@@ -1,1251 +1,1234 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | # from schainpy import cSchain | |
|
13 | 12 | |
|
14 | 13 | |
|
15 | 14 | def getNumpyDtype(dataTypeCode): |
|
16 | 15 | |
|
17 | 16 | if dataTypeCode == 0: |
|
18 | 17 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
19 | 18 | elif dataTypeCode == 1: |
|
20 | 19 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
21 | 20 | elif dataTypeCode == 2: |
|
22 | 21 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
23 | 22 | elif dataTypeCode == 3: |
|
24 | 23 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
25 | 24 | elif dataTypeCode == 4: |
|
26 | 25 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
27 | 26 | elif dataTypeCode == 5: |
|
28 | 27 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
29 | 28 | else: |
|
30 | 29 | raise ValueError('dataTypeCode was not defined') |
|
31 | 30 | |
|
32 | 31 | return numpyDtype |
|
33 | 32 | |
|
34 | 33 | |
|
35 | 34 | def getDataTypeCode(numpyDtype): |
|
36 | 35 | |
|
37 | 36 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
38 | 37 | datatype = 0 |
|
39 | 38 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
40 | 39 | datatype = 1 |
|
41 | 40 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
42 | 41 | datatype = 2 |
|
43 | 42 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
44 | 43 | datatype = 3 |
|
45 | 44 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
46 | 45 | datatype = 4 |
|
47 | 46 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
48 | 47 | datatype = 5 |
|
49 | 48 | else: |
|
50 | 49 | datatype = None |
|
51 | 50 | |
|
52 | 51 | return datatype |
|
53 | 52 | |
|
54 | 53 | |
|
55 | 54 | def hildebrand_sekhon(data, navg): |
|
56 | 55 | """ |
|
57 | 56 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
58 | 57 | implementation technique is based on the fact that the standard deviation of the spectral |
|
59 | 58 | densities is equal to the mean spectral density for white Gaussian noise |
|
60 | 59 | |
|
61 | 60 | Inputs: |
|
62 | 61 | Data : heights |
|
63 | 62 | navg : numbers of averages |
|
64 | 63 | |
|
65 | 64 | Return: |
|
66 |
|
|
|
67 | anoise : noise's level | |
|
65 | mean : noise's level | |
|
68 | 66 | """ |
|
69 | 67 | |
|
70 |
sort |
|
|
71 | lenOfData = len(sortdata) | |
|
72 | nums_min = lenOfData*0.2 | |
|
73 | ||
|
74 | if nums_min <= 5: | |
|
75 | nums_min = 5 | |
|
76 | ||
|
77 | sump = 0. | |
|
78 | ||
|
79 | sumq = 0. | |
|
80 | ||
|
81 | j = 0 | |
|
82 | ||
|
83 | cont = 1 | |
|
84 | ||
|
85 | while((cont==1)and(j<lenOfData)): | |
|
86 | ||
|
87 | sump += sortdata[j] | |
|
88 | ||
|
89 | sumq += sortdata[j]**2 | |
|
90 | ||
|
91 | if j > nums_min: | |
|
92 | rtest = float(j)/(j-1) + 1.0/navg | |
|
93 | if ((sumq*j) > (rtest*sump**2)): | |
|
94 | j = j - 1 | |
|
95 | sump = sump - sortdata[j] | |
|
96 | sumq = sumq - sortdata[j]**2 | |
|
97 | cont = 0 | |
|
98 | ||
|
99 | j += 1 | |
|
100 | ||
|
101 | lnoise = sump /j | |
|
102 | ||
|
103 | return lnoise | |
|
68 | sorted_spectrum = numpy.sort(data, axis=None) | |
|
69 | nnoise = len(sorted_spectrum) # default to all points in the spectrum as noise | |
|
70 | for npts in range(1, len(sorted_spectrum)+1): | |
|
71 | partial = sorted_spectrum[:npts] | |
|
72 | mean = partial.mean() | |
|
73 | var = partial.var() | |
|
74 | if var * navg < mean**2.: | |
|
75 | nnoise = npts | |
|
76 | else: | |
|
77 | # partial spectrum no longer has characteristics of white noise | |
|
78 | break | |
|
104 | 79 | |
|
105 | # return cSchain.hildebrand_sekhon(sortdata, navg) | |
|
80 | noise_spectrum = sorted_spectrum[:nnoise] | |
|
81 | mean = noise_spectrum.mean() | |
|
82 | return mean | |
|
106 | 83 | |
|
107 | 84 | |
|
108 | 85 | class Beam: |
|
109 | 86 | |
|
110 | 87 | def __init__(self): |
|
111 | 88 | self.codeList = [] |
|
112 | 89 | self.azimuthList = [] |
|
113 | 90 | self.zenithList = [] |
|
114 | 91 | |
|
115 | 92 | |
|
116 | 93 | class GenericData(object): |
|
117 | 94 | |
|
118 | 95 | flagNoData = True |
|
119 | 96 | |
|
120 | 97 | def copy(self, inputObj=None): |
|
121 | 98 | |
|
122 | 99 | if inputObj == None: |
|
123 | 100 | return copy.deepcopy(self) |
|
124 | 101 | |
|
125 | 102 | for key in list(inputObj.__dict__.keys()): |
|
126 | 103 | |
|
127 | 104 | attribute = inputObj.__dict__[key] |
|
128 | 105 | |
|
129 | 106 | # If this attribute is a tuple or list |
|
130 | 107 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
131 | 108 | self.__dict__[key] = attribute[:] |
|
132 | 109 | continue |
|
133 | 110 | |
|
134 | 111 | # If this attribute is another object or instance |
|
135 | 112 | if hasattr(attribute, '__dict__'): |
|
136 | 113 | self.__dict__[key] = attribute.copy() |
|
137 | 114 | continue |
|
138 | 115 | |
|
139 | 116 | self.__dict__[key] = inputObj.__dict__[key] |
|
140 | 117 | |
|
141 | 118 | def deepcopy(self): |
|
142 | 119 | |
|
143 | 120 | return copy.deepcopy(self) |
|
144 | 121 | |
|
145 | 122 | def isEmpty(self): |
|
146 | 123 | |
|
147 | 124 | return self.flagNoData |
|
148 | 125 | |
|
149 | 126 | |
|
150 | 127 | class JROData(GenericData): |
|
151 | 128 | |
|
152 | 129 | # m_BasicHeader = BasicHeader() |
|
153 | 130 | # m_ProcessingHeader = ProcessingHeader() |
|
154 | 131 | |
|
155 | 132 | systemHeaderObj = SystemHeader() |
|
156 | 133 | |
|
157 | 134 | radarControllerHeaderObj = RadarControllerHeader() |
|
158 | 135 | |
|
159 | 136 | # data = None |
|
160 | 137 | |
|
161 | 138 | type = None |
|
162 | 139 | |
|
163 | 140 | datatype = None # dtype but in string |
|
164 | 141 | |
|
165 | 142 | # dtype = None |
|
166 | 143 | |
|
167 | 144 | # nChannels = None |
|
168 | 145 | |
|
169 | 146 | # nHeights = None |
|
170 | 147 | |
|
171 | 148 | nProfiles = None |
|
172 | 149 | |
|
173 | 150 | heightList = None |
|
174 | 151 | |
|
175 | 152 | channelList = None |
|
176 | 153 | |
|
177 | 154 | flagDiscontinuousBlock = False |
|
178 | 155 | |
|
179 | 156 | useLocalTime = False |
|
180 | 157 | |
|
181 | 158 | utctime = None |
|
182 | 159 | |
|
183 | 160 | timeZone = None |
|
184 | 161 | |
|
185 | 162 | dstFlag = None |
|
186 | 163 | |
|
187 | 164 | errorCount = None |
|
188 | 165 | |
|
189 | 166 | blocksize = None |
|
190 | 167 | |
|
191 | 168 | # nCode = None |
|
192 | 169 | # |
|
193 | 170 | # nBaud = None |
|
194 | 171 | # |
|
195 | 172 | # code = None |
|
196 | 173 | |
|
197 | 174 | flagDecodeData = False # asumo q la data no esta decodificada |
|
198 | 175 | |
|
199 | 176 | flagDeflipData = False # asumo q la data no esta sin flip |
|
200 | 177 | |
|
201 | 178 | flagShiftFFT = False |
|
202 | 179 | |
|
203 | 180 | # ippSeconds = None |
|
204 | 181 | |
|
205 | 182 | # timeInterval = None |
|
206 | 183 | |
|
207 | 184 | nCohInt = None |
|
208 | 185 | |
|
209 | 186 | # noise = None |
|
210 | 187 | |
|
211 | 188 | windowOfFilter = 1 |
|
212 | 189 | |
|
213 | 190 | # Speed of ligth |
|
214 | 191 | C = 3e8 |
|
215 | 192 | |
|
216 | 193 | frequency = 49.92e6 |
|
217 | 194 | |
|
218 | 195 | realtime = False |
|
219 | 196 | |
|
220 | 197 | beacon_heiIndexList = None |
|
221 | 198 | |
|
222 | 199 | last_block = None |
|
223 | 200 | |
|
224 | 201 | blocknow = None |
|
225 | 202 | |
|
226 | 203 | azimuth = None |
|
227 | 204 | |
|
228 | 205 | zenith = None |
|
229 | 206 | |
|
230 | 207 | beam = Beam() |
|
231 | 208 | |
|
232 | 209 | profileIndex = None |
|
233 | 210 | |
|
211 | error = (0, '') | |
|
212 | ||
|
213 | def __str__(self): | |
|
214 | ||
|
215 | return '{} - {}'.format(self.type, self.getDatatime()) | |
|
216 | ||
|
234 | 217 | def getNoise(self): |
|
235 | 218 | |
|
236 | 219 | raise NotImplementedError |
|
237 | 220 | |
|
238 | 221 | def getNChannels(self): |
|
239 | 222 | |
|
240 | 223 | return len(self.channelList) |
|
241 | 224 | |
|
242 | 225 | def getChannelIndexList(self): |
|
243 | 226 | |
|
244 | 227 | return list(range(self.nChannels)) |
|
245 | 228 | |
|
246 | 229 | def getNHeights(self): |
|
247 | 230 | |
|
248 | 231 | return len(self.heightList) |
|
249 | 232 | |
|
250 | 233 | def getHeiRange(self, extrapoints=0): |
|
251 | 234 | |
|
252 | 235 | heis = self.heightList |
|
253 | 236 | # deltah = self.heightList[1] - self.heightList[0] |
|
254 | 237 | # |
|
255 | 238 | # heis.append(self.heightList[-1]) |
|
256 | 239 | |
|
257 | 240 | return heis |
|
258 | 241 | |
|
259 | 242 | def getDeltaH(self): |
|
260 | 243 | |
|
261 | 244 | delta = self.heightList[1] - self.heightList[0] |
|
262 | 245 | |
|
263 | 246 | return delta |
|
264 | 247 | |
|
265 | 248 | def getltctime(self): |
|
266 | 249 | |
|
267 | 250 | if self.useLocalTime: |
|
268 | 251 | return self.utctime - self.timeZone * 60 |
|
269 | 252 | |
|
270 | 253 | return self.utctime |
|
271 | 254 | |
|
272 | 255 | def getDatatime(self): |
|
273 | 256 | |
|
274 | 257 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
275 | 258 | return datatimeValue |
|
276 | 259 | |
|
277 | 260 | def getTimeRange(self): |
|
278 | 261 | |
|
279 | 262 | datatime = [] |
|
280 | 263 | |
|
281 | 264 | datatime.append(self.ltctime) |
|
282 | 265 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
283 | 266 | |
|
284 | 267 | datatime = numpy.array(datatime) |
|
285 | 268 | |
|
286 | 269 | return datatime |
|
287 | 270 | |
|
288 | 271 | def getFmaxTimeResponse(self): |
|
289 | 272 | |
|
290 | 273 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
291 | 274 | |
|
292 | 275 | PRF = 1. / (period * self.nCohInt) |
|
293 | 276 | |
|
294 | 277 | fmax = PRF |
|
295 | 278 | |
|
296 | 279 | return fmax |
|
297 | 280 | |
|
298 | 281 | def getFmax(self): |
|
299 | 282 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
300 | 283 | |
|
301 | 284 | fmax = PRF |
|
302 | 285 | return fmax |
|
303 | 286 | |
|
304 | 287 | def getVmax(self): |
|
305 | 288 | |
|
306 | 289 | _lambda = self.C / self.frequency |
|
307 | 290 | |
|
308 | 291 | vmax = self.getFmax() * _lambda / 2 |
|
309 | 292 | |
|
310 | 293 | return vmax |
|
311 | 294 | |
|
312 | 295 | def get_ippSeconds(self): |
|
313 | 296 | ''' |
|
314 | 297 | ''' |
|
315 | 298 | return self.radarControllerHeaderObj.ippSeconds |
|
316 | 299 | |
|
317 | 300 | def set_ippSeconds(self, ippSeconds): |
|
318 | 301 | ''' |
|
319 | 302 | ''' |
|
320 | 303 | |
|
321 | 304 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
322 | 305 | |
|
323 | 306 | return |
|
324 | 307 | |
|
325 | 308 | def get_dtype(self): |
|
326 | 309 | ''' |
|
327 | 310 | ''' |
|
328 | 311 | return getNumpyDtype(self.datatype) |
|
329 | 312 | |
|
330 | 313 | def set_dtype(self, numpyDtype): |
|
331 | 314 | ''' |
|
332 | 315 | ''' |
|
333 | 316 | |
|
334 | 317 | self.datatype = getDataTypeCode(numpyDtype) |
|
335 | 318 | |
|
336 | 319 | def get_code(self): |
|
337 | 320 | ''' |
|
338 | 321 | ''' |
|
339 | 322 | return self.radarControllerHeaderObj.code |
|
340 | 323 | |
|
341 | 324 | def set_code(self, code): |
|
342 | 325 | ''' |
|
343 | 326 | ''' |
|
344 | 327 | self.radarControllerHeaderObj.code = code |
|
345 | 328 | |
|
346 | 329 | return |
|
347 | 330 | |
|
348 | 331 | def get_ncode(self): |
|
349 | 332 | ''' |
|
350 | 333 | ''' |
|
351 | 334 | return self.radarControllerHeaderObj.nCode |
|
352 | 335 | |
|
353 | 336 | def set_ncode(self, nCode): |
|
354 | 337 | ''' |
|
355 | 338 | ''' |
|
356 | 339 | self.radarControllerHeaderObj.nCode = nCode |
|
357 | 340 | |
|
358 | 341 | return |
|
359 | 342 | |
|
360 | 343 | def get_nbaud(self): |
|
361 | 344 | ''' |
|
362 | 345 | ''' |
|
363 | 346 | return self.radarControllerHeaderObj.nBaud |
|
364 | 347 | |
|
365 | 348 | def set_nbaud(self, nBaud): |
|
366 | 349 | ''' |
|
367 | 350 | ''' |
|
368 | 351 | self.radarControllerHeaderObj.nBaud = nBaud |
|
369 | 352 | |
|
370 | 353 | return |
