@@ -1,434 +1,433 | |||
|
1 | 1 | ''' |
|
2 | 2 | File: SpectraIO.py |
|
3 | 3 | Created on 20/02/2012 |
|
4 | 4 | |
|
5 | 5 | @author $Author$ |
|
6 | 6 | @version $Id$ |
|
7 | 7 | ''' |
|
8 | 8 | |
|
9 | 9 | import os, sys |
|
10 | 10 | import numpy |
|
11 | 11 | import glob |
|
12 | 12 | import fnmatch |
|
13 | 13 | import time, datetime |
|
14 | 14 | |
|
15 | 15 | path = os.path.split(os.getcwd())[0] |
|
16 | 16 | sys.path.append(path) |
|
17 | 17 | |
|
18 | 18 | from Model.JROHeader import * |
|
19 | 19 | from Model.Spectra import Spectra |
|
20 | 20 | |
|
21 | 21 | from DataIO import JRODataReader |
|
22 | 22 | from DataIO import JRODataWriter |
|
23 | 23 | from DataIO import isNumber |
|
24 | 24 | |
|
25 | 25 | |
|
26 | 26 | class SpectraReader( JRODataReader ): |
|
27 | 27 | """ |
|
28 | 28 | Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura |
|
29 | 29 | de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones) |
|
30 | 30 | son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel. |
|
31 | 31 | |
|
32 |
|
|
|
33 |
|
|
|
34 |
|
|
|
32 | paresCanalesIguales * alturas * perfiles (Self Spectra) | |
|
33 | paresCanalesDiferentes * alturas * perfiles (Cross Spectra) | |
|
34 | canales * alturas (DC Channels) | |
|
35 | 35 | |
|
36 | 36 | Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader, |
|
37 | 37 | RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la |
|
38 | 38 | cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de |
|
39 | 39 | datos desde el "buffer" cada vez que se ejecute el metodo "getData". |
|
40 | 40 | |
|
41 | 41 | Example: |
|
42 | 42 | dpath = "/home/myuser/data" |
|
43 | 43 | |
|
44 | 44 | startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0) |
|
45 | 45 | |
|
46 | 46 | endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0) |
|
47 | 47 | |
|
48 | 48 | readerObj = SpectraReader() |
|
49 | 49 | |
|
50 | 50 | readerObj.setup(dpath, startTime, endTime) |
|
51 | 51 | |
|
52 | 52 | while(True): |
|
53 | 53 | |
|
54 | 54 | readerObj.getData() |
|
55 | 55 | |
|
56 | 56 | print readerObj.m_Spectra.data |
|
57 | 57 | |
|
58 | 58 | if readerObj.flagNoMoreFiles: |
|
59 | 59 | break |
|
60 | 60 | |
|
61 | 61 | """ |
|
62 | 62 | m_DataObj = None |
|
63 | 63 | |
|
64 | 64 | data_spc = None |
|
65 | 65 | data_cspc = None |
|
66 | 66 | data_dc = None |
|
67 | 67 | |
|
68 | nPairsEqualChannels = 0 | |
|
69 | ||
|
70 | nPairsUnequalChannels = 0 | |
|
71 | ||
|
72 | 68 | pts2read_SelfSpectra = 0 |
|
73 | 69 | pts2read_CrossSpectra = 0 |
|
74 | 70 | pts2read_DCchannels = 0 |
|
75 | 71 | |
|
72 | nPairsEqualChannels = 0 | |
|
73 | ||
|
74 | nPairsUnequalChannels = 0 | |
|
75 | ||
|
76 | 76 | ext = ".pdata" |
|
77 | 77 | |
|
78 | optchar = "P" | |
|
79 | ||
|
78 | 80 | |
|
79 | 81 | def __init__(self, m_Spectra=None): |
|
80 | 82 | """ |
|
81 | 83 | Inicializador de la clase SpectraReader para la lectura de datos de espectros. |
|
82 | 84 | |
|
83 | 85 | Inputs: |
