##// END OF EJS Templates
AMISR Reader integration with Signal Chain Blocks, this time just only for Voltages to Profile Selection and Plotting Scope(Power,IQ) and Power Profile(dB). There is thwo python scripts as experiment's test.
Daniel Valdez -
r474:e3c42f4268a9
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -0,0 +1,47
1 import os, sys
2
3 path = os.path.split(os.getcwd())[0]
4 sys.path.append(path)
5
6 from controller import *
7
8 desc = "AMISR Experiment Test"
9 filename = "amisr.xml"
10
11 controllerObj = Project()
12
13 controllerObj.setup(id = '191', name='test01', description=desc)
14
15 path = '/home/administrator/Documents/amisr'
16
17 readUnitConfObj = controllerObj.addReadUnit(datatype='AMISR',
18 path=path,
19 startDate='2014/08/18',
20 endDate='2014/08/18',
21 startTime='00:00:00',
22 endTime='23:59:59',
23 walk=1)
24
25 procUnitConfObj0 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
26
27 opObj11 = procUnitConfObj0.addOperation(name='Scope', optype='other')
28 opObj11.addParameter(name='id', value='101', format='int')
29 opObj11.addParameter(name='wintitle', value='AMISR', format='str')
30 opObj11.addParameter(name='type', value='iq', format='str')
31
32 opObj11 = procUnitConfObjBeam1.addOperation(name='ProfileSelector', optype='other')
33 opObj11.addParameter(name='profileRangeList', value='0,81', format='intlist')
34
35 opObj11 = procUnitConfObj0.addOperation(name='PowerProfile', optype='other')
36 opObj11.addParameter(name='id', value='102', format='int')
37 opObj11.addParameter(name='wintitle', value='AMISR Power Profile', format='str')
38
39
40 print "Escribiendo el archivo XML"
41 controllerObj.writeXml(filename)
42 print "Leyendo el archivo XML"
43 controllerObj.readXml(filename)
44
45 controllerObj.createObjects()
46 controllerObj.connectObjects()
47 controllerObj.run()
@@ -0,0 +1,93
1 import os, sys
2
3 path = os.path.split(os.getcwd())[0]
4 sys.path.append(path)
5
6 from controller import *
7
8 desc = "AMISR Experiment Test"
9 filename = "amisr.xml"
10
11 controllerObj = Project()
12
13 controllerObj.setup(id = '191', name='test01', description=desc)
14
15 path = '/home/administrator/Documents/amisr'
16
17 readUnitConfObj = controllerObj.addReadUnit(datatype='AMISR',
18 path=path,
19 startDate='2014/08/18',
20 endDate='2014/08/18',
21 startTime='00:00:00',
22 endTime='23:59:59',
23 walk=1)
24
25 procUnitConfObjBeam0 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
26 procUnitConfObjBeam1 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
27 procUnitConfObjBeam2 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
28 procUnitConfObjBeam3 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
29 procUnitConfObjBeam4 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
30 procUnitConfObjBeam5 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
31 procUnitConfObjBeam6 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
32
33 # Beam0
34 opObj11 = procUnitConfObjBeam0.addOperation(name='ProfileSelector', optype='other')
35 opObj11.addParameter(name='profileRangeList', value='0,81', format='intlist')
36
37 opObj11 = procUnitConfObjBeam0.addOperation(name='PowerProfile', optype='other')
38 opObj11.addParameter(name='id', value='10', format='int')
39 opObj11.addParameter(name='wintitle', value='AMISR Beam0 - Power Profile', format='str')
40
41 # Beam1
42 opObj11 = procUnitConfObjBeam1.addOperation(name='ProfileSelector', optype='other')
43 opObj11.addParameter(name='profileRangeList', value='82,209', format='intlist')
44 opObj11 = procUnitConfObjBeam1.addOperation(name='PowerProfile', optype='other')
45 opObj11.addParameter(name='id', value='11', format='int')
46 opObj11.addParameter(name='wintitle', value='AMISR Beam1 - Power Profile', format='str')
47
48 # # Beam2
49 opObj11 = procUnitConfObjBeam2.addOperation(name='ProfileSelector', optype='other')
50 opObj11.addParameter(name='profileRangeList', value='210,337', format='intlist')
51 opObj11 = procUnitConfObjBeam2.addOperation(name='PowerProfile', optype='other')
52 opObj11.addParameter(name='id', value='12', format='int')
53 opObj11.addParameter(name='wintitle', value='AMISR Beam2 - Power Profile', format='str')
54 #
55 # # Beam3
56 opObj11 = procUnitConfObjBeam3.addOperation(name='ProfileSelector', optype='other')
57 opObj11.addParameter(name='profileRangeList', value='338,465', format='intlist')
58 opObj11 = procUnitConfObjBeam3.addOperation(name='PowerProfile', optype='other')
59 opObj11.addParameter(name='id', value='13', format='int')
60 opObj11.addParameter(name='wintitle', value='AMISR Beam3 - Power Profile', format='str')
61
62 # # Beam4
63 opObj11 = procUnitConfObjBeam4.addOperation(name='ProfileSelector', optype='other')
64 opObj11.addParameter(name='profileRangeList', value='466,593', format='intlist')
65 opObj11 = procUnitConfObjBeam4.addOperation(name='PowerProfile', optype='other')
66 opObj11.addParameter(name='id', value='14', format='int')
67 opObj11.addParameter(name='wintitle', value='AMISR Beam4 - Power Profile', format='str')
68 #
69 # # Beam5
70 # opObj11 = procUnitConfObjBeam5.addOperation(name='ProfileSelector', optype='other')
71 # opObj11.addParameter(name='profileRangeList', value='594,721', format='intlist')
72 # opObj11 = procUnitConfObjBeam5.addOperation(name='PowerProfile', optype='other')
73 # opObj11.addParameter(name='id', value='15', format='int')
74 # opObj11.addParameter(name='wintitle', value='AMISR Beam5 - Power Profile', format='str')
75 #
76 # # Beam6
77 # opObj11 = procUnitConfObjBeam6.addOperation(name='ProfileSelector', optype='other')
78 # opObj11.addParameter(name='profileRangeList', value='722,849', format='intlist')
79 # opObj11 = procUnitConfObjBeam6.addOperation(name='PowerProfile', optype='other')
80 # opObj11.addParameter(name='id', value='16', format='int')
81 # opObj11.addParameter(name='wintitle', value='AMISR Beam6 - Power Profile', format='str')
82
83
84
85
86 print "Escribiendo el archivo XML"
87 controllerObj.writeXml(filename)
88 print "Leyendo el archivo XML"
89 controllerObj.readXml(filename)
90
91 controllerObj.createObjects()
92 controllerObj.connectObjects()
93 controllerObj.run()
@@ -1,383 +1,383
1 1 import numpy
2 2 import datetime
3 3 import sys
4 4 import matplotlib
5 5
6 6 if 'linux' in sys.platform:
7 7 matplotlib.use("TKAgg")
8 8
9 9 if 'darwin' in sys.platform:
10 10 matplotlib.use("GTKAgg")
11 11
12 12 import matplotlib.pyplot
13 13
14 14 from mpl_toolkits.axes_grid1 import make_axes_locatable
15 15 from matplotlib.ticker import *
16 16
17 17 ###########################################
18 18 #Actualizacion de las funciones del driver
19 19 ###########################################
20 20
21 21 def createFigure(id, wintitle, width, height, facecolor="w", show=True):
22 22
23 23 matplotlib.pyplot.ioff()
24 24 fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor)
25 25 fig.canvas.manager.set_window_title(wintitle)
26 26 fig.canvas.manager.resize(width, height)
27 27 matplotlib.pyplot.ion()
28 28 if show:
29 29 matplotlib.pyplot.show()
30 30
31 31 return fig
32 32
33 33 def closeFigure(show=True):
34 34
35 35 matplotlib.pyplot.ioff()
36 36 if show:
37 37 matplotlib.pyplot.show()
38 38
39 39 return
40 40
41 41 def saveFigure(fig, filename):
42 42
43 43 matplotlib.pyplot.ioff()
44 44 fig.savefig(filename)
45 45 matplotlib.pyplot.ion()
46 46
47 47 def setWinTitle(fig, title):
48 48
49 49 fig.canvas.manager.set_window_title(title)
50 50
51 51 def setTitle(fig, title):
52 52
53 53 fig.suptitle(title)
54 54
55 55 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan):
56 56
57 57 matplotlib.pyplot.ioff()
58 58 matplotlib.pyplot.figure(fig.number)
59 59 axes = matplotlib.pyplot.subplot2grid((nrow, ncol),
60 60 (xpos, ypos),
61 61 colspan=colspan,
62 62 rowspan=rowspan)
63 63
64 64 matplotlib.pyplot.ion()
65 65 return axes
66 66
67 67 def setAxesText(ax, text):
68 68
69 69 ax.annotate(text,
70 70 xy = (.1, .99),
71 71 xycoords = 'figure fraction',
72 72 horizontalalignment = 'left',
73 73 verticalalignment = 'top',
74 74 fontsize = 10)
75 75
76 76 def printLabels(ax, xlabel, ylabel, title):
77 77
78 78 ax.set_xlabel(xlabel, size=11)
79 79 ax.set_ylabel(ylabel, size=11)
80 80 ax.set_title(title, size=12)
81 81
82 82 def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='',
83 83 ticksize=9, xtick_visible=True, ytick_visible=True,
84 84 nxticks=4, nyticks=10,
85 grid=None):
85 grid=None,color='blue'):
86 86
87 87 """
88 88
89 89 Input:
90 90 grid : None, 'both', 'x', 'y'
91 91 """
92 92
93 93 matplotlib.pyplot.ioff()
94 94
95 95 ax.set_xlim([xmin,xmax])
96 96 ax.set_ylim([ymin,ymax])
97 97
98 98 printLabels(ax, xlabel, ylabel, title)
99 99
100 100 ######################################################
101 101 if (xmax-xmin)<=1:
102 102 xtickspos = numpy.linspace(xmin,xmax,nxticks)
103 103 xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos])
104 104 ax.set_xticks(xtickspos)
105 105 else:
106 106 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
107 107 # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin)
108 108 ax.set_xticks(xtickspos)
109 109
110 110 for tick in ax.get_xticklabels():
111 111 tick.set_visible(xtick_visible)
112 112
113 113 for tick in ax.xaxis.get_major_ticks():
114 114 tick.label.set_fontsize(ticksize)
115 115
116 116 ######################################################
117 117 for tick in ax.get_yticklabels():
118 118 tick.set_visible(ytick_visible)
119 119
120 120 for tick in ax.yaxis.get_major_ticks():
121 121 tick.label.set_fontsize(ticksize)
122 122
123 ax.plot(x, y)
123 ax.plot(x, y, color=color)
124 124 iplot = ax.lines[-1]
125 125
126 126 ######################################################
127 127 if '0.' in matplotlib.__version__[0:2]:
128 128 print "The matplotlib version has to be updated to 1.1 or newer"
129 129 return iplot
130 130
131 131 if '1.0.' in matplotlib.__version__[0:4]:
132 132 print "The matplotlib version has to be updated to 1.1 or newer"
133 133 return iplot
134 134
135 135 if grid != None:
136 136 ax.grid(b=True, which='major', axis=grid)
137 137
138 138 matplotlib.pyplot.tight_layout()
139 139
140 140 matplotlib.pyplot.ion()
141 141
142 142 return iplot
143 143
144 144 def set_linedata(ax, x, y, idline):
145 145
146 146 ax.lines[idline].set_data(x,y)
147 147
148 148 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
149 149
150 150 ax = iplot.get_axes()
151 151
152 152 printLabels(ax, xlabel, ylabel, title)
153 153
154 154 set_linedata(ax, x, y, idline=0)
155 155
156 156 def addpline(ax, x, y, color, linestyle, lw):
157 157
158 158 ax.plot(x,y,color=color,linestyle=linestyle,lw=lw)
159 159
160 160
161 161 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
162 162 xlabel='', ylabel='', title='', ticksize = 9,
163 163 colormap='jet',cblabel='', cbsize="5%",
164 164 XAxisAsTime=False):
165 165
166 166 matplotlib.pyplot.ioff()
167 167
168 168 divider = make_axes_locatable(ax)
169 169 ax_cb = divider.new_horizontal(size=cbsize, pad=0.05)
170 170 fig = ax.get_figure()
171 171 fig.add_axes(ax_cb)
172 172
173 173 ax.set_xlim([xmin,xmax])
174 174 ax.set_ylim([ymin,ymax])
175 175
176 176 printLabels(ax, xlabel, ylabel, title)
177 177
178 178 imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
179 179 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
180 180 cb.set_label(cblabel)
181 181
182 182 # for tl in ax_cb.get_yticklabels():
183 183 # tl.set_visible(True)
184 184
185 185 for tick in ax.yaxis.get_major_ticks():
186 186 tick.label.set_fontsize(ticksize)
187 187
188 188 for tick in ax.xaxis.get_major_ticks():
189 189 tick.label.set_fontsize(ticksize)
190 190
191 191 for tick in cb.ax.get_yticklabels():
192 192 tick.set_fontsize(ticksize)
193 193
194 194 ax_cb.yaxis.tick_right()
195 195
196 196 if '0.' in matplotlib.__version__[0:2]:
197 197 print "The matplotlib version has to be updated to 1.1 or newer"
198 198 return imesh
199 199
200 200 if '1.0.' in matplotlib.__version__[0:4]:
201 201 print "The matplotlib version has to be updated to 1.1 or newer"
202 202 return imesh
203 203
204 204 matplotlib.pyplot.tight_layout()
205 205
206 206 if XAxisAsTime:
207 207
208 208 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
209 209 ax.xaxis.set_major_formatter(FuncFormatter(func))
210 210 ax.xaxis.set_major_locator(LinearLocator(7))
211 211
212 212 matplotlib.pyplot.ion()
213 213 return imesh
214 214
215 215 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
216 216
217 217 z = z.T
218 218
219 219 ax = imesh.get_axes()
220 220
221 221 printLabels(ax, xlabel, ylabel, title)
222 222
223 223 imesh.set_array(z.ravel())
224 224
225 225 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
226 226
227 227 printLabels(ax, xlabel, ylabel, title)
228 228
229 229 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
230 230
231 231 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
232 232
233 233 printLabels(ax, xlabel, ylabel, title)
234 234
235 235 ax.collections.remove(ax.collections[0])
236 236
237 237 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
238 238
239 239 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
240 240 ticksize=9, xtick_visible=True, ytick_visible=True,
241 241 nxticks=4, nyticks=10,
242 242 grid=None):
243 243
244 244 """
245 245
246 246 Input:
247 247 grid : None, 'both', 'x', 'y'
248 248 """
249 249
250 250 matplotlib.pyplot.ioff()
251 251
252 252 lines = ax.plot(x.T, y)
253 253 leg = ax.legend(lines, legendlabels, loc='upper right')
254 254 leg.get_frame().set_alpha(0.5)
255 255 ax.set_xlim([xmin,xmax])
256 256 ax.set_ylim([ymin,ymax])
257 257 printLabels(ax, xlabel, ylabel, title)
258 258
259 259 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
260 260 ax.set_xticks(xtickspos)
261 261
262 262 for tick in ax.get_xticklabels():
263 263 tick.set_visible(xtick_visible)
264 264
265 265 for tick in ax.xaxis.get_major_ticks():
266 266 tick.label.set_fontsize(ticksize)
267 267
268 268 for tick in ax.get_yticklabels():
269 269 tick.set_visible(ytick_visible)
270 270
271 271 for tick in ax.yaxis.get_major_ticks():
272 272 tick.label.set_fontsize(ticksize)
273 273
274 274 iplot = ax.lines[-1]
275 275
276 276 if '0.' in matplotlib.__version__[0:2]:
277 277 print "The matplotlib version has to be updated to 1.1 or newer"
278 278 return iplot
279 279
280 280 if '1.0.' in matplotlib.__version__[0:4]:
281 281 print "The matplotlib version has to be updated to 1.1 or newer"
282 282 return iplot
283 283
284 284 if grid != None:
285 285 ax.grid(b=True, which='major', axis=grid)
286 286
287 287 matplotlib.pyplot.tight_layout()
288 288
289 289 matplotlib.pyplot.ion()
290 290
291 291 return iplot
292 292
293 293
294 294 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
295 295
296 296 ax = iplot.get_axes()
297 297
298 298 printLabels(ax, xlabel, ylabel, title)
299 299
300 300 for i in range(len(ax.lines)):
301 301 line = ax.lines[i]
302 302 line.set_data(x[i,:],y)
303 303
304 304 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
305 305 ticksize=9, xtick_visible=True, ytick_visible=True,
306 306 nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None",
307 307 grid=None, XAxisAsTime=False):
308 308
309 309 """
310 310
311 311 Input:
312 312 grid : None, 'both', 'x', 'y'
313 313 """
314 314
315 315 matplotlib.pyplot.ioff()
316 316
317 317 # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle)
318 318 lines = ax.plot(x, y.T, linestyle='None', marker='.', markersize=markersize)
319 319 leg = ax.legend(lines, legendlabels, loc='upper left', bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \
320 320 handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.)
321 321
322 322 for label in leg.get_texts(): label.set_fontsize(9)
323 323
324 324 ax.set_xlim([xmin,xmax])
325 325 ax.set_ylim([ymin,ymax])
326 326 printLabels(ax, xlabel, ylabel, title)
327 327
328 328 # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
329 329 # ax.set_xticks(xtickspos)
330 330
331 331 for tick in ax.get_xticklabels():
332 332 tick.set_visible(xtick_visible)
333 333
334 334 for tick in ax.xaxis.get_major_ticks():
335 335 tick.label.set_fontsize(ticksize)
336 336
337 337 for tick in ax.get_yticklabels():
338 338 tick.set_visible(ytick_visible)
339 339
340 340 for tick in ax.yaxis.get_major_ticks():
341 341 tick.label.set_fontsize(ticksize)
342 342
343 343 iplot = ax.lines[-1]
344 344
345 345 if '0.' in matplotlib.__version__[0:2]:
346 346 print "The matplotlib version has to be updated to 1.1 or newer"
347 347 return iplot
348 348
349 349 if '1.0.' in matplotlib.__version__[0:4]:
350 350 print "The matplotlib version has to be updated to 1.1 or newer"
351 351 return iplot
352 352
353 353 if grid != None:
354 354 ax.grid(b=True, which='major', axis=grid)
355 355
356 356 matplotlib.pyplot.tight_layout()
357 357
358 358 if XAxisAsTime:
359 359
360 360 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
361 361 ax.xaxis.set_major_formatter(FuncFormatter(func))
362 362 ax.xaxis.set_major_locator(LinearLocator(7))
363 363
364 364 matplotlib.pyplot.ion()
365 365
366 366 return iplot
367 367
368 368 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
369 369
370 370 ax = iplot.get_axes()
371 371
372 372 printLabels(ax, xlabel, ylabel, title)
373 373
374 374 for i in range(len(ax.lines)):
375 375 line = ax.lines[i]
376 376 line.set_data(x,y[i,:])
377 377
378 378 def draw(fig):
379 379
380 380 if type(fig) == 'int':
381 381 raise ValueError, "This parameter should be of tpye matplotlib figure"
382 382
383 383 fig.canvas.draw()
@@ -1,657 +1,690
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 5 '''
6 6
7 7 import os, sys
8 8 import copy
9 9 import numpy
10 10 import datetime
11 11
12 12 from jroheaderIO import SystemHeader, RadarControllerHeader
13 13
14 14
15 15 def hildebrand_sekhon(data, navg):
16 16
17 17 data = data.copy()
18 18
19 19 sortdata = numpy.sort(data,axis=None)
20 20 lenOfData = len(sortdata)
21 21 nums_min = lenOfData/10
22 22
23 23 if (lenOfData/10) > 2:
24 24 nums_min = lenOfData/10
25 25 else:
26 26 nums_min = 2
27 27
28 28 sump = 0.
29 29
30 30 sumq = 0.
31 31
32 32 j = 0
33 33
34 34 cont = 1
35 35
36 36 while((cont==1)and(j<lenOfData)):
37 37
38 38 sump += sortdata[j]
39 39
40 40 sumq += sortdata[j]**2
41 41
42 42 j += 1
43 43
44 44 if j > nums_min:
45 45 rtest = float(j)/(j-1) + 1.0/navg
46 46 if ((sumq*j) > (rtest*sump**2)):
47 47 j = j - 1
48 48 sump = sump - sortdata[j]
49 49 sumq = sumq - sortdata[j]**2
50 50 cont = 0
51 51
52 52 lnoise = sump /j
53 53 stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1))
54 54 return lnoise
55 55
56 56 class JROData:
57 57
58 58 # m_BasicHeader = BasicHeader()
59 59 # m_ProcessingHeader = ProcessingHeader()
60 60
61 61 systemHeaderObj = SystemHeader()
62 62
63 63 radarControllerHeaderObj = RadarControllerHeader()
64 64
65 65 # data = None
66 66
67 67 type = None
68 68
69 69 dtype = None
70 70
71 71 # nChannels = None
72 72
73 73 # nHeights = None
74 74
75 75 nProfiles = None
76 76
77 77 heightList = None
78 78
79 79 channelList = None
80 80
81 81 flagNoData = True
82 82
83 83 flagTimeBlock = False
84 84
85 85 useLocalTime = False
86 86
87 87 utctime = None
88 88
89 89 timeZone = None
90 90
91 91 dstFlag = None
92 92
93 93 errorCount = None
94 94
95 95 blocksize = None
96 96
97 97 nCode = None
98 98
99 99 nBaud = None
100 100
101 101 code = None
102 102
103 103 flagDecodeData = False #asumo q la data no esta decodificada
104 104
105 105 flagDeflipData = False #asumo q la data no esta sin flip
106 106
107 107 flagShiftFFT = False
108 108
109 109 ippSeconds = None
110 110
111 111 timeInterval = None
112 112
113 113 nCohInt = None
114 114
115 115 noise = None
116 116
117 117 windowOfFilter = 1
118 118
119 119 #Speed of ligth
120 120 C = 3e8
121 121
122 122 frequency = 49.92e6
123 123
124 124 realtime = False
125 125
126 126 beacon_heiIndexList = None
127 127
128 128 last_block = None
129 129
130 130 blocknow = None
131 131
132 132 def __init__(self):
133 133
134 134 raise ValueError, "This class has not been implemented"
135 135
136 136 def copy(self, inputObj=None):
137 137
138 138 if inputObj == None:
139 139 return copy.deepcopy(self)
140 140
141 141 for key in inputObj.__dict__.keys():
142 142 self.__dict__[key] = inputObj.__dict__[key]
143 143
144 144 def deepcopy(self):
145 145
146 146 return copy.deepcopy(self)
147 147
148 148 def isEmpty(self):
149 149
150 150 return self.flagNoData
151 151
152 152 def getNoise(self):
153 153
154 154 raise ValueError, "Not implemented"
155 155
156 156 def getNChannels(self):
157 157
158 158 return len(self.channelList)
159 159
160 160 def getChannelIndexList(self):
161 161
162 162 return range(self.nChannels)
163 163
164 164 def getNHeights(self):
165 165
166 166 return len(self.heightList)
167 167
168 168 def getHeiRange(self, extrapoints=0):
169 169
170 170 heis = self.heightList
171 171 # deltah = self.heightList[1] - self.heightList[0]
172 172 #
173 173 # heis.append(self.heightList[-1])
174 174
175 175 return heis
176 176
177 177 def getltctime(self):
178 178
179 179 if self.useLocalTime:
180 180 return self.utctime - self.timeZone*60
181 181
182 182 return self.utctime
183 183
184 184 def getDatatime(self):
185 185
186 186 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
187 187 return datatime
188 188
189 189 def getTimeRange(self):
190 190
191 191 datatime = []
192 192
193 193 datatime.append(self.ltctime)
194 194 datatime.append(self.ltctime + self.timeInterval)
195 195
196 196 datatime = numpy.array(datatime)
197 197
198 198 return datatime
199 199
200 200 def getFmax(self):
201 201
202 202 PRF = 1./(self.ippSeconds * self.nCohInt)
203 203
204 204 fmax = PRF/2.
