@@ -1,497 +1,511 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Feb 7, 2012 |
|
3 | 3 | |
|
4 | 4 | @author $Author$ |
|
5 | 5 | @version $Id$ |
|
6 | 6 | ''' |
|
7 | 7 | import os, sys |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | path = os.path.split(os.getcwd())[0] |
|
11 | 11 | sys.path.append(path) |
|
12 | 12 | |
|
13 | 13 | from Model.Spectra import Spectra |
|
14 | 14 | from IO.SpectraIO import SpectraWriter |
|
15 | 15 | from Graphics.SpectraPlot import Spectrum |
|
16 | 16 | |
|
17 | 17 | |
|
18 | 18 | class SpectraProcessor: |
|
19 | 19 | ''' |
|
20 | 20 | classdocs |
|
21 | 21 | ''' |
|
22 | 22 | |
|
23 | 23 | def __init__(self, dataInObj, dataOutObj=None): |
|
24 | 24 | ''' |
|
25 | 25 | Constructor |
|
26 | 26 | ''' |
|
27 | 27 | self.dataInObj = dataInObj |
|
28 | 28 | |
|
29 | 29 | if dataOutObj == None: |
|
30 | 30 | self.dataOutObj = Spectra() |
|
31 | 31 | else: |
|
32 | 32 | self.dataOutObj = dataOutObj |
|
33 | 33 | |
|
34 | 34 | self.integratorIndex = None |
|
35 | 35 | self.decoderIndex = None |
|
36 | 36 | self.writerIndex = None |
|
37 | 37 | self.plotterIndex = None |
|
38 | 38 | |
|
39 | 39 | self.integratorList = [] |
|
40 | 40 | self.decoderList = [] |
|
41 | 41 | self.writerList = [] |
|
42 | 42 | self.plotterList = [] |
|
43 | 43 | |
|
44 | 44 | self.buffer = None |
|
45 | 45 | self.ptsId = 0 |
|
46 | 46 | |
|
47 | 47 | def init(self, nFFTPoints, pairList=None): |
|
48 | 48 | |
|
49 | 49 | self.integratorIndex = 0 |
|
50 | 50 | self.decoderIndex = 0 |
|
51 | 51 | self.writerIndex = 0 |
|
52 | 52 | self.plotterIndex = 0 |
|
53 | 53 | |
|
54 | 54 | if nFFTPoints == None: |
|
55 | 55 | nFFTPoints = self.dataOutObj.nFFTPoints |
|
56 | 56 | |
|
57 | 57 | self.nFFTPoints = nFFTPoints |
|
58 | 58 | self.pairList = pairList |
|
59 | 59 | |
|
60 | 60 | if not( isinstance(self.dataInObj, Spectra) ): |
|
61 | 61 | self.__getFft() |
|
62 | 62 | else: |
|
63 | 63 | self.dataOutObj.copy(self.dataInObj) |
|
64 | 64 | |
|
65 | 65 | |
|
66 | 66 | def __getFft(self): |
|
67 | 67 | """ |
|
68 | 68 | Convierte valores de Voltaje a Spectra |
|
69 | 69 | |
|
70 | 70 | Affected: |
|
71 | 71 | self.dataOutObj.data_spc |
|
72 | 72 | self.dataOutObj.data_cspc |
|
73 | 73 | self.dataOutObj.data_dc |
|
74 | 74 | self.dataOutObj.heightList |
|
75 | 75 | self.dataOutObj.m_BasicHeader |
|
76 | 76 | self.dataOutObj.m_ProcessingHeader |
|
77 | 77 | self.dataOutObj.m_RadarControllerHeader |
|
78 | 78 | self.dataOutObj.m_SystemHeader |
|
79 | 79 | self.ptsId |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOutObj.flagNoData |
|
82 | 82 | self.dataOutObj.dataType |
|
83 | 83 | self.dataOutObj.nPairs |
|
84 | 84 | self.dataOutObj.nChannels |
|
85 | 85 | self.dataOutObj.nProfiles |
|
86 | 86 | self.dataOutObj.m_SystemHeader.numChannels |
|
87 | 87 | self.dataOutObj.m_ProcessingHeader.totalSpectra |
|
88 | 88 | self.dataOutObj.m_ProcessingHeader.profilesPerBlock |
|
89 | 89 | self.dataOutObj.m_ProcessingHeader.numHeights |
|
90 | 90 | self.dataOutObj.m_ProcessingHeader.spectraComb |
|