|
371 | 354 | |
|
372 | 355 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
373 | 356 | channelIndexList = property( |
|
374 | 357 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
375 | 358 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
376 | 359 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
377 | 360 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
378 | 361 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
379 | 362 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
380 | 363 | dtype = property(get_dtype, set_dtype) |
|
381 | 364 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
382 | 365 | code = property(get_code, set_code) |
|
383 | 366 | nCode = property(get_ncode, set_ncode) |
|
384 | 367 | nBaud = property(get_nbaud, set_nbaud) |
|
385 | 368 | |
|
386 | 369 | |
|
387 | 370 | class Voltage(JROData): |
|
388 | 371 | |
|
389 | 372 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
390 | 373 | data = None |
|
391 | 374 | |
|
392 | 375 | def __init__(self): |
|
393 | 376 | ''' |
|
394 | 377 | Constructor |
|
395 | 378 | ''' |
|
396 | 379 | |
|
397 | 380 | self.useLocalTime = True |
|
398 | 381 | |
|
399 | 382 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
400 | 383 | |
|
401 | 384 | self.systemHeaderObj = SystemHeader() |
|
402 | 385 | |
|
403 | 386 | self.type = "Voltage" |
|
404 | 387 | |
|
405 | 388 | self.data = None |
|
406 | 389 | |
|
407 | 390 | # self.dtype = None |
|
408 | 391 | |
|
409 | 392 | # self.nChannels = 0 |
|
410 | 393 | |
|
411 | 394 | # self.nHeights = 0 |
|
412 | 395 | |
|
413 | 396 | self.nProfiles = None |
|
414 | 397 | |
|
415 | 398 | self.heightList = None |
|
416 | 399 | |
|
417 | 400 | self.channelList = None |
|
418 | 401 | |
|
419 | 402 | # self.channelIndexList = None |
|
420 | 403 | |
|
421 | 404 | self.flagNoData = True |
|
422 | 405 | |
|
423 | 406 | self.flagDiscontinuousBlock = False |
|
424 | 407 | |
|
425 | 408 | self.utctime = None |
|
426 | 409 | |
|
427 | 410 | self.timeZone = None |
|
428 | 411 | |
|
429 | 412 | self.dstFlag = None |
|
430 | 413 | |
|
431 | 414 | self.errorCount = None |
|
432 | 415 | |
|
433 | 416 | self.nCohInt = None |
|
434 | 417 | |
|
435 | 418 | self.blocksize = None |
|
436 | 419 | |
|
437 | 420 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
438 | 421 | |
|
439 | 422 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
440 | 423 | |
|
441 | 424 | self.flagShiftFFT = False |
|
442 | 425 | |
|
443 | 426 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
444 | 427 | |
|
445 | 428 | self.profileIndex = 0 |
|
446 | 429 | |
|
447 | 430 | def getNoisebyHildebrand(self, channel=None): |
|
448 | 431 | """ |
|
449 | 432 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
450 | 433 | |
|
451 | 434 | Return: |
|
452 | 435 | noiselevel |
|
453 | 436 | """ |
|
454 | 437 | |
|
455 | 438 | if channel != None: |
|
456 | 439 | data = self.data[channel] |
|
457 | 440 | nChannels = 1 |
|
458 | 441 | else: |
|
459 | 442 | data = self.data |
|
460 | 443 | nChannels = self.nChannels |
|
461 | 444 | |
|
462 | 445 | noise = numpy.zeros(nChannels) |
|
463 | 446 | power = data * numpy.conjugate(data) |
|
464 | 447 | |
|
465 | 448 | for thisChannel in range(nChannels): |
|
466 | 449 | if nChannels == 1: |
|
467 | 450 | daux = power[:].real |
|
468 | 451 | else: |
|
469 | 452 | daux = power[thisChannel, :].real |
|
470 | 453 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
471 | 454 | |
|
472 | 455 | return noise |
|
473 | 456 | |
|
474 | 457 | def getNoise(self, type=1, channel=None): |
|
475 | 458 | |
|
476 | 459 | if type == 1: |
|
477 | 460 | noise = self.getNoisebyHildebrand(channel) |
|
478 | 461 | |
|
479 | 462 | return noise |
|
480 | 463 | |
|
481 | 464 | def getPower(self, channel=None): |
|
482 | 465 | |
|
483 | 466 | if channel != None: |
|
484 | 467 | data = self.data[channel] |
|
485 | 468 | else: |
|
486 | 469 | data = self.data |
|
487 | 470 | |
|
488 | 471 | power = data * numpy.conjugate(data) |
|
489 | 472 | powerdB = 10 * numpy.log10(power.real) |
|
490 | 473 | powerdB = numpy.squeeze(powerdB) |
|
491 | 474 | |
|
492 | 475 | return powerdB |
|
493 | 476 | |
|
494 | 477 | def getTimeInterval(self): |
|
495 | 478 | |
|
496 | 479 | timeInterval = self.ippSeconds * self.nCohInt |
|
497 | 480 | |
|
498 | 481 | return timeInterval |
|
499 | 482 | |
|
500 | 483 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
501 | 484 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
502 | 485 | |
|
503 | 486 | |
|
504 | 487 | class Spectra(JROData): |
|
505 | 488 | |
|
506 | 489 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
507 | 490 | data_spc = None |
|
508 | 491 | |
|
509 | 492 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
510 | 493 | data_cspc = None |
|
511 | 494 | |
|
512 | 495 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
513 | 496 | data_dc = None |
|
514 | 497 | |
|
515 | 498 | # data power |
|
516 | 499 | data_pwr = None |
|
517 | 500 | |
|
518 | 501 | nFFTPoints = None |
|
519 | 502 | |
|
520 | 503 | # nPairs = None |
|
521 | 504 | |
|
522 | 505 | pairsList = None |
|
523 | 506 | |
|
524 | 507 | nIncohInt = None |
|
525 | 508 | |
|
526 | 509 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
527 | 510 | |
|
528 | 511 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
529 | 512 | |
|
530 | 513 | ippFactor = None |
|
531 | 514 | |
|
532 | 515 | profileIndex = 0 |
|
533 | 516 | |
|
534 | 517 | plotting = "spectra" |
|
535 | 518 | |
|
536 | 519 | def __init__(self): |
|
537 | 520 | ''' |
|
538 | 521 | Constructor |
|
539 | 522 | ''' |
|
540 | 523 | |
|
541 | 524 | self.useLocalTime = True |
|
542 | 525 | |
|
543 | 526 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
544 | 527 | |
|
545 | 528 | self.systemHeaderObj = SystemHeader() |
|
546 | 529 | |
|
547 | 530 | self.type = "Spectra" |
|
548 | 531 | |
|
549 | 532 | # self.data = None |
|
550 | 533 | |
|
551 | 534 | # self.dtype = None |
|
552 | 535 | |
|
553 | 536 | # self.nChannels = 0 |
|
554 | 537 | |
|
555 | 538 | # self.nHeights = 0 |
|
556 | 539 | |
|
557 | 540 | self.nProfiles = None |
|
558 | 541 | |
|
559 | 542 | self.heightList = None |
|
560 | 543 | |
|
561 | 544 | self.channelList = None |
|
562 | 545 | |
|
563 | 546 | # self.channelIndexList = None |
|
564 | 547 | |
|
565 | 548 | self.pairsList = None |
|
566 | 549 | |
|
567 | 550 | self.flagNoData = True |
|
568 | 551 | |
|
569 | 552 | self.flagDiscontinuousBlock = False |
|
570 | 553 | |
|
571 | 554 | self.utctime = None |
|
572 | 555 | |
|
573 | 556 | self.nCohInt = None |
|
574 | 557 | |
|
575 | 558 | self.nIncohInt = None |
|
576 | 559 | |
|
577 | 560 | self.blocksize = None |
|
578 | 561 | |
|
579 | 562 | self.nFFTPoints = None |
|
580 | 563 | |
|
581 | 564 | self.wavelength = None |
|
582 | 565 | |
|
583 | 566 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
584 | 567 | |
|
585 | 568 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
586 | 569 | |
|
587 | 570 | self.flagShiftFFT = False |
|
588 | 571 | |
|
589 | 572 | self.ippFactor = 1 |
|
590 | 573 | |
|
591 | 574 | #self.noise = None |
|
592 | 575 | |
|
593 | 576 | self.beacon_heiIndexList = [] |
|
594 | 577 | |
|
595 | 578 | self.noise_estimation = None |
|
596 | 579 | |
|
597 | 580 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
598 | 581 | """ |
|
599 | 582 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
600 | 583 | |
|
601 | 584 | Return: |
|
602 | 585 | noiselevel |
|
603 | 586 | """ |
|
604 | 587 | |
|
605 | 588 | noise = numpy.zeros(self.nChannels) |
|
606 | 589 | |
|
607 | 590 | for channel in range(self.nChannels): |
|
608 | 591 | daux = self.data_spc[channel, |
|
609 | 592 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
610 | 593 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
611 | 594 | |
|
612 | 595 | return noise |
|
613 | 596 | |
|
614 | 597 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
615 | 598 | |
|
616 | 599 | if self.noise_estimation is not None: |
|
617 | 600 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
618 | 601 | return self.noise_estimation |
|
619 | 602 | else: |
|
620 | 603 | noise = self.getNoisebyHildebrand( |
|
621 | 604 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
622 | 605 | return noise |
|
623 | 606 | |
|
624 | 607 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
625 | 608 | |
|
626 | 609 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
627 | 610 | freqrange = deltafreq * \ |
|
628 | 611 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
629 | 612 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
630 | 613 | |
|
631 | 614 | return freqrange |
|
632 | 615 | |
|
633 | 616 | def getAcfRange(self, extrapoints=0): |
|
634 | 617 | |
|
635 | 618 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
636 | 619 | freqrange = deltafreq * \ |
|
637 | 620 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
638 | 621 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
639 | 622 | |
|
640 | 623 | return freqrange |
|
641 | 624 | |
|
642 | 625 | def getFreqRange(self, extrapoints=0): |
|
643 | 626 | |
|
644 | 627 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
645 | 628 | freqrange = deltafreq * \ |
|
646 | 629 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
647 | 630 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
648 | 631 | |
|
649 | 632 | return freqrange |
|
650 | 633 | |
|
651 | 634 | def getVelRange(self, extrapoints=0): |
|
652 | 635 | |
|
653 | 636 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
654 | 637 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
655 | 638 | extrapoints) - self.nFFTPoints / 2.) # - deltav/2 |
|
656 | 639 | |
|
657 | 640 | return velrange |
|
658 | 641 | |
|
659 | 642 | def getNPairs(self): |
|
660 | 643 | |
|
661 | 644 | return len(self.pairsList) |
|
662 | 645 | |
|
663 | 646 | def getPairsIndexList(self): |
|
664 | 647 | |
|
665 | 648 | return list(range(self.nPairs)) |
|
666 | 649 | |
|
667 | 650 | def getNormFactor(self): |
|
668 | 651 | |
|
669 | 652 | pwcode = 1 |
|
670 | 653 | |
|
671 | 654 | if self.flagDecodeData: |
|
672 | 655 | pwcode = numpy.sum(self.code[0]**2) |
|
673 | 656 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
674 | 657 | normFactor = self.nProfiles * self.nIncohInt * \ |
|
675 | 658 | self.nCohInt * pwcode * self.windowOfFilter |
|
676 | 659 | |
|
677 | 660 | return normFactor |
|
678 | 661 | |
|
679 | 662 | def getFlagCspc(self): |
|
680 | 663 | |
|
681 | 664 | if self.data_cspc is None: |
|
682 | 665 | return True |
|
683 | 666 | |
|
684 | 667 | return False |
|
685 | 668 | |
|
686 | 669 | def getFlagDc(self): |
|
687 | 670 | |
|
688 | 671 | if self.data_dc is None: |
|
689 | 672 | return True |
|
690 | 673 | |
|
691 | 674 | return False |
|
692 | 675 | |
|
693 | 676 | def getTimeInterval(self): |
|
694 | 677 | |
|
695 | 678 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
696 | 679 | |
|
697 | 680 | return timeInterval |
|
698 | 681 | |
|
699 | 682 | def getPower(self): |
|
700 | 683 | |
|
701 | 684 | factor = self.normFactor |
|
702 | 685 | z = self.data_spc / factor |
|
703 | 686 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
704 | 687 | avg = numpy.average(z, axis=1) |
|
705 | 688 | |
|
706 | 689 | return 10 * numpy.log10(avg) |
|
707 | 690 | |
|
708 | 691 | def getCoherence(self, pairsList=None, phase=False): |
|
709 | 692 | |
|
710 | 693 | z = [] |
|
711 | 694 | if pairsList is None: |
|
712 | 695 | pairsIndexList = self.pairsIndexList |
|
713 | 696 | else: |
|
714 | 697 | pairsIndexList = [] |
|
715 | 698 | for pair in pairsList: |
|
716 | 699 | if pair not in self.pairsList: |
|