205 205
206 206 return fmax
207 207
208 208 def getVmax(self):
209 209
210 210 _lambda = self.C/self.frequency
211 211
212 212 vmax = self.getFmax() * _lambda
213 213
214 214 return vmax
215 215
216 216 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
217 217 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
218 218 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
219 219 noise = property(getNoise, "I'm the 'nHeights' property.")
220 220 datatime = property(getDatatime, "I'm the 'datatime' property")
221 221 ltctime = property(getltctime, "I'm the 'ltctime' property")
222 222
223 223 class Voltage(JROData):
224 224
225 225 #data es un numpy array de 2 dmensiones (canales, alturas)
226 226 data = None
227 227
228 228 def __init__(self):
229 229 '''
230 230 Constructor
231 231 '''
232 232
233 233 self.radarControllerHeaderObj = RadarControllerHeader()
234 234
235 235 self.systemHeaderObj = SystemHeader()
236 236
237 237 self.type = "Voltage"
238 238
239 239 self.data = None
240 240
241 241 self.dtype = None
242 242
243 243 # self.nChannels = 0
244 244
245 245 # self.nHeights = 0
246 246
247 247 self.nProfiles = None
248 248
249 249 self.heightList = None
250 250
251 251 self.channelList = None
252 252
253 253 # self.channelIndexList = None
254 254
255 255 self.flagNoData = True
256 256
257 257 self.flagTimeBlock = False
258 258
259 259 self.utctime = None
260 260
261 261 self.timeZone = None
262 262
263 263 self.dstFlag = None
264 264
265 265 self.errorCount = None
266 266
267 267 self.nCohInt = None
268 268
269 269 self.blocksize = None
270 270
271 271 self.flagDecodeData = False #asumo q la data no esta decodificada
272 272
273 273 self.flagDeflipData = False #asumo q la data no esta sin flip
274 274
275 275 self.flagShiftFFT = False
276 276
277 277
278 278 def getNoisebyHildebrand(self):
279 279 """
280 280 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
281 281
282 282 Return:
283 283 noiselevel
284 284 """
285 285
286 286 for channel in range(self.nChannels):
287 287 daux = self.data_spc[channel,:,:]
288 288 self.noise[channel] = hildebrand_sekhon(daux, self.nCohInt)
289 289
290 290 return self.noise
291 291
292 292 def getNoise(self, type = 1):
293 293
294 294 self.noise = numpy.zeros(self.nChannels)
295 295
296 296 if type == 1:
297 297 noise = self.getNoisebyHildebrand()
298 298
299 299 return 10*numpy.log10(noise)
300 300
301 301 class Spectra(JROData):
302 302
303 303 #data es un numpy array de 2 dmensiones (canales, perfiles, alturas)
304 304 data_spc = None
305 305
306 306 #data es un numpy array de 2 dmensiones (canales, pares, alturas)
307 307 data_cspc = None
308 308
309 309 #data es un numpy array de 2 dmensiones (canales, alturas)
310 310 data_dc = None
311 311
312 312 nFFTPoints = None
313 313
314 314 nPairs = None
315 315
316 316 pairsList = None
317 317
318 318 nIncohInt = None
319 319
320 320 wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia
321 321
322 322 nCohInt = None #se requiere para determinar el valor de timeInterval
323 323
324 324 ippFactor = None
325 325
326 326 def __init__(self):
327 327 '''
328 328 Constructor
329 329 '''
330 330
331 331 self.radarControllerHeaderObj = RadarControllerHeader()
332 332
333 333 self.systemHeaderObj = SystemHeader()
334 334
335 335 self.type = "Spectra"
336 336
337 337 # self.data = None
338 338
339 339 self.dtype = None
340 340
341 341 # self.nChannels = 0
342 342
343 343 # self.nHeights = 0
344 344
345 345 self.nProfiles = None
346 346
347 347 self.heightList = None
348 348
349 349 self.channelList = None
350 350
351 351 # self.channelIndexList = None
352 352
353 353 self.flagNoData = True
354 354
355 355 self.flagTimeBlock = False
356 356
357 357 self.utctime = None
358 358
359 359 self.nCohInt = None
360 360
361 361 self.nIncohInt = None
362 362
363 363 self.blocksize = None
364 364
365 365 self.nFFTPoints = None
366 366
367 367 self.wavelength = None
368 368
369 369 self.flagDecodeData = False #asumo q la data no esta decodificada
370 370
371 371 self.flagDeflipData = False #asumo q la data no esta sin flip
372 372
373 373 self.flagShiftFFT = False
374 374
375 375 self.ippFactor = 1
376 376
377 377 self.noise = None
378 378
379 379 self.beacon_heiIndexList = []
380 380
381 381
382 382 def getNoisebyHildebrand(self):
383 383 """
384 384 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
385 385
386 386 Return:
387 387 noiselevel
388 388 """
389 389 noise = numpy.zeros(self.nChannels)
390 390 for channel in range(self.nChannels):
391 391 daux = self.data_spc[channel,:,:]
392 392 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
393 393
394 394 return noise
395 395
396 396 def getNoise(self):
397 397 if self.noise != None:
398 398 return self.noise
399 399 else:
400 400 noise = self.getNoisebyHildebrand()
401 401 return noise
402 402
403 403
404 404 def getFreqRange(self, extrapoints=0):
405 405
406 406 deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor)
407 407 freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2
408 408
409 409 return freqrange
410 410
411 411 def getVelRange(self, extrapoints=0):
412 412
413 413 deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor)
414 414 velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2
415 415
416 416 return velrange
417 417
418 418 def getNPairs(self):
419 419
420 420 return len(self.pairsList)
421 421
422 422 def getPairsIndexList(self):
423 423
424 424 return range(self.nPairs)
425 425
426 426 def getNormFactor(self):
427 427 pwcode = 1
428 428 if self.flagDecodeData:
429 429 pwcode = numpy.sum(self.code[0]**2)
430 430 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
431 431 normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
432 432
433 433 return normFactor
434 434
435 435 def getFlagCspc(self):
436 436
437 437 if self.data_cspc == None:
438 438 return True
439 439
440 440 return False
441 441
442 442 def getFlagDc(self):
443 443
444 444 if self.data_dc == None:
445 445 return True
446 446
447 447 return False
448 448
449 449 nPairs = property(getNPairs, "I'm the 'nPairs' property.")
450 450 pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.")
451 451 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
452 452 flag_cspc = property(getFlagCspc)
453 453 flag_dc = property(getFlagDc)
454 454
455 455 class SpectraHeis(JROData):
456 456
457 457 data_spc = None
458 458
459 459 data_cspc = None
460 460
461 461 data_dc = None
462 462
463 463 nFFTPoints = None
464 464
465 465 nPairs = None
466 466
467 467 pairsList = None
468 468
469 469 nIncohInt = None
470 470
471 471 def __init__(self):
472 472
473 473 self.radarControllerHeaderObj = RadarControllerHeader()
474 474
475 475 self.systemHeaderObj = SystemHeader()
476 476
477 477 self.type = "SpectraHeis"
478 478
479 479 self.dtype = None
480 480
481 481 # self.nChannels = 0
482 482
483 483 # self.nHeights = 0
484 484
485 485 self.nProfiles = None
486 486
487 487 self.heightList = None
488 488
489 489 self.channelList = None
490 490
491 491 # self.channelIndexList = None
492 492
493 493 self.flagNoData = True
494 494
495 495 self.flagTimeBlock = False
496 496
497 497 self.nPairs = 0
498 498
499 499 self.utctime = None
500 500
501 501 self.blocksize = None
502 502
503 503 class Fits:
504 504
505 505 heightList = None
506 506
507 507 channelList = None
508 508
509 509 flagNoData = True
510 510
511 511 flagTimeBlock = False
512 512
513 513 useLocalTime = False
514 514
515 515 utctime = None
516 516
517 517 timeZone = None
518 518
519 519 ippSeconds = None
520 520
521 521 timeInterval = None
522 522
523 523 nCohInt = None
524 524
525 525 nIncohInt = None
526 526
527 527 noise = None
528 528
529 529 windowOfFilter = 1
530 530
531 531 #Speed of ligth
532 532 C = 3e8
533 533
534 534 frequency = 49.92e6
535 535
536 536 realtime = False
537 537
538 538
539 539 def __init__(self):
540 540
541 541 self.type = "Fits"
542 542
543 543 self.nProfiles = None
544 544
545 545 self.heightList = None
546 546
547 547 self.channelList = None
548 548
549 549 # self.channelIndexList = None
550 550
551 551 self.flagNoData = True
552 552
553 553 self.utctime = None
554 554
555 555 self.nCohInt = None
556 556
557 557 self.nIncohInt = None
558 558
559 559 self.useLocalTime = True
560 560
561 561 # self.utctime = None
562 562 # self.timeZone = None
563 563 # self.ltctime = None
564 564 # self.timeInterval = None
565 565 # self.header = None
566 566 # self.data_header = None
567 567 # self.data = None
568 568 # self.datatime = None
569 569 # self.flagNoData = False
570 570 # self.expName = ''
571 571 # self.nChannels = None
572 572 # self.nSamples = None
573 573 # self.dataBlocksPerFile = None
574 574 # self.comments = ''
575 575 #
576 576
577 577
578 578 def getltctime(self):
579 579
580 580 if self.useLocalTime:
581 581 return self.utctime - self.timeZone*60
582 582
583 583 return self.utctime
584 584
585 585 def getDatatime(self):
586 586
587 587 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
588 588 return datatime
589 589
590 590 def getTimeRange(self):
591 591
592 592 datatime = []
593 593
594 594 datatime.append(self.ltctime)
595 595 datatime.append(self.ltctime + self.timeInterval)
596 596
597 597 datatime = numpy.array(datatime)
598 598
599 599 return datatime
600 600
601 601 def getHeiRange(self):
602 602
603 603 heis = self.heightList
604 604
605 605 return heis
606 606
607 607 def isEmpty(self):
608 608
609 609 return self.flagNoData
610 610
611 611 def getNHeights(self):
612 612
613 613 return len(self.heightList)
614 614
615 615 def getNChannels(self):
616 616
617 617 return len(self.channelList)
618 618
619 619 def getChannelIndexList(self):
620 620
621 621 return range(self.nChannels)
622 622
623 623 def getNoise(self, type = 1):
624 624
625 625 self.noise = numpy.zeros(self.nChannels)
626 626
627 627 if type == 1:
628 628 noise = self.getNoisebyHildebrand()
629 629
630 630 if type == 2:
631 631 noise = self.getNoisebySort()
632 632
633 633 if type == 3:
634 634 noise = self.getNoisebyWindow()
635 635
636 636 return noise
637 637
638 638 datatime = property(getDatatime, "I'm the 'datatime' property")
639 639 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
640 640 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
641 641 channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.")
642 642 noise = property(getNoise, "I'm the 'nHeights' property.")
643 643 datatime = property(getDatatime, "I'm the 'datatime' property")
644 644 ltctime = property(getltctime, "I'm the 'ltctime' property")
645 645
646 646 ltctime = property(getltctime, "I'm the 'ltctime' property")
647 647
648 648 class AMISR:
649 649 def __init__(self):
650 650 self.flagNoData = True
651 651 self.data = None
652 652 self.utctime = None
653 653 self.type = "AMISR"
654 654
655 #propiedades para compatibilidad con Voltages
656 self.timeZone = 0#self.dataIn.timeZone
657 self.dstFlag = 0#self.dataIn.dstFlag
658 self.errorCount = 0#self.dataIn.errorCount
659 self.useLocalTime = True#self.dataIn.useLocalTime
660
661 self.radarControllerHeaderObj = None#self.dataIn.radarControllerHeaderObj.copy()
662 self.systemHeaderObj = None#self.dataIn.systemHeaderObj.copy()
663 self.channelList = [1]#self.dataIn.channelList esto solo aplica para el caso de AMISR
664 self.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
665
666 self.flagTimeBlock = None#self.dataIn.flagTimeBlock
667 #self.utctime = #self.firstdatatime
668 self.flagDecodeData = None#self.dataIn.flagDecodeData #asumo q la data esta decodificada
669 self.flagDeflipData = None#self.dataIn.flagDeflipData #asumo q la data esta sin flip
670
671 self.nCohInt = 1#self.dataIn.nCohInt
672 self.nIncohInt = 1
673 self.ippSeconds = 0.004#self.dataIn.ippSeconds, segun el filename/Setup/Tufile
674 self.windowOfFilter = None#self.dataIn.windowOfFilter
675
676 self.timeInterval = None#self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt
677 self.frequency = 20000#self.dataIn.frequency
678 self.realtime = 0#self.dataIn.realtime
679
680 #actualizar en la lectura de datos
681 self.heightList = None#self.dataIn.heightList
682 self.nProfiles = None#self.dataOut.nFFTPoints
683 self.nBaud = None#self.dataIn.nBaud
684 self.nCode = None#self.dataIn.nCode
685 self.code = None#self.dataIn.code
686
687
655 688 def isEmpty(self):
656 689
657 690 return self.flagNoData No newline at end of file
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
@@ -1,2033 +1,2110
1 1 import numpy
2 2 import time, datetime, os
3 3 from graphics.figure import *
4 4 def isRealtime(utcdatatime):
5 5 utcnow = time.mktime(time.localtime())
6 6 delta = abs(utcnow - utcdatatime) # abs
7 7 if delta >= 30.:
8 8 return False
9 9 return True
10 10
11 11 class CrossSpectraPlot(Figure):
12 12
13 13 __isConfig = None
14 14 __nsubplots = None
15 15
16 16 WIDTH = None
17 17 HEIGHT = None
18 18 WIDTHPROF = None
19 19 HEIGHTPROF = None
20 20 PREFIX = 'cspc'
21 21
22 22 def __init__(self):
23 23
24 24 self.__isConfig = False
25 25 self.__nsubplots = 4
26 26 self.counter_imagwr = 0
27 27 self.WIDTH = 250
28 28 self.HEIGHT = 250
29 29 self.WIDTHPROF = 0
30 30 self.HEIGHTPROF = 0
31 31
32 32 self.PLOT_CODE = 1
33 33 self.FTP_WEI = None
34 34 self.EXP_CODE = None
35 35 self.SUB_EXP_CODE = None
36 36 self.PLOT_POS = None
37 37
38 38 def getSubplots(self):
39 39
40 40 ncol = 4
41 41 nrow = self.nplots
42 42
43 43 return nrow, ncol
44 44
45 45 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
46 46
47 47 self.__showprofile = showprofile
48 48 self.nplots = nplots
49 49
50 50 ncolspan = 1
51 51 colspan = 1
52 52
53 53 self.createFigure(id = id,
54 54 wintitle = wintitle,
55 55 widthplot = self.WIDTH + self.WIDTHPROF,
56 56 heightplot = self.HEIGHT + self.HEIGHTPROF,
57 57 show=True)
58 58
59 59 nrow, ncol = self.getSubplots()
60 60
61 61 counter = 0
62 62 for y in range(nrow):
63 63 for x in range(ncol):
64 64 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
65 65
66 66 counter += 1
67 67
68 68 def run(self, dataOut, id, wintitle="", pairsList=None,
69 69 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
70 70 save=False, figpath='./', figfile=None, ftp=False, wr_period=1,
71 71 power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True,
72 72 server=None, folder=None, username=None, password=None,
73 73 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
74 74
75 75 """
76 76
77 77 Input:
78 78 dataOut :
79 79 id :
80 80 wintitle :
81 81 channelList :
82 82 showProfile :
83 83 xmin : None,
84 84 xmax : None,
85 85 ymin : None,
86 86 ymax : None,
87 87 zmin : None,
88 88 zmax : None
89 89 """
90 90
91 91 if pairsList == None:
92 92 pairsIndexList = dataOut.pairsIndexList
93 93 else:
94 94 pairsIndexList = []
95 95 for pair in pairsList:
96 96 if pair not in dataOut.pairsList:
97 97 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
98 98 pairsIndexList.append(dataOut.pairsList.index(pair))
99 99
100 100 if pairsIndexList == []:
101 101 return
102 102
103 103 if len(pairsIndexList) > 4:
104 104 pairsIndexList = pairsIndexList[0:4]
105 105 factor = dataOut.normFactor
106 106 x = dataOut.getVelRange(1)
107 107 y = dataOut.getHeiRange()
108 108 z = dataOut.data_spc[:,:,:]/factor
109 109 # z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
110 110 avg = numpy.abs(numpy.average(z, axis=1))
111 111 noise = dataOut.getNoise()/factor
112 112
113 113 zdB = 10*numpy.log10(z)
114 114 avgdB = 10*numpy.log10(avg)
115 115 noisedB = 10*numpy.log10(noise)
116 116
117 117
118 118 #thisDatetime = dataOut.datatime
119 119 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
120 120 title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
121 121 xlabel = "Velocity (m/s)"
122 122 ylabel = "Range (Km)"
123 123
124 124 if not self.__isConfig:
125 125
126 126 nplots = len(pairsIndexList)
127 127
128 128 self.setup(id=id,
129 129 nplots=nplots,
130 130 wintitle=wintitle,
131 131 showprofile=False,
132 132 show=show)
133 133
134 134 if xmin == None: xmin = numpy.nanmin(x)
135 135 if xmax == None: xmax = numpy.nanmax(x)
136 136 if ymin == None: ymin = numpy.nanmin(y)
137 137 if ymax == None: ymax = numpy.nanmax(y)
138 138 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
139 139 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
140 140
141 141 self.FTP_WEI = ftp_wei
142 142 self.EXP_CODE = exp_code
143 143 self.SUB_EXP_CODE = sub_exp_code
144 144 self.PLOT_POS = plot_pos
145 145
146 146 self.__isConfig = True
147 147
148 148 self.setWinTitle(title)
149 149
150 150 for i in range(self.nplots):
151 151 pair = dataOut.pairsList[pairsIndexList[i]]
152 152 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
153 153 title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[pair[0]], str_datetime)
154 154 zdB = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:])
155 155 axes0 = self.axesList[i*self.__nsubplots]
156 156 axes0.pcolor(x, y, zdB,
157 157 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
158 158 xlabel=xlabel, ylabel=ylabel, title=title,
159 159 ticksize=9, colormap=power_cmap, cblabel='')
160 160
161 161 title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[pair[1]], str_datetime)
162 162 zdB = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:])
163 163 axes0 = self.axesList[i*self.__nsubplots+1]
164 164 axes0.pcolor(x, y, zdB,
165 165 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
166 166 xlabel=xlabel, ylabel=ylabel, title=title,
167 167 ticksize=9, colormap=power_cmap, cblabel='')
168 168
169 169 coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:])
170 170 coherence = numpy.abs(coherenceComplex)
171 171 # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi
172 172 phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi
173 173
174 174 title = "Coherence %d%d" %(pair[0], pair[1])
175 175 axes0 = self.axesList[i*self.__nsubplots+2]
176 176 axes0.pcolor(x, y, coherence,
177 177 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1,
178 178 xlabel=xlabel, ylabel=ylabel, title=title,
179 179 ticksize=9, colormap=coherence_cmap, cblabel='')
180 180
181 181 title = "Phase %d%d" %(pair[0], pair[1])
182 182 axes0 = self.axesList[i*self.__nsubplots+3]
183 183 axes0.pcolor(x, y, phase,
184 184 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180,
185 185 xlabel=xlabel, ylabel=ylabel, title=title,
186 186 ticksize=9, colormap=phase_cmap, cblabel='')
187 187
188 188
189 189
190 190 self.draw()
191 191
192 192 if save:
193 193
194 194 self.counter_imagwr += 1
195 195 if (self.counter_imagwr==wr_period):
196 196 if figfile == None:
197 197 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
198 198 figfile = self.getFilename(name = str_datetime)
199 199
200 200 self.saveFigure(figpath, figfile)
201 201
202 202 if ftp:
203 203 #provisionalmente envia archivos en el formato de la web en tiempo real
204 204 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
205 205 path = '%s%03d' %(self.PREFIX, self.id)
206 206 ftp_file = os.path.join(path,'ftp','%s.png'%name)
207 207 self.saveFigure(figpath, ftp_file)
208 208 ftp_filename = os.path.join(figpath,ftp_file)
209 209
210 210 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
211 211 self.counter_imagwr = 0
212 212
213 213 self.counter_imagwr = 0
214 214
215 215 class SNRPlot(Figure):
216 216
217 217 __isConfig = None
218 218 __nsubplots = None
219 219
220 220 WIDTHPROF = None
221 221 HEIGHTPROF = None
222 222 PREFIX = 'snr'
223 223
224 224 def __init__(self):
225 225
226 226 self.timerange = 2*60*60
227 227 self.__isConfig = False
228 228 self.__nsubplots = 1
229 229
230 230 self.WIDTH = 800
231 231 self.HEIGHT = 150
232 232 self.WIDTHPROF = 120
233 233 self.HEIGHTPROF = 0
234 234 self.counter_imagwr = 0
235 235
236 236 self.PLOT_CODE = 0
237 237 self.FTP_WEI = None
238 238 self.EXP_CODE = None
239 239 self.SUB_EXP_CODE = None
240 240 self.PLOT_POS = None
241 241
242 242 def getSubplots(self):
243 243
244 244 ncol = 1
245 245 nrow = self.nplots
246 246
247 247 return nrow, ncol
248 248
249 249 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
250 250
251 251 self.__showprofile = showprofile
252 252 self.nplots = nplots
253 253
254 254 ncolspan = 1
255 255 colspan = 1
256 256 if showprofile:
257 257 ncolspan = 7
258 258 colspan = 6
259 259 self.__nsubplots = 2
260 260
261 261 self.createFigure(id = id,
262 262 wintitle = wintitle,
263 263 widthplot = self.WIDTH + self.WIDTHPROF,
264 264 heightplot = self.HEIGHT + self.HEIGHTPROF,
265 265 show=show)
266 266
267 267 nrow, ncol = self.getSubplots()
268 268
269 269 counter = 0
270 270 for y in range(nrow):
271 271 for x in range(ncol):
272 272
273 273 if counter >= self.nplots:
274 274 break
275 275
276 276 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
277 277
278 278 if showprofile:
279 279 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
280 280
281 281 counter += 1
282 282
283 283 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False,
284 284 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
285 285 timerange=None,
286 286 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
287 287 server=None, folder=None, username=None, password=None,
288 288 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
289 289
290 290 """
291 291
292 292 Input:
293 293 dataOut :
294 294 id :
295 295 wintitle :
296 296 channelList :
297 297 showProfile :
298 298 xmin : None,
299 299 xmax : None,
300 300 ymin : None,