|
84 | 86 | m_Spectra : Objeto de la clase Spectra. Este objeto sera utilizado para |
|
85 | 87 | almacenar un perfil de datos cada vez que se haga un requerimiento |
|
86 | 88 | (getData). El perfil sera obtenido a partir del buffer de datos, |
|
87 | 89 | si el buffer esta vacio se hara un nuevo proceso de lectura de un |
|
88 | 90 | bloque de datos. |
|
89 | 91 | Si este parametro no es pasado se creara uno internamente. |
|
90 | 92 | |
|
91 | 93 | Affected: |
|
92 | 94 | self.m_DataObj |
|
93 | 95 | |
|
94 | 96 | Return : None |
|
95 | 97 | """ |
|
96 | 98 | if m_Spectra == None: |
|
97 | 99 | m_Spectra = Spectra() |
|
98 | 100 | |
|
99 | 101 | if not( isinstance(m_Spectra, Spectra) ): |
|
100 | 102 | raise ValueError, "in SpectraReader, m_Spectra must be an Spectra class object" |
|
101 | 103 | |
|
102 | 104 | self.m_DataObj = m_Spectra |
|
103 | 105 | |
|
104 | 106 | |
|
105 | 107 | def __hasNotDataInBuffer(self): |
|
106 | 108 | return 1 |
|
107 | 109 | |
|
108 | 110 | |
|
109 | 111 | def getBlockDimension(self): |
|
110 | 112 | """ |
|
111 | 113 | Obtiene la cantidad de puntos a leer por cada bloque de datos |
|
112 | 114 | |
|
113 | 115 | Affected: |
|
114 | 116 | self.nPairsEqualChannels |
|
115 | 117 | self.nPairsUnequalChannels |
|
116 | 118 | self.pts2read_SelfSpectra |
|
117 | 119 | self.pts2read_CrossSpectra |
|
118 | 120 | self.pts2read_DCchannels |
|
119 | 121 | self.blocksize |
|
120 | 122 | self.m_DataObj.nPairsEqualChannels |
|
121 | 123 | self.m_DataObj.nPairsUnequalChannels |
|
122 | 124 | |
|
123 | 125 | Return: |
|
124 | 126 | None |
|
125 | 127 | """ |
|
126 | 128 | self.nPairsEqualChannels = 0 |
|
127 | 129 | self.nPairsUnequalChannels = 0 |
|
128 | 130 | |
|
129 | 131 | for i in range( 0, self.m_ProcessingHeader.totalSpectra*2, 2 ): |
|
130 | 132 | if self.m_ProcessingHeader.spectraComb[i] == self.m_ProcessingHeader.spectraComb[i+1]: |
|
131 | 133 | self.nPairsEqualChannels = self.nPairsEqualChannels + 1 #par de canales iguales |
|
132 | 134 | else: |
|
133 | 135 | self.nPairsUnequalChannels = self.nPairsUnequalChannels + 1 #par de canales diferentes |
|
134 | 136 | |
|
135 | 137 | pts2read = self.m_ProcessingHeader.numHeights * self.m_ProcessingHeader.profilesPerBlock |
|
136 | 138 | |
|
137 | 139 | self.pts2read_SelfSpectra = int( self.nPairsEqualChannels * pts2read ) |
|
138 | 140 | self.pts2read_CrossSpectra = int( self.nPairsUnequalChannels * pts2read ) |
|
139 | 141 | self.pts2read_DCchannels = int( self.m_SystemHeader.numChannels * self.m_ProcessingHeader.numHeights ) |
|
140 | 142 | |
|
141 | 143 | self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels |
|
142 | 144 | |
|
143 | 145 | self.m_DataObj.nPairsEqualChannels = self.nPairsEqualChannels |
|
144 | 146 | self.m_DataObj.nPairsUnequalChannels = self.nPairsUnequalChannels |
|
145 | 147 | |
|
146 | 148 | |
|
147 | 149 | def readBlock(self): |
|
148 | 150 | """ |
|