717 | 700 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
718 | 701 | pair)) |
|
719 | 702 | pairsIndexList.append(self.pairsList.index(pair)) |
|
720 | 703 | for i in range(len(pairsIndexList)): |
|
721 | 704 | pair = self.pairsList[pairsIndexList[i]] |
|
722 | 705 | ccf = numpy.average( |
|
723 | 706 | self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
724 | 707 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
725 | 708 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
726 | 709 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
727 | 710 | if phase: |
|
728 | 711 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
729 | 712 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
730 | 713 | else: |
|
731 | 714 | data = numpy.abs(avgcoherenceComplex) |
|
732 | 715 | |
|
733 | 716 | z.append(data) |
|
734 | 717 | |
|
735 | 718 | return numpy.array(z) |
|
736 | 719 | |
|
737 | 720 | def setValue(self, value): |
|
738 | 721 | |
|
739 | 722 | print("This property should not be initialized") |
|
740 | 723 | |
|
741 | 724 | return |
|
742 | 725 | |
|
743 | 726 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
744 | 727 | pairsIndexList = property( |
|
745 | 728 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
746 | 729 | normFactor = property(getNormFactor, setValue, |
|
747 | 730 | "I'm the 'getNormFactor' property.") |
|
748 | 731 | flag_cspc = property(getFlagCspc, setValue) |
|
749 | 732 | flag_dc = property(getFlagDc, setValue) |
|
750 | 733 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
751 | 734 | timeInterval = property(getTimeInterval, setValue, |
|
752 | 735 | "I'm the 'timeInterval' property") |
|
753 | 736 | |
|
754 | 737 | |
|
755 | 738 | class SpectraHeis(Spectra): |
|
756 | 739 | |
|
757 | 740 | data_spc = None |
|
758 | 741 | |
|
759 | 742 | data_cspc = None |
|
760 | 743 | |
|
761 | 744 | data_dc = None |
|
762 | 745 | |
|
763 | 746 | nFFTPoints = None |
|
764 | 747 | |
|
765 | 748 | # nPairs = None |
|
766 | 749 | |
|
767 | 750 | pairsList = None |
|
768 | 751 | |
|
769 | 752 | nCohInt = None |
|
770 | 753 | |
|
771 | 754 | nIncohInt = None |
|
772 | 755 | |
|
773 | 756 | def __init__(self): |
|
774 | 757 | |
|
775 | 758 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
776 | 759 | |
|
777 | 760 | self.systemHeaderObj = SystemHeader() |
|
778 | 761 | |
|
779 | 762 | self.type = "SpectraHeis" |
|
780 | 763 | |
|
781 | 764 | # self.dtype = None |
|
782 | 765 | |
|
783 | 766 | # self.nChannels = 0 |
|
784 | 767 | |
|
785 | 768 | # self.nHeights = 0 |
|
786 | 769 | |
|
787 | 770 | self.nProfiles = None |
|
788 | 771 | |
|
789 | 772 | self.heightList = None |
|
790 | 773 | |
|
791 | 774 | self.channelList = None |
|
792 | 775 | |
|
793 | 776 | # self.channelIndexList = None |
|
794 | 777 | |
|
795 | 778 | self.flagNoData = True |
|
796 | 779 | |
|
797 | 780 | self.flagDiscontinuousBlock = False |
|
798 | 781 | |
|
799 | 782 | # self.nPairs = 0 |
|
800 | 783 | |
|
801 | 784 | self.utctime = None |
|
802 | 785 | |
|
803 | 786 | self.blocksize = None |
|
804 | 787 | |
|
805 | 788 | self.profileIndex = 0 |
|
806 | 789 | |
|
807 | 790 | self.nCohInt = 1 |
|
808 | 791 | |
|
809 | 792 | self.nIncohInt = 1 |
|
810 | 793 | |
|
811 | 794 | def getNormFactor(self): |
|
812 | 795 | pwcode = 1 |
|
813 | 796 | if self.flagDecodeData: |
|
814 | 797 | pwcode = numpy.sum(self.code[0]**2) |
|
815 | 798 | |
|
816 | 799 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
817 | 800 | |
|
818 | 801 | return normFactor |
|
819 | 802 | |
|
820 | 803 | def getTimeInterval(self): |
|
821 | 804 | |
|
822 | 805 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
823 | 806 | |
|
824 | 807 | return timeInterval |
|
825 | 808 | |
|
826 | 809 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
827 | 810 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
828 | 811 | |
|
829 | 812 | |
|
830 | 813 | class Fits(JROData): |
|
831 | 814 | |
|
832 | 815 | heightList = None |
|
833 | 816 | |
|
834 | 817 | channelList = None |
|
835 | 818 | |
|
836 | 819 | flagNoData = True |
|
837 | 820 | |
|
838 | 821 | flagDiscontinuousBlock = False |
|
839 | 822 | |
|
840 | 823 | useLocalTime = False |
|
841 | 824 | |
|
842 | 825 | utctime = None |
|
843 | 826 | |
|
844 | 827 | timeZone = None |
|
845 | 828 | |
|
846 | 829 | # ippSeconds = None |
|
847 | 830 | |
|
848 | 831 | # timeInterval = None |
|
849 | 832 | |
|
850 | 833 | nCohInt = None |
|
851 | 834 | |
|
852 | 835 | nIncohInt = None |
|
853 | 836 | |
|
854 | 837 | noise = None |
|
855 | 838 | |
|
856 | 839 | windowOfFilter = 1 |
|
857 | 840 | |
|
858 | 841 | # Speed of ligth |
|
859 | 842 | C = 3e8 |
|
860 | 843 | |
|
861 | 844 | frequency = 49.92e6 |
|
862 | 845 | |
|
863 | 846 | realtime = False |
|
864 | 847 | |
|
865 | 848 | def __init__(self): |
|
866 | 849 | |
|
867 | 850 | self.type = "Fits" |
|
868 | 851 | |
|
869 | 852 | self.nProfiles = None |
|
870 | 853 | |
|
871 | 854 | self.heightList = None |
|
872 | 855 | |
|
873 | 856 | self.channelList = None |
|
874 | 857 | |
|
875 | 858 | # self.channelIndexList = None |
|
876 | 859 | |
|
877 | 860 | self.flagNoData = True |
|
878 | 861 | |
|
879 | 862 | self.utctime = None |
|
880 | 863 | |
|
881 | 864 | self.nCohInt = 1 |
|
882 | 865 | |
|
883 | 866 | self.nIncohInt = 1 |
|
884 | 867 | |
|
885 | 868 | self.useLocalTime = True |
|
886 | 869 | |
|
887 | 870 | self.profileIndex = 0 |
|
888 | 871 | |
|
889 | 872 | # self.utctime = None |
|
890 | 873 | # self.timeZone = None |
|
891 | 874 | # self.ltctime = None |
|
892 | 875 | # self.timeInterval = None |
|
893 | 876 | # self.header = None |
|
894 | 877 | # self.data_header = None |
|
895 | 878 | # self.data = None |
|
896 | 879 | # self.datatime = None |
|
897 | 880 | # self.flagNoData = False |
|
898 | 881 | # self.expName = '' |
|
899 | 882 | # self.nChannels = None |
|
900 | 883 | # self.nSamples = None |
|
901 | 884 | # self.dataBlocksPerFile = None |
|
902 | 885 | # self.comments = '' |
|
903 | 886 | # |
|
904 | 887 | |
|
905 | 888 | def getltctime(self): |
|
906 | 889 | |
|
907 | 890 | if self.useLocalTime: |
|
908 | 891 | return self.utctime - self.timeZone * 60 |
|
909 | 892 | |
|
910 | 893 | return self.utctime |
|
911 | 894 | |
|
912 | 895 | def getDatatime(self): |
|
913 | 896 | |
|
914 | 897 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
915 | 898 | return datatime |
|
916 | 899 | |
|
917 | 900 | def getTimeRange(self): |
|
918 | 901 | |
|
919 | 902 | datatime = [] |
|
920 | 903 | |
|
921 | 904 | datatime.append(self.ltctime) |
|
922 | 905 | datatime.append(self.ltctime + self.timeInterval) |
|
923 | 906 | |
|
924 | 907 | datatime = numpy.array(datatime) |
|
925 | 908 | |
|
926 | 909 | return datatime |
|
927 | 910 | |
|
928 | 911 | def getHeiRange(self): |
|
929 | 912 | |
|
930 | 913 | heis = self.heightList |
|
931 | 914 | |
|
932 | 915 | return heis |
|
933 | 916 | |
|
934 | 917 | def getNHeights(self): |
|
935 | 918 | |
|
936 | 919 | return len(self.heightList) |
|
937 | 920 | |
|
938 | 921 | def getNChannels(self): |
|
939 | 922 | |
|
940 | 923 | return len(self.channelList) |
|
941 | 924 | |
|
942 | 925 | def getChannelIndexList(self): |
|
943 | 926 | |
|
944 | 927 | return list(range(self.nChannels)) |
|
945 | 928 | |
|
946 | 929 | def getNoise(self, type=1): |
|
947 | 930 | |
|
948 | 931 | #noise = numpy.zeros(self.nChannels) |
|
949 | 932 | |
|
950 | 933 | if type == 1: |
|
951 | 934 | noise = self.getNoisebyHildebrand() |
|
952 | 935 | |
|
953 | 936 | if type == 2: |
|
954 | 937 | noise = self.getNoisebySort() |
|
955 | 938 | |
|
956 | 939 | if type == 3: |
|
957 | 940 | noise = self.getNoisebyWindow() |
|
958 | 941 | |
|
959 | 942 | return noise |
|
960 | 943 | |
|
961 | 944 | def getTimeInterval(self): |
|
962 | 945 | |
|
963 | 946 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
964 | 947 | |
|
965 | 948 | return timeInterval |
|
966 | 949 | |
|
967 | 950 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
968 | 951 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
969 | 952 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
970 | 953 | channelIndexList = property( |
|
971 | 954 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
972 | 955 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
973 | 956 | |
|
974 | 957 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
975 | 958 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
976 | 959 | |
|
977 | 960 | |
|
978 | 961 | class Correlation(JROData): |
|
979 | 962 | |
|
980 | 963 | noise = None |
|
981 | 964 | |
|
982 | 965 | SNR = None |
|
983 | 966 | |
|
984 | 967 | #-------------------------------------------------- |
|
985 | 968 | |
|
986 | 969 | mode = None |
|
987 | 970 | |
|
988 | 971 | split = False |
|
989 | 972 | |
|
990 | 973 | data_cf = None |
|
991 | 974 | |
|
992 | 975 | lags = None |
|
993 | 976 | |
|
994 | 977 | lagRange = None |
|
995 | 978 | |
|
996 | 979 | pairsList = None |
|
997 | 980 | |
|
998 | 981 | normFactor = None |
|
999 | 982 | |
|
1000 | 983 | #-------------------------------------------------- |
|
1001 | 984 | |
|
1002 | 985 | # calculateVelocity = None |
|
1003 | 986 | |
|
1004 | 987 | nLags = None |
|
1005 | 988 | |
|
1006 | 989 | nPairs = None |
|
1007 | 990 | |
|
1008 | 991 | nAvg = None |
|
1009 | 992 | |
|
1010 | 993 | def __init__(self): |
|
1011 | 994 | ''' |
|
1012 | 995 | Constructor |
|
1013 | 996 | ''' |
|
1014 | 997 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1015 | 998 | |
|
1016 | 999 | self.systemHeaderObj = SystemHeader() |
|
1017 | 1000 | |
|
1018 | 1001 | self.type = "Correlation" |
|
1019 | 1002 | |
|
1020 | 1003 | self.data = None |
|
1021 | 1004 | |
|
1022 | 1005 | self.dtype = None |
|
1023 | 1006 | |
|
1024 | 1007 | self.nProfiles = None |
|
1025 | 1008 | |
|
1026 | 1009 | self.heightList = None |
|
1027 | 1010 | |
|
1028 | 1011 | self.channelList = None |
|
1029 | 1012 | |
|
1030 | 1013 | self.flagNoData = True |
|
1031 | 1014 | |
|
1032 | 1015 | self.flagDiscontinuousBlock = False |
|
1033 | 1016 | |
|
1034 | 1017 | self.utctime = None |
|
1035 | 1018 | |
|
1036 | 1019 | self.timeZone = None |
|
1037 | 1020 | |
|
1038 | 1021 | self.dstFlag = None |
|
1039 | 1022 | |
|
1040 | 1023 | self.errorCount = None |
|
1041 | 1024 | |
|
1042 | 1025 | self.blocksize = None |
|
1043 | 1026 | |
|
1044 | 1027 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
1045 | 1028 | |
|
1046 | 1029 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
1047 | 1030 | |
|
1048 | 1031 | self.pairsList = None |
|
1049 | 1032 | |
|
1050 | 1033 | self.nPoints = None |
|
1051 | 1034 | |
|
1052 | 1035 | def getPairsList(self): |
|
1053 | 1036 | |
|
1054 | 1037 | return self.pairsList |
|
1055 | 1038 | |
|
1056 | 1039 | def getNoise(self, mode=2): |
|
1057 | 1040 | |
|
1058 | 1041 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1059 | 1042 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1060 | 1043 | |
|
1061 | 1044 | jspectra0 = self.data_corr[:, :, indR, :] |
|
1062 | 1045 | jspectra = copy.copy(jspectra0) |
|
1063 | 1046 | |
|
1064 | 1047 | num_chan = jspectra.shape[0] |
|
1065 | 1048 | num_hei = jspectra.shape[2] |
|
1066 | 1049 | |
|
1067 | 1050 | freq_dc = jspectra.shape[1] / 2 |
|
1068 | 1051 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
1069 | 1052 | |
|
1070 | 1053 | if ind_vel[0] < 0: |
|
1071 | 1054 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
1072 | 1055 | |
|
1073 | 1056 | if mode == 1: |
|
1074 | 1057 | jspectra[:, freq_dc, :] = ( |
|
1075 | 1058 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
1076 | 1059 | |
|
1077 | 1060 | if mode == 2: |
|
1078 | 1061 | |
|
1079 | 1062 | vel = numpy.array([-2, -1, 1, 2]) |