301 301 ymax : None,
302 302 zmin : None,
303 303 zmax : None
304 304 """
305 305
306 306 if channelList == None:
307 307 channelIndexList = dataOut.channelIndexList
308 308 else:
309 309 channelIndexList = []
310 310 for channel in channelList:
311 311 if channel not in dataOut.channelList:
312 312 raise ValueError, "Channel %d is not in dataOut.channelList"
313 313 channelIndexList.append(dataOut.channelList.index(channel))
314 314
315 315 if timerange != None:
316 316 self.timerange = timerange
317 317
318 318 tmin = None
319 319 tmax = None
320 320 factor = dataOut.normFactor
321 321 x = dataOut.getTimeRange()
322 322 y = dataOut.getHeiRange()
323 323
324 324 z = dataOut.data_spc[channelIndexList,:,:]/factor
325 325 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
326 326 avg = numpy.average(z, axis=1)
327 327
328 328 avgdB = 10.*numpy.log10(avg)
329 329
330 330 noise = dataOut.getNoise()/factor
331 331 noisedB = 10.*numpy.log10(noise)
332 332
333 333 SNR = numpy.transpose(numpy.divide(avg.T,noise))
334 334
335 335 SNR_dB = 10.*numpy.log10(SNR)
336 336
337 337 #SNR_dB = numpy.transpose(numpy.subtract(avgdB.T, noisedB))
338 338
339 339 # thisDatetime = dataOut.datatime
340 340 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
341 341 title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
342 342 xlabel = ""
343 343 ylabel = "Range (Km)"
344 344
345 345 if not self.__isConfig:
346 346
347 347 nplots = len(channelIndexList)
348 348
349 349 self.setup(id=id,
350 350 nplots=nplots,
351 351 wintitle=wintitle,
352 352 showprofile=showprofile,
353 353 show=show)
354 354
355 355 tmin, tmax = self.getTimeLim(x, xmin, xmax)
356 356 if ymin == None: ymin = numpy.nanmin(y)
357 357 if ymax == None: ymax = numpy.nanmax(y)
358 358 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
359 359 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
360 360
361 361 self.FTP_WEI = ftp_wei
362 362 self.EXP_CODE = exp_code
363 363 self.SUB_EXP_CODE = sub_exp_code
364 364 self.PLOT_POS = plot_pos
365 365
366 366 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
367 367 self.__isConfig = True
368 368
369 369
370 370 self.setWinTitle(title)
371 371
372 372 for i in range(self.nplots):
373 373 title = "Channel %d: %s" %(dataOut.channelList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
374 374 axes = self.axesList[i*self.__nsubplots]
375 375 zdB = SNR_dB[i].reshape((1,-1))
376 376 axes.pcolorbuffer(x, y, zdB,
377 377 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
378 378 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
379 379 ticksize=9, cblabel='', cbsize="1%")
380 380
381 381 # if self.__showprofile:
382 382 # axes = self.axesList[i*self.__nsubplots +1]
383 383 # axes.pline(avgdB[i], y,
384 384 # xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
385 385 # xlabel='dB', ylabel='', title='',
386 386 # ytick_visible=False,
387 387 # grid='x')
388 388 #
389 389 self.draw()
390 390
391 391 if lastone:
392 392 if dataOut.blocknow >= dataOut.last_block:
393 393 if figfile == None:
394 394 figfile = self.getFilename(name = self.name)
395 395 self.saveFigure(figpath, figfile)
396 396
397 397 if (save and not(lastone)):
398 398
399 399 self.counter_imagwr += 1
400 400 if (self.counter_imagwr==wr_period):
401 401 if figfile == None:
402 402 figfile = self.getFilename(name = self.name)
403 403 self.saveFigure(figpath, figfile)
404 404
405 405 if ftp:
406 406 #provisionalmente envia archivos en el formato de la web en tiempo real
407 407 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
408 408 path = '%s%03d' %(self.PREFIX, self.id)
409 409 ftp_file = os.path.join(path,'ftp','%s.png'%name)
410 410 self.saveFigure(figpath, ftp_file)
411 411 ftp_filename = os.path.join(figpath,ftp_file)
412 412 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
413 413 self.counter_imagwr = 0
414 414
415 415 self.counter_imagwr = 0
416 416
417 417 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
418 418
419 419 self.__isConfig = False
420 420
421 421 if lastone:
422 422 if figfile == None:
423 423 figfile = self.getFilename(name = self.name)
424 424 self.saveFigure(figpath, figfile)
425 425
426 426 if ftp:
427 427 #provisionalmente envia archivos en el formato de la web en tiempo real
428 428 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
429 429 path = '%s%03d' %(self.PREFIX, self.id)
430 430 ftp_file = os.path.join(path,'ftp','%s.png'%name)
431 431 self.saveFigure(figpath, ftp_file)
432 432 ftp_filename = os.path.join(figpath,ftp_file)
433 433 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
434 434
435 435
436 436 class RTIPlot(Figure):
437 437
438 438 __isConfig = None
439 439 __nsubplots = None
440 440
441 441 WIDTHPROF = None
442 442 HEIGHTPROF = None
443 443 PREFIX = 'rti'
444 444
445 445 def __init__(self):
446 446
447 447 self.timerange = 2*60*60
448 448 self.__isConfig = False
449 449 self.__nsubplots = 1
450 450
451 451 self.WIDTH = 800
452 452 self.HEIGHT = 150
453 453 self.WIDTHPROF = 120
454 454 self.HEIGHTPROF = 0
455 455 self.counter_imagwr = 0
456 456
457 457 self.PLOT_CODE = 0
458 458 self.FTP_WEI = None
459 459 self.EXP_CODE = None
460 460 self.SUB_EXP_CODE = None
461 461 self.PLOT_POS = None
462 462 self.tmin = None
463 463 self.tmax = None
464 464
465 465 self.xmin = None
466 466 self.xmax = None
467 467
468 468 def getSubplots(self):
469 469
470 470 ncol = 1
471 471 nrow = self.nplots
472 472
473 473 return nrow, ncol
474 474
475 475 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
476 476
477 477 self.__showprofile = showprofile
478 478 self.nplots = nplots
479 479
480 480 ncolspan = 1
481 481 colspan = 1
482 482 if showprofile:
483 483 ncolspan = 7
484 484 colspan = 6
485 485 self.__nsubplots = 2
486 486
487 487 self.createFigure(id = id,
488 488 wintitle = wintitle,
489 489 widthplot = self.WIDTH + self.WIDTHPROF,
490 490 heightplot = self.HEIGHT + self.HEIGHTPROF,
491 491 show=show)
492 492
493 493 nrow, ncol = self.getSubplots()
494 494
495 495 counter = 0
496 496 for y in range(nrow):
497 497 for x in range(ncol):
498 498
499 499 if counter >= self.nplots:
500 500 break
501 501
502 502 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
503 503
504 504 if showprofile:
505 505 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
506 506
507 507 counter += 1
508 508
509 509 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
510 510 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
511 511 timerange=None,
512 512 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
513 513 server=None, folder=None, username=None, password=None,
514 514 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
515 515
516 516 """
517 517
518 518 Input:
519 519 dataOut :
520 520 id :
521 521 wintitle :
522 522 channelList :
523 523 showProfile :
524 524 xmin : None,
525 525 xmax : None,
526 526 ymin : None,
527 527 ymax : None,
528 528 zmin : None,
529 529 zmax : None
530 530 """
531 531
532 532 if channelList == None:
533 533 channelIndexList = dataOut.channelIndexList
534 534 else:
535 535 channelIndexList = []
536 536 for channel in channelList:
537 537 if channel not in dataOut.channelList:
538 538 raise ValueError, "Channel %d is not in dataOut.channelList"
539 539 channelIndexList.append(dataOut.channelList.index(channel))
540 540
541 541 if timerange != None:
542 542 self.timerange = timerange
543 543
544 544 #tmin = None
545 545 #tmax = None
546 546 factor = dataOut.normFactor
547 547 x = dataOut.getTimeRange()
548 548 y = dataOut.getHeiRange()
549 549
550 550 z = dataOut.data_spc[channelIndexList,:,:]/factor
551 551 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
552 552 avg = numpy.average(z, axis=1)
553 553
554 554 avgdB = 10.*numpy.log10(avg)
555 555
556 556
557 557 # thisDatetime = dataOut.datatime
558 558 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
559 559 title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
560 560 xlabel = ""
561 561 ylabel = "Range (Km)"
562 562
563 563 if not self.__isConfig:
564 564
565 565 nplots = len(channelIndexList)
566 566
567 567 self.setup(id=id,
568 568 nplots=nplots,
569 569 wintitle=wintitle,
570 570 showprofile=showprofile,
571 571 show=show)
572 572
573 573 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
574 574
575 575 # if timerange != None:
576 576 # self.timerange = timerange
577 577 # self.xmin, self.tmax = self.getTimeLim(x, xmin, xmax, timerange)
578 578
579 579
580 580
581 581 if ymin == None: ymin = numpy.nanmin(y)
582 582 if ymax == None: ymax = numpy.nanmax(y)
583 583 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
584 584 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
585 585
586 586 self.FTP_WEI = ftp_wei
587 587 self.EXP_CODE = exp_code
588 588 self.SUB_EXP_CODE = sub_exp_code
589 589 self.PLOT_POS = plot_pos
590 590
591 591 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
592 592 self.__isConfig = True
593 593
594 594
595 595 self.setWinTitle(title)
596 596
597 597 if ((self.xmax - x[1]) < (x[1]-x[0])):
598 598 x[1] = self.xmax
599 599
600 600 for i in range(self.nplots):
601 601 title = "Channel %d: %s" %(dataOut.channelList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
602 602 axes = self.axesList[i*self.__nsubplots]
603 603 zdB = avgdB[i].reshape((1,-1))
604 604 axes.pcolorbuffer(x, y, zdB,
605 605 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
606 606 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
607 607 ticksize=9, cblabel='', cbsize="1%")
608 608
609 609 if self.__showprofile:
610 610 axes = self.axesList[i*self.__nsubplots +1]
611 611 axes.pline(avgdB[i], y,
612 612 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
613 613 xlabel='dB', ylabel='', title='',
614 614 ytick_visible=False,
615 615 grid='x')
616 616
617 617 self.draw()
618 618
619 619 # if lastone:
620 620 # if dataOut.blocknow >= dataOut.last_block:
621 621 # if figfile == None:
622 622 # figfile = self.getFilename(name = self.name)
623 623 # self.saveFigure(figpath, figfile)
624 624 #
625 625 # if (save and not(lastone)):
626 626 #
627 627 # self.counter_imagwr += 1
628 628 # if (self.counter_imagwr==wr_period):
629 629 # if figfile == None:
630 630 # figfile = self.getFilename(name = self.name)
631 631 # self.saveFigure(figpath, figfile)
632 632 #
633 633 # if ftp:
634 634 # #provisionalmente envia archivos en el formato de la web en tiempo real
635 635 # name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
636 636 # path = '%s%03d' %(self.PREFIX, self.id)
637 637 # ftp_file = os.path.join(path,'ftp','%s.png'%name)
638 638 # self.saveFigure(figpath, ftp_file)
639 639 # ftp_filename = os.path.join(figpath,ftp_file)
640 640 # self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
641 641 # self.counter_imagwr = 0
642 642 #
643 643 # self.counter_imagwr = 0
644 644
645 645 #if ((dataOut.utctime-time.timezone) >= self.axesList[0].xmax):
646 646 if x[1] >= self.axesList[0].xmax:
647 647 self.saveFigure(figpath, figfile)
648 648 self.__isConfig = False
649 649
650 650 # if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
651 651 #
652 652 # self.__isConfig = False
653 653
654 654 # if lastone:
655 655 # if figfile == None:
656 656 # figfile = self.getFilename(name = self.name)
657 657 # self.saveFigure(figpath, figfile)
658 658 #
659 659 # if ftp:
660 660 # #provisionalmente envia archivos en el formato de la web en tiempo real
661 661 # name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
662 662 # path = '%s%03d' %(self.PREFIX, self.id)
663 663 # ftp_file = os.path.join(path,'ftp','%s.png'%name)
664 664 # self.saveFigure(figpath, ftp_file)
665 665 # ftp_filename = os.path.join(figpath,ftp_file)
666 666 # self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
667 667
668 668
669 669 class SpectraPlot(Figure):
670 670
671 671 __isConfig = None
672 672 __nsubplots = None
673 673
674 674 WIDTHPROF = None
675 675 HEIGHTPROF = None
676 676 PREFIX = 'spc'
677 677
678 678 def __init__(self):
679 679
680 680 self.__isConfig = False
681 681 self.__nsubplots = 1
682 682
683 683 self.WIDTH = 280
684 684 self.HEIGHT = 250
685 685 self.WIDTHPROF = 120
686 686 self.HEIGHTPROF = 0
687 687 self.counter_imagwr = 0
688 688
689 689 self.PLOT_CODE = 1
690 690 self.FTP_WEI = None
691 691 self.EXP_CODE = None
692 692 self.SUB_EXP_CODE = None
693 693 self.PLOT_POS = None
694 694
695 695 def getSubplots(self):
696 696
697 697 ncol = int(numpy.sqrt(self.nplots)+0.9)
698 698 nrow = int(self.nplots*1./ncol + 0.9)
699 699
700 700 return nrow, ncol
701 701
702 702 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
703 703
704 704 self.__showprofile = showprofile
705 705 self.nplots = nplots
706 706
707 707 ncolspan = 1
708 708 colspan = 1
709 709 if showprofile:
710 710 ncolspan = 3
711 711 colspan = 2
712 712 self.__nsubplots = 2
713 713
714 714 self.createFigure(id = id,
715 715 wintitle = wintitle,
716 716 widthplot = self.WIDTH + self.WIDTHPROF,
717 717 heightplot = self.HEIGHT + self.HEIGHTPROF,
718 718 show=show)
719 719
720 720 nrow, ncol = self.getSubplots()
721 721
722 722 counter = 0
723 723 for y in range(nrow):
724 724 for x in range(ncol):
725 725
726 726 if counter >= self.nplots:
727 727 break
728 728
729 729 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
730 730
731 731 if showprofile:
732 732 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
733 733
734 734 counter += 1
735 735
736 736 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
737 737 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
738 738 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
739 739 server=None, folder=None, username=None, password=None,
740 740 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
741 741
742 742 """
743 743
744 744 Input:
745 745 dataOut :
746 746 id :
747 747 wintitle :
748 748 channelList :
749 749 showProfile :
750 750 xmin : None,
751 751 xmax : None,
752 752 ymin : None,
753 753 ymax : None,
754 754 zmin : None,
755 755 zmax : None
756 756 """
757 757
758 758 if realtime:
759 759 if not(isRealtime(utcdatatime = dataOut.utctime)):
760 760 print 'Skipping this plot function'
761 761 return
762 762
763 763 if channelList == None:
764 764 channelIndexList = dataOut.channelIndexList
765 765 else:
766 766 channelIndexList = []
767 767 for channel in channelList:
768 768 if channel not in dataOut.channelList:
769 769 raise ValueError, "Channel %d is not in dataOut.channelList"
770 770 channelIndexList.append(dataOut.channelList.index(channel))
771 771 factor = dataOut.normFactor
772 772 x = dataOut.getVelRange(1)
773 773 y = dataOut.getHeiRange()
774 774
775 775 z = dataOut.data_spc[channelIndexList,:,:]/factor
776 776 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
777 777 avg = numpy.average(z, axis=1)
778 778 noise = dataOut.getNoise()/factor
779 779
780 780 zdB = 10*numpy.log10(z)
781 781 avgdB = 10*numpy.log10(avg)
782 782 noisedB = 10*numpy.log10(noise)
783 783
784 784 #thisDatetime = dataOut.datatime
785 785 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
786 786 title = wintitle + " Spectra"
787 787 xlabel = "Velocity (m/s)"
788 788 ylabel = "Range (Km)"
789 789
790 790 if not self.__isConfig:
791 791
792 792 nplots = len(channelIndexList)
793 793
794 794 self.setup(id=id,
795 795 nplots=nplots,
796 796 wintitle=wintitle,
797 797 showprofile=showprofile,
798 798 show=show)
799 799
800 800 if xmin == None: xmin = numpy.nanmin(x)
801 801 if xmax == None: xmax = numpy.nanmax(x)
802 802 if ymin == None: ymin = numpy.nanmin(y)
803 803 if ymax == None: ymax = numpy.nanmax(y)
804 804 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
805 805 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
806 806
807 807 self.FTP_WEI = ftp_wei
808 808 self.EXP_CODE = exp_code
809 809 self.SUB_EXP_CODE = sub_exp_code
810 810 self.PLOT_POS = plot_pos
811 811
812 812 self.__isConfig = True
813 813
814 814 self.setWinTitle(title)
815 815
816 816 for i in range(self.nplots):
817 817 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
818 818 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i]+1, noisedB[i], str_datetime)
819 819 axes = self.axesList[i*self.__nsubplots]
820 820 axes.pcolor(x, y, zdB[i,:,:],
821 821 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
822 822 xlabel=xlabel, ylabel=ylabel, title=title,
823 823 ticksize=9, cblabel='')
824 824
825 825 if self.__showprofile:
826 826 axes = self.axesList[i*self.__nsubplots +1]
827 827 axes.pline(avgdB[i], y,
828 828 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
829 829 xlabel='dB', ylabel='', title='',
830 830 ytick_visible=False,
831 831 grid='x')
832 832
833 833 noiseline = numpy.repeat(noisedB[i], len(y))
834 834 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
835 835
836 836 self.draw()
837 837
838 838 if save:
839 839
840 840 self.counter_imagwr += 1
841 841 if (self.counter_imagwr==wr_period):
842 842 if figfile == None:
843 843 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
844 844 figfile = self.getFilename(name = str_datetime)
845 845
846 846 self.saveFigure(figpath, figfile)
847 847
848 848 if ftp:
849 849 #provisionalmente envia archivos en el formato de la web en tiempo real
850 850 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
851 851 path = '%s%03d' %(self.PREFIX, self.id)
852 852 ftp_file = os.path.join(path,'ftp','%s.png'%name)
853 853 self.saveFigure(figpath, ftp_file)
854 854 ftp_filename = os.path.join(figpath,ftp_file)
855 855 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
856 856 self.counter_imagwr = 0
857 857
858 858
859 859 self.counter_imagwr = 0
860 860
861 861
862 862 class Scope(Figure):
863 863
864 864 __isConfig = None
865 865
866 866 def __init__(self):
867 867
868 868 self.__isConfig = False
869 self.WIDTH = 600
869 self.WIDTH = 300
870 870 self.HEIGHT = 200
871 871 self.counter_imagwr = 0
872 872
873 873 def getSubplots(self):
874 874
875 875 nrow = self.nplots
876 876 ncol = 3
877 877 return nrow, ncol
878 878
879 879 def setup(self, id, nplots, wintitle, show):
880 880
881 881 self.nplots = nplots
882 882
883 883 self.createFigure(id=id,
884 884 wintitle=wintitle,
885 885 show=show)
886 886
887 887 nrow,ncol = self.getSubplots()
888 888 colspan = 3
889 889 rowspan = 1
890 890
891 891 for i in range(nplots):
892 892 self.addAxes(nrow, ncol, i, 0, colspan, rowspan)
893
894 def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
895 yreal = y[channelIndexList,:].real
896 yimag = y[channelIndexList,:].imag
897
898 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
899 xlabel = "Range (Km)"
900 ylabel = "Intensity - IQ"
901
902 if not self.__isConfig:
903 nplots = len(channelIndexList)
893 904
905 self.setup(id=id,
906 nplots=nplots,
907 wintitle='',
908 show=show)
909
910 if xmin == None: xmin = numpy.nanmin(x)
911 if xmax == None: xmax = numpy.nanmax(x)
912 if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag))
913 if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag))
914
915 self.__isConfig = True
916
917 self.setWinTitle(title)
918
919 for i in range(len(self.axesList)):
920 title = "Channel %d" %(i)
921 axes = self.axesList[i]
922
923 axes.pline(x, yreal[i,:],
924 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
925 xlabel=xlabel, ylabel=ylabel, title=title)
926
927 axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2)
928
929 def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
930 y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:])
931 yreal = y.real
932
933 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
934 xlabel = "Range (Km)"
935 ylabel = "Intensity"
936
937 if not self.__isConfig:
938 nplots = len(channelIndexList)
939
940 self.setup(id=id,
941 nplots=nplots,
942 wintitle='',
943 show=show)
944
945 if xmin == None: xmin = numpy.nanmin(x)
946 if xmax == None: xmax = numpy.nanmax(x)
947 if ymin == None: ymin = numpy.nanmin(yreal)
948 if ymax == None: ymax = numpy.nanmax(yreal)
949
950 self.__isConfig = True
951
952 self.setWinTitle(title)
894 953
954 for i in range(len(self.axesList)):
955 title = "Channel %d" %(i)
956 axes = self.axesList[i]
957 ychannel = yreal[i,:]
958 axes.pline(x, ychannel,
959 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
960 xlabel=xlabel, ylabel=ylabel, title=title)
961
895 962
896 963 def run(self, dataOut, id, wintitle="", channelList=None,
897 964 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
898 965 figpath='./', figfile=None, show=True, wr_period=1,
899 server=None, folder=None, username=None, password=None):
966 server=None, folder=None, username=None, password=None, type='power'):
900 967
901 968 """
902 969
903 970 Input:
904 971 dataOut :
905 972 id :
906 973 wintitle :
907 974 channelList :
908 975 xmin : None,
909 976 xmax : None,
910 977 ymin : None,
911 978 ymax : None,
912 979 """
913 980
914 981 if channelList == None:
915 982 channelIndexList = dataOut.channelIndexList
916 983 else:
917 984 channelIndexList = []
918 985 for channel in channelList:
919 986 if channel not in dataOut.channelList:
920 987 raise ValueError, "Channel %d is not in dataOut.channelList"
921 988 channelIndexList.append(dataOut.channelList.index(channel))
922 989
923 990 x = dataOut.heightList
924 991 y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:])
925 992 y = y.real
926 993
927 #thisDatetime = dataOut.datatime
928 994 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