91 | 91 | self.dataOutObj.m_ProcessingHeader.shif_fft |
|
92 | 92 | """ |
|
93 | 93 | blocksize = 0 |
|
94 | 94 | nFFTPoints = self.nFFTPoints |
|
95 | 95 | nChannels, nheis = self.dataInObj.data.shape |
|
96 | 96 | |
|
97 | 97 | if self.buffer == None: |
|
98 | 98 | self.buffer = numpy.zeros((nChannels, nFFTPoints, nheis), dtype='complex') |
|
99 | 99 | |
|
100 | 100 | self.buffer[:,self.ptsId,:] = self.dataInObj.data |
|
101 | 101 | self.ptsId += 1 |
|
102 | 102 | |
|
103 | 103 | if self.ptsId < self.dataOutObj.nFFTPoints: |
|
104 | 104 | self.dataOutObj.flagNoData = True |
|
105 | 105 | return |
|
106 | 106 | |
|
107 | 107 | fft_volt = numpy.fft.fft(self.buffer,axis=1) |
|
108 | 108 | dc = fft_volt[:,0,:] |
|
109 | 109 | |
|
110 | 110 | #calculo de self-spectra |
|
111 | 111 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
112 | 112 | spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt)) |
|
113 | 113 | |
|
114 | 114 | blocksize += dc.size |
|
115 | 115 | blocksize += spc.size |
|
116 | 116 | |
|
117 | 117 | cspc = None |
|
118 | 118 | nPair = 0 |
|
119 | 119 | if self.pairList != None: |
|
120 | 120 | #calculo de cross-spectra |
|
121 | 121 | nPairs = len(self.pairList) |
|
122 | 122 | cspc = numpy.zeros((nPairs, nFFTPoints, nheis), dtype='complex') |
|
123 | 123 | for pair in self.pairList: |
|
124 | 124 | cspc[nPair,:,:] = numpy.abs(fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])) |
|
125 | 125 | nPair += 1 |
|
126 | 126 | blocksize += cspc.size |
|
127 | 127 | |
|
128 | 128 | self.dataOutObj.data_spc = spc |
|
129 | 129 | self.dataOutObj.data_cspc = cspc |
|
130 | 130 | self.dataOutObj.data_dc = dc |
|
131 | 131 | |
|
132 | 132 | self.ptsId = 0 |
|
133 | 133 | self.buffer = None |
|
134 | 134 | self.dataOutObj.flagNoData = False |
|
135 | 135 | |
|
136 | 136 | self.dataOutObj.heightList = self.dataInObj.heightList |
|
137 | 137 | self.dataOutObj.channelList = self.dataInObj.channelList |
|
138 | 138 | self.dataOutObj.m_BasicHeader = self.dataInObj.m_BasicHeader.copy() |
|
139 | 139 | self.dataOutObj.m_ProcessingHeader = self.dataInObj.m_ProcessingHeader.copy() |
|
140 | 140 | self.dataOutObj.m_RadarControllerHeader = self.dataInObj.m_RadarControllerHeader.copy() |
|
141 | 141 | self.dataOutObj.m_SystemHeader = self.dataInObj.m_SystemHeader.copy() |
|
142 | 142 | |
|
143 | 143 | self.dataOutObj.dataType = self.dataInObj.dataType |
|
144 | 144 | self.dataOutObj.nPairs = nPair |
|
145 | 145 | self.dataOutObj.nChannels = nChannels |
|
146 | 146 | self.dataOutObj.nProfiles = nFFTPoints |
|
147 | 147 | self.dataOutObj.nHeights = nheis |
|
148 | 148 | self.dataOutObj.nFFTPoints = nFFTPoints |
|
149 | 149 | #self.dataOutObj.data = None |
|
150 | 150 | |
|
151 | 151 | self.dataOutObj.m_SystemHeader.numChannels = nChannels |
|
152 | 152 | self.dataOutObj.m_SystemHeader.nProfiles = nFFTPoints |
|
153 | 153 | |
|
154 | 154 | self.dataOutObj.m_ProcessingHeader.blockSize = blocksize |
|
155 | 155 | self.dataOutObj.m_ProcessingHeader.totalSpectra = nChannels + nPair |
|
156 | 156 | self.dataOutObj.m_ProcessingHeader.profilesPerBlock = nFFTPoints |
