raise NotImplementedError | |
284 |
|
288 | |||
285 | def run(self): |
|
289 | def run(self): | |
286 |
|
290 | |||
287 | raise NotImplementedError |
|
291 | raise NotImplementedError | |
288 |
|
292 | |||
289 | def close(self): |
|
293 | def close(self): | |
290 | #Close every thread, queue or any other object here is it is neccesary. |
|
294 | #Close every thread, queue or any other object here is it is neccesary. | |
291 | return |
|
295 | return | |
292 |
|
296 | |||
293 | class Operation(object): |
|
297 | class Operation(object): | |
294 |
|
298 | |||
295 | """ |
|
299 | """ | |
296 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
300 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit | |
297 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
301 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de | |
298 | acumulacion dentro de esta clase |
|
302 | acumulacion dentro de esta clase | |
299 |
|
303 | |||
300 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
304 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) | |
301 |
|
305 | |||
302 | """ |
|
306 | """ | |
303 |
|
307 | |||
304 | __buffer = None |
|
308 | __buffer = None | |
305 | isConfig = False |
|
309 | isConfig = False | |
306 |
|
310 | |||
307 | def __init__(self, **kwargs): |
|
311 | def __init__(self, **kwargs): | |
308 |
|
312 | |||
309 | self.__buffer = None |
|
313 | self.__buffer = None | |
310 | self.isConfig = False |
|
314 | self.isConfig = False | |
311 | self.kwargs = kwargs |
|
315 | self.kwargs = kwargs | |
|
316 | if not hasattr(self, 'name'): | |||
|
317 | self.name = self.__class__.__name__ | |||
312 | checkKwargs(self.run, kwargs) |
|
318 | checkKwargs(self.run, kwargs) | |
313 |
|
319 | |||
314 | def getAllowedArgs(self): |
|
320 | def getAllowedArgs(self): | |
315 | return inspect.getargspec(self.run).args |
|
321 | return inspect.getargspec(self.run).args | |
316 |
|
322 | |||
317 | def setup(self): |
|
323 | def setup(self): | |
318 |
|
324 | |||
319 | self.isConfig = True |
|
325 | self.isConfig = True | |
320 |
|
326 | |||
321 | raise NotImplementedError |
|
327 | raise NotImplementedError | |
322 |
|
328 | |||
323 | def run(self, dataIn, **kwargs): |
|
329 | def run(self, dataIn, **kwargs): | |
324 |
|
330 | |||
325 | """ |
|
331 | """ | |
326 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
332 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |
327 | atributos del objeto dataIn. |
|
333 | atributos del objeto dataIn. | |
328 |
|
334 | |||
329 | Input: |
|
335 | Input: | |
330 |
|
336 | |||
331 | dataIn : objeto del tipo JROData |
|
337 | dataIn : objeto del tipo JROData | |
332 |
|
338 | |||
333 | Return: |
|
339 | Return: | |
334 |
|
340 | |||
335 | None |
|
341 | None | |
336 |
|
342 | |||
337 | Affected: |
|
343 | Affected: | |
338 | __buffer : buffer de recepcion de datos. |
|
344 | __buffer : buffer de recepcion de datos. | |
339 |
|
345 | |||
340 | """ |
|
346 | """ | |
341 | if not self.isConfig: |
|
347 | if not self.isConfig: | |
342 | self.setup(**kwargs) |
|
348 | self.setup(**kwargs) | |
343 |
|
349 | |||
344 | raise NotImplementedError |
|
350 | raise NotImplementedError | |
345 |
|
351 | |||
346 | def close(self): |
|
352 | def close(self): | |
347 |
|
353 | |||
348 | pass |
|
354 | pass |
@@ -1,4044 +1,4044 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import copy_reg |
|
13 | import copy_reg | |
14 | import cPickle |
|
14 | import cPickle | |
15 | import types |
|
15 | import types | |
16 | from functools import partial |
|
16 | from functools import partial | |
17 | import time |
|
17 | import time | |
18 | #from sklearn.cluster import KMeans |
|
18 | #from sklearn.cluster import KMeans | |
19 |
|
19 | |||
20 |
|
20 | |||
21 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
21 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
22 | from jroproc_base import ProcessingUnit, Operation |
|
22 | from jroproc_base import ProcessingUnit, Operation | |
23 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
23 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
24 | from scipy import asarray as ar,exp |
|
24 | from scipy import asarray as ar,exp | |
25 | from scipy.optimize import curve_fit |
|
25 | from scipy.optimize import curve_fit | |
26 |
|
26 | |||
27 | import warnings |
|
27 | import warnings | |
28 | from numpy import NaN |
|
28 | from numpy import NaN | |
29 | from scipy.optimize.optimize import OptimizeWarning |
|
29 | from scipy.optimize.optimize import OptimizeWarning | |
30 | warnings.filterwarnings('ignore') |
|
30 | warnings.filterwarnings('ignore') | |
31 |
|
31 | |||
32 |
|
32 | |||
33 | SPEED_OF_LIGHT = 299792458 |
|
33 | SPEED_OF_LIGHT = 299792458 | |
34 |
|
34 | |||
35 |
|
35 | |||
36 | '''solving pickling issue''' |
|
36 | '''solving pickling issue''' | |
37 |
|
37 | |||
38 | def _pickle_method(method): |
|
38 | def _pickle_method(method): | |
39 | func_name = method.im_func.__name__ |
|
39 | func_name = method.im_func.__name__ | |
40 | obj = method.im_self |
|
40 | obj = method.im_self | |
41 | cls = method.im_class |
|
41 | cls = method.im_class | |
42 | return _unpickle_method, (func_name, obj, cls) |
|
42 | return _unpickle_method, (func_name, obj, cls) | |
43 |
|
43 | |||
44 | def _unpickle_method(func_name, obj, cls): |
|
44 | def _unpickle_method(func_name, obj, cls): | |
45 | for cls in cls.mro(): |
|
45 | for cls in cls.mro(): | |
46 | try: |
|
46 | try: | |
47 | func = cls.__dict__[func_name] |
|
47 | func = cls.__dict__[func_name] | |
48 | except KeyError: |
|
48 | except KeyError: | |
49 | pass |
|
49 | pass | |
50 | else: |
|
50 | else: | |
51 | break |
|
51 | break | |
52 | return func.__get__(obj, cls) |
|
52 | return func.__get__(obj, cls) | |
53 |
|
53 | |||
54 | class ParametersProc(ProcessingUnit): |
|
54 | class ParametersProc(ProcessingUnit): | |
55 |
|
55 | |||
56 | nSeconds = None |
|
56 | nSeconds = None | |
57 |
|
57 | |||
58 | def __init__(self): |
|
58 | def __init__(self): | |
59 | ProcessingUnit.__init__(self) |
|
59 | ProcessingUnit.__init__(self) | |
60 |
|
60 | |||
61 | # self.objectDict = {} |
|
61 | # self.objectDict = {} | |
62 | self.buffer = None |
|
62 | self.buffer = None | |
63 | self.firstdatatime = None |
|
63 | self.firstdatatime = None | |
64 | self.profIndex = 0 |
|
64 | self.profIndex = 0 | |
65 | self.dataOut = Parameters() |
|
65 | self.dataOut = Parameters() | |
66 |
|
66 | |||
67 | def __updateObjFromInput(self): |
|
67 | def __updateObjFromInput(self): | |
68 |
|
68 | |||
69 | self.dataOut.inputUnit = self.dataIn.type |
|
69 | self.dataOut.inputUnit = self.dataIn.type | |
70 |
|
70 | |||
71 | self.dataOut.timeZone = self.dataIn.timeZone |
|
71 | self.dataOut.timeZone = self.dataIn.timeZone | |
72 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
72 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
73 | self.dataOut.errorCount = self.dataIn.errorCount |
|
73 | self.dataOut.errorCount = self.dataIn.errorCount | |
74 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
74 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
75 |
|
75 | |||
76 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
76 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
77 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
77 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
78 | self.dataOut.channelList = self.dataIn.channelList |
|
78 | self.dataOut.channelList = self.dataIn.channelList | |
79 | self.dataOut.heightList = self.dataIn.heightList |
|
79 | self.dataOut.heightList = self.dataIn.heightList | |
80 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
80 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
81 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
81 | # self.dataOut.nHeights = self.dataIn.nHeights | |
82 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
82 | # self.dataOut.nChannels = self.dataIn.nChannels | |
83 | self.dataOut.nBaud = self.dataIn.nBaud |
|
83 | self.dataOut.nBaud = self.dataIn.nBaud | |
84 | self.dataOut.nCode = self.dataIn.nCode |
|
84 | self.dataOut.nCode = self.dataIn.nCode | |
85 | self.dataOut.code = self.dataIn.code |
|
85 | self.dataOut.code = self.dataIn.code | |
86 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
86 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
87 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
87 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
88 | # self.dataOut.utctime = self.firstdatatime |
|
88 | # self.dataOut.utctime = self.firstdatatime | |
89 | self.dataOut.utctime = self.dataIn.utctime |
|
89 | self.dataOut.utctime = self.dataIn.utctime | |
90 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
90 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
91 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
91 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
92 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
92 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
93 | # self.dataOut.nIncohInt = 1 |
|
93 | # self.dataOut.nIncohInt = 1 | |
94 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
94 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
95 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
95 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
96 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
96 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
97 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
97 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
98 | self.dataOut.frequency = self.dataIn.frequency |
|
98 | self.dataOut.frequency = self.dataIn.frequency | |
99 | # self.dataOut.noise = self.dataIn.noise |
|
99 | # self.dataOut.noise = self.dataIn.noise | |
100 |
|
100 | |||
101 | def run(self): |
|
101 | def run(self): | |
102 |
|
102 | |||
103 | #---------------------- Voltage Data --------------------------- |
|
103 | #---------------------- Voltage Data --------------------------- | |
104 |
|
104 | |||
105 | if self.dataIn.type == "Voltage": |
|
105 | if self.dataIn.type == "Voltage": | |
106 |
|
106 | |||
107 | self.__updateObjFromInput() |
|
107 | self.__updateObjFromInput() | |
108 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
108 | self.dataOut.data_pre = self.dataIn.data.copy() | |
109 | self.dataOut.flagNoData = False |
|
109 | self.dataOut.flagNoData = False | |
110 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
110 | self.dataOut.utctimeInit = self.dataIn.utctime | |
111 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
111 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
112 | return |
|
112 | return | |
113 |
|
113 | |||
114 | #---------------------- Spectra Data --------------------------- |
|
114 | #---------------------- Spectra Data --------------------------- | |
115 |
|
115 | |||
116 | if self.dataIn.type == "Spectra": |
|
116 | if self.dataIn.type == "Spectra": | |
117 |
|
117 | |||
118 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) |
|
118 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) | |
119 | self.dataOut.data_spc = self.dataIn.data_spc |
|
119 | self.dataOut.data_spc = self.dataIn.data_spc | |
120 | self.dataOut.data_cspc = self.dataIn.data_cspc |
|
120 | self.dataOut.data_cspc = self.dataIn.data_cspc | |
121 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
121 | self.dataOut.nProfiles = self.dataIn.nProfiles | |
122 | self.dataOut.nIncohInt = self.dataIn.nIncohInt |
|
122 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
123 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints |
|
123 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
124 | self.dataOut.ippFactor = self.dataIn.ippFactor |
|
124 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
125 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
125 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
126 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
126 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
127 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
127 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
128 | self.dataOut.pairsList = self.dataIn.pairsList |
|
128 | self.dataOut.pairsList = self.dataIn.pairsList | |
129 | self.dataOut.groupList = self.dataIn.pairsList |
|
129 | self.dataOut.groupList = self.dataIn.pairsList | |
130 | self.dataOut.flagNoData = False |
|
130 | self.dataOut.flagNoData = False | |
131 |
|
131 | |||
132 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
132 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
133 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
133 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
134 | else: self.dataOut.ChanDist = None |
|
134 | else: self.dataOut.ChanDist = None | |
135 |
|
135 | |||
136 | if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
136 | if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
137 | self.dataOut.VelRange = self.dataIn.VelRange |
|
137 | self.dataOut.VelRange = self.dataIn.VelRange | |
138 | else: self.dataOut.VelRange = None |
|
138 | else: self.dataOut.VelRange = None | |
139 |
|
139 | |||
140 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
140 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
141 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
141 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
142 |
|
142 | |||
143 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
143 | if hasattr(self.dataIn, 'NPW'): #NPW | |
144 | self.dataOut.NPW = self.dataIn.NPW |
|
144 | self.dataOut.NPW = self.dataIn.NPW | |
145 |
|
145 | |||
146 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
146 | if hasattr(self.dataIn, 'COFA'): #COFA | |
147 | self.dataOut.COFA = self.dataIn.COFA |
|
147 | self.dataOut.COFA = self.dataIn.COFA | |
148 |
|
148 | |||
149 |
|
149 | |||
150 |
|
150 | |||
151 | #---------------------- Correlation Data --------------------------- |
|
151 | #---------------------- Correlation Data --------------------------- | |
152 |
|
152 | |||
153 | if self.dataIn.type == "Correlation": |
|
153 | if self.dataIn.type == "Correlation": | |
154 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
154 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
155 |
|
155 | |||
156 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
156 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
157 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
157 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
158 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
158 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
159 |
|
159 | |||
160 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
160 | self.dataOut.abscissaList = self.dataIn.lagRange | |
161 | self.dataOut.noise = self.dataIn.noise |
|
161 | self.dataOut.noise = self.dataIn.noise | |
162 | self.dataOut.data_SNR = self.dataIn.SNR |
|
162 | self.dataOut.data_SNR = self.dataIn.SNR | |
163 | self.dataOut.flagNoData = False |
|
163 | self.dataOut.flagNoData = False | |
164 | self.dataOut.nAvg = self.dataIn.nAvg |
|
164 | self.dataOut.nAvg = self.dataIn.nAvg | |
165 |
|
165 | |||
166 | #---------------------- Parameters Data --------------------------- |
|
166 | #---------------------- Parameters Data --------------------------- | |
167 |
|
167 | |||
168 | if self.dataIn.type == "Parameters": |
|
168 | if self.dataIn.type == "Parameters": | |
169 | self.dataOut.copy(self.dataIn) |
|
169 | self.dataOut.copy(self.dataIn) | |
170 | self.dataOut.flagNoData = False |
|
170 | self.dataOut.flagNoData = False | |
171 |
|
171 | |||
172 | return True |
|
172 | return True | |
173 |
|
173 | |||
174 | self.__updateObjFromInput() |
|
174 | self.__updateObjFromInput() | |
175 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
175 | self.dataOut.utctimeInit = self.dataIn.utctime | |
176 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
176 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
177 |
|
177 | |||
178 | return |
|
178 | return | |
179 |
|
179 | |||
180 |
|
180 | |||
181 | def target(tups): |
|
181 | def target(tups): | |
182 |
|
182 | |||
183 | obj, args = tups |
|
183 | obj, args = tups | |
184 | #print 'TARGETTT', obj, args |
|
184 | #print 'TARGETTT', obj, args | |
185 | return obj.FitGau(args) |
|
185 | return obj.FitGau(args) | |
186 |
|
186 | |||
187 | class GaussianFit(Operation): |
|
187 | class GaussianFit(Operation): | |
188 |
|
188 | |||
189 | ''' |
|
189 | ''' | |
190 | Function that fit of one and two generalized gaussians (gg) based |
|
190 | Function that fit of one and two generalized gaussians (gg) based | |
191 | on the PSD shape across an "power band" identified from a cumsum of |
|
191 | on the PSD shape across an "power band" identified from a cumsum of | |
192 | the measured spectrum - noise. |
|
192 | the measured spectrum - noise. | |
193 |
|
193 | |||
194 | Input: |
|
194 | Input: | |
195 | self.dataOut.data_pre : SelfSpectra |
|
195 | self.dataOut.data_pre : SelfSpectra | |
196 |
|
196 | |||
197 | Output: |
|
197 | Output: | |
198 | self.dataOut.GauSPC : SPC_ch1, SPC_ch2 |
|
198 | self.dataOut.GauSPC : SPC_ch1, SPC_ch2 | |
199 |
|
199 | |||
200 | ''' |
|
200 | ''' | |
201 | def __init__(self, **kwargs): |
|
201 | def __init__(self, **kwargs): | |
202 | Operation.__init__(self, **kwargs) |
|
202 | Operation.__init__(self, **kwargs) | |
203 | self.i=0 |
|
203 | self.i=0 | |
204 |
|
204 | |||
205 |
|
205 | |||
206 | def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
206 | def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
207 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
207 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
208 | input: spc |
|
208 | input: spc | |
209 | output: |
|
209 | output: | |
210 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
210 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
211 | """ |
|
211 | """ | |
212 |
|
212 | |||
213 | self.spc = dataOut.data_pre[0].copy() |
|
213 | self.spc = dataOut.data_pre[0].copy() | |
214 |
|
214 | |||
215 |
|
215 | |||
216 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape |
|
216 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape | |
217 |
|
217 | |||
218 |
|
218 | |||
219 | #plt.figure(50) |
|
219 | #plt.figure(50) | |
220 | #plt.subplot(121) |
|
220 | #plt.subplot(121) | |
221 | #plt.plot(self.spc,'k',label='spc(66)') |
|
221 | #plt.plot(self.spc,'k',label='spc(66)') | |
222 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
222 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
223 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
223 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
224 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
224 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
225 | #plt.legend() |
|
225 | #plt.legend() | |
226 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
226 | #plt.title('DATOS A ALTURA DE 7500 METROS') | |
227 | #plt.show() |
|
227 | #plt.show() | |
228 |
|
228 | |||
229 | self.Num_Hei = self.spc.shape[2] |
|
229 | self.Num_Hei = self.spc.shape[2] | |
230 | #self.Num_Bin = len(self.spc) |
|
230 | #self.Num_Bin = len(self.spc) | |
231 | self.Num_Bin = self.spc.shape[1] |
|
231 | self.Num_Bin = self.spc.shape[1] | |
232 | self.Num_Chn = self.spc.shape[0] |
|
232 | self.Num_Chn = self.spc.shape[0] | |
233 |
|
233 | |||
234 | Vrange = dataOut.abscissaList |
|
234 | Vrange = dataOut.abscissaList | |
235 |
|
235 | |||
236 | #print 'self.spc2', numpy.asarray(self.spc).shape |
|
236 | #print 'self.spc2', numpy.asarray(self.spc).shape | |
237 |
|
237 | |||
238 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) |
|
238 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) | |
239 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
239 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
240 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
240 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
241 | SPC_ch1[:] = numpy.NaN |
|
241 | SPC_ch1[:] = numpy.NaN | |
242 | SPC_ch2[:] = numpy.NaN |
|
242 | SPC_ch2[:] = numpy.NaN | |
243 |
|
243 | |||
244 |
|
244 | |||
245 | start_time = time.time() |
|
245 | start_time = time.time() | |
246 |
|
246 | |||
247 | noise_ = dataOut.spc_noise[0].copy() |
|
247 | noise_ = dataOut.spc_noise[0].copy() | |
248 |
|
248 | |||
249 |
|
249 | |||
250 |
|
250 | |||
251 | pool = Pool(processes=self.Num_Chn) |
|
251 | pool = Pool(processes=self.Num_Chn) | |
252 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
252 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
253 | objs = [self for __ in range(self.Num_Chn)] |
|
253 | objs = [self for __ in range(self.Num_Chn)] | |
254 | attrs = zip(objs, args) |
|
254 | attrs = zip(objs, args) | |
255 | gauSPC = pool.map(target, attrs) |
|
255 | gauSPC = pool.map(target, attrs) | |
256 | dataOut.GauSPC = numpy.asarray(gauSPC) |
|
256 | dataOut.GauSPC = numpy.asarray(gauSPC) | |
257 | # ret = [] |
|
257 | # ret = [] | |
258 | # for n in range(self.Num_Chn): |
|
258 | # for n in range(self.Num_Chn): | |
259 | # self.FitGau(args[n]) |
|
259 | # self.FitGau(args[n]) | |
260 | # dataOut.GauSPC = ret |
|
260 | # dataOut.GauSPC = ret | |
261 |
|
261 | |||
262 |
|
262 | |||
263 |
|
263 | |||
264 | # for ch in range(self.Num_Chn): |
|
264 | # for ch in range(self.Num_Chn): | |
265 | # |
|
265 | # | |
266 | # for ht in range(self.Num_Hei): |
|
266 | # for ht in range(self.Num_Hei): | |
267 | # #print (numpy.asarray(self.spc).shape) |
|
267 | # #print (numpy.asarray(self.spc).shape) | |
268 | # spc = numpy.asarray(self.spc)[ch,:,ht] |
|
268 | # spc = numpy.asarray(self.spc)[ch,:,ht] | |
269 | # |
|
269 | # | |
270 | # ############################################# |
|
270 | # ############################################# | |
271 | # # normalizing spc and noise |
|
271 | # # normalizing spc and noise | |
272 | # # This part differs from gg1 |
|
272 | # # This part differs from gg1 | |
273 | # spc_norm_max = max(spc) |
|
273 | # spc_norm_max = max(spc) | |
274 | # spc = spc / spc_norm_max |
|
274 | # spc = spc / spc_norm_max | |
275 | # pnoise = pnoise / spc_norm_max |
|
275 | # pnoise = pnoise / spc_norm_max | |
276 | # ############################################# |
|
276 | # ############################################# | |
277 | # |
|
277 | # | |
278 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's |
|
278 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's | |
279 | # fatspectra=1.0 |
|
279 | # fatspectra=1.0 | |
280 | # else: |
|
280 | # else: | |
281 | # fatspectra=0.5 |
|
281 | # fatspectra=0.5 | |
282 | # |
|
282 | # | |
283 | # wnoise = noise_ / spc_norm_max |
|
283 | # wnoise = noise_ / spc_norm_max | |
284 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise |
|
284 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise | |
285 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
285 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
286 | # #if wnoise>1.1*pnoise: # to be tested later |
|
286 | # #if wnoise>1.1*pnoise: # to be tested later | |
287 | # # wnoise=pnoise |
|
287 | # # wnoise=pnoise | |
288 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
288 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |
289 | # spc=spc-wnoise |
|
289 | # spc=spc-wnoise | |
290 | # |
|
290 | # | |
291 | # minx=numpy.argmin(spc) |
|
291 | # minx=numpy.argmin(spc) | |
292 | # spcs=numpy.roll(spc,-minx) |
|
292 | # spcs=numpy.roll(spc,-minx) | |
293 | # cum=numpy.cumsum(spcs) |
|
293 | # cum=numpy.cumsum(spcs) | |
294 | # tot_noise=wnoise * self.Num_Bin #64; |
|
294 | # tot_noise=wnoise * self.Num_Bin #64; | |
295 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
295 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
296 | # #snr=tot_signal/tot_noise |
|
296 | # #snr=tot_signal/tot_noise | |
297 | # #snr=cum[-1]/tot_noise |
|
297 | # #snr=cum[-1]/tot_noise | |
298 | # |
|
298 | # | |
299 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
299 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
300 | # |
|
300 | # | |
301 | # snr = sum(spcs)/tot_noise |
|
301 | # snr = sum(spcs)/tot_noise | |
302 | # snrdB=10.*numpy.log10(snr) |
|
302 | # snrdB=10.*numpy.log10(snr) | |
303 | # |
|
303 | # | |
304 | # #if snrdB < -9 : |
|
304 | # #if snrdB < -9 : | |
305 | # # snrdB = numpy.NaN |
|
305 | # # snrdB = numpy.NaN | |
306 | # # continue |
|
306 | # # continue | |
307 | # |
|
307 | # | |
308 | # #print 'snr',snrdB # , sum(spcs) , tot_noise |
|
308 | # #print 'snr',snrdB # , sum(spcs) , tot_noise | |
309 | # |
|
309 | # | |
310 | # |
|
310 | # | |
311 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
311 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
312 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
312 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
313 | # |
|
313 | # | |
314 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
314 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
315 | # cumlo=cummax*epsi; |
|
315 | # cumlo=cummax*epsi; | |
316 | # cumhi=cummax*(1-epsi) |
|
316 | # cumhi=cummax*(1-epsi) | |
317 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
317 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
318 | # |
|
318 | # | |
319 | # #if len(powerindex)==1: |
|
319 | # #if len(powerindex)==1: | |
320 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
320 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
321 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
321 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
322 | # #elif len(powerindex)<4*fatspectra: |
|
322 | # #elif len(powerindex)<4*fatspectra: | |
323 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
323 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
324 | # |
|
324 | # | |
325 | # if len(powerindex) < 1:# case for powerindex 0 |
|
325 | # if len(powerindex) < 1:# case for powerindex 0 | |
326 | # continue |
|
326 | # continue | |
327 | # powerlo=powerindex[0] |
|
327 | # powerlo=powerindex[0] | |
328 | # powerhi=powerindex[-1] |
|
328 | # powerhi=powerindex[-1] | |
329 | # powerwidth=powerhi-powerlo |
|
329 | # powerwidth=powerhi-powerlo | |
330 | # |
|
330 | # | |
331 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
331 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
332 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
332 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
333 | # midpeak=(firstpeak+secondpeak)/2. |
|
333 | # midpeak=(firstpeak+secondpeak)/2. | |
334 | # firstamp=spcs[int(firstpeak)] |
|
334 | # firstamp=spcs[int(firstpeak)] | |
335 | # secondamp=spcs[int(secondpeak)] |
|
335 | # secondamp=spcs[int(secondpeak)] | |
336 | # midamp=spcs[int(midpeak)] |
|
336 | # midamp=spcs[int(midpeak)] | |
337 | # #x=numpy.spc.shape[1] |
|
337 | # #x=numpy.spc.shape[1] | |
338 | # |
|
338 | # | |
339 | # #x=numpy.arange(64) |
|
339 | # #x=numpy.arange(64) | |
340 | # x=numpy.arange( self.Num_Bin ) |
|
340 | # x=numpy.arange( self.Num_Bin ) | |
341 | # y_data=spc+wnoise |
|
341 | # y_data=spc+wnoise | |
342 | # |
|
342 | # | |
343 | # # single gaussian |
|
343 | # # single gaussian | |
344 | # #shift0=numpy.mod(midpeak+minx,64) |
|
344 | # #shift0=numpy.mod(midpeak+minx,64) | |
345 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
345 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
346 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
346 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
347 | # power0=2. |
|
347 | # power0=2. | |
348 | # amplitude0=midamp |
|
348 | # amplitude0=midamp | |
349 | # state0=[shift0,width0,amplitude0,power0,wnoise] |
|
349 | # state0=[shift0,width0,amplitude0,power0,wnoise] | |
350 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
350 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
351 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
351 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
352 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) |
|
352 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) | |
353 | # # bnds = range of fft, power width, amplitude, power, noise |
|
353 | # # bnds = range of fft, power width, amplitude, power, noise | |
354 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
354 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
355 | # |
|
355 | # | |
356 | # chiSq1=lsq1[1]; |
|
356 | # chiSq1=lsq1[1]; | |
357 | # jack1= self.y_jacobian1(x,lsq1[0]) |
|
357 | # jack1= self.y_jacobian1(x,lsq1[0]) | |
358 | # |
|
358 | # | |
359 | # |
|
359 | # | |
360 | # try: |
|
360 | # try: | |
361 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
361 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |
362 | # except: |
|
362 | # except: | |
363 | # std1=32.; sigmas1=numpy.ones(5) |
|
363 | # std1=32.; sigmas1=numpy.ones(5) | |
364 | # else: |
|
364 | # else: | |
365 | # std1=sigmas1[0] |
|
365 | # std1=sigmas1[0] | |
366 | # |
|
366 | # | |
367 | # |
|
367 | # | |
368 | # if fatspectra<1.0 and powerwidth<4: |
|
368 | # if fatspectra<1.0 and powerwidth<4: | |
369 | # choice=0 |
|
369 | # choice=0 | |
370 | # Amplitude0=lsq1[0][2] |
|
370 | # Amplitude0=lsq1[0][2] | |
371 | # shift0=lsq1[0][0] |
|
371 | # shift0=lsq1[0][0] | |
372 | # width0=lsq1[0][1] |
|
372 | # width0=lsq1[0][1] | |
373 | # p0=lsq1[0][3] |
|
373 | # p0=lsq1[0][3] | |
374 | # Amplitude1=0. |
|
374 | # Amplitude1=0. | |
375 | # shift1=0. |
|
375 | # shift1=0. | |
376 | # width1=0. |
|
376 | # width1=0. | |
377 | # p1=0. |
|
377 | # p1=0. | |
378 | # noise=lsq1[0][4] |
|
378 | # noise=lsq1[0][4] | |
379 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
379 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
380 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
380 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
381 | # |
|
381 | # | |
382 | # # two gaussians |
|
382 | # # two gaussians | |
383 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
383 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
384 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
384 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
385 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
385 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
386 | # width0=powerwidth/6.; |
|
386 | # width0=powerwidth/6.; | |
387 | # width1=width0 |
|
387 | # width1=width0 | |
388 | # power0=2.; |
|
388 | # power0=2.; | |
389 | # power1=power0 |
|
389 | # power1=power0 | |
390 | # amplitude0=firstamp; |
|
390 | # amplitude0=firstamp; | |
391 | # amplitude1=secondamp |
|
391 | # amplitude1=secondamp | |
392 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
392 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
393 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
393 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
394 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
394 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
395 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
395 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
396 | # |
|
396 | # | |
397 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
397 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
398 | # |
|
398 | # | |
399 | # |
|
399 | # | |
400 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
400 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |
401 | # |
|
401 | # | |
402 | # |
|
402 | # | |
403 | # try: |
|
403 | # try: | |
404 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
404 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |
405 | # except: |
|
405 | # except: | |
406 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
406 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |
407 | # else: |
|
407 | # else: | |
408 | # std2a=sigmas2[0]; std2b=sigmas2[4] |
|
408 | # std2a=sigmas2[0]; std2b=sigmas2[4] | |
409 | # |
|
409 | # | |
410 | # |
|
410 | # | |
411 | # |
|
411 | # | |
412 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
412 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
413 | # |
|
413 | # | |
414 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
414 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
415 | # if oneG: |
|
415 | # if oneG: | |
416 | # choice=0 |
|
416 | # choice=0 | |
417 | # else: |
|
417 | # else: | |
418 | # w1=lsq2[0][1]; w2=lsq2[0][5] |
|
418 | # w1=lsq2[0][1]; w2=lsq2[0][5] | |
419 | # a1=lsq2[0][2]; a2=lsq2[0][6] |
|
419 | # a1=lsq2[0][2]; a2=lsq2[0][6] | |
420 | # p1=lsq2[0][3]; p2=lsq2[0][7] |
|
420 | # p1=lsq2[0][3]; p2=lsq2[0][7] | |
421 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
421 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
422 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
422 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
423 | # |
|
423 | # | |
424 | # if gp1>gp2: |
|
424 | # if gp1>gp2: | |
425 | # if a1>0.7*a2: |
|
425 | # if a1>0.7*a2: | |
426 | # choice=1 |
|
426 | # choice=1 | |
427 | # else: |
|
427 | # else: | |
428 | # choice=2 |
|
428 | # choice=2 | |
429 | # elif gp2>gp1: |
|
429 | # elif gp2>gp1: | |
430 | # if a2>0.7*a1: |
|
430 | # if a2>0.7*a1: | |
431 | # choice=2 |
|
431 | # choice=2 | |
432 | # else: |
|
432 | # else: | |
433 | # choice=1 |
|
433 | # choice=1 | |
434 | # else: |
|
434 | # else: | |
435 | # choice=numpy.argmax([a1,a2])+1 |
|
435 | # choice=numpy.argmax([a1,a2])+1 | |
436 | # #else: |
|
436 | # #else: | |
437 | # #choice=argmin([std2a,std2b])+1 |
|
437 | # #choice=argmin([std2a,std2b])+1 | |
438 | # |
|
438 | # | |
439 | # else: # with low SNR go to the most energetic peak |
|
439 | # else: # with low SNR go to the most energetic peak | |
440 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
440 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
441 | # |
|
441 | # | |
442 | # #print 'choice',choice |
|
442 | # #print 'choice',choice | |
443 | # |
|
443 | # | |
444 | # if choice==0: # pick the single gaussian fit |
|
444 | # if choice==0: # pick the single gaussian fit | |
445 | # Amplitude0=lsq1[0][2] |
|
445 | # Amplitude0=lsq1[0][2] | |
446 | # shift0=lsq1[0][0] |
|
446 | # shift0=lsq1[0][0] | |
447 | # width0=lsq1[0][1] |
|
447 | # width0=lsq1[0][1] | |
448 | # p0=lsq1[0][3] |
|
448 | # p0=lsq1[0][3] | |
449 | # Amplitude1=0. |
|
449 | # Amplitude1=0. | |
450 | # shift1=0. |
|
450 | # shift1=0. | |
451 | # width1=0. |
|
451 | # width1=0. | |
452 | # p1=0. |
|
452 | # p1=0. | |
453 | # noise=lsq1[0][4] |
|
453 | # noise=lsq1[0][4] | |
454 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
454 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
455 | # Amplitude0 = lsq2[0][2] |
|
455 | # Amplitude0 = lsq2[0][2] | |
456 | # shift0 = lsq2[0][0] |
|
456 | # shift0 = lsq2[0][0] | |
457 | # width0 = lsq2[0][1] |
|
457 | # width0 = lsq2[0][1] | |
458 | # p0 = lsq2[0][3] |
|
458 | # p0 = lsq2[0][3] | |
459 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
459 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
460 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
460 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
461 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
461 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
462 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
462 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
463 | # noise = lsq2[0][8] |
|
463 | # noise = lsq2[0][8] | |
464 | # else: # the second one |
|
464 | # else: # the second one | |
465 | # Amplitude0 = lsq2[0][6] |
|
465 | # Amplitude0 = lsq2[0][6] | |
466 | # shift0 = lsq2[0][4] |
|
466 | # shift0 = lsq2[0][4] | |
467 | # width0 = lsq2[0][5] |
|
467 | # width0 = lsq2[0][5] | |
468 | # p0 = lsq2[0][7] |
|
468 | # p0 = lsq2[0][7] | |
469 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
469 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
470 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
470 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
471 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
471 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
472 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
472 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
473 | # noise = lsq2[0][8] |
|
473 | # noise = lsq2[0][8] | |
474 | # |
|
474 | # | |
475 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
475 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
476 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
