@@ -4,7 +4,7 import numpy | |||||
4 |
|
4 | |||
5 | from figure import Figure, isRealtime, isTimeInHourRange |
|
5 | from figure import Figure, isRealtime, isTimeInHourRange | |
6 | from plotting_codes import * |
|
6 | from plotting_codes import * | |
7 | from numpy import NaN |
|
7 | ||
8 |
|
8 | |||
9 | class MomentsPlot(Figure): |
|
9 | class MomentsPlot(Figure): | |
10 |
|
10 | |||
@@ -446,14 +446,10 class WindProfilerPlot(Figure): | |||||
446 | # tmin = None |
|
446 | # tmin = None | |
447 | # tmax = None |
|
447 | # tmax = None | |
448 |
|
448 | |||
449 |
|
449 | |||
450 | x = dataOut.getTimeRange() |
|
450 | x = dataOut.getTimeRange1(dataOut.outputInterval) | |
451 |
y = dataOut. |
|
451 | y = dataOut.heightList | |
452 | #x = dataOut.getTimeRange1(dataOut.outputInterval) |
|
452 | z = dataOut.data_output.copy() | |
453 | #y = dataOut.heightList |
|
|||
454 |
|
||||
455 | z = dataOut.data_output.copy() |
|
|||
456 | #print 'dataOut_JI',z |
|
|||
457 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
453 | nplots = z.shape[0] #Number of wind dimensions estimated | |
458 | nplotsw = nplots |
|
454 | nplotsw = nplots | |
459 |
|
455 | |||
@@ -472,11 +468,9 class WindProfilerPlot(Figure): | |||||
472 |
|
468 | |||
473 | for i in range(nplotsw): |
|
469 | for i in range(nplotsw): | |
474 | z[i,ind] = numpy.nan |
|
470 | z[i,ind] = numpy.nan | |
475 |
|
471 | |||
476 |
|
||||
477 | # showprofile = False |
|
|||
478 | # thisDatetime = dataOut.datatime |
|
|||
479 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) |
|
472 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime) | |
|
473 | #thisDatetime = datetime.datetime.now() | |||
480 | title = wintitle + "Wind" |
|
474 | title = wintitle + "Wind" | |
481 | xlabel = "" |
|
475 | xlabel = "" | |
482 | ylabel = "Height (km)" |
|
476 | ylabel = "Height (km)" | |
@@ -539,7 +533,7 class WindProfilerPlot(Figure): | |||||
539 |
|
533 | |||
540 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
534 | z1 = z[i,:].reshape((1,-1))*windFactor[i] | |
541 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
535 | #z1=numpy.ma.masked_where(z1==0.,z1) | |
542 |
|
536 | |||
543 | axes.pcolorbuffer(x, y, z1, |
|
537 | axes.pcolorbuffer(x, y, z1, | |
544 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
538 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
545 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
539 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
@@ -549,9 +543,7 class WindProfilerPlot(Figure): | |||||
549 | i += 1 |
|
543 | i += 1 | |
550 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
544 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
551 | axes = self.axesList[i*self.__nsubplots] |
|
545 | axes = self.axesList[i*self.__nsubplots] | |
552 |
|
546 | SNRavgdB = SNRavgdB.reshape((1,-1)) | ||
553 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
|||
554 |
|
||||
555 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
547 | axes.pcolorbuffer(x, y, SNRavgdB, | |
556 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
548 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
557 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
549 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
General Comments 0
You need to be logged in to leave comments.
Login now