|
157 | 157 | self.dataOutObj.m_ProcessingHeader.numHeights = nheis |
|
158 | 158 | self.dataOutObj.m_ProcessingHeader.shif_fft = True |
|
159 | 159 | |
|
160 | 160 | spectraComb = numpy.zeros( (nChannels+nPair)*2,numpy.dtype('u1')) |
|
161 | 161 | k = 0 |
|
162 | 162 | for i in range( 0,nChannels*2,2 ): |
|
163 | 163 | spectraComb[i] = k |
|
164 | 164 | spectraComb[i+1] = k |
|
165 | 165 | k += 1 |
|
166 | 166 | |
|
167 | 167 | k *= 2 |
|
168 | 168 | |
|
169 | 169 | if self.pairList != None: |
|
170 | 170 | |
|
171 | 171 | for pair in self.pairList: |
|
172 | 172 | spectraComb[k] = pair[0] |
|
173 | 173 | spectraComb[k+1] = pair[1] |
|
174 | 174 | k += 2 |
|
175 | 175 | |
|
176 | 176 | self.dataOutObj.m_ProcessingHeader.spectraComb = spectraComb |
|
177 | ||
|
178 | #self.selectHeightsByIndex( 0,10) | |
|
179 | #self.selectHeightsByValue( 120,200 ) | |
|
180 | #self.selectChannels((2,4,5), self.pairList) | |
|
181 | 177 | |
|
182 | 178 | |
|
183 | 179 | def addWriter(self,wrpath): |
|
184 | 180 | objWriter = SpectraWriter(self.dataOutObj) |
|
185 | 181 | objWriter.setup(wrpath) |
|
186 | 182 | self.writerList.append(objWriter) |
|
187 | 183 | |
|
188 | 184 | |
|
189 | 185 | def addPlotter(self, index=None): |
|
190 | 186 | |
|
191 | 187 | if index==None: |
|
192 | 188 | index = self.plotterIndex |
|
193 | 189 | |
|
194 | 190 | plotObj = Spectrum(self.dataOutObj, index) |
|
195 | 191 | self.plotterList.append(plotObj) |
|
196 | 192 | |
|
197 | 193 | |
|
198 | 194 | def addIntegrator(self,N): |
|
199 | 195 | |
|
200 | 196 | objIncohInt = IncoherentIntegration(N) |
|
201 | 197 | self.integratorList.append(objIncohInt) |
|
202 | 198 | |
|
203 | 199 | |
|
204 | 200 | def writeData(self, wrpath): |
|
205 | 201 | if self.dataOutObj.flagNoData: |
|
206 | 202 | return 0 |
|
207 | 203 | |
|
208 | 204 | if len(self.writerList) <= self.writerIndex: |
|
209 | 205 | self.addWriter(wrpath) |
|
210 | 206 | |
|
211 | 207 | self.writerList[self.writerIndex].putData() |
|
212 | 208 | |
|
213 | 209 | self.writerIndex += 1 |
|
214 | 210 | |
|
215 | 211 | def plotData(self,xmin=None, xmax=None, ymin=None, ymax=None, winTitle='', index=None): |
|
216 | 212 | if self.dataOutObj.flagNoData: |
|
217 | 213 | return 0 |
|
218 | 214 | |
|
219 | 215 | if len(self.plotterList) <= self.plotterIndex: |
|
220 | 216 | self.addPlotter(index) |
|
221 | 217 | |
|
222 | 218 | self.plotterList[self.plotterIndex].plotData(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,winTitle=winTitle) |
|
223 | 219 | |
|
224 | 220 | self.plotterIndex += 1 |
|
225 | 221 | |
|
226 | 222 | def integrator(self, N): |
|
227 | 223 | if self.dataOutObj.flagNoData: |
|
228 | 224 | return 0 |
|
229 | 225 | |
|
230 | 226 | if len(self.integratorList) <= self.integratorIndex: |
|
231 | 227 | self.addIntegrator(N) |
|
232 | 228 | |
|
233 | 229 | myCohIntObj = self.integratorList[self.integratorIndex] |
|
234 | 230 | myCohIntObj.exe(self.dataOutObj.data_spc) |
|
235 | 231 | |
|
236 | 232 | if myCohIntObj.flag: |
|
237 | 233 | self.dataOutObj.data_spc = myCohIntObj.data |