476 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
477 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
477 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
478 | # #print 'SPC_ch1.shape',SPC_ch1.shape |
|
478 | # #print 'SPC_ch1.shape',SPC_ch1.shape | |
479 | # #print 'SPC_ch2.shape',SPC_ch2.shape |
|
479 | # #print 'SPC_ch2.shape',SPC_ch2.shape | |
480 | # #dataOut.data_param = SPC_ch1 |
|
480 | # #dataOut.data_param = SPC_ch1 | |
481 | # GauSPC[0] = SPC_ch1 |
|
481 | # GauSPC[0] = SPC_ch1 | |
482 | # GauSPC[1] = SPC_ch2 |
|
482 | # GauSPC[1] = SPC_ch2 | |
483 |
|
483 | |||
484 | # #plt.gcf().clear() |
|
484 | # #plt.gcf().clear() | |
485 | # plt.figure(50+self.i) |
|
485 | # plt.figure(50+self.i) | |
486 | # self.i=self.i+1 |
|
486 | # self.i=self.i+1 | |
487 | # #plt.subplot(121) |
|
487 | # #plt.subplot(121) | |
488 | # plt.plot(self.spc,'k')#,label='spc(66)') |
|
488 | # plt.plot(self.spc,'k')#,label='spc(66)') | |
489 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') |
|
489 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') | |
490 | # #plt.plot(SPC_ch2,'r')#,label='gg2') |
|
490 | # #plt.plot(SPC_ch2,'r')#,label='gg2') | |
491 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
491 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
492 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
492 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
493 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
493 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
494 | # plt.legend() |
|
494 | # plt.legend() | |
495 | # plt.title('DATOS A ALTURA DE 7500 METROS') |
|
495 | # plt.title('DATOS A ALTURA DE 7500 METROS') | |
496 | # plt.show() |
|
496 | # plt.show() | |
497 | # print 'shift0', shift0 |
|
497 | # print 'shift0', shift0 | |
498 | # print 'Amplitude0', Amplitude0 |
|
498 | # print 'Amplitude0', Amplitude0 | |
499 | # print 'width0', width0 |
|
499 | # print 'width0', width0 | |
500 | # print 'p0', p0 |
|
500 | # print 'p0', p0 | |
501 | # print '========================' |
|
501 | # print '========================' | |
502 | # print 'shift1', shift1 |
|
502 | # print 'shift1', shift1 | |
503 | # print 'Amplitude1', Amplitude1 |
|
503 | # print 'Amplitude1', Amplitude1 | |
504 | # print 'width1', width1 |
|
504 | # print 'width1', width1 | |
505 | # print 'p1', p1 |
|
505 | # print 'p1', p1 | |
506 | # print 'noise', noise |
|
506 | # print 'noise', noise | |
507 | # print 's_noise', wnoise |
|
507 | # print 's_noise', wnoise | |
508 |
|
508 | |||
509 | print '========================================================' |
|
509 | print '========================================================' | |
510 | print 'total_time: ', time.time()-start_time |
|
510 | print 'total_time: ', time.time()-start_time | |
511 |
|
511 | |||
512 | # re-normalizing spc and noise |
|
512 | # re-normalizing spc and noise | |
513 | # This part differs from gg1 |
|
513 | # This part differs from gg1 | |
514 |
|
514 | |||
515 |
|
515 | |||
516 |
|
516 | |||
517 | ''' Parameters: |
|
517 | ''' Parameters: | |
518 | 1. Amplitude |
|
518 | 1. Amplitude | |
519 | 2. Shift |
|
519 | 2. Shift | |
520 | 3. Width |
|
520 | 3. Width | |
521 | 4. Power |
|
521 | 4. Power | |
522 | ''' |
|
522 | ''' | |
523 |
|
523 | |||
524 |
|
524 | |||
525 | ############################################################################### |
|
525 | ############################################################################### | |
526 | def FitGau(self, X): |
|
526 | def FitGau(self, X): | |
527 |
|
527 | |||
528 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
528 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
529 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
529 | #print 'VARSSSS', ch, pnoise, noise, num_intg | |
530 |
|
530 | |||
531 | #print 'HEIGHTS', self.Num_Hei |
|
531 | #print 'HEIGHTS', self.Num_Hei | |
532 |
|
532 | |||
533 | GauSPC = [] |
|
533 | GauSPC = [] | |
534 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
534 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
535 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
535 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
536 | SPC_ch1[:] = 0#numpy.NaN |
|
536 | SPC_ch1[:] = 0#numpy.NaN | |
537 | SPC_ch2[:] = 0#numpy.NaN |
|
537 | SPC_ch2[:] = 0#numpy.NaN | |
538 |
|
538 | |||
539 |
|
539 | |||
540 |
|
540 | |||
541 | for ht in range(self.Num_Hei): |
|
541 | for ht in range(self.Num_Hei): | |
542 | #print (numpy.asarray(self.spc).shape) |
|
542 | #print (numpy.asarray(self.spc).shape) | |
543 |
|
543 | |||
544 | #print 'TTTTT', ch , ht |
|
544 | #print 'TTTTT', ch , ht | |
545 | #print self.spc.shape |
|
545 | #print self.spc.shape | |
546 |
|
546 | |||
547 |
|
547 | |||
548 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
548 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
549 |
|
549 | |||
550 | ############################################# |
|
550 | ############################################# | |
551 | # normalizing spc and noise |
|
551 | # normalizing spc and noise | |
552 | # This part differs from gg1 |
|
552 | # This part differs from gg1 | |
553 | spc_norm_max = max(spc) |
|
553 | spc_norm_max = max(spc) | |
554 | spc = spc / spc_norm_max |
|
554 | spc = spc / spc_norm_max | |
555 | pnoise = pnoise / spc_norm_max |
|
555 | pnoise = pnoise / spc_norm_max | |
556 | ############################################# |
|
556 | ############################################# | |
557 |
|
557 | |||
558 | fatspectra=1.0 |
|
558 | fatspectra=1.0 | |
559 |
|
559 | |||
560 | wnoise = noise_ / spc_norm_max |
|
560 | wnoise = noise_ / spc_norm_max | |
561 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
561 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
562 | #if wnoise>1.1*pnoise: # to be tested later |
|
562 | #if wnoise>1.1*pnoise: # to be tested later | |
563 | # wnoise=pnoise |
|
563 | # wnoise=pnoise | |
564 | noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
564 | noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |
565 | spc=spc-wnoise |
|
565 | spc=spc-wnoise | |
566 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
566 | # print 'wnoise', noise_[0], spc_norm_max, wnoise | |
567 | minx=numpy.argmin(spc) |
|
567 | minx=numpy.argmin(spc) | |
568 | spcs=numpy.roll(spc,-minx) |
|
568 | spcs=numpy.roll(spc,-minx) | |
569 | cum=numpy.cumsum(spcs) |
|
569 | cum=numpy.cumsum(spcs) | |
570 | tot_noise=wnoise * self.Num_Bin #64; |
|
570 | tot_noise=wnoise * self.Num_Bin #64; | |
571 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
571 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
572 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
572 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
573 | #snr=tot_signal/tot_noise |
|
573 | #snr=tot_signal/tot_noise | |
574 | #snr=cum[-1]/tot_noise |
|
574 | #snr=cum[-1]/tot_noise | |
575 | snr = sum(spcs)/tot_noise |
|
575 | snr = sum(spcs)/tot_noise | |
576 | snrdB=10.*numpy.log10(snr) |
|
576 | snrdB=10.*numpy.log10(snr) | |
577 |
|
577 | |||
578 | if snrdB < SNRlimit : |
|
578 | if snrdB < SNRlimit : | |
579 | snr = numpy.NaN |
|
579 | snr = numpy.NaN | |
580 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
580 | SPC_ch1[:,ht] = 0#numpy.NaN | |
581 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
581 | SPC_ch1[:,ht] = 0#numpy.NaN | |
582 | GauSPC = (SPC_ch1,SPC_ch2) |
|
582 | GauSPC = (SPC_ch1,SPC_ch2) | |
583 | continue |
|
583 | continue | |
584 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
584 | #print 'snr',snrdB #, sum(spcs) , tot_noise | |
585 |
|
585 | |||
586 |
|
586 | |||
587 |
|
587 | |||
588 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
588 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
589 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
589 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
590 |
|
590 | |||
591 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
591 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
592 | cumlo=cummax*epsi; |
|
592 | cumlo=cummax*epsi; | |
593 | cumhi=cummax*(1-epsi) |
|
593 | cumhi=cummax*(1-epsi) | |
594 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
594 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
595 |
|
595 | |||
596 |
|
596 | |||
597 | if len(powerindex) < 1:# case for powerindex 0 |
|
597 | if len(powerindex) < 1:# case for powerindex 0 | |
598 | continue |
|
598 | continue | |
599 | powerlo=powerindex[0] |
|
599 | powerlo=powerindex[0] | |
600 | powerhi=powerindex[-1] |
|
600 | powerhi=powerindex[-1] | |
601 | powerwidth=powerhi-powerlo |
|
601 | powerwidth=powerhi-powerlo | |
602 |
|
602 | |||
603 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
603 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
604 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
604 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
605 | midpeak=(firstpeak+secondpeak)/2. |
|
605 | midpeak=(firstpeak+secondpeak)/2. | |
606 | firstamp=spcs[int(firstpeak)] |
|
606 | firstamp=spcs[int(firstpeak)] | |
607 | secondamp=spcs[int(secondpeak)] |
|
607 | secondamp=spcs[int(secondpeak)] | |
608 | midamp=spcs[int(midpeak)] |
|
608 | midamp=spcs[int(midpeak)] | |
609 |
|
609 | |||
610 | x=numpy.arange( self.Num_Bin ) |
|
610 | x=numpy.arange( self.Num_Bin ) | |
611 | y_data=spc+wnoise |
|
611 | y_data=spc+wnoise | |
612 |
|
612 | |||
613 | # single gaussian |
|
613 | # single gaussian | |
614 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
614 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
615 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
615 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
616 | power0=2. |
|
616 | power0=2. | |
617 | amplitude0=midamp |
|
617 | amplitude0=midamp | |
618 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
618 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
619 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
619 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
620 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
620 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
621 |
|
621 | |||
622 | chiSq1=lsq1[1]; |
|
622 | chiSq1=lsq1[1]; | |
623 | jack1= self.y_jacobian1(x,lsq1[0]) |
|
623 | jack1= self.y_jacobian1(x,lsq1[0]) | |
624 |
|
624 | |||
625 |
|
625 | |||
626 | try: |
|
626 | try: | |
627 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
627 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |
628 | except: |
|
628 | except: | |
629 | std1=32.; sigmas1=numpy.ones(5) |
|
629 | std1=32.; sigmas1=numpy.ones(5) | |
630 | else: |
|
630 | else: | |
631 | std1=sigmas1[0] |
|
631 | std1=sigmas1[0] | |
632 |
|
632 | |||
633 |
|
633 | |||
634 | if fatspectra<1.0 and powerwidth<4: |
|
634 | if fatspectra<1.0 and powerwidth<4: | |
635 | choice=0 |
|
635 | choice=0 | |
636 | Amplitude0=lsq1[0][2] |
|
636 | Amplitude0=lsq1[0][2] | |
637 | shift0=lsq1[0][0] |
|
637 | shift0=lsq1[0][0] | |
638 | width0=lsq1[0][1] |
|
638 | width0=lsq1[0][1] | |
639 | p0=lsq1[0][3] |
|
639 | p0=lsq1[0][3] | |
640 | Amplitude1=0. |
|
640 | Amplitude1=0. | |
641 | shift1=0. |
|
641 | shift1=0. | |
642 | width1=0. |
|
642 | width1=0. | |
643 | p1=0. |
|
643 | p1=0. | |
644 | noise=lsq1[0][4] |
|
644 | noise=lsq1[0][4] | |
645 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
645 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
646 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
646 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
647 |
|
647 | |||
648 | # two gaussians |
|
648 | # two gaussians | |
649 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
649 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
650 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
650 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
651 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
651 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
652 | width0=powerwidth/6.; |
|
652 | width0=powerwidth/6.; | |
653 | width1=width0 |
|
653 | width1=width0 | |
654 | power0=2.; |
|
654 | power0=2.; | |
655 | power1=power0 |
|
655 | power1=power0 | |
656 | amplitude0=firstamp; |
|
656 | amplitude0=firstamp; | |
657 | amplitude1=secondamp |
|
657 | amplitude1=secondamp | |
658 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
658 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
659 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
659 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
660 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
660 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
661 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
661 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
662 |
|
662 | |||
663 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
663 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
664 |
|
664 | |||
665 |
|
665 | |||
666 | chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
666 | chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |
667 |
|
667 | |||
668 |
|
668 | |||
669 | try: |
|
669 | try: | |
670 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
670 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |
671 | except: |
|
671 | except: | |
672 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
672 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |
673 | else: |
|
673 | else: | |
674 | std2a=sigmas2[0]; std2b=sigmas2[4] |
|
674 | std2a=sigmas2[0]; std2b=sigmas2[4] | |
675 |
|
675 | |||
676 |
|
676 | |||
677 |
|
677 | |||
678 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
678 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
679 |
|
679 | |||
680 | if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
680 | if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
681 | if oneG: |
|
681 | if oneG: | |
682 | choice=0 |
|
682 | choice=0 | |
683 | else: |
|
683 | else: | |
684 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
684 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
685 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
685 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
686 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
686 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
687 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
687 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
688 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
688 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
689 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
689 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
690 |
|
690 | |||
691 | if gp1>gp2: |
|
691 | if gp1>gp2: | |
692 | if a1>0.7*a2: |
|
692 | if a1>0.7*a2: | |
693 | choice=1 |
|
693 | choice=1 | |
694 | else: |
|
694 | else: | |
695 | choice=2 |
|
695 | choice=2 | |
696 | elif gp2>gp1: |
|
696 | elif gp2>gp1: | |
697 | if a2>0.7*a1: |
|
697 | if a2>0.7*a1: | |
698 | choice=2 |
|
698 | choice=2 | |
699 | else: |
|
699 | else: | |
700 | choice=1 |
|
700 | choice=1 | |
701 | else: |
|
701 | else: | |
702 | choice=numpy.argmax([a1,a2])+1 |
|
702 | choice=numpy.argmax([a1,a2])+1 | |
703 | #else: |
|
703 | #else: | |
704 | #choice=argmin([std2a,std2b])+1 |
|
704 | #choice=argmin([std2a,std2b])+1 | |
705 |
|
705 | |||
706 | else: # with low SNR go to the most energetic peak |
|
706 | else: # with low SNR go to the most energetic peak | |
707 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
707 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
708 |
|
708 | |||
709 |
|
709 | |||
710 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
710 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
711 | shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
711 | shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
712 |
|
712 | |||
713 | max_vel = 20 |
|
713 | max_vel = 20 | |
714 |
|
714 | |||
715 | #first peak will be 0, second peak will be 1 |
|
715 | #first peak will be 0, second peak will be 1 | |
716 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range |
|
716 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range | |
717 | shift0=lsq2[0][0] |
|
717 | shift0=lsq2[0][0] | |
718 | width0=lsq2[0][1] |
|
718 | width0=lsq2[0][1] | |
719 | Amplitude0=lsq2[0][2] |
|
719 | Amplitude0=lsq2[0][2] | |
720 | p0=lsq2[0][3] |
|
720 | p0=lsq2[0][3] | |
721 |
|
721 | |||
722 | shift1=lsq2[0][4] |
|
722 | shift1=lsq2[0][4] | |
723 | width1=lsq2[0][5] |
|
723 | width1=lsq2[0][5] | |
724 | Amplitude1=lsq2[0][6] |
|
724 | Amplitude1=lsq2[0][6] | |
725 | p1=lsq2[0][7] |
|
725 | p1=lsq2[0][7] | |
726 | noise=lsq2[0][8] |
|
726 | noise=lsq2[0][8] | |
727 | else: |
|
727 | else: | |
728 | shift1=lsq2[0][0] |
|
728 | shift1=lsq2[0][0] | |
729 | width1=lsq2[0][1] |
|
729 | width1=lsq2[0][1] | |
730 | Amplitude1=lsq2[0][2] |
|
730 | Amplitude1=lsq2[0][2] | |
731 | p1=lsq2[0][3] |
|
731 | p1=lsq2[0][3] | |
732 |
|
732 | |||
733 | shift0=lsq2[0][4] |
|
733 | shift0=lsq2[0][4] | |
734 | width0=lsq2[0][5] |
|
734 | width0=lsq2[0][5] | |
735 | Amplitude0=lsq2[0][6] |
|
735 | Amplitude0=lsq2[0][6] | |
736 | p0=lsq2[0][7] |
|
736 | p0=lsq2[0][7] | |
737 | noise=lsq2[0][8] |
|
737 | noise=lsq2[0][8] | |
738 |
|
738 | |||
739 | if Amplitude0<0.1: # in case the peak is noise |
|
739 | if Amplitude0<0.1: # in case the peak is noise | |
740 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] |
|
740 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |
741 | if Amplitude1<0.1: |
|
741 | if Amplitude1<0.1: | |
742 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] |
|
742 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |
743 |
|
743 | |||
744 |
|
744 | |||
745 | # if choice==0: # pick the single gaussian fit |
|
745 | # if choice==0: # pick the single gaussian fit | |
746 | # Amplitude0=lsq1[0][2] |
|
746 | # Amplitude0=lsq1[0][2] | |
747 | # shift0=lsq1[0][0] |
|
747 | # shift0=lsq1[0][0] | |
748 | # width0=lsq1[0][1] |
|
748 | # width0=lsq1[0][1] | |
749 | # p0=lsq1[0][3] |
|
749 | # p0=lsq1[0][3] | |
750 | # Amplitude1=0. |
|
750 | # Amplitude1=0. | |
751 | # shift1=0. |
|
751 | # shift1=0. | |
752 | # width1=0. |
|
752 | # width1=0. | |
753 | # p1=0. |
|
753 | # p1=0. | |
754 | # noise=lsq1[0][4] |
|
754 | # noise=lsq1[0][4] | |
755 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
755 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
756 | # Amplitude0 = lsq2[0][2] |
|
756 | # Amplitude0 = lsq2[0][2] | |
757 | # shift0 = lsq2[0][0] |
|
757 | # shift0 = lsq2[0][0] | |
758 | # width0 = lsq2[0][1] |
|
758 | # width0 = lsq2[0][1] | |
759 | # p0 = lsq2[0][3] |
|
759 | # p0 = lsq2[0][3] | |
760 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
760 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
761 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
761 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
762 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
762 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
763 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
763 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
764 | # noise = lsq2[0][8] |
|
764 | # noise = lsq2[0][8] | |
765 | # else: # the second one |
|
765 | # else: # the second one | |
766 | # Amplitude0 = lsq2[0][6] |
|
766 | # Amplitude0 = lsq2[0][6] | |
767 | # shift0 = lsq2[0][4] |
|
767 | # shift0 = lsq2[0][4] | |
768 | # width0 = lsq2[0][5] |
|
768 | # width0 = lsq2[0][5] | |
769 | # p0 = lsq2[0][7] |
|
769 | # p0 = lsq2[0][7] | |
770 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
770 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
771 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
771 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
772 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
772 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
773 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
773 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
774 | # noise = lsq2[0][8] |
|
774 | # noise = lsq2[0][8] | |
775 |
|
775 | |||
776 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
776 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
777 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
777 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
778 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
778 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
779 | #print 'SPC_ch1.shape',SPC_ch1.shape |
|
779 | #print 'SPC_ch1.shape',SPC_ch1.shape | |
780 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
780 | #print 'SPC_ch2.shape',SPC_ch2.shape | |
781 | #dataOut.data_param = SPC_ch1 |
|
781 | #dataOut.data_param = SPC_ch1 | |
782 | GauSPC = (SPC_ch1,SPC_ch2) |
|
782 | GauSPC = (SPC_ch1,SPC_ch2) | |
783 | #GauSPC[1] = SPC_ch2 |
|
783 | #GauSPC[1] = SPC_ch2 | |
784 |
|
784 | |||
785 | # print 'shift0', shift0 |
|
785 | # print 'shift0', shift0 | |
786 | # print 'Amplitude0', Amplitude0 |
|
786 | # print 'Amplitude0', Amplitude0 | |
787 | # print 'width0', width0 |
|
787 | # print 'width0', width0 | |
788 | # print 'p0', p0 |
|
788 | # print 'p0', p0 | |
789 | # print '========================' |
|
789 | # print '========================' | |
790 | # print 'shift1', shift1 |
|
790 | # print 'shift1', shift1 | |
791 | # print 'Amplitude1', Amplitude1 |
|
791 | # print 'Amplitude1', Amplitude1 | |
792 | # print 'width1', width1 |
|
792 | # print 'width1', width1 | |
793 | # print 'p1', p1 |
|
793 | # print 'p1', p1 | |
794 | # print 'noise', noise |
|
794 | # print 'noise', noise | |
795 | # print 's_noise', wnoise |
|
795 | # print 's_noise', wnoise | |
796 |
|
796 | |||
797 | return GauSPC |
|
797 | return GauSPC | |
798 |
|
798 | |||
799 |
|
799 | |||
800 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. |
|
800 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. | |
801 | y_model=self.y_model1(x,state) |
|
801 | y_model=self.y_model1(x,state) | |
802 | s0,w0,a0,p0,n=state |
|
802 | s0,w0,a0,p0,n=state | |
803 | e0=((x-s0)/w0)**2; |
|
803 | e0=((x-s0)/w0)**2; | |
804 |
|
804 | |||
805 | e0u=((x-s0-self.Num_Bin)/w0)**2; |
|
805 | e0u=((x-s0-self.Num_Bin)/w0)**2; | |
806 |
|
806 | |||
807 | e0d=((x-s0+self.Num_Bin)/w0)**2 |
|
807 | e0d=((x-s0+self.Num_Bin)/w0)**2 | |
808 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
808 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |
809 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
809 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |
810 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
810 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |
811 | JA=m0+m0u+m0d |
|
811 | JA=m0+m0u+m0d | |
812 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
812 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |
813 |
|
813 | |||
814 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
814 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |
815 |
|
815 | |||
816 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
816 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |
817 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) |
|
817 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) | |
818 | return jack1.T |
|
818 | return jack1.T | |
819 |
|
819 | |||
820 | def y_jacobian2(self,x,state): |
|
820 | def y_jacobian2(self,x,state): | |
821 | y_model=self.y_model2(x,state) |
|
821 | y_model=self.y_model2(x,state) | |
822 | s0,w0,a0,p0,s1,w1,a1,p1,n=state |
|
822 | s0,w0,a0,p0,s1,w1,a1,p1,n=state | |
823 | e0=((x-s0)/w0)**2; |
|
823 | e0=((x-s0)/w0)**2; | |
824 |
|
824 | |||
825 | e0u=((x-s0- self.Num_Bin )/w0)**2; |
|
825 | e0u=((x-s0- self.Num_Bin )/w0)**2; | |
826 |
|
826 | |||
827 | e0d=((x-s0+ self.Num_Bin )/w0)**2 |
|
827 | e0d=((x-s0+ self.Num_Bin )/w0)**2 | |
828 | e1=((x-s1)/w1)**2; |
|
828 | e1=((x-s1)/w1)**2; | |
829 |
|
829 | |||
830 | e1u=((x-s1- self.Num_Bin )/w1)**2; |
|
830 | e1u=((x-s1- self.Num_Bin )/w1)**2; | |
831 |
|
831 | |||
832 | e1d=((x-s1+ self.Num_Bin )/w1)**2 |
|
832 | e1d=((x-s1+ self.Num_Bin )/w1)**2 | |
833 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
833 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |
834 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
834 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |
835 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
835 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |
836 | m1=numpy.exp(-0.5*e1**(p1/2.)); |
|
836 | m1=numpy.exp(-0.5*e1**(p1/2.)); | |
837 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); |
|
837 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); | |
838 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) |
|
838 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) | |
839 | JA=m0+m0u+m0d |
|
839 | JA=m0+m0u+m0d | |
840 | JA1=m1+m1u+m1d |
|
840 | JA1=m1+m1u+m1d | |
841 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
841 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |
842 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) |
|
842 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) | |
843 |
|
843 | |||
844 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
844 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |
845 |
|
845 | |||
846 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) |
|
846 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) | |
847 |
|
847 | |||
848 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
848 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |
849 |
|
849 | |||
850 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 |
|
850 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 | |
851 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) |
|
851 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) | |
852 | return jack2.T |
|
852 | return jack2.T | |
853 |
|
853 | |||
854 | def y_model1(self,x,state): |
|
854 | def y_model1(self,x,state): | |
855 | shift0,width0,amplitude0,power0,noise=state |
|
855 | shift0,width0,amplitude0,power0,noise=state | |
856 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
856 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
857 |
|
857 | |||
858 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
858 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
859 |
|
859 | |||
860 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
860 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
861 | return model0+model0u+model0d+noise |
|
861 | return model0+model0u+model0d+noise | |
862 |
|
862 | |||
863 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
863 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
864 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
864 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
865 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
865 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
866 |
|
866 | |||
867 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
867 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
868 |
|
868 | |||
869 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
869 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
870 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
870 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
871 |
|
871 | |||
872 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
872 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
873 |
|
873 | |||
874 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
874 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
875 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
875 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
876 |
|
876 | |||
877 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
877 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
878 |
|
878 | |||
879 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
879 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
880 |
|
880 | |||
881 | def misfit2(self,state,y_data,x,num_intg): |
|
881 | def misfit2(self,state,y_data,x,num_intg): | |
882 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
882 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
883 |
|
883 | |||
884 |
|
884 | |||
885 | class PrecipitationProc(Operation): |
|
885 | class PrecipitationProc(Operation): | |
886 |
|
886 | |||
887 | ''' |
|
887 | ''' | |
888 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
888 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
889 |
|
889 | |||
890 | Input: |
|
890 | Input: | |
891 | self.dataOut.data_pre : SelfSpectra |
|
891 | self.dataOut.data_pre : SelfSpectra | |
892 |
|
892 | |||
893 | Output: |
|
893 | Output: | |
894 |
|
894 | |||
895 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
895 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
896 |
|
896 | |||
897 |
|
897 | |||
898 | Parameters affected: |
|
898 | Parameters affected: | |
899 | ''' |
|
899 | ''' | |
900 |
|
900 | |||
901 |
|
901 | |||
902 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, |
|
902 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, | |
903 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): |
|
903 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): | |
904 |
|
904 | |||
905 | self.spc = dataOut.data_pre[0].copy() |
|
905 | self.spc = dataOut.data_pre[0].copy() | |
906 | self.Num_Hei = self.spc.shape[2] |
|
906 | self.Num_Hei = self.spc.shape[2] | |
907 | self.Num_Bin = self.spc.shape[1] |
|
907 | self.Num_Bin = self.spc.shape[1] | |
908 | self.Num_Chn = self.spc.shape[0] |
|
908 | self.Num_Chn = self.spc.shape[0] | |
909 |
|
909 | |||
910 | Velrange = dataOut.abscissaList |
|
910 | Velrange = dataOut.abscissaList | |
911 |
|
911 | |||
912 | if radar == "MIRA35C" : |
|
912 | if radar == "MIRA35C" : | |
913 |
|
913 | |||
914 | Ze = self.dBZeMODE2(dataOut) |
|
914 | Ze = self.dBZeMODE2(dataOut) | |
915 |
|
915 | |||
916 | else: |
|
916 | else: | |
917 |
|
917 | |||
918 | self.Pt = Pt |
|
918 | self.Pt = Pt | |
919 | self.Gt = Gt |
|
919 | self.Gt = Gt | |
920 | self.Gr = Gr |
|
920 | self.Gr = Gr | |
921 | self.Lambda = Lambda |
|
921 | self.Lambda = Lambda | |
922 | self.aL = aL |
|
922 | self.aL = aL | |
923 | self.tauW = tauW |
|
923 | self.tauW = tauW | |
924 | self.ThetaT = ThetaT |
|
924 | self.ThetaT = ThetaT | |
925 | self.ThetaR = ThetaR |
|
925 | self.ThetaR = ThetaR | |
926 |
|
926 | |||
927 | RadarConstant = GetRadarConstant() |
|
927 | RadarConstant = GetRadarConstant() | |
928 | SPCmean = numpy.mean(self.spc,0) |
|
928 | SPCmean = numpy.mean(self.spc,0) | |
929 | ETA = numpy.zeros(self.Num_Hei) |
|
929 | ETA = numpy.zeros(self.Num_Hei) | |
930 | Pr = numpy.sum(SPCmean,0) |
|
930 | Pr = numpy.sum(SPCmean,0) | |
931 |
|
931 | |||
932 | #for R in range(self.Num_Hei): |
|
932 | #for R in range(self.Num_Hei): | |
933 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
933 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |
934 |
|
934 | |||
935 | D_range = numpy.zeros(self.Num_Hei) |
|
935 | D_range = numpy.zeros(self.Num_Hei) | |
936 | EqSec = numpy.zeros(self.Num_Hei) |
|
936 | EqSec = numpy.zeros(self.Num_Hei) | |
937 | del_V = numpy.zeros(self.Num_Hei) |
|
937 | del_V = numpy.zeros(self.Num_Hei) | |
938 |
|
938 | |||
939 | for R in range(self.Num_Hei): |
|
939 | for R in range(self.Num_Hei): | |
940 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
940 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |
941 |
|
941 | |||
942 | h = R + Altitude #Range from ground to radar pulse altitude |
|
942 | h = R + Altitude #Range from ground to radar pulse altitude | |
943 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
943 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
944 |
|
944 | |||
945 | D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity |
|
945 | D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity | |
946 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) |
|
946 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) | |
947 |
|
947 | |||
948 | N_dist[R] = ETA[R] / SIGMA[R] |
|
948 | N_dist[R] = ETA[R] / SIGMA[R] | |
949 |
|
949 | |||
950 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) |
|
950 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) | |
951 | Z = numpy.sum( N_dist * D_range**6 ) |
|
951 | Z = numpy.sum( N_dist * D_range**6 ) | |
952 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate |
|
952 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate | |
953 |
|
953 | |||
954 |
|
954 | |||
955 | RR = (Ze/200)**(1/1.6) |
|
955 | RR = (Ze/200)**(1/1.6) | |
956 | dBRR = 10*numpy.log10(RR) |
|
956 | dBRR = 10*numpy.log10(RR) | |
957 |
|
957 | |||
958 | dBZe = 10*numpy.log10(Ze) |
|
958 | dBZe = 10*numpy.log10(Ze) | |
959 | dataOut.data_output = Ze |
|
959 | dataOut.data_output = Ze | |
960 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) |
|
960 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) | |
961 | dataOut.channelList = [0,1] |
|
961 | dataOut.channelList = [0,1] | |
962 | print 'channelList', dataOut.channelList |
|
962 | print 'channelList', dataOut.channelList | |
963 | dataOut.data_param[0]=dBZe |
|
963 | dataOut.data_param[0]=dBZe | |
964 | dataOut.data_param[1]=dBRR |
|
964 | dataOut.data_param[1]=dBRR | |
965 | print 'RR SHAPE', dBRR.shape |
|
965 | print 'RR SHAPE', dBRR.shape | |
966 | print 'Ze SHAPE', dBZe.shape |
|
966 | print 'Ze SHAPE', dBZe.shape | |
967 | print 'dataOut.data_param SHAPE', dataOut.data_param.shape |
|
967 | print 'dataOut.data_param SHAPE', dataOut.data_param.shape | |
968 |
|
968 | |||
969 |
|
969 | |||
970 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
970 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
971 |
|
971 | |||
972 | NPW = dataOut.NPW |
|
972 | NPW = dataOut.NPW | |
973 | COFA = dataOut.COFA |
|
973 | COFA = dataOut.COFA | |
974 |
|
974 | |||
975 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
975 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
976 | RadarConst = dataOut.RadarConst |
|
976 | RadarConst = dataOut.RadarConst | |
977 | #frequency = 34.85*10**9 |
|
977 | #frequency = 34.85*10**9 | |
978 |
|
978 | |||
979 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
979 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
980 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
980 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
981 |
|
981 | |||
982 | ETA = numpy.sum(SNR,1) |
|
982 | ETA = numpy.sum(SNR,1) | |
983 | print 'ETA' , ETA |
|
983 | print 'ETA' , ETA | |
984 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
984 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
985 |
|
985 | |||
986 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
986 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
987 |
|
987 | |||
988 | for r in range(self.Num_Hei): |
|
988 | for r in range(self.Num_Hei): | |
989 |
|
989 | |||
990 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
990 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
991 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
991 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
992 |
|
992 | |||
993 | return Ze |
|
993 | return Ze | |
994 |
|
994 | |||
995 | def GetRadarConstant(self): |
|
995 | def GetRadarConstant(self): | |
996 |
|
996 | |||
997 | """ |
|
997 | """ | |
998 | Constants: |
|
998 | Constants: | |
999 |
|
999 | |||
1000 | Pt: Transmission Power dB |
|
1000 | Pt: Transmission Power dB | |
1001 | Gt: Transmission Gain dB |
|
1001 | Gt: Transmission Gain dB | |
1002 | Gr: Reception Gain dB |
|
1002 | Gr: Reception Gain dB | |
1003 | Lambda: Wavelenght m |
|
1003 | Lambda: Wavelenght m | |
1004 | aL: Attenuation loses dB |
|
1004 | aL: Attenuation loses dB | |
1005 | tauW: Width of transmission pulse s |
|
1005 | tauW: Width of transmission pulse s | |
1006 | ThetaT: Transmission antenna bean angle rad |
|
1006 | ThetaT: Transmission antenna bean angle rad | |
1007 | ThetaR: Reception antenna beam angle rad |
|
1007 | ThetaR: Reception antenna beam angle rad | |
1008 |
|
1008 | |||
1009 | """ |
|
1009 | """ | |
1010 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
1010 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1011 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
1011 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1012 | RadarConstant = Numerator / Denominator |
|
1012 | RadarConstant = Numerator / Denominator | |
1013 |
|
1013 | |||
1014 | return RadarConstant |
|
1014 | return RadarConstant | |
1015 |
|
1015 | |||
1016 |