929 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
930 xlabel = "Range (Km)"
931 ylabel = "Intensity"
932 995
933 if not self.__isConfig:
934 nplots = len(channelIndexList)
935
936 self.setup(id=id,
937 nplots=nplots,
938 wintitle=wintitle,
939 show=show)
940
941 if xmin == None: xmin = numpy.nanmin(x)
942 if xmax == None: xmax = numpy.nanmax(x)
943 if ymin == None: ymin = numpy.nanmin(y)
944 if ymax == None: ymax = numpy.nanmax(y)
945
946 self.__isConfig = True
947
948 self.setWinTitle(title)
996 if type == "power":
997 self.plot_power(dataOut.heightList,
998 dataOut.data,
999 id,
1000 channelIndexList,
1001 thisDatetime,
1002 wintitle,
1003 show,
1004 xmin,
1005 xmax,
1006 ymin,
1007 ymax)
1008
1009 if type == "iq":
1010 self.plot_iq(dataOut.heightList,
1011 dataOut.data,
1012 id,
1013 channelIndexList,
1014 thisDatetime,
1015 wintitle,
1016 show,
1017 xmin,
1018 xmax,
1019 ymin,
1020 ymax)
949 1021
950 for i in range(len(self.axesList)):
951 title = "Channel %d" %(i)
952 axes = self.axesList[i]
953 ychannel = y[i,:]
954 axes.pline(x, ychannel,
955 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
956 xlabel=xlabel, ylabel=ylabel, title=title)
957 1022
958 1023 self.draw()
959 1024
960 1025 if save:
961 1026 date = thisDatetime.strftime("%Y%m%d_%H%M%S")
962 1027 if figfile == None:
963 1028 figfile = self.getFilename(name = date)
964 1029
965 1030 self.saveFigure(figpath, figfile)
966 1031
967 1032 self.counter_imagwr += 1
968 1033 if (ftp and (self.counter_imagwr==wr_period)):
969 1034 ftp_filename = os.path.join(figpath,figfile)
970 1035 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
971 1036 self.counter_imagwr = 0
972 1037
973 class PowerProfilePlot(Figure):
1038 class PowerProfile(Figure):
974 1039 __isConfig = None
975 1040 __nsubplots = None
976 1041
977 1042 WIDTHPROF = None
978 1043 HEIGHTPROF = None
979 1044 PREFIX = 'spcprofile'
980 1045
981 1046 def __init__(self):
982 1047 self.__isConfig = False
983 1048 self.__nsubplots = 1
984 1049
985 1050 self.WIDTH = 300
986 1051 self.HEIGHT = 500
987 1052 self.counter_imagwr = 0
988 1053
989 1054 def getSubplots(self):
990 1055 ncol = 1
991 1056 nrow = 1
992 1057
993 1058 return nrow, ncol
994 1059
995 1060 def setup(self, id, nplots, wintitle, show):
996 1061
997 1062 self.nplots = nplots
998 1063
999 1064 ncolspan = 1
1000 1065 colspan = 1
1001 1066
1002 1067 self.createFigure(id = id,
1003 1068 wintitle = wintitle,
1004 1069 widthplot = self.WIDTH,
1005 1070 heightplot = self.HEIGHT,
1006 1071 show=show)
1007 1072
1008 1073 nrow, ncol = self.getSubplots()
1009 1074
1010 1075 counter = 0
1011 1076 for y in range(nrow):
1012 1077 for x in range(ncol):
1013 1078 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1014 1079
1015 1080 def run(self, dataOut, id, wintitle="", channelList=None,
1016 1081 xmin=None, xmax=None, ymin=None, ymax=None,
1017 1082 save=False, figpath='./', figfile=None, show=True, wr_period=1,
1018 1083 server=None, folder=None, username=None, password=None,):
1019 1084
1020 1085 if channelList == None:
1021 1086 channelIndexList = dataOut.channelIndexList
1022 1087 channelList = dataOut.channelList
1023 1088 else:
1024 1089 channelIndexList = []
1025 1090 for channel in channelList:
1026 1091 if channel not in dataOut.channelList:
1027 1092 raise ValueError, "Channel %d is not in dataOut.channelList"
1028 1093 channelIndexList.append(dataOut.channelList.index(channel))
1029 1094
1030 factor = dataOut.normFactor
1031 y = dataOut.getHeiRange()
1032 x = dataOut.data_spc[channelIndexList,:,:]/factor
1033 x = numpy.where(numpy.isfinite(x), x, numpy.NAN)
1034 avg = numpy.average(x, axis=1)
1095 try:
1096 factor = dataOut.normFactor
1097 except:
1098 factor = 1
1035 1099
1036 avgdB = 10*numpy.log10(avg)
1100 y = dataOut.getHeiRange()
1101
1102 #for voltage
1103 if dataOut.type == 'Voltage':
1104 x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:])
1105 x = x.real
1106 x = numpy.where(numpy.isfinite(x), x, numpy.NAN)
1107
1108 #for spectra
1109 if dataOut.type == 'Spectra':
1110 x = dataOut.data_spc[channelIndexList,:,:]/factor
1111 x = numpy.where(numpy.isfinite(x), x, numpy.NAN)
1112 x = numpy.average(x, axis=1)
1113
1114
1115 xdB = 10*numpy.log10(x)
1037 1116
1038 #thisDatetime = dataOut.datatime
1039 1117 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1040 1118 title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y"))
1041 1119 xlabel = "dB"
1042 1120 ylabel = "Range (Km)"
1043 1121
1044 1122 if not self.__isConfig:
1045 1123
1046 1124 nplots = 1
1047 1125
1048 1126 self.setup(id=id,
1049 1127 nplots=nplots,
1050 1128 wintitle=wintitle,
1051 1129 show=show)
1052 1130
1053 1131 if ymin == None: ymin = numpy.nanmin(y)
1054 1132 if ymax == None: ymax = numpy.nanmax(y)
1055 if xmin == None: xmin = numpy.nanmin(avgdB)*0.9
1056 if xmax == None: xmax = numpy.nanmax(avgdB)*0.9
1133 if xmin == None: xmin = numpy.nanmin(xdB)*0.9
1134 if xmax == None: xmax = numpy.nanmax(xdB)*0.9
1057 1135
1058 1136 self.__isConfig = True
1059 1137
1060 1138 self.setWinTitle(title)
1061 1139
1062
1063 1140 title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1064 1141 axes = self.axesList[0]
1065 1142
1066 1143 legendlabels = ["channel %d"%x for x in channelList]
1067 axes.pmultiline(avgdB, y,
1144 axes.pmultiline(xdB, y,
1068 1145 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1069 1146 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels,
1070 1147 ytick_visible=True, nxticks=5,
1071 1148 grid='x')
1072 1149
1073 1150 self.draw()
1074 1151
1075 1152 if save:
1076 1153 date = thisDatetime.strftime("%Y%m%d")
1077 1154 if figfile == None:
1078 1155 figfile = self.getFilename(name = date)
1079 1156
1080 1157 self.saveFigure(figpath, figfile)
1081 1158
1082 1159 self.counter_imagwr += 1
1083 1160 if (ftp and (self.counter_imagwr==wr_period)):
1084 1161 ftp_filename = os.path.join(figpath,figfile)
1085 1162 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
1086 1163 self.counter_imagwr = 0
1087 1164
1088 1165 class CoherenceMap(Figure):
1089 1166 __isConfig = None
1090 1167 __nsubplots = None
1091 1168
1092 1169 WIDTHPROF = None
1093 1170 HEIGHTPROF = None
1094 1171 PREFIX = 'cmap'
1095 1172
1096 1173 def __init__(self):
1097 1174 self.timerange = 2*60*60
1098 1175 self.__isConfig = False
1099 1176 self.__nsubplots = 1
1100 1177
1101 1178 self.WIDTH = 800
1102 1179 self.HEIGHT = 150
1103 1180 self.WIDTHPROF = 120
1104 1181 self.HEIGHTPROF = 0
1105 1182 self.counter_imagwr = 0
1106 1183
1107 1184 self.PLOT_CODE = 3
1108 1185 self.FTP_WEI = None
1109 1186 self.EXP_CODE = None
1110 1187 self.SUB_EXP_CODE = None
1111 1188 self.PLOT_POS = None
1112 1189 self.counter_imagwr = 0
1113 1190
1114 1191 self.xmin = None
1115 1192 self.xmax = None
1116 1193
1117 1194 def getSubplots(self):
1118 1195 ncol = 1
1119 1196 nrow = self.nplots*2
1120 1197
1121 1198 return nrow, ncol
1122 1199
1123 1200 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1124 1201 self.__showprofile = showprofile
1125 1202 self.nplots = nplots
1126 1203
1127 1204 ncolspan = 1
1128 1205 colspan = 1
1129 1206 if showprofile:
1130 1207 ncolspan = 7
1131 1208 colspan = 6
1132 1209 self.__nsubplots = 2
1133 1210
1134 1211 self.createFigure(id = id,
1135 1212 wintitle = wintitle,
1136 1213 widthplot = self.WIDTH + self.WIDTHPROF,
1137 1214 heightplot = self.HEIGHT + self.HEIGHTPROF,
1138 1215 show=True)
1139 1216
1140 1217 nrow, ncol = self.getSubplots()
1141 1218
1142 1219 for y in range(nrow):
1143 1220 for x in range(ncol):
1144 1221
1145 1222 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1146 1223
1147 1224 if showprofile:
1148 1225 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1149 1226
1150 1227 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
1151 1228 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
1152 1229 timerange=None,
1153 1230 save=False, figpath='./', figfile=None, ftp=False, wr_period=1,
1154 1231 coherence_cmap='jet', phase_cmap='RdBu_r', show=True,
1155 1232 server=None, folder=None, username=None, password=None,
1156 1233 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1157 1234
1158 1235 if pairsList == None:
1159 1236 pairsIndexList = dataOut.pairsIndexList
1160 1237 else:
1161 1238 pairsIndexList = []
1162 1239 for pair in pairsList:
1163 1240 if pair not in dataOut.pairsList:
1164 1241 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
1165 1242 pairsIndexList.append(dataOut.pairsList.index(pair))
1166 1243
1167 1244 if timerange != None:
1168 1245 self.timerange = timerange
1169 1246
1170 1247 if pairsIndexList == []:
1171 1248 return
1172 1249
1173 1250 if len(pairsIndexList) > 4:
1174 1251 pairsIndexList = pairsIndexList[0:4]
1175 1252
1176 1253 # tmin = None
1177 1254 # tmax = None
1178 1255 x = dataOut.getTimeRange()
1179 1256 y = dataOut.getHeiRange()
1180 1257
1181 1258 #thisDatetime = dataOut.datatime
1182 1259 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1183 1260 title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1184 1261 xlabel = ""
1185 1262 ylabel = "Range (Km)"
1186 1263
1187 1264 if not self.__isConfig:
1188 1265 nplots = len(pairsIndexList)
1189 1266 self.setup(id=id,
1190 1267 nplots=nplots,
1191 1268 wintitle=wintitle,
1192 1269 showprofile=showprofile,
1193 1270 show=show)
1194 1271
1195 1272 #tmin, tmax = self.getTimeLim(x, xmin, xmax)
1196 1273
1197 1274 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1198 1275
1199 1276 if ymin == None: ymin = numpy.nanmin(y)
1200 1277 if ymax == None: ymax = numpy.nanmax(y)
1201 1278 if zmin == None: zmin = 0.
1202 1279 if zmax == None: zmax = 1.
1203 1280
1204 1281 self.FTP_WEI = ftp_wei
1205 1282 self.EXP_CODE = exp_code
1206 1283 self.SUB_EXP_CODE = sub_exp_code
1207 1284 self.PLOT_POS = plot_pos
1208 1285
1209 1286 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1210 1287
1211 1288 self.__isConfig = True
1212 1289
1213 1290 self.setWinTitle(title)
1214 1291
1215 1292 if ((self.xmax - x[1]) < (x[1]-x[0])):
1216 1293 x[1] = self.xmax
1217 1294
1218 1295 for i in range(self.nplots):
1219 1296
1220 1297 pair = dataOut.pairsList[pairsIndexList[i]]
1221 1298 # coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:])
1222 1299 # avgcoherenceComplex = numpy.average(coherenceComplex, axis=0)
1223 1300 # coherence = numpy.abs(avgcoherenceComplex)
1224 1301
1225 1302 ## coherence = numpy.abs(coherenceComplex)
1226 1303 ## avg = numpy.average(coherence, axis=0)
1227 1304
1228 1305 ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0)
1229 1306 powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0)
1230 1307 powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0)
1231 1308
1232 1309
1233 1310 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
1234 1311 coherence = numpy.abs(avgcoherenceComplex)
1235 1312
1236 1313 z = coherence.reshape((1,-1))
1237 1314
1238 1315 counter = 0
1239 1316
1240 1317 title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1241 1318 axes = self.axesList[i*self.__nsubplots*2]
1242 1319 axes.pcolorbuffer(x, y, z,
1243 1320 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1244 1321 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1245 1322 ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%")
1246 1323
1247 1324 if self.__showprofile:
1248 1325 counter += 1
1249 1326 axes = self.axesList[i*self.__nsubplots*2 + counter]
1250 1327 axes.pline(coherence, y,
1251 1328 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
1252 1329 xlabel='', ylabel='', title='', ticksize=7,
1253 1330 ytick_visible=False, nxticks=5,
1254 1331 grid='x')
1255 1332
1256 1333 counter += 1
1257 1334 # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi
1258 1335 phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
1259 1336 # avg = numpy.average(phase, axis=0)
1260 1337 z = phase.reshape((1,-1))
1261 1338
1262 1339 title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1263 1340 axes = self.axesList[i*self.__nsubplots*2 + counter]
1264 1341 axes.pcolorbuffer(x, y, z,
1265 1342 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180,
1266 1343 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1267 1344 ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%")
1268 1345
1269 1346 if self.__showprofile:
1270 1347 counter += 1
1271 1348 axes = self.axesList[i*self.__nsubplots*2 + counter]
1272 1349 axes.pline(phase, y,
1273 1350 xmin=-180, xmax=180, ymin=ymin, ymax=ymax,
1274 1351 xlabel='', ylabel='', title='', ticksize=7,
1275 1352 ytick_visible=False, nxticks=4,
1276 1353 grid='x')
1277 1354
1278 1355 self.draw()
1279 1356
1280 1357 if x[1] >= self.axesList[0].xmax:
1281 1358 self.saveFigure(figpath, figfile)
1282 1359 self.__isConfig = False
1283 1360
1284 1361 # if save:
1285 1362 #
1286 1363 # self.counter_imagwr += 1
1287 1364 # if (self.counter_imagwr==wr_period):
1288 1365 # if figfile == None:
1289 1366 # figfile = self.getFilename(name = self.name)
1290 1367 # self.saveFigure(figpath, figfile)
1291 1368 #
1292 1369 # if ftp:
1293 1370 # #provisionalmente envia archivos en el formato de la web en tiempo real
1294 1371 # name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
1295 1372 # path = '%s%03d' %(self.PREFIX, self.id)
1296 1373 # ftp_file = os.path.join(path,'ftp','%s.png'%name)
1297 1374 # self.saveFigure(figpath, ftp_file)
1298 1375 # ftp_filename = os.path.join(figpath,ftp_file)
1299 1376 # self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
1300 1377 # self.counter_imagwr = 0
1301 1378 #
1302 1379 # self.counter_imagwr = 0
1303 1380 #
1304 1381 #
1305 1382 # if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1306 1383 # self.__isConfig = False
1307 1384
1308 1385 class BeaconPhase(Figure):
1309 1386
1310 1387 __isConfig = None
1311 1388 __nsubplots = None
1312 1389
1313 1390 PREFIX = 'beacon_phase'
1314 1391
1315 1392 def __init__(self):
1316 1393
1317 1394 self.timerange = 24*60*60
1318 1395 self.__isConfig = False
1319 1396 self.__nsubplots = 1
1320 1397 self.counter_imagwr = 0
1321 1398 self.WIDTH = 600
1322 1399 self.HEIGHT = 300
1323 1400 self.WIDTHPROF = 120
1324 1401 self.HEIGHTPROF = 0
1325 1402 self.xdata = None
1326 1403 self.ydata = None
1327 1404
1328 1405 self.PLOT_CODE = 18
1329 1406 self.FTP_WEI = None
1330 1407 self.EXP_CODE = None
1331 1408 self.SUB_EXP_CODE = None
1332 1409 self.PLOT_POS = None
1333 1410
1334 1411 self.filename_phase = None
1335 1412
1336 1413 def getSubplots(self):
1337 1414
1338 1415 ncol = 1
1339 1416 nrow = 1
1340 1417
1341 1418 return nrow, ncol
1342 1419
1343 1420 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1344 1421
1345 1422 self.__showprofile = showprofile
1346 1423 self.nplots = nplots
1347 1424
1348 1425 ncolspan = 7
1349 1426 colspan = 6
1350 1427 self.__nsubplots = 2
1351 1428
1352 1429 self.createFigure(id = id,
1353 1430 wintitle = wintitle,
1354 1431 widthplot = self.WIDTH+self.WIDTHPROF,
1355 1432 heightplot = self.HEIGHT+self.HEIGHTPROF,
1356 1433 show=show)
1357 1434
1358 1435 nrow, ncol = self.getSubplots()
1359 1436
1360 1437 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1361 1438
1362 1439 def save_phase(self, filename_phase):
1363 1440 f = open(filename_phase,'w+')
1364 1441 f.write('\n\n')
1365 1442 f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n')
1366 1443 f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' )
1367 1444 f.close()
1368 1445
1369 1446 def save_data(self, filename_phase, data, data_datetime):
1370 1447 f=open(filename_phase,'a')
1371 1448 timetuple_data = data_datetime.timetuple()
1372 1449 day = str(timetuple_data.tm_mday)
1373 1450 month = str(timetuple_data.tm_mon)
1374 1451 year = str(timetuple_data.tm_year)
1375 1452 hour = str(timetuple_data.tm_hour)
1376 1453 minute = str(timetuple_data.tm_min)
1377 1454 second = str(timetuple_data.tm_sec)
1378 1455 f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
1379 1456 f.close()
1380 1457
1381 1458
1382 1459 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
1383 1460 xmin=None, xmax=None, ymin=None, ymax=None,
1384 1461 timerange=None,
1385 1462 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
1386 1463 server=None, folder=None, username=None, password=None,
1387 1464 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1388 1465
1389 1466 if pairsList == None:
1390 1467 pairsIndexList = dataOut.pairsIndexList
1391 1468 else:
1392 1469 pairsIndexList = []
1393 1470 for pair in pairsList:
1394 1471 if pair not in dataOut.pairsList:
1395 1472 raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair)
1396 1473 pairsIndexList.append(dataOut.pairsList.index(pair))
1397 1474
1398 1475 if pairsIndexList == []:
1399 1476 return
1400 1477
1401 1478 # if len(pairsIndexList) > 4:
1402 1479 # pairsIndexList = pairsIndexList[0:4]
1403 1480
1404 1481 if timerange != None:
1405 1482 self.timerange = timerange
1406 1483
1407 1484 tmin = None
1408 1485 tmax = None
1409 1486 x = dataOut.getTimeRange()
1410 1487 y = dataOut.getHeiRange()
1411 1488
1412 1489
1413 1490 #thisDatetime = dataOut.datatime
1414 1491 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1415 1492 title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
1416 1493 xlabel = "Local Time"
1417 1494 ylabel = "Phase"
1418 1495
1419 1496 nplots = len(pairsIndexList)
1420 1497 #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList)))
1421 1498 phase_beacon = numpy.zeros(len(pairsIndexList))
1422 1499 for i in range(nplots):
1423 1500 pair = dataOut.pairsList[pairsIndexList[i]]
1424 1501 ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0)
1425 1502 powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0)
1426 1503 powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0)
1427 1504 avgcoherenceComplex = ccf/numpy.sqrt(powa*powb)
1428 1505 phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi
1429 1506
1430 1507 #print "Phase %d%d" %(pair[0], pair[1])
1431 1508 #print phase[dataOut.beacon_heiIndexList]
1432 1509
1433 1510 phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList])
1434 1511
1435 1512 if not self.__isConfig:
1436 1513
1437 1514 nplots = len(pairsIndexList)
1438 1515
1439 1516 self.setup(id=id,
1440 1517 nplots=nplots,
1441 1518 wintitle=wintitle,
1442 1519 showprofile=showprofile,
1443 1520 show=show)
1444 1521
1445 1522 tmin, tmax = self.getTimeLim(x, xmin, xmax)
1446 1523 if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0
1447 1524 if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0
1448 1525
1449 1526 self.FTP_WEI = ftp_wei
1450 1527 self.EXP_CODE = exp_code
1451 1528 self.SUB_EXP_CODE = sub_exp_code
1452 1529 self.PLOT_POS = plot_pos
1453 1530
1454 1531 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1455 1532 self.__isConfig = True
1456 1533
1457 1534 self.xdata = numpy.array([])
1458 1535 self.ydata = numpy.array([])
1459 1536
1460 1537 #open file beacon phase
1461 1538 path = '%s%03d' %(self.PREFIX, self.id)
1462 1539 beacon_file = os.path.join(path,'%s.txt'%self.name)
1463 1540 self.filename_phase = os.path.join(figpath,beacon_file)
1464 1541 #self.save_phase(self.filename_phase)
1465 1542
1466 1543
1467 1544 #store data beacon phase
1468 1545 #self.save_data(self.filename_phase, phase_beacon, thisDatetime)
1469 1546
1470 1547 self.setWinTitle(title)
1471 1548
1472 1549
1473 1550 title = "Beacon Signal %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1474 1551
1475 1552 legendlabels = ["pairs %d%d"%(pair[0], pair[1]) for pair in dataOut.pairsList]
1476 1553
1477 1554 axes = self.axesList[0]
1478 1555
1479 1556 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1480 1557
1481 1558 if len(self.ydata)==0:
1482 1559 self.ydata = phase_beacon.reshape(-1,1)
1483 1560 else:
1484 1561 self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
1485 1562
1486 1563
1487 1564 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1488 1565 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax,
1489 1566 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
1490 1567 XAxisAsTime=True, grid='both'
1491 1568 )
1492 1569
1493 1570 self.draw()
1494 1571
1495 1572 if save:
1496 1573
1497 1574 self.counter_imagwr += 1
1498 1575 if (self.counter_imagwr==wr_period):
1499 1576 if figfile == None:
1500 1577 figfile = self.getFilename(name = self.name)
1501 1578 self.saveFigure(figpath, figfile)
1502 1579
1503 1580 if ftp:
1504 1581 #provisionalmente envia archivos en el formato de la web en tiempo real
1505 1582 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
1506 1583 path = '%s%03d' %(self.PREFIX, self.id)
1507 1584 ftp_file = os.path.join(path,'ftp','%s.png'%name)
1508 1585 self.saveFigure(figpath, ftp_file)
1509 1586 ftp_filename = os.path.join(figpath,ftp_file)
1510 1587 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
1511 1588
1512 1589 self.counter_imagwr = 0
1513 1590
1514 1591 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1515 1592 self.__isConfig = False
1516 1593 del self.xdata
1517 1594 del self.ydata
1518 1595
1519 1596
1520 1597
1521 1598
1522 1599 class Noise(Figure):
1523 1600
1524 1601 __isConfig = None
1525 1602 __nsubplots = None
1526 1603
1527 1604 PREFIX = 'noise'
1528 1605
1529 1606 def __init__(self):
1530 1607
1531 1608 self.timerange = 24*60*60
1532 1609 self.__isConfig = False
1533 1610 self.__nsubplots = 1
1534 1611 self.counter_imagwr = 0
1535 1612 self.WIDTH = 600