|
238 | 234 | self.dataOutObj.m_ProcessingHeader.incoherentInt *= N |
|
239 | 235 | self.dataOutObj.flagNoData = False |
|
240 | 236 | |
|
241 | 237 | else: |
|
242 | 238 | self.dataOutObj.flagNoData = True |
|
243 | 239 | |
|
244 | 240 | self.integratorIndex += 1 |
|
245 | 241 | |
|
246 | 242 | def removeDC(self, type): |
|
247 | 243 | |
|
248 | 244 | if self.dataOutObj.flagNoData: |
|
249 | 245 | return 0 |
|
250 | 246 | pass |
|
251 | 247 | |
|
252 | 248 | def removeInterference(self): |
|
253 | 249 | |
|
254 | 250 | if self.dataOutObj.flagNoData: |
|
255 | 251 | return 0 |
|
256 | 252 | pass |
|
257 | 253 | |
|
258 | 254 | def removeSatellites(self): |
|
259 | 255 | |
|
260 | 256 | if self.dataOutObj.flagNoData: |
|
261 | 257 | return 0 |
|
262 | 258 | pass |
|
263 | 259 | |
|
264 | 260 | def selectChannels(self, channelList, pairList=None): |
|
265 | 261 | """ |
|
266 | 262 | Selecciona un bloque de datos en base a canales y pares segun el channelList y el pairList |
|
267 | 263 | |
|
268 | 264 | Input: |
|
269 | 265 | channelList : lista sencilla de canales a seleccionar por ej. (2,3,7) |
|
270 | 266 | pairList : tupla de pares que se desea selecionar por ej. ( (0,1), (0,2) ) |
|
271 | 267 | |
|
272 | 268 | Affected: |
|
273 | 269 | self.dataOutObj.data_spc |
|
274 | 270 | self.dataOutObj.data_cspc |
|
275 | 271 | self.dataOutObj.data_dc |
|
276 | 272 | self.dataOutObj.nChannels |
|
277 | 273 | self.dataOutObj.nPairs |
|
278 | 274 | self.dataOutObj.m_ProcessingHeader.spectraComb |
|
279 | 275 | self.dataOutObj.m_SystemHeader.numChannels |
|
280 | 276 | |
|
281 | 277 | Return: |
|
282 | 278 | None |
|
283 | 279 | """ |
|
284 | 280 | |
|
285 | 281 | if self.dataOutObj.flagNoData: |
|
286 | 282 | return 0 |
|
287 | 283 | |
|
284 | channelIndexList = [] | |
|
285 | for channel in channelList: | |
|
286 | if channel in self.dataOutObj.channelList: | |
|
287 | index = self.dataOutObj.channelList.index(channel) | |
|
288 | channelIndexList.append(index) | |
|
289 | continue | |
|
290 | ||
|
291 | raise ValueError, "The value %d in channelList is not valid" %channel | |
|
292 | ||
|
288 | 293 | nProfiles = self.dataOutObj.nProfiles |
|
289 | dataType = self.dataOutObj.dataType | |
|
290 | nHeights = self.dataOutObj.m_ProcessingHeader.numHeights | |
|
294 | #dataType = self.dataOutObj.dataType | |
|
295 | nHeights = self.dataOutObj.nHeights #m_ProcessingHeader.numHeights | |
|
291 | 296 | blocksize = 0 |
|
292 | 297 | |
|
293 | 298 | #self spectra |
|
294 | nChannels = len(channelList) | |
|
295 |
spc = numpy.zeros( (nChannels,nProfiles,nHeights), d |
|
|
299 | nChannels = len(channelIndexList) | |
|
300 | spc = numpy.zeros( (nChannels,nProfiles,nHeights), dtype='float' ) #dataType[0] ) | |
|
296 | 301 | |
|
297 | for index, channel in enumerate(channelList): | |
|
298 |
spc[index,:,:] = self.dataOutObj.data_spc[ |
|
|
302 | for index, channel in enumerate(channelIndexList): | |
|
303 | spc[index,:,:] = self.dataOutObj.data_spc[index,:,:] | |
|
299 | 304 | |
|
300 | 305 | #DC channel |
|