|
1080 | 1063 | xx = numpy.zeros([4, 4]) |
|
1081 | 1064 | |
|
1082 | 1065 | for fil in range(4): |
|
1083 | 1066 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
1084 | 1067 | |
|
1085 | 1068 | xx_inv = numpy.linalg.inv(xx) |
|
1086 | 1069 | xx_aux = xx_inv[0, :] |
|
1087 | 1070 | |
|
1088 | 1071 | for ich in range(num_chan): |
|
1089 | 1072 | yy = jspectra[ich, ind_vel, :] |
|
1090 | 1073 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
1091 | 1074 | |
|
1092 | 1075 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
1093 | 1076 | cjunkid = sum(junkid) |
|
1094 | 1077 | |
|
1095 | 1078 | if cjunkid.any(): |
|
1096 | 1079 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
1097 | 1080 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
1098 | 1081 | |
|
1099 | 1082 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
1100 | 1083 | |
|
1101 | 1084 | return noise |
|
1102 | 1085 | |
|
1103 | 1086 | def getTimeInterval(self): |
|
1104 | 1087 | |
|
1105 | 1088 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1106 | 1089 | |
|
1107 | 1090 | return timeInterval |
|
1108 | 1091 | |
|
1109 | 1092 | def splitFunctions(self): |
|
1110 | 1093 | |
|
1111 | 1094 | pairsList = self.pairsList |
|
1112 | 1095 | ccf_pairs = [] |
|
1113 | 1096 | acf_pairs = [] |
|
1114 | 1097 | ccf_ind = [] |
|
1115 | 1098 | acf_ind = [] |
|
1116 | 1099 | for l in range(len(pairsList)): |
|
1117 | 1100 | chan0 = pairsList[l][0] |
|
1118 | 1101 | chan1 = pairsList[l][1] |
|
1119 | 1102 | |
|
1120 | 1103 | # Obteniendo pares de Autocorrelacion |
|
1121 | 1104 | if chan0 == chan1: |
|
1122 | 1105 | acf_pairs.append(chan0) |
|
1123 | 1106 | acf_ind.append(l) |
|
1124 | 1107 | else: |
|
1125 | 1108 | ccf_pairs.append(pairsList[l]) |
|
1126 | 1109 | ccf_ind.append(l) |
|
1127 | 1110 | |
|
1128 | 1111 | data_acf = self.data_cf[acf_ind] |
|
1129 | 1112 | data_ccf = self.data_cf[ccf_ind] |
|
1130 | 1113 | |
|
1131 | 1114 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1132 | 1115 | |
|
1133 | 1116 | def getNormFactor(self): |
|
1134 | 1117 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1135 | 1118 | acf_pairs = numpy.array(acf_pairs) |
|
1136 | 1119 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1137 | 1120 | |
|
1138 | 1121 | for p in range(self.nPairs): |
|
1139 | 1122 | pair = self.pairsList[p] |
|
1140 | 1123 | |
|
1141 | 1124 | ch0 = pair[0] |
|
1142 | 1125 | ch1 = pair[1] |
|
1143 | 1126 | |
|
1144 | 1127 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1145 | 1128 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1146 | 1129 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1147 | 1130 | |
|
1148 | 1131 | return normFactor |
|
1149 | 1132 | |
|
1150 | 1133 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1151 | 1134 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1152 | 1135 | |
|
1153 | 1136 | |
|
1154 | 1137 | class Parameters(Spectra): |
|
1155 | 1138 | |
|
1156 | 1139 | experimentInfo = None # Information about the experiment |
|
1157 | 1140 | |
|
1158 | 1141 | # Information from previous data |
|
1159 | 1142 | |
|
1160 | 1143 | inputUnit = None # Type of data to be processed |
|
1161 | 1144 | |
|
1162 | 1145 | operation = None # Type of operation to parametrize |
|
1163 | 1146 | |
|
1164 | 1147 | # normFactor = None #Normalization Factor |
|
1165 | 1148 | |
|
1166 | 1149 | groupList = None # List of Pairs, Groups, etc |
|
1167 | 1150 | |
|
1168 | 1151 | # Parameters |
|
1169 | 1152 | |
|
1170 | 1153 | data_param = None # Parameters obtained |
|
1171 | 1154 | |
|
1172 | 1155 | data_pre = None # Data Pre Parametrization |
|
1173 | 1156 | |
|
1174 | 1157 | data_SNR = None # Signal to Noise Ratio |
|
1175 | 1158 | |
|
1176 | 1159 | # heightRange = None #Heights |
|
1177 | 1160 | |
|
1178 | 1161 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1179 | 1162 | |
|
1180 | 1163 | # noise = None #Noise Potency |
|
1181 | 1164 | |
|
1182 | 1165 | utctimeInit = None # Initial UTC time |
|
1183 | 1166 | |
|
1184 | 1167 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1185 | 1168 | |
|
1186 | 1169 | useLocalTime = True |
|
1187 | 1170 | |
|
1188 | 1171 | # Fitting |
|
1189 | 1172 | |
|
1190 | 1173 | data_error = None # Error of the estimation |
|
1191 | 1174 | |
|
1192 | 1175 | constants = None |
|
1193 | 1176 | |
|
1194 | 1177 | library = None |
|
1195 | 1178 | |
|
1196 | 1179 | # Output signal |
|
1197 | 1180 | |
|
1198 | 1181 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1199 | 1182 | |
|
1200 | 1183 | data_output = None # Out signal |
|
1201 | 1184 | |
|
1202 | 1185 | nAvg = None |
|
1203 | 1186 | |
|
1204 | 1187 | noise_estimation = None |
|
1205 | 1188 | |
|
1206 | 1189 | GauSPC = None # Fit gaussian SPC |
|
1207 | 1190 | |
|
1208 | 1191 | def __init__(self): |
|
1209 | 1192 | ''' |
|
1210 | 1193 | Constructor |
|
1211 | 1194 | ''' |
|
1212 | 1195 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1213 | 1196 | |
|
1214 | 1197 | self.systemHeaderObj = SystemHeader() |
|
1215 | 1198 | |
|
1216 | 1199 | self.type = "Parameters" |
|
1217 | 1200 | |
|
1218 | 1201 | def getTimeRange1(self, interval): |
|
1219 | 1202 | |
|
1220 | 1203 | datatime = [] |
|
1221 | 1204 | |
|
1222 | 1205 | if self.useLocalTime: |
|
1223 | 1206 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1224 | 1207 | else: |
|
1225 | 1208 | time1 = self.utctimeInit |
|
1226 | 1209 | |
|
1227 | 1210 | datatime.append(time1) |
|
1228 | 1211 | datatime.append(time1 + interval) |
|
1229 | 1212 | datatime = numpy.array(datatime) |
|
1230 | 1213 | |
|
1231 | 1214 | return datatime |
|
1232 | 1215 | |
|
1233 | 1216 | def getTimeInterval(self): |
|
1234 | 1217 | |
|
1235 | 1218 | if hasattr(self, 'timeInterval1'): |
|
1236 | 1219 | return self.timeInterval1 |
|
1237 | 1220 | else: |
|
1238 | 1221 | return self.paramInterval |
|
1239 | 1222 | |
|
1240 | 1223 | def setValue(self, value): |
|
1241 | 1224 | |
|
1242 | 1225 | print("This property should not be initialized") |
|
1243 | 1226 | |
|
1244 | 1227 | return |
|
1245 | 1228 | |
|
1246 | 1229 | def getNoise(self): |
|
1247 | 1230 | |
|
1248 | 1231 | return self.spc_noise |
|
1249 | 1232 | |
|
1250 | 1233 | timeInterval = property(getTimeInterval) |
|
1251 | 1234 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") No newline at end of file |
@@ -1,1335 +1,1333 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | #TODO | |
|
5 | #from schainpy import cSchain | |
|
6 | 4 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
7 | 5 | from schainpy.model.data.jrodata import Voltage |
|
8 | 6 | from schainpy.utils import log |
|
9 | 7 | from time import time |
|
10 | 8 | |
|
11 | 9 | |
|
12 | 10 | @MPDecorator |
|
13 | 11 | class VoltageProc(ProcessingUnit): |
|
14 | 12 | |
|
15 | 13 | METHODS = {} #yong |
|
16 | 14 | |
|
17 | 15 | def __init__(self):#, **kwargs): #yong |
|
18 | 16 | |
|
19 | 17 | ProcessingUnit.__init__(self)#, **kwargs) |
|
20 | 18 | |
|
21 | 19 | # self.objectDict = {} |
|
22 | 20 | self.dataOut = Voltage() |
|
23 | 21 | self.flip = 1 |
|
24 | 22 | self.setupReq = False #yong |
|
25 | 23 | |
|
26 | 24 | def run(self): |
|
27 | 25 | |
|
28 | 26 | if self.dataIn.type == 'AMISR': |
|
29 | 27 | self.__updateObjFromAmisrInput() |
|
30 | 28 | |
|
31 | 29 | if self.dataIn.type == 'Voltage': |
|
32 | 30 | self.dataOut.copy(self.dataIn) |
|
33 | 31 | |
|
34 | 32 | # self.dataOut.copy(self.dataIn) |
|
35 | 33 | |
|
36 | 34 | def __updateObjFromAmisrInput(self): |
|
37 | 35 | |
|
38 | 36 | self.dataOut.timeZone = self.dataIn.timeZone |
|
39 | 37 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
40 | 38 | self.dataOut.errorCount = self.dataIn.errorCount |
|
41 | 39 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
42 | 40 | |
|
43 | 41 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
44 | 42 | self.dataOut.data = self.dataIn.data |
|
45 | 43 | self.dataOut.utctime = self.dataIn.utctime |
|
46 | 44 | self.dataOut.channelList = self.dataIn.channelList |
|
47 | 45 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
48 | 46 | self.dataOut.heightList = self.dataIn.heightList |
|
49 | 47 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
50 | 48 | |
|
51 | 49 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
52 | 50 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
53 | 51 | self.dataOut.frequency = self.dataIn.frequency |
|
54 | 52 | |
|
55 | 53 | self.dataOut.azimuth = self.dataIn.azimuth |
|
56 | 54 | self.dataOut.zenith = self.dataIn.zenith |
|
57 | 55 | |
|
58 | 56 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
59 | 57 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
60 | 58 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
61 | 59 | # |
|
62 | 60 | # pass# |
|
63 | 61 | # |
|
64 | 62 | # def init(self): |
|
65 | 63 | # |
|
66 | 64 | # |
|
67 | 65 | # if self.dataIn.type == 'AMISR': |
|
68 | 66 | # self.__updateObjFromAmisrInput() |
|
69 | 67 | # |
|
70 | 68 | # if self.dataIn.type == 'Voltage': |
|
71 | 69 | # self.dataOut.copy(self.dataIn) |
|
72 | 70 | # # No necesita copiar en cada init() los atributos de dataIn |
|
73 | 71 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
74 | 72 | |
|
75 | 73 | def selectChannels(self, channelList): |
|
76 | 74 | |
|
77 | 75 | channelIndexList = [] |
|
78 | 76 | |
|
79 | 77 | for channel in channelList: |
|
80 | 78 | if channel not in self.dataOut.channelList: |
|
81 | 79 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
82 | 80 | |
|
83 | 81 | index = self.dataOut.channelList.index(channel) |
|
84 | 82 | channelIndexList.append(index) |
|
85 | 83 | |
|
86 | 84 | self.selectChannelsByIndex(channelIndexList) |
|
87 | 85 | |
|
88 | 86 | def selectChannelsByIndex(self, channelIndexList): |
|
89 | 87 | """ |
|
90 | 88 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
91 | 89 | |
|
92 | 90 | Input: |
|
93 | 91 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
94 | 92 | |
|
95 | 93 | Affected: |
|
96 | 94 | self.dataOut.data |
|
97 | 95 | self.dataOut.channelIndexList |
|
98 | 96 | self.dataOut.nChannels |
|
99 | 97 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
100 | 98 | self.dataOut.systemHeaderObj.numChannels |
|
101 | 99 | self.dataOut.m_ProcessingHeader.blockSize |
|
102 | 100 | |
|
103 | 101 | Return: |
|
104 | 102 | None |
|
105 | 103 | """ |
|
106 | 104 | |
|
107 | 105 | for channelIndex in channelIndexList: |
|
108 | 106 | if channelIndex not in self.dataOut.channelIndexList: |
|
109 | 107 | print(channelIndexList) |
|
110 | 108 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
111 | 109 | |
|
112 | 110 | if self.dataOut.flagDataAsBlock: |
|
113 | 111 | """ |
|
114 | 112 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
115 | 113 | """ |
|
116 | 114 | data = self.dataOut.data[channelIndexList,:,:] |
|
117 | 115 | else: |
|
118 | 116 | data = self.dataOut.data[channelIndexList,:] |
|
119 | 117 | |
|
120 | 118 | self.dataOut.data = data |
|
121 | 119 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
122 | 120 | # self.dataOut.nChannels = nChannels |
|
123 | 121 | |
|
124 | 122 | return 1 |
|
125 | 123 | |
|
126 | 124 | def selectHeights(self, minHei=None, maxHei=None): |
|
127 | 125 | """ |
|
128 | 126 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
129 | 127 | minHei <= height <= maxHei |
|
130 | 128 | |
|
131 | 129 | Input: |
|
132 | 130 | minHei : valor minimo de altura a considerar |
|
133 | 131 | maxHei : valor maximo de altura a considerar |
|
134 | 132 | |
|
135 | 133 | Affected: |
|
136 | 134 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
137 | 135 | |
|
138 | 136 | Return: |
|
139 | 137 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