1536 1613 self.HEIGHT = 300
1537 1614 self.WIDTHPROF = 120
1538 1615 self.HEIGHTPROF = 0
1539 1616 self.xdata = None
1540 1617 self.ydata = None
1541 1618
1542 1619 self.PLOT_CODE = 77
1543 1620 self.FTP_WEI = None
1544 1621 self.EXP_CODE = None
1545 1622 self.SUB_EXP_CODE = None
1546 1623 self.PLOT_POS = None
1547 1624
1548 1625 def getSubplots(self):
1549 1626
1550 1627 ncol = 1
1551 1628 nrow = 1
1552 1629
1553 1630 return nrow, ncol
1554 1631
1555 1632 def openfile(self, filename):
1556 1633 f = open(filename,'w+')
1557 1634 f.write('\n\n')
1558 1635 f.write('JICAMARCA RADIO OBSERVATORY - Noise \n')
1559 1636 f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' )
1560 1637 f.close()
1561 1638
1562 1639 def save_data(self, filename_phase, data, data_datetime):
1563 1640 f=open(filename_phase,'a')
1564 1641 timetuple_data = data_datetime.timetuple()
1565 1642 day = str(timetuple_data.tm_mday)
1566 1643 month = str(timetuple_data.tm_mon)
1567 1644 year = str(timetuple_data.tm_year)
1568 1645 hour = str(timetuple_data.tm_hour)
1569 1646 minute = str(timetuple_data.tm_min)
1570 1647 second = str(timetuple_data.tm_sec)
1571 1648 f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n')
1572 1649 f.close()
1573 1650
1574 1651
1575 1652 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1576 1653
1577 1654 self.__showprofile = showprofile
1578 1655 self.nplots = nplots
1579 1656
1580 1657 ncolspan = 7
1581 1658 colspan = 6
1582 1659 self.__nsubplots = 2
1583 1660
1584 1661 self.createFigure(id = id,
1585 1662 wintitle = wintitle,
1586 1663 widthplot = self.WIDTH+self.WIDTHPROF,
1587 1664 heightplot = self.HEIGHT+self.HEIGHTPROF,
1588 1665 show=show)
1589 1666
1590 1667 nrow, ncol = self.getSubplots()
1591 1668
1592 1669 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1593 1670
1594 1671
1595 1672 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
1596 1673 xmin=None, xmax=None, ymin=None, ymax=None,
1597 1674 timerange=None,
1598 1675 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
1599 1676 server=None, folder=None, username=None, password=None,
1600 1677 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1601 1678
1602 1679 if channelList == None:
1603 1680 channelIndexList = dataOut.channelIndexList
1604 1681 channelList = dataOut.channelList
1605 1682 else:
1606 1683 channelIndexList = []
1607 1684 for channel in channelList:
1608 1685 if channel not in dataOut.channelList:
1609 1686 raise ValueError, "Channel %d is not in dataOut.channelList"
1610 1687 channelIndexList.append(dataOut.channelList.index(channel))
1611 1688
1612 1689 if timerange != None:
1613 1690 self.timerange = timerange
1614 1691
1615 1692 tmin = None
1616 1693 tmax = None
1617 1694 x = dataOut.getTimeRange()
1618 1695 y = dataOut.getHeiRange()
1619 1696 factor = dataOut.normFactor
1620 1697 noise = dataOut.getNoise()/factor
1621 1698 noisedB = 10*numpy.log10(noise)
1622 1699
1623 1700 #thisDatetime = dataOut.datatime
1624 1701 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1625 1702 title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
1626 1703 xlabel = ""
1627 1704 ylabel = "Intensity (dB)"
1628 1705
1629 1706 if not self.__isConfig:
1630 1707
1631 1708 nplots = 1
1632 1709
1633 1710 self.setup(id=id,
1634 1711 nplots=nplots,
1635 1712 wintitle=wintitle,
1636 1713 showprofile=showprofile,
1637 1714 show=show)
1638 1715
1639 1716 tmin, tmax = self.getTimeLim(x, xmin, xmax)
1640 1717 if ymin == None: ymin = numpy.nanmin(noisedB) - 10.0
1641 1718 if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0
1642 1719
1643 1720 self.FTP_WEI = ftp_wei
1644 1721 self.EXP_CODE = exp_code
1645 1722 self.SUB_EXP_CODE = sub_exp_code
1646 1723 self.PLOT_POS = plot_pos
1647 1724
1648 1725
1649 1726 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1650 1727 self.__isConfig = True
1651 1728
1652 1729 self.xdata = numpy.array([])
1653 1730 self.ydata = numpy.array([])
1654 1731
1655 1732 #open file beacon phase
1656 1733 path = '%s%03d' %(self.PREFIX, self.id)
1657 1734 noise_file = os.path.join(path,'%s.txt'%self.name)
1658 1735 self.filename_noise = os.path.join(figpath,noise_file)
1659 1736 self.openfile(self.filename_noise)
1660 1737
1661 1738
1662 1739 #store data beacon phase
1663 1740 self.save_data(self.filename_noise, noisedB, thisDatetime)
1664 1741
1665 1742
1666 1743 self.setWinTitle(title)
1667 1744
1668 1745
1669 1746 title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1670 1747
1671 1748 legendlabels = ["channel %d"%(idchannel+1) for idchannel in channelList]
1672 1749 axes = self.axesList[0]
1673 1750
1674 1751 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1675 1752
1676 1753 if len(self.ydata)==0:
1677 1754 self.ydata = noisedB[channelIndexList].reshape(-1,1)
1678 1755 else:
1679 1756 self.ydata = numpy.hstack((self.ydata, noisedB[channelIndexList].reshape(-1,1)))
1680 1757
1681 1758
1682 1759 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1683 1760 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax,
1684 1761 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
1685 1762 XAxisAsTime=True, grid='both'
1686 1763 )
1687 1764
1688 1765 self.draw()
1689 1766
1690 1767 # if save:
1691 1768 #
1692 1769 # if figfile == None:
1693 1770 # figfile = self.getFilename(name = self.name)
1694 1771 #
1695 1772 # self.saveFigure(figpath, figfile)
1696 1773
1697 1774 if save:
1698 1775
1699 1776 self.counter_imagwr += 1
1700 1777 if (self.counter_imagwr==wr_period):
1701 1778 if figfile == None:
1702 1779 figfile = self.getFilename(name = self.name)
1703 1780 self.saveFigure(figpath, figfile)
1704 1781
1705 1782 if ftp:
1706 1783 #provisionalmente envia archivos en el formato de la web en tiempo real
1707 1784 name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS)
1708 1785 path = '%s%03d' %(self.PREFIX, self.id)
1709 1786 ftp_file = os.path.join(path,'ftp','%s.png'%name)
1710 1787 self.saveFigure(figpath, ftp_file)
1711 1788 ftp_filename = os.path.join(figpath,ftp_file)
1712 1789 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
1713 1790 self.counter_imagwr = 0
1714 1791
1715 1792 self.counter_imagwr = 0
1716 1793
1717 1794 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
1718 1795 self.__isConfig = False
1719 1796 del self.xdata
1720 1797 del self.ydata
1721 1798
1722 1799
1723 1800 class SpectraHeisScope(Figure):
1724 1801
1725 1802
1726 1803 __isConfig = None
1727 1804 __nsubplots = None
1728 1805
1729 1806 WIDTHPROF = None
1730 1807 HEIGHTPROF = None
1731 1808 PREFIX = 'spc'
1732 1809
1733 1810 def __init__(self):
1734 1811
1735 1812 self.__isConfig = False
1736 1813 self.__nsubplots = 1
1737 1814
1738 1815 self.WIDTH = 230
1739 1816 self.HEIGHT = 250
1740 1817 self.WIDTHPROF = 120
1741 1818 self.HEIGHTPROF = 0
1742 1819 self.counter_imagwr = 0
1743 1820
1744 1821 def getSubplots(self):
1745 1822
1746 1823 ncol = int(numpy.sqrt(self.nplots)+0.9)
1747 1824 nrow = int(self.nplots*1./ncol + 0.9)
1748 1825
1749 1826 return nrow, ncol
1750 1827
1751 1828 def setup(self, id, nplots, wintitle, show):
1752 1829
1753 1830 showprofile = False
1754 1831 self.__showprofile = showprofile
1755 1832 self.nplots = nplots
1756 1833
1757 1834 ncolspan = 1
1758 1835 colspan = 1
1759 1836 if showprofile:
1760 1837 ncolspan = 3
1761 1838 colspan = 2
1762 1839 self.__nsubplots = 2
1763 1840
1764 1841 self.createFigure(id = id,
1765 1842 wintitle = wintitle,
1766 1843 widthplot = self.WIDTH + self.WIDTHPROF,
1767 1844 heightplot = self.HEIGHT + self.HEIGHTPROF,
1768 1845 show = show)
1769 1846
1770 1847 nrow, ncol = self.getSubplots()
1771 1848
1772 1849 counter = 0
1773 1850 for y in range(nrow):
1774 1851 for x in range(ncol):
1775 1852
1776 1853 if counter >= self.nplots:
1777 1854 break
1778 1855
1779 1856 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1780 1857
1781 1858 if showprofile:
1782 1859 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1783 1860
1784 1861 counter += 1
1785 1862
1786 1863
1787 1864 def run(self, dataOut, id, wintitle="", channelList=None,
1788 1865 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
1789 1866 figpath='./', figfile=None, ftp=False, wr_period=1, show=True,
1790 1867 server=None, folder=None, username=None, password=None):
1791 1868
1792 1869 """
1793 1870
1794 1871 Input:
1795 1872 dataOut :
1796 1873 id :
1797 1874 wintitle :
1798 1875 channelList :
1799 1876 xmin : None,
1800 1877 xmax : None,
1801 1878 ymin : None,
1802 1879 ymax : None,
1803 1880 """
1804 1881
1805 1882 if dataOut.realtime:
1806 1883 if not(isRealtime(utcdatatime = dataOut.utctime)):
1807 1884 print 'Skipping this plot function'
1808 1885 return
1809 1886
1810 1887 if channelList == None:
1811 1888 channelIndexList = dataOut.channelIndexList
1812 1889 else:
1813 1890 channelIndexList = []
1814 1891 for channel in channelList:
1815 1892 if channel not in dataOut.channelList:
1816 1893 raise ValueError, "Channel %d is not in dataOut.channelList"
1817 1894 channelIndexList.append(dataOut.channelList.index(channel))
1818 1895
1819 1896 # x = dataOut.heightList
1820 1897 c = 3E8
1821 1898 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1822 1899 #deberia cambiar para el caso de 1Mhz y 100KHz
1823 1900 x = numpy.arange(-1*dataOut.nHeights/2.,dataOut.nHeights/2.)*(c/(2*deltaHeight*dataOut.nHeights*1000))
1824 1901 #para 1Mhz descomentar la siguiente linea
1825 1902 #x= x/(10000.0)
1826 1903 # y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:])
1827 1904 # y = y.real
1828 1905 datadB = 10.*numpy.log10(dataOut.data_spc)
1829 1906 y = datadB
1830 1907
1831 1908 #thisDatetime = dataOut.datatime
1832 1909 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1833 1910 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1834 1911 xlabel = ""
1835 1912 #para 1Mhz descomentar la siguiente linea
1836 1913 #xlabel = "Frequency x 10000"
1837 1914 ylabel = "Intensity (dB)"
1838 1915
1839 1916 if not self.__isConfig:
1840 1917 nplots = len(channelIndexList)
1841 1918
1842 1919 self.setup(id=id,
1843 1920 nplots=nplots,
1844 1921 wintitle=wintitle,
1845 1922 show=show)
1846 1923
1847 1924 if xmin == None: xmin = numpy.nanmin(x)
1848 1925 if xmax == None: xmax = numpy.nanmax(x)
1849 1926 if ymin == None: ymin = numpy.nanmin(y)
1850 1927 if ymax == None: ymax = numpy.nanmax(y)
1851 1928
1852 1929 self.__isConfig = True
1853 1930
1854 1931 self.setWinTitle(title)
1855 1932
1856 1933 for i in range(len(self.axesList)):
1857 1934 ychannel = y[i,:]
1858 1935 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
1859 1936 title = "Channel %d: %4.2fdB: %s" %(i, numpy.max(ychannel), str_datetime)
1860 1937 axes = self.axesList[i]
1861 1938 axes.pline(x, ychannel,
1862 1939 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1863 1940 xlabel=xlabel, ylabel=ylabel, title=title, grid='both')
1864 1941
1865 1942
1866 1943 self.draw()
1867 1944
1868 1945 if save:
1869 1946 date = thisDatetime.strftime("%Y%m%d_%H%M%S")
1870 1947 if figfile == None:
1871 1948 figfile = self.getFilename(name = date)
1872 1949
1873 1950 self.saveFigure(figpath, figfile)
1874 1951
1875 1952 self.counter_imagwr += 1
1876 1953 if (ftp and (self.counter_imagwr==wr_period)):
1877 1954 ftp_filename = os.path.join(figpath,figfile)
1878 1955 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
1879 1956 self.counter_imagwr = 0
1880 1957
1881 1958
1882 1959 class RTIfromSpectraHeis(Figure):
1883 1960
1884 1961 __isConfig = None
1885 1962 __nsubplots = None
1886 1963
1887 1964 PREFIX = 'rtinoise'
1888 1965
1889 1966 def __init__(self):
1890 1967
1891 1968 self.timerange = 24*60*60
1892 1969 self.__isConfig = False
1893 1970 self.__nsubplots = 1
1894 1971
1895 1972 self.WIDTH = 820
1896 1973 self.HEIGHT = 200
1897 1974 self.WIDTHPROF = 120
1898 1975 self.HEIGHTPROF = 0
1899 1976 self.counter_imagwr = 0
1900 1977 self.xdata = None
1901 1978 self.ydata = None
1902 1979
1903 1980 def getSubplots(self):
1904 1981
1905 1982 ncol = 1
1906 1983 nrow = 1
1907 1984
1908 1985 return nrow, ncol
1909 1986
1910 1987 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1911 1988
1912 1989 self.__showprofile = showprofile
1913 1990 self.nplots = nplots
1914 1991
1915 1992 ncolspan = 7
1916 1993 colspan = 6
1917 1994 self.__nsubplots = 2
1918 1995
1919 1996 self.createFigure(id = id,
1920 1997 wintitle = wintitle,
1921 1998 widthplot = self.WIDTH+self.WIDTHPROF,
1922 1999 heightplot = self.HEIGHT+self.HEIGHTPROF,
1923 2000 show = show)
1924 2001
1925 2002 nrow, ncol = self.getSubplots()
1926 2003
1927 2004 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1928 2005
1929 2006
1930 2007 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
1931 2008 xmin=None, xmax=None, ymin=None, ymax=None,
1932 2009 timerange=None,
1933 2010 save=False, figpath='./', figfile=None, ftp=False, wr_period=1, show=True,
1934 2011 server=None, folder=None, username=None, password=None):
1935 2012
1936 2013 if channelList == None:
1937 2014 channelIndexList = dataOut.channelIndexList
1938 2015 channelList = dataOut.channelList
1939 2016 else:
1940 2017 channelIndexList = []
1941 2018 for channel in channelList:
1942 2019 if channel not in dataOut.channelList:
1943 2020 raise ValueError, "Channel %d is not in dataOut.channelList"
1944 2021 channelIndexList.append(dataOut.channelList.index(channel))
1945 2022
1946 2023 if timerange != None:
1947 2024 self.timerange = timerange
1948 2025
1949 2026 tmin = None
1950 2027 tmax = None
1951 2028 x = dataOut.getTimeRange()
1952 2029 y = dataOut.getHeiRange()
1953 2030
1954 2031 #factor = 1
1955 2032 data = dataOut.data_spc#/factor
1956 2033 data = numpy.average(data,axis=1)
1957 2034 datadB = 10*numpy.log10(data)
1958 2035
1959 2036 # factor = dataOut.normFactor
1960 2037 # noise = dataOut.getNoise()/factor
1961 2038 # noisedB = 10*numpy.log10(noise)
1962 2039
1963 2040 #thisDatetime = dataOut.datatime
1964 2041 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1])
1965 2042 title = wintitle + " RTI: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1966 2043 xlabel = "Local Time"
1967 2044 ylabel = "Intensity (dB)"
1968 2045
1969 2046 if not self.__isConfig:
1970 2047
1971 2048 nplots = 1
1972 2049
1973 2050 self.setup(id=id,
1974 2051 nplots=nplots,
1975 2052 wintitle=wintitle,
1976 2053 showprofile=showprofile,
1977 2054 show=show)
1978 2055
1979 2056 tmin, tmax = self.getTimeLim(x, xmin, xmax)
1980 2057 if ymin == None: ymin = numpy.nanmin(datadB)
1981 2058 if ymax == None: ymax = numpy.nanmax(datadB)
1982 2059
1983 2060 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1984 2061 self.__isConfig = True
1985 2062
1986 2063 self.xdata = numpy.array([])
1987 2064 self.ydata = numpy.array([])
1988 2065
1989 2066 self.setWinTitle(title)
1990 2067
1991 2068
1992 2069 # title = "RTI %s" %(thisDatetime.strftime("%d-%b-%Y"))
1993 2070 title = "RTI - %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1994 2071
1995 2072 legendlabels = ["channel %d"%idchannel for idchannel in channelList]
1996 2073 axes = self.axesList[0]
1997 2074
1998 2075 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1999 2076
2000 2077 if len(self.ydata)==0:
2001 2078 self.ydata = datadB[channelIndexList].reshape(-1,1)
2002 2079 else:
2003 2080 self.ydata = numpy.hstack((self.ydata, datadB[channelIndexList].reshape(-1,1)))
2004 2081
2005 2082
2006 2083 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
2007 2084 xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax,
2008 2085 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='.', markersize=8, linestyle="solid", grid='both',
2009 2086 XAxisAsTime=True
2010 2087 )
2011 2088
2012 2089 self.draw()
2013 2090
2014 2091 if save:
2015 2092
2016 2093 if figfile == None:
2017 2094 figfile = self.getFilename(name = self.name)
2018 2095
2019 2096 self.saveFigure(figpath, figfile)
2020 2097
2021 2098 self.counter_imagwr += 1
2022 2099 if (ftp and (self.counter_imagwr==wr_period)):
2023 2100 ftp_filename = os.path.join(figpath,figfile)
2024 2101 self.sendByFTP_Thread(ftp_filename, server, folder, username, password)
2025 2102 self.counter_imagwr = 0
2026 2103
2027 2104 if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax:
2028 2105 self.__isConfig = False
2029 2106 del self.xdata
2030 2107 del self.ydata
2031 2108
2032 2109
2033 2110 No newline at end of file
@@ -1,2044 +1,2066
1 1 '''
2 2
3 3 $Author: dsuarez $
4 4 $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $
5 5 '''
6 6 import os
7 7 import numpy
8 8 import datetime
9 9 import time
10 10 import math
11 11 from jrodata import *
12 12 from jrodataIO import *
13 13 from jroplot import *
14 14
15 15 try:
16 16 import cfunctions
17 17 except:
18 18 pass
19 19
20 20 class ProcessingUnit:
21 21
22 22 """
23 23 Esta es la clase base para el procesamiento de datos.
24 24
25 25 Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser:
26 26 - Metodos internos (callMethod)
27 27 - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos
28 28 tienen que ser agreagados con el metodo "add".
29 29
30 30 """
31 31 # objeto de datos de entrada (Voltage, Spectra o Correlation)
32 32 dataIn = None
33 33
34 34 # objeto de datos de entrada (Voltage, Spectra o Correlation)
35 35 dataOut = None
36 36
37 37
38 38 objectDict = None
39 39
40 40 def __init__(self):
41 41
42 42 self.objectDict = {}
43 43
44 44 def init(self):
45 45
46 46 raise ValueError, "Not implemented"
47 47
48 48 def addOperation(self, object, objId):
49 49
50 50 """
51 51 Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el
52 52 identificador asociado a este objeto.
53 53
54 54 Input:
55 55
56 56 object : objeto de la clase "Operation"
57 57
58 58 Return:
59 59
60 60 objId : identificador del objeto, necesario para ejecutar la operacion
61 61 """
62 62
63 63 self.objectDict[objId] = object
64 64
65 65 return objId
66 66
67 67 def operation(self, **kwargs):
68 68
69 69 """
70 70 Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los
71 71 atributos del objeto dataOut
72 72
73 73 Input:
74 74
75 75 **kwargs : Diccionario de argumentos de la funcion a ejecutar
76 76 """
77 77
78 78 raise ValueError, "ImplementedError"
79 79
80 80 def callMethod(self, name, **kwargs):
81 81
82 82 """
83 83 Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase.
84 84
85 85 Input:
86 86 name : nombre del metodo a ejecutar
87 87
88 88 **kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
89 89
90 90 """
91 91 if name != 'run':
92 92
93 93 if name == 'init' and self.dataIn.isEmpty():
94 94 self.dataOut.flagNoData = True
95 95 return False
96 96
97 97 if name != 'init' and self.dataOut.isEmpty():
98 98 return False
99 99
100 100 methodToCall = getattr(self, name)
101 101
102 102 methodToCall(**kwargs)
103 103
104 104 if name != 'run':
105 105 return True
106 106
107 107 if self.dataOut.isEmpty():
108 108 return False
109 109
110 110 return True
111 111
112 112 def callObject(self, objId, **kwargs):
113 113
114 114 """
115 115 Ejecuta la operacion asociada al identificador del objeto "objId"
116 116
117 117 Input:
118 118
119 119 objId : identificador del objeto a ejecutar
120 120
121 121 **kwargs : diccionario con los nombres y valores de la funcion a ejecutar.
122 122
123 123 Return:
124 124
125 125 None
126 126 """
127 127
128 128 if self.dataOut.isEmpty():
129 129 return False
130 130
131 131 object = self.objectDict[objId]
132 132
133 133 object.run(self.dataOut, **kwargs)
134 134
135 135 return True
136 136
137 137 def call(self, operationConf, **kwargs):
138 138
139 139 """
140 140 Return True si ejecuta la operacion "operationConf.name" con los
141 141 argumentos "**kwargs". False si la operacion no se ha ejecutado.
142 142 La operacion puede ser de dos tipos:
143 143
144 144 1. Un metodo propio de esta clase:
145 145
146 146 operation.type = "self"
147 147
148 148 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella:
149 149 operation.type = "other".
150 150
151 151 Este objeto de tipo Operation debe de haber sido agregado antes con el metodo:
152 152 "addOperation" e identificado con el operation.id
153 153
154 154
155 155 con el id de la operacion.
156 156
157 157 Input:
158 158
159 159 Operation : Objeto del tipo operacion con los atributos: name, type y id.
160 160
161 161 """
162 162
163 163 if operationConf.type == 'self':
164 164 sts = self.callMethod(operationConf.name, **kwargs)
165 165
166 166 if operationConf.type == 'other':
167 167 sts = self.callObject(operationConf.id, **kwargs)
168 168
169 169 return sts
170 170
171 171 def setInput(self, dataIn):
172 172
173 173 self.dataIn = dataIn
174 174
175 175 def getOutput(self):
176 176
177 177 return self.dataOut
178 178
179 179 class Operation():
180 180
181 181 """
182 182 Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit
183 183 y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de
184 184 acumulacion dentro de esta clase
185 185
186 186 Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer)
187 187
188 188 """
189 189
190 190 __buffer = None
191 191 __isConfig = False
192 192
193 193 def __init__(self):
194 194
195 195 pass
196 196
197 197 def run(self, dataIn, **kwargs):
198 198
199 199 """
200 200 Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn.
201 201
202 202 Input:
203 203
204 204 dataIn : objeto del tipo JROData
205 205
206 206 Return:
207 207
208 208 None
209 209
210 210 Affected:
211 211 __buffer : buffer de recepcion de datos.