|
1016 | |||
1017 |
|
1017 | |||
1018 | class FullSpectralAnalysis(Operation): |
|
1018 | class FullSpectralAnalysis(Operation): | |
1019 |
|
1019 | |||
1020 | """ |
|
1020 | """ | |
1021 | Function that implements Full Spectral Analisys technique. |
|
1021 | Function that implements Full Spectral Analisys technique. | |
1022 |
|
1022 | |||
1023 | Input: |
|
1023 | Input: | |
1024 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data |
|
1024 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data | |
1025 | self.dataOut.groupList : Pairlist of channels |
|
1025 | self.dataOut.groupList : Pairlist of channels | |
1026 | self.dataOut.ChanDist : Physical distance between receivers |
|
1026 | self.dataOut.ChanDist : Physical distance between receivers | |
1027 |
|
1027 | |||
1028 |
|
1028 | |||
1029 | Output: |
|
1029 | Output: | |
1030 |
|
1030 | |||
1031 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
1031 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
1032 |
|
1032 | |||
1033 |
|
1033 | |||
1034 | Parameters affected: Winds, height range, SNR |
|
1034 | Parameters affected: Winds, height range, SNR | |
1035 |
|
1035 | |||
1036 | """ |
|
1036 | """ | |
1037 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): |
|
1037 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): | |
1038 |
|
1038 | |||
1039 | spc = dataOut.data_pre[0].copy() |
|
1039 | spc = dataOut.data_pre[0].copy() | |
1040 | cspc = dataOut.data_pre[1].copy() |
|
1040 | cspc = dataOut.data_pre[1].copy() | |
1041 |
|
1041 | |||
1042 | nChannel = spc.shape[0] |
|
1042 | nChannel = spc.shape[0] | |
1043 | nProfiles = spc.shape[1] |
|
1043 | nProfiles = spc.shape[1] | |
1044 | nHeights = spc.shape[2] |
|
1044 | nHeights = spc.shape[2] | |
1045 |
|
1045 | |||
1046 | pairsList = dataOut.groupList |
|
1046 | pairsList = dataOut.groupList | |
1047 | if dataOut.ChanDist is not None : |
|
1047 | if dataOut.ChanDist is not None : | |
1048 | ChanDist = dataOut.ChanDist |
|
1048 | ChanDist = dataOut.ChanDist | |
1049 | else: |
|
1049 | else: | |
1050 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) |
|
1050 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
1051 |
|
1051 | |||
1052 | #print 'ChanDist', ChanDist |
|
1052 | #print 'ChanDist', ChanDist | |
1053 |
|
1053 | |||
1054 | if dataOut.VelRange is not None: |
|
1054 | if dataOut.VelRange is not None: | |
1055 | VelRange= dataOut.VelRange |
|
1055 | VelRange= dataOut.VelRange | |
1056 | else: |
|
1056 | else: | |
1057 | VelRange= dataOut.abscissaList |
|
1057 | VelRange= dataOut.abscissaList | |
1058 |
|
1058 | |||
1059 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
1059 | ySamples=numpy.ones([nChannel,nProfiles]) | |
1060 | phase=numpy.ones([nChannel,nProfiles]) |
|
1060 | phase=numpy.ones([nChannel,nProfiles]) | |
1061 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) |
|
1061 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) | |
1062 | coherence=numpy.ones([nChannel,nProfiles]) |
|
1062 | coherence=numpy.ones([nChannel,nProfiles]) | |
1063 | PhaseSlope=numpy.ones(nChannel) |
|
1063 | PhaseSlope=numpy.ones(nChannel) | |
1064 | PhaseInter=numpy.ones(nChannel) |
|
1064 | PhaseInter=numpy.ones(nChannel) | |
1065 | dataSNR = dataOut.data_SNR |
|
1065 | dataSNR = dataOut.data_SNR | |
1066 |
|
1066 | |||
1067 |
|
1067 | |||
1068 |
|
1068 | |||
1069 | data = dataOut.data_pre |
|
1069 | data = dataOut.data_pre | |
1070 | noise = dataOut.noise |
|
1070 | noise = dataOut.noise | |
1071 | print 'noise',noise |
|
1071 | print 'noise',noise | |
1072 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) |
|
1072 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) | |
1073 |
|
1073 | |||
1074 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) |
|
1074 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) | |
1075 | #SNRdBMean = [] |
|
1075 | #SNRdBMean = [] | |
1076 |
|
1076 | |||
1077 |
|
1077 | |||
1078 | #for j in range(nHeights): |
|
1078 | #for j in range(nHeights): | |
1079 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) |
|
1079 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) | |
1080 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) |
|
1080 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) | |
1081 |
|
1081 | |||
1082 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN |
|
1082 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN | |
1083 |
|
1083 | |||
1084 | velocityX=[] |
|
1084 | velocityX=[] | |
1085 | velocityY=[] |
|
1085 | velocityY=[] | |
1086 | velocityV=[] |
|
1086 | velocityV=[] | |
1087 |
|
1087 | |||
1088 | dbSNR = 10*numpy.log10(dataSNR) |
|
1088 | dbSNR = 10*numpy.log10(dataSNR) | |
1089 | dbSNR = numpy.average(dbSNR,0) |
|
1089 | dbSNR = numpy.average(dbSNR,0) | |
1090 | for Height in range(nHeights): |
|
1090 | for Height in range(nHeights): | |
1091 |
|
1091 | |||
1092 | [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit) |
|
1092 | [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit) | |
1093 |
|
1093 | |||
1094 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
1094 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
1095 | velocityX=numpy.append(velocityX, Vzon)#Vmag |
|
1095 | velocityX=numpy.append(velocityX, Vzon)#Vmag | |
1096 |
|
1096 | |||
1097 | else: |
|
1097 | else: | |
1098 | print 'Vzon',Vzon |
|
1098 | print 'Vzon',Vzon | |
1099 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
1099 | velocityX=numpy.append(velocityX, numpy.NaN) | |
1100 |
|
1100 | |||
1101 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
1101 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
1102 | velocityY=numpy.append(velocityY, Vmer)#Vang |
|
1102 | velocityY=numpy.append(velocityY, Vmer)#Vang | |
1103 |
|
1103 | |||
1104 | else: |
|
1104 | else: | |
1105 | print 'Vmer',Vmer |
|
1105 | print 'Vmer',Vmer | |
1106 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
1106 | velocityY=numpy.append(velocityY, numpy.NaN) | |
1107 |
|
1107 | |||
1108 | if dbSNR[Height] > SNRlimit: |
|
1108 | if dbSNR[Height] > SNRlimit: | |
1109 | velocityV=numpy.append(velocityV, FirstMoment[Height]) |
|
1109 | velocityV=numpy.append(velocityV, FirstMoment[Height]) | |
1110 | else: |
|
1110 | else: | |
1111 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
1111 | velocityV=numpy.append(velocityV, numpy.NaN) | |
1112 | #FirstMoment[Height]= numpy.NaN |
|
1112 | #FirstMoment[Height]= numpy.NaN | |
1113 | # if SNRdBMean[Height] <12: |
|
1113 | # if SNRdBMean[Height] <12: | |
1114 | # FirstMoment[Height] = numpy.NaN |
|
1114 | # FirstMoment[Height] = numpy.NaN | |
1115 | # velocityX[Height] = numpy.NaN |
|
1115 | # velocityX[Height] = numpy.NaN | |
1116 | # velocityY[Height] = numpy.NaN |
|
1116 | # velocityY[Height] = numpy.NaN | |
1117 |
|
1117 | |||
1118 |
|
1118 | |||
1119 | data_output[0]=numpy.array(velocityX) |
|
1119 | data_output[0]=numpy.array(velocityX) | |
1120 | data_output[1]=numpy.array(velocityY) |
|
1120 | data_output[1]=numpy.array(velocityY) | |
1121 | data_output[2]=-velocityV#FirstMoment |
|
1121 | data_output[2]=-velocityV#FirstMoment | |
1122 |
|
1122 | |||
1123 | print ' ' |
|
1123 | print ' ' | |
1124 | #print 'FirstMoment' |
|
1124 | #print 'FirstMoment' | |
1125 | #print FirstMoment |
|
1125 | #print FirstMoment | |
1126 | print 'velocityX',data_output[0] |
|
1126 | print 'velocityX',data_output[0] | |
1127 | print ' ' |
|
1127 | print ' ' | |
1128 | print 'velocityY',data_output[1] |
|
1128 | print 'velocityY',data_output[1] | |
1129 | #print numpy.array(velocityY) |
|
1129 | #print numpy.array(velocityY) | |
1130 | print ' ' |
|
1130 | print ' ' | |
1131 | #print 'SNR' |
|
1131 | #print 'SNR' | |
1132 | #print 10*numpy.log10(dataOut.data_SNR) |
|
1132 | #print 10*numpy.log10(dataOut.data_SNR) | |
1133 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
1133 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) | |
1134 | print ' ' |
|
1134 | print ' ' | |
1135 |
|
1135 | |||
1136 |
|
1136 | |||
1137 | dataOut.data_output=data_output |
|
1137 | dataOut.data_output=data_output | |
1138 | return |
|
1138 | return | |
1139 |
|
1139 | |||
1140 |
|
1140 | |||
1141 | def moving_average(self,x, N=2): |
|
1141 | def moving_average(self,x, N=2): | |
1142 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1142 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1143 |
|
1143 | |||
1144 | def gaus(self,xSamples,a,x0,sigma): |
|
1144 | def gaus(self,xSamples,a,x0,sigma): | |
1145 | return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2)) |
|
1145 | return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2)) | |
1146 |
|
1146 | |||
1147 | def Find(self,x,value): |
|
1147 | def Find(self,x,value): | |
1148 | for index in range(len(x)): |
|
1148 | for index in range(len(x)): | |
1149 | if x[index]==value: |
|
1149 | if x[index]==value: | |
1150 | return index |
|
1150 | return index | |
1151 |
|
1151 | |||
1152 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit): |
|
1152 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit): | |
1153 |
|
1153 | |||
1154 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1154 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1155 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1155 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1156 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
1156 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1157 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1157 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1158 | PhaseSlope=numpy.ones(spc.shape[0]) |
|
1158 | PhaseSlope=numpy.ones(spc.shape[0]) | |
1159 | PhaseInter=numpy.ones(spc.shape[0]) |
|
1159 | PhaseInter=numpy.ones(spc.shape[0]) | |
1160 | xFrec=VelRange |
|
1160 | xFrec=VelRange | |
1161 |
|
1161 | |||
1162 | '''Getting Eij and Nij''' |
|
1162 | '''Getting Eij and Nij''' | |
1163 |
|
1163 | |||
1164 | E01=ChanDist[0][0] |
|
1164 | E01=ChanDist[0][0] | |
1165 | N01=ChanDist[0][1] |
|
1165 | N01=ChanDist[0][1] | |
1166 |
|
1166 | |||
1167 | E02=ChanDist[1][0] |
|
1167 | E02=ChanDist[1][0] | |
1168 | N02=ChanDist[1][1] |
|
1168 | N02=ChanDist[1][1] | |
1169 |
|
1169 | |||
1170 | E12=ChanDist[2][0] |
|
1170 | E12=ChanDist[2][0] | |
1171 | N12=ChanDist[2][1] |
|
1171 | N12=ChanDist[2][1] | |
1172 |
|
1172 | |||
1173 | z = spc.copy() |
|
1173 | z = spc.copy() | |
1174 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1174 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1175 |
|
1175 | |||
1176 | for i in range(spc.shape[0]): |
|
1176 | for i in range(spc.shape[0]): | |
1177 |
|
1177 | |||
1178 | '''****** Line of Data SPC ******''' |
|
1178 | '''****** Line of Data SPC ******''' | |
1179 | zline=z[i,:,Height] |
|
1179 | zline=z[i,:,Height] | |
1180 |
|
1180 | |||
1181 | '''****** SPC is normalized ******''' |
|
1181 | '''****** SPC is normalized ******''' | |
1182 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) |
|
1182 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) | |
1183 | FactNorm= FactNorm/numpy.sum(FactNorm) |
|
1183 | FactNorm= FactNorm/numpy.sum(FactNorm) | |
1184 |
|
1184 | |||
1185 | SmoothSPC=self.moving_average(FactNorm,N=3) |
|
1185 | SmoothSPC=self.moving_average(FactNorm,N=3) | |
1186 |
|
1186 | |||
1187 | xSamples = ar(range(len(SmoothSPC))) |
|
1187 | xSamples = ar(range(len(SmoothSPC))) | |
1188 | ySamples[i] = SmoothSPC |
|
1188 | ySamples[i] = SmoothSPC | |
1189 |
|
1189 | |||
1190 | #dbSNR=10*numpy.log10(dataSNR) |
|
1190 | #dbSNR=10*numpy.log10(dataSNR) | |
1191 | print ' ' |
|
1191 | print ' ' | |
1192 | print ' ' |
|
1192 | print ' ' | |
1193 | print ' ' |
|
1193 | print ' ' | |
1194 |
|
1194 | |||
1195 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] |
|
1195 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] | |
1196 | print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20] |
|
1196 | print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20] | |
1197 | print 'noise',noise |
|
1197 | print 'noise',noise | |
1198 | print 'zline',zline.shape, zline[0:20] |
|
1198 | print 'zline',zline.shape, zline[0:20] | |
1199 | print 'FactNorm',FactNorm.shape, FactNorm[0:20] |
|
1199 | print 'FactNorm',FactNorm.shape, FactNorm[0:20] | |
1200 | print 'FactNorm suma', numpy.sum(FactNorm) |
|
1200 | print 'FactNorm suma', numpy.sum(FactNorm) | |
1201 |
|
1201 | |||
1202 | for i in range(spc.shape[0]): |
|
1202 | for i in range(spc.shape[0]): | |
1203 |
|
1203 | |||
1204 | '''****** Line of Data CSPC ******''' |
|
1204 | '''****** Line of Data CSPC ******''' | |
1205 | cspcLine=cspc[i,:,Height].copy() |
|
1205 | cspcLine=cspc[i,:,Height].copy() | |
1206 |
|
1206 | |||
1207 | '''****** CSPC is normalized ******''' |
|
1207 | '''****** CSPC is normalized ******''' | |
1208 | chan_index0 = pairsList[i][0] |
|
1208 | chan_index0 = pairsList[i][0] | |
1209 | chan_index1 = pairsList[i][1] |
|
1209 | chan_index1 = pairsList[i][1] | |
1210 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # |
|
1210 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # | |
1211 |
|
1211 | |||
1212 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) |
|
1212 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) | |
1213 |
|
1213 | |||
1214 | CSPCSamples[i] = CSPCNorm |
|
1214 | CSPCSamples[i] = CSPCNorm | |
1215 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
1215 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1216 |
|
1216 | |||
1217 | coherence[i]= self.moving_average(coherence[i],N=2) |
|
1217 | coherence[i]= self.moving_average(coherence[i],N=2) | |
1218 |
|
1218 | |||
1219 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
1219 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1220 |
|
1220 | |||
1221 | print 'cspcLine', cspcLine.shape, cspcLine[0:20] |
|
1221 | print 'cspcLine', cspcLine.shape, cspcLine[0:20] | |
1222 | print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20] |
|
1222 | print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20] | |
1223 | print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i] |
|
1223 | print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i] | |
1224 | print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20] |
|
1224 | print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20] | |
1225 | print 'CSPCNorm suma', numpy.sum(CSPCNorm) |
|
1225 | print 'CSPCNorm suma', numpy.sum(CSPCNorm) | |
1226 | print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20] |
|
1226 | print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20] | |
1227 |
|
1227 | |||
1228 | '''****** Getting fij width ******''' |
|
1228 | '''****** Getting fij width ******''' | |
1229 |
|
1229 | |||
1230 | yMean=[] |
|
1230 | yMean=[] | |
1231 | yMean2=[] |
|
1231 | yMean2=[] | |
1232 |
|
1232 | |||
1233 | for j in range(len(ySamples[1])): |
|
1233 | for j in range(len(ySamples[1])): | |
1234 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
1234 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | |
1235 |
|
1235 | |||
1236 | '''******* Getting fitting Gaussian ******''' |
|
1236 | '''******* Getting fitting Gaussian ******''' | |
1237 | meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
1237 | meanGauss=sum(xSamples*yMean) / len(xSamples) | |
1238 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
1238 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | |
1239 |
|
1239 | |||
1240 | print '****************************' |
|
1240 | print '****************************' | |
1241 | print 'len(xSamples): ',len(xSamples) |
|
1241 | print 'len(xSamples): ',len(xSamples) | |
1242 | print 'yMean: ', yMean.shape, yMean[0:20] |
|
1242 | print 'yMean: ', yMean.shape, yMean[0:20] | |
1243 | print 'ySamples', ySamples.shape, ySamples[0,0:20] |
|
1243 | print 'ySamples', ySamples.shape, ySamples[0,0:20] | |
1244 | print 'xSamples: ',xSamples.shape, xSamples[0:20] |
|
1244 | print 'xSamples: ',xSamples.shape, xSamples[0:20] | |
1245 |
|
1245 | |||
1246 | print 'meanGauss',meanGauss |
|
1246 | print 'meanGauss',meanGauss | |
1247 | print 'sigma',sigma |
|
1247 | print 'sigma',sigma | |
1248 |
|
1248 | |||
1249 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): |
|
1249 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): | |
1250 | if dbSNR > SNRlimit : |
|
1250 | if dbSNR > SNRlimit : | |
1251 | try: |
|
1251 | try: | |
1252 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
1252 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | |
1253 |
|
1253 | |||
1254 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
1254 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: | |
1255 | FitGauss=self.gaus(xSamples,*popt) |
|
1255 | FitGauss=self.gaus(xSamples,*popt) | |
1256 |
|
1256 | |||
1257 | else: |
|
1257 | else: | |
1258 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1258 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1259 | print 'Verificador: Dentro', Height |
|
1259 | print 'Verificador: Dentro', Height | |
1260 | except :#RuntimeError: |
|
1260 | except :#RuntimeError: | |
1261 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1261 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1262 |
|
1262 | |||
1263 |
|
1263 | |||
1264 | else: |
|
1264 | else: | |
1265 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1265 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1266 |
|
1266 | |||
1267 | Maximun=numpy.amax(yMean) |
|
1267 | Maximun=numpy.amax(yMean) | |
1268 | eMinus1=Maximun*numpy.exp(-1)#*0.8 |
|
1268 | eMinus1=Maximun*numpy.exp(-1)#*0.8 | |
1269 |
|
1269 | |||
1270 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
1270 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | |
1271 | HalfWidth= xFrec[HWpos] |
|
1271 | HalfWidth= xFrec[HWpos] | |
1272 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) |
|
1272 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) | |
1273 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) |
|
1273 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) | |
1274 |
|
1274 | |||
1275 | #Vpos=FirstMoment[] |
|
1275 | #Vpos=FirstMoment[] | |
1276 |
|
1276 | |||
1277 | '''****** Getting Fij ******''' |
|
1277 | '''****** Getting Fij ******''' | |
1278 |
|
1278 | |||
1279 | GaussCenter=xFrec[GCpos] |
|
1279 | GaussCenter=xFrec[GCpos] | |
1280 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
1280 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | |
1281 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
1281 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | |
1282 | else: |
|
1282 | else: | |
1283 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
1283 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 | |
1284 |
|
1284 | |||
1285 | '''****** Getting Frecuency range of significant data ******''' |
|
1285 | '''****** Getting Frecuency range of significant data ******''' | |
1286 |
|
1286 | |||
1287 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
1287 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | |
1288 |
|
1288 | |||
1289 | if Rangpos<GCpos: |
|
1289 | if Rangpos<GCpos: | |
1290 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
1290 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | |
1291 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): |
|
1291 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): | |
1292 | Range=numpy.array([2*GCpos-Rangpos,Rangpos]) |
|
1292 | Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | |
1293 | else: |
|
1293 | else: | |
1294 | Range = numpy.array([0,0]) |
|
1294 | Range = numpy.array([0,0]) | |
1295 |
|
1295 | |||
1296 | print ' ' |
|
1296 | print ' ' | |
1297 | print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1) |
|
1297 | print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1) | |
1298 | print 'Rangpos',Rangpos |
|
1298 | print 'Rangpos',Rangpos | |
1299 | print 'RANGE: ', Range |
|
1299 | print 'RANGE: ', Range | |
1300 | FrecRange=xFrec[Range[0]:Range[1]] |
|
1300 | FrecRange=xFrec[Range[0]:Range[1]] | |
1301 |
|
1301 | |||
1302 | '''****** Getting SCPC Slope ******''' |
|
1302 | '''****** Getting SCPC Slope ******''' | |
1303 |
|
1303 | |||
1304 | for i in range(spc.shape[0]): |
|
1304 | for i in range(spc.shape[0]): | |
1305 |
|
1305 | |||
1306 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5: |
|
1306 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5: | |
1307 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1307 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
1308 |
|
1308 | |||
1309 | print 'FrecRange', len(FrecRange) , FrecRange |
|
1309 | print 'FrecRange', len(FrecRange) , FrecRange | |
1310 | print 'PhaseRange', len(PhaseRange), PhaseRange |
|
1310 | print 'PhaseRange', len(PhaseRange), PhaseRange | |
1311 | print ' ' |
|
1311 | print ' ' | |
1312 | if len(FrecRange) == len(PhaseRange): |
|
1312 | if len(FrecRange) == len(PhaseRange): | |
1313 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
1313 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | |
1314 | PhaseSlope[i]=slope |
|
1314 | PhaseSlope[i]=slope | |
1315 | PhaseInter[i]=intercept |
|
1315 | PhaseInter[i]=intercept | |
1316 | else: |
|
1316 | else: | |
1317 | PhaseSlope[i]=0 |
|
1317 | PhaseSlope[i]=0 | |
1318 | PhaseInter[i]=0 |
|
1318 | PhaseInter[i]=0 | |
1319 | else: |
|
1319 | else: | |
1320 | PhaseSlope[i]=0 |
|
1320 | PhaseSlope[i]=0 | |
1321 | PhaseInter[i]=0 |
|
1321 | PhaseInter[i]=0 | |
1322 |
|
1322 | |||
1323 | '''Getting constant C''' |
|
1323 | '''Getting constant C''' | |
1324 | cC=(Fij*numpy.pi)**2 |
|
1324 | cC=(Fij*numpy.pi)**2 | |
1325 |
|
1325 | |||
1326 | '''****** Getting constants F and G ******''' |
|
1326 | '''****** Getting constants F and G ******''' | |
1327 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
1327 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
1328 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1328 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1329 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1329 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1330 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1330 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1331 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1331 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1332 |
|
1332 | |||
1333 | '''****** Getting constants A, B and H ******''' |
|
1333 | '''****** Getting constants A, B and H ******''' | |
1334 | W01=numpy.amax(coherence[0]) |
|
1334 | W01=numpy.amax(coherence[0]) | |
1335 | W02=numpy.amax(coherence[1]) |
|
1335 | W02=numpy.amax(coherence[1]) | |
1336 | W12=numpy.amax(coherence[2]) |
|
1336 | W12=numpy.amax(coherence[2]) | |
1337 |
|
1337 | |||
1338 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
1338 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1339 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
1339 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1340 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
1340 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1341 |
|
1341 | |||
1342 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1342 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1343 |
|
1343 | |||
1344 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
1344 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
1345 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1345 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1346 |
|
1346 | |||
1347 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1347 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1348 |
|
1348 | |||
1349 | VxVyResults=numpy.array([-cF,-cG]) |
|
1349 | VxVyResults=numpy.array([-cF,-cG]) | |
1350 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1350 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1351 |
|
1351 | |||
1352 | Vzon = Vy |
|
1352 | Vzon = Vy | |
1353 | Vmer = Vx |
|
1353 | Vmer = Vx | |
1354 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1354 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1355 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1355 | Vang=numpy.arctan2(Vmer,Vzon) | |
1356 | Vver=xFrec[Vpos] |
|
1356 | Vver=xFrec[Vpos] | |
1357 | print 'vzon y vmer', Vzon, Vmer |
|
1357 | print 'vzon y vmer', Vzon, Vmer | |
1358 | return Vzon, Vmer, Vver, GaussCenter |
|
1358 | return Vzon, Vmer, Vver, GaussCenter | |
1359 |
|
1359 | |||
1360 | class SpectralMoments(Operation): |
|
1360 | class SpectralMoments(Operation): | |
1361 |
|
1361 | |||
1362 | ''' |
|
1362 | ''' | |
1363 | Function SpectralMoments() |
|
1363 | Function SpectralMoments() | |
1364 |
|
1364 | |||
1365 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1365 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1366 |
|
1366 | |||
1367 | Type of dataIn: Spectra |
|
1367 | Type of dataIn: Spectra | |
1368 |
|
1368 | |||
1369 | Configuration Parameters: |
|
1369 | Configuration Parameters: | |
1370 |
|
1370 | |||
1371 | dirCosx : Cosine director in X axis |
|
1371 | dirCosx : Cosine director in X axis | |
1372 | dirCosy : Cosine director in Y axis |
|
1372 | dirCosy : Cosine director in Y axis | |
1373 |
|
1373 | |||
1374 | elevation : |
|
1374 | elevation : | |
1375 | azimuth : |
|
1375 | azimuth : | |
1376 |
|
1376 | |||
1377 | Input: |
|
1377 | Input: | |
1378 | channelList : simple channel list to select e.g. [2,3,7] |
|
1378 | channelList : simple channel list to select e.g. [2,3,7] | |
1379 | self.dataOut.data_pre : Spectral data |
|
1379 | self.dataOut.data_pre : Spectral data | |
1380 | self.dataOut.abscissaList : List of frequencies |
|
1380 | self.dataOut.abscissaList : List of frequencies | |
1381 | self.dataOut.noise : Noise level per channel |
|
1381 | self.dataOut.noise : Noise level per channel | |
1382 |
|
1382 | |||
1383 | Affected: |
|
1383 | Affected: | |
1384 | self.dataOut.data_param : Parameters per channel |
|
1384 | self.dataOut.data_param : Parameters per channel | |
1385 | self.dataOut.data_SNR : SNR per channel |
|
1385 | self.dataOut.data_SNR : SNR per channel | |
1386 |
|
1386 | |||
1387 | ''' |
|
1387 | ''' | |
1388 |
|
1388 | |||
1389 | def run(self, dataOut): |
|
1389 | def run(self, dataOut): | |
1390 |
|
1390 | |||
1391 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1391 | #dataOut.data_pre = dataOut.data_pre[0] | |
1392 | data = dataOut.data_pre[0] |
|
1392 | data = dataOut.data_pre[0] | |
1393 | absc = dataOut.abscissaList[:-1] |
|
1393 | absc = dataOut.abscissaList[:-1] | |
1394 | noise = dataOut.noise |
|
1394 | noise = dataOut.noise | |
1395 | nChannel = data.shape[0] |
|
1395 | nChannel = data.shape[0] | |
1396 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1396 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1397 |
|
1397 | |||
1398 | for ind in range(nChannel): |
|
1398 | for ind in range(nChannel): | |
1399 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1399 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1400 |
|
1400 | |||
1401 | dataOut.data_param = data_param[:,1:,:] |
|
1401 | dataOut.data_param = data_param[:,1:,:] | |
1402 | dataOut.data_SNR = data_param[:,0] |
|
1402 | dataOut.data_SNR = data_param[:,0] | |
1403 | dataOut.data_DOP = data_param[:,1] |
|
1403 | dataOut.data_DOP = data_param[:,1] | |
1404 | dataOut.data_MEAN = data_param[:,2] |
|
1404 | dataOut.data_MEAN = data_param[:,2] | |
1405 | dataOut.data_STD = data_param[:,3] |
|
1405 | dataOut.data_STD = data_param[:,3] | |
1406 | return |
|
1406 | return | |
1407 |
|
1407 | |||
1408 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1408 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1409 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1409 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1410 |
|
1410 | |||
1411 |
if (nicoh |
|
1411 | if (nicoh is None): nicoh = 1 | |
1412 |
if (graph |
|
1412 | if (graph is None): graph = 0 | |
1413 |
if (smooth |
|
1413 | if (smooth is None): smooth = 0 | |
1414 | elif (self.smooth < 3): smooth = 0 |
|
1414 | elif (self.smooth < 3): smooth = 0 | |
1415 |
|
1415 | |||
1416 |
if (type1 |
|
1416 | if (type1 is None): type1 = 0 | |
1417 |
if (fwindow |
|
1417 | if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1418 |
if (snrth |
|
1418 | if (snrth is None): snrth = -3 | |
1419 |
if (dc |
|
1419 | if (dc is None): dc = 0 | |
1420 |
if (aliasing |
|
1420 | if (aliasing is None): aliasing = 0 | |
1421 |
if (oldfd |
|
1421 | if (oldfd is None): oldfd = 0 | |
1422 |
if (wwauto |
|
1422 | if (wwauto is None): wwauto = 0 | |
1423 |
|
1423 | |||
1424 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1424 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1425 |
|
1425 | |||
1426 | freq = oldfreq |
|
1426 | freq = oldfreq | |
1427 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1427 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1428 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1428 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1429 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1429 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1430 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1430 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1431 |
|
1431 | |||
1432 | for ind in range(oldspec.shape[1]): |
|
1432 | for ind in range(oldspec.shape[1]): | |
1433 |
|
1433 | |||
1434 | spec = oldspec[:,ind] |
|
1434 | spec = oldspec[:,ind] | |
1435 | aux = spec*fwindow |
|
1435 | aux = spec*fwindow | |
1436 | max_spec = aux.max() |
|
1436 | max_spec = aux.max() | |
1437 | m = list(aux).index(max_spec) |
|
1437 | m = list(aux).index(max_spec) | |
1438 |
|
1438 | |||
1439 | #Smooth |
|
1439 | #Smooth | |
1440 | if (smooth == 0): spec2 = spec |
|
1440 | if (smooth == 0): spec2 = spec | |
1441 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1441 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1442 |
|
1442 | |||
1443 | # Calculo de Momentos |
|
1443 | # Calculo de Momentos | |
1444 | bb = spec2[range(m,spec2.size)] |
|
1444 | bb = spec2[range(m,spec2.size)] | |
1445 | bb = (bb<n0).nonzero() |
|
1445 | bb = (bb<n0).nonzero() | |
1446 | bb = bb[0] |
|
1446 | bb = bb[0] | |
1447 |
|
1447 | |||
1448 | ss = spec2[range(0,m + 1)] |
|
1448 | ss = spec2[range(0,m + 1)] | |
1449 | ss = (ss<n0).nonzero() |
|
1449 | ss = (ss<n0).nonzero() | |
1450 | ss = ss[0] |
|
1450 | ss = ss[0] | |
1451 |
|
1451 | |||
1452 | if (bb.size == 0): |
|
1452 | if (bb.size == 0): | |
1453 | bb0 = spec.size - 1 - m |
|
1453 | bb0 = spec.size - 1 - m | |
1454 | else: |
|
1454 | else: | |
1455 | bb0 = bb[0] - 1 |
|
1455 | bb0 = bb[0] - 1 | |
1456 | if (bb0 < 0): |
|
1456 | if (bb0 < 0): | |
1457 | bb0 = 0 |
|
1457 | bb0 = 0 | |
1458 |
|
1458 | |||
1459 | if (ss.size == 0): ss1 = 1 |
|
1459 | if (ss.size == 0): ss1 = 1 | |
1460 | else: ss1 = max(ss) + 1 |
|
1460 | else: ss1 = max(ss) + 1 | |
1461 |
|
1461 | |||
1462 | if (ss1 > m): ss1 = m |
|
1462 | if (ss1 > m): ss1 = m | |
1463 |
|
1463 | |||
1464 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
1464 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
1465 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
1465 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
1466 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1466 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
1467 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1467 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1468 | snr = (spec2.mean()-n0)/n0 |
|
1468 | snr = (spec2.mean()-n0)/n0 | |
1469 |
|
1469 | |||
1470 | if (snr < 1.e-20) : |
|
1470 | if (snr < 1.e-20) : | |
1471 | snr = 1.e-20 |
|
1471 | snr = 1.e-20 | |
1472 |
|
1472 | |||
1473 | vec_power[ind] = power |
|
1473 | vec_power[ind] = power | |
1474 | vec_fd[ind] = fd |
|
1474 | vec_fd[ind] = fd | |
1475 | vec_w[ind] = w |
|
1475 | vec_w[ind] = w | |
1476 | vec_snr[ind] = snr |
|
1476 | vec_snr[ind] = snr | |
1477 |
|
1477 | |||
1478 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1478 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1479 | return moments |
|
1479 | return moments | |
1480 |
|
1480 | |||
1481 | #------------------ Get SA Parameters -------------------------- |
|
1481 | #------------------ Get SA Parameters -------------------------- | |
1482 |
|
1482 | |||
1483 | def GetSAParameters(self): |
|
1483 | def GetSAParameters(self): | |
1484 | #SA en frecuencia |
|
1484 | #SA en frecuencia | |
1485 | pairslist = self.dataOut.groupList |
|
1485 | pairslist = self.dataOut.groupList | |
1486 | num_pairs = len(pairslist) |
|
1486 | num_pairs = len(pairslist) | |
1487 |
|
1487 | |||
1488 | vel = self.dataOut.abscissaList |
|
1488 | vel = self.dataOut.abscissaList | |
1489 | spectra = self.dataOut.data_pre |
|
1489 | spectra = self.dataOut.data_pre | |
1490 | cspectra = self.dataIn.data_cspc |
|
1490 | cspectra = self.dataIn.data_cspc | |
1491 | delta_v = vel[1] - vel[0] |
|
1491 | delta_v = vel[1] - vel[0] | |
1492 |
|
1492 | |||
1493 | #Calculating the power spectrum |
|
1493 | #Calculating the power spectrum | |
1494 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1494 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1495 | #Normalizing Spectra |
|
1495 | #Normalizing Spectra | |
1496 | norm_spectra = spectra/spc_pow |
|
1496 | norm_spectra = spectra/spc_pow | |
1497 | #Calculating the norm_spectra at peak |
|
1497 | #Calculating the norm_spectra at peak | |
1498 | max_spectra = numpy.max(norm_spectra, 3) |
|
1498 | max_spectra = numpy.max(norm_spectra, 3) | |
1499 |
|
1499 | |||
1500 | #Normalizing Cross Spectra |
|
1500 | #Normalizing Cross Spectra | |
1501 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1501 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1502 |
|
1502 | |||
1503 | for i in range(num_chan): |
|
1503 | for i in range(num_chan): | |
1504 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1504 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1505 |
|
1505 | |||
1506 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1506 | max_cspectra = numpy.max(norm_cspectra,2) | |
1507 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1507 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1508 |
|
1508 | |||
1509 | for i in range(num_pairs): |
|
1509 | for i in range(num_pairs): | |
1510 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1510 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1511 | #------------------- Get Lags ---------------------------------- |
|
1511 | #------------------- Get Lags ---------------------------------- | |
1512 |
|
1512 | |||
1513 | class SALags(Operation): |
|
1513 | class SALags(Operation): | |
1514 | ''' |
|
1514 | ''' | |
1515 | Function GetMoments() |
|
1515 | Function GetMoments() | |
1516 |
|
1516 | |||
1517 | Input: |
|
1517 | Input: | |
1518 | self.dataOut.data_pre |
|
1518 | self.dataOut.data_pre | |
1519 | self.dataOut.abscissaList |
|
1519 | self.dataOut.abscissaList | |
1520 | self.dataOut.noise |
|
1520 | self.dataOut.noise | |
1521 | self.dataOut.normFactor |
|
1521 | self.dataOut.normFactor | |
1522 | self.dataOut.data_SNR |
|
1522 | self.dataOut.data_SNR | |
1523 | self.dataOut.groupList |
|
1523 | self.dataOut.groupList | |
1524 | self.dataOut.nChannels |
|
1524 | self.dataOut.nChannels | |
1525 |
|
1525 | |||
1526 | Affected: |
|
1526 | Affected: | |
1527 | self.dataOut.data_param |
|
1527 | self.dataOut.data_param | |
1528 |
|
1528 | |||
1529 | ''' |
|
1529 | ''' | |
1530 | def run(self, dataOut): |
|
1530 | def run(self, dataOut): | |
1531 | data_acf = dataOut.data_pre[0] |
|
1531 | data_acf = dataOut.data_pre[0] | |
1532 | data_ccf = dataOut.data_pre[1] |
|
1532 | data_ccf = dataOut.data_pre[1] | |
1533 | normFactor_acf = dataOut.normFactor[0] |
|
1533 | normFactor_acf = dataOut.normFactor[0] | |
1534 | normFactor_ccf = dataOut.normFactor[1] |
|
1534 | normFactor_ccf = dataOut.normFactor[1] | |
1535 | pairs_acf = dataOut.groupList[0] |
|
1535 | pairs_acf = dataOut.groupList[0] | |
1536 | pairs_ccf = dataOut.groupList[1] |
|
1536 | pairs_ccf = dataOut.groupList[1] | |
1537 |
|
1537 | |||
1538 | nHeights = dataOut.nHeights |
|
1538 | nHeights = dataOut.nHeights | |
1539 | absc = dataOut.abscissaList |
|
1539 | absc = dataOut.abscissaList | |
1540 | noise = dataOut.noise |
|
1540 | noise = dataOut.noise | |
1541 | SNR = dataOut.data_SNR |
|
1541 | SNR = dataOut.data_SNR | |
1542 | nChannels = dataOut.nChannels |
|
1542 | nChannels = dataOut.nChannels | |