301 | 306 | dc = numpy.zeros( (nChannels,nHeights), dtype='complex' ) |
|
302 | for index, channel in enumerate(channelList): | |
|
307 | for index, channel in enumerate(channelIndexList): | |
|
303 | 308 | dc[index,:] = self.dataOutObj.data_dc[channel,:] |
|
304 | 309 | |
|
305 | 310 | blocksize += dc.size |
|
306 | 311 | blocksize += spc.size |
|
307 | 312 | |
|
308 | 313 | nPairs = 0 |
|
309 | 314 | cspc = None |
|
310 | 315 | |
|
311 | 316 | if pairList == None: |
|
312 | 317 | pairList = self.pairList |
|
313 | 318 | |
|
314 | if pairList != None: | |
|
319 | if (pairList != None) and (self.dataOutObj.data_cspc != None): | |
|
315 | 320 | #cross spectra |
|
316 | 321 | nPairs = len(pairList) |
|
317 | 322 | cspc = numpy.zeros( (nPairs,nProfiles,nHeights), dtype='complex' ) |
|
318 | 323 | |
|
319 | 324 | spectraComb = self.dataOutObj.m_ProcessingHeader.spectraComb |
|
320 | 325 | totalSpectra = len(spectraComb) |
|
321 | 326 | nchan = self.dataOutObj.nChannels |
|
322 | indexList = [] | |
|
327 | pairIndexList = [] | |
|
323 | 328 | |
|
324 | 329 | for pair in pairList: #busco el par en la lista de pares del Spectra Combinations |
|
325 | 330 | for index in range(0,totalSpectra,2): |
|
326 | 331 | if pair[0] == spectraComb[index] and pair[1] == spectraComb[index+1]: |
|
327 | indexList.append( index/2 - nchan ) | |
|
332 | pairIndexList.append( index/2 - nchan ) | |
|
328 | 333 | |
|
329 | for index, pair in enumerate(indexList): | |
|
334 | for index, pair in enumerate(pairIndexList): | |
|
330 | 335 | cspc[index,:,:] = self.dataOutObj.data_cspc[pair,:,:] |
|
331 | 336 | blocksize += cspc.size |
|
332 | 337 | |
|
333 | 338 | else: |
|
334 | 339 | pairList = self.pairList |
|
335 | 340 | cspc = self.dataOutObj.data_cspc |
|
336 | 341 | if cspc != None: |
|
337 | 342 | blocksize += cspc.size |
|
338 | 343 | |
|
339 | 344 | spectraComb = numpy.zeros( (nChannels+nPairs)*2,numpy.dtype('u1')) |
|
340 | 345 | i = 0 |
|
341 | 346 | for val in channelList: |
|
342 | 347 | spectraComb[i] = val |
|
343 | 348 | spectraComb[i+1] = val |
|
344 | 349 | i += 2 |
|
345 | 350 | |
|
346 | 351 | if pairList != None: |
|
347 | 352 | for pair in pairList: |
|
348 | 353 | spectraComb[i] = pair[0] |
|
349 | 354 | spectraComb[i+1] = pair[1] |
|
350 | 355 | i += 2 |
|
351 | 356 | |
|
352 | 357 | self.dataOutObj.data_spc = spc |
|
353 | 358 | self.dataOutObj.data_cspc = cspc |
|
354 | 359 | self.dataOutObj.data_dc = dc |
|
355 | 360 | self.dataOutObj.nChannels = nChannels |
|
356 | 361 | self.dataOutObj.nPairs = nPairs |
|
357 | 362 | |
|
358 | 363 | self.dataOutObj.channelList = channelList |
|
359 | 364 | |
|
360 | 365 | self.dataOutObj.m_ProcessingHeader.spectraComb = spectraComb |
|
361 | 366 | self.dataOutObj.m_ProcessingHeader.totalSpectra = nChannels + nPairs |
|
362 | 367 | self.dataOutObj.m_SystemHeader.numChannels = nChannels |
|
363 | 368 | self.dataOutObj.nChannels = nChannels |
|
364 | 369 | self.dataOutObj.m_ProcessingHeader.blockSize = blocksize |
|
365 | 370 | |
|
366 | 371 | |
|
367 | 372 | def selectHeightsByValue(self, minHei, maxHei): |
|
368 | 373 | """ |