149 | 151 | Lee el bloque de datos desde la posicion actual del puntero del archivo |
|
150 | 152 | (self.fp) y actualiza todos los parametros relacionados al bloque de datos |
|
151 | 153 | (metadata + data). La data leida es almacenada en el buffer y el contador del buffer |
|
152 | 154 | es seteado a 0 |
|
153 | 155 | |
|
154 | 156 | Return: None |
|
155 | 157 | |
|
156 | 158 | Variables afectadas: |
|
157 | 159 | self.datablockIndex |
|
158 | 160 | self.flagIsNewFile |
|
159 | 161 | self.flagIsNewBlock |
|
160 | 162 | self.nReadBlocks |
|
161 | 163 | self.data_spc |
|
162 | 164 | self.data_cspc |
|
163 | 165 | self.data_dc |
|
164 | 166 | |
|
165 | 167 | Exceptions: |
|
166 | 168 | Si un bloque leido no es un bloque valido |
|
167 | 169 | """ |
|
168 | 170 | blockOk_flag = False |
|
169 | 171 | fpointer = self.fp.tell() |
|
170 | 172 | |
|
171 | 173 | spc = numpy.fromfile( self.fp, self.dataType[0], self.pts2read_SelfSpectra ) |
|
172 | 174 | cspc = numpy.fromfile( self.fp, self.dataType, self.pts2read_CrossSpectra ) |
|
173 | 175 | dc = numpy.fromfile( self.fp, self.dataType, self.pts2read_DCchannels ) #int(self.m_ProcessingHeader.numHeights*self.m_SystemHeader.numChannels) ) |
|
174 | 176 | |
|
175 | 177 | if self.online: |
|
176 | 178 | if (spc.size + cspc.size + dc.size) != self.blocksize: |
|
177 | 179 | for nTries in range( self.nTries ): |
|
178 | 180 | print "\tWaiting %0.2f sec for the next block, try %03d ..." % (self.delay, nTries+1) |
|
179 | 181 | time.sleep( self.delay ) |
|
180 | 182 | self.fp.seek( fpointer ) |
|
181 | 183 | fpointer = self.fp.tell() |
|
184 | ||
|
182 | 185 | spc = numpy.fromfile( self.fp, self.dataType[0], self.pts2read_SelfSpectra ) |
|
183 | 186 | cspc = numpy.fromfile( self.fp, self.dataType, self.pts2read_CrossSpectra ) |
|
184 | 187 | dc = numpy.fromfile( self.fp, self.dataType, self.pts2read_DCchannels ) #int(self.m_ProcessingHeader.numHeights*self.m_SystemHeader.numChannels) ) |
|
185 | 188 | |
|
186 | 189 | if (spc.size + cspc.size + dc.size) == self.blocksize: |
|
187 | 190 | blockOk_flag = True |
|
188 | 191 | break |
|
192 | ||
|
189 | 193 | if not( blockOk_flag ): |
|
190 | 194 | return 0 |
|
191 | 195 | |
|
192 | 196 | try: |
|
193 | 197 | spc = spc.reshape( (self.nPairsEqualChannels, self.m_ProcessingHeader.numHeights, self.m_ProcessingHeader.profilesPerBlock) ) #transforma a un arreglo 3D |
|
194 | 198 | cspc = cspc.reshape( (self.nPairsUnequalChannels, self.m_ProcessingHeader.numHeights, self.m_ProcessingHeader.profilesPerBlock) ) #transforma a un arreglo 3D |
|
195 | 199 | dc = dc.reshape( (self.m_SystemHeader.numChannels, self.m_ProcessingHeader.numHeights) ) #transforma a un arreglo 2D |
|
196 | 200 | except: |
|
197 | 201 | print "Data file %s is invalid" % self.filename |
|
198 | 202 | return 0 |
|
199 | 203 | |
|
200 | 204 | if not( self.m_ProcessingHeader.shif_fft ): |
|
201 | 205 | spc = numpy.roll( spc, self.m_ProcessingHeader.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