140 | 138 | """ |
|
141 | 139 | |
|
142 | 140 | if minHei == None: |
|
143 | 141 | minHei = self.dataOut.heightList[0] |
|
144 | 142 | |
|
145 | 143 | if maxHei == None: |
|
146 | 144 | maxHei = self.dataOut.heightList[-1] |
|
147 | 145 | |
|
148 | 146 | if (minHei < self.dataOut.heightList[0]): |
|
149 | 147 | minHei = self.dataOut.heightList[0] |
|
150 | 148 | |
|
151 | 149 | if (maxHei > self.dataOut.heightList[-1]): |
|
152 | 150 | maxHei = self.dataOut.heightList[-1] |
|
153 | 151 | |
|
154 | 152 | minIndex = 0 |
|
155 | 153 | maxIndex = 0 |
|
156 | 154 | heights = self.dataOut.heightList |
|
157 | 155 | |
|
158 | 156 | inda = numpy.where(heights >= minHei) |
|
159 | 157 | indb = numpy.where(heights <= maxHei) |
|
160 | 158 | |
|
161 | 159 | try: |
|
162 | 160 | minIndex = inda[0][0] |
|
163 | 161 | except: |
|
164 | 162 | minIndex = 0 |
|
165 | 163 | |
|
166 | 164 | try: |
|
167 | 165 | maxIndex = indb[0][-1] |
|
168 | 166 | except: |
|
169 | 167 | maxIndex = len(heights) |
|
170 | 168 | |
|
171 | 169 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
172 | 170 | |
|
173 | 171 | return 1 |
|
174 | 172 | |
|
175 | 173 | |
|
176 | 174 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
177 | 175 | """ |
|
178 | 176 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
179 | 177 | minIndex <= index <= maxIndex |
|
180 | 178 | |
|
181 | 179 | Input: |
|
182 | 180 | minIndex : valor de indice minimo de altura a considerar |
|
183 | 181 | maxIndex : valor de indice maximo de altura a considerar |
|
184 | 182 | |
|
185 | 183 | Affected: |
|
186 | 184 | self.dataOut.data |
|
187 | 185 | self.dataOut.heightList |
|
188 | 186 | |
|
189 | 187 | Return: |
|
190 | 188 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
191 | 189 | """ |
|
192 | 190 | |
|
193 | 191 | if (minIndex < 0) or (minIndex > maxIndex): |
|
194 | 192 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
195 | 193 | |
|
196 | 194 | if (maxIndex >= self.dataOut.nHeights): |
|
197 | 195 | maxIndex = self.dataOut.nHeights |
|
198 | 196 | |
|
199 | 197 | #voltage |
|
200 | 198 | if self.dataOut.flagDataAsBlock: |
|
201 | 199 | """ |
|
202 | 200 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
203 | 201 | """ |
|
204 | 202 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
205 | 203 | else: |
|
206 | 204 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
207 | 205 | |
|
208 | 206 | # firstHeight = self.dataOut.heightList[minIndex] |
|
209 | 207 | |
|
210 | 208 | self.dataOut.data = data |
|
211 | 209 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
212 | 210 | |
|
213 | 211 | if self.dataOut.nHeights <= 1: |
|
214 | 212 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
215 | 213 | |
|
216 | 214 | return 1 |
|
217 | 215 | |
|
218 | 216 | |
|
219 | 217 | def filterByHeights(self, window): |
|
220 | 218 | |
|
221 | 219 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
222 | 220 | |
|
223 | 221 | if window == None: |
|
224 | 222 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
225 | 223 | |
|
226 | 224 | newdelta = deltaHeight * window |
|
227 | 225 | r = self.dataOut.nHeights % window |
|
228 | 226 | newheights = (self.dataOut.nHeights-r)/window |
|
229 | 227 | |
|
230 | 228 | if newheights <= 1: |
|
231 | 229 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)) |
|
232 | 230 | |
|
233 | 231 | if self.dataOut.flagDataAsBlock: |
|
234 | 232 | """ |
|
235 | 233 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
236 | 234 | """ |
|
237 | 235 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
238 | 236 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
239 | 237 | buffer = numpy.sum(buffer,3) |
|
240 | 238 | |
|
241 | 239 | else: |
|
242 | 240 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
243 | 241 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
244 | 242 | buffer = numpy.sum(buffer,2) |
|
245 | 243 | |
|
246 | 244 | self.dataOut.data = buffer |
|
247 | 245 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
248 | 246 | self.dataOut.windowOfFilter = window |
|
249 | 247 | |
|
250 | 248 | def setH0(self, h0, deltaHeight = None): |
|
251 | 249 | |
|
252 | 250 | if not deltaHeight: |
|
253 | 251 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
254 | 252 | |
|
255 | 253 | nHeights = self.dataOut.nHeights |
|
256 | 254 | |
|
257 | 255 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
258 | 256 | |
|
259 | 257 | self.dataOut.heightList = newHeiRange |
|
260 | 258 | |
|
261 | 259 | def deFlip(self, channelList = []): |
|
262 | 260 | |
|
263 | 261 | data = self.dataOut.data.copy() |
|
264 | 262 | |
|
265 | 263 | if self.dataOut.flagDataAsBlock: |
|
266 | 264 | flip = self.flip |
|
267 | 265 | profileList = list(range(self.dataOut.nProfiles)) |
|
268 | 266 | |
|
269 | 267 | if not channelList: |
|
270 | 268 | for thisProfile in profileList: |
|
271 | 269 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
272 | 270 | flip *= -1.0 |
|
273 | 271 | else: |
|
274 | 272 | for thisChannel in channelList: |
|
275 | 273 | if thisChannel not in self.dataOut.channelList: |
|
276 | 274 | continue |
|
277 | 275 | |
|
278 | 276 | for thisProfile in profileList: |
|
279 | 277 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
280 | 278 | flip *= -1.0 |
|
281 | 279 | |
|
282 | 280 | self.flip = flip |
|
283 | 281 | |
|
284 | 282 | else: |
|
285 | 283 | if not channelList: |
|
286 | 284 | data[:,:] = data[:,:]*self.flip |
|
287 | 285 | else: |
|
288 | 286 | for thisChannel in channelList: |
|
289 | 287 | if thisChannel not in self.dataOut.channelList: |
|
290 | 288 | continue |
|
291 | 289 | |
|
292 | 290 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
293 | 291 | |
|
294 | 292 | self.flip *= -1. |
|
295 | 293 | |
|
296 | 294 | self.dataOut.data = data |
|
297 | 295 | |
|
298 | 296 | def setRadarFrequency(self, frequency=None): |
|
299 | 297 | |
|
300 | 298 | if frequency != None: |
|
301 | 299 | self.dataOut.frequency = frequency |
|
302 | 300 | |
|
303 | 301 | return 1 |
|
304 | 302 | |
|
305 | 303 | def interpolateHeights(self, topLim, botLim): |
|
306 | 304 | #69 al 72 para julia |
|
307 | 305 | #82-84 para meteoros |
|
308 | 306 | if len(numpy.shape(self.dataOut.data))==2: |
|
309 | 307 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
310 | 308 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
311 | 309 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
312 | 310 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
313 | 311 | else: |
|
314 | 312 | nHeights = self.dataOut.data.shape[2] |
|
315 | 313 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
316 | 314 | y = self.dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
317 | 315 | f = interpolate.interp1d(x, y, axis = 2) |
|
318 | 316 | xnew = numpy.arange(botLim,topLim+1) |
|
319 | 317 | ynew = f(xnew) |
|
320 | 318 | |
|
321 | 319 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
322 | 320 | |
|
323 | 321 | # import collections |
|
324 | 322 | @MPDecorator |
|
325 | 323 | class CohInt(Operation): |
|
326 | 324 | |
|
327 | 325 | isConfig = False |
|
328 | 326 | __profIndex = 0 |
|
329 | 327 | __byTime = False |
|
330 | 328 | __initime = None |
|
331 | 329 | __lastdatatime = None |
|
332 | 330 | __integrationtime = None |
|
333 | 331 | __buffer = None |
|
334 | 332 | __bufferStride = [] |
|
335 | 333 | __dataReady = False |
|
336 | 334 | __profIndexStride = 0 |
|
337 | 335 | __dataToPutStride = False |
|
338 | 336 | n = None |
|
339 | 337 | |
|
340 | 338 | def __init__(self):#, **kwargs): |
|
341 | 339 | |
|
342 | 340 | Operation.__init__(self)#, **kwargs) |
|
343 | 341 | |
|
344 | 342 | # self.isConfig = False |
|
345 | 343 | |
|
346 | 344 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
347 | 345 | """ |
|
348 | 346 | Set the parameters of the integration class. |
|
349 | 347 | |
|
350 | 348 | Inputs: |
|
351 | 349 | |
|
352 | 350 | n : Number of coherent integrations |
|
353 | 351 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
354 | 352 | overlapping : |
|
355 | 353 | """ |
|
356 | 354 | |
|
357 | 355 | self.__initime = None |
|
358 | 356 | self.__lastdatatime = 0 |
|
359 | 357 | self.__buffer = None |
|
360 | 358 | self.__dataReady = False |
|
361 | 359 | self.byblock = byblock |
|
362 | 360 | self.stride = stride |
|
363 | 361 | |
|
364 | 362 | if n == None and timeInterval == None: |
|
365 | 363 | raise ValueError("n or timeInterval should be specified ...") |
|
366 | 364 | |
|
367 | 365 | if n != None: |
|
368 | 366 | self.n = n |
|
369 | 367 | self.__byTime = False |
|
370 | 368 | else: |
|
371 | 369 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
372 | 370 | self.n = 9999 |
|
373 | 371 | self.__byTime = True |
|
374 | 372 | |
|
375 | 373 | if overlapping: |
|
376 | 374 | self.__withOverlapping = True |
|
377 | 375 | self.__buffer = None |
|
378 | 376 | else: |
|
379 | 377 | self.__withOverlapping = False |
|
380 | 378 | self.__buffer = 0 |
|
381 | 379 | |
|
382 | 380 | self.__profIndex = 0 |
|
383 | 381 | |
|
384 | 382 | def putData(self, data): |
|
385 | 383 | |
|
386 | 384 | """ |
|
387 | 385 | Add a profile to the __buffer and increase in one the __profileIndex |
|
388 | 386 | |
|
389 | 387 | """ |
|
390 | 388 | |
|
391 | 389 | if not self.__withOverlapping: |
|
392 | 390 | self.__buffer += data.copy() |
|
393 | 391 | self.__profIndex += 1 |
|
394 | 392 | return |
|
395 | 393 | |
|
396 | 394 | #Overlapping data |
|
397 | 395 | nChannels, nHeis = data.shape |
|
398 | 396 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
399 | 397 | |
|
400 | 398 | #If the buffer is empty then it takes the data value |
|
401 | 399 | if self.__buffer is None: |
|
402 | 400 | self.__buffer = data |
|
403 | 401 | self.__profIndex += 1 |
|
404 | 402 | return |
|
405 | 403 | |
|
406 | 404 | #If the buffer length is lower than n then stakcing the data value |
|
407 | 405 | if self.__profIndex < self.n: |
|
408 | 406 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
409 | 407 | self.__profIndex += 1 |
|
410 | 408 | return |
|
411 | 409 | |
|
412 | 410 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
413 | 411 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
414 | 412 | self.__buffer[self.n-1] = data |
|
415 | 413 | self.__profIndex = self.n |
|
416 | 414 | return |
|
417 | 415 | |
|
418 | 416 | |
|
419 | 417 | def pushData(self): |
|
420 | 418 | """ |
|
421 | 419 | Return the sum of the last profiles and the profiles used in the sum. |
|
422 | 420 | |
|
423 | 421 | Affected: |
|
424 | 422 | |
|
425 | 423 | self.__profileIndex |
|
426 | 424 | |
|
427 | 425 | """ |
|
428 | 426 | |
|
429 | 427 | if not self.__withOverlapping: |
|
430 | 428 | data = self.__buffer |
|
431 | 429 | n = self.__profIndex |
|
432 | 430 | |
|
433 | 431 | self.__buffer = 0 |
|
434 | 432 | self.__profIndex = 0 |
|
435 | 433 | |
|
436 | 434 | return data, n |
|
437 | 435 | |
|
438 | 436 | #Integration with Overlapping |
|
439 | 437 | data = numpy.sum(self.__buffer, axis=0) |
|
440 | 438 | # print data |
|
441 | 439 | # raise |
|
442 | 440 | n = self.__profIndex |
|
443 | 441 | |
|
444 | 442 | return data, n |
|
445 | 443 | |
|
446 | 444 | def byProfiles(self, data): |
|
447 | 445 | |
|
448 | 446 | self.__dataReady = False |
|
449 | 447 | avgdata = None |
|
450 | 448 | # n = None |
|
451 | 449 | # print data |
|
452 | 450 | # raise |
|
453 | 451 | self.putData(data) |
|
454 | 452 | |
|
455 | 453 | if self.__profIndex == self.n: |
|
456 | 454 | avgdata, n = self.pushData() |
|
457 | 455 | self.__dataReady = True |
|
458 | 456 | |
|
459 | 457 | return avgdata |
|
460 | 458 | |
|
461 | 459 | def byTime(self, data, datatime): |
|
462 | 460 | |
|
463 | 461 | self.__dataReady = False |