|
369 | 374 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
370 | 375 | minHei <= height <= maxHei |
|
371 | 376 | |
|
372 | 377 | Input: |
|
373 | 378 | minHei : valor minimo de altura a considerar |
|
374 | 379 | maxHei : valor maximo de altura a considerar |
|
375 | 380 | |
|
376 | 381 | Affected: |
|
377 | 382 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
378 | 383 | |
|
379 | 384 | Return: |
|
380 | 385 | None |
|
381 | 386 | """ |
|
382 | 387 | |
|
383 | 388 | if self.dataOutObj.flagNoData: |
|
384 | 389 | return 0 |
|
385 | 390 | |
|
391 | if (minHei < self.dataOutObj.heightList[0]) or (minHei > maxHei): | |
|
392 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
|
393 | ||
|
394 | if (maxHei > self.dataOutObj.heightList[-1]): | |
|
395 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) | |
|
396 | ||
|
386 | 397 | minIndex = 0 |
|
387 | 398 | maxIndex = 0 |
|
388 | 399 | data = self.dataOutObj.heightList |
|
389 | 400 | |
|
390 | 401 | for i,val in enumerate(data): |
|
391 | 402 | if val < minHei: |
|
392 | 403 | continue |
|
393 | 404 | else: |
|
394 | 405 | minIndex = i; |
|
395 | 406 | break |
|
396 | 407 | |
|
397 | 408 | for i,val in enumerate(data): |
|
398 | 409 | if val <= maxHei: |
|
399 | 410 | maxIndex = i; |
|
400 | 411 | else: |
|
401 | 412 | break |
|
402 | 413 | |
|
403 | 414 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
404 | 415 | |
|
405 | 416 | |
|
406 | 417 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
407 | 418 | """ |
|
408 | 419 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
409 | 420 | minIndex <= index <= maxIndex |
|
410 | 421 | |
|
411 | 422 | Input: |
|
412 | 423 | minIndex : valor minimo de altura a considerar |
|
413 | 424 | maxIndex : valor maximo de altura a considerar |
|
414 | 425 | |
|
415 | 426 | Affected: |
|
416 | 427 | self.dataOutObj.data_spc |
|
417 | 428 | self.dataOutObj.data_cspc |
|
418 | 429 | self.dataOutObj.data_dc |
|
419 | 430 | self.dataOutObj.heightList |
|
420 | 431 | self.dataOutObj.nHeights |
|
421 | 432 | self.dataOutObj.m_ProcessingHeader.numHeights |
|
422 | 433 | self.dataOutObj.m_ProcessingHeader.blockSize |
|
423 | 434 | self.dataOutObj.m_ProcessingHeader.firstHeight |
|
424 | 435 | self.dataOutObj.m_RadarControllerHeader.numHeights |
|
425 | 436 | |
|
426 | 437 | Return: |
|
427 | 438 | None |
|
428 | 439 | """ |
|
429 | 440 | |
|
430 | 441 | if self.dataOutObj.flagNoData: |
|
431 | 442 | return 0 |
|
432 | 443 | |
|
444 | if (minIndex < 0) or (minIndex > maxIndex): | |
|
445 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
|
446 | ||
|
447 | if (maxIndex >= self.dataOutObj.nHeights): | |
|
448 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) | |
|
449 | ||
|
433 | 450 | nChannels = self.dataOutObj.nChannels |
|
434 | 451 | nPairs = self.dataOutObj.nPairs |
|
435 | 452 | nProfiles = self.dataOutObj.nProfiles |
|
436 | 453 | dataType = self.dataOutObj.dataType |
|
437 |
n |
|
|
454 | nHeights = maxIndex - minIndex + 1 | |
|
438 | 455 | blockSize = 0 |
|
439 | 456 | |
|
440 | 457 | #self spectra |