212 212
213 213 """
214 214
215 215 raise ValueError, "ImplementedError"
216 216
217 217 class VoltageProc(ProcessingUnit):
218 218
219 219
220 220 def __init__(self):
221 221
222 222 self.objectDict = {}
223 223 self.dataOut = Voltage()
224 224 self.flip = 1
225 225
226 def __updateObjFromAmisrInput(self):
227
228 self.dataOut.timeZone = self.dataIn.timeZone
229 self.dataOut.dstFlag = self.dataIn.dstFlag
230 self.dataOut.errorCount = self.dataIn.errorCount
231 self.dataOut.useLocalTime = self.dataIn.useLocalTime
232
233 self.dataOut.flagNoData = self.dataIn.flagNoData
234 self.dataOut.data = self.dataIn.data
235 self.dataOut.utctime = self.dataIn.utctime
236 self.dataOut.channelList = self.dataIn.channelList
237 self.dataOut.timeInterval = self.dataIn.timeInterval
238 self.dataOut.heightList = self.dataIn.heightList
239 self.dataOut.nProfiles = self.dataIn.nProfiles
240
241 pass
242
226 243 def init(self):
227 244
228 self.dataOut.copy(self.dataIn)
245
246 if self.dataIn.type == 'AMISR':
247 self.__updateObjFromAmisrInput()
248
249 if self.dataIn.type == 'Voltage':
250 self.dataOut.copy(self.dataIn)
229 251 # No necesita copiar en cada init() los atributos de dataIn
230 252 # la copia deberia hacerse por cada nuevo bloque de datos
231 253
232 254 def selectChannels(self, channelList):
233 255
234 256 channelIndexList = []
235 257
236 258 for channel in channelList:
237 259 index = self.dataOut.channelList.index(channel)
238 260 channelIndexList.append(index)
239 261
240 262 self.selectChannelsByIndex(channelIndexList)
241 263
242 264 def selectChannelsByIndex(self, channelIndexList):
243 265 """
244 266 Selecciona un bloque de datos en base a canales segun el channelIndexList
245 267
246 268 Input:
247 269 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
248 270
249 271 Affected:
250 272 self.dataOut.data
251 273 self.dataOut.channelIndexList
252 274 self.dataOut.nChannels
253 275 self.dataOut.m_ProcessingHeader.totalSpectra
254 276 self.dataOut.systemHeaderObj.numChannels
255 277 self.dataOut.m_ProcessingHeader.blockSize
256 278
257 279 Return:
258 280 None
259 281 """
260 282
261 283 for channelIndex in channelIndexList:
262 284 if channelIndex not in self.dataOut.channelIndexList:
263 285 print channelIndexList
264 286 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
265 287
266 288 nChannels = len(channelIndexList)
267 289
268 290 data = self.dataOut.data[channelIndexList,:]
269 291
270 292 self.dataOut.data = data
271 293 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
272 294 # self.dataOut.nChannels = nChannels
273 295
274 296 return 1
275 297
276 298 def selectHeights(self, minHei=None, maxHei=None):
277 299 """
278 300 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
279 301 minHei <= height <= maxHei
280 302
281 303 Input:
282 304 minHei : valor minimo de altura a considerar
283 305 maxHei : valor maximo de altura a considerar
284 306
285 307 Affected:
286 308 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
287 309
288 310 Return:
289 311 1 si el metodo se ejecuto con exito caso contrario devuelve 0
290 312 """
291 313
292 314 if minHei == None:
293 315 minHei = self.dataOut.heightList[0]
294 316
295 317 if maxHei == None:
296 318 maxHei = self.dataOut.heightList[-1]
297 319
298 320 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
299 321 raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
300 322
301 323
302 324 if (maxHei > self.dataOut.heightList[-1]):
303 325 maxHei = self.dataOut.heightList[-1]
304 326 # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
305 327
306 328 minIndex = 0
307 329 maxIndex = 0
308 330 heights = self.dataOut.heightList
309 331
310 332 inda = numpy.where(heights >= minHei)
311 333 indb = numpy.where(heights <= maxHei)
312 334
313 335 try:
314 336 minIndex = inda[0][0]
315 337 except:
316 338 minIndex = 0
317 339
318 340 try:
319 341 maxIndex = indb[0][-1]
320 342 except:
321 343 maxIndex = len(heights)
322 344
323 345 self.selectHeightsByIndex(minIndex, maxIndex)
324 346
325 347 return 1
326 348
327 349
328 350 def selectHeightsByIndex(self, minIndex, maxIndex):
329 351 """
330 352 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
331 353 minIndex <= index <= maxIndex
332 354
333 355 Input:
334 356 minIndex : valor de indice minimo de altura a considerar
335 357 maxIndex : valor de indice maximo de altura a considerar
336 358
337 359 Affected:
338 360 self.dataOut.data
339 361 self.dataOut.heightList
340 362
341 363 Return:
342 364 1 si el metodo se ejecuto con exito caso contrario devuelve 0
343 365 """
344 366
345 367 if (minIndex < 0) or (minIndex > maxIndex):
346 368 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
347 369
348 370 if (maxIndex >= self.dataOut.nHeights):
349 371 maxIndex = self.dataOut.nHeights-1
350 372 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
351 373
352 374 nHeights = maxIndex - minIndex + 1
353 375
354 376 #voltage
355 377 data = self.dataOut.data[:,minIndex:maxIndex+1]
356 378
357 379 firstHeight = self.dataOut.heightList[minIndex]
358 380
359 381 self.dataOut.data = data
360 382 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
361 383
362 384 return 1
363 385
364 386
365 387 def filterByHeights(self, window):
366 388 deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
367 389
368 390 if window == None:
369 391 window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight
370 392
371 393 newdelta = deltaHeight * window
372 394 r = self.dataOut.data.shape[1] % window
373 395 buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r]
374 396 buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window)
375 397 buffer = numpy.sum(buffer,2)
376 398 self.dataOut.data = buffer
377 399 self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*(self.dataOut.nHeights-r)/window,newdelta)
378 400 self.dataOut.windowOfFilter = window
379 401
380 402 def deFlip(self):
381 403 self.dataOut.data *= self.flip
382 404 self.flip *= -1.
383 405
384 406 def setRadarFrequency(self, frequency=None):
385 407 if frequency != None:
386 408 self.dataOut.frequency = frequency
387 409
388 410 return 1
389 411
390 412 class CohInt(Operation):
391 413
392 414 __isConfig = False
393 415
394 416 __profIndex = 0
395 417 __withOverapping = False
396 418
397 419 __byTime = False
398 420 __initime = None
399 421 __lastdatatime = None
400 422 __integrationtime = None
401 423
402 424 __buffer = None
403 425
404 426 __dataReady = False
405 427
406 428 n = None
407 429
408 430
409 431 def __init__(self):
410 432
411 433 self.__isConfig = False
412 434
413 435 def setup(self, n=None, timeInterval=None, overlapping=False):
414 436 """
415 437 Set the parameters of the integration class.
416 438
417 439 Inputs:
418 440
419 441 n : Number of coherent integrations
420 442 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
421 443 overlapping :
422 444
423 445 """
424 446
425 447 self.__initime = None
426 448 self.__lastdatatime = 0
427 449 self.__buffer = None
428 450 self.__dataReady = False
429 451
430 452
431 453 if n == None and timeInterval == None:
432 454 raise ValueError, "n or timeInterval should be specified ..."
433 455
434 456 if n != None:
435 457 self.n = n
436 458 self.__byTime = False
437 459 else:
438 460 self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line
439 461 self.n = 9999
440 462 self.__byTime = True
441 463
442 464 if overlapping:
443 465 self.__withOverapping = True
444 466 self.__buffer = None
445 467 else:
446 468 self.__withOverapping = False
447 469 self.__buffer = 0
448 470
449 471 self.__profIndex = 0
450 472
451 473 def putData(self, data):
452 474
453 475 """
454 476 Add a profile to the __buffer and increase in one the __profileIndex
455 477
456 478 """
457 479
458 480 if not self.__withOverapping:
459 481 self.__buffer += data.copy()
460 482 self.__profIndex += 1
461 483 return
462 484
463 485 #Overlapping data
464 486 nChannels, nHeis = data.shape
465 487 data = numpy.reshape(data, (1, nChannels, nHeis))
466 488
467 489 #If the buffer is empty then it takes the data value
468 490 if self.__buffer == None:
469 491 self.__buffer = data
470 492 self.__profIndex += 1
471 493 return
472 494
473 495 #If the buffer length is lower than n then stakcing the data value
474 496 if self.__profIndex < self.n:
475 497 self.__buffer = numpy.vstack((self.__buffer, data))
476 498 self.__profIndex += 1
477 499 return
478 500
479 501 #If the buffer length is equal to n then replacing the last buffer value with the data value
480 502 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
481 503 self.__buffer[self.n-1] = data
482 504 self.__profIndex = self.n
483 505 return
484 506
485 507
486 508 def pushData(self):
487 509 """
488 510 Return the sum of the last profiles and the profiles used in the sum.
489 511
490 512 Affected:
491 513
492 514 self.__profileIndex
493 515
494 516 """
495 517
496 518 if not self.__withOverapping:
497 519 data = self.__buffer
498 520 n = self.__profIndex
499 521
500 522 self.__buffer = 0
501 523 self.__profIndex = 0
502 524
503 525 return data, n
504 526
505 527 #Integration with Overlapping
506 528 data = numpy.sum(self.__buffer, axis=0)
507 529 n = self.__profIndex
508 530
509 531 return data, n
510 532
511 533 def byProfiles(self, data):
512 534
513 535 self.__dataReady = False
514 536 avgdata = None
515 537 n = None
516 538
517 539 self.putData(data)
518 540
519 541 if self.__profIndex == self.n:
520 542
521 543 avgdata, n = self.pushData()
522 544 self.__dataReady = True
523 545
524 546 return avgdata
525 547
526 548 def byTime(self, data, datatime):
527 549
528 550 self.__dataReady = False
529 551 avgdata = None
530 552 n = None
531 553
532 554 self.putData(data)
533 555
534 556 if (datatime - self.__initime) >= self.__integrationtime:
535 557 avgdata, n = self.pushData()
536 558 self.n = n
537 559 self.__dataReady = True
538 560
539 561 return avgdata
540 562
541 563 def integrate(self, data, datatime=None):
542 564
543 565 if self.__initime == None:
544 566 self.__initime = datatime
545 567
546 568 if self.__byTime:
547 569 avgdata = self.byTime(data, datatime)
548 570 else:
549 571 avgdata = self.byProfiles(data)
550 572
551 573
552 574 self.__lastdatatime = datatime
553 575
554 576 if avgdata == None:
555 577 return None, None
556 578
557 579 avgdatatime = self.__initime
558 580
559 581 deltatime = datatime -self.__lastdatatime
560 582
561 583 if not self.__withOverapping:
562 584 self.__initime = datatime
563 585 else:
564 586 self.__initime += deltatime
565 587
566 588 return avgdata, avgdatatime
567 589
568 590 def run(self, dataOut, **kwargs):
569 591
570 592 if not self.__isConfig:
571 593 self.setup(**kwargs)
572 594 self.__isConfig = True
573 595
574 596 avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime)
575 597
576 598 # dataOut.timeInterval *= n
577 599 dataOut.flagNoData = True
578 600
579 601 if self.__dataReady:
580 602 dataOut.data = avgdata
581 603 dataOut.nCohInt *= self.n
582 604 dataOut.utctime = avgdatatime
583 605 dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt
584 606 dataOut.flagNoData = False
585 607
586 608
587 609 class Decoder(Operation):
588 610
589 611 __isConfig = False
590 612 __profIndex = 0
591 613
592 614 code = None
593 615
594 616 nCode = None
595 617 nBaud = None
596 618
597 619 def __init__(self):
598 620
599 621 self.__isConfig = False
600 622
601 623 def setup(self, code, shape):
602 624
603 625 self.__profIndex = 0
604 626
605 627 self.code = code
606 628
607 629 self.nCode = len(code)
608 630 self.nBaud = len(code[0])
609 631
610 632 self.__nChannels, self.__nHeis = shape
611 633
612 634 __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex)
613 635
614 636 __codeBuffer[:,0:self.nBaud] = self.code
615 637
616 638 self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1))
617 639
618 640 self.ndatadec = self.__nHeis - self.nBaud + 1
619 641
620 642 self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex)
621 643
622 644 def convolutionInFreq(self, data):
623 645
624 646 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
625 647
626 648 fft_data = numpy.fft.fft(data, axis=1)
627 649
628 650 conv = fft_data*fft_code
629 651
630 652 data = numpy.fft.ifft(conv,axis=1)
631 653
632 654 datadec = data[:,:-self.nBaud+1]
633 655
634 656 return datadec
635 657
636 658 def convolutionInFreqOpt(self, data):
637 659
638 660 fft_code = self.fft_code[self.__profIndex].reshape(1,-1)
639 661
640 662 data = cfunctions.decoder(fft_code, data)
641 663
642 664 datadec = data[:,:-self.nBaud+1]
643 665
644 666 return datadec
645 667
646 668 def convolutionInTime(self, data):
647 669
648 670 code = self.code[self.__profIndex]
649 671
650 672 for i in range(self.__nChannels):
651 673 self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='valid')
652 674
653 675 return self.datadecTime
654 676
655 677 def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0):
656 678
657 679 if code == None:
658 680 code = dataOut.code
659 681 else:
660 682 code = numpy.array(code).reshape(nCode,nBaud)
661 683 dataOut.code = code
662 684 dataOut.nCode = nCode
663 685 dataOut.nBaud = nBaud
664 686 dataOut.radarControllerHeaderObj.code = code
665 687 dataOut.radarControllerHeaderObj.nCode = nCode
666 688 dataOut.radarControllerHeaderObj.nBaud = nBaud
667 689
668 690
669 691 if not self.__isConfig:
670 692
671 693 self.setup(code, dataOut.data.shape)
672 694 self.__isConfig = True
673 695
674 696 if mode == 0:
675 697 datadec = self.convolutionInTime(dataOut.data)
676 698
677 699 if mode == 1:
678 700 datadec = self.convolutionInFreq(dataOut.data)
679 701
680 702 if mode == 2:
681 703 datadec = self.convolutionInFreqOpt(dataOut.data)
682 704
683 705 dataOut.data = datadec
684 706
685 707 dataOut.heightList = dataOut.heightList[0:self.ndatadec]
686 708
687 709 dataOut.flagDecodeData = True #asumo q la data no esta decodificada
688 710
689 711 if self.__profIndex == self.nCode-1:
690 712 self.__profIndex = 0
691 713 return 1
692 714
693 715 self.__profIndex += 1
694 716
695 717 return 1
696 718 # dataOut.flagDeflipData = True #asumo q la data no esta sin flip
697 719
698 720
699 721
700 722 class SpectraProc(ProcessingUnit):
701 723
702 724 def __init__(self):
703 725
704 726 self.objectDict = {}
705 727 self.buffer = None
706 728 self.firstdatatime = None
707 729 self.profIndex = 0
708 730 self.dataOut = Spectra()
709 731
710 732 def __updateObjFromInput(self):
711 733
712 734 self.dataOut.timeZone = self.dataIn.timeZone
713 735 self.dataOut.dstFlag = self.dataIn.dstFlag
714 736 self.dataOut.errorCount = self.dataIn.errorCount
715 737 self.dataOut.useLocalTime = self.dataIn.useLocalTime
716 738
717 739 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
718 740 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
719 741 self.dataOut.channelList = self.dataIn.channelList
720 742 self.dataOut.heightList = self.dataIn.heightList
721 743 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
722 744 # self.dataOut.nHeights = self.dataIn.nHeights
723 745 # self.dataOut.nChannels = self.dataIn.nChannels
724 746 self.dataOut.nBaud = self.dataIn.nBaud
725 747 self.dataOut.nCode = self.dataIn.nCode
726 748 self.dataOut.code = self.dataIn.code
727 749 self.dataOut.nProfiles = self.dataOut.nFFTPoints
728 750 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
729 751 self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
730 752 self.dataOut.utctime = self.firstdatatime
731 753 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
732 754 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
733 755 # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
734 756 self.dataOut.nCohInt = self.dataIn.nCohInt
735 757 self.dataOut.nIncohInt = 1
736 758 self.dataOut.ippSeconds = self.dataIn.ippSeconds
737 759 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
738 760
739 761 self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt
740 762 self.dataOut.frequency = self.dataIn.frequency
741 763 self.dataOut.realtime = self.dataIn.realtime
742 764
743 765 def __getFft(self):
744 766 """
745 767 Convierte valores de Voltaje a Spectra
746 768
747 769 Affected:
748 770 self.dataOut.data_spc
749 771 self.dataOut.data_cspc
750 772 self.dataOut.data_dc
751 773 self.dataOut.heightList
752 774 self.profIndex
753 775 self.buffer
754 776 self.dataOut.flagNoData
755 777 """
756 778 fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1)
757 779 fft_volt = fft_volt.astype(numpy.dtype('complex'))
758 780 dc = fft_volt[:,0,:]
759 781
760 782 #calculo de self-spectra
761 783 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
762 784 spc = fft_volt * numpy.conjugate(fft_volt)
763 785 spc = spc.real
764 786
765 787 blocksize = 0
766 788 blocksize += dc.size
767 789 blocksize += spc.size
768 790
769 791 cspc = None
770 792 pairIndex = 0
771 793 if self.dataOut.pairsList != None:
772 794 #calculo de cross-spectra
773 795 cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex')
774 796 for pair in self.dataOut.pairsList:
775 797 cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:])
776 798 pairIndex += 1
777 799 blocksize += cspc.size
778 800
779 801 self.dataOut.data_spc = spc
780 802 self.dataOut.data_cspc = cspc
781 803 self.dataOut.data_dc = dc
782 804 self.dataOut.blockSize = blocksize
783 805 self.dataOut.flagShiftFFT = False
784 806
785 807 def init(self, nProfiles=None, nFFTPoints=None, pairsList=None, ippFactor=None):
786 808
787 809 self.dataOut.flagNoData = True
788 810
789 811 if self.dataIn.type == "Spectra":
790 812 self.dataOut.copy(self.dataIn)
791 813 return
792 814
793 815 if self.dataIn.type == "Voltage":
794 816
795 817 if nFFTPoints == None:
796 818 raise ValueError, "This SpectraProc.init() need nFFTPoints input variable"
797 819
798 820 if pairsList == None:
799 821 nPairs = 0
800 822 else:
801 823 nPairs = len(pairsList)
802 824
803 825 if ippFactor == None:
804 826 ippFactor = 1
805 827 self.dataOut.ippFactor = ippFactor
806 828
807 829 self.dataOut.nFFTPoints = nFFTPoints
808 830 self.dataOut.pairsList = pairsList
809 831 self.dataOut.nPairs = nPairs
810 832
811 833 if self.buffer == None:
812 834 self.buffer = numpy.zeros((self.dataIn.nChannels,
813 835 nProfiles,
814 836 self.dataIn.nHeights),
815 837 dtype='complex')
816 838
817 839
818 840 self.buffer[:,self.profIndex,:] = self.dataIn.data.copy()
819 841 self.profIndex += 1
820 842
821 843 if self.firstdatatime == None:
822 844 self.firstdatatime = self.dataIn.utctime
823 845
824 846 if self.profIndex == nProfiles:
825 847 self.__updateObjFromInput()
826 848 self.__getFft()
827 849
828 850 self.dataOut.flagNoData = False
829 851
830 852 self.buffer = None
831 853 self.firstdatatime = None
832 854 self.profIndex = 0
833 855
834 856 return
835 857
836 858 raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
837 859
838 860 def selectChannels(self, channelList):
839 861
840 862 channelIndexList = []
841 863
842 864 for channel in channelList:
843 865 index = self.dataOut.channelList.index(channel)
844 866 channelIndexList.append(index)
845 867
846 868 self.selectChannelsByIndex(channelIndexList)
847 869
848 870 def selectChannelsByIndex(self, channelIndexList):
849 871 """
850 872 Selecciona un bloque de datos en base a canales segun el channelIndexList
851 873
852 874 Input:
853 875 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
854 876
855 877 Affected:
856 878 self.dataOut.data_spc
857 879 self.dataOut.channelIndexList
858 880 self.dataOut.nChannels
859 881
860 882 Return:
861 883 None
862 884 """
863 885
864 886 for channelIndex in channelIndexList:
865 887 if channelIndex not in self.dataOut.channelIndexList:
866 888 print channelIndexList
867 889 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
868 890
869 891 nChannels = len(channelIndexList)
870 892
871 893 data_spc = self.dataOut.data_spc[channelIndexList,:]
872 894
873 895 self.dataOut.data_spc = data_spc
874 896 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
875 897 # self.dataOut.nChannels = nChannels
876 898
877 899 return 1
878 900
879 901 def selectHeights(self, minHei, maxHei):
880 902 """
881 903 Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango
882 904 minHei <= height <= maxHei
883 905
884 906 Input:
885 907 minHei : valor minimo de altura a considerar
886 908 maxHei : valor maximo de altura a considerar
887 909
888 910 Affected:
889 911 Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex
890 912
891 913 Return:
892 914 1 si el metodo se ejecuto con exito caso contrario devuelve 0
893 915 """
894 916 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
895 917 raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
896 918
897 919 if (maxHei > self.dataOut.heightList[-1]):
898 920 maxHei = self.dataOut.heightList[-1]
899 921 # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei)
900 922
901 923 minIndex = 0
902 924 maxIndex = 0
903 925 heights = self.dataOut.heightList
904 926
905 927 inda = numpy.where(heights >= minHei)
906 928 indb = numpy.where(heights <= maxHei)
907 929
908 930 try:
909 931 minIndex = inda[0][0]
910 932 except:
911 933 minIndex = 0
912 934
913 935 try:
914 936 maxIndex = indb[0][-1]
915 937 except:
916 938 maxIndex = len(heights)
917 939
918 940 self.selectHeightsByIndex(minIndex, maxIndex)
919 941
920 942 return 1
921 943
922 944 def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None):
923 945 newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
924 946
925 947 if hei_ref != None:
926 948 newheis = numpy.where(self.dataOut.heightList>hei_ref)
927 949
928 950 minIndex = min(newheis[0])
929 951 maxIndex = max(newheis[0])
930 952 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
931 953 heightList = self.dataOut.heightList[minIndex:maxIndex+1]
932 954
933 955 # determina indices
934 956 nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0]))
935 957 avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0))
936 958 beacon_dB = numpy.sort(avg_dB)[-nheis:]
937 959 beacon_heiIndexList = []
938 960 for val in avg_dB.tolist():
939 961 if val >= beacon_dB[0]:
940 962 beacon_heiIndexList.append(avg_dB.tolist().index(val))
941 963
942 964 #data_spc = data_spc[:,:,beacon_heiIndexList]
943 965 data_cspc = None
944 966 if self.dataOut.data_cspc != None:
945 967 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
946 968 #data_cspc = data_cspc[:,:,beacon_heiIndexList]
947 969
948 970 data_dc = None
949 971 if self.dataOut.data_dc != None:
950 972 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
951 973 #data_dc = data_dc[:,beacon_heiIndexList]
952 974
953 975 self.dataOut.data_spc = data_spc
954 976 self.dataOut.data_cspc = data_cspc
955 977 self.dataOut.data_dc = data_dc
956 978 self.dataOut.heightList = heightList
957 979 self.dataOut.beacon_heiIndexList = beacon_heiIndexList
958 980
959 981 return 1
960 982
961 983
962 984 def selectHeightsByIndex(self, minIndex, maxIndex):
963 985 """
964 986 Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango
965 987 minIndex <= index <= maxIndex
966 988
967 989 Input:
968 990 minIndex : valor de indice minimo de altura a considerar
969 991 maxIndex : valor de indice maximo de altura a considerar
970 992
971 993 Affected:
972 994 self.dataOut.data_spc
973 995 self.dataOut.data_cspc
974 996 self.dataOut.data_dc
975 997 self.dataOut.heightList
976 998
977 999 Return:
978 1000 1 si el metodo se ejecuto con exito caso contrario devuelve 0
979 1001 """
980 1002
981 1003 if (minIndex < 0) or (minIndex > maxIndex):
982 1004 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
983 1005
984 1006 if (maxIndex >= self.dataOut.nHeights):
985 1007 maxIndex = self.dataOut.nHeights-1
986 1008 # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
987 1009
988 1010 nHeights = maxIndex - minIndex + 1
989 1011
990 1012 #Spectra
991 1013 data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1]
992 1014
993 1015 data_cspc = None
994 1016 if self.dataOut.data_cspc != None:
995 1017 data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1]
996 1018
997 1019 data_dc = None
998 1020 if self.dataOut.data_dc != None:
999 1021 data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1]
1000 1022
1001 1023 self.dataOut.data_spc = data_spc
1002 1024 self.dataOut.data_cspc = data_cspc
1003 1025 self.dataOut.data_dc = data_dc
1004 1026
1005 1027 self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1]
1006 1028
1007 1029 return 1
1008 1030
1009 1031 def removeDC(self, mode = 2):
1010 1032 jspectra = self.dataOut.data_spc
1011 1033 jcspectra = self.dataOut.data_cspc
1012 1034
1013 1035
1014 1036 num_chan = jspectra.shape[0]
1015 1037 num_hei = jspectra.shape[2]
1016 1038
1017 1039 if jcspectra != None:
1018 1040 jcspectraExist = True
1019 1041 num_pairs = jcspectra.shape[0]
1020 1042 else: jcspectraExist = False
1021 1043
1022 1044 freq_dc = jspectra.shape[1]/2
1023 1045 ind_vel = numpy.array([-2,-1,1,2]) + freq_dc
1024 1046
1025 1047 if ind_vel[0]<0:
1026 1048 ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof
1027 1049
1028 1050 if mode == 1:
1029 1051 jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION
1030 1052
1031 1053 if jcspectraExist:
1032 1054 jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2
1033 1055
1034 1056 if mode == 2:
1035 1057
1036 1058 vel = numpy.array([-2,-1,1,2])
1037 1059 xx = numpy.zeros([4,4])
1038 1060
1039 1061 for fil in range(4):
1040 1062 xx[fil,:] = vel[fil]**numpy.asarray(range(4))
1041 1063
1042 1064 xx_inv = numpy.linalg.inv(xx)
1043 1065 xx_aux = xx_inv[0,:]
1044 1066
1045 1067 for ich in range(num_chan):
1046 1068 yy = jspectra[ich,ind_vel,:]
1047 1069 jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy)
1048 1070
1049 1071 junkid = jspectra[ich,freq_dc,:]<=0
1050 1072 cjunkid = sum(junkid)
1051 1073
1052 1074 if cjunkid.any():
1053 1075 jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2
1054 1076
1055 1077 if jcspectraExist:
1056 1078 for ip in range(num_pairs):
1057 1079 yy = jcspectra[ip,ind_vel,:]
1058 1080 jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy)
1059 1081
1060 1082
1061 1083 self.dataOut.data_spc = jspectra
1062 1084 self.dataOut.data_cspc = jcspectra
1063 1085
1064 1086 return 1
1065 1087
1066 1088 def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None):
1067 1089
1068 1090 jspectra = self.dataOut.data_spc
1069 1091 jcspectra = self.dataOut.data_cspc
1070 1092 jnoise = self.dataOut.getNoise()
1071 1093 num_incoh = self.dataOut.nIncohInt
1072 1094
1073 1095 num_channel = jspectra.shape[0]
1074 1096 num_prof = jspectra.shape[1]
1075 1097 num_hei = jspectra.shape[2]
1076 1098
1077 1099 #hei_interf
1078 1100 if hei_interf == None:
1079 1101 count_hei = num_hei/2 #Como es entero no importa
1080 1102 hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei
1081 1103 hei_interf = numpy.asarray(hei_interf)[0]
1082 1104 #nhei_interf
1083 1105 if (nhei_interf == None):
1084 1106 nhei_interf = 5
1085 1107 if (nhei_interf < 1):
1086 1108 nhei_interf = 1
1087 1109 if (nhei_interf > count_hei):
1088 1110 nhei_interf = count_hei
1089 1111 if (offhei_interf == None):
1090 1112 offhei_interf = 0
1091 1113
1092 1114 ind_hei = range(num_hei)
1093 1115 # mask_prof = numpy.asarray(range(num_prof - 2)) + 1
1094 1116 # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1
1095 1117 mask_prof = numpy.asarray(range(num_prof))
1096 1118 num_mask_prof = mask_prof.size
1097 1119 comp_mask_prof = [0, num_prof/2]
1098 1120
1099 1121
1100 1122 #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal
1101 1123 if (jnoise.size < num_channel or numpy.isnan(jnoise).any()):
1102 1124 jnoise = numpy.nan
1103 1125 noise_exist = jnoise[0] < numpy.Inf
1104 1126
1105 1127 #Subrutina de Remocion de la Interferencia
1106 1128 for ich in range(num_channel):
1107 1129 #Se ordena los espectros segun su potencia (menor a mayor)
1108 1130 power = jspectra[ich,mask_prof,:]
1109 1131 power = power[:,hei_interf]
1110 1132 power = power.sum(axis = 0)
1111 1133 psort = power.ravel().argsort()
1112 1134
1113 1135 #Se estima la interferencia promedio en los Espectros de Potencia empleando
1114 1136 junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]]
1115 1137
1116 1138 if noise_exist:
1117 1139 # tmp_noise = jnoise[ich] / num_prof
1118 1140 tmp_noise = jnoise[ich]
1119 1141 junkspc_interf = junkspc_interf - tmp_noise
1120 1142 #junkspc_interf[:,comp_mask_prof] = 0
1121 1143
1122 1144 jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf
1123 1145 jspc_interf = jspc_interf.transpose()
1124 1146 #Calculando el espectro de interferencia promedio
1125 1147 noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh))
1126 1148 noiseid = noiseid[0]
1127 1149 cnoiseid = noiseid.size
1128 1150 interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh))
1129 1151 interfid = interfid[0]
1130 1152 cinterfid = interfid.size
1131 1153
1132 1154 if (cnoiseid > 0): jspc_interf[noiseid] = 0
1133 1155
1134 1156 #Expandiendo los perfiles a limpiar
1135 1157 if (cinterfid > 0):
1136 1158 new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof
1137 1159 new_interfid = numpy.asarray(new_interfid)
1138 1160 new_interfid = {x for x in new_interfid}
1139 1161 new_interfid = numpy.array(list(new_interfid))
1140 1162 new_cinterfid = new_interfid.size
1141 1163 else: new_cinterfid = 0
1142 1164
1143 1165 for ip in range(new_cinterfid):
1144 1166 ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort()
1145 1167 jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]]
1146 1168
1147 1169
1148 1170 jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices
1149 1171
1150 1172 #Removiendo la interferencia del punto de mayor interferencia
1151 1173 ListAux = jspc_interf[mask_prof].tolist()
1152 1174 maxid = ListAux.index(max(ListAux))
1153 1175
1154 1176
1155 1177 if cinterfid > 0:
1156 1178 for ip in range(cinterfid*(interf == 2) - 1):
1157 1179 ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero()
1158 1180 cind = len(ind)
1159 1181
1160 1182 if (cind > 0):
1161 1183 jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh))
1162 1184
1163 1185 ind = numpy.array([-2,-1,1,2])
1164 1186 xx = numpy.zeros([4,4])
1165 1187
1166 1188 for id1 in range(4):
1167 1189 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
1168 1190
1169 1191 xx_inv = numpy.linalg.inv(xx)
1170 1192 xx = xx_inv[:,0]
1171 1193 ind = (ind + maxid + num_mask_prof)%num_mask_prof
1172 1194 yy = jspectra[ich,mask_prof[ind],:]
1173 1195 jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
1174 1196
1175 1197
1176 1198 indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero()
1177 1199 jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh))
1178 1200
1179 1201 #Remocion de Interferencia en el Cross Spectra
1180 1202 if jcspectra == None: return jspectra, jcspectra
1181 1203 num_pairs = jcspectra.size/(num_prof*num_hei)
1182 1204 jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei)
1183 1205
1184 1206 for ip in range(num_pairs):
1185 1207
1186 1208 #-------------------------------------------
1187 1209
1188 1210 cspower = numpy.abs(jcspectra[ip,mask_prof,:])
1189 1211 cspower = cspower[:,hei_interf]
1190 1212 cspower = cspower.sum(axis = 0)
1191 1213
1192 1214 cspsort = cspower.ravel().argsort()
1193 1215 junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]]
1194 1216 junkcspc_interf = junkcspc_interf.transpose()
1195 1217 jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf
1196 1218
1197 1219 ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort()
1198 1220
1199 1221 median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
1200 1222 median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:]))
1201 1223 junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag)
1202 1224
1203 1225 for iprof in range(num_prof):
1204 1226 ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort()
1205 1227 jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]]
1206 1228
1207 1229 #Removiendo la Interferencia
1208 1230 jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf
1209 1231
1210 1232 ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist()
1211 1233 maxid = ListAux.index(max(ListAux))
1212 1234
1213 1235 ind = numpy.array([-2,-1,1,2])
1214 1236 xx = numpy.zeros([4,4])
1215 1237
1216 1238 for id1 in range(4):
1217 1239 xx[:,id1] = ind[id1]**numpy.asarray(range(4))
1218 1240
1219 1241 xx_inv = numpy.linalg.inv(xx)
1220 1242 xx = xx_inv[:,0]
1221 1243
1222 1244 ind = (ind + maxid + num_mask_prof)%num_mask_prof
1223 1245 yy = jcspectra[ip,mask_prof[ind],:]
1224 1246 jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx)
1225 1247
1226 1248 #Guardar Resultados
1227 1249 self.dataOut.data_spc = jspectra
1228 1250 self.dataOut.data_cspc = jcspectra
1229 1251
1230 1252 return 1
1231 1253
1232 1254 def setRadarFrequency(self, frequency=None):
1233 1255 if frequency != None:
1234 1256 self.dataOut.frequency = frequency
1235 1257
1236 1258 return 1
1237 1259
1238 1260 def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None):
1239 1261 #validacion de rango
1240 1262 if minHei == None:
1241 1263 minHei = self.dataOut.heightList[0]
1242 1264
1243 1265 if maxHei == None:
1244 1266 maxHei = self.dataOut.heightList[-1]
1245 1267
1246 1268 if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei):
1247 1269 print 'minHei: %.2f is out of the heights range'%(minHei)
1248 1270 print 'minHei is setting to %.2f'%(self.dataOut.heightList[0])
1249 1271 minHei = self.dataOut.heightList[0]
1250 1272
1251 1273 if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei):
1252 1274 print 'maxHei: %.2f is out of the heights range'%(maxHei)
1253 1275 print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1])
1254 1276 maxHei = self.dataOut.heightList[-1]
1255 1277
1256 1278 # validacion de velocidades
1257 1279 velrange = self.dataOut.getVelRange(1)
1258 1280
1259 1281 if minVel == None:
1260 1282 minVel = velrange[0]
1261 1283
1262 1284 if maxVel == None:
1263 1285 maxVel = velrange[-1]
1264 1286
1265 1287 if (minVel < velrange[0]) or (minVel > maxVel):
1266 1288 print 'minVel: %.2f is out of the velocity range'%(minVel)
1267 1289 print 'minVel is setting to %.2f'%(velrange[0])
1268 1290 minVel = velrange[0]
1269 1291
1270 1292 if (maxVel > velrange[-1]) or (maxVel < minVel):
1271 1293 print 'maxVel: %.2f is out of the velocity range'%(maxVel)
1272 1294 print 'maxVel is setting to %.2f'%(velrange[-1])
1273 1295 maxVel = velrange[-1]
1274 1296
1275 1297 # seleccion de indices para rango
1276 1298 minIndex = 0
1277 1299 maxIndex = 0
1278 1300 heights = self.dataOut.heightList
1279 1301
1280 1302 inda = numpy.where(heights >= minHei)
1281 1303 indb = numpy.where(heights <= maxHei)
1282 1304
1283 1305 try:
1284 1306 minIndex = inda[0][0]
1285 1307 except:
1286 1308 minIndex = 0
1287 1309
1288 1310 try:
1289 1311 maxIndex = indb[0][-1]
1290 1312 except:
1291 1313 maxIndex = len(heights)
1292 1314
1293 1315 if (minIndex < 0) or (minIndex > maxIndex):
1294 1316 raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex)
1295 1317
1296 1318 if (maxIndex >= self.dataOut.nHeights):
1297 1319 maxIndex = self.dataOut.nHeights-1
1298 1320
1299 1321 # seleccion de indices para velocidades
1300 1322 indminvel = numpy.where(velrange >= minVel)
1301 1323 indmaxvel = numpy.where(velrange <= maxVel)
1302 1324 try:
1303 1325 minIndexVel = indminvel[0][0]
1304 1326 except:
1305 1327 minIndexVel = 0
1306 1328
1307 1329 try:
1308 1330 maxIndexVel = indmaxvel[0][-1]
1309 1331 except:
1310 1332 maxIndexVel = len(velrange)
1311 1333
1312 1334 #seleccion del espectro
1313 1335 data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1]
1314 1336 #estimacion de ruido
1315 1337 noise = numpy.zeros(self.dataOut.nChannels)
1316 1338
1317 1339 for channel in range(self.dataOut.nChannels):
1318 1340 daux = data_spc[channel,:,:]
1319 1341 noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt)
1320 1342
1321 1343 self.dataOut.noise = noise.copy()
1322 1344
1323 1345 return 1
1324 1346
1325 1347
1326 1348 class IncohInt(Operation):
1327 1349
1328 1350
1329 1351 __profIndex = 0
1330 1352 __withOverapping = False
1331 1353
1332 1354 __byTime = False
1333 1355 __initime = None
1334 1356 __lastdatatime = None
1335 1357 __integrationtime = None
1336 1358
1337 1359 __buffer_spc = None
1338 1360 __buffer_cspc = None
1339 1361 __buffer_dc = None
1340 1362
1341 1363 __dataReady = False
1342 1364
1343 1365 __timeInterval = None
1344 1366
1345 1367 n = None
1346 1368
1347 1369
1348 1370
1349 1371 def __init__(self):
1350 1372
1351 1373 self.__isConfig = False
1352 1374
1353 1375 def setup(self, n=None, timeInterval=None, overlapping=False):
1354 1376 """
1355 1377 Set the parameters of the integration class.
1356 1378
1357 1379 Inputs:
1358 1380
1359 1381 n : Number of coherent integrations
1360 1382 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
1361 1383 overlapping :
1362 1384
1363 1385 """
1364 1386
1365 1387 self.__initime = None
1366 1388 self.__lastdatatime = 0
1367 1389 self.__buffer_spc = None
1368 1390 self.__buffer_cspc = None
1369 1391 self.__buffer_dc = None
1370 1392 self.__dataReady = False
1371 1393
1372 1394
1373 1395 if n == None and timeInterval == None:
1374 1396 raise ValueError, "n or timeInterval should be specified ..."
1375 1397
1376 1398 if n != None:
1377 1399 self.n = n
1378 1400 self.__byTime = False
1379 1401 else:
1380 1402 self.__integrationtime = timeInterval #if (type(timeInterval)!=integer) -> change this line
1381 1403 self.n = 9999
1382 1404 self.__byTime = True
1383 1405
1384 1406 if overlapping:
1385 1407 self.__withOverapping = True
1386 1408 else:
1387 1409 self.__withOverapping = False
1388 1410 self.__buffer_spc = 0
1389 1411 self.__buffer_cspc = 0
1390 1412 self.__buffer_dc = 0
1391 1413
1392 1414 self.__profIndex = 0
1393 1415
1394 1416 def putData(self, data_spc, data_cspc, data_dc):
1395 1417
1396 1418 """
1397 1419 Add a profile to the __buffer_spc and increase in one the __profileIndex
1398 1420
1399 1421 """
1400 1422
1401 1423 if not self.__withOverapping:
1402 1424 self.__buffer_spc += data_spc
1403 1425
1404 1426 if data_cspc == None:
1405 1427 self.__buffer_cspc = None
1406 1428 else:
1407 1429 self.__buffer_cspc += data_cspc
1408 1430
1409 1431 if data_dc == None:
1410 1432 self.__buffer_dc = None
1411 1433 else:
1412 1434 self.__buffer_dc += data_dc
1413 1435
1414 1436 self.__profIndex += 1
1415 1437 return
1416 1438
1417 1439 #Overlapping data
1418 1440 nChannels, nFFTPoints, nHeis = data_spc.shape
1419 1441 data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis))
1420 1442 if data_cspc != None:
1421 1443 data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis))
1422 1444 if data_dc != None:
1423 1445 data_dc = numpy.reshape(data_dc, (1, -1, nHeis))
1424 1446
1425 1447 #If the buffer is empty then it takes the data value
1426 1448 if self.__buffer_spc == None:
1427 1449 self.__buffer_spc = data_spc
1428 1450
1429 1451 if data_cspc == None:
1430 1452 self.__buffer_cspc = None
1431 1453 else:
1432 1454 self.__buffer_cspc += data_cspc
1433 1455
1434 1456 if data_dc == None:
1435 1457 self.__buffer_dc = None
1436 1458 else:
1437 1459 self.__buffer_dc += data_dc
1438 1460
1439 1461 self.__profIndex += 1
1440 1462 return
1441 1463
1442 1464 #If the buffer length is lower than n then stakcing the data value
1443 1465 if self.__profIndex < self.n:
1444 1466 self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc))
1445 1467
1446 1468 if data_cspc != None:
1447 1469 self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc))
1448 1470
1449 1471 if data_dc != None:
1450 1472 self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc))
1451 1473
1452 1474 self.__profIndex += 1
1453 1475 return
1454 1476
1455 1477 #If the buffer length is equal to n then replacing the last buffer value with the data value
1456 1478 self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0)
1457 1479 self.__buffer_spc[self.n-1] = data_spc
1458 1480
1459 1481 if data_cspc != None:
1460 1482 self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0)
1461 1483 self.__buffer_cspc[self.n-1] = data_cspc
1462 1484
1463 1485 if data_dc != None:
1464 1486 self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0)
1465 1487 self.__buffer_dc[self.n-1] = data_dc
1466 1488
1467 1489 self.__profIndex = self.n
1468 1490 return
1469 1491
1470 1492
1471 1493 def pushData(self):
1472 1494 """
1473 1495 Return the sum of the last profiles and the profiles used in the sum.
1474 1496
1475 1497 Affected:
1476 1498
1477 1499 self.__profileIndex
1478 1500
1479 1501 """
1480 1502 data_spc = None
1481 1503 data_cspc = None
1482 1504 data_dc = None
1483 1505
1484 1506 if not self.__withOverapping:
1485 1507 data_spc = self.__buffer_spc
1486 1508 data_cspc = self.__buffer_cspc
1487 1509 data_dc = self.__buffer_dc
1488 1510
1489 1511 n = self.__profIndex
1490 1512
1491 1513 self.__buffer_spc = 0
1492 1514 self.__buffer_cspc = 0
1493 1515 self.__buffer_dc = 0
1494 1516 self.__profIndex = 0
1495 1517
1496 1518 return data_spc, data_cspc, data_dc, n
1497 1519
1498 1520 #Integration with Overlapping
1499 1521 data_spc = numpy.sum(self.__buffer_spc, axis=0)
1500 1522
1501 1523 if self.__buffer_cspc != None:
1502 1524 data_cspc = numpy.sum(self.__buffer_cspc, axis=0)
1503 1525
1504 1526 if self.__buffer_dc != None:
1505 1527 data_dc = numpy.sum(self.__buffer_dc, axis=0)
1506 1528
1507 1529 n = self.__profIndex
1508 1530
1509 1531 return data_spc, data_cspc, data_dc, n
1510 1532
1511 1533 def byProfiles(self, *args):
1512 1534
1513 1535 self.__dataReady = False
1514 1536 avgdata_spc = None
1515 1537 avgdata_cspc = None
1516 1538 avgdata_dc = None
1517 1539 n = None
1518 1540
1519 1541 self.putData(*args)
1520 1542
1521 1543 if self.__profIndex == self.n:
1522 1544
1523 1545 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
1524 1546 self.__dataReady = True
1525 1547
1526 1548 return avgdata_spc, avgdata_cspc, avgdata_dc
1527 1549
1528 1550 def byTime(self, datatime, *args):
1529 1551
1530 1552 self.__dataReady = False
1531 1553 avgdata_spc = None
1532 1554 avgdata_cspc = None
1533 1555 avgdata_dc = None
1534 1556 n = None
1535 1557
1536 1558 self.putData(*args)
1537 1559
1538 1560 if (datatime - self.__initime) >= self.__integrationtime:
1539 1561 avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData()
1540 1562 self.n = n
1541 1563 self.__dataReady = True
1542 1564
1543 1565 return avgdata_spc, avgdata_cspc, avgdata_dc
1544 1566
1545 1567 def integrate(self, datatime, *args):
1546 1568
1547 1569 if self.__initime == None:
1548 1570 self.__initime = datatime
1549 1571
1550 1572 if self.__byTime:
1551 1573 avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args)
1552 1574 else:
1553 1575 avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args)
1554 1576
1555 1577 self.__lastdatatime = datatime
1556 1578
1557 1579 if avgdata_spc == None:
1558 1580 return None, None, None, None
1559 1581
1560 1582 avgdatatime = self.__initime
1561 1583 try:
1562 1584 self.__timeInterval = (self.__lastdatatime - self.__initime)/(self.n - 1)
1563 1585 except:
1564 1586 self.__timeInterval = self.__lastdatatime - self.__initime
1565 1587
1566 1588 deltatime = datatime -self.__lastdatatime
1567 1589
1568 1590 if not self.__withOverapping:
1569 1591 self.__initime = datatime
1570 1592 else:
1571 1593 self.__initime += deltatime
1572 1594
1573 1595 return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc
1574 1596
1575 1597 def run(self, dataOut, n=None, timeInterval=None, overlapping=False):
1576 1598
1577 1599 if n==1:
1578 1600 dataOut.flagNoData = False
1579 1601 return
1580 1602
1581 1603 if not self.__isConfig:
1582 1604 self.setup(n, timeInterval, overlapping)
1583 1605 self.__isConfig = True
1584 1606
1585 1607 avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime,
1586 1608 dataOut.data_spc,
1587 1609 dataOut.data_cspc,
1588 1610 dataOut.data_dc)
1589 1611
1590 1612 # dataOut.timeInterval *= n
1591 1613 dataOut.flagNoData = True
1592 1614
1593 1615 if self.__dataReady:
1594 1616
1595 1617 dataOut.data_spc = avgdata_spc
1596 1618 dataOut.data_cspc = avgdata_cspc
1597 1619 dataOut.data_dc = avgdata_dc
1598 1620
1599 1621 dataOut.nIncohInt *= self.n
1600 1622 dataOut.utctime = avgdatatime
1601 1623 #dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints
1602 1624 dataOut.timeInterval = self.__timeInterval*self.n
1603 1625 dataOut.flagNoData = False
1604 1626
1605 1627 class ProfileConcat(Operation):
1606 1628
1607 1629 __isConfig = False
1608 1630 buffer = None
1609 1631
1610 1632 def __init__(self):
1611 1633
1612 1634 self.profileIndex = 0
1613 1635
1614 1636 def reset(self):
1615 1637 self.buffer = numpy.zeros_like(self.buffer)
1616 1638 self.start_index = 0
1617 1639 self.times = 1
1618 1640
1619 1641 def setup(self, data, m, n=1):
1620 1642 self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0]))
1621 1643 self.profiles = data.shape[1]
1622 1644 self.start_index = 0
1623 1645 self.times = 1
1624 1646
1625 1647 def concat(self, data):
1626 1648
1627 1649 self.buffer[:,self.start_index:self.profiles*self.times] = data.copy()
1628 1650 self.start_index = self.start_index + self.profiles
1629 1651
1630 1652 def run(self, dataOut, m):
1631 1653
1632 1654 dataOut.flagNoData = True
1633 1655
1634 1656 if not self.__isConfig:
1635 1657 self.setup(dataOut.data, m, 1)
1636 1658 self.__isConfig = True
1637 1659
1638 1660 self.concat(dataOut.data)
1639 1661 self.times += 1
1640 1662 if self.times > m:
1641 1663 dataOut.data = self.buffer
1642 1664 self.reset()
1643 1665 dataOut.flagNoData = False
1644 1666 # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas
1645 1667 deltaHeight = dataOut.heightList[1] - dataOut.heightList[0]
1646 1668 xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * 5
1647 1669 dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight)
1648 1670
1649 1671
1650 1672
1651 1673 class ProfileSelector(Operation):
1652 1674
1653 1675 profileIndex = None
1654 1676 # Tamanho total de los perfiles
1655 1677 nProfiles = None
1656 1678
1657 1679 def __init__(self):
1658 1680
1659 1681 self.profileIndex = 0
1660 1682
1661 1683 def incIndex(self):
1662 1684 self.profileIndex += 1
1663 1685
1664 1686 if self.profileIndex >= self.nProfiles:
1665 1687 self.profileIndex = 0
1666 1688
1667 1689 def isProfileInRange(self, minIndex, maxIndex):
1668 1690
1669 1691 if self.profileIndex < minIndex:
1670 1692 return False
1671 1693
1672 1694 if self.profileIndex > maxIndex:
1673 1695 return False
1674 1696
1675 1697 return True
1676 1698
1677 1699 def isProfileInList(self, profileList):
1678 1700
1679 1701 if self.profileIndex not in profileList:
1680 1702 return False
1681 1703
1682 1704 return True
1683 1705
1684 1706 def run(self, dataOut, profileList=None, profileRangeList=None):
1685 1707
1686 1708 dataOut.flagNoData = True
1687 1709 self.nProfiles = dataOut.nProfiles
1688 1710
1689 1711 if profileList != None:
1690 1712 if self.isProfileInList(profileList):
1691 1713 dataOut.flagNoData = False
1692 1714
1693 1715 self.incIndex()
1694 1716 return 1
1695 1717
1696 1718
1697 1719 elif profileRangeList != None:
1698 1720 minIndex = profileRangeList[0]
1699 1721 maxIndex = profileRangeList[1]
1700 1722 if self.isProfileInRange(minIndex, maxIndex):
1701 1723 dataOut.flagNoData = False
1702 1724
1703 1725 self.incIndex()
1704 1726 return 1
1705 1727
1706 1728 else:
1707 1729 raise ValueError, "ProfileSelector needs profileList or profileRangeList"
1708 1730
1709 1731 return 0
1710 1732
1711 1733 class SpectraHeisProc(ProcessingUnit):
1712 1734 def __init__(self):
1713 1735 self.objectDict = {}
1714 1736 # self.buffer = None
1715 1737 # self.firstdatatime = None
1716 1738 # self.profIndex = 0
1717 1739 self.dataOut = SpectraHeis()
1718 1740
1719 1741 def __updateObjFromInput(self):
1720 1742 self.dataOut.timeZone = self.dataIn.timeZone
1721 1743 self.dataOut.dstFlag = self.dataIn.dstFlag
1722 1744 self.dataOut.errorCount = self.dataIn.errorCount
1723 1745 self.dataOut.useLocalTime = self.dataIn.useLocalTime
1724 1746
1725 1747 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()#
1726 1748 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()#
1727 1749 self.dataOut.channelList = self.dataIn.channelList
1728 1750 self.dataOut.heightList = self.dataIn.heightList
1729 1751 # self.dataOut.dtype = self.dataIn.dtype
1730 1752 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
1731 1753 # self.dataOut.nHeights = self.dataIn.nHeights
1732 1754 # self.dataOut.nChannels = self.dataIn.nChannels
1733 1755 self.dataOut.nBaud = self.dataIn.nBaud
1734 1756 self.dataOut.nCode = self.dataIn.nCode
1735 1757 self.dataOut.code = self.dataIn.code
1736 1758 # self.dataOut.nProfiles = 1
1737 1759 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
1738 1760 self.dataOut.nFFTPoints = self.dataIn.nHeights
1739 1761 # self.dataOut.channelIndexList = self.dataIn.channelIndexList
1740 1762 # self.dataOut.flagNoData = self.dataIn.flagNoData
1741 1763 self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock
1742 1764 self.dataOut.utctime = self.dataIn.utctime
1743 1765 # self.dataOut.utctime = self.firstdatatime
1744 1766 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
1745 1767 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
1746 1768 # self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT
1747 1769 self.dataOut.nCohInt = self.dataIn.nCohInt
1748 1770 self.dataOut.nIncohInt = 1
1749 1771 self.dataOut.ippSeconds= self.dataIn.ippSeconds
1750 1772 self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
1751 1773
1752 1774 self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nIncohInt
1753 1775 # self.dataOut.set=self.dataIn.set
1754 1776 # self.dataOut.deltaHeight=self.dataIn.deltaHeight
1755 1777
1756 1778
1757 1779 def __updateObjFromFits(self):
1758 1780 self.dataOut.utctime = self.dataIn.utctime
1759 1781 self.dataOut.channelIndexList = self.dataIn.channelIndexList
1760 1782
1761 1783 self.dataOut.channelList = self.dataIn.channelList
1762 1784 self.dataOut.heightList = self.dataIn.heightList
1763 1785 self.dataOut.data_spc = self.dataIn.data
1764 1786 self.dataOut.timeInterval = self.dataIn.timeInterval
1765 1787 self.dataOut.timeZone = self.dataIn.timeZone
1766 1788 self.dataOut.useLocalTime = True
1767 1789 # self.dataOut.