|
464 | 462 | avgdata = None |
|
465 | 463 | n = None |
|
466 | 464 | |
|
467 | 465 | self.putData(data) |
|
468 | 466 | |
|
469 | 467 | if (datatime - self.__initime) >= self.__integrationtime: |
|
470 | 468 | avgdata, n = self.pushData() |
|
471 | 469 | self.n = n |
|
472 | 470 | self.__dataReady = True |
|
473 | 471 | |
|
474 | 472 | return avgdata |
|
475 | 473 | |
|
476 | 474 | def integrateByStride(self, data, datatime): |
|
477 | 475 | # print data |
|
478 | 476 | if self.__profIndex == 0: |
|
479 | 477 | self.__buffer = [[data.copy(), datatime]] |
|
480 | 478 | else: |
|
481 | 479 | self.__buffer.append([data.copy(),datatime]) |
|
482 | 480 | self.__profIndex += 1 |
|
483 | 481 | self.__dataReady = False |
|
484 | 482 | |
|
485 | 483 | if self.__profIndex == self.n * self.stride : |
|
486 | 484 | self.__dataToPutStride = True |
|
487 | 485 | self.__profIndexStride = 0 |
|
488 | 486 | self.__profIndex = 0 |
|
489 | 487 | self.__bufferStride = [] |
|
490 | 488 | for i in range(self.stride): |
|
491 | 489 | current = self.__buffer[i::self.stride] |
|
492 | 490 | data = numpy.sum([t[0] for t in current], axis=0) |
|
493 | 491 | avgdatatime = numpy.average([t[1] for t in current]) |
|
494 | 492 | # print data |
|
495 | 493 | self.__bufferStride.append((data, avgdatatime)) |
|
496 | 494 | |
|
497 | 495 | if self.__dataToPutStride: |
|
498 | 496 | self.__dataReady = True |
|
499 | 497 | self.__profIndexStride += 1 |
|
500 | 498 | if self.__profIndexStride == self.stride: |
|
501 | 499 | self.__dataToPutStride = False |
|
502 | 500 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
503 | 501 | # raise |
|
504 | 502 | return self.__bufferStride[self.__profIndexStride - 1] |
|
505 | 503 | |
|
506 | 504 | |
|
507 | 505 | return None, None |
|
508 | 506 | |
|
509 | 507 | def integrate(self, data, datatime=None): |
|
510 | 508 | |
|
511 | 509 | if self.__initime == None: |
|
512 | 510 | self.__initime = datatime |
|
513 | 511 | |
|
514 | 512 | if self.__byTime: |
|
515 | 513 | avgdata = self.byTime(data, datatime) |
|
516 | 514 | else: |
|
517 | 515 | avgdata = self.byProfiles(data) |
|
518 | 516 | |
|
519 | 517 | |
|
520 | 518 | self.__lastdatatime = datatime |
|
521 | 519 | |
|
522 | 520 | if avgdata is None: |
|
523 | 521 | return None, None |
|
524 | 522 | |
|
525 | 523 | avgdatatime = self.__initime |
|
526 | 524 | |
|
527 | 525 | deltatime = datatime - self.__lastdatatime |
|
528 | 526 | |
|
529 | 527 | if not self.__withOverlapping: |
|
530 | 528 | self.__initime = datatime |
|
531 | 529 | else: |
|
532 | 530 | self.__initime += deltatime |
|
533 | 531 | |
|
534 | 532 | return avgdata, avgdatatime |
|
535 | 533 | |
|
536 | 534 | def integrateByBlock(self, dataOut): |
|
537 | 535 | |
|
538 | 536 | times = int(dataOut.data.shape[1]/self.n) |
|
539 | 537 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
540 | 538 | |
|
541 | 539 | id_min = 0 |
|
542 | 540 | id_max = self.n |
|
543 | 541 | |
|
544 | 542 | for i in range(times): |
|
545 | 543 | junk = dataOut.data[:,id_min:id_max,:] |
|
546 | 544 | avgdata[:,i,:] = junk.sum(axis=1) |
|
547 | 545 | id_min += self.n |
|
548 | 546 | id_max += self.n |
|
549 | 547 | |
|
550 | 548 | timeInterval = dataOut.ippSeconds*self.n |
|
551 | 549 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
552 | 550 | self.__dataReady = True |
|
553 | 551 | return avgdata, avgdatatime |
|
554 | 552 | |
|
555 | 553 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
556 | 554 | |
|
557 | 555 | if not self.isConfig: |
|
558 | 556 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
559 | 557 | self.isConfig = True |
|
560 | 558 | |
|
561 | 559 | if dataOut.flagDataAsBlock: |
|
562 | 560 | """ |
|
563 | 561 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
564 | 562 | """ |
|
565 | 563 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
566 | 564 | dataOut.nProfiles /= self.n |
|
567 | 565 | else: |
|
568 | 566 | if stride is None: |
|
569 | 567 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
570 | 568 | else: |
|
571 | 569 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
572 | 570 | |
|
573 | 571 | |
|
574 | 572 | # dataOut.timeInterval *= n |
|
575 | 573 | dataOut.flagNoData = True |
|
576 | 574 | |
|
577 | 575 | if self.__dataReady: |
|
578 | 576 | dataOut.data = avgdata |
|
579 | 577 | dataOut.nCohInt *= self.n |
|
580 | 578 | dataOut.utctime = avgdatatime |
|
581 | 579 | # print avgdata, avgdatatime |
|
582 | 580 | # raise |
|
583 | 581 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
584 | 582 | dataOut.flagNoData = False |
|
585 | 583 | return dataOut |
|
586 | 584 | @MPDecorator |
|
587 | 585 | class Decoder(Operation): |
|
588 | 586 | |
|
589 | 587 | isConfig = False |
|
590 | 588 | __profIndex = 0 |
|
591 | 589 | |
|
592 | 590 | code = None |
|
593 | 591 | |
|
594 | 592 | nCode = None |
|
595 | 593 | nBaud = None |
|
596 | 594 | |
|
597 | 595 | def __init__(self):#, **kwargs): |
|
598 | 596 | |
|
599 | 597 | Operation.__init__(self)#, **kwargs) |
|
600 | 598 | |
|
601 | 599 | self.times = None |
|
602 | 600 | self.osamp = None |
|
603 | 601 | # self.__setValues = False |
|
604 | 602 | # self.isConfig = False |
|
605 | 603 | self.setupReq = False |
|
606 | 604 | def setup(self, code, osamp, dataOut): |
|
607 | 605 | |
|
608 | 606 | self.__profIndex = 0 |
|
609 | 607 | |
|
610 | 608 | self.code = code |
|
611 | 609 | |
|
612 | 610 | self.nCode = len(code) |
|
613 | 611 | self.nBaud = len(code[0]) |
|
614 | 612 | |
|
615 | 613 | if (osamp != None) and (osamp >1): |
|
616 | 614 | self.osamp = osamp |
|
617 | 615 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
618 | 616 | self.nBaud = self.nBaud*self.osamp |
|
619 | 617 | |
|
620 | 618 | self.__nChannels = dataOut.nChannels |
|
621 | 619 | self.__nProfiles = dataOut.nProfiles |
|
622 | 620 | self.__nHeis = dataOut.nHeights |
|
623 | 621 | |
|
624 | 622 | if self.__nHeis < self.nBaud: |
|
625 | 623 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
626 | 624 | |
|
627 | 625 | #Frequency |
|
628 | 626 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
629 | 627 | |
|
630 | 628 | __codeBuffer[:,0:self.nBaud] = self.code |
|
631 | 629 | |
|
632 | 630 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
633 | 631 | |
|
634 | 632 | if dataOut.flagDataAsBlock: |
|
635 | 633 | |
|
636 | 634 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
637 | 635 | |
|
638 | 636 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
639 | 637 | |
|
640 | 638 | else: |
|
641 | 639 | |
|
642 | 640 | #Time |
|
643 | 641 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
644 | 642 | |
|
645 | 643 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
646 | 644 | |
|
647 | 645 | def __convolutionInFreq(self, data): |
|
648 | 646 | |
|
649 | 647 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
650 | 648 | |
|
651 | 649 | fft_data = numpy.fft.fft(data, axis=1) |
|
652 | 650 | |
|
653 | 651 | conv = fft_data*fft_code |
|
654 | 652 | |
|
655 | 653 | data = numpy.fft.ifft(conv,axis=1) |
|
656 | 654 | |
|
657 | 655 | return data |
|
658 | 656 | |
|
659 | 657 | def __convolutionInFreqOpt(self, data): |
|
660 | 658 | |
|
661 | 659 | raise NotImplementedError |
|
662 | 660 | |
|
663 | 661 | def __convolutionInTime(self, data): |
|
664 | 662 | |
|
665 | 663 | code = self.code[self.__profIndex] |
|
666 | 664 | for i in range(self.__nChannels): |
|
667 | 665 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
668 | 666 | |
|
669 | 667 | return self.datadecTime |
|
670 | 668 | |
|
671 | 669 | def __convolutionByBlockInTime(self, data): |
|
672 | 670 | |
|
673 | 671 | repetitions = self.__nProfiles / self.nCode |
|
674 | 672 | |
|
675 | 673 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
676 | 674 | junk = junk.flatten() |
|
677 | 675 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
678 | 676 | profilesList = range(self.__nProfiles) |
|
679 | 677 | |
|
680 | 678 | for i in range(self.__nChannels): |
|
681 | 679 | for j in profilesList: |
|
682 | 680 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
683 | 681 | return self.datadecTime |
|
684 | 682 | |
|
685 | 683 | def __convolutionByBlockInFreq(self, data): |
|
686 | 684 | |
|
687 | 685 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
688 | 686 | |
|
689 | 687 | |
|
690 | 688 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
691 | 689 | |
|
692 | 690 | fft_data = numpy.fft.fft(data, axis=2) |
|
693 | 691 | |
|
694 | 692 | conv = fft_data*fft_code |
|
695 | 693 | |
|
696 | 694 | data = numpy.fft.ifft(conv,axis=2) |
|
697 | 695 | |
|
698 | 696 | return data |
|
699 | 697 | |
|
700 | 698 | |
|
701 | 699 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
702 | 700 | |
|
703 | 701 | if dataOut.flagDecodeData: |
|
704 | 702 | print("This data is already decoded, recoding again ...") |
|
705 | 703 | |
|
706 | 704 | if not self.isConfig: |
|
707 | 705 | |
|
708 | 706 | if code is None: |
|
709 | 707 | if dataOut.code is None: |
|
710 | 708 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
711 | 709 | |
|
712 | 710 | code = dataOut.code |
|
713 | 711 | else: |
|
714 | 712 | code = numpy.array(code).reshape(nCode,nBaud) |
|
715 | 713 | self.setup(code, osamp, dataOut) |
|
716 | 714 | |
|
717 | 715 | self.isConfig = True |
|
718 | 716 | |
|
719 | 717 | if mode == 3: |
|
720 | 718 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
721 | 719 | |
|
722 | 720 | if times != None: |
|
723 | 721 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
724 | 722 | |
|
725 | 723 | if self.code is None: |
|
726 | 724 | print("Fail decoding: Code is not defined.") |
|
727 | 725 | return |
|
728 | 726 | |
|
729 | 727 | self.__nProfiles = dataOut.nProfiles |
|
730 | 728 | datadec = None |
|
731 | 729 | |
|
732 | 730 | if mode == 3: |
|
733 | 731 | mode = 0 |
|
734 | 732 | |
|
735 | 733 | if dataOut.flagDataAsBlock: |
|
736 | 734 | """ |
|
737 | 735 | Decoding when data have been read as block, |
|
738 | 736 | """ |
|
739 | 737 | |
|
740 | 738 | if mode == 0: |
|
741 | 739 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
742 | 740 | if mode == 1: |
|
743 | 741 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
744 | 742 | else: |
|
745 | 743 | """ |
|
746 | 744 | Decoding when data have been read profile by profile |
|
747 | 745 | """ |
|
748 | 746 | if mode == 0: |
|
749 | 747 | datadec = self.__convolutionInTime(dataOut.data) |
|
750 | 748 | |
|
751 | 749 | if mode == 1: |
|
752 | 750 | datadec = self.__convolutionInFreq(dataOut.data) |
|
753 | 751 | |
|
754 | 752 | if mode == 2: |
|
755 | 753 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
756 | 754 | |
|
757 | 755 | if datadec is None: |
|
758 | 756 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
759 | 757 | |
|
760 | 758 | dataOut.code = self.code |
|
761 | 759 | dataOut.nCode = self.nCode |
|
762 | 760 | dataOut.nBaud = self.nBaud |
|
763 | 761 | |
|
764 | 762 | dataOut.data = datadec |
|
765 | 763 | |
|
766 | 764 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
767 | 765 | |
|
768 | 766 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
769 | 767 | |
|
770 | 768 | if self.__profIndex == self.nCode-1: |
|
771 | 769 | self.__profIndex = 0 |
|
772 | 770 | return dataOut |
|
773 | 771 | |
|
774 | 772 | self.__profIndex += 1 |
|
775 | 773 | |
|
776 | 774 | return dataOut |
|
777 | 775 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
778 | 776 | |
|
779 | 777 | @MPDecorator |
|
780 | 778 | class ProfileConcat(Operation): |
|
781 | 779 | |
|
782 | 780 | isConfig = False |
|
783 | 781 | buffer = None |
|
784 | 782 | |
|
785 | 783 | def __init__(self):#, **kwargs): |
|
786 | 784 | |
|