1543 | # pairsList = dataOut.groupList |
|
1543 | # pairsList = dataOut.groupList | |
1544 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1544 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1545 |
|
1545 | |||
1546 | for l in range(len(pairs_acf)): |
|
1546 | for l in range(len(pairs_acf)): | |
1547 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1547 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1548 |
|
1548 | |||
1549 | for l in range(len(pairs_ccf)): |
|
1549 | for l in range(len(pairs_ccf)): | |
1550 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1550 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1551 |
|
1551 | |||
1552 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1552 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1553 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1553 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1554 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1554 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1555 | return |
|
1555 | return | |
1556 |
|
1556 | |||
1557 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1557 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1558 | # |
|
1558 | # | |
1559 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1559 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1560 | # |
|
1560 | # | |
1561 | # for l in range(len(pairsList)): |
|
1561 | # for l in range(len(pairsList)): | |
1562 | # firstChannel = pairsList[l][0] |
|
1562 | # firstChannel = pairsList[l][0] | |
1563 | # secondChannel = pairsList[l][1] |
|
1563 | # secondChannel = pairsList[l][1] | |
1564 | # |
|
1564 | # | |
1565 | # #Obteniendo pares de Autocorrelacion |
|
1565 | # #Obteniendo pares de Autocorrelacion | |
1566 | # if firstChannel == secondChannel: |
|
1566 | # if firstChannel == secondChannel: | |
1567 | # pairsAutoCorr[firstChannel] = int(l) |
|
1567 | # pairsAutoCorr[firstChannel] = int(l) | |
1568 | # |
|
1568 | # | |
1569 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1569 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1570 | # |
|
1570 | # | |
1571 | # pairsCrossCorr = range(len(pairsList)) |
|
1571 | # pairsCrossCorr = range(len(pairsList)) | |
1572 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1572 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1573 | # |
|
1573 | # | |
1574 | # return pairsAutoCorr, pairsCrossCorr |
|
1574 | # return pairsAutoCorr, pairsCrossCorr | |
1575 |
|
1575 | |||
1576 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1576 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1577 |
|
1577 | |||
1578 | lag0 = data_acf.shape[1]/2 |
|
1578 | lag0 = data_acf.shape[1]/2 | |
1579 | #Funcion de Autocorrelacion |
|
1579 | #Funcion de Autocorrelacion | |
1580 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1580 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1581 |
|
1581 | |||
1582 | #Obtencion Indice de TauCross |
|
1582 | #Obtencion Indice de TauCross | |
1583 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1583 | ind_ccf = data_ccf.argmax(axis = 1) | |
1584 | #Obtencion Indice de TauAuto |
|
1584 | #Obtencion Indice de TauAuto | |
1585 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1585 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1586 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1586 | ccf_lag0 = data_ccf[:,lag0,:] | |
1587 |
|
1587 | |||
1588 | for i in range(ccf_lag0.shape[0]): |
|
1588 | for i in range(ccf_lag0.shape[0]): | |
1589 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1589 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1590 |
|
1590 | |||
1591 | #Obtencion de TauCross y TauAuto |
|
1591 | #Obtencion de TauCross y TauAuto | |
1592 | tau_ccf = lagRange[ind_ccf] |
|
1592 | tau_ccf = lagRange[ind_ccf] | |
1593 | tau_acf = lagRange[ind_acf] |
|
1593 | tau_acf = lagRange[ind_acf] | |
1594 |
|
1594 | |||
1595 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1595 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1596 |
|
1596 | |||
1597 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1597 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1598 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1598 | tau_acf[Nan1,Nan2] = numpy.nan | |
1599 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1599 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1600 |
|
1600 | |||
1601 | return tau |
|
1601 | return tau | |
1602 |
|
1602 | |||
1603 | def __calculateLag1Phase(self, data, lagTRange): |
|
1603 | def __calculateLag1Phase(self, data, lagTRange): | |
1604 | data1 = stats.nanmean(data, axis = 0) |
|
1604 | data1 = stats.nanmean(data, axis = 0) | |
1605 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1605 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1606 |
|
1606 | |||
1607 | phase = numpy.angle(data1[lag1,:]) |
|
1607 | phase = numpy.angle(data1[lag1,:]) | |
1608 |
|
1608 | |||
1609 | return phase |
|
1609 | return phase | |
1610 |
|
1610 | |||
1611 | class SpectralFitting(Operation): |
|
1611 | class SpectralFitting(Operation): | |
1612 | ''' |
|
1612 | ''' | |
1613 | Function GetMoments() |
|
1613 | Function GetMoments() | |
1614 |
|
1614 | |||
1615 | Input: |
|
1615 | Input: | |
1616 | Output: |
|
1616 | Output: | |
1617 | Variables modified: |
|
1617 | Variables modified: | |
1618 | ''' |
|
1618 | ''' | |
1619 |
|
1619 | |||
1620 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1620 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1621 |
|
1621 | |||
1622 |
|
1622 | |||
1623 | if path != None: |
|
1623 | if path != None: | |
1624 | sys.path.append(path) |
|
1624 | sys.path.append(path) | |
1625 | self.dataOut.library = importlib.import_module(file) |
|
1625 | self.dataOut.library = importlib.import_module(file) | |
1626 |
|
1626 | |||
1627 | #To be inserted as a parameter |
|
1627 | #To be inserted as a parameter | |
1628 | groupArray = numpy.array(groupList) |
|
1628 | groupArray = numpy.array(groupList) | |
1629 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1629 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1630 | self.dataOut.groupList = groupArray |
|
1630 | self.dataOut.groupList = groupArray | |
1631 |
|
1631 | |||
1632 | nGroups = groupArray.shape[0] |
|
1632 | nGroups = groupArray.shape[0] | |
1633 | nChannels = self.dataIn.nChannels |
|
1633 | nChannels = self.dataIn.nChannels | |
1634 | nHeights=self.dataIn.heightList.size |
|
1634 | nHeights=self.dataIn.heightList.size | |
1635 |
|
1635 | |||
1636 | #Parameters Array |
|
1636 | #Parameters Array | |
1637 | self.dataOut.data_param = None |
|
1637 | self.dataOut.data_param = None | |
1638 |
|
1638 | |||
1639 | #Set constants |
|
1639 | #Set constants | |
1640 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1640 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1641 | self.dataOut.constants = constants |
|
1641 | self.dataOut.constants = constants | |
1642 | M = self.dataIn.normFactor |
|
1642 | M = self.dataIn.normFactor | |
1643 | N = self.dataIn.nFFTPoints |
|
1643 | N = self.dataIn.nFFTPoints | |
1644 | ippSeconds = self.dataIn.ippSeconds |
|
1644 | ippSeconds = self.dataIn.ippSeconds | |
1645 | K = self.dataIn.nIncohInt |
|
1645 | K = self.dataIn.nIncohInt | |
1646 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1646 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1647 |
|
1647 | |||
1648 | #List of possible combinations |
|
1648 | #List of possible combinations | |
1649 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1649 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1650 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1650 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1651 |
|
1651 | |||
1652 | if getSNR: |
|
1652 | if getSNR: | |
1653 | listChannels = groupArray.reshape((groupArray.size)) |
|
1653 | listChannels = groupArray.reshape((groupArray.size)) | |
1654 | listChannels.sort() |
|
1654 | listChannels.sort() | |
1655 | noise = self.dataIn.getNoise() |
|
1655 | noise = self.dataIn.getNoise() | |
1656 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1656 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1657 |
|
1657 | |||
1658 | for i in range(nGroups): |
|
1658 | for i in range(nGroups): | |
1659 | coord = groupArray[i,:] |
|
1659 | coord = groupArray[i,:] | |
1660 |
|
1660 | |||
1661 | #Input data array |
|
1661 | #Input data array | |
1662 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1662 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1663 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1663 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1664 |
|
1664 | |||
1665 | #Cross Spectra data array for Covariance Matrixes |
|
1665 | #Cross Spectra data array for Covariance Matrixes | |
1666 | ind = 0 |
|
1666 | ind = 0 | |
1667 | for pairs in listComb: |
|
1667 | for pairs in listComb: | |
1668 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1668 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1669 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1669 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1670 | ind += 1 |
|
1670 | ind += 1 | |
1671 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1671 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1672 | dataCross = dataCross**2/K |
|
1672 | dataCross = dataCross**2/K | |
1673 |
|
1673 | |||
1674 | for h in range(nHeights): |
|
1674 | for h in range(nHeights): | |
1675 | # print self.dataOut.heightList[h] |
|
1675 | # print self.dataOut.heightList[h] | |
1676 |
|
1676 | |||
1677 | #Input |
|
1677 | #Input | |
1678 | d = data[:,h] |
|
1678 | d = data[:,h] | |
1679 |
|
1679 | |||
1680 | #Covariance Matrix |
|
1680 | #Covariance Matrix | |
1681 | D = numpy.diag(d**2/K) |
|
1681 | D = numpy.diag(d**2/K) | |
1682 | ind = 0 |
|
1682 | ind = 0 | |
1683 | for pairs in listComb: |
|
1683 | for pairs in listComb: | |
1684 | #Coordinates in Covariance Matrix |
|
1684 | #Coordinates in Covariance Matrix | |
1685 | x = pairs[0] |
|
1685 | x = pairs[0] | |
1686 | y = pairs[1] |
|
1686 | y = pairs[1] | |
1687 | #Channel Index |
|
1687 | #Channel Index | |
1688 | S12 = dataCross[ind,:,h] |
|
1688 | S12 = dataCross[ind,:,h] | |
1689 | D12 = numpy.diag(S12) |
|
1689 | D12 = numpy.diag(S12) | |
1690 | #Completing Covariance Matrix with Cross Spectras |
|
1690 | #Completing Covariance Matrix with Cross Spectras | |
1691 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1691 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1692 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1692 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1693 | ind += 1 |
|
1693 | ind += 1 | |
1694 | Dinv=numpy.linalg.inv(D) |
|
1694 | Dinv=numpy.linalg.inv(D) | |
1695 | L=numpy.linalg.cholesky(Dinv) |
|
1695 | L=numpy.linalg.cholesky(Dinv) | |
1696 | LT=L.T |
|
1696 | LT=L.T | |
1697 |
|
1697 | |||
1698 | dp = numpy.dot(LT,d) |
|
1698 | dp = numpy.dot(LT,d) | |
1699 |
|
1699 | |||
1700 | #Initial values |
|
1700 | #Initial values | |
1701 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1701 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1702 |
|
1702 | |||
1703 | if (h>0)and(error1[3]<5): |
|
1703 | if (h>0)and(error1[3]<5): | |
1704 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1704 | p0 = self.dataOut.data_param[i,:,h-1] | |
1705 | else: |
|
1705 | else: | |
1706 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1706 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1707 |
|
1707 | |||
1708 | try: |
|
1708 | try: | |
1709 | #Least Squares |
|
1709 | #Least Squares | |
1710 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1710 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1711 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1711 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1712 | #Chi square error |
|
1712 | #Chi square error | |
1713 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1713 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1714 | #Error with Jacobian |
|
1714 | #Error with Jacobian | |
1715 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1715 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1716 | except: |
|
1716 | except: | |
1717 | minp = p0*numpy.nan |
|
1717 | minp = p0*numpy.nan | |
1718 | error0 = numpy.nan |
|
1718 | error0 = numpy.nan | |
1719 | error1 = p0*numpy.nan |
|
1719 | error1 = p0*numpy.nan | |
1720 |
|
1720 | |||
1721 | #Save |
|
1721 | #Save | |
1722 |
if self.dataOut.data_param |
|
1722 | if self.dataOut.data_param is None: | |
1723 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1723 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1724 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1724 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1725 |
|
1725 | |||
1726 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1726 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1727 | self.dataOut.data_param[i,:,h] = minp |
|
1727 | self.dataOut.data_param[i,:,h] = minp | |
1728 | return |
|
1728 | return | |
1729 |
|
1729 | |||
1730 | def __residFunction(self, p, dp, LT, constants): |
|
1730 | def __residFunction(self, p, dp, LT, constants): | |
1731 |
|
1731 | |||
1732 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1732 | fm = self.dataOut.library.modelFunction(p, constants) | |
1733 | fmp=numpy.dot(LT,fm) |
|
1733 | fmp=numpy.dot(LT,fm) | |
1734 |
|
1734 | |||
1735 | return dp-fmp |
|
1735 | return dp-fmp | |
1736 |
|
1736 | |||
1737 | def __getSNR(self, z, noise): |
|
1737 | def __getSNR(self, z, noise): | |
1738 |
|
1738 | |||
1739 | avg = numpy.average(z, axis=1) |
|
1739 | avg = numpy.average(z, axis=1) | |
1740 | SNR = (avg.T-noise)/noise |
|
1740 | SNR = (avg.T-noise)/noise | |
1741 | SNR = SNR.T |
|
1741 | SNR = SNR.T | |
1742 | return SNR |
|
1742 | return SNR | |
1743 |
|
1743 | |||
1744 | def __chisq(p,chindex,hindex): |
|
1744 | def __chisq(p,chindex,hindex): | |
1745 | #similar to Resid but calculates CHI**2 |
|
1745 | #similar to Resid but calculates CHI**2 | |
1746 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1746 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1747 | dp=numpy.dot(LT,d) |
|
1747 | dp=numpy.dot(LT,d) | |
1748 | fmp=numpy.dot(LT,fm) |
|
1748 | fmp=numpy.dot(LT,fm) | |
1749 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1749 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1750 | return chisq |
|
1750 | return chisq | |
1751 |
|
1751 | |||
1752 | class WindProfiler(Operation): |
|
1752 | class WindProfiler(Operation): | |
1753 |
|
1753 | |||
1754 | __isConfig = False |
|
1754 | __isConfig = False | |
1755 |
|
1755 | |||
1756 | __initime = None |
|
1756 | __initime = None | |
1757 | __lastdatatime = None |
|
1757 | __lastdatatime = None | |
1758 | __integrationtime = None |
|
1758 | __integrationtime = None | |
1759 |
|
1759 | |||
1760 | __buffer = None |
|
1760 | __buffer = None | |
1761 |
|
1761 | |||
1762 | __dataReady = False |
|
1762 | __dataReady = False | |
1763 |
|
1763 | |||
1764 | __firstdata = None |
|
1764 | __firstdata = None | |
1765 |
|
1765 | |||
1766 | n = None |
|
1766 | n = None | |
1767 |
|
1767 | |||
1768 | def __init__(self, **kwargs): |
|
1768 | def __init__(self, **kwargs): | |
1769 | Operation.__init__(self, **kwargs) |
|
1769 | Operation.__init__(self, **kwargs) | |
1770 |
|
1770 | |||
1771 | def __calculateCosDir(self, elev, azim): |
|
1771 | def __calculateCosDir(self, elev, azim): | |
1772 | zen = (90 - elev)*numpy.pi/180 |
|
1772 | zen = (90 - elev)*numpy.pi/180 | |
1773 | azim = azim*numpy.pi/180 |
|
1773 | azim = azim*numpy.pi/180 | |
1774 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1774 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1775 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1775 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1776 |
|
1776 | |||
1777 | signX = numpy.sign(numpy.cos(azim)) |
|
1777 | signX = numpy.sign(numpy.cos(azim)) | |
1778 | signY = numpy.sign(numpy.sin(azim)) |
|
1778 | signY = numpy.sign(numpy.sin(azim)) | |
1779 |
|
1779 | |||
1780 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1780 | cosDirX = numpy.copysign(cosDirX, signX) | |
1781 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1781 | cosDirY = numpy.copysign(cosDirY, signY) | |
1782 | return cosDirX, cosDirY |
|
1782 | return cosDirX, cosDirY | |
1783 |
|
1783 | |||
1784 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1784 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1785 |
|
1785 | |||
1786 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1786 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1787 | zenith_arr = numpy.arccos(dir_cosw) |
|
1787 | zenith_arr = numpy.arccos(dir_cosw) | |
1788 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1788 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1789 |
|
1789 | |||
1790 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1790 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1791 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1791 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1792 |
|
1792 | |||
1793 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1793 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1794 |
|
1794 | |||
1795 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1795 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1796 |
|
1796 | |||
1797 | # |
|
1797 | # | |
1798 | if horOnly: |
|
1798 | if horOnly: | |
1799 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1799 | A = numpy.c_[dir_cosu,dir_cosv] | |
1800 | else: |
|
1800 | else: | |
1801 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1801 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1802 | A = numpy.asmatrix(A) |
|
1802 | A = numpy.asmatrix(A) | |
1803 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1803 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1804 |
|
1804 | |||
1805 | return A1 |
|
1805 | return A1 | |
1806 |
|
1806 | |||
1807 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1807 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1808 | listPhi = phi.tolist() |
|
1808 | listPhi = phi.tolist() | |
1809 | maxid = listPhi.index(max(listPhi)) |
|
1809 | maxid = listPhi.index(max(listPhi)) | |
1810 | minid = listPhi.index(min(listPhi)) |
|
1810 | minid = listPhi.index(min(listPhi)) | |
1811 |
|
1811 | |||
1812 | rango = range(len(phi)) |
|
1812 | rango = range(len(phi)) | |
1813 | # rango = numpy.delete(rango,maxid) |
|
1813 | # rango = numpy.delete(rango,maxid) | |
1814 |
|
1814 | |||
1815 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1815 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1816 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1816 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1817 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1817 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1818 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1818 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1819 |
|
1819 | |||
1820 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1820 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1821 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1821 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1822 |
|
1822 | |||
1823 | for i in rango: |
|
1823 | for i in rango: | |
1824 | x = heiRang*math.cos(phi[i]) |
|
1824 | x = heiRang*math.cos(phi[i]) | |
1825 | y1 = velRadial[i,:] |
|
1825 | y1 = velRadial[i,:] | |
1826 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1826 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1827 |
|
1827 | |||
1828 | x1 = heiRang1 |
|
1828 | x1 = heiRang1 | |
1829 | y11 = f1(x1) |
|
1829 | y11 = f1(x1) | |
1830 |
|
1830 | |||
1831 | y2 = SNR[i,:] |
|
1831 | y2 = SNR[i,:] | |
1832 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1832 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1833 | y21 = f2(x1) |
|
1833 | y21 = f2(x1) | |
1834 |
|
1834 | |||
1835 | velRadial1[i,:] = y11 |
|
1835 | velRadial1[i,:] = y11 | |
1836 | SNR1[i,:] = y21 |
|
1836 | SNR1[i,:] = y21 | |
1837 |
|
1837 | |||
1838 | return heiRang1, velRadial1, SNR1 |
|
1838 | return heiRang1, velRadial1, SNR1 | |
1839 |
|
1839 | |||
1840 | def __calculateVelUVW(self, A, velRadial): |
|
1840 | def __calculateVelUVW(self, A, velRadial): | |
1841 |
|
1841 | |||
1842 | #Operacion Matricial |
|
1842 | #Operacion Matricial | |
1843 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1843 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1844 | # for ind in range(velRadial.shape[1]): |
|
1844 | # for ind in range(velRadial.shape[1]): | |
1845 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1845 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1846 | # velUVW = velUVW.transpose() |
|
1846 | # velUVW = velUVW.transpose() | |
1847 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1847 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1848 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1848 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1849 |
|
1849 | |||
1850 |
|
1850 | |||
1851 | return velUVW |
|
1851 | return velUVW | |
1852 |
|
1852 | |||
1853 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1853 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1854 |
|
1854 | |||
1855 | def techniqueDBS(self, kwargs): |
|
1855 | def techniqueDBS(self, kwargs): | |
1856 | """ |
|
1856 | """ | |
1857 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1857 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1858 |
|
1858 | |||
1859 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1859 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1860 | Direction correction (if necessary), Ranges and SNR |
|
1860 | Direction correction (if necessary), Ranges and SNR | |
1861 |
|
1861 | |||
1862 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1862 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1863 |
|
1863 | |||
1864 | Parameters affected: Winds, height range, SNR |
|
1864 | Parameters affected: Winds, height range, SNR | |
1865 | """ |
|
1865 | """ | |
1866 | velRadial0 = kwargs['velRadial'] |
|
1866 | velRadial0 = kwargs['velRadial'] | |
1867 | heiRang = kwargs['heightList'] |
|
1867 | heiRang = kwargs['heightList'] | |
1868 | SNR0 = kwargs['SNR'] |
|
1868 | SNR0 = kwargs['SNR'] | |
1869 |
|
1869 | |||
1870 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1870 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1871 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1871 | theta_x = numpy.array(kwargs['dirCosx']) | |
1872 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1872 | theta_y = numpy.array(kwargs['dirCosy']) | |
1873 | else: |
|
1873 | else: | |
1874 | elev = numpy.array(kwargs['elevation']) |
|
1874 | elev = numpy.array(kwargs['elevation']) | |
1875 | azim = numpy.array(kwargs['azimuth']) |
|
1875 | azim = numpy.array(kwargs['azimuth']) | |
1876 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1876 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1877 | azimuth = kwargs['correctAzimuth'] |
|
1877 | azimuth = kwargs['correctAzimuth'] | |
1878 | if kwargs.has_key('horizontalOnly'): |
|
1878 | if kwargs.has_key('horizontalOnly'): | |
1879 | horizontalOnly = kwargs['horizontalOnly'] |
|
1879 | horizontalOnly = kwargs['horizontalOnly'] | |
1880 | else: horizontalOnly = False |
|
1880 | else: horizontalOnly = False | |
1881 | if kwargs.has_key('correctFactor'): |
|
1881 | if kwargs.has_key('correctFactor'): | |
1882 | correctFactor = kwargs['correctFactor'] |
|
1882 | correctFactor = kwargs['correctFactor'] | |
1883 | else: correctFactor = 1 |
|
1883 | else: correctFactor = 1 | |
1884 | if kwargs.has_key('channelList'): |
|
1884 | if kwargs.has_key('channelList'): | |
1885 | channelList = kwargs['channelList'] |
|
1885 | channelList = kwargs['channelList'] | |
1886 | if len(channelList) == 2: |
|
1886 | if len(channelList) == 2: | |
1887 | horizontalOnly = True |
|
1887 | horizontalOnly = True | |
1888 | arrayChannel = numpy.array(channelList) |
|
1888 | arrayChannel = numpy.array(channelList) | |
1889 | param = param[arrayChannel,:,:] |
|
1889 | param = param[arrayChannel,:,:] | |
1890 | theta_x = theta_x[arrayChannel] |
|
1890 | theta_x = theta_x[arrayChannel] | |
1891 | theta_y = theta_y[arrayChannel] |
|
1891 | theta_y = theta_y[arrayChannel] | |
1892 |
|
1892 | |||
1893 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1893 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1894 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1894 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1895 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1895 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1896 |
|
1896 | |||
1897 | #Calculo de Componentes de la velocidad con DBS |
|
1897 | #Calculo de Componentes de la velocidad con DBS | |
1898 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1898 | winds = self.__calculateVelUVW(A,velRadial1) | |
1899 |
|
1899 | |||
1900 | return winds, heiRang1, SNR1 |
|
1900 | return winds, heiRang1, SNR1 | |
1901 |
|
1901 | |||
1902 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1902 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1903 |
|
1903 | |||
1904 | nPairs = len(pairs_ccf) |
|
1904 | nPairs = len(pairs_ccf) | |
1905 | posx = numpy.asarray(posx) |
|
1905 | posx = numpy.asarray(posx) | |
1906 | posy = numpy.asarray(posy) |
|
1906 | posy = numpy.asarray(posy) | |
1907 |
|
1907 | |||
1908 | #Rotacion Inversa para alinear con el azimuth |
|
1908 | #Rotacion Inversa para alinear con el azimuth | |
1909 | if azimuth!= None: |
|
1909 | if azimuth!= None: | |
1910 | azimuth = azimuth*math.pi/180 |
|
1910 | azimuth = azimuth*math.pi/180 | |
1911 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1911 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1912 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1912 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1913 | else: |
|
1913 | else: | |
1914 | posx1 = posx |
|
1914 | posx1 = posx | |
1915 | posy1 = posy |
|
1915 | posy1 = posy | |
1916 |
|
1916 | |||
1917 | #Calculo de Distancias |
|
1917 | #Calculo de Distancias | |
1918 | distx = numpy.zeros(nPairs) |
|
1918 | distx = numpy.zeros(nPairs) | |
1919 | disty = numpy.zeros(nPairs) |
|
1919 | disty = numpy.zeros(nPairs) | |
1920 | dist = numpy.zeros(nPairs) |
|
1920 | dist = numpy.zeros(nPairs) | |
1921 | ang = numpy.zeros(nPairs) |
|
1921 | ang = numpy.zeros(nPairs) | |
1922 |
|
1922 | |||
1923 | for i in range(nPairs): |
|
1923 | for i in range(nPairs): | |
1924 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1924 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1925 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1925 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1926 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1926 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1927 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1927 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1928 |
|
1928 | |||
1929 | return distx, disty, dist, ang |
|
1929 | return distx, disty, dist, ang | |
1930 | #Calculo de Matrices |
|
1930 | #Calculo de Matrices | |
1931 | # nPairs = len(pairs) |
|
1931 | # nPairs = len(pairs) | |
1932 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1932 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1933 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1933 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1934 | # |
|
1934 | # | |
1935 | # for j in range(nPairs): |
|
1935 | # for j in range(nPairs): | |
1936 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1936 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1937 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1937 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1938 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1938 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1939 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1939 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1940 | # |
|
1940 | # | |
1941 | # return distx,disty, dist1,ang1 |
|
1941 | # return distx,disty, dist1,ang1 | |
1942 |
|
1942 | |||
1943 |
|
1943 | |||
1944 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1944 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1945 |
|
1945 | |||
1946 | Ts = lagTRange[1] - lagTRange[0] |
|
1946 | Ts = lagTRange[1] - lagTRange[0] | |
1947 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1947 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1948 |
|
1948 | |||
1949 | return velW |
|
1949 | return velW | |
1950 |
|
1950 | |||
1951 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1951 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1952 | nPairs = tau1.shape[0] |
|
1952 | nPairs = tau1.shape[0] | |
1953 | nHeights = tau1.shape[1] |
|
1953 | nHeights = tau1.shape[1] | |
1954 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1954 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1955 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1955 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1956 |
|
1956 | |||
1957 | angCos = numpy.cos(ang) |
|
1957 | angCos = numpy.cos(ang) | |
1958 | angSin = numpy.sin(ang) |
|
1958 | angSin = numpy.sin(ang) | |
1959 |
|
1959 | |||
1960 | vel0 = dist1*tau1/(2*tau2**2) |
|
1960 | vel0 = dist1*tau1/(2*tau2**2) | |
1961 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1961 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1962 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1962 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1963 |
|
1963 | |||
1964 | ind = numpy.where(numpy.isinf(vel)) |
|
1964 | ind = numpy.where(numpy.isinf(vel)) | |
1965 | vel[ind] = numpy.nan |
|
1965 | vel[ind] = numpy.nan | |
1966 |
|
1966 | |||
1967 | return vel |
|
1967 | return vel | |
1968 |
|
1968 | |||
1969 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1969 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1970 | # |
|
1970 | # | |
1971 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1971 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1972 | # |
|
1972 | # | |
1973 | # for l in range(len(pairsList)): |
|
1973 | # for l in range(len(pairsList)): | |
1974 | # firstChannel = pairsList[l][0] |
|
1974 | # firstChannel = pairsList[l][0] | |
1975 | # secondChannel = pairsList[l][1] |
|
1975 | # secondChannel = pairsList[l][1] | |
1976 | # |
|
1976 | # | |
1977 | # #Obteniendo pares de Autocorrelacion |
|
1977 | # #Obteniendo pares de Autocorrelacion | |
1978 | # if firstChannel == secondChannel: |
|
1978 | # if firstChannel == secondChannel: | |
1979 | # pairsAutoCorr[firstChannel] = int(l) |
|
1979 | # pairsAutoCorr[firstChannel] = int(l) | |
1980 | # |
|
1980 | # | |
1981 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1981 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1982 | # |
|
1982 | # | |
1983 | # pairsCrossCorr = range(len(pairsList)) |
|
1983 | # pairsCrossCorr = range(len(pairsList)) | |
1984 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1984 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1985 | # |
|
1985 | # | |
1986 | # return pairsAutoCorr, pairsCrossCorr |
|
1986 | # return pairsAutoCorr, pairsCrossCorr | |
1987 |
|
1987 | |||
1988 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1988 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1989 | def techniqueSA(self, kwargs): |
|
1989 | def techniqueSA(self, kwargs): | |
1990 |
|
1990 | |||
1991 | """ |
|
1991 | """ | |
1992 | Function that implements Spaced Antenna (SA) technique. |
|
1992 | Function that implements Spaced Antenna (SA) technique. | |
1993 |
|
1993 | |||
1994 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1994 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1995 | Direction correction (if necessary), Ranges and SNR |
|
1995 | Direction correction (if necessary), Ranges and SNR | |
1996 |
|
1996 | |||
1997 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1997 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1998 |
|
1998 | |||
1999 | Parameters affected: Winds |
|
1999 | Parameters affected: Winds | |
2000 | """ |
|
2000 | """ | |
2001 | position_x = kwargs['positionX'] |
|
2001 | position_x = kwargs['positionX'] | |
2002 | position_y = kwargs['positionY'] |
|
2002 | position_y = kwargs['positionY'] | |
2003 | azimuth = kwargs['azimuth'] |
|
2003 | azimuth = kwargs['azimuth'] | |
2004 |
|
2004 | |||
2005 | if kwargs.has_key('correctFactor'): |
|
2005 | if kwargs.has_key('correctFactor'): | |
2006 | correctFactor = kwargs['correctFactor'] |
|
2006 | correctFactor = kwargs['correctFactor'] | |
2007 | else: |
|
2007 | else: | |
2008 | correctFactor = 1 |
|
2008 | correctFactor = 1 | |
2009 |
|
2009 | |||
2010 | groupList = kwargs['groupList'] |
|
2010 | groupList = kwargs['groupList'] | |
2011 | pairs_ccf = groupList[1] |
|
2011 | pairs_ccf = groupList[1] | |
2012 | tau = kwargs['tau'] |
|
2012 | tau = kwargs['tau'] | |
2013 | _lambda = kwargs['_lambda'] |
|
2013 | _lambda = kwargs['_lambda'] | |
2014 |
|
2014 | |||
2015 | #Cross Correlation pairs obtained |
|
2015 | #Cross Correlation pairs obtained | |
2016 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
2016 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
2017 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
2017 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
2018 | # pairsSelArray = numpy.array(pairsSelected) |
|
2018 | # pairsSelArray = numpy.array(pairsSelected) | |
2019 | # pairs = [] |
|
2019 | # pairs = [] | |
2020 | # |
|
2020 | # | |
2021 | # #Wind estimation pairs obtained |
|
2021 | # #Wind estimation pairs obtained | |
2022 | # for i in range(pairsSelArray.shape[0]/2): |
|
2022 | # for i in range(pairsSelArray.shape[0]/2): | |
2023 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
2023 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
2024 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
2024 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
2025 | # pairs.append((ind1,ind2)) |
|
2025 | # pairs.append((ind1,ind2)) | |
2026 |
|
2026 | |||
2027 | indtau = tau.shape[0]/2 |
|
2027 | indtau = tau.shape[0]/2 | |
2028 | tau1 = tau[:indtau,:] |
|
2028 | tau1 = tau[:indtau,:] | |
2029 | tau2 = tau[indtau:-1,:] |
|
2029 | tau2 = tau[indtau:-1,:] | |
2030 | # tau1 = tau1[pairs,:] |
|
2030 | # tau1 = tau1[pairs,:] | |
2031 | # tau2 = tau2[pairs,:] |
|
2031 | # tau2 = tau2[pairs,:] | |
2032 | phase1 = tau[-1,:] |
|
2032 | phase1 = tau[-1,:] | |
2033 |
|
2033 | |||
2034 | #--------------------------------------------------------------------- |
|
2034 | #--------------------------------------------------------------------- | |
2035 | #Metodo Directo |
|
2035 | #Metodo Directo | |
2036 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
2036 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
2037 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
2037 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
2038 | winds = stats.nanmean(winds, axis=0) |
|
2038 | winds = stats.nanmean(winds, axis=0) | |
2039 | #--------------------------------------------------------------------- |
|
2039 | #--------------------------------------------------------------------- | |
2040 | #Metodo General |
|
2040 | #Metodo General | |
2041 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
2041 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
2042 | # #Calculo Coeficientes de Funcion de Correlacion |
|
2042 | # #Calculo Coeficientes de Funcion de Correlacion | |
2043 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
2043 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
2044 | # #Calculo de Velocidades |
|
2044 | # #Calculo de Velocidades | |
2045 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
2045 | # winds = self.calculateVelUV(F,G,A,B,H) | |
2046 |
|
2046 | |||
2047 | #--------------------------------------------------------------------- |
|
2047 | #--------------------------------------------------------------------- | |
2048 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2048 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
2049 | winds = correctFactor*winds |
|
2049 | winds = correctFactor*winds | |
2050 | return winds |
|
2050 | return winds | |
2051 |
|
2051 | |||