1768 1790 # self.dataOut.
1769 1791
1770 1792 def __getFft(self):
1771 1793
1772 1794 fft_volt = numpy.fft.fft(self.dataIn.data, axis=1)
1773 1795 fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,))
1774 1796 spc = numpy.abs(fft_volt * numpy.conjugate(fft_volt))/(self.dataOut.nFFTPoints)
1775 1797 self.dataOut.data_spc = spc
1776 1798
1777 1799 def init(self):
1778 1800
1779 1801 self.dataOut.flagNoData = True
1780 1802
1781 1803 if self.dataIn.type == "Fits":
1782 1804 self.__updateObjFromFits()
1783 1805 self.dataOut.flagNoData = False
1784 1806 return
1785 1807
1786 1808 if self.dataIn.type == "SpectraHeis":
1787 1809 self.dataOut.copy(self.dataIn)
1788 1810 return
1789 1811
1790 1812 if self.dataIn.type == "Voltage":
1791 1813 self.__updateObjFromInput()
1792 1814 self.__getFft()
1793 1815 self.dataOut.flagNoData = False
1794 1816
1795 1817 return
1796 1818
1797 1819 raise ValueError, "The type object %s is not valid"%(self.dataIn.type)
1798 1820
1799 1821
1800 1822 def selectChannels(self, channelList):
1801 1823
1802 1824 channelIndexList = []
1803 1825
1804 1826 for channel in channelList:
1805 1827 index = self.dataOut.channelList.index(channel)
1806 1828 channelIndexList.append(index)
1807 1829
1808 1830 self.selectChannelsByIndex(channelIndexList)
1809 1831
1810 1832 def selectChannelsByIndex(self, channelIndexList):
1811 1833 """
1812 1834 Selecciona un bloque de datos en base a canales segun el channelIndexList
1813 1835
1814 1836 Input:
1815 1837 channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7]
1816 1838
1817 1839 Affected:
1818 1840 self.dataOut.data
1819 1841 self.dataOut.channelIndexList
1820 1842 self.dataOut.nChannels
1821 1843 self.dataOut.m_ProcessingHeader.totalSpectra
1822 1844 self.dataOut.systemHeaderObj.numChannels
1823 1845 self.dataOut.m_ProcessingHeader.blockSize
1824 1846
1825 1847 Return:
1826 1848 None
1827 1849 """
1828 1850
1829 1851 for channelIndex in channelIndexList:
1830 1852 if channelIndex not in self.dataOut.channelIndexList:
1831 1853 print channelIndexList
1832 1854 raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex
1833 1855
1834 1856 nChannels = len(channelIndexList)
1835 1857
1836 1858 data_spc = self.dataOut.data_spc[channelIndexList,:]
1837 1859
1838 1860 self.dataOut.data_spc = data_spc
1839 1861 self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList]
1840 1862
1841 1863 return 1
1842 1864
1843 1865 class IncohInt4SpectraHeis(Operation):
1844 1866
1845 1867 __isConfig = False
1846 1868
1847 1869 __profIndex = 0
1848 1870 __withOverapping = False
1849 1871
1850 1872 __byTime = False
1851 1873 __initime = None
1852 1874 __lastdatatime = None
1853 1875 __integrationtime = None
1854 1876
1855 1877 __buffer = None
1856 1878
1857 1879 __dataReady = False
1858 1880
1859 1881 n = None
1860 1882
1861 1883
1862 1884 def __init__(self):
1863 1885
1864 1886 self.__isConfig = False
1865 1887
1866 1888 def setup(self, n=None, timeInterval=None, overlapping=False):
1867 1889 """
1868 1890 Set the parameters of the integration class.
1869 1891
1870 1892 Inputs:
1871 1893
1872 1894 n : Number of coherent integrations
1873 1895 timeInterval : Time of integration. If the parameter "n" is selected this one does not work
1874 1896 overlapping :
1875 1897
1876 1898 """
1877 1899
1878 1900 self.__initime = None
1879 1901 self.__lastdatatime = 0
1880 1902 self.__buffer = None
1881 1903 self.__dataReady = False
1882 1904
1883 1905
1884 1906 if n == None and timeInterval == None:
1885 1907 raise ValueError, "n or timeInterval should be specified ..."
1886 1908
1887 1909 if n != None:
1888 1910 self.n = n
1889 1911 self.__byTime = False
1890 1912 else:
1891 1913 self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line
1892 1914 self.n = 9999
1893 1915 self.__byTime = True
1894 1916
1895 1917 if overlapping:
1896 1918 self.__withOverapping = True
1897 1919 self.__buffer = None
1898 1920 else:
1899 1921 self.__withOverapping = False
1900 1922 self.__buffer = 0
1901 1923
1902 1924 self.__profIndex = 0
1903 1925
1904 1926 def putData(self, data):
1905 1927
1906 1928 """
1907 1929 Add a profile to the __buffer and increase in one the __profileIndex
1908 1930
1909 1931 """
1910 1932
1911 1933 if not self.__withOverapping:
1912 1934 self.__buffer += data.copy()
1913 1935 self.__profIndex += 1
1914 1936 return
1915 1937
1916 1938 #Overlapping data
1917 1939 nChannels, nHeis = data.shape
1918 1940 data = numpy.reshape(data, (1, nChannels, nHeis))
1919 1941
1920 1942 #If the buffer is empty then it takes the data value
1921 1943 if self.__buffer == None:
1922 1944 self.__buffer = data
1923 1945 self.__profIndex += 1
1924 1946 return
1925 1947
1926 1948 #If the buffer length is lower than n then stakcing the data value
1927 1949 if self.__profIndex < self.n:
1928 1950 self.__buffer = numpy.vstack((self.__buffer, data))
1929 1951 self.__profIndex += 1
1930 1952 return
1931 1953
1932 1954 #If the buffer length is equal to n then replacing the last buffer value with the data value
1933 1955 self.__buffer = numpy.roll(self.__buffer, -1, axis=0)
1934 1956 self.__buffer[self.n-1] = data
1935 1957 self.__profIndex = self.n
1936 1958 return
1937 1959
1938 1960
1939 1961 def pushData(self):
1940 1962 """
1941 1963 Return the sum of the last profiles and the profiles used in the sum.
1942 1964
1943 1965 Affected:
1944 1966
1945 1967 self.__profileIndex
1946 1968
1947 1969 """
1948 1970
1949 1971 if not self.__withOverapping:
1950 1972 data = self.__buffer
1951 1973 n = self.__profIndex
1952 1974
1953 1975 self.__buffer = 0
1954 1976 self.__profIndex = 0
1955 1977
1956 1978 return data, n
1957 1979
1958 1980 #Integration with Overlapping
1959 1981 data = numpy.sum(self.__buffer, axis=0)
1960 1982 n = self.__profIndex
1961 1983
1962 1984 return data, n
1963 1985
1964 1986 def byProfiles(self, data):
1965 1987
1966 1988 self.__dataReady = False
1967 1989 avgdata = None
1968 1990 n = None
1969 1991
1970 1992 self.putData(data)
1971 1993
1972 1994 if self.__profIndex == self.n:
1973 1995
1974 1996 avgdata, n = self.pushData()
1975 1997 self.__dataReady = True
1976 1998
1977 1999 return avgdata
1978 2000
1979 2001 def byTime(self, data, datatime):
1980 2002
1981 2003 self.__dataReady = False
1982 2004 avgdata = None
1983 2005 n = None
1984 2006
1985 2007 self.putData(data)
1986 2008
1987 2009 if (datatime - self.__initime) >= self.__integrationtime:
1988 2010 avgdata, n = self.pushData()
1989 2011 self.n = n
1990 2012 self.__dataReady = True
1991 2013
1992 2014 return avgdata
1993 2015
1994 2016 def integrate(self, data, datatime=None):
1995 2017
1996 2018 if self.__initime == None:
1997 2019 self.__initime = datatime
1998 2020
1999 2021 if self.__byTime:
2000 2022 avgdata = self.byTime(data, datatime)
2001 2023 else:
2002 2024 avgdata = self.byProfiles(data)
2003 2025
2004 2026
2005 2027 self.__lastdatatime = datatime
2006 2028
2007 2029 if avgdata == None:
2008 2030 return None, None
2009 2031
2010 2032 avgdatatime = self.__initime
2011 2033
2012 2034 deltatime = datatime -self.__lastdatatime
2013 2035
2014 2036 if not self.__withOverapping:
2015 2037 self.__initime = datatime
2016 2038 else:
2017 2039 self.__initime += deltatime
2018 2040
2019 2041 return avgdata, avgdatatime
2020 2042
2021 2043 def run(self, dataOut, **kwargs):
2022 2044
2023 2045 if not self.__isConfig:
2024 2046 self.setup(**kwargs)
2025 2047 self.__isConfig = True
2026 2048
2027 2049 avgdata, avgdatatime = self.integrate(dataOut.data_spc, dataOut.utctime)
2028 2050
2029 2051 # dataOut.timeInterval *= n
2030 2052 dataOut.flagNoData = True
2031 2053
2032 2054 if self.__dataReady:
2033 2055 dataOut.data_spc = avgdata
2034 2056 dataOut.nIncohInt *= self.n
2035 2057 # dataOut.nCohInt *= self.n
2036 2058 dataOut.utctime = avgdatatime
2037 2059 dataOut.timeInterval = dataOut.ippSeconds * dataOut.nIncohInt
2038 2060 # dataOut.timeInterval = self.__timeInterval*self.n
2039 2061 dataOut.flagNoData = False
2040 2062
2041 2063
2042 2064
2043 2065
2044 2066 No newline at end of file
@@ -1,118 +1,121
1 1 import os, sys
2 2
3 3 path = os.path.split(os.getcwd())[0]
4 4 sys.path.append(path)
5 5
6 6 from controller import *
7 7
8 8 desc = "EWDrifts Experiment Test"
9 9 filename = "ewdrifts2.xml"
10 10
11 11 controllerObj = Project()
12 12
13 13 controllerObj.setup(id = '191', name='test01', description=desc)
14 14
15 15 path='/remote/ewdrifts/RAW_EXP/EW_DRIFT_FARADAY/EW_Drift'
16 16
17 17 path = '/Users/dsuarez/Documents/Radar/drifts'
18 18 path = '/Users/dsuarez/Documents/EW_DRIFT_WITH_TR'
19 path = '/home/administrator/Radar/drifts/2014'
19 20 readUnitConfObj = controllerObj.addReadUnit(datatype='Voltage',
20 21 path=path,
21 startDate='2013/01/11',
22 endDate='2013/12/12',
23 startTime='10:00:00',
22 startDate='2014/01/11',
23 endDate='2014/12/12',
24 startTime='00:00:00',
24 25 endTime='23:59:59',
25 26 online=0,
26 27 delay=5,
27 28 walk=0)
28 29
29 30 procUnitConfObj0 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId())
30 31
31 opObj11 = procUnitConfObj0.addOperation(name='ProfileSelector', optype='other')
32 opObj11.addParameter(name='profileRangeList', value='0,127', format='intlist')
33
34 opObj11 = procUnitConfObj0.addOperation(name='filterByHeights')
35 opObj11.addParameter(name='window', value='3', format='int')
36
37 opObj11 = procUnitConfObj0.addOperation(name='Decoder', optype='other')
38
39
40 procUnitConfObj1 = controllerObj.addProcUnit(datatype='Spectra', inputId=procUnitConfObj0.getId())
41 procUnitConfObj1.addParameter(name='nFFTPoints', value='128', format='int')
42 procUnitConfObj1.addParameter(name='nProfiles', value='128', format='int')
43
44
45 opObj11 = procUnitConfObj1.addOperation(name='IncohInt', optype='other')
46 opObj11.addParameter(name='timeInterval', value='60', format='float')
47
48 opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other')
49 opObj11.addParameter(name='id', value='100', format='int')
50 opObj11.addParameter(name='wintitle', value='SpectraPlot', format='str')
51 #opObj11.addParameter(name='channelList', value='0,1,2,3', format='intlist')
52 # opObj11.addParameter(name='zmin', value='0', format='int')
53 # opObj11.addParameter(name='zmax', value='100', format='int')
54 opObj11.addParameter(name='showprofile', value='0', format='int')
55 opObj11.addParameter(name='save', value='1', format='bool')
56 opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
57
58
59 opObj11 = procUnitConfObj1.addOperation(name='Noise', optype='other')
32 opObj11 = procUnitConfObj0.addOperation(name='Scope', optype='other')
60 33 opObj11.addParameter(name='id', value='101', format='int')
61 opObj11.addParameter(name='wintitle', value='TR800KW', format='str')
62 opObj11.addParameter(name='xmin', value='10', format='float')
63 opObj11.addParameter(name='xmax', value='11.5', format='float')
64 opObj11.addParameter(name='ymin', value='55', format='float')
65 opObj11.addParameter(name='ymax', value='65', format='float')
66 opObj11.addParameter(name='save', value='1', format='bool')
67 opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
68
69
34 opObj11.addParameter(name='wintitle', value='AMISR', format='str')
70 35
36 #
37 # opObj11 = procUnitConfObj0.addOperation(name='ProfileSelector', optype='other')
38 # opObj11.addParameter(name='profileRangeList', value='0,127', format='intlist')
39 #
40 # opObj11 = procUnitConfObj0.addOperation(name='filterByHeights')
41 # opObj11.addParameter(name='window', value='3', format='int')
42 #
43 # opObj11 = procUnitConfObj0.addOperation(name='Decoder', optype='other')
44 #
45 #
46 # procUnitConfObj1 = controllerObj.addProcUnit(datatype='Spectra', inputId=procUnitConfObj0.getId())
47 # procUnitConfObj1.addParameter(name='nFFTPoints', value='128', format='int')
48 # procUnitConfObj1.addParameter(name='nProfiles', value='128', format='int')
49 #
50 #
51 # opObj11 = procUnitConfObj1.addOperation(name='IncohInt', optype='other')
52 # opObj11.addParameter(name='timeInterval', value='60', format='float')
53 #
54 # opObj11 = procUnitConfObj1.addOperation(name='SpectraPlot', optype='other')
55 # opObj11.addParameter(name='id', value='100', format='int')
56 # opObj11.addParameter(name='wintitle', value='SpectraPlot', format='str')
57 # #opObj11.addParameter(name='channelList', value='0,1,2,3', format='intlist')
58 # # opObj11.addParameter(name='zmin', value='0', format='int')
59 # # opObj11.addParameter(name='zmax', value='100', format='int')
60 # opObj11.addParameter(name='showprofile', value='0', format='int')
61 # opObj11.addParameter(name='save', value='1', format='bool')
62 # opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
63 #
64 #
65 # opObj11 = procUnitConfObj1.addOperation(name='Noise', optype='other')
66 # opObj11.addParameter(name='id', value='101', format='int')
67 # opObj11.addParameter(name='wintitle', value='TR800KW', format='str')
68 # opObj11.addParameter(name='xmin', value='10', format='float')
69 # opObj11.addParameter(name='xmax', value='11.5', format='float')
70 # opObj11.addParameter(name='ymin', value='55', format='float')
71 # opObj11.addParameter(name='ymax', value='65', format='float')
72 # opObj11.addParameter(name='save', value='1', format='bool')
73 # opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
71 74
72 75 #
73 76 #opObj11 = procUnitConfObj1.addOperation(name='PowerProfilePlot', optype='other')
74 77 #opObj11.addParameter(name='idfigure', value='2', format='int')
75 78 #opObj11.addParameter(name='channelList', value='0,1,2,3', format='intlist')
76 79 #opObj11.addParameter(name='save', value='1', format='bool')
77 80 #opObj11.addParameter(name='figpath', value='/home/dsuarez/Pictures/EW_DRIFTS_2012_DEC', format='str')
78 81 ##opObj11.addParameter(name='xmin', value='10', format='int')
79 82 ##opObj11.addParameter(name='xmax', value='40', format='int')
80 83 #
81 84 # opObj11 = procUnitConfObj1.addOperation(name='CrossSpectraPlot', optype='other')
82 85 # opObj11.addParameter(name='idfigure', value='3', format='int')
83 86 # opObj11.addParameter(name='wintitle', value='CrossSpectraPlot', format='str')
84 87 # #opObj11.addParameter(name='save', value='1', format='bool')
85 88 # #opObj11.addParameter(name='figpath', value='/home/dsuarez/Pictures/EW_DRIFTS_2012_DEC', format='str')
86 89 # ##opObj11.addParameter(name='zmin', value='10', format='int')
87 90 # ##opObj11.addParameter(name='zmax', value='40', format='int')
88 91 # ##opObj11.addParameter(name='save', value='1', format='bool')
89 92 # ##opObj11.addParameter(name='figpath', value='/home/dsuarez/Pictures/cross_spc', format='str')
90 93 # opObj11.addParameter(name='zmin', value='20', format='int')
91 94 # opObj11.addParameter(name='zmax', value='40', format='int')
92 95 # opObj11.addParameter(name='save', value='1', format='bool')
93 96 # opObj11.addParameter(name='figpath', value='/home/dsuarez/Pictures/ew_drifts_mz', format='str')
94 97 #
95 #
96 opObj11 = procUnitConfObj1.addOperation(name='RTIPlot', optype='other')
97 opObj11.addParameter(name='id', value='102', format='int')
98 opObj11.addParameter(name='wintitle', value='RTIPLot', format='str')
99 opObj11.addParameter(name='xmin', value='10', format='float')
100 opObj11.addParameter(name='xmax', value='11.5', format='float')
101 # opObj11.addParameter(name='zmin', value='20', format='int')
102 # opObj11.addParameter(name='zmax', value='40', format='int')
103 # #opObj11.addParameter(name='channelList', value='0,1,2,3', format='intlist')
104 # #opObj11.addParameter(name='timerange', value='86400', format='int')
105 opObj11.addParameter(name='showprofile', value='0', format='int')
106 opObj11.addParameter(name='save', value='1', format='bool')
107 opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
98 # #
99 # opObj11 = procUnitConfObj1.addOperation(name='RTIPlot', optype='other')
100 # opObj11.addParameter(name='id', value='102', format='int')
101 # opObj11.addParameter(name='wintitle', value='RTIPLot', format='str')
102 # opObj11.addParameter(name='xmin', value='10', format='float')
103 # opObj11.addParameter(name='xmax', value='11.5', format='float')
104 # # opObj11.addParameter(name='zmin', value='20', format='int')
105 # # opObj11.addParameter(name='zmax', value='40', format='int')
106 # # #opObj11.addParameter(name='channelList', value='0,1,2,3', format='intlist')
107 # # #opObj11.addParameter(name='timerange', value='86400', format='int')
108 # opObj11.addParameter(name='showprofile', value='0', format='int')
109 # opObj11.addParameter(name='save', value='1', format='bool')
110 # opObj11.addParameter(name='figpath', value='/Users/dsuarez/Pictures/tr', format='str')
108 111
109 112 print "Escribiendo el archivo XML"
110 113 controllerObj.writeXml(filename)
111 114 print "Leyendo el archivo XML"
112 115 controllerObj.readXml(filename)
113 116
114 117 controllerObj.createObjects()
115 118 controllerObj.connectObjects()
116 119 controllerObj.run()
117 120
118 121
General Comments 0
You need to be logged in to leave comments. Login now