@@ -43,7 +43,6 class VoltageProcessor: | |||
|
43 | 43 | |
|
44 | 44 | m_CoherentIntegrator= CoherentIntegrator() |
|
45 | 45 | |
|
46 | ||
|
47 | 46 | def __init__(self, dataInObj, dataOutObj=None): |
|
48 | 47 | ''' |
|
49 | 48 | Constructor |
@@ -205,7 +204,7 class VoltageProcessor: | |||
|
205 | 204 | |
|
206 | 205 | def selectChannels(self, channelList): |
|
207 | 206 | """ |
|
208 |
Selecciona un bloque de datos en base a canales |
|
|
207 | Selecciona un bloque de datos en base a canales segun el channelList | |
|
209 | 208 | |
|
210 | 209 | Input: |
|
211 | 210 | channelList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
@@ -228,19 +227,16 class VoltageProcessor: | |||
|
228 | 227 | if channel not in self.dataOutObj.channelList: |
|
229 | 228 | raise ValueError, "The value %d in channelList is not valid" %channel |
|
230 | 229 | |
|
231 |
n |
|
|
232 | profiles = self.dataOutObj.nProfiles | |
|
233 | heights = self.dataOutObj.nHeights #m_ProcessingHeader.numHeights | |
|
230 | nChannels = len(channelList) | |
|
234 | 231 | |
|
235 | data = numpy.zeros( (nchannels,heights), dtype='complex' ) | |
|
236 | for index,channel in enumerate(channelList): | |
|
237 | data[index,:] = self.dataOutObj.data[channel,:] | |
|
232 | data = self.dataOutObj.data[channelList,:] | |
|
238 | 233 | |
|
239 | 234 | self.dataOutObj.data = data |
|
240 | 235 | self.dataOutObj.channelList = channelList |
|
241 |
self.dataOutObj.nChannels = n |
|
|
242 | self.dataOutObj.m_ProcessingHeader.totalSpectra = nchannels | |
|
243 |
self.dataOutObj.m_ |
|
|
236 | self.dataOutObj.nChannels = nChannels | |
|
237 | ||
|
238 | self.dataOutObj.m_ProcessingHeader.totalSpectra = nChannels | |
|
239 | self.dataOutObj.m_SystemHeader.numChannels = nChannels | |
|
244 | 240 | self.dataOutObj.m_ProcessingHeader.blockSize = data.size |
|
245 | 241 | return 1 |
|
246 | 242 | |
@@ -321,7 +317,6 class VoltageProcessor: | |||
|
321 | 317 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
322 | 318 | |
|
323 | 319 | nHeights = maxIndex - minIndex + 1 |
|
324 | firstHeight = 0 | |
|
325 | 320 | |
|
326 | 321 | #voltage |
|
327 | 322 | data = self.dataOutObj.data[:,minIndex:maxIndex+1] |
@@ -401,13 +396,11 class Decoder: | |||
|
401 | 396 | |
|
402 | 397 | data = None |
|
403 | 398 | profCounter = 1 |
|
404 |
nCode = n |
|
|
405 |
nBaud = |
|
|
399 | nCode = None | |
|
400 | nBaud = None | |
|
406 | 401 | codeIndex = 0 |
|
407 | code = code #this is a List | |
|
408 | fft_code = None | |
|
402 | code = None | |
|
409 | 403 | flag = False |
|
410 | setCodeFft = False | |
|
411 | 404 | |
|
412 | 405 | def __init__(self,code, ncode, nbaud): |
|
413 | 406 | |
@@ -417,9 +410,7 class Decoder: | |||
|
417 | 410 | self.nBaud = nbaud |
|
418 | 411 | self.codeIndex = 0 |
|
419 | 412 | self.code = code #this is a List |
|
420 | self.fft_code = None | |
|
421 | 413 | self.flag = False |
|
422 | self.setCodeFft = False | |
|
423 | 414 | |
|
424 | 415 | def exe(self, data, ndata=None, type = 0): |
|
425 | 416 | |
@@ -445,9 +436,7 class Decoder: | |||
|
445 | 436 | conv = fft_data.copy() |
|
446 | 437 | conv.fill(0) |
|
447 | 438 | |
|
448 | conv = fft_data*fft_code # This other way to calculate multiplication between bidimensional arrays | |
|
449 | # for i in range(ndata): | |
|
450 | # conv[i,:] = fft_data[i,:]*fft_code[i] | |
|
439 | conv = fft_data*fft_code | |
|
451 | 440 | |
|
452 | 441 | self.data = numpy.fft.ifft(conv,axis=1) |
|
453 | 442 | self.flag = True |
@@ -483,7 +472,7 class CoherentIntegrator: | |||
|
483 | 472 | data = None |
|
484 | 473 | buffer = None |
|
485 | 474 | flag = False |
|
486 | nCohInt = N | |
|
475 | nCohInt = None | |
|
487 | 476 | |
|
488 | 477 | def __init__(self, N): |
|
489 | 478 |
|
1 | NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now