2052 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2052 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
2053 |
|
2053 | |||
2054 | dataTime = currentTime + paramInterval |
|
2054 | dataTime = currentTime + paramInterval | |
2055 | deltaTime = dataTime - self.__initime |
|
2055 | deltaTime = dataTime - self.__initime | |
2056 |
|
2056 | |||
2057 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2057 | if deltaTime >= outputInterval or deltaTime < 0: | |
2058 | self.__dataReady = True |
|
2058 | self.__dataReady = True | |
2059 | return |
|
2059 | return | |
2060 |
|
2060 | |||
2061 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2061 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
2062 | ''' |
|
2062 | ''' | |
2063 | Function that implements winds estimation technique with detected meteors. |
|
2063 | Function that implements winds estimation technique with detected meteors. | |
2064 |
|
2064 | |||
2065 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2065 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
2066 |
|
2066 | |||
2067 | Output: Winds estimation (Zonal and Meridional) |
|
2067 | Output: Winds estimation (Zonal and Meridional) | |
2068 |
|
2068 | |||
2069 | Parameters affected: Winds |
|
2069 | Parameters affected: Winds | |
2070 | ''' |
|
2070 | ''' | |
2071 | # print arrayMeteor.shape |
|
2071 | # print arrayMeteor.shape | |
2072 | #Settings |
|
2072 | #Settings | |
2073 | nInt = (heightMax - heightMin)/2 |
|
2073 | nInt = (heightMax - heightMin)/2 | |
2074 | # print nInt |
|
2074 | # print nInt | |
2075 | nInt = int(nInt) |
|
2075 | nInt = int(nInt) | |
2076 | # print nInt |
|
2076 | # print nInt | |
2077 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
2077 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2078 |
|
2078 | |||
2079 | #Filter errors |
|
2079 | #Filter errors | |
2080 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2080 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
2081 | finalMeteor = arrayMeteor[error,:] |
|
2081 | finalMeteor = arrayMeteor[error,:] | |
2082 |
|
2082 | |||
2083 | #Meteor Histogram |
|
2083 | #Meteor Histogram | |
2084 | finalHeights = finalMeteor[:,2] |
|
2084 | finalHeights = finalMeteor[:,2] | |
2085 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2085 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
2086 | nMeteorsPerI = hist[0] |
|
2086 | nMeteorsPerI = hist[0] | |
2087 | heightPerI = hist[1] |
|
2087 | heightPerI = hist[1] | |
2088 |
|
2088 | |||
2089 | #Sort of meteors |
|
2089 | #Sort of meteors | |
2090 | indSort = finalHeights.argsort() |
|
2090 | indSort = finalHeights.argsort() | |
2091 | finalMeteor2 = finalMeteor[indSort,:] |
|
2091 | finalMeteor2 = finalMeteor[indSort,:] | |
2092 |
|
2092 | |||
2093 | # Calculating winds |
|
2093 | # Calculating winds | |
2094 | ind1 = 0 |
|
2094 | ind1 = 0 | |
2095 | ind2 = 0 |
|
2095 | ind2 = 0 | |
2096 |
|
2096 | |||
2097 | for i in range(nInt): |
|
2097 | for i in range(nInt): | |
2098 | nMet = nMeteorsPerI[i] |
|
2098 | nMet = nMeteorsPerI[i] | |
2099 | ind1 = ind2 |
|
2099 | ind1 = ind2 | |
2100 | ind2 = ind1 + nMet |
|
2100 | ind2 = ind1 + nMet | |
2101 |
|
2101 | |||
2102 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2102 | meteorAux = finalMeteor2[ind1:ind2,:] | |
2103 |
|
2103 | |||
2104 | if meteorAux.shape[0] >= meteorThresh: |
|
2104 | if meteorAux.shape[0] >= meteorThresh: | |
2105 | vel = meteorAux[:, 6] |
|
2105 | vel = meteorAux[:, 6] | |
2106 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2106 | zen = meteorAux[:, 4]*numpy.pi/180 | |
2107 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2107 | azim = meteorAux[:, 3]*numpy.pi/180 | |
2108 |
|
2108 | |||
2109 | n = numpy.cos(zen) |
|
2109 | n = numpy.cos(zen) | |
2110 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2110 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
2111 | # l = m*numpy.tan(azim) |
|
2111 | # l = m*numpy.tan(azim) | |
2112 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2112 | l = numpy.sin(zen)*numpy.sin(azim) | |
2113 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2113 | m = numpy.sin(zen)*numpy.cos(azim) | |
2114 |
|
2114 | |||
2115 | A = numpy.vstack((l, m)).transpose() |
|
2115 | A = numpy.vstack((l, m)).transpose() | |
2116 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2116 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
2117 | windsAux = numpy.dot(A1, vel) |
|
2117 | windsAux = numpy.dot(A1, vel) | |
2118 |
|
2118 | |||
2119 | winds[0,i] = windsAux[0] |
|
2119 | winds[0,i] = windsAux[0] | |
2120 | winds[1,i] = windsAux[1] |
|
2120 | winds[1,i] = windsAux[1] | |
2121 |
|
2121 | |||
2122 | return winds, heightPerI[:-1] |
|
2122 | return winds, heightPerI[:-1] | |
2123 |
|
2123 | |||
2124 | def techniqueNSM_SA(self, **kwargs): |
|
2124 | def techniqueNSM_SA(self, **kwargs): | |
2125 | metArray = kwargs['metArray'] |
|
2125 | metArray = kwargs['metArray'] | |
2126 | heightList = kwargs['heightList'] |
|
2126 | heightList = kwargs['heightList'] | |
2127 | timeList = kwargs['timeList'] |
|
2127 | timeList = kwargs['timeList'] | |
2128 |
|
2128 | |||
2129 | rx_location = kwargs['rx_location'] |
|
2129 | rx_location = kwargs['rx_location'] | |
2130 | groupList = kwargs['groupList'] |
|
2130 | groupList = kwargs['groupList'] | |
2131 | azimuth = kwargs['azimuth'] |
|
2131 | azimuth = kwargs['azimuth'] | |
2132 | dfactor = kwargs['dfactor'] |
|
2132 | dfactor = kwargs['dfactor'] | |
2133 | k = kwargs['k'] |
|
2133 | k = kwargs['k'] | |
2134 |
|
2134 | |||
2135 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2135 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
2136 | d = dist*dfactor |
|
2136 | d = dist*dfactor | |
2137 | #Phase calculation |
|
2137 | #Phase calculation | |
2138 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2138 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
2139 |
|
2139 | |||
2140 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2140 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2141 |
|
2141 | |||
2142 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2142 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2143 | azimuth1 = azimuth1*numpy.pi/180 |
|
2143 | azimuth1 = azimuth1*numpy.pi/180 | |
2144 |
|
2144 | |||
2145 | for i in range(heightList.size): |
|
2145 | for i in range(heightList.size): | |
2146 | h = heightList[i] |
|
2146 | h = heightList[i] | |
2147 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2147 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
2148 | metHeight = metArray1[indH,:] |
|
2148 | metHeight = metArray1[indH,:] | |
2149 | if metHeight.shape[0] >= 2: |
|
2149 | if metHeight.shape[0] >= 2: | |
2150 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2150 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
2151 | iazim = metHeight[:,1].astype(int) |
|
2151 | iazim = metHeight[:,1].astype(int) | |
2152 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2152 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
2153 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2153 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2154 | A = numpy.asmatrix(A) |
|
2154 | A = numpy.asmatrix(A) | |
2155 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2155 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2156 | velHor = numpy.dot(A1,velAux) |
|
2156 | velHor = numpy.dot(A1,velAux) | |
2157 |
|
2157 | |||
2158 | velEst[i,:] = numpy.squeeze(velHor) |
|
2158 | velEst[i,:] = numpy.squeeze(velHor) | |
2159 | return velEst |
|
2159 | return velEst | |
2160 |
|
2160 | |||
2161 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2161 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2162 | meteorList = [] |
|
2162 | meteorList = [] | |
2163 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2163 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2164 | #Putting back together the meteor matrix |
|
2164 | #Putting back together the meteor matrix | |
2165 | utctime = metArray[:,0] |
|
2165 | utctime = metArray[:,0] | |
2166 | uniqueTime = numpy.unique(utctime) |
|
2166 | uniqueTime = numpy.unique(utctime) | |
2167 |
|
2167 | |||
2168 | phaseDerThresh = 0.5 |
|
2168 | phaseDerThresh = 0.5 | |
2169 | ippSeconds = timeList[1] - timeList[0] |
|
2169 | ippSeconds = timeList[1] - timeList[0] | |
2170 | sec = numpy.where(timeList>1)[0][0] |
|
2170 | sec = numpy.where(timeList>1)[0][0] | |
2171 | nPairs = metArray.shape[1] - 6 |
|
2171 | nPairs = metArray.shape[1] - 6 | |
2172 | nHeights = len(heightList) |
|
2172 | nHeights = len(heightList) | |
2173 |
|
2173 | |||
2174 | for t in uniqueTime: |
|
2174 | for t in uniqueTime: | |
2175 | metArray1 = metArray[utctime==t,:] |
|
2175 | metArray1 = metArray[utctime==t,:] | |
2176 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2176 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2177 | tmet = metArray1[:,1].astype(int) |
|
2177 | tmet = metArray1[:,1].astype(int) | |
2178 | hmet = metArray1[:,2].astype(int) |
|
2178 | hmet = metArray1[:,2].astype(int) | |
2179 |
|
2179 | |||
2180 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2180 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2181 | metPhase[:,:] = numpy.nan |
|
2181 | metPhase[:,:] = numpy.nan | |
2182 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2182 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2183 |
|
2183 | |||
2184 | #Delete short trails |
|
2184 | #Delete short trails | |
2185 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2185 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2186 | heightVect = numpy.sum(metBool, axis = 1) |
|
2186 | heightVect = numpy.sum(metBool, axis = 1) | |
2187 | metBool[heightVect<sec,:] = False |
|
2187 | metBool[heightVect<sec,:] = False | |
2188 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2188 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2189 |
|
2189 | |||
2190 | #Derivative |
|
2190 | #Derivative | |
2191 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2191 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2192 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2192 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2193 | metPhase[phDerAux] = numpy.nan |
|
2193 | metPhase[phDerAux] = numpy.nan | |
2194 |
|
2194 | |||
2195 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2195 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2196 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2196 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2197 |
|
2197 | |||
2198 | for p in numpy.arange(nPairs): |
|
2198 | for p in numpy.arange(nPairs): | |
2199 | phase = metPhase[p,:,:] |
|
2199 | phase = metPhase[p,:,:] | |
2200 | phDer = metDer[p,:,:] |
|
2200 | phDer = metDer[p,:,:] | |
2201 |
|
2201 | |||
2202 | for h in indMet: |
|
2202 | for h in indMet: | |
2203 | height = heightList[h] |
|
2203 | height = heightList[h] | |
2204 | phase1 = phase[h,:] #82 |
|
2204 | phase1 = phase[h,:] #82 | |
2205 | phDer1 = phDer[h,:] |
|
2205 | phDer1 = phDer[h,:] | |
2206 |
|
2206 | |||
2207 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2207 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2208 |
|
2208 | |||
2209 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2209 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2210 | initMet = indValid[0] |
|
2210 | initMet = indValid[0] | |
2211 | endMet = 0 |
|
2211 | endMet = 0 | |
2212 |
|
2212 | |||
2213 | for i in range(len(indValid)-1): |
|
2213 | for i in range(len(indValid)-1): | |
2214 |
|
2214 | |||
2215 | #Time difference |
|
2215 | #Time difference | |
2216 | inow = indValid[i] |
|
2216 | inow = indValid[i] | |
2217 | inext = indValid[i+1] |
|
2217 | inext = indValid[i+1] | |
2218 | idiff = inext - inow |
|
2218 | idiff = inext - inow | |
2219 | #Phase difference |
|
2219 | #Phase difference | |
2220 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2220 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2221 |
|
2221 | |||
2222 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2222 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2223 | sizeTrail = inow - initMet + 1 |
|
2223 | sizeTrail = inow - initMet + 1 | |
2224 | if sizeTrail>3*sec: #Too short meteors |
|
2224 | if sizeTrail>3*sec: #Too short meteors | |
2225 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2225 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2226 | y = phase1[initMet:inow+1] |
|
2226 | y = phase1[initMet:inow+1] | |
2227 | ynnan = ~numpy.isnan(y) |
|
2227 | ynnan = ~numpy.isnan(y) | |
2228 | x = x[ynnan] |
|
2228 | x = x[ynnan] | |
2229 | y = y[ynnan] |
|
2229 | y = y[ynnan] | |
2230 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2230 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2231 | ylin = x*slope + intercept |
|
2231 | ylin = x*slope + intercept | |
2232 | rsq = r_value**2 |
|
2232 | rsq = r_value**2 | |
2233 | if rsq > 0.5: |
|
2233 | if rsq > 0.5: | |
2234 | vel = slope#*height*1000/(k*d) |
|
2234 | vel = slope#*height*1000/(k*d) | |
2235 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2235 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2236 | meteorList.append(estAux) |
|
2236 | meteorList.append(estAux) | |
2237 | initMet = inext |
|
2237 | initMet = inext | |
2238 | metArray2 = numpy.array(meteorList) |
|
2238 | metArray2 = numpy.array(meteorList) | |
2239 |
|
2239 | |||
2240 | return metArray2 |
|
2240 | return metArray2 | |
2241 |
|
2241 | |||
2242 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2242 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2243 |
|
2243 | |||
2244 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2244 | azimuth1 = numpy.zeros(len(pairslist)) | |
2245 | dist = numpy.zeros(len(pairslist)) |
|
2245 | dist = numpy.zeros(len(pairslist)) | |
2246 |
|
2246 | |||
2247 | for i in range(len(rx_location)): |
|
2247 | for i in range(len(rx_location)): | |
2248 | ch0 = pairslist[i][0] |
|
2248 | ch0 = pairslist[i][0] | |
2249 | ch1 = pairslist[i][1] |
|
2249 | ch1 = pairslist[i][1] | |
2250 |
|
2250 | |||
2251 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2251 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2252 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2252 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2253 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2253 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2254 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2254 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2255 |
|
2255 | |||
2256 | azimuth1 -= azimuth0 |
|
2256 | azimuth1 -= azimuth0 | |
2257 | return azimuth1, dist |
|
2257 | return azimuth1, dist | |
2258 |
|
2258 | |||
2259 | def techniqueNSM_DBS(self, **kwargs): |
|
2259 | def techniqueNSM_DBS(self, **kwargs): | |
2260 | metArray = kwargs['metArray'] |
|
2260 | metArray = kwargs['metArray'] | |
2261 | heightList = kwargs['heightList'] |
|
2261 | heightList = kwargs['heightList'] | |
2262 | timeList = kwargs['timeList'] |
|
2262 | timeList = kwargs['timeList'] | |
2263 | azimuth = kwargs['azimuth'] |
|
2263 | azimuth = kwargs['azimuth'] | |
2264 | theta_x = numpy.array(kwargs['theta_x']) |
|
2264 | theta_x = numpy.array(kwargs['theta_x']) | |
2265 | theta_y = numpy.array(kwargs['theta_y']) |
|
2265 | theta_y = numpy.array(kwargs['theta_y']) | |
2266 |
|
2266 | |||
2267 | utctime = metArray[:,0] |
|
2267 | utctime = metArray[:,0] | |
2268 | cmet = metArray[:,1].astype(int) |
|
2268 | cmet = metArray[:,1].astype(int) | |
2269 | hmet = metArray[:,3].astype(int) |
|
2269 | hmet = metArray[:,3].astype(int) | |
2270 | SNRmet = metArray[:,4] |
|
2270 | SNRmet = metArray[:,4] | |
2271 | vmet = metArray[:,5] |
|
2271 | vmet = metArray[:,5] | |
2272 | spcmet = metArray[:,6] |
|
2272 | spcmet = metArray[:,6] | |
2273 |
|
2273 | |||
2274 | nChan = numpy.max(cmet) + 1 |
|
2274 | nChan = numpy.max(cmet) + 1 | |
2275 | nHeights = len(heightList) |
|
2275 | nHeights = len(heightList) | |
2276 |
|
2276 | |||
2277 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
2277 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
2278 | hmet = heightList[hmet] |
|
2278 | hmet = heightList[hmet] | |
2279 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights |
|
2279 | h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights | |
2280 |
|
2280 | |||
2281 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2281 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2282 |
|
2282 | |||
2283 | for i in range(nHeights - 1): |
|
2283 | for i in range(nHeights - 1): | |
2284 | hmin = heightList[i] |
|
2284 | hmin = heightList[i] | |
2285 | hmax = heightList[i + 1] |
|
2285 | hmax = heightList[i + 1] | |
2286 |
|
2286 | |||
2287 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) |
|
2287 | thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10) | |
2288 | indthisH = numpy.where(thisH) |
|
2288 | indthisH = numpy.where(thisH) | |
2289 |
|
2289 | |||
2290 | if numpy.size(indthisH) > 3: |
|
2290 | if numpy.size(indthisH) > 3: | |
2291 |
|
2291 | |||
2292 | vel_aux = vmet[thisH] |
|
2292 | vel_aux = vmet[thisH] | |
2293 | chan_aux = cmet[thisH] |
|
2293 | chan_aux = cmet[thisH] | |
2294 | cosu_aux = dir_cosu[chan_aux] |
|
2294 | cosu_aux = dir_cosu[chan_aux] | |
2295 | cosv_aux = dir_cosv[chan_aux] |
|
2295 | cosv_aux = dir_cosv[chan_aux] | |
2296 | cosw_aux = dir_cosw[chan_aux] |
|
2296 | cosw_aux = dir_cosw[chan_aux] | |
2297 |
|
2297 | |||
2298 | nch = numpy.size(numpy.unique(chan_aux)) |
|
2298 | nch = numpy.size(numpy.unique(chan_aux)) | |
2299 | if nch > 1: |
|
2299 | if nch > 1: | |
2300 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) |
|
2300 | A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True) | |
2301 | velEst[i,:] = numpy.dot(A,vel_aux) |
|
2301 | velEst[i,:] = numpy.dot(A,vel_aux) | |
2302 |
|
2302 | |||
2303 | return velEst |
|
2303 | return velEst | |
2304 |
|
2304 | |||
2305 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): |
|
2305 | def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs): | |
2306 |
|
2306 | |||
2307 | param = dataOut.data_param |
|
2307 | param = dataOut.data_param | |
2308 | if dataOut.abscissaList != None: |
|
2308 | if dataOut.abscissaList != None: | |
2309 | absc = dataOut.abscissaList[:-1] |
|
2309 | absc = dataOut.abscissaList[:-1] | |
2310 | # noise = dataOut.noise |
|
2310 | # noise = dataOut.noise | |
2311 | heightList = dataOut.heightList |
|
2311 | heightList = dataOut.heightList | |
2312 | SNR = dataOut.data_SNR |
|
2312 | SNR = dataOut.data_SNR | |
2313 |
|
2313 | |||
2314 | if technique == 'DBS': |
|
2314 | if technique == 'DBS': | |
2315 |
|
2315 | |||
2316 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2316 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2317 | kwargs['heightList'] = heightList |
|
2317 | kwargs['heightList'] = heightList | |
2318 | kwargs['SNR'] = SNR |
|
2318 | kwargs['SNR'] = SNR | |
2319 |
|
2319 | |||
2320 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2320 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2321 | dataOut.utctimeInit = dataOut.utctime |
|
2321 | dataOut.utctimeInit = dataOut.utctime | |
2322 | dataOut.outputInterval = dataOut.paramInterval |
|
2322 | dataOut.outputInterval = dataOut.paramInterval | |
2323 |
|
2323 | |||
2324 | elif technique == 'SA': |
|
2324 | elif technique == 'SA': | |
2325 |
|
2325 | |||
2326 | #Parameters |
|
2326 | #Parameters | |
2327 | # position_x = kwargs['positionX'] |
|
2327 | # position_x = kwargs['positionX'] | |
2328 | # position_y = kwargs['positionY'] |
|
2328 | # position_y = kwargs['positionY'] | |
2329 | # azimuth = kwargs['azimuth'] |
|
2329 | # azimuth = kwargs['azimuth'] | |
2330 | # |
|
2330 | # | |
2331 | # if kwargs.has_key('crosspairsList'): |
|
2331 | # if kwargs.has_key('crosspairsList'): | |
2332 | # pairs = kwargs['crosspairsList'] |
|
2332 | # pairs = kwargs['crosspairsList'] | |
2333 | # else: |
|
2333 | # else: | |
2334 | # pairs = None |
|
2334 | # pairs = None | |
2335 | # |
|
2335 | # | |
2336 | # if kwargs.has_key('correctFactor'): |
|
2336 | # if kwargs.has_key('correctFactor'): | |
2337 | # correctFactor = kwargs['correctFactor'] |
|
2337 | # correctFactor = kwargs['correctFactor'] | |
2338 | # else: |
|
2338 | # else: | |
2339 | # correctFactor = 1 |
|
2339 | # correctFactor = 1 | |
2340 |
|
2340 | |||
2341 | # tau = dataOut.data_param |
|
2341 | # tau = dataOut.data_param | |
2342 | # _lambda = dataOut.C/dataOut.frequency |
|
2342 | # _lambda = dataOut.C/dataOut.frequency | |
2343 | # pairsList = dataOut.groupList |
|
2343 | # pairsList = dataOut.groupList | |
2344 | # nChannels = dataOut.nChannels |
|
2344 | # nChannels = dataOut.nChannels | |
2345 |
|
2345 | |||
2346 | kwargs['groupList'] = dataOut.groupList |
|
2346 | kwargs['groupList'] = dataOut.groupList | |
2347 | kwargs['tau'] = dataOut.data_param |
|
2347 | kwargs['tau'] = dataOut.data_param | |
2348 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2348 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2349 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2349 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2350 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2350 | dataOut.data_output = self.techniqueSA(kwargs) | |
2351 | dataOut.utctimeInit = dataOut.utctime |
|
2351 | dataOut.utctimeInit = dataOut.utctime | |
2352 | dataOut.outputInterval = dataOut.timeInterval |
|
2352 | dataOut.outputInterval = dataOut.timeInterval | |
2353 |
|
2353 | |||
2354 | elif technique == 'Meteors': |
|
2354 | elif technique == 'Meteors': | |
2355 | dataOut.flagNoData = True |
|
2355 | dataOut.flagNoData = True | |
2356 | self.__dataReady = False |
|
2356 | self.__dataReady = False | |
2357 |
|
2357 | |||
2358 | if kwargs.has_key('nHours'): |
|
2358 | if kwargs.has_key('nHours'): | |
2359 | nHours = kwargs['nHours'] |
|
2359 | nHours = kwargs['nHours'] | |
2360 | else: |
|
2360 | else: | |
2361 | nHours = 1 |
|
2361 | nHours = 1 | |
2362 |
|
2362 | |||
2363 | if kwargs.has_key('meteorsPerBin'): |
|
2363 | if kwargs.has_key('meteorsPerBin'): | |
2364 | meteorThresh = kwargs['meteorsPerBin'] |
|
2364 | meteorThresh = kwargs['meteorsPerBin'] | |
2365 | else: |
|
2365 | else: | |
2366 | meteorThresh = 6 |
|
2366 | meteorThresh = 6 | |
2367 |
|
2367 | |||
2368 | if kwargs.has_key('hmin'): |
|
2368 | if kwargs.has_key('hmin'): | |
2369 | hmin = kwargs['hmin'] |
|
2369 | hmin = kwargs['hmin'] | |
2370 | else: hmin = 70 |
|
2370 | else: hmin = 70 | |
2371 | if kwargs.has_key('hmax'): |
|
2371 | if kwargs.has_key('hmax'): | |
2372 | hmax = kwargs['hmax'] |
|
2372 | hmax = kwargs['hmax'] | |
2373 | else: hmax = 110 |
|
2373 | else: hmax = 110 | |
2374 |
|
2374 | |||
2375 | dataOut.outputInterval = nHours*3600 |
|
2375 | dataOut.outputInterval = nHours*3600 | |
2376 |
|
2376 | |||
2377 | if self.__isConfig == False: |
|
2377 | if self.__isConfig == False: | |
2378 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2378 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2379 | #Get Initial LTC time |
|
2379 | #Get Initial LTC time | |
2380 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2380 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2381 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2381 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2382 |
|
2382 | |||
2383 | self.__isConfig = True |
|
2383 | self.__isConfig = True | |
2384 |
|
2384 | |||
2385 |
if self.__buffer |
|
2385 | if self.__buffer is None: | |
2386 | self.__buffer = dataOut.data_param |
|
2386 | self.__buffer = dataOut.data_param | |
2387 | self.__firstdata = copy.copy(dataOut) |
|
2387 | self.__firstdata = copy.copy(dataOut) | |
2388 |
|
2388 | |||
2389 | else: |
|
2389 | else: | |
2390 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2390 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2391 |
|
2391 | |||
2392 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2392 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2393 |
|
2393 | |||
2394 | if self.__dataReady: |
|
2394 | if self.__dataReady: | |
2395 | dataOut.utctimeInit = self.__initime |
|
2395 | dataOut.utctimeInit = self.__initime | |
2396 |
|
2396 | |||
2397 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2397 | self.__initime += dataOut.outputInterval #to erase time offset | |
2398 |
|
2398 | |||
2399 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2399 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2400 | dataOut.flagNoData = False |
|
2400 | dataOut.flagNoData = False | |
2401 | self.__buffer = None |
|
2401 | self.__buffer = None | |
2402 |
|
2402 | |||
2403 | elif technique == 'Meteors1': |
|
2403 | elif technique == 'Meteors1': | |
2404 | dataOut.flagNoData = True |
|
2404 | dataOut.flagNoData = True | |
2405 | self.__dataReady = False |
|
2405 | self.__dataReady = False | |
2406 |
|
2406 | |||
2407 | if kwargs.has_key('nMins'): |
|
2407 | if kwargs.has_key('nMins'): | |
2408 | nMins = kwargs['nMins'] |
|
2408 | nMins = kwargs['nMins'] | |
2409 | else: nMins = 20 |
|
2409 | else: nMins = 20 | |
2410 | if kwargs.has_key('rx_location'): |
|
2410 | if kwargs.has_key('rx_location'): | |
2411 | rx_location = kwargs['rx_location'] |
|
2411 | rx_location = kwargs['rx_location'] | |
2412 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2412 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2413 | if kwargs.has_key('azimuth'): |
|
2413 | if kwargs.has_key('azimuth'): | |
2414 | azimuth = kwargs['azimuth'] |
|
2414 | azimuth = kwargs['azimuth'] | |
2415 | else: azimuth = 51.06 |
|
2415 | else: azimuth = 51.06 | |
2416 | if kwargs.has_key('dfactor'): |
|
2416 | if kwargs.has_key('dfactor'): | |
2417 | dfactor = kwargs['dfactor'] |
|
2417 | dfactor = kwargs['dfactor'] | |
2418 | if kwargs.has_key('mode'): |
|
2418 | if kwargs.has_key('mode'): | |
2419 | mode = kwargs['mode'] |
|
2419 | mode = kwargs['mode'] | |
2420 | if kwargs.has_key('theta_x'): |
|
2420 | if kwargs.has_key('theta_x'): | |
2421 | theta_x = kwargs['theta_x'] |
|
2421 | theta_x = kwargs['theta_x'] | |
2422 | if kwargs.has_key('theta_y'): |
|
2422 | if kwargs.has_key('theta_y'): | |
2423 | theta_y = kwargs['theta_y'] |
|
2423 | theta_y = kwargs['theta_y'] | |
2424 | else: mode = 'SA' |
|
2424 | else: mode = 'SA' | |
2425 |
|
2425 | |||
2426 | #Borrar luego esto |
|
2426 | #Borrar luego esto | |
2427 |
if dataOut.groupList |
|
2427 | if dataOut.groupList is None: | |
2428 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2428 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2429 | groupList = dataOut.groupList |
|
2429 | groupList = dataOut.groupList | |
2430 | C = 3e8 |
|
2430 | C = 3e8 | |
2431 | freq = 50e6 |
|
2431 | freq = 50e6 | |
2432 | lamb = C/freq |
|
2432 | lamb = C/freq | |
2433 | k = 2*numpy.pi/lamb |
|
2433 | k = 2*numpy.pi/lamb | |
2434 |
|
2434 | |||
2435 | timeList = dataOut.abscissaList |
|
2435 | timeList = dataOut.abscissaList | |
2436 | heightList = dataOut.heightList |
|
2436 | heightList = dataOut.heightList | |
2437 |
|
2437 | |||
2438 | if self.__isConfig == False: |
|
2438 | if self.__isConfig == False: | |
2439 | dataOut.outputInterval = nMins*60 |
|
2439 | dataOut.outputInterval = nMins*60 | |
2440 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2440 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2441 | #Get Initial LTC time |
|
2441 | #Get Initial LTC time | |
2442 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2442 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2443 | minuteAux = initime.minute |
|
2443 | minuteAux = initime.minute | |
2444 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2444 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2445 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2445 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2446 |
|
2446 | |||
2447 | self.__isConfig = True |
|
2447 | self.__isConfig = True | |
2448 |
|
2448 | |||
2449 |
if self.__buffer |
|
2449 | if self.__buffer is None: | |
2450 | self.__buffer = dataOut.data_param |
|
2450 | self.__buffer = dataOut.data_param | |
2451 | self.__firstdata = copy.copy(dataOut) |
|
2451 | self.__firstdata = copy.copy(dataOut) | |
2452 |
|
2452 | |||
2453 | else: |
|
2453 | else: | |
2454 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2454 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2455 |
|
2455 | |||
2456 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2456 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2457 |
|
2457 | |||
2458 | if self.__dataReady: |
|
2458 | if self.__dataReady: | |
2459 | dataOut.utctimeInit = self.__initime |
|
2459 | dataOut.utctimeInit = self.__initime | |
2460 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2460 | self.__initime += dataOut.outputInterval #to erase time offset | |
2461 |
|
2461 | |||
2462 | metArray = self.__buffer |
|
2462 | metArray = self.__buffer | |
2463 | if mode == 'SA': |
|
2463 | if mode == 'SA': | |
2464 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2464 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2465 | elif mode == 'DBS': |
|
2465 | elif mode == 'DBS': | |
2466 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) |
|
2466 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y) | |
2467 | dataOut.data_output = dataOut.data_output.T |
|
2467 | dataOut.data_output = dataOut.data_output.T | |
2468 | dataOut.flagNoData = False |
|
2468 | dataOut.flagNoData = False | |
2469 | self.__buffer = None |
|
2469 | self.__buffer = None | |
2470 |
|
2470 | |||
2471 | return |
|
2471 | return | |
2472 |
|
2472 | |||
2473 | class EWDriftsEstimation(Operation): |
|
2473 | class EWDriftsEstimation(Operation): | |
2474 |
|
2474 | |||
2475 | def __init__(self, **kwargs): |
|
2475 | def __init__(self, **kwargs): | |
2476 | Operation.__init__(self, **kwargs) |
|
2476 | Operation.__init__(self, **kwargs) | |
2477 |
|
2477 | |||
2478 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2478 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2479 | listPhi = phi.tolist() |
|
2479 | listPhi = phi.tolist() | |
2480 | maxid = listPhi.index(max(listPhi)) |
|
2480 | maxid = listPhi.index(max(listPhi)) | |
2481 | minid = listPhi.index(min(listPhi)) |
|
2481 | minid = listPhi.index(min(listPhi)) | |
2482 |
|
2482 | |||
2483 | rango = range(len(phi)) |
|
2483 | rango = range(len(phi)) | |
2484 | # rango = numpy.delete(rango,maxid) |
|
2484 | # rango = numpy.delete(rango,maxid) | |
2485 |
|
2485 | |||
2486 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2486 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2487 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2487 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2488 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2488 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2489 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2489 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2490 |
|
2490 | |||
2491 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2491 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2492 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2492 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2493 |
|
2493 | |||
2494 | for i in rango: |
|
2494 | for i in rango: | |
2495 | x = heiRang*math.cos(phi[i]) |
|
2495 | x = heiRang*math.cos(phi[i]) | |
2496 | y1 = velRadial[i,:] |
|
2496 | y1 = velRadial[i,:] | |
2497 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2497 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2498 |
|
2498 | |||
2499 | x1 = heiRang1 |
|
2499 | x1 = heiRang1 | |
2500 | y11 = f1(x1) |
|
2500 | y11 = f1(x1) | |
2501 |
|
2501 | |||
2502 | y2 = SNR[i,:] |
|
2502 | y2 = SNR[i,:] | |
2503 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2503 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2504 | y21 = f2(x1) |
|
2504 | y21 = f2(x1) | |
2505 |
|
2505 | |||
2506 | velRadial1[i,:] = y11 |
|
2506 | velRadial1[i,:] = y11 | |
2507 | SNR1[i,:] = y21 |
|
2507 | SNR1[i,:] = y21 | |
2508 |
|
2508 | |||
2509 | return heiRang1, velRadial1, SNR1 |
|
2509 | return heiRang1, velRadial1, SNR1 | |
2510 |
|
2510 | |||
2511 | def run(self, dataOut, zenith, zenithCorrection): |
|
2511 | def run(self, dataOut, zenith, zenithCorrection): | |
2512 | heiRang = dataOut.heightList |
|
2512 | heiRang = dataOut.heightList | |
2513 | velRadial = dataOut.data_param[:,3,:] |
|
2513 | velRadial = dataOut.data_param[:,3,:] | |
2514 | SNR = dataOut.data_SNR |
|
2514 | SNR = dataOut.data_SNR | |
2515 |
|
2515 | |||
2516 | zenith = numpy.array(zenith) |
|
2516 | zenith = numpy.array(zenith) | |
2517 | zenith -= zenithCorrection |
|
2517 | zenith -= zenithCorrection | |
2518 | zenith *= numpy.pi/180 |
|
2518 | zenith *= numpy.pi/180 | |
2519 |
|
2519 | |||
2520 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2520 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2521 |
|
2521 | |||
2522 | alp = zenith[0] |
|
2522 | alp = zenith[0] | |
2523 | bet = zenith[1] |
|
2523 | bet = zenith[1] | |
2524 |
|
2524 | |||
2525 | w_w = velRadial1[0,:] |
|
2525 | w_w = velRadial1[0,:] | |
2526 | w_e = velRadial1[1,:] |
|
2526 | w_e = velRadial1[1,:] | |
2527 |
|
2527 | |||
2528 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2528 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2529 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2529 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2530 |
|
2530 | |||
2531 | winds = numpy.vstack((u,w)) |
|
2531 | winds = numpy.vstack((u,w)) | |
2532 |
|
2532 | |||
2533 | dataOut.heightList = heiRang1 |
|
2533 | dataOut.heightList = heiRang1 | |
2534 | dataOut.data_output = winds |
|
2534 | dataOut.data_output = winds | |
2535 | dataOut.data_SNR = SNR1 |
|
2535 | dataOut.data_SNR = SNR1 | |
2536 |
|
2536 | |||
2537 | dataOut.utctimeInit = dataOut.utctime |
|
2537 | dataOut.utctimeInit = dataOut.utctime | |
2538 | dataOut.outputInterval = dataOut.timeInterval |
|
2538 | dataOut.outputInterval = dataOut.timeInterval | |
2539 | return |
|
2539 | return | |
2540 |
|
2540 | |||
2541 | #--------------- Non Specular Meteor ---------------- |
|
2541 | #--------------- Non Specular Meteor ---------------- | |
2542 |
|
2542 | |||
2543 | class NonSpecularMeteorDetection(Operation): |
|
2543 | class NonSpecularMeteorDetection(Operation): | |
2544 |
|
2544 | |||
2545 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2545 | def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2546 | data_acf = dataOut.data_pre[0] |
|
2546 | data_acf = dataOut.data_pre[0] | |
2547 | data_ccf = dataOut.data_pre[1] |
|
2547 | data_ccf = dataOut.data_pre[1] | |
2548 | pairsList = dataOut.groupList[1] |
|
2548 | pairsList = dataOut.groupList[1] | |
2549 |
|
2549 | |||
2550 | lamb = dataOut.C/dataOut.frequency |
|
2550 | lamb = dataOut.C/dataOut.frequency | |
2551 | tSamp = dataOut.ippSeconds*dataOut.nCohInt |
|
2551 | tSamp = dataOut.ippSeconds*dataOut.nCohInt | |
2552 | paramInterval = dataOut.paramInterval |
|
2552 | paramInterval = dataOut.paramInterval | |
2553 |
|
2553 | |||
2554 | nChannels = data_acf.shape[0] |
|
2554 | nChannels = data_acf.shape[0] | |
2555 | nLags = data_acf.shape[1] |
|
2555 | nLags = data_acf.shape[1] | |
2556 | nProfiles = data_acf.shape[2] |
|
2556 | nProfiles = data_acf.shape[2] | |
2557 | nHeights = dataOut.nHeights |
|
2557 | nHeights = dataOut.nHeights | |
2558 | nCohInt = dataOut.nCohInt |
|
2558 | nCohInt = dataOut.nCohInt | |
2559 | sec = numpy.round(nProfiles/dataOut.paramInterval) |
|
2559 | sec = numpy.round(nProfiles/dataOut.paramInterval) | |
2560 | heightList = dataOut.heightList |
|
2560 | heightList = dataOut.heightList | |
2561 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg |
|
2561 | ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg | |
2562 | utctime = dataOut.utctime |
|
2562 | utctime = dataOut.utctime | |
2563 |
|
2563 | |||
2564 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2564 | dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2565 |
|
2565 | |||
2566 | #------------------------ SNR -------------------------------------- |
|
2566 | #------------------------ SNR -------------------------------------- | |
2567 | power = data_acf[:,0,:,:].real |
|
2567 | power = data_acf[:,0,:,:].real | |
2568 | noise = numpy.zeros(nChannels) |
|
2568 | noise = numpy.zeros(nChannels) | |
2569 | SNR = numpy.zeros(power.shape) |