|
441 | spc = numpy.zeros( (nChannels,nProfiles,newheis), dataType[0] ) | |
|
442 | for i in range(nChannels): | |
|
443 | spc[i,:,:] = self.dataOutObj.data_spc[i,:,minIndex:maxIndex+1] | |
|
458 | spc = self.dataOutObj.data_spc[:,:,minIndex:maxIndex+1] | |
|
459 | blockSize += spc.size | |
|
444 | 460 | |
|
445 | 461 | #cross spectra |
|
446 | cspc = numpy.zeros( (nPairs,nProfiles,newheis), dtype='complex') | |
|
447 | for i in range(nPairs): | |
|
448 |
cspc |
|
|
462 | cspc = None | |
|
463 | if self.dataOutObj.data_cspc != None: | |
|
464 | cspc = self.dataOutObj.data_cspc[:,:,minIndex:maxIndex+1] | |
|
465 | blockSize += cspc.size | |
|
449 | 466 | |
|
450 | 467 | #DC channel |
|
451 | dc = numpy.zeros( (nChannels,newheis), dtype='complex') | |
|
452 | for i in range(nChannels): | |
|
453 | dc[i] = self.dataOutObj.data_dc[i,minIndex:maxIndex+1] | |
|
468 | dc = self.dataOutObj.data_dc[:,minIndex:maxIndex+1] | |
|
469 | blockSize += dc.size | |
|
454 | 470 | |
|
455 | 471 | self.dataOutObj.data_spc = spc |
|
456 | self.dataOutObj.data_cspc = cspc | |
|
472 | if cspc != None: | |
|
473 | self.dataOutObj.data_cspc = cspc | |
|
457 | 474 | self.dataOutObj.data_dc = dc |
|
458 | 475 | |
|
459 | 476 | firstHeight = self.dataOutObj.heightList[minIndex] |
|
460 | 477 | |
|
461 |
self.dataOutObj.nHeights = n |
|
|
462 |
self.dataOutObj.m_ProcessingHeader.blockSize = |
|
|
463 |
self.dataOutObj.m_ProcessingHeader.numHeights = n |
|
|
478 | self.dataOutObj.nHeights = nHeights | |
|
479 | self.dataOutObj.m_ProcessingHeader.blockSize = blockSize | |
|
480 | self.dataOutObj.m_ProcessingHeader.numHeights = nHeights | |
|
464 | 481 | self.dataOutObj.m_ProcessingHeader.firstHeight = firstHeight |
|
465 |
self.dataOutObj.m_RadarControllerHeader.numHeights = n |
|
|
482 | self.dataOutObj.m_RadarControllerHeader.numHeights = nHeights | |
|
466 | 483 | |
|
467 | xi = firstHeight | |
|
468 | step = self.dataOutObj.m_ProcessingHeader.deltaHeight | |
|
469 | xf = xi + newheis * step | |
|
470 | self.dataOutObj.heightList = numpy.arange(xi, xf, step) | |
|
484 | self.dataOutObj.heightList = self.dataOutObj.heightList[minIndex:maxIndex+1] | |
|
471 | 485 | |
|
472 | 486 | |
|
473 | 487 | class IncoherentIntegration: |
|
474 | 488 | def __init__(self, N): |
|
475 | 489 | self.profCounter = 1 |
|
476 | 490 | self.data = None |
|
477 | 491 | self.buffer = None |
|
478 | 492 | self.flag = False |
|
479 | 493 | self.nIncohInt = N |
|
480 | 494 | |
|
481 | 495 | def exe(self,data): |
|
482 | 496 | |
|
483 | 497 | if self.buffer == None: |
|
484 | 498 | self.buffer = data |
|
485 | 499 | else: |
|
486 | 500 | self.buffer = self.buffer + data |
|
487 | 501 | |
|
488 | 502 | if self.profCounter == self.nIncohInt: |
|
489 | 503 | self.data = self.buffer |
|
490 | 504 | self.buffer = None |
|
491 | 505 | self.profCounter = 0 |
|
492 | 506 | self.flag = True |
|
493 | 507 | else: |
|
494 | 508 | self.flag = False |
|
495 | 509 | |
|
496 | 510 | self.profCounter += 1 |
|
497 | 511 |
General Comments 0
You need to be logged in to leave comments.
Login now