202 | 206 | cspc = numpy.roll( cspc, self.m_ProcessingHeader.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
203 | 207 | |
|
204 | 208 | # spc = numpy.transpose( spc, (0,2,1) ) |
|
205 | 209 | # cspc = numpy.transpose( cspc, (0,2,1) ) |
|
206 | 210 | #dc = numpy.transpose(dc, (0,2,1)) |
|
207 | 211 | |
|
208 | 212 | self.data_spc = spc |
|
209 | 213 | self.data_cspc = cspc['real'] + cspc['imag']*1j |
|
210 | 214 | self.data_dc = dc['real'] + dc['imag']*1j |
|
211 | 215 | |
|
212 | 216 | self.datablockIndex = 0 |
|
213 | 217 | self.flagIsNewFile = 0 |
|
214 | 218 | self.flagIsNewBlock = 1 |
|
215 | 219 | |
|
216 | 220 | self.nReadBlocks += 1 |
|
217 | 221 | self.nBlocks += 1 |
|
218 | 222 | |
|
219 | 223 | return 1 |
|
220 | 224 | |
|
221 | 225 | |
|
222 | 226 | def getData(self): |
|
223 | 227 | """ |
|
224 | 228 | Copia el buffer de lectura a la clase "Spectra", |
|
225 | 229 | con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de |
|
226 | 230 | lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock" |
|
227 | 231 | |
|
228 | 232 | Return: |
|
229 | 233 | 0 : Si no hay mas archivos disponibles |
|
230 | 234 | 1 : Si hizo una buena copia del buffer |
|
231 | 235 | |
|
232 | 236 | Affected: |
|
233 | 237 | self.m_DataObj |
|
234 | 238 | self.datablockIndex |
|
235 | 239 | self.flagResetProcessing |
|
236 | 240 | self.flagIsNewBlock |
|
237 | 241 | """ |
|
238 | 242 | |
|
239 | 243 | if self.flagNoMoreFiles: return 0 |
|
240 | 244 | |
|
241 | 245 | self.flagResetProcessing = 0 |
|
242 | 246 | self.flagIsNewBlock = 0 |
|
243 | 247 | |
|
244 | 248 | if self.__hasNotDataInBuffer(): |
|
245 | 249 | |
|
246 | 250 | if not( self.readNextBlock() ): |
|
247 | 251 | self.setNextFile() |
|
248 | 252 | return 0 |
|
249 | 253 | |
|
250 | 254 | self.m_DataObj.m_BasicHeader = self.m_BasicHeader.copy() |
|
251 | 255 | self.m_DataObj.m_ProcessingHeader = self.m_ProcessingHeader.copy() |
|
252 | 256 | self.m_DataObj.m_RadarControllerHeader = self.m_RadarControllerHeader.copy() |
|
253 | 257 | self.m_DataObj.m_SystemHeader = self.m_SystemHeader.copy() |
|
254 | 258 | self.m_DataObj.heights = self.heights |
|
255 | 259 | self.m_DataObj.dataType = self.dataType |
|
256 | 260 | |
|
257 | 261 | if self.flagNoMoreFiles == 1: |
|
258 | 262 | print 'Process finished' |
|
259 | 263 | return 0 |
|
260 | 264 | |
|
261 | 265 | #data es un numpy array de 3 dmensiones (perfiles, alturas y canales) |
|
262 | 266 | |
|
263 | 267 | if self.data_dc == None: |
|
264 | 268 | self.m_DataObj.flagNoData = True |
|
265 | 269 | return 0 |
|
266 | 270 | |
|
267 | 271 | self.m_DataObj.flagNoData = False |
|
268 | 272 | self.m_DataObj.flagResetProcessing = self.flagResetProcessing |
|
269 | 273 | |
|
270 | 274 | self.m_DataObj.data_spc = self.data_spc |
|
271 | 275 | self.m_DataObj.data_cspc = self.data_cspc |
|
272 | 276 | self.m_DataObj.data_dc = self.data_dc |
|
273 | ||
|