|
2569 | SNR = numpy.zeros(power.shape) | |
2570 | for i in range(nChannels): |
|
2570 | for i in range(nChannels): | |
2571 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2571 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2572 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2572 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2573 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2573 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2574 | SNRdB = 10*numpy.log10(SNR) |
|
2574 | SNRdB = 10*numpy.log10(SNR) | |
2575 |
|
2575 | |||
2576 | if mode == 'SA': |
|
2576 | if mode == 'SA': | |
2577 | dataOut.groupList = dataOut.groupList[1] |
|
2577 | dataOut.groupList = dataOut.groupList[1] | |
2578 | nPairs = data_ccf.shape[0] |
|
2578 | nPairs = data_ccf.shape[0] | |
2579 | #---------------------- Coherence and Phase -------------------------- |
|
2579 | #---------------------- Coherence and Phase -------------------------- | |
2580 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2580 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2581 | # phase1 = numpy.copy(phase) |
|
2581 | # phase1 = numpy.copy(phase) | |
2582 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2582 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2583 |
|
2583 | |||
2584 | for p in range(nPairs): |
|
2584 | for p in range(nPairs): | |
2585 | ch0 = pairsList[p][0] |
|
2585 | ch0 = pairsList[p][0] | |
2586 | ch1 = pairsList[p][1] |
|
2586 | ch1 = pairsList[p][1] | |
2587 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2587 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2588 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2588 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2589 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2589 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2590 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2590 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2591 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2591 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2592 | coh = numpy.nanmax(coh1, axis = 0) |
|
2592 | coh = numpy.nanmax(coh1, axis = 0) | |
2593 | # struc = numpy.ones((5,1)) |
|
2593 | # struc = numpy.ones((5,1)) | |
2594 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2594 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2595 | #---------------------- Radial Velocity ---------------------------- |
|
2595 | #---------------------- Radial Velocity ---------------------------- | |
2596 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2596 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2597 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2597 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2598 |
|
2598 | |||
2599 | if allData: |
|
2599 | if allData: | |
2600 | boolMetFin = ~numpy.isnan(SNRm) |
|
2600 | boolMetFin = ~numpy.isnan(SNRm) | |
2601 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2601 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2602 | else: |
|
2602 | else: | |
2603 | #------------------------ Meteor mask --------------------------------- |
|
2603 | #------------------------ Meteor mask --------------------------------- | |
2604 | # #SNR mask |
|
2604 | # #SNR mask | |
2605 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2605 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2606 | # |
|
2606 | # | |
2607 | # #Erase small objects |
|
2607 | # #Erase small objects | |
2608 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2608 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2609 | # |
|
2609 | # | |
2610 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2610 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2611 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2611 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2612 | # indEEJ = numpy.where(indOver)[0] |
|
2612 | # indEEJ = numpy.where(indOver)[0] | |
2613 | # indNEEJ = numpy.where(~indOver)[0] |
|
2613 | # indNEEJ = numpy.where(~indOver)[0] | |
2614 | # |
|
2614 | # | |
2615 | # boolMetFin = boolMet1 |
|
2615 | # boolMetFin = boolMet1 | |
2616 | # |
|
2616 | # | |
2617 | # if indEEJ.size > 0: |
|
2617 | # if indEEJ.size > 0: | |
2618 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2618 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2619 | # |
|
2619 | # | |
2620 | # boolMet2 = coh > cohThresh |
|
2620 | # boolMet2 = coh > cohThresh | |
2621 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2621 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2622 | # |
|
2622 | # | |
2623 | # #Final Meteor mask |
|
2623 | # #Final Meteor mask | |
2624 | # boolMetFin = boolMet1|boolMet2 |
|
2624 | # boolMetFin = boolMet1|boolMet2 | |
2625 |
|
2625 | |||
2626 | #Coherence mask |
|
2626 | #Coherence mask | |
2627 | boolMet1 = coh > 0.75 |
|
2627 | boolMet1 = coh > 0.75 | |
2628 | struc = numpy.ones((30,1)) |
|
2628 | struc = numpy.ones((30,1)) | |
2629 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2629 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2630 |
|
2630 | |||
2631 | #Derivative mask |
|
2631 | #Derivative mask | |
2632 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2632 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2633 | boolMet2 = derPhase < 0.2 |
|
2633 | boolMet2 = derPhase < 0.2 | |
2634 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2634 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2635 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2635 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2636 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2636 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2637 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2637 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2638 | # #Final mask |
|
2638 | # #Final mask | |
2639 | # boolMetFin = boolMet2 |
|
2639 | # boolMetFin = boolMet2 | |
2640 | boolMetFin = boolMet1&boolMet2 |
|
2640 | boolMetFin = boolMet1&boolMet2 | |
2641 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2641 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2642 | #Creating data_param |
|
2642 | #Creating data_param | |
2643 | coordMet = numpy.where(boolMetFin) |
|
2643 | coordMet = numpy.where(boolMetFin) | |
2644 |
|
2644 | |||
2645 | tmet = coordMet[0] |
|
2645 | tmet = coordMet[0] | |
2646 | hmet = coordMet[1] |
|
2646 | hmet = coordMet[1] | |
2647 |
|
2647 | |||
2648 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2648 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2649 | data_param[:,0] = utctime |
|
2649 | data_param[:,0] = utctime | |
2650 | data_param[:,1] = tmet |
|
2650 | data_param[:,1] = tmet | |
2651 | data_param[:,2] = hmet |
|
2651 | data_param[:,2] = hmet | |
2652 | data_param[:,3] = SNRm[tmet,hmet] |
|
2652 | data_param[:,3] = SNRm[tmet,hmet] | |
2653 | data_param[:,4] = velRad[tmet,hmet] |
|
2653 | data_param[:,4] = velRad[tmet,hmet] | |
2654 | data_param[:,5] = coh[tmet,hmet] |
|
2654 | data_param[:,5] = coh[tmet,hmet] | |
2655 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2655 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2656 |
|
2656 | |||
2657 | elif mode == 'DBS': |
|
2657 | elif mode == 'DBS': | |
2658 | dataOut.groupList = numpy.arange(nChannels) |
|
2658 | dataOut.groupList = numpy.arange(nChannels) | |
2659 |
|
2659 | |||
2660 | #Radial Velocities |
|
2660 | #Radial Velocities | |
2661 | phase = numpy.angle(data_acf[:,1,:,:]) |
|
2661 | phase = numpy.angle(data_acf[:,1,:,:]) | |
2662 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2662 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2663 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2663 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2664 |
|
2664 | |||
2665 | #Spectral width |
|
2665 | #Spectral width | |
2666 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2666 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2667 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2667 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2668 | acf1 = data_acf[:,1,:,:] |
|
2668 | acf1 = data_acf[:,1,:,:] | |
2669 | acf2 = data_acf[:,2,:,:] |
|
2669 | acf2 = data_acf[:,2,:,:] | |
2670 |
|
2670 | |||
2671 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2671 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2672 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2672 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2673 | if allData: |
|
2673 | if allData: | |
2674 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2674 | boolMetFin = ~numpy.isnan(SNRdB) | |
2675 | else: |
|
2675 | else: | |
2676 | #SNR |
|
2676 | #SNR | |
2677 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2677 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2678 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2678 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2679 |
|
2679 | |||
2680 | #Radial velocity |
|
2680 | #Radial velocity | |
2681 | boolMet2 = numpy.abs(velRad) < 20 |
|
2681 | boolMet2 = numpy.abs(velRad) < 20 | |
2682 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2682 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2683 |
|
2683 | |||
2684 | #Spectral Width |
|
2684 | #Spectral Width | |
2685 | boolMet3 = spcWidth < 30 |
|
2685 | boolMet3 = spcWidth < 30 | |
2686 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2686 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2687 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2687 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2688 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2688 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2689 |
|
2689 | |||
2690 | #Creating data_param |
|
2690 | #Creating data_param | |
2691 | coordMet = numpy.where(boolMetFin) |
|
2691 | coordMet = numpy.where(boolMetFin) | |
2692 |
|
2692 | |||
2693 | cmet = coordMet[0] |
|
2693 | cmet = coordMet[0] | |
2694 | tmet = coordMet[1] |
|
2694 | tmet = coordMet[1] | |
2695 | hmet = coordMet[2] |
|
2695 | hmet = coordMet[2] | |
2696 |
|
2696 | |||
2697 | data_param = numpy.zeros((tmet.size, 7)) |
|
2697 | data_param = numpy.zeros((tmet.size, 7)) | |
2698 | data_param[:,0] = utctime |
|
2698 | data_param[:,0] = utctime | |
2699 | data_param[:,1] = cmet |
|
2699 | data_param[:,1] = cmet | |
2700 | data_param[:,2] = tmet |
|
2700 | data_param[:,2] = tmet | |
2701 | data_param[:,3] = hmet |
|
2701 | data_param[:,3] = hmet | |
2702 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2702 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2703 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2703 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2704 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2704 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2705 |
|
2705 | |||
2706 | # self.dataOut.data_param = data_int |
|
2706 | # self.dataOut.data_param = data_int | |
2707 | if len(data_param) == 0: |
|
2707 | if len(data_param) == 0: | |
2708 | dataOut.flagNoData = True |
|
2708 | dataOut.flagNoData = True | |
2709 | else: |
|
2709 | else: | |
2710 | dataOut.data_param = data_param |
|
2710 | dataOut.data_param = data_param | |
2711 |
|
2711 | |||
2712 | def __erase_small(self, binArray, threshX, threshY): |
|
2712 | def __erase_small(self, binArray, threshX, threshY): | |
2713 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2713 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2714 | binArray1 = numpy.copy(binArray) |
|
2714 | binArray1 = numpy.copy(binArray) | |
2715 |
|
2715 | |||
2716 | for i in range(1,numfeat + 1): |
|
2716 | for i in range(1,numfeat + 1): | |
2717 | auxBin = (labarray==i) |
|
2717 | auxBin = (labarray==i) | |
2718 | auxSize = auxBin.sum() |
|
2718 | auxSize = auxBin.sum() | |
2719 |
|
2719 | |||
2720 | x,y = numpy.where(auxBin) |
|
2720 | x,y = numpy.where(auxBin) | |
2721 | widthX = x.max() - x.min() |
|
2721 | widthX = x.max() - x.min() | |
2722 | widthY = y.max() - y.min() |
|
2722 | widthY = y.max() - y.min() | |
2723 |
|
2723 | |||
2724 | #width X: 3 seg -> 12.5*3 |
|
2724 | #width X: 3 seg -> 12.5*3 | |
2725 | #width Y: |
|
2725 | #width Y: | |
2726 |
|
2726 | |||
2727 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2727 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2728 | binArray1[auxBin] = False |
|
2728 | binArray1[auxBin] = False | |
2729 |
|
2729 | |||
2730 | return binArray1 |
|
2730 | return binArray1 | |
2731 |
|
2731 | |||
2732 | #--------------- Specular Meteor ---------------- |
|
2732 | #--------------- Specular Meteor ---------------- | |
2733 |
|
2733 | |||
2734 | class SMDetection(Operation): |
|
2734 | class SMDetection(Operation): | |
2735 | ''' |
|
2735 | ''' | |
2736 | Function DetectMeteors() |
|
2736 | Function DetectMeteors() | |
2737 | Project developed with paper: |
|
2737 | Project developed with paper: | |
2738 | HOLDSWORTH ET AL. 2004 |
|
2738 | HOLDSWORTH ET AL. 2004 | |
2739 |
|
2739 | |||
2740 | Input: |
|
2740 | Input: | |
2741 | self.dataOut.data_pre |
|
2741 | self.dataOut.data_pre | |
2742 |
|
2742 | |||
2743 | centerReceiverIndex: From the channels, which is the center receiver |
|
2743 | centerReceiverIndex: From the channels, which is the center receiver | |
2744 |
|
2744 | |||
2745 | hei_ref: Height reference for the Beacon signal extraction |
|
2745 | hei_ref: Height reference for the Beacon signal extraction | |
2746 | tauindex: |
|
2746 | tauindex: | |
2747 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2747 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2748 |
|
2748 | |||
2749 | cohDetection: Whether to user Coherent detection or not |
|
2749 | cohDetection: Whether to user Coherent detection or not | |
2750 | cohDet_timeStep: Coherent Detection calculation time step |
|
2750 | cohDet_timeStep: Coherent Detection calculation time step | |
2751 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2751 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2752 |
|
2752 | |||
2753 | noise_timeStep: Noise calculation time step |
|
2753 | noise_timeStep: Noise calculation time step | |
2754 | noise_multiple: Noise multiple to define signal threshold |
|
2754 | noise_multiple: Noise multiple to define signal threshold | |
2755 |
|
2755 | |||
2756 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2756 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2757 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2757 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2758 |
|
2758 | |||
2759 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2759 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2760 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2760 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2761 |
|
2761 | |||
2762 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2762 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2763 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2763 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2764 | azimuth: Azimuth angle correction |
|
2764 | azimuth: Azimuth angle correction | |
2765 |
|
2765 | |||
2766 | Affected: |
|
2766 | Affected: | |
2767 | self.dataOut.data_param |
|
2767 | self.dataOut.data_param | |
2768 |
|
2768 | |||
2769 | Rejection Criteria (Errors): |
|
2769 | Rejection Criteria (Errors): | |
2770 | 0: No error; analysis OK |
|
2770 | 0: No error; analysis OK | |
2771 | 1: SNR < SNR threshold |
|
2771 | 1: SNR < SNR threshold | |
2772 | 2: angle of arrival (AOA) ambiguously determined |
|
2772 | 2: angle of arrival (AOA) ambiguously determined | |
2773 | 3: AOA estimate not feasible |
|
2773 | 3: AOA estimate not feasible | |
2774 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2774 | 4: Large difference in AOAs obtained from different antenna baselines | |
2775 | 5: echo at start or end of time series |
|
2775 | 5: echo at start or end of time series | |
2776 | 6: echo less than 5 examples long; too short for analysis |
|
2776 | 6: echo less than 5 examples long; too short for analysis | |
2777 | 7: echo rise exceeds 0.3s |
|
2777 | 7: echo rise exceeds 0.3s | |
2778 | 8: echo decay time less than twice rise time |
|
2778 | 8: echo decay time less than twice rise time | |
2779 | 9: large power level before echo |
|
2779 | 9: large power level before echo | |
2780 | 10: large power level after echo |
|
2780 | 10: large power level after echo | |
2781 | 11: poor fit to amplitude for estimation of decay time |
|
2781 | 11: poor fit to amplitude for estimation of decay time | |
2782 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2782 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2783 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2783 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2784 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2784 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2785 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2785 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2786 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2786 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2787 |
|
2787 | |||
2788 | 17: phase difference in meteor Reestimation |
|
2788 | 17: phase difference in meteor Reestimation | |
2789 |
|
2789 | |||
2790 | Data Storage: |
|
2790 | Data Storage: | |
2791 | Meteors for Wind Estimation (8): |
|
2791 | Meteors for Wind Estimation (8): | |
2792 | Utc Time | Range Height |
|
2792 | Utc Time | Range Height | |
2793 | Azimuth Zenith errorCosDir |
|
2793 | Azimuth Zenith errorCosDir | |
2794 | VelRad errorVelRad |
|
2794 | VelRad errorVelRad | |
2795 | Phase0 Phase1 Phase2 Phase3 |
|
2795 | Phase0 Phase1 Phase2 Phase3 | |
2796 | TypeError |
|
2796 | TypeError | |
2797 |
|
2797 | |||
2798 | ''' |
|
2798 | ''' | |
2799 |
|
2799 | |||
2800 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2800 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2801 | phaseOffsets = None, |
|
2801 | phaseOffsets = None, | |
2802 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2802 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2803 | noise_timeStep = 4, noise_multiple = 4, |
|
2803 | noise_timeStep = 4, noise_multiple = 4, | |
2804 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2804 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2805 | phaseThresh = 20, SNRThresh = 5, |
|
2805 | phaseThresh = 20, SNRThresh = 5, | |
2806 | hmin = 50, hmax=150, azimuth = 0, |
|
2806 | hmin = 50, hmax=150, azimuth = 0, | |
2807 | channelPositions = None) : |
|
2807 | channelPositions = None) : | |
2808 |
|
2808 | |||
2809 |
|
2809 | |||
2810 | #Getting Pairslist |
|
2810 | #Getting Pairslist | |
2811 |
if channelPositions |
|
2811 | if channelPositions is None: | |
2812 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2812 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2813 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2813 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2814 | meteorOps = SMOperations() |
|
2814 | meteorOps = SMOperations() | |
2815 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2815 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2816 | heiRang = dataOut.getHeiRange() |
|
2816 | heiRang = dataOut.getHeiRange() | |
2817 | #Get Beacon signal - No Beacon signal anymore |
|
2817 | #Get Beacon signal - No Beacon signal anymore | |
2818 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2818 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2819 | # |
|
2819 | # | |
2820 | # if hei_ref != None: |
|
2820 | # if hei_ref != None: | |
2821 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2821 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2822 | # |
|
2822 | # | |
2823 |
|
2823 | |||
2824 |
|
2824 | |||
2825 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2825 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2826 | # see if the user put in pre defined phase shifts |
|
2826 | # see if the user put in pre defined phase shifts | |
2827 | voltsPShift = dataOut.data_pre.copy() |
|
2827 | voltsPShift = dataOut.data_pre.copy() | |
2828 |
|
2828 | |||
2829 | # if predefinedPhaseShifts != None: |
|
2829 | # if predefinedPhaseShifts != None: | |
2830 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2830 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2831 | # |
|
2831 | # | |
2832 | # # elif beaconPhaseShifts: |
|
2832 | # # elif beaconPhaseShifts: | |
2833 | # # #get hardware phase shifts using beacon signal |
|
2833 | # # #get hardware phase shifts using beacon signal | |
2834 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2834 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2835 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2835 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2836 | # |
|
2836 | # | |
2837 | # else: |
|
2837 | # else: | |
2838 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2838 | # hardwarePhaseShifts = numpy.zeros(5) | |
2839 | # |
|
2839 | # | |
2840 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2840 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2841 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2841 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2842 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2842 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2843 |
|
2843 | |||
2844 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2844 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2845 |
|
2845 | |||
2846 | #Remove DC |
|
2846 | #Remove DC | |
2847 | voltsDC = numpy.mean(voltsPShift,1) |
|
2847 | voltsDC = numpy.mean(voltsPShift,1) | |
2848 | voltsDC = numpy.mean(voltsDC,1) |
|
2848 | voltsDC = numpy.mean(voltsDC,1) | |
2849 | for i in range(voltsDC.shape[0]): |
|
2849 | for i in range(voltsDC.shape[0]): | |
2850 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2850 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2851 |
|
2851 | |||
2852 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2852 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2853 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2853 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2854 |
|
2854 | |||
2855 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2855 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2856 | #Coherent Detection |
|
2856 | #Coherent Detection | |
2857 | if cohDetection: |
|
2857 | if cohDetection: | |
2858 | #use coherent detection to get the net power |
|
2858 | #use coherent detection to get the net power | |
2859 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2859 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2860 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2860 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2861 |
|
2861 | |||
2862 | #Non-coherent detection! |
|
2862 | #Non-coherent detection! | |
2863 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2863 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2864 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2864 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2865 |
|
2865 | |||
2866 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2866 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2867 | #Get noise |
|
2867 | #Get noise | |
2868 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2868 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2869 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2869 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2870 | #Get signal threshold |
|
2870 | #Get signal threshold | |
2871 | signalThresh = noise_multiple*noise |
|
2871 | signalThresh = noise_multiple*noise | |
2872 | #Meteor echoes detection |
|
2872 | #Meteor echoes detection | |
2873 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2873 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2874 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2874 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2875 |
|
2875 | |||
2876 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2876 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2877 | #Parameters |
|
2877 | #Parameters | |
2878 | heiRange = dataOut.getHeiRange() |
|
2878 | heiRange = dataOut.getHeiRange() | |
2879 | rangeInterval = heiRange[1] - heiRange[0] |
|
2879 | rangeInterval = heiRange[1] - heiRange[0] | |
2880 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2880 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2881 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2881 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2882 | #Multiple detection removals |
|
2882 | #Multiple detection removals | |
2883 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2883 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2884 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2884 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2885 |
|
2885 | |||
2886 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2886 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2887 | #Parameters |
|
2887 | #Parameters | |
2888 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2888 | phaseThresh = phaseThresh*numpy.pi/180 | |
2889 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2889 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2890 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2890 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2891 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2891 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2892 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2892 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2893 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2893 | #Estimation of decay times (Errors N 7, 8, 11) | |
2894 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2894 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2895 | #******************* END OF METEOR REESTIMATION ******************* |
|
2895 | #******************* END OF METEOR REESTIMATION ******************* | |
2896 |
|
2896 | |||
2897 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2897 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2898 | #Calculating Radial Velocity (Error N 15) |
|
2898 | #Calculating Radial Velocity (Error N 15) | |
2899 | radialStdThresh = 10 |
|
2899 | radialStdThresh = 10 | |
2900 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2900 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2901 |
|
2901 | |||
2902 | if len(listMeteors4) > 0: |
|
2902 | if len(listMeteors4) > 0: | |
2903 | #Setting New Array |
|
2903 | #Setting New Array | |
2904 | date = dataOut.utctime |
|
2904 | date = dataOut.utctime | |
2905 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2905 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2906 |
|
2906 | |||
2907 | #Correcting phase offset |
|
2907 | #Correcting phase offset | |
2908 | if phaseOffsets != None: |
|
2908 | if phaseOffsets != None: | |
2909 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2909 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2910 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2910 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2911 |
|
2911 | |||
2912 | #Second Pairslist |
|
2912 | #Second Pairslist | |
2913 | pairsList = [] |
|
2913 | pairsList = [] | |
2914 | pairx = (0,1) |
|
2914 | pairx = (0,1) | |
2915 | pairy = (2,3) |
|
2915 | pairy = (2,3) | |
2916 | pairsList.append(pairx) |
|
2916 | pairsList.append(pairx) | |
2917 | pairsList.append(pairy) |
|
2917 | pairsList.append(pairy) | |
2918 |
|
2918 | |||
2919 | jph = numpy.array([0,0,0,0]) |
|
2919 | jph = numpy.array([0,0,0,0]) | |
2920 | h = (hmin,hmax) |
|
2920 | h = (hmin,hmax) | |
2921 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2921 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2922 |
|
2922 | |||
2923 | # #Calculate AOA (Error N 3, 4) |
|
2923 | # #Calculate AOA (Error N 3, 4) | |
2924 | # #JONES ET AL. 1998 |
|
2924 | # #JONES ET AL. 1998 | |
2925 | # error = arrayParameters[:,-1] |
|
2925 | # error = arrayParameters[:,-1] | |
2926 | # AOAthresh = numpy.pi/8 |
|
2926 | # AOAthresh = numpy.pi/8 | |
2927 | # phases = -arrayParameters[:,9:13] |
|
2927 | # phases = -arrayParameters[:,9:13] | |
2928 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2928 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2929 | # |
|
2929 | # | |
2930 | # #Calculate Heights (Error N 13 and 14) |
|
2930 | # #Calculate Heights (Error N 13 and 14) | |
2931 | # error = arrayParameters[:,-1] |
|
2931 | # error = arrayParameters[:,-1] | |
2932 | # Ranges = arrayParameters[:,2] |
|
2932 | # Ranges = arrayParameters[:,2] | |
2933 | # zenith = arrayParameters[:,5] |
|
2933 | # zenith = arrayParameters[:,5] | |
2934 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2934 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2935 | # error = arrayParameters[:,-1] |
|
2935 | # error = arrayParameters[:,-1] | |
2936 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2936 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2937 |
|
2937 | |||
2938 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2938 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2939 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2939 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2940 | dataOut.data_param = arrayParameters |
|
2940 | dataOut.data_param = arrayParameters | |
2941 |
|
2941 | |||
2942 |
if arrayParameters |
|
2942 | if arrayParameters is None: | |
2943 | dataOut.flagNoData = True |
|
2943 | dataOut.flagNoData = True | |
2944 | else: |
|
2944 | else: | |
2945 | dataOut.flagNoData = True |
|
2945 | dataOut.flagNoData = True | |
2946 |
|
2946 | |||
2947 | return |
|
2947 | return | |
2948 |
|
2948 | |||
2949 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2949 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2950 |
|
2950 | |||
2951 | minIndex = min(newheis[0]) |
|
2951 | minIndex = min(newheis[0]) | |
2952 | maxIndex = max(newheis[0]) |
|
2952 | maxIndex = max(newheis[0]) | |
2953 |
|
2953 | |||
2954 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2954 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2955 | nLength = voltage.shape[1]/n |
|
2955 | nLength = voltage.shape[1]/n | |
2956 | nMin = 0 |
|
2956 | nMin = 0 | |
2957 | nMax = 0 |
|
2957 | nMax = 0 | |
2958 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2958 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2959 |
|
2959 | |||
2960 | for i in range(n): |
|
2960 | for i in range(n): | |
2961 | nMax += nLength |
|
2961 | nMax += nLength | |
2962 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2962 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2963 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2963 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2964 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2964 | phaseOffset[:,i] = phaseCCF.transpose() | |
2965 | nMin = nMax |
|
2965 | nMin = nMax | |
2966 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2966 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2967 |
|
2967 | |||
2968 | #Remove Outliers |
|
2968 | #Remove Outliers | |
2969 | factor = 2 |
|
2969 | factor = 2 | |
2970 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2970 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2971 | dw = numpy.std(wt,axis = 1) |
|
2971 | dw = numpy.std(wt,axis = 1) | |
2972 | dw = dw.reshape((dw.size,1)) |
|
2972 | dw = dw.reshape((dw.size,1)) | |
2973 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2973 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2974 | phaseOffset[ind] = numpy.nan |
|
2974 | phaseOffset[ind] = numpy.nan | |
2975 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2975 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2976 |
|
2976 | |||
2977 | return phaseOffset |
|
2977 | return phaseOffset | |
2978 |
|
2978 | |||
2979 | def __shiftPhase(self, data, phaseShift): |
|
2979 | def __shiftPhase(self, data, phaseShift): | |
2980 | #this will shift the phase of a complex number |
|
2980 | #this will shift the phase of a complex number | |
2981 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2981 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2982 | return dataShifted |
|
2982 | return dataShifted | |
2983 |
|
2983 | |||
2984 | def __estimatePhaseDifference(self, array, pairslist): |
|
2984 | def __estimatePhaseDifference(self, array, pairslist): | |
2985 | nChannel = array.shape[0] |
|
2985 | nChannel = array.shape[0] | |
2986 | nHeights = array.shape[2] |
|
2986 | nHeights = array.shape[2] | |
2987 | numPairs = len(pairslist) |
|
2987 | numPairs = len(pairslist) | |
2988 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2988 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2989 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2989 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2990 |
|
2990 | |||
2991 | #Correct phases |
|
2991 | #Correct phases | |
2992 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2992 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2993 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
2993 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2994 |
|
2994 | |||
2995 | if indDer[0].shape[0] > 0: |
|
2995 | if indDer[0].shape[0] > 0: | |
2996 | for i in range(indDer[0].shape[0]): |
|
2996 | for i in range(indDer[0].shape[0]): | |
2997 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
2997 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
2998 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
2998 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
2999 |
|
2999 | |||
3000 | # for j in range(numSides): |
|
3000 | # for j in range(numSides): | |
3001 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
3001 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
3002 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
3002 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
3003 | # |
|
3003 | # | |
3004 | #Linear |
|
3004 | #Linear | |
3005 | phaseInt = numpy.zeros((numPairs,1)) |
|
3005 | phaseInt = numpy.zeros((numPairs,1)) | |
3006 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
3006 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
3007 | for j in range(numPairs): |
|
3007 | for j in range(numPairs): | |
3008 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
3008 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
3009 | phaseInt[j] = fit[1] |
|
3009 | phaseInt[j] = fit[1] | |
3010 | #Phase Differences |
|
3010 | #Phase Differences | |
3011 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
3011 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
3012 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
3012 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
3013 |
|
3013 | |||
3014 | #Dealias |
|
3014 | #Dealias | |
3015 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
3015 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
3016 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
3016 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
3017 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
3017 | # phaseArrival[indAlias] -= 2*numpy.pi | |
3018 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
3018 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
3019 | # phaseArrival[indAlias] += 2*numpy.pi |
|
3019 | # phaseArrival[indAlias] += 2*numpy.pi | |
3020 |
|
3020 | |||
3021 | return phaseDiff, phaseArrival |
|
3021 | return phaseDiff, phaseArrival | |
3022 |
|
3022 | |||
3023 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
3023 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
3024 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
3024 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
3025 | #find the phase shifts of each channel over 1 second intervals |
|
3025 | #find the phase shifts of each channel over 1 second intervals | |
3026 | #only look at ranges below the beacon signal |
|
3026 | #only look at ranges below the beacon signal | |
3027 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3027 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3028 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
3028 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
3029 | numHeights = volts.shape[2] |
|