787 | 785 | Operation.__init__(self)#, **kwargs) |
|
788 | 786 | self.profileIndex = 0 |
|
789 | 787 | |
|
790 | 788 | def reset(self): |
|
791 | 789 | self.buffer = numpy.zeros_like(self.buffer) |
|
792 | 790 | self.start_index = 0 |
|
793 | 791 | self.times = 1 |
|
794 | 792 | |
|
795 | 793 | def setup(self, data, m, n=1): |
|
796 | 794 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
797 | 795 | self.nHeights = data.shape[1]#.nHeights |
|
798 | 796 | self.start_index = 0 |
|
799 | 797 | self.times = 1 |
|
800 | 798 | |
|
801 | 799 | def concat(self, data): |
|
802 | 800 | |
|
803 | 801 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
804 | 802 | self.start_index = self.start_index + self.nHeights |
|
805 | 803 | |
|
806 | 804 | def run(self, dataOut, m): |
|
807 | 805 | |
|
808 | 806 | dataOut.flagNoData = True |
|
809 | 807 | |
|
810 | 808 | if not self.isConfig: |
|
811 | 809 | self.setup(dataOut.data, m, 1) |
|
812 | 810 | self.isConfig = True |
|
813 | 811 | |
|
814 | 812 | if dataOut.flagDataAsBlock: |
|
815 | 813 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
816 | 814 | |
|
817 | 815 | else: |
|
818 | 816 | self.concat(dataOut.data) |
|
819 | 817 | self.times += 1 |
|
820 | 818 | if self.times > m: |
|
821 | 819 | dataOut.data = self.buffer |
|
822 | 820 | self.reset() |
|
823 | 821 | dataOut.flagNoData = False |
|
824 | 822 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
825 | 823 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
826 | 824 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
827 | 825 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
828 | 826 | dataOut.ippSeconds *= m |
|
829 | 827 | return dataOut |
|
830 | 828 | @MPDecorator |
|
831 | 829 | class ProfileSelector(Operation): |
|
832 | 830 | |
|
833 | 831 | profileIndex = None |
|
834 | 832 | # Tamanho total de los perfiles |
|
835 | 833 | nProfiles = None |
|
836 | 834 | |
|
837 | 835 | def __init__(self):#, **kwargs): |
|
838 | 836 | |
|
839 | 837 | Operation.__init__(self)#, **kwargs) |
|
840 | 838 | self.profileIndex = 0 |
|
841 | 839 | |
|
842 | 840 | def incProfileIndex(self): |
|
843 | 841 | |
|
844 | 842 | self.profileIndex += 1 |
|
845 | 843 | |
|
846 | 844 | if self.profileIndex >= self.nProfiles: |
|
847 | 845 | self.profileIndex = 0 |
|
848 | 846 | |
|
849 | 847 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
850 | 848 | |
|
851 | 849 | if profileIndex < minIndex: |
|
852 | 850 | return False |
|
853 | 851 | |
|
854 | 852 | if profileIndex > maxIndex: |
|
855 | 853 | return False |
|
856 | 854 | |
|
857 | 855 | return True |
|
858 | 856 | |
|
859 | 857 | def isThisProfileInList(self, profileIndex, profileList): |
|
860 | 858 | |
|
861 | 859 | if profileIndex not in profileList: |
|
862 | 860 | return False |
|
863 | 861 | |
|
864 | 862 | return True |
|
865 | 863 | |
|
866 | 864 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
867 | 865 | |
|
868 | 866 | """ |
|
869 | 867 | ProfileSelector: |
|
870 | 868 | |
|
871 | 869 | Inputs: |
|
872 | 870 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
873 | 871 | |
|
874 | 872 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
875 | 873 | |
|
876 | 874 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
877 | 875 | |
|
878 | 876 | """ |
|
879 | 877 | |
|
880 | 878 | if rangeList is not None: |
|
881 | 879 | if type(rangeList[0]) not in (tuple, list): |
|
882 | 880 | rangeList = [rangeList] |
|
883 | 881 | |
|
884 | 882 | dataOut.flagNoData = True |
|
885 | 883 | |
|
886 | 884 | if dataOut.flagDataAsBlock: |
|
887 | 885 | """ |
|
888 | 886 | data dimension = [nChannels, nProfiles, nHeis] |
|
889 | 887 | """ |
|
890 | 888 | if profileList != None: |
|
891 | 889 | dataOut.data = dataOut.data[:,profileList,:] |
|
892 | 890 | |
|
893 | 891 | if profileRangeList != None: |
|
894 | 892 | minIndex = profileRangeList[0] |
|
895 | 893 | maxIndex = profileRangeList[1] |
|
896 | 894 | profileList = list(range(minIndex, maxIndex+1)) |
|
897 | 895 | |
|
898 | 896 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
899 | 897 | |
|
900 | 898 | if rangeList != None: |
|
901 | 899 | |
|
902 | 900 | profileList = [] |
|
903 | 901 | |
|
904 | 902 | for thisRange in rangeList: |
|
905 | 903 | minIndex = thisRange[0] |
|
906 | 904 | maxIndex = thisRange[1] |
|
907 | 905 | |
|
908 | 906 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
909 | 907 | |
|
910 | 908 | dataOut.data = dataOut.data[:,profileList,:] |
|
911 | 909 | |
|
912 | 910 | dataOut.nProfiles = len(profileList) |
|
913 | 911 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
914 | 912 | dataOut.flagNoData = False |
|
915 | 913 | |
|
916 | 914 | return True |
|
917 | 915 | |
|
918 | 916 | """ |
|
919 | 917 | data dimension = [nChannels, nHeis] |
|
920 | 918 | """ |
|
921 | 919 | |
|
922 | 920 | if profileList != None: |
|
923 | 921 | |
|
924 | 922 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
925 | 923 | |
|
926 | 924 | self.nProfiles = len(profileList) |
|
927 | 925 | dataOut.nProfiles = self.nProfiles |
|
928 | 926 | dataOut.profileIndex = self.profileIndex |
|
929 | 927 | dataOut.flagNoData = False |
|
930 | 928 | |
|
931 | 929 | self.incProfileIndex() |
|
932 | 930 | return True |
|
933 | 931 | |
|
934 | 932 | if profileRangeList != None: |
|
935 | 933 | |
|
936 | 934 | minIndex = profileRangeList[0] |
|
937 | 935 | maxIndex = profileRangeList[1] |
|
938 | 936 | |
|
939 | 937 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
940 | 938 | |
|
941 | 939 | self.nProfiles = maxIndex - minIndex + 1 |
|
942 | 940 | dataOut.nProfiles = self.nProfiles |
|
943 | 941 | dataOut.profileIndex = self.profileIndex |
|
944 | 942 | dataOut.flagNoData = False |
|
945 | 943 | |
|
946 | 944 | self.incProfileIndex() |
|
947 | 945 | return True |
|
948 | 946 | |
|
949 | 947 | if rangeList != None: |
|
950 | 948 | |
|
951 | 949 | nProfiles = 0 |
|
952 | 950 | |
|
953 | 951 | for thisRange in rangeList: |
|
954 | 952 | minIndex = thisRange[0] |
|
955 | 953 | maxIndex = thisRange[1] |
|
956 | 954 | |
|
957 | 955 | nProfiles += maxIndex - minIndex + 1 |
|
958 | 956 | |
|
959 | 957 | for thisRange in rangeList: |
|
960 | 958 | |
|
961 | 959 | minIndex = thisRange[0] |
|
962 | 960 | maxIndex = thisRange[1] |
|
963 | 961 | |
|
964 | 962 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
965 | 963 | |
|
966 | 964 | self.nProfiles = nProfiles |
|
967 | 965 | dataOut.nProfiles = self.nProfiles |
|
968 | 966 | dataOut.profileIndex = self.profileIndex |
|
969 | 967 | dataOut.flagNoData = False |
|
970 | 968 | |
|
971 | 969 | self.incProfileIndex() |
|
972 | 970 | |
|
973 | 971 | break |
|
974 | 972 | |
|
975 | 973 | return True |
|
976 | 974 | |
|
977 | 975 | |
|
978 | 976 | if beam != None: #beam is only for AMISR data |
|
979 | 977 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
980 | 978 | dataOut.flagNoData = False |
|
981 | 979 | dataOut.profileIndex = self.profileIndex |
|
982 | 980 | |
|
983 | 981 | self.incProfileIndex() |
|
984 | 982 | |
|
985 | 983 | return True |
|
986 | 984 | |
|
987 | 985 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
988 | 986 | |
|
989 | 987 | #return False |
|
990 | 988 | return dataOut |
|
991 | 989 | @MPDecorator |
|
992 | 990 | class Reshaper(Operation): |
|
993 | 991 | |
|
994 | 992 | def __init__(self):#, **kwargs): |
|
995 | 993 | |
|
996 | 994 | Operation.__init__(self)#, **kwargs) |
|
997 | 995 | |
|
998 | 996 | self.__buffer = None |
|
999 | 997 | self.__nitems = 0 |
|
1000 | 998 | |
|
1001 | 999 | def __appendProfile(self, dataOut, nTxs): |
|
1002 | 1000 | |
|
1003 | 1001 | if self.__buffer is None: |
|
1004 | 1002 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
1005 | 1003 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
1006 | 1004 | |
|
1007 | 1005 | ini = dataOut.nHeights * self.__nitems |
|
1008 | 1006 | end = ini + dataOut.nHeights |
|
1009 | 1007 | |
|
1010 | 1008 | self.__buffer[:, ini:end] = dataOut.data |
|
1011 | 1009 | |
|
1012 | 1010 | self.__nitems += 1 |
|
1013 | 1011 | |
|
1014 | 1012 | return int(self.__nitems*nTxs) |
|
1015 | 1013 | |
|
1016 | 1014 | def __getBuffer(self): |
|
1017 | 1015 | |
|
1018 | 1016 | if self.__nitems == int(1./self.__nTxs): |
|
1019 | 1017 | |
|
1020 | 1018 | self.__nitems = 0 |
|
1021 | 1019 | |
|
1022 | 1020 | return self.__buffer.copy() |
|
1023 | 1021 | |
|
1024 | 1022 | return None |
|
1025 | 1023 | |
|
1026 | 1024 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1027 | 1025 | |
|
1028 | 1026 | if shape is None and nTxs is None: |
|
1029 | 1027 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1030 | 1028 | |
|
1031 | 1029 | if nTxs: |
|
1032 | 1030 | if nTxs < 0: |
|
1033 | 1031 | raise ValueError("nTxs should be greater than 0") |
|
1034 | 1032 | |
|
1035 | 1033 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1036 | 1034 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1037 | 1035 | |
|
1038 | 1036 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1039 | 1037 | |
|
1040 | 1038 | return shape, nTxs |
|
1041 | 1039 | |
|
1042 | 1040 | if len(shape) != 2 and len(shape) != 3: |
|
1043 | 1041 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1044 | 1042 | |
|
1045 | 1043 | if len(shape) == 2: |
|
1046 | 1044 | shape_tuple = [dataOut.nChannels] |
|
1047 | 1045 | shape_tuple.extend(shape) |
|
1048 | 1046 | else: |
|
1049 | 1047 | shape_tuple = list(shape) |
|
1050 | 1048 | |
|
1051 | 1049 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1052 | 1050 | |
|
1053 | 1051 | return shape_tuple, nTxs |
|
1054 | 1052 | |
|
1055 | 1053 | def run(self, dataOut, shape=None, nTxs=None): |
|
1056 | 1054 | |
|
1057 | 1055 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1058 | 1056 | |
|
1059 | 1057 | dataOut.flagNoData = True |
|
1060 | 1058 | profileIndex = None |
|
1061 | 1059 | |
|
1062 | 1060 | if dataOut.flagDataAsBlock: |
|
1063 | 1061 | |
|
1064 | 1062 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1065 | 1063 | dataOut.flagNoData = False |
|
1066 | 1064 | |
|
1067 | 1065 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1068 | 1066 | |
|
1069 | 1067 | else: |
|
1070 | 1068 | |
|
1071 | 1069 | if self.__nTxs < 1: |
|
1072 | 1070 | |
|
1073 | 1071 | self.__appendProfile(dataOut, self.__nTxs) |
|
1074 | 1072 | new_data = self.__getBuffer() |
|
1075 | 1073 | |
|
1076 | 1074 | if new_data is not None: |
|
1077 | 1075 | dataOut.data = new_data |
|
1078 | 1076 | dataOut.flagNoData = False |
|
1079 | 1077 | |
|
1080 | 1078 | profileIndex = dataOut.profileIndex*nTxs |
|
1081 | 1079 | |
|
1082 | 1080 | else: |
|
1083 | 1081 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1084 | 1082 | |
|
1085 | 1083 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1086 | 1084 | |
|
1087 | 1085 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1088 | 1086 | |
|
1089 | 1087 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1090 | 1088 | |
|
1091 | 1089 | dataOut.profileIndex = profileIndex |
|
1092 | 1090 | |
|
1093 | 1091 | dataOut.ippSeconds /= self.__nTxs |
|
1094 | 1092 | |
|
1095 | 1093 | return dataOut |
|
1096 | 1094 | @MPDecorator |
|
1097 | 1095 | class SplitProfiles(Operation): |
|
1098 | 1096 | |
|
1099 | 1097 | def __init__(self):#, **kwargs): |
|
1100 | 1098 | |
|
1101 | 1099 | Operation.__init__(self)#, **kwargs) |
|
1102 | 1100 | |
|
1103 | 1101 | def run(self, dataOut, n): |
|
1104 | 1102 | |
|
1105 | 1103 | dataOut.flagNoData = True |
|
1106 | 1104 | profileIndex = None |
|
1107 | 1105 | |
|
1108 | 1106 | if dataOut.flagDataAsBlock: |
|
1109 | 1107 | |
|
1110 | 1108 | #nchannels, nprofiles, nsamples |
|
1111 | 1109 | shape = dataOut.data.shape |
|
1112 | 1110 | |
|