274 | #call setData - to Data Object | |
|
275 | #self.datablockIndex += 1 | |
|
276 | #self.idProfile += 1 | |
|
277 | 277 | |
|
278 | 278 | return 1 |
|
279 | 279 | |
|
280 | 280 | |
|
281 | 281 | class SpectraWriter(JRODataWriter): |
|
282 | 282 | |
|
283 | 283 | """ |
|
284 | 284 | Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura |
|
285 | 285 | de los datos siempre se realiza por bloques. |
|
286 | 286 | """ |
|
287 | 287 | |
|
288 | 288 | m_DataObj = None |
|
289 | 289 | |
|
290 | 290 | ext = ".pdata" |
|
291 | 291 | |
|
292 | 292 | optchar = "P" |
|
293 | 293 | |
|
294 | 294 | shape_spc_Buffer = None |
|
295 | 295 | shape_cspc_Buffer = None |
|
296 | 296 | shape_dc_Buffer = None |
|
297 | 297 | |
|
298 | 298 | |
|
299 | 299 | def __init__(self, m_Spectra=None): |
|
300 | 300 | """ |
|
301 | 301 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. |
|
302 | 302 | |
|
303 | 303 | Affected: |
|
304 | 304 | self.m_DataObj |
|
305 | 305 | self.m_BasicHeader |
|
306 | 306 | self.m_SystemHeader |
|
307 | 307 | self.m_RadarControllerHeader |
|
308 | 308 | self.m_ProcessingHeader |
|
309 | 309 | |
|
310 | 310 | Return: None |
|
311 | 311 | """ |
|
312 | 312 | if m_Spectra == None: |
|
313 | 313 | m_Spectra = Spectra() |
|
314 | 314 | |
|
315 | 315 | if not( isinstance(m_Spectra, Spectra) ): |
|
316 | 316 | raise ValueError, "in SpectraReader, m_Spectra must be an Spectra class object" |
|
317 | 317 | |
|
318 | 318 | self.m_DataObj = m_Spectra |
|
319 | 319 | |
|
320 | 320 | |
|
321 | 321 | def hasAllDataInBuffer(self): |
|
322 | 322 | return 1 |
|
323 | 323 | |
|
324 | 324 | |
|
325 | 325 | def setBlockDimension(self): |
|
326 | 326 | """ |
|
327 | 327 | Obtiene las formas dimensionales del los subbloques de datos que componen un bloque |
|
328 | 328 | |
|
329 | 329 | Affected: |
|
330 | 330 | self.shape_spc_Buffer |
|
331 | 331 | self.shape_cspc_Buffer |
|
332 | 332 | self.shape_dc_Buffer |
|
333 | 333 | |
|
334 | 334 | Return: None |
|
335 | 335 | """ |
|
336 | 336 | self.shape_spc_Buffer = (self.m_DataObj.nPairsEqualChannels, |
|
337 | 337 | self.m_ProcessingHeader.numHeights, |
|
338 | 338 | self.m_ProcessingHeader.profilesPerBlock) |
|
339 | 339 | |
|
340 | 340 | self.shape_cspc_Buffer = (self.m_DataObj.nPairsUnequalChannels, |
|
341 | 341 | self.m_ProcessingHeader.numHeights, |
|
342 | 342 | self.m_ProcessingHeader.profilesPerBlock) |
|
343 | 343 | |
|
344 | 344 | self.shape_dc_Buffer = (self.m_SystemHeader.numChannels, |
|
345 | 345 | self.m_ProcessingHeader.numHeights) |
|
346 | 346 | |
|
347 | 347 | |
|
348 | 348 | def writeBlock(self): |
|
349 | 349 | """ |
|
350 | 350 | Escribe el buffer en el file designado |
|
351 | 351 | |
|
352 | 352 | Affected: |
|
353 | 353 | self.data_spc |
|
354 | 354 | self.data_cspc |
|
355 | 355 | self.data_dc |
|
356 | 356 | self.flagIsNewFile |
|
357 | 357 | self.flagIsNewBlock |
|
358 | 358 | self.nWriteBlocks |
|
359 | 359 | self.blocksCounter |
|
360 | 360 | |