3029 | numHeights = volts.shape[2] | |
3030 | nChannel = volts.shape[0] |
|
3030 | nChannel = volts.shape[0] | |
3031 | voltsCohDet = volts.copy() |
|
3031 | voltsCohDet = volts.copy() | |
3032 |
|
3032 | |||
3033 | pairsarray = numpy.array(pairslist) |
|
3033 | pairsarray = numpy.array(pairslist) | |
3034 | indSides = pairsarray[:,1] |
|
3034 | indSides = pairsarray[:,1] | |
3035 | # indSides = numpy.array(range(nChannel)) |
|
3035 | # indSides = numpy.array(range(nChannel)) | |
3036 | # indSides = numpy.delete(indSides, indCenter) |
|
3036 | # indSides = numpy.delete(indSides, indCenter) | |
3037 | # |
|
3037 | # | |
3038 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
3038 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
3039 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
3039 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
3040 |
|
3040 | |||
3041 | startInd = 0 |
|
3041 | startInd = 0 | |
3042 | endInd = 0 |
|
3042 | endInd = 0 | |
3043 |
|
3043 | |||
3044 | for i in range(numBlocks): |
|
3044 | for i in range(numBlocks): | |
3045 | startInd = endInd |
|
3045 | startInd = endInd | |
3046 | endInd = endInd + listBlocks[i].shape[1] |
|
3046 | endInd = endInd + listBlocks[i].shape[1] | |
3047 |
|
3047 | |||
3048 | arrayBlock = listBlocks[i] |
|
3048 | arrayBlock = listBlocks[i] | |
3049 | # arrayBlockCenter = listCenter[i] |
|
3049 | # arrayBlockCenter = listCenter[i] | |
3050 |
|
3050 | |||
3051 | #Estimate the Phase Difference |
|
3051 | #Estimate the Phase Difference | |
3052 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3052 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
3053 | #Phase Difference RMS |
|
3053 | #Phase Difference RMS | |
3054 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
3054 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
3055 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
3055 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
3056 | indPhase = numpy.where(phaseRMSaux==4) |
|
3056 | indPhase = numpy.where(phaseRMSaux==4) | |
3057 | #Shifting |
|
3057 | #Shifting | |
3058 | if indPhase[0].shape[0] > 0: |
|
3058 | if indPhase[0].shape[0] > 0: | |
3059 | for j in range(indSides.size): |
|
3059 | for j in range(indSides.size): | |
3060 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3060 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
3061 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3061 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
3062 |
|
3062 | |||
3063 | return voltsCohDet |
|
3063 | return voltsCohDet | |
3064 |
|
3064 | |||
3065 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3065 | def __calculateCCF(self, volts, pairslist ,laglist): | |
3066 |
|
3066 | |||
3067 | nHeights = volts.shape[2] |
|
3067 | nHeights = volts.shape[2] | |
3068 | nPoints = volts.shape[1] |
|
3068 | nPoints = volts.shape[1] | |
3069 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3069 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
3070 |
|
3070 | |||
3071 | for i in range(len(pairslist)): |
|
3071 | for i in range(len(pairslist)): | |
3072 | volts1 = volts[pairslist[i][0]] |
|
3072 | volts1 = volts[pairslist[i][0]] | |
3073 | volts2 = volts[pairslist[i][1]] |
|
3073 | volts2 = volts[pairslist[i][1]] | |
3074 |
|
3074 | |||
3075 | for t in range(len(laglist)): |
|
3075 | for t in range(len(laglist)): | |
3076 | idxT = laglist[t] |
|
3076 | idxT = laglist[t] | |
3077 | if idxT >= 0: |
|
3077 | if idxT >= 0: | |
3078 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3078 | vStacked = numpy.vstack((volts2[idxT:,:], | |
3079 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3079 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
3080 | else: |
|
3080 | else: | |
3081 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3081 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
3082 | volts2[:(nPoints + idxT),:])) |
|
3082 | volts2[:(nPoints + idxT),:])) | |
3083 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3083 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
3084 |
|
3084 | |||
3085 | vStacked = None |
|
3085 | vStacked = None | |
3086 | return voltsCCF |
|
3086 | return voltsCCF | |
3087 |
|
3087 | |||
3088 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3088 | def __getNoise(self, power, timeSegment, timeInterval): | |
3089 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3089 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3090 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3090 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
3091 | numHeights = power.shape[1] |
|
3091 | numHeights = power.shape[1] | |
3092 |
|
3092 | |||
3093 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3093 | listPower = numpy.array_split(power, numBlocks, 0) | |
3094 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3094 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
3095 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3095 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
3096 |
|
3096 | |||
3097 | startInd = 0 |
|
3097 | startInd = 0 | |
3098 | endInd = 0 |
|
3098 | endInd = 0 | |
3099 |
|
3099 | |||
3100 | for i in range(numBlocks): #split por canal |
|
3100 | for i in range(numBlocks): #split por canal | |
3101 | startInd = endInd |
|
3101 | startInd = endInd | |
3102 | endInd = endInd + listPower[i].shape[0] |
|
3102 | endInd = endInd + listPower[i].shape[0] | |
3103 |
|
3103 | |||
3104 | arrayBlock = listPower[i] |
|
3104 | arrayBlock = listPower[i] | |
3105 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3105 | noiseAux = numpy.mean(arrayBlock, 0) | |
3106 | # noiseAux = numpy.median(noiseAux) |
|
3106 | # noiseAux = numpy.median(noiseAux) | |
3107 | # noiseAux = numpy.mean(arrayBlock) |
|
3107 | # noiseAux = numpy.mean(arrayBlock) | |
3108 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3108 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
3109 |
|
3109 | |||
3110 | noiseAux1 = numpy.mean(arrayBlock) |
|
3110 | noiseAux1 = numpy.mean(arrayBlock) | |
3111 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3111 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
3112 |
|
3112 | |||
3113 | return noise, noise1 |
|
3113 | return noise, noise1 | |
3114 |
|
3114 | |||
3115 | def __findMeteors(self, power, thresh): |
|
3115 | def __findMeteors(self, power, thresh): | |
3116 | nProf = power.shape[0] |
|
3116 | nProf = power.shape[0] | |
3117 | nHeights = power.shape[1] |
|
3117 | nHeights = power.shape[1] | |
3118 | listMeteors = [] |
|
3118 | listMeteors = [] | |
3119 |
|
3119 | |||
3120 | for i in range(nHeights): |
|
3120 | for i in range(nHeights): | |
3121 | powerAux = power[:,i] |
|
3121 | powerAux = power[:,i] | |
3122 | threshAux = thresh[:,i] |
|
3122 | threshAux = thresh[:,i] | |
3123 |
|
3123 | |||
3124 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3124 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
3125 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3125 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
3126 |
|
3126 | |||
3127 | j = 0 |
|
3127 | j = 0 | |
3128 |
|
3128 | |||
3129 | while (j < indUPthresh.size - 2): |
|
3129 | while (j < indUPthresh.size - 2): | |
3130 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3130 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
3131 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3131 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
3132 | indDNthresh = indDNthresh[indDNAux] |
|
3132 | indDNthresh = indDNthresh[indDNAux] | |
3133 |
|
3133 | |||
3134 | if (indDNthresh.size > 0): |
|
3134 | if (indDNthresh.size > 0): | |
3135 | indEnd = indDNthresh[0] - 1 |
|
3135 | indEnd = indDNthresh[0] - 1 | |
3136 | indInit = indUPthresh[j] |
|
3136 | indInit = indUPthresh[j] | |
3137 |
|
3137 | |||
3138 | meteor = powerAux[indInit:indEnd + 1] |
|
3138 | meteor = powerAux[indInit:indEnd + 1] | |
3139 | indPeak = meteor.argmax() + indInit |
|
3139 | indPeak = meteor.argmax() + indInit | |
3140 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3140 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3141 |
|
3141 | |||
3142 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3142 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3143 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3143 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3144 | else: j+=1 |
|
3144 | else: j+=1 | |
3145 | else: j+=1 |
|
3145 | else: j+=1 | |
3146 |
|
3146 | |||
3147 | return listMeteors |
|
3147 | return listMeteors | |
3148 |
|
3148 | |||
3149 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3149 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3150 |
|
3150 | |||
3151 | arrayMeteors = numpy.asarray(listMeteors) |
|
3151 | arrayMeteors = numpy.asarray(listMeteors) | |
3152 | listMeteors1 = [] |
|
3152 | listMeteors1 = [] | |
3153 |
|
3153 | |||
3154 | while arrayMeteors.shape[0] > 0: |
|
3154 | while arrayMeteors.shape[0] > 0: | |
3155 | FLAs = arrayMeteors[:,4] |
|
3155 | FLAs = arrayMeteors[:,4] | |
3156 | maxFLA = FLAs.argmax() |
|
3156 | maxFLA = FLAs.argmax() | |
3157 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3157 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3158 |
|
3158 | |||
3159 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3159 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3160 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3160 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3161 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3161 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3162 |
|
3162 | |||
3163 | #Check neighborhood |
|
3163 | #Check neighborhood | |
3164 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3164 | maxHeightIndex = MeteorHeight + rangeLimit | |
3165 | minHeightIndex = MeteorHeight - rangeLimit |
|
3165 | minHeightIndex = MeteorHeight - rangeLimit | |
3166 | minTimeIndex = MeteorInitTime - timeLimit |
|
3166 | minTimeIndex = MeteorInitTime - timeLimit | |
3167 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3167 | maxTimeIndex = MeteorEndTime + timeLimit | |
3168 |
|
3168 | |||
3169 | #Check Heights |
|
3169 | #Check Heights | |
3170 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3170 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3171 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3171 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3172 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3172 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3173 |
|
3173 | |||
3174 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3174 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3175 |
|
3175 | |||
3176 | return listMeteors1 |
|
3176 | return listMeteors1 | |
3177 |
|
3177 | |||
3178 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3178 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3179 | numHeights = volts.shape[2] |
|
3179 | numHeights = volts.shape[2] | |
3180 | nChannel = volts.shape[0] |
|
3180 | nChannel = volts.shape[0] | |
3181 |
|
3181 | |||
3182 | thresholdPhase = thresh[0] |
|
3182 | thresholdPhase = thresh[0] | |
3183 | thresholdNoise = thresh[1] |
|
3183 | thresholdNoise = thresh[1] | |
3184 | thresholdDB = float(thresh[2]) |
|
3184 | thresholdDB = float(thresh[2]) | |
3185 |
|
3185 | |||
3186 | thresholdDB1 = 10**(thresholdDB/10) |
|
3186 | thresholdDB1 = 10**(thresholdDB/10) | |
3187 | pairsarray = numpy.array(pairslist) |
|
3187 | pairsarray = numpy.array(pairslist) | |
3188 | indSides = pairsarray[:,1] |
|
3188 | indSides = pairsarray[:,1] | |
3189 |
|
3189 | |||
3190 | pairslist1 = list(pairslist) |
|
3190 | pairslist1 = list(pairslist) | |
3191 | pairslist1.append((0,1)) |
|
3191 | pairslist1.append((0,1)) | |
3192 | pairslist1.append((3,4)) |
|
3192 | pairslist1.append((3,4)) | |
3193 |
|
3193 | |||
3194 | listMeteors1 = [] |
|
3194 | listMeteors1 = [] | |
3195 | listPowerSeries = [] |
|
3195 | listPowerSeries = [] | |
3196 | listVoltageSeries = [] |
|
3196 | listVoltageSeries = [] | |
3197 | #volts has the war data |
|
3197 | #volts has the war data | |
3198 |
|
3198 | |||
3199 | if frequency == 30e6: |
|
3199 | if frequency == 30e6: | |
3200 | timeLag = 45*10**-3 |
|
3200 | timeLag = 45*10**-3 | |
3201 | else: |
|
3201 | else: | |
3202 | timeLag = 15*10**-3 |
|
3202 | timeLag = 15*10**-3 | |
3203 | lag = numpy.ceil(timeLag/timeInterval) |
|
3203 | lag = numpy.ceil(timeLag/timeInterval) | |
3204 |
|
3204 | |||
3205 | for i in range(len(listMeteors)): |
|
3205 | for i in range(len(listMeteors)): | |
3206 |
|
3206 | |||
3207 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3207 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3208 | meteorAux = numpy.zeros(16) |
|
3208 | meteorAux = numpy.zeros(16) | |
3209 |
|
3209 | |||
3210 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3210 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3211 | mHeight = listMeteors[i][0] |
|
3211 | mHeight = listMeteors[i][0] | |
3212 | mStart = listMeteors[i][1] |
|
3212 | mStart = listMeteors[i][1] | |
3213 | mPeak = listMeteors[i][2] |
|
3213 | mPeak = listMeteors[i][2] | |
3214 | mEnd = listMeteors[i][3] |
|
3214 | mEnd = listMeteors[i][3] | |
3215 |
|
3215 | |||
3216 | #get the volt data between the start and end times of the meteor |
|
3216 | #get the volt data between the start and end times of the meteor | |
3217 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3217 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3218 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3218 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3219 |
|
3219 | |||
3220 | #3.6. Phase Difference estimation |
|
3220 | #3.6. Phase Difference estimation | |
3221 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3221 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3222 |
|
3222 | |||
3223 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3223 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3224 | #meteorVolts0.- all Channels, all Profiles |
|
3224 | #meteorVolts0.- all Channels, all Profiles | |
3225 | meteorVolts0 = volts[:,:,mHeight] |
|
3225 | meteorVolts0 = volts[:,:,mHeight] | |
3226 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3226 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3227 | meteorNoise = noise[:,mHeight] |
|
3227 | meteorNoise = noise[:,mHeight] | |
3228 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3228 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3229 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3229 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3230 |
|
3230 | |||
3231 | #Times reestimation |
|
3231 | #Times reestimation | |
3232 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3232 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3233 | if mStart1.size > 0: |
|
3233 | if mStart1.size > 0: | |
3234 | mStart1 = mStart1[-1] + 1 |
|
3234 | mStart1 = mStart1[-1] + 1 | |
3235 |
|
3235 | |||
3236 | else: |
|
3236 | else: | |
3237 | mStart1 = mPeak |
|
3237 | mStart1 = mPeak | |
3238 |
|
3238 | |||
3239 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3239 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3240 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3240 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3241 | if mEndDecayTime1.size == 0: |
|
3241 | if mEndDecayTime1.size == 0: | |
3242 | mEndDecayTime1 = powerNet0.size |
|
3242 | mEndDecayTime1 = powerNet0.size | |
3243 | else: |
|
3243 | else: | |
3244 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3244 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3245 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3245 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3246 |
|
3246 | |||
3247 | #meteorVolts1.- all Channels, from start to end |
|
3247 | #meteorVolts1.- all Channels, from start to end | |
3248 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3248 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3249 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3249 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3250 | if meteorVolts2.shape[1] == 0: |
|
3250 | if meteorVolts2.shape[1] == 0: | |
3251 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3251 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3252 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3252 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3253 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3253 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3254 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3254 | ##################### END PARAMETERS REESTIMATION ######################### | |
3255 |
|
3255 | |||
3256 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3256 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3257 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3257 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3258 | if meteorVolts2.shape[1] > 0: |
|
3258 | if meteorVolts2.shape[1] > 0: | |
3259 | #Phase Difference re-estimation |
|
3259 | #Phase Difference re-estimation | |
3260 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3260 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3261 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3261 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3262 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3262 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3263 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3263 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3264 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3264 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3265 |
|
3265 | |||
3266 | #Phase Difference RMS |
|
3266 | #Phase Difference RMS | |
3267 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3267 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3268 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3268 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3269 | #Data from Meteor |
|
3269 | #Data from Meteor | |
3270 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3270 | mPeak1 = powerNet1.argmax() + mStart1 | |
3271 | mPeakPower1 = powerNet1.max() |
|
3271 | mPeakPower1 = powerNet1.max() | |
3272 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3272 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3273 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3273 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3274 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3274 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3275 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3275 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3276 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3276 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3277 | #Vectorize |
|
3277 | #Vectorize | |
3278 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3278 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3279 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3279 | meteorAux[7:11] = phaseDiffint[0:4] | |
3280 |
|
3280 | |||
3281 | #Rejection Criterions |
|
3281 | #Rejection Criterions | |
3282 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3282 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3283 | meteorAux[-1] = 17 |
|
3283 | meteorAux[-1] = 17 | |
3284 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3284 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3285 | meteorAux[-1] = 1 |
|
3285 | meteorAux[-1] = 1 | |
3286 |
|
3286 | |||
3287 |
|
3287 | |||
3288 | else: |
|
3288 | else: | |
3289 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3289 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3290 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3290 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3291 | PowerSeries = 0 |
|
3291 | PowerSeries = 0 | |
3292 |
|
3292 | |||
3293 | listMeteors1.append(meteorAux) |
|
3293 | listMeteors1.append(meteorAux) | |
3294 | listPowerSeries.append(PowerSeries) |
|
3294 | listPowerSeries.append(PowerSeries) | |
3295 | listVoltageSeries.append(meteorVolts1) |
|
3295 | listVoltageSeries.append(meteorVolts1) | |
3296 |
|
3296 | |||
3297 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3297 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3298 |
|
3298 | |||
3299 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3299 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3300 |
|
3300 | |||
3301 | threshError = 10 |
|
3301 | threshError = 10 | |
3302 | #Depending if it is 30 or 50 MHz |
|
3302 | #Depending if it is 30 or 50 MHz | |
3303 | if frequency == 30e6: |
|
3303 | if frequency == 30e6: | |
3304 | timeLag = 45*10**-3 |
|
3304 | timeLag = 45*10**-3 | |
3305 | else: |
|
3305 | else: | |
3306 | timeLag = 15*10**-3 |
|
3306 | timeLag = 15*10**-3 | |
3307 | lag = numpy.ceil(timeLag/timeInterval) |
|
3307 | lag = numpy.ceil(timeLag/timeInterval) | |
3308 |
|
3308 | |||
3309 | listMeteors1 = [] |
|
3309 | listMeteors1 = [] | |
3310 |
|
3310 | |||
3311 | for i in range(len(listMeteors)): |
|
3311 | for i in range(len(listMeteors)): | |
3312 | meteorPower = listPower[i] |
|
3312 | meteorPower = listPower[i] | |
3313 | meteorAux = listMeteors[i] |
|
3313 | meteorAux = listMeteors[i] | |
3314 |
|
3314 | |||
3315 | if meteorAux[-1] == 0: |
|
3315 | if meteorAux[-1] == 0: | |
3316 |
|
3316 | |||
3317 | try: |
|
3317 | try: | |
3318 | indmax = meteorPower.argmax() |
|
3318 | indmax = meteorPower.argmax() | |
3319 | indlag = indmax + lag |
|
3319 | indlag = indmax + lag | |
3320 |
|
3320 | |||
3321 | y = meteorPower[indlag:] |
|
3321 | y = meteorPower[indlag:] | |
3322 | x = numpy.arange(0, y.size)*timeLag |
|
3322 | x = numpy.arange(0, y.size)*timeLag | |
3323 |
|
3323 | |||
3324 | #first guess |
|
3324 | #first guess | |
3325 | a = y[0] |
|
3325 | a = y[0] | |
3326 | tau = timeLag |
|
3326 | tau = timeLag | |
3327 | #exponential fit |
|
3327 | #exponential fit | |
3328 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3328 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3329 | y1 = self.__exponential_function(x, *popt) |
|
3329 | y1 = self.__exponential_function(x, *popt) | |
3330 | #error estimation |
|
3330 | #error estimation | |
3331 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3331 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3332 |
|
3332 | |||
3333 | decayTime = popt[1] |
|
3333 | decayTime = popt[1] | |
3334 | riseTime = indmax*timeInterval |
|
3334 | riseTime = indmax*timeInterval | |
3335 | meteorAux[11:13] = [decayTime, error] |
|
3335 | meteorAux[11:13] = [decayTime, error] | |
3336 |
|
3336 | |||
3337 | #Table items 7, 8 and 11 |
|
3337 | #Table items 7, 8 and 11 | |
3338 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3338 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3339 | meteorAux[-1] = 7 |
|
3339 | meteorAux[-1] = 7 | |
3340 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3340 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3341 | meteorAux[-1] = 8 |
|
3341 | meteorAux[-1] = 8 | |
3342 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3342 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3343 | meteorAux[-1] = 11 |
|
3343 | meteorAux[-1] = 11 | |
3344 |
|
3344 | |||
3345 |
|
3345 | |||
3346 | except: |
|
3346 | except: | |
3347 | meteorAux[-1] = 11 |
|
3347 | meteorAux[-1] = 11 | |
3348 |
|
3348 | |||
3349 |
|
3349 | |||
3350 | listMeteors1.append(meteorAux) |
|
3350 | listMeteors1.append(meteorAux) | |
3351 |
|
3351 | |||
3352 | return listMeteors1 |
|
3352 | return listMeteors1 | |
3353 |
|
3353 | |||
3354 | #Exponential Function |
|
3354 | #Exponential Function | |
3355 |
|
3355 | |||
3356 | def __exponential_function(self, x, a, tau): |
|
3356 | def __exponential_function(self, x, a, tau): | |
3357 | y = a*numpy.exp(-x/tau) |
|
3357 | y = a*numpy.exp(-x/tau) | |
3358 | return y |
|
3358 | return y | |
3359 |
|
3359 | |||
3360 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3360 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3361 |
|
3361 | |||
3362 | pairslist1 = list(pairslist) |
|
3362 | pairslist1 = list(pairslist) | |
3363 | pairslist1.append((0,1)) |
|
3363 | pairslist1.append((0,1)) | |
3364 | pairslist1.append((3,4)) |
|
3364 | pairslist1.append((3,4)) | |
3365 | numPairs = len(pairslist1) |
|
3365 | numPairs = len(pairslist1) | |
3366 | #Time Lag |
|
3366 | #Time Lag | |
3367 | timeLag = 45*10**-3 |
|
3367 | timeLag = 45*10**-3 | |
3368 | c = 3e8 |
|
3368 | c = 3e8 | |
3369 | lag = numpy.ceil(timeLag/timeInterval) |
|
3369 | lag = numpy.ceil(timeLag/timeInterval) | |
3370 | freq = 30e6 |
|
3370 | freq = 30e6 | |
3371 |
|
3371 | |||
3372 | listMeteors1 = [] |
|
3372 | listMeteors1 = [] | |
3373 |
|
3373 | |||
3374 | for i in range(len(listMeteors)): |
|
3374 | for i in range(len(listMeteors)): | |
3375 | meteorAux = listMeteors[i] |
|
3375 | meteorAux = listMeteors[i] | |
3376 | if meteorAux[-1] == 0: |
|
3376 | if meteorAux[-1] == 0: | |
3377 | mStart = listMeteors[i][1] |
|
3377 | mStart = listMeteors[i][1] | |
3378 | mPeak = listMeteors[i][2] |
|
3378 | mPeak = listMeteors[i][2] | |
3379 | mLag = mPeak - mStart + lag |
|
3379 | mLag = mPeak - mStart + lag | |
3380 |
|
3380 | |||
3381 | #get the volt data between the start and end times of the meteor |
|
3381 | #get the volt data between the start and end times of the meteor | |
3382 | meteorVolts = listVolts[i] |
|
3382 | meteorVolts = listVolts[i] | |
3383 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3383 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3384 |
|
3384 | |||
3385 | #Get CCF |
|
3385 | #Get CCF | |
3386 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3386 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3387 |
|
3387 | |||
3388 | #Method 2 |
|
3388 | #Method 2 | |
3389 | slopes = numpy.zeros(numPairs) |
|
3389 | slopes = numpy.zeros(numPairs) | |
3390 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3390 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3391 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3391 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3392 |
|
3392 | |||
3393 | #Correct phases |
|
3393 | #Correct phases | |
3394 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3394 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3395 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3395 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3396 |
|
3396 | |||
3397 | if indDer[0].shape[0] > 0: |
|
3397 | if indDer[0].shape[0] > 0: | |
3398 | for i in range(indDer[0].shape[0]): |
|
3398 | for i in range(indDer[0].shape[0]): | |
3399 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3399 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3400 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3400 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3401 |
|
3401 | |||
3402 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3402 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3403 | for j in range(numPairs): |
|
3403 | for j in range(numPairs): | |
3404 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3404 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3405 | slopes[j] = fit[0] |
|
3405 | slopes[j] = fit[0] | |
3406 |
|
3406 | |||
3407 | #Remove Outlier |
|
3407 | #Remove Outlier | |
3408 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3408 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3409 | # slopes = numpy.delete(slopes,indOut) |
|
3409 | # slopes = numpy.delete(slopes,indOut) | |
3410 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3410 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3411 | # slopes = numpy.delete(slopes,indOut) |
|
3411 | # slopes = numpy.delete(slopes,indOut) | |
3412 |
|
3412 | |||
3413 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3413 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3414 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3414 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3415 | meteorAux[-2] = radialError |
|
3415 | meteorAux[-2] = radialError | |
3416 | meteorAux[-3] = radialVelocity |
|
3416 | meteorAux[-3] = radialVelocity | |
3417 |
|
3417 | |||
3418 | #Setting Error |
|
3418 | #Setting Error | |
3419 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3419 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3420 | if numpy.abs(radialVelocity) > 200: |
|
3420 | if numpy.abs(radialVelocity) > 200: | |
3421 | meteorAux[-1] = 15 |
|
3421 | meteorAux[-1] = 15 | |
3422 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3422 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3423 | elif radialError > radialStdThresh: |
|
3423 | elif radialError > radialStdThresh: | |
3424 | meteorAux[-1] = 12 |
|
3424 | meteorAux[-1] = 12 | |
3425 |
|
3425 | |||
3426 | listMeteors1.append(meteorAux) |
|
3426 | listMeteors1.append(meteorAux) | |
3427 | return listMeteors1 |
|
3427 | return listMeteors1 | |
3428 |
|
3428 | |||
3429 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3429 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3430 |
|
3430 | |||
3431 | #New arrays |
|
3431 | #New arrays | |
3432 | arrayMeteors = numpy.array(listMeteors) |
|
3432 | arrayMeteors = numpy.array(listMeteors) | |
3433 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3433 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3434 |
|
3434 | |||
3435 | #Date inclusion |
|
3435 | #Date inclusion | |
3436 | # date = re.findall(r'\((.*?)\)', date) |
|
3436 | # date = re.findall(r'\((.*?)\)', date) | |
3437 | # date = date[0].split(',') |
|
3437 | # date = date[0].split(',') | |
3438 | # date = map(int, date) |
|
3438 | # date = map(int, date) | |
3439 | # |
|
3439 | # | |
3440 | # if len(date)<6: |
|
3440 | # if len(date)<6: | |
3441 | # date.append(0) |
|
3441 | # date.append(0) | |
3442 | # |
|
3442 | # | |
3443 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3443 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3444 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3444 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3445 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3445 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3446 |
|
3446 | |||
3447 | #Meteor array |
|
3447 | #Meteor array | |
3448 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3448 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3449 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3449 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3450 |
|
3450 | |||
3451 | #Parameters Array |
|
3451 | #Parameters Array | |
3452 | arrayParameters[:,0] = arrayDate #Date |
|
3452 | arrayParameters[:,0] = arrayDate #Date | |
3453 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3453 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3454 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3454 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3455 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3455 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3456 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3456 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3457 |
|
3457 | |||
3458 |
|
3458 | |||
3459 | return arrayParameters |
|
3459 | return arrayParameters | |
3460 |
|
3460 | |||
3461 | class CorrectSMPhases(Operation): |
|
3461 | class CorrectSMPhases(Operation): | |
3462 |
|
3462 | |||
3463 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3463 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3464 |
|
3464 | |||
3465 | arrayParameters = dataOut.data_param |
|
3465 | arrayParameters = dataOut.data_param | |
3466 | pairsList = [] |
|
3466 | pairsList = [] | |
3467 | pairx = (0,1) |
|
3467 | pairx = (0,1) | |
3468 | pairy = (2,3) |
|
3468 | pairy = (2,3) | |
3469 | pairsList.append(pairx) |
|
3469 | pairsList.append(pairx) | |
3470 | pairsList.append(pairy) |
|
3470 | pairsList.append(pairy) | |
3471 | jph = numpy.zeros(4) |
|
3471 | jph = numpy.zeros(4) | |
3472 |
|
3472 | |||
3473 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3473 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3474 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3474 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3475 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3475 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3476 |
|
3476 | |||
3477 | meteorOps = SMOperations() |
|
3477 | meteorOps = SMOperations() | |
3478 |
if channelPositions |
|
3478 | if channelPositions is None: | |
3479 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3479 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3480 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3480 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3481 |
|
3481 | |||
3482 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3482 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3483 | h = (hmin,hmax) |
|
3483 | h = (hmin,hmax) | |
3484 |
|
3484 | |||
3485 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3485 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3486 |
|
3486 | |||
3487 | dataOut.data_param = arrayParameters |
|
3487 | dataOut.data_param = arrayParameters | |
3488 | return |
|
3488 | return | |
3489 |
|
3489 | |||
3490 | class SMPhaseCalibration(Operation): |
|
3490 | class SMPhaseCalibration(Operation): | |
3491 |
|
3491 | |||
3492 | __buffer = None |
|
3492 | __buffer = None | |
3493 |
|
3493 | |||
3494 | __initime = None |
|
3494 | __initime = None | |
3495 |
|
3495 | |||
3496 | __dataReady = False |
|
3496 | __dataReady = False | |
3497 |
|
3497 | |||
3498 | __isConfig = False |
|
3498 | __isConfig = False | |
3499 |
|
3499 | |||
3500 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3500 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3501 |
|
3501 | |||
3502 | dataTime = currentTime + paramInterval |
|
3502 | dataTime = currentTime + paramInterval | |
3503 | deltaTime = dataTime - initTime |
|
3503 | deltaTime = dataTime - initTime | |
3504 |
|
3504 | |||
3505 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3505 | if deltaTime >= outputInterval or deltaTime < 0: | |
3506 | return True |
|
3506 | return True | |
3507 |
|
3507 | |||
3508 | return False |
|
3508 | return False | |
3509 |
|
3509 | |||
3510 | def __getGammas(self, pairs, d, phases): |
|
3510 | def __getGammas(self, pairs, d, phases): | |
3511 | gammas = numpy.zeros(2) |
|
3511 | gammas = numpy.zeros(2) | |
3512 |
|
3512 | |||
3513 | for i in range(len(pairs)): |
|
3513 | for i in range(len(pairs)): | |
3514 |
|
3514 | |||
3515 | pairi = pairs[i] |
|
3515 | pairi = pairs[i] | |
3516 |
|
3516 | |||
3517 | phip3 = phases[:,pairi[0]] |
|
3517 | phip3 = phases[:,pairi[0]] | |
3518 | d3 = d[pairi[0]] |
|
3518 | d3 = d[pairi[0]] | |
3519 | phip2 = phases[:,pairi[1]] |
|
3519 | phip2 = phases[:,pairi[1]] | |
3520 | d2 = d[pairi[1]] |
|
3520 | d2 = d[pairi[1]] | |
3521 | #Calculating gamma |
|
3521 | #Calculating gamma | |
3522 | # jdcos = alp1/(k*d1) |
|
3522 | # jdcos = alp1/(k*d1) | |
3523 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3523 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3524 | jgamma = -phip2*d3/d2 - phip3 |
|
3524 | jgamma = -phip2*d3/d2 - phip3 | |
3525 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3525 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3526 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3526 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3527 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3527 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3528 |
|
3528 | |||
3529 | #Revised distribution |
|
3529 | #Revised distribution | |
3530 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3530 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3531 |
|
3531 | |||
3532 | #Histogram |
|
3532 | #Histogram | |
3533 | nBins = 64 |
|
3533 | nBins = 64 | |
3534 | rmin = -0.5*numpy.pi |
|
3534 | rmin = -0.5*numpy.pi | |
3535 | rmax = 0.5*numpy.pi |
|
3535 | rmax = 0.5*numpy.pi | |
3536 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3536 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3537 |
|
3537 | |||
3538 | meteorsY = phaseHisto[0] |
|
3538 | meteorsY = phaseHisto[0] | |
3539 | phasesX = phaseHisto[1][:-1] |
|
3539 | phasesX = phaseHisto[1][:-1] | |
3540 | width = phasesX[1] - phasesX[0] |
|
3540 | width = phasesX[1] - phasesX[0] | |