1113 | 1111 | if shape[2] % n != 0: |
|
1114 | 1112 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1115 | 1113 | |
|
1116 | 1114 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) |
|
1117 | 1115 | |
|
1118 | 1116 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1119 | 1117 | dataOut.flagNoData = False |
|
1120 | 1118 | |
|
1121 | 1119 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1122 | 1120 | |
|
1123 | 1121 | else: |
|
1124 | 1122 | |
|
1125 | 1123 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1126 | 1124 | |
|
1127 | 1125 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1128 | 1126 | |
|
1129 | 1127 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1130 | 1128 | |
|
1131 | 1129 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1132 | 1130 | |
|
1133 | 1131 | dataOut.profileIndex = profileIndex |
|
1134 | 1132 | |
|
1135 | 1133 | dataOut.ippSeconds /= n |
|
1136 | 1134 | |
|
1137 | 1135 | return dataOut |
|
1138 | 1136 | @MPDecorator |
|
1139 | 1137 | class CombineProfiles(Operation): |
|
1140 | 1138 | def __init__(self):#, **kwargs): |
|
1141 | 1139 | |
|
1142 | 1140 | Operation.__init__(self)#, **kwargs) |
|
1143 | 1141 | |
|
1144 | 1142 | self.__remData = None |
|
1145 | 1143 | self.__profileIndex = 0 |
|
1146 | 1144 | |
|
1147 | 1145 | def run(self, dataOut, n): |
|
1148 | 1146 | |
|
1149 | 1147 | dataOut.flagNoData = True |
|
1150 | 1148 | profileIndex = None |
|
1151 | 1149 | |
|
1152 | 1150 | if dataOut.flagDataAsBlock: |
|
1153 | 1151 | |
|
1154 | 1152 | #nchannels, nprofiles, nsamples |
|
1155 | 1153 | shape = dataOut.data.shape |
|
1156 | 1154 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1157 | 1155 | |
|
1158 | 1156 | if shape[1] % n != 0: |
|
1159 | 1157 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1160 | 1158 | |
|
1161 | 1159 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1162 | 1160 | dataOut.flagNoData = False |
|
1163 | 1161 | |
|
1164 | 1162 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1165 | 1163 | |
|
1166 | 1164 | else: |
|
1167 | 1165 | |
|
1168 | 1166 | #nchannels, nsamples |
|
1169 | 1167 | if self.__remData is None: |
|
1170 | 1168 | newData = dataOut.data |
|
1171 | 1169 | else: |
|
1172 | 1170 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1173 | 1171 | |
|
1174 | 1172 | self.__profileIndex += 1 |
|
1175 | 1173 | |
|
1176 | 1174 | if self.__profileIndex < n: |
|
1177 | 1175 | self.__remData = newData |
|
1178 | 1176 | #continue |
|
1179 | 1177 | return |
|
1180 | 1178 | |
|
1181 | 1179 | self.__profileIndex = 0 |
|
1182 | 1180 | self.__remData = None |
|
1183 | 1181 | |
|
1184 | 1182 | dataOut.data = newData |
|
1185 | 1183 | dataOut.flagNoData = False |
|
1186 | 1184 | |
|
1187 | 1185 | profileIndex = dataOut.profileIndex/n |
|
1188 | 1186 | |
|
1189 | 1187 | |
|
1190 | 1188 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1191 | 1189 | |
|
1192 | 1190 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1193 | 1191 | |
|
1194 | 1192 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1195 | 1193 | |
|
1196 | 1194 | dataOut.profileIndex = profileIndex |
|
1197 | 1195 | |
|
1198 | 1196 | dataOut.ippSeconds *= n |
|
1199 | 1197 | |
|
1200 | 1198 | return dataOut |
|
1201 | 1199 | # import collections |
|
1202 | 1200 | # from scipy.stats import mode |
|
1203 | 1201 | # |
|
1204 | 1202 | # class Synchronize(Operation): |
|
1205 | 1203 | # |
|
1206 | 1204 | # isConfig = False |
|
1207 | 1205 | # __profIndex = 0 |
|
1208 | 1206 | # |
|
1209 | 1207 | # def __init__(self, **kwargs): |
|
1210 | 1208 | # |
|
1211 | 1209 | # Operation.__init__(self, **kwargs) |
|
1212 | 1210 | # # self.isConfig = False |
|
1213 | 1211 | # self.__powBuffer = None |
|
1214 | 1212 | # self.__startIndex = 0 |
|
1215 | 1213 | # self.__pulseFound = False |
|
1216 | 1214 | # |
|
1217 | 1215 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1218 | 1216 | # |
|
1219 | 1217 | # #Read data |
|
1220 | 1218 | # |
|
1221 | 1219 | # powerdB = dataOut.getPower(channel = channel) |
|
1222 | 1220 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1223 | 1221 | # |
|
1224 | 1222 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1225 | 1223 | # |
|
1226 | 1224 | # dataArray = numpy.array(self.__powBuffer) |
|
1227 | 1225 | # |
|
1228 | 1226 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1229 | 1227 | # |
|
1230 | 1228 | # maxValue = numpy.nanmax(filteredPower) |
|
1231 | 1229 | # |
|
1232 | 1230 | # if maxValue < noisedB + 10: |
|
1233 | 1231 | # #No se encuentra ningun pulso de transmision |
|
1234 | 1232 | # return None |
|
1235 | 1233 | # |
|
1236 | 1234 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1237 | 1235 | # |
|
1238 | 1236 | # if len(maxValuesIndex) < 2: |
|
1239 | 1237 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1240 | 1238 | # return None |
|
1241 | 1239 | # |
|
1242 | 1240 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1243 | 1241 | # |
|
1244 | 1242 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1245 | 1243 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1246 | 1244 | # |
|
1247 | 1245 | # if len(pulseIndex) < 2: |
|
1248 | 1246 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1249 | 1247 | # return None |
|
1250 | 1248 | # |
|
1251 | 1249 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1252 | 1250 | # |
|
1253 | 1251 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1254 | 1252 | # #(No deberian existir IPP menor a 10 unidades) |
|
1255 | 1253 | # |
|
1256 | 1254 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1257 | 1255 | # |
|
1258 | 1256 | # if len(realIndex) < 2: |
|
1259 | 1257 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1260 | 1258 | # return None |
|
1261 | 1259 | # |
|
1262 | 1260 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1263 | 1261 | # realPulseIndex = pulseIndex[realIndex] |
|
1264 | 1262 | # |
|
1265 | 1263 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1266 | 1264 | # |
|
1267 | 1265 | # print "IPP = %d samples" %period |
|
1268 | 1266 | # |
|
1269 | 1267 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1270 | 1268 | # self.__startIndex = int(realPulseIndex[0]) |
|
1271 | 1269 | # |
|
1272 | 1270 | # return 1 |
|
1273 | 1271 | # |
|
1274 | 1272 | # |
|
1275 | 1273 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1276 | 1274 | # |
|
1277 | 1275 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1278 | 1276 | # maxlen = buffer_size*nSamples) |
|
1279 | 1277 | # |
|
1280 | 1278 | # bufferList = [] |
|
1281 | 1279 | # |
|
1282 | 1280 | # for i in range(nChannels): |
|
1283 | 1281 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1284 | 1282 | # maxlen = buffer_size*nSamples) |
|
1285 | 1283 | # |
|
1286 | 1284 | # bufferList.append(bufferByChannel) |
|
1287 | 1285 | # |
|
1288 | 1286 | # self.__nSamples = nSamples |
|
1289 | 1287 | # self.__nChannels = nChannels |
|
1290 | 1288 | # self.__bufferList = bufferList |
|
1291 | 1289 | # |
|
1292 | 1290 | # def run(self, dataOut, channel = 0): |
|
1293 | 1291 | # |
|
1294 | 1292 | # if not self.isConfig: |
|
1295 | 1293 | # nSamples = dataOut.nHeights |
|
1296 | 1294 | # nChannels = dataOut.nChannels |
|
1297 | 1295 | # self.setup(nSamples, nChannels) |
|
1298 | 1296 | # self.isConfig = True |
|
1299 | 1297 | # |
|
1300 | 1298 | # #Append new data to internal buffer |
|
1301 | 1299 | # for thisChannel in range(self.__nChannels): |
|
1302 | 1300 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1303 | 1301 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1304 | 1302 | # |
|
1305 | 1303 | # if self.__pulseFound: |
|
1306 | 1304 | # self.__startIndex -= self.__nSamples |
|
1307 | 1305 | # |
|
1308 | 1306 | # #Finding Tx Pulse |
|
1309 | 1307 | # if not self.__pulseFound: |
|
1310 | 1308 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1311 | 1309 | # |
|
1312 | 1310 | # if indexFound == None: |
|
1313 | 1311 | # dataOut.flagNoData = True |
|
1314 | 1312 | # return |
|
1315 | 1313 | # |
|
1316 | 1314 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1317 | 1315 | # self.__pulseFound = True |
|
1318 | 1316 | # self.__startIndex = indexFound |
|
1319 | 1317 | # |
|
1320 | 1318 | # #If pulse was found ... |
|
1321 | 1319 | # for thisChannel in range(self.__nChannels): |
|
1322 | 1320 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1323 | 1321 | # #print self.__startIndex |
|
1324 | 1322 | # x = numpy.array(bufferByChannel) |
|
1325 | 1323 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1326 | 1324 | # |
|
1327 | 1325 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1328 | 1326 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1329 | 1327 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1330 | 1328 | # |
|
1331 | 1329 | # dataOut.data = self.__arrayBuffer |
|
1332 | 1330 | # |
|
1333 | 1331 | # self.__startIndex += self.__newNSamples |
|
1334 | 1332 | # |
|
1335 | 1333 | # return |
@@ -1,70 +1,64 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 16, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: Miguel Urco |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import os |
|
8 | 8 | from setuptools import setup, Extension |
|
9 | 9 | from setuptools.command.build_ext import build_ext as _build_ext |
|
10 | 10 | from schainpy import __version__ |
|
11 | 11 | |
|
12 | 12 | class build_ext(_build_ext): |
|
13 | 13 | def finalize_options(self): |
|
14 | 14 | _build_ext.finalize_options(self) |
|
15 | 15 | # Prevent numpy from thinking it is still in its setup process: |
|
16 | 16 | __builtins__.__NUMPY_SETUP__ = False |
|
17 | 17 | import numpy |
|
18 | 18 | self.include_dirs.append(numpy.get_include()) |
|
19 | 19 | |
|
20 | 20 | setup(name = "schainpy", |
|
21 | 21 | version = __version__, |
|
22 | 22 | description = "Python tools to read, write and process Jicamarca data", |
|
23 | 23 | author = "Miguel Urco", |
|
24 | 24 | author_email = "miguel.urco@jro.igp.gob.pe", |
|
25 | 25 | url = "http://jro.igp.gob.pe", |
|
26 | 26 | packages = {'schainpy', |
|
27 | 27 | 'schainpy.model', |
|
28 | 28 | 'schainpy.model.data', |
|
29 | 29 | 'schainpy.model.graphics', |
|
30 | 30 | 'schainpy.model.io', |
|
31 | 31 | 'schainpy.model.proc', |
|
32 | 32 | 'schainpy.model.serializer', |
|
33 | 33 | 'schainpy.model.utils', |
|
34 | 34 | 'schainpy.utils', |
|
35 | 35 | 'schainpy.gui', |
|
36 | 36 | 'schainpy.gui.figures', |
|
37 | 37 | 'schainpy.gui.viewcontroller', |
|
38 | 38 | 'schainpy.gui.viewer', |
|
39 | 39 | 'schainpy.gui.viewer.windows', |
|
40 | 40 | 'schainpy.cli'}, |
|
41 | 41 | ext_package = 'schainpy', |
|
42 | 42 | package_data = {'': ['schain.conf.template'], |
|
43 | 43 | 'schainpy.gui.figures': ['*.png', '*.jpg'], |
|
44 | 44 | 'schainpy.files': ['*.oga'] |
|
45 | 45 | }, |
|
46 | 46 | include_package_data = False, |
|
47 | 47 | scripts = ['schainpy/gui/schainGUI'], |
|
48 | ext_modules = [ | |
|
49 | Extension("cSchain", ["schainpy/model/proc/extensions.c"]) | |
|
50 | ], | |
|
51 | 48 | entry_points = { |
|
52 | 49 | 'console_scripts': [ |
|
53 | 50 | 'schain = schainpy.cli.cli:main', |
|
54 | 51 | ], |
|
55 | 52 | }, |
|
56 | 53 | cmdclass = {'build_ext': build_ext}, |
|
57 | 54 | setup_requires = ["numpy >= 1.11.2"], |
|
58 | 55 | install_requires = [ |
|
59 | 56 | "scipy >= 0.14.0", |
|
60 | 57 | "h5py >= 2.2.1", |
|
61 | 58 | "matplotlib >= 2.0.0", |
|
62 | "pyfits >= 3.4", | |
|
63 | "paramiko >= 2.1.2", | |
|
64 | "paho-mqtt >= 1.2", | |
|
65 | 59 | "zmq", |
|
66 | 60 | "fuzzywuzzy", |
|
67 | 61 | "click", |
|
68 | 62 | "python-Levenshtein" |
|
69 | 63 | ], |
|
70 | 64 | ) |
|
1 | NO CONTENT: file was removed |
|
1 | NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now