|
361 | 361 | Return: None |
|
362 | 362 | """ |
|
363 | 363 | spc = self.data_spc |
|
364 | 364 | # spc = numpy.transpose( self.data_spc, (0,2,1) ) |
|
365 | 365 | if not( self.m_ProcessingHeader.shif_fft ): |
|
366 | 366 | spc = numpy.roll( spc, self.m_ProcessingHeader.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
367 | 367 | data = spc.reshape((-1)) |
|
368 | 368 | data.tofile(self.fp) |
|
369 | 369 | |
|
370 | 370 | data = numpy.zeros( self.shape_cspc_Buffer, self.dataType ) |
|
371 | 371 | cspc = self.data_cspc |
|
372 | 372 | # cspc = numpy.transpose( self.data_cspc, (0,2,1) ) |
|
373 | 373 | if not( self.m_ProcessingHeader.shif_fft ): |
|
374 | 374 | cspc = numpy.roll( cspc, self.m_ProcessingHeader.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
375 | data['real'] = cspc.real | |
|
376 | 375 | data['imag'] = cspc.imag |
|
377 | 376 | data = data.reshape((-1)) |
|
378 | 377 | data.tofile(self.fp) |
|
379 | 378 | |
|
380 | 379 | data = numpy.zeros( self.shape_dc_Buffer, self.dataType ) |
|
381 | 380 | dc = self.data_dc |
|
382 | 381 | data['real'] = dc.real |
|
383 | 382 | data['imag'] = dc.imag |
|
384 | 383 | data = data.reshape((-1)) |
|
385 | 384 | data.tofile(self.fp) |
|
386 | 385 | |
|
387 | 386 | self.data_spc.fill(0) |
|
388 | 387 | self.data_cspc.fill(0) |
|
389 | 388 | self.data_dc.fill(0) |
|
390 | 389 | |
|
391 | 390 | self.flagIsNewFile = 0 |
|
392 | 391 | self.flagIsNewBlock = 1 |
|
393 | 392 | self.nWriteBlocks += 1 |
|
394 | 393 | self.blocksCounter += 1 |
|
395 | 394 | |
|
396 | 395 | |
|
397 | 396 | def putData(self): |
|
398 | 397 | """ |
|
399 | 398 | Setea un bloque de datos y luego los escribe en un file |
|
400 | 399 | |
|
401 | 400 | Affected: |
|
402 | 401 | self.data_spc |
|
403 | 402 | self.data_cspc |
|
404 | 403 | self.data_dc |
|
405 | 404 | |
|
406 | 405 | Return: |
|
407 | 406 | 0 : Si no hay data o no hay mas files que puedan escribirse |
|
408 | 407 | 1 : Si se escribio la data de un bloque en un file |
|
409 | 408 | """ |
|
410 | 409 | self.flagIsNewBlock = 0 |
|
411 | 410 | |
|
412 | 411 | if self.m_DataObj.flagNoData: |
|
413 | 412 | return 0 |
|
414 | 413 | |
|
415 | 414 | if self.m_DataObj.flagResetProcessing: |
|
416 | 415 | self.data_spc.fill(0) |
|
417 | 416 | self.data_cspc.fill(0) |
|
418 | 417 | self.data_dc.fill(0) |
|
419 | 418 | self.setNextFile() |
|
420 | 419 | |
|
421 | 420 | self.data_spc = self.m_DataObj.data_spc |
|
422 | 421 | self.data_cspc = self.m_DataObj.data_cspc |
|
423 | 422 | self.data_dc = self.m_DataObj.data_dc |
|
424 | 423 | |
|
425 | 424 | # #self.m_ProcessingHeader.dataBlocksPerFile) |
|
426 | 425 | if True: |
|
427 | 426 | self.getHeader() |
|
428 | 427 | self.writeNextBlock() |
|
429 | 428 | |
|
430 | 429 | if self.flagNoMoreFiles: |
|
431 | 430 | #print 'Process finished' |
|
432 | 431 | return 0 |
|
433 | 432 | |
|
434 | 433 | return 1 No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now