3541 | phasesX += width/2 |
|
3541 | phasesX += width/2 | |
3542 |
|
3542 | |||
3543 | #Gaussian aproximation |
|
3543 | #Gaussian aproximation | |
3544 | bpeak = meteorsY.argmax() |
|
3544 | bpeak = meteorsY.argmax() | |
3545 | peak = meteorsY.max() |
|
3545 | peak = meteorsY.max() | |
3546 | jmin = bpeak - 5 |
|
3546 | jmin = bpeak - 5 | |
3547 | jmax = bpeak + 5 + 1 |
|
3547 | jmax = bpeak + 5 + 1 | |
3548 |
|
3548 | |||
3549 | if jmin<0: |
|
3549 | if jmin<0: | |
3550 | jmin = 0 |
|
3550 | jmin = 0 | |
3551 | jmax = 6 |
|
3551 | jmax = 6 | |
3552 | elif jmax > meteorsY.size: |
|
3552 | elif jmax > meteorsY.size: | |
3553 | jmin = meteorsY.size - 6 |
|
3553 | jmin = meteorsY.size - 6 | |
3554 | jmax = meteorsY.size |
|
3554 | jmax = meteorsY.size | |
3555 |
|
3555 | |||
3556 | x0 = numpy.array([peak,bpeak,50]) |
|
3556 | x0 = numpy.array([peak,bpeak,50]) | |
3557 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3557 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3558 |
|
3558 | |||
3559 | #Gammas |
|
3559 | #Gammas | |
3560 | gammas[i] = coeff[0][1] |
|
3560 | gammas[i] = coeff[0][1] | |
3561 |
|
3561 | |||
3562 | return gammas |
|
3562 | return gammas | |
3563 |
|
3563 | |||
3564 | def __residualFunction(self, coeffs, y, t): |
|
3564 | def __residualFunction(self, coeffs, y, t): | |
3565 |
|
3565 | |||
3566 | return y - self.__gauss_function(t, coeffs) |
|
3566 | return y - self.__gauss_function(t, coeffs) | |
3567 |
|
3567 | |||
3568 | def __gauss_function(self, t, coeffs): |
|
3568 | def __gauss_function(self, t, coeffs): | |
3569 |
|
3569 | |||
3570 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3570 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3571 |
|
3571 | |||
3572 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3572 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3573 | meteorOps = SMOperations() |
|
3573 | meteorOps = SMOperations() | |
3574 | nchan = 4 |
|
3574 | nchan = 4 | |
3575 | pairx = pairsList[0] #x es 0 |
|
3575 | pairx = pairsList[0] #x es 0 | |
3576 | pairy = pairsList[1] #y es 1 |
|
3576 | pairy = pairsList[1] #y es 1 | |
3577 | center_xangle = 0 |
|
3577 | center_xangle = 0 | |
3578 | center_yangle = 0 |
|
3578 | center_yangle = 0 | |
3579 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3579 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3580 | ntimes = len(range_angle) |
|
3580 | ntimes = len(range_angle) | |
3581 |
|
3581 | |||
3582 | nstepsx = 20 |
|
3582 | nstepsx = 20 | |
3583 | nstepsy = 20 |
|
3583 | nstepsy = 20 | |
3584 |
|
3584 | |||
3585 | for iz in range(ntimes): |
|
3585 | for iz in range(ntimes): | |
3586 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3586 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3587 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3587 | max_xangle = range_angle[iz]/2 + center_xangle | |
3588 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3588 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3589 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3589 | max_yangle = range_angle[iz]/2 + center_yangle | |
3590 |
|
3590 | |||
3591 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3591 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3592 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3592 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3593 |
|
3593 | |||
3594 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3594 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3595 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3595 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3596 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3596 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3597 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3597 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3598 | jph = numpy.zeros(nchan) |
|
3598 | jph = numpy.zeros(nchan) | |
3599 |
|
3599 | |||
3600 | # Iterations looking for the offset |
|
3600 | # Iterations looking for the offset | |
3601 | for iy in range(int(nstepsy)): |
|
3601 | for iy in range(int(nstepsy)): | |
3602 | for ix in range(int(nstepsx)): |
|
3602 | for ix in range(int(nstepsx)): | |
3603 | d3 = d[pairsList[1][0]] |
|
3603 | d3 = d[pairsList[1][0]] | |
3604 | d2 = d[pairsList[1][1]] |
|
3604 | d2 = d[pairsList[1][1]] | |
3605 | d5 = d[pairsList[0][0]] |
|
3605 | d5 = d[pairsList[0][0]] | |
3606 | d4 = d[pairsList[0][1]] |
|
3606 | d4 = d[pairsList[0][1]] | |
3607 |
|
3607 | |||
3608 | alp2 = alpha_y[iy] #gamma 1 |
|
3608 | alp2 = alpha_y[iy] #gamma 1 | |
3609 | alp4 = alpha_x[ix] #gamma 0 |
|
3609 | alp4 = alpha_x[ix] #gamma 0 | |
3610 |
|
3610 | |||
3611 | alp3 = -alp2*d3/d2 - gammas[1] |
|
3611 | alp3 = -alp2*d3/d2 - gammas[1] | |
3612 | alp5 = -alp4*d5/d4 - gammas[0] |
|
3612 | alp5 = -alp4*d5/d4 - gammas[0] | |
3613 | # jph[pairy[1]] = alpha_y[iy] |
|
3613 | # jph[pairy[1]] = alpha_y[iy] | |
3614 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3614 | # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3615 |
|
3615 | |||
3616 | # jph[pairx[1]] = alpha_x[ix] |
|
3616 | # jph[pairx[1]] = alpha_x[ix] | |
3617 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3617 | # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3618 | jph[pairsList[0][1]] = alp4 |
|
3618 | jph[pairsList[0][1]] = alp4 | |
3619 | jph[pairsList[0][0]] = alp5 |
|
3619 | jph[pairsList[0][0]] = alp5 | |
3620 | jph[pairsList[1][0]] = alp3 |
|
3620 | jph[pairsList[1][0]] = alp3 | |
3621 | jph[pairsList[1][1]] = alp2 |
|
3621 | jph[pairsList[1][1]] = alp2 | |
3622 | jph_array[:,ix,iy] = jph |
|
3622 | jph_array[:,ix,iy] = jph | |
3623 | # d = [2.0,2.5,2.5,2.0] |
|
3623 | # d = [2.0,2.5,2.5,2.0] | |
3624 | #falta chequear si va a leer bien los meteoros |
|
3624 | #falta chequear si va a leer bien los meteoros | |
3625 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3625 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3626 | error = meteorsArray1[:,-1] |
|
3626 | error = meteorsArray1[:,-1] | |
3627 | ind1 = numpy.where(error==0)[0] |
|
3627 | ind1 = numpy.where(error==0)[0] | |
3628 | penalty[ix,iy] = ind1.size |
|
3628 | penalty[ix,iy] = ind1.size | |
3629 |
|
3629 | |||
3630 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3630 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3631 | phOffset = jph_array[:,i,j] |
|
3631 | phOffset = jph_array[:,i,j] | |
3632 |
|
3632 | |||
3633 | center_xangle = phOffset[pairx[1]] |
|
3633 | center_xangle = phOffset[pairx[1]] | |
3634 | center_yangle = phOffset[pairy[1]] |
|
3634 | center_yangle = phOffset[pairy[1]] | |
3635 |
|
3635 | |||
3636 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3636 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3637 | phOffset = phOffset*180/numpy.pi |
|
3637 | phOffset = phOffset*180/numpy.pi | |
3638 | return phOffset |
|
3638 | return phOffset | |
3639 |
|
3639 | |||
3640 |
|
3640 | |||
3641 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3641 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3642 |
|
3642 | |||
3643 | dataOut.flagNoData = True |
|
3643 | dataOut.flagNoData = True | |
3644 | self.__dataReady = False |
|
3644 | self.__dataReady = False | |
3645 | dataOut.outputInterval = nHours*3600 |
|
3645 | dataOut.outputInterval = nHours*3600 | |
3646 |
|
3646 | |||
3647 | if self.__isConfig == False: |
|
3647 | if self.__isConfig == False: | |
3648 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3648 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3649 | #Get Initial LTC time |
|
3649 | #Get Initial LTC time | |
3650 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3650 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3651 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3651 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3652 |
|
3652 | |||
3653 | self.__isConfig = True |
|
3653 | self.__isConfig = True | |
3654 |
|
3654 | |||
3655 |
if self.__buffer |
|
3655 | if self.__buffer is None: | |
3656 | self.__buffer = dataOut.data_param.copy() |
|
3656 | self.__buffer = dataOut.data_param.copy() | |
3657 |
|
3657 | |||
3658 | else: |
|
3658 | else: | |
3659 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3659 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3660 |
|
3660 | |||
3661 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3661 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3662 |
|
3662 | |||
3663 | if self.__dataReady: |
|
3663 | if self.__dataReady: | |
3664 | dataOut.utctimeInit = self.__initime |
|
3664 | dataOut.utctimeInit = self.__initime | |
3665 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3665 | self.__initime += dataOut.outputInterval #to erase time offset | |
3666 |
|
3666 | |||
3667 | freq = dataOut.frequency |
|
3667 | freq = dataOut.frequency | |
3668 | c = dataOut.C #m/s |
|
3668 | c = dataOut.C #m/s | |
3669 | lamb = c/freq |
|
3669 | lamb = c/freq | |
3670 | k = 2*numpy.pi/lamb |
|
3670 | k = 2*numpy.pi/lamb | |
3671 | azimuth = 0 |
|
3671 | azimuth = 0 | |
3672 | h = (hmin, hmax) |
|
3672 | h = (hmin, hmax) | |
3673 | # pairs = ((0,1),(2,3)) #Estrella |
|
3673 | # pairs = ((0,1),(2,3)) #Estrella | |
3674 | # pairs = ((1,0),(2,3)) #T |
|
3674 | # pairs = ((1,0),(2,3)) #T | |
3675 |
|
3675 | |||
3676 | if channelPositions is None: |
|
3676 | if channelPositions is None: | |
3677 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3677 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3678 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3678 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3679 | meteorOps = SMOperations() |
|
3679 | meteorOps = SMOperations() | |
3680 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3680 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3681 |
|
3681 | |||
3682 | #Checking correct order of pairs |
|
3682 | #Checking correct order of pairs | |
3683 | pairs = [] |
|
3683 | pairs = [] | |
3684 | if distances[1] > distances[0]: |
|
3684 | if distances[1] > distances[0]: | |
3685 | pairs.append((1,0)) |
|
3685 | pairs.append((1,0)) | |
3686 | else: |
|
3686 | else: | |
3687 | pairs.append((0,1)) |
|
3687 | pairs.append((0,1)) | |
3688 |
|
3688 | |||
3689 | if distances[3] > distances[2]: |
|
3689 | if distances[3] > distances[2]: | |
3690 | pairs.append((3,2)) |
|
3690 | pairs.append((3,2)) | |
3691 | else: |
|
3691 | else: | |
3692 | pairs.append((2,3)) |
|
3692 | pairs.append((2,3)) | |
3693 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3693 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3694 |
|
3694 | |||
3695 | meteorsArray = self.__buffer |
|
3695 | meteorsArray = self.__buffer | |
3696 | error = meteorsArray[:,-1] |
|
3696 | error = meteorsArray[:,-1] | |
3697 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3697 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3698 | ind1 = numpy.where(boolError)[0] |
|
3698 | ind1 = numpy.where(boolError)[0] | |
3699 | meteorsArray = meteorsArray[ind1,:] |
|
3699 | meteorsArray = meteorsArray[ind1,:] | |
3700 | meteorsArray[:,-1] = 0 |
|
3700 | meteorsArray[:,-1] = 0 | |
3701 | phases = meteorsArray[:,8:12] |
|
3701 | phases = meteorsArray[:,8:12] | |
3702 |
|
3702 | |||
3703 | #Calculate Gammas |
|
3703 | #Calculate Gammas | |
3704 | gammas = self.__getGammas(pairs, distances, phases) |
|
3704 | gammas = self.__getGammas(pairs, distances, phases) | |
3705 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3705 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3706 | #Calculate Phases |
|
3706 | #Calculate Phases | |
3707 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3707 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3708 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3708 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3709 | dataOut.data_output = -phasesOff |
|
3709 | dataOut.data_output = -phasesOff | |
3710 | dataOut.flagNoData = False |
|
3710 | dataOut.flagNoData = False | |
3711 | self.__buffer = None |
|
3711 | self.__buffer = None | |
3712 |
|
3712 | |||
3713 |
|
3713 | |||
3714 | return |
|
3714 | return | |
3715 |
|
3715 | |||
3716 | class SMOperations(): |
|
3716 | class SMOperations(): | |
3717 |
|
3717 | |||
3718 | def __init__(self): |
|
3718 | def __init__(self): | |
3719 |
|
3719 | |||
3720 | return |
|
3720 | return | |
3721 |
|
3721 | |||
3722 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3722 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3723 |
|
3723 | |||
3724 | arrayParameters = arrayParameters0.copy() |
|
3724 | arrayParameters = arrayParameters0.copy() | |
3725 | hmin = h[0] |
|
3725 | hmin = h[0] | |
3726 | hmax = h[1] |
|
3726 | hmax = h[1] | |
3727 |
|
3727 | |||
3728 | #Calculate AOA (Error N 3, 4) |
|
3728 | #Calculate AOA (Error N 3, 4) | |
3729 | #JONES ET AL. 1998 |
|
3729 | #JONES ET AL. 1998 | |
3730 | AOAthresh = numpy.pi/8 |
|
3730 | AOAthresh = numpy.pi/8 | |
3731 | error = arrayParameters[:,-1] |
|
3731 | error = arrayParameters[:,-1] | |
3732 | phases = -arrayParameters[:,8:12] + jph |
|
3732 | phases = -arrayParameters[:,8:12] + jph | |
3733 | # phases = numpy.unwrap(phases) |
|
3733 | # phases = numpy.unwrap(phases) | |
3734 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3734 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3735 |
|
3735 | |||
3736 | #Calculate Heights (Error N 13 and 14) |
|
3736 | #Calculate Heights (Error N 13 and 14) | |
3737 | error = arrayParameters[:,-1] |
|
3737 | error = arrayParameters[:,-1] | |
3738 | Ranges = arrayParameters[:,1] |
|
3738 | Ranges = arrayParameters[:,1] | |
3739 | zenith = arrayParameters[:,4] |
|
3739 | zenith = arrayParameters[:,4] | |
3740 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3740 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3741 |
|
3741 | |||
3742 | #----------------------- Get Final data ------------------------------------ |
|
3742 | #----------------------- Get Final data ------------------------------------ | |
3743 | # error = arrayParameters[:,-1] |
|
3743 | # error = arrayParameters[:,-1] | |
3744 | # ind1 = numpy.where(error==0)[0] |
|
3744 | # ind1 = numpy.where(error==0)[0] | |
3745 | # arrayParameters = arrayParameters[ind1,:] |
|
3745 | # arrayParameters = arrayParameters[ind1,:] | |
3746 |
|
3746 | |||
3747 | return arrayParameters |
|
3747 | return arrayParameters | |
3748 |
|
3748 | |||
3749 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3749 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3750 |
|
3750 | |||
3751 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3751 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3752 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3752 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3753 |
|
3753 | |||
3754 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3754 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3755 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3755 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3756 | arrayAOA[:,2] = cosDirError |
|
3756 | arrayAOA[:,2] = cosDirError | |
3757 |
|
3757 | |||
3758 | azimuthAngle = arrayAOA[:,0] |
|
3758 | azimuthAngle = arrayAOA[:,0] | |
3759 | zenithAngle = arrayAOA[:,1] |
|
3759 | zenithAngle = arrayAOA[:,1] | |
3760 |
|
3760 | |||
3761 | #Setting Error |
|
3761 | #Setting Error | |
3762 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3762 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3763 | error[indError] = 0 |
|
3763 | error[indError] = 0 | |
3764 | #Number 3: AOA not fesible |
|
3764 | #Number 3: AOA not fesible | |
3765 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3765 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3766 | error[indInvalid] = 3 |
|
3766 | error[indInvalid] = 3 | |
3767 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3767 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3768 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3768 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3769 | error[indInvalid] = 4 |
|
3769 | error[indInvalid] = 4 | |
3770 | return arrayAOA, error |
|
3770 | return arrayAOA, error | |
3771 |
|
3771 | |||
3772 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3772 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3773 |
|
3773 | |||
3774 | #Initializing some variables |
|
3774 | #Initializing some variables | |
3775 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3775 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3776 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3776 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3777 |
|
3777 | |||
3778 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3778 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3779 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3779 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3780 |
|
3780 | |||
3781 |
|
3781 | |||
3782 | for i in range(2): |
|
3782 | for i in range(2): | |
3783 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3783 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3784 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3784 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3785 | d0 = distances[pairsList[i][0]] |
|
3785 | d0 = distances[pairsList[i][0]] | |
3786 | d1 = distances[pairsList[i][1]] |
|
3786 | d1 = distances[pairsList[i][1]] | |
3787 |
|
3787 | |||
3788 | ph0_aux = ph0 + ph1 |
|
3788 | ph0_aux = ph0 + ph1 | |
3789 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3789 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3790 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3790 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3791 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3791 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3792 | #First Estimation |
|
3792 | #First Estimation | |
3793 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3793 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3794 |
|
3794 | |||
3795 | #Most-Accurate Second Estimation |
|
3795 | #Most-Accurate Second Estimation | |
3796 | phi1_aux = ph0 - ph1 |
|
3796 | phi1_aux = ph0 - ph1 | |
3797 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3797 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3798 | #Direction Cosine 1 |
|
3798 | #Direction Cosine 1 | |
3799 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3799 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3800 |
|
3800 | |||
3801 | #Searching the correct Direction Cosine |
|
3801 | #Searching the correct Direction Cosine | |
3802 | cosdir0_aux = cosdir0[:,i] |
|
3802 | cosdir0_aux = cosdir0[:,i] | |
3803 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3803 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3804 | #Minimum Distance |
|
3804 | #Minimum Distance | |
3805 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3805 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3806 | indcos = cosDiff.argmin(axis = 1) |
|
3806 | indcos = cosDiff.argmin(axis = 1) | |
3807 | #Saving Value obtained |
|
3807 | #Saving Value obtained | |
3808 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3808 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3809 |
|
3809 | |||
3810 | return cosdir0, cosdir |
|
3810 | return cosdir0, cosdir | |
3811 |
|
3811 | |||
3812 | def __calculateAOA(self, cosdir, azimuth): |
|
3812 | def __calculateAOA(self, cosdir, azimuth): | |
3813 | cosdirX = cosdir[:,0] |
|
3813 | cosdirX = cosdir[:,0] | |
3814 | cosdirY = cosdir[:,1] |
|
3814 | cosdirY = cosdir[:,1] | |
3815 |
|
3815 | |||
3816 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3816 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3817 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3817 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3818 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3818 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3819 |
|
3819 | |||
3820 | return angles |
|
3820 | return angles | |
3821 |
|
3821 | |||
3822 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3822 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3823 |
|
3823 | |||
3824 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3824 | Ramb = 375 #Ramb = c/(2*PRF) | |
3825 | Re = 6371 #Earth Radius |
|
3825 | Re = 6371 #Earth Radius | |
3826 | heights = numpy.zeros(Ranges.shape) |
|
3826 | heights = numpy.zeros(Ranges.shape) | |
3827 |
|
3827 | |||
3828 | R_aux = numpy.array([0,1,2])*Ramb |
|
3828 | R_aux = numpy.array([0,1,2])*Ramb | |
3829 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3829 | R_aux = R_aux.reshape(1,R_aux.size) | |
3830 |
|
3830 | |||
3831 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3831 | Ranges = Ranges.reshape(Ranges.size,1) | |
3832 |
|
3832 | |||
3833 | Ri = Ranges + R_aux |
|
3833 | Ri = Ranges + R_aux | |
3834 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3834 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3835 |
|
3835 | |||
3836 | #Check if there is a height between 70 and 110 km |
|
3836 | #Check if there is a height between 70 and 110 km | |
3837 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3837 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3838 | ind_h = numpy.where(h_bool == 1)[0] |
|
3838 | ind_h = numpy.where(h_bool == 1)[0] | |
3839 |
|
3839 | |||
3840 | hCorr = hi[ind_h, :] |
|
3840 | hCorr = hi[ind_h, :] | |
3841 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3841 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3842 |
|
3842 | |||
3843 | hCorr = hi[ind_hCorr][:len(ind_h)] |
|
3843 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
3844 | heights[ind_h] = hCorr |
|
3844 | heights[ind_h] = hCorr | |
3845 |
|
3845 | |||
3846 | #Setting Error |
|
3846 | #Setting Error | |
3847 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3847 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3848 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3848 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3849 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3849 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3850 | error[indError] = 0 |
|
3850 | error[indError] = 0 | |
3851 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3851 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3852 | error[indInvalid2] = 14 |
|
3852 | error[indInvalid2] = 14 | |
3853 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3853 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3854 | error[indInvalid1] = 13 |
|
3854 | error[indInvalid1] = 13 | |
3855 |
|
3855 | |||
3856 | return heights, error |
|
3856 | return heights, error | |
3857 |
|
3857 | |||
3858 | def getPhasePairs(self, channelPositions): |
|
3858 | def getPhasePairs(self, channelPositions): | |
3859 | chanPos = numpy.array(channelPositions) |
|
3859 | chanPos = numpy.array(channelPositions) | |
3860 | listOper = list(itertools.combinations(range(5),2)) |
|
3860 | listOper = list(itertools.combinations(range(5),2)) | |
3861 |
|
3861 | |||
3862 | distances = numpy.zeros(4) |
|
3862 | distances = numpy.zeros(4) | |
3863 | axisX = [] |
|
3863 | axisX = [] | |
3864 | axisY = [] |
|
3864 | axisY = [] | |
3865 | distX = numpy.zeros(3) |
|
3865 | distX = numpy.zeros(3) | |
3866 | distY = numpy.zeros(3) |
|
3866 | distY = numpy.zeros(3) | |
3867 | ix = 0 |
|
3867 | ix = 0 | |
3868 | iy = 0 |
|
3868 | iy = 0 | |
3869 |
|
3869 | |||
3870 | pairX = numpy.zeros((2,2)) |
|
3870 | pairX = numpy.zeros((2,2)) | |
3871 | pairY = numpy.zeros((2,2)) |
|
3871 | pairY = numpy.zeros((2,2)) | |
3872 |
|
3872 | |||
3873 | for i in range(len(listOper)): |
|
3873 | for i in range(len(listOper)): | |
3874 | pairi = listOper[i] |
|
3874 | pairi = listOper[i] | |
3875 |
|
3875 | |||
3876 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3876 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3877 |
|
3877 | |||
3878 | if posDif[0] == 0: |
|
3878 | if posDif[0] == 0: | |
3879 | axisY.append(pairi) |
|
3879 | axisY.append(pairi) | |
3880 | distY[iy] = posDif[1] |
|
3880 | distY[iy] = posDif[1] | |
3881 | iy += 1 |
|
3881 | iy += 1 | |
3882 | elif posDif[1] == 0: |
|
3882 | elif posDif[1] == 0: | |
3883 | axisX.append(pairi) |
|
3883 | axisX.append(pairi) | |
3884 | distX[ix] = posDif[0] |
|
3884 | distX[ix] = posDif[0] | |
3885 | ix += 1 |
|
3885 | ix += 1 | |
3886 |
|
3886 | |||
3887 | for i in range(2): |
|
3887 | for i in range(2): | |
3888 | if i==0: |
|
3888 | if i==0: | |
3889 | dist0 = distX |
|
3889 | dist0 = distX | |
3890 | axis0 = axisX |
|
3890 | axis0 = axisX | |
3891 | else: |
|
3891 | else: | |
3892 | dist0 = distY |
|
3892 | dist0 = distY | |
3893 | axis0 = axisY |
|
3893 | axis0 = axisY | |
3894 |
|
3894 | |||
3895 | side = numpy.argsort(dist0)[:-1] |
|
3895 | side = numpy.argsort(dist0)[:-1] | |
3896 | axis0 = numpy.array(axis0)[side,:] |
|
3896 | axis0 = numpy.array(axis0)[side,:] | |
3897 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3897 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3898 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3898 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3899 | side = axis1[axis1 != chanC] |
|
3899 | side = axis1[axis1 != chanC] | |
3900 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3900 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3901 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3901 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3902 | if diff1<0: |
|
3902 | if diff1<0: | |
3903 | chan2 = side[0] |
|
3903 | chan2 = side[0] | |
3904 | d2 = numpy.abs(diff1) |
|
3904 | d2 = numpy.abs(diff1) | |
3905 | chan1 = side[1] |
|
3905 | chan1 = side[1] | |
3906 | d1 = numpy.abs(diff2) |
|
3906 | d1 = numpy.abs(diff2) | |
3907 | else: |
|
3907 | else: | |
3908 | chan2 = side[1] |
|
3908 | chan2 = side[1] | |
3909 | d2 = numpy.abs(diff2) |
|
3909 | d2 = numpy.abs(diff2) | |
3910 | chan1 = side[0] |
|
3910 | chan1 = side[0] | |
3911 | d1 = numpy.abs(diff1) |
|
3911 | d1 = numpy.abs(diff1) | |
3912 |
|
3912 | |||
3913 | if i==0: |
|
3913 | if i==0: | |
3914 | chanCX = chanC |
|
3914 | chanCX = chanC | |
3915 | chan1X = chan1 |
|
3915 | chan1X = chan1 | |
3916 | chan2X = chan2 |
|
3916 | chan2X = chan2 | |
3917 | distances[0:2] = numpy.array([d1,d2]) |
|
3917 | distances[0:2] = numpy.array([d1,d2]) | |
3918 | else: |
|
3918 | else: | |
3919 | chanCY = chanC |
|
3919 | chanCY = chanC | |
3920 | chan1Y = chan1 |
|
3920 | chan1Y = chan1 | |
3921 | chan2Y = chan2 |
|
3921 | chan2Y = chan2 | |
3922 | distances[2:4] = numpy.array([d1,d2]) |
|
3922 | distances[2:4] = numpy.array([d1,d2]) | |
3923 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3923 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3924 | # |
|
3924 | # | |
3925 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3925 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3926 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3926 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3927 | # |
|
3927 | # | |
3928 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3928 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3929 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3929 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3930 | # channel25X = int(pairX[0,ind25X]) |
|
3930 | # channel25X = int(pairX[0,ind25X]) | |
3931 | # channel20X = int(pairX[1,ind20X]) |
|
3931 | # channel20X = int(pairX[1,ind20X]) | |
3932 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3932 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3933 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3933 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3934 | # channel25Y = int(pairY[0,ind25Y]) |
|
3934 | # channel25Y = int(pairY[0,ind25Y]) | |
3935 | # channel20Y = int(pairY[1,ind20Y]) |
|
3935 | # channel20Y = int(pairY[1,ind20Y]) | |
3936 |
|
3936 | |||
3937 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3937 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3938 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3938 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3939 |
|
3939 | |||
3940 | return pairslist, distances |
|
3940 | return pairslist, distances | |
3941 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3941 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3942 | # |
|
3942 | # | |
3943 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3943 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3944 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3944 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3945 | # |
|
3945 | # | |
3946 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3946 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3947 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3947 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3948 | # arrayAOA[:,2] = cosDirError |
|
3948 | # arrayAOA[:,2] = cosDirError | |
3949 | # |
|
3949 | # | |
3950 | # azimuthAngle = arrayAOA[:,0] |
|
3950 | # azimuthAngle = arrayAOA[:,0] | |
3951 | # zenithAngle = arrayAOA[:,1] |
|
3951 | # zenithAngle = arrayAOA[:,1] | |
3952 | # |
|
3952 | # | |
3953 | # #Setting Error |
|
3953 | # #Setting Error | |
3954 | # #Number 3: AOA not fesible |
|
3954 | # #Number 3: AOA not fesible | |
3955 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3955 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3956 | # error[indInvalid] = 3 |
|
3956 | # error[indInvalid] = 3 | |
3957 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3957 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3958 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3958 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3959 | # error[indInvalid] = 4 |
|
3959 | # error[indInvalid] = 4 | |
3960 | # return arrayAOA, error |
|
3960 | # return arrayAOA, error | |
3961 | # |
|
3961 | # | |
3962 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3962 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3963 | # |
|
3963 | # | |
3964 | # #Initializing some variables |
|
3964 | # #Initializing some variables | |
3965 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3965 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3966 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3966 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3967 | # |
|
3967 | # | |
3968 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3968 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3969 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3969 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3970 | # |
|
3970 | # | |
3971 | # |
|
3971 | # | |
3972 | # for i in range(2): |
|
3972 | # for i in range(2): | |
3973 | # #First Estimation |
|
3973 | # #First Estimation | |
3974 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3974 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3975 | # #Dealias |
|
3975 | # #Dealias | |
3976 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3976 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3977 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3977 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3978 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3978 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3979 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3979 | # phi0_aux[indcsi] += 2*numpy.pi | |
3980 | # #Direction Cosine 0 |
|
3980 | # #Direction Cosine 0 | |
3981 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3981 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3982 | # |
|
3982 | # | |
3983 | # #Most-Accurate Second Estimation |
|
3983 | # #Most-Accurate Second Estimation | |
3984 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3984 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3985 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3985 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3986 | # #Direction Cosine 1 |
|
3986 | # #Direction Cosine 1 | |
3987 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3987 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3988 | # |
|
3988 | # | |
3989 | # #Searching the correct Direction Cosine |
|
3989 | # #Searching the correct Direction Cosine | |
3990 | # cosdir0_aux = cosdir0[:,i] |
|
3990 | # cosdir0_aux = cosdir0[:,i] | |
3991 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3991 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3992 | # #Minimum Distance |
|
3992 | # #Minimum Distance | |
3993 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3993 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3994 | # indcos = cosDiff.argmin(axis = 1) |
|
3994 | # indcos = cosDiff.argmin(axis = 1) | |
3995 | # #Saving Value obtained |
|
3995 | # #Saving Value obtained | |
3996 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3996 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3997 | # |
|
3997 | # | |
3998 | # return cosdir0, cosdir |
|
3998 | # return cosdir0, cosdir | |
3999 | # |
|
3999 | # | |
4000 | # def __calculateAOA(self, cosdir, azimuth): |
|
4000 | # def __calculateAOA(self, cosdir, azimuth): | |
4001 | # cosdirX = cosdir[:,0] |
|
4001 | # cosdirX = cosdir[:,0] | |
4002 | # cosdirY = cosdir[:,1] |
|
4002 | # cosdirY = cosdir[:,1] | |
4003 | # |
|
4003 | # | |
4004 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
4004 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
4005 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
4005 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
4006 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
4006 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
4007 | # |
|
4007 | # | |
4008 | # return angles |
|
4008 | # return angles | |
4009 | # |
|
4009 | # | |
4010 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
4010 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
4011 | # |
|
4011 | # | |
4012 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
4012 | # Ramb = 375 #Ramb = c/(2*PRF) | |
4013 | # Re = 6371 #Earth Radius |
|
4013 | # Re = 6371 #Earth Radius | |
4014 | # heights = numpy.zeros(Ranges.shape) |
|
4014 | # heights = numpy.zeros(Ranges.shape) | |
4015 | # |
|
4015 | # | |
4016 | # R_aux = numpy.array([0,1,2])*Ramb |
|
4016 | # R_aux = numpy.array([0,1,2])*Ramb | |
4017 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
4017 | # R_aux = R_aux.reshape(1,R_aux.size) | |
4018 | # |
|
4018 | # | |
4019 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
4019 | # Ranges = Ranges.reshape(Ranges.size,1) | |
4020 | # |
|
4020 | # | |
4021 | # Ri = Ranges + R_aux |
|
4021 | # Ri = Ranges + R_aux | |
4022 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
4022 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
4023 | # |
|
4023 | # | |
4024 | # #Check if there is a height between 70 and 110 km |
|
4024 | # #Check if there is a height between 70 and 110 km | |
4025 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
4025 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
4026 | # ind_h = numpy.where(h_bool == 1)[0] |
|
4026 | # ind_h = numpy.where(h_bool == 1)[0] | |
4027 | # |
|
4027 | # | |
4028 | # hCorr = hi[ind_h, :] |
|
4028 | # hCorr = hi[ind_h, :] | |
4029 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
4029 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
4030 | # |
|
4030 | # | |
4031 | # hCorr = hi[ind_hCorr] |
|
4031 | # hCorr = hi[ind_hCorr] | |
4032 | # heights[ind_h] = hCorr |
|
4032 | # heights[ind_h] = hCorr | |
4033 | # |
|
4033 | # | |
4034 | # #Setting Error |
|
4034 | # #Setting Error | |
4035 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
4035 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
4036 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4036 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
4037 | # |
|
4037 | # | |
4038 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4038 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
4039 | # error[indInvalid2] = 14 |
|
4039 | # error[indInvalid2] = 14 | |
4040 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
4040 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
4041 | # error[indInvalid1] = 13 |
|
4041 | # error[indInvalid1] = 13 | |
4042 | # |
|
4042 | # | |
4043 | # return heights, error |
|
4043 | # return heights, error | |
4044 | No newline at end of file |
|
4044 |
General Comments 0
You need to be logged in to leave comments.
Login now