##// END OF EJS Templates
merge with BLTR and Madrigal modules
Juan C. Espinoza -
r1032:c711a14430f7 merge
parent child
Show More
@@ -0,0 +1,404
1 '''
2
3 $Author: murco $
4 $Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $
5 '''
6 import sys
7 import numpy
8 import copy
9 import datetime
10 from __builtin__ import None
11
12 SPEED_OF_LIGHT = 299792458
13 SPEED_OF_LIGHT = 3e8
14
15 FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes
16 ('FileMgcNumber','<u4'), #0x23020100
17 ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more)
18 ('RadarUnitId','<u4'),
19 ('SiteName','<s32'), #Null terminated
20 ])
21
22 RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes
23 ('RecMgcNumber','<u4'), #0x23030001
24 ('RecCounter','<u4'), #Record counter(0,1, ...)
25 ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record
26 ('Off2StartData','<u4'), #Offset to start of data from start of this record
27 ('EpTimeStamp','<i4'), #Epoch time stamp of start of acquisition (seconds)
28 ('msCompTimeStamp','<u4'), #Millisecond component of time stamp (0,...,999)
29 ('ExpTagName','<s32'), #Experiment tag name (null terminated)
30 ('ExpComment','<s32'), #Experiment comment (null terminated)
31 ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North)
32 ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East)
33 ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE)
34 ('TransmitFrec','<u4'), #Transmit frequency (Hz)
35 ('ReceiveFrec','<u4'), #Receive frequency
36 ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz)
37 ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2")
38 ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3)
39 ('nModesInUse','<u4'), #Number of modes in use (1 or 2)
40 ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1)
41 ('DualModeRange','<u4'), #Dual Mode range correction for these data (m)
42 ('nDigChannels','<u4'), #Number of digital channels acquired (2*N)
43 ('SampResolution','<u4'), #Sampling resolution (meters)
44 ('nRangeGatesSamp','<u4'), #Number of range gates sampled
45 ('StartRangeSamp','<u4'), #Start range of sampling (meters)
46 ('PRFhz','<u4'), #PRF (Hz)
47 ('Integrations','<u4'), #Integrations
48 ('nDataPointsTrsf','<u4'), #Number of data points transformed
49 ('nReceiveBeams','<u4'), #Number of receive beams stored in file (1 or N)
50 ('nSpectAverages','<u4'), #Number of spectral averages
51 ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window)
52 ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North)
53 ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical)
54 ('AntennaCoord','<f24'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
55 ('RecPhaseCalibr','<f12'), #Receiver phase calibration (degrees) - N values
56 ('RecAmpCalibr','<f12'), #Receiver amplitude calibration (ratio relative to receiver one) - N values
57 ('ReceiverGaindB','<u12'), #Receiver gains in dB - N values
58 ])
59
60
61 class Header(object):
62
63 def __init__(self):
64 raise NotImplementedError
65
66
67 def read(self):
68
69 raise NotImplementedError
70
71 def write(self):
72
73 raise NotImplementedError
74
75 def printInfo(self):
76
77 message = "#"*50 + "\n"
78 message += self.__class__.__name__.upper() + "\n"
79 message += "#"*50 + "\n"
80
81 keyList = self.__dict__.keys()
82 keyList.sort()
83
84 for key in keyList:
85 message += "%s = %s" %(key, self.__dict__[key]) + "\n"
86
87 if "size" not in keyList:
88 attr = getattr(self, "size")
89
90 if attr:
91 message += "%s = %s" %("size", attr) + "\n"
92
93 print message
94
95 class FileHeader(Header):
96
97 FileMgcNumber= None
98 nFDTdataRecors=None #No Of FDT data records in this file (0 or more)
99 RadarUnitId= None
100 SiteName= None
101
102 #__LOCALTIME = None
103
104 def __init__(self, useLocalTime=True):
105
106 self.FileMgcNumber= 0 #0x23020100
107 self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more)
108 self.RadarUnitId= 0
109 self.SiteName= ""
110 self.size = 48
111
112 #self.useLocalTime = useLocalTime
113
114 def read(self, fp):
115
116 try:
117 header = numpy.fromfile(fp, FILE_STRUCTURE,1)
118 ''' numpy.fromfile(file, dtype, count, sep='')
119 file : file or str
120 Open file object or filename.
121
122 dtype : data-type
123 Data type of the returned array. For binary files, it is used to determine
124 the size and byte-order of the items in the file.
125
126 count : int
127 Number of items to read. -1 means all items (i.e., the complete file).
128
129 sep : str
130 Separator between items if file is a text file. Empty (“”) separator means
131 the file should be treated as binary. Spaces (” ”) in the separator match zero
132 or more whitespace characters. A separator consisting only of spaces must match
133 at least one whitespace.
134
135 '''
136
137 except Exception, e:
138 print "FileHeader: "
139 print eBasicHeader
140 return 0
141
142 self.FileMgcNumber= byte(header['FileMgcNumber'][0])
143 self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more)
144 self.RadarUnitId= int(header['RadarUnitId'][0])
145 self.SiteName= char(header['SiteName'][0])
146
147
148 if self.size <48:
149 return 0
150
151 return 1
152
153 def write(self, fp):
154
155 headerTuple = (self.FileMgcNumber,
156 self.nFDTdataRecors,
157 self.RadarUnitId,
158 self.SiteName,
159 self.size)
160
161
162 header = numpy.array(headerTuple, FILE_STRUCTURE)
163 # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
164 header.tofile(fp)
165 ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default).
166
167 fid : file or str
168 An open file object, or a string containing a filename.
169
170 sep : str
171 Separator between array items for text output. If “” (empty), a binary file is written,
172 equivalent to file.write(a.tobytes()).
173
174 format : str
175 Format string for text file output. Each entry in the array is formatted to text by
176 first converting it to the closest Python type, and then using “format” % item.
177
178 '''
179
180 return 1
181
182
183 class RecordHeader(Header):
184
185 RecMgcNumber=None #0x23030001
186 RecCounter= None
187 Off2StartNxtRec= None
188 EpTimeStamp= None
189 msCompTimeStamp= None
190 ExpTagName= None
191 ExpComment=None
192 SiteLatDegrees=None
193 SiteLongDegrees= None
194 RTCgpsStatus= None
195 TransmitFrec= None
196 ReceiveFrec= None
197 FirstOsciFrec= None
198 Polarisation= None
199 ReceiverFiltSett= None
200 nModesInUse= None
201 DualModeIndex= None
202 DualModeRange= None
203 nDigChannels= None
204 SampResolution= None
205 nRangeGatesSamp= None
206 StartRangeSamp= None
207 PRFhz= None
208 Integrations= None
209 nDataPointsTrsf= None
210 nReceiveBeams= None
211 nSpectAverages= None
212 FFTwindowingInd= None
213 BeamAngleAzim= None
214 BeamAngleZen= None
215 AntennaCoord= None
216 RecPhaseCalibr= None
217 RecAmpCalibr= None
218 ReceiverGaindB= None
219
220 '''size = None
221 nSamples = None
222 nProfiles = None
223 nChannels = None
224 adcResolution = None
225 pciDioBusWidth = None'''
226
227 def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 0,
228 EpTimeStamp= 0, msCompTimeStamp= 0, ExpTagName= None,
229 ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0,
230 RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0,
231 FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0,
232 nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0,
233 nDigChannels= 0, SampResolution= 0, nRangeGatesSamp= 0,
234 StartRangeSamp= 0, PRFhz= 0, Integrations= 0,
235 nDataPointsTrsf= 0, nReceiveBeams= 0, nSpectAverages= 0,
236 FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0,
237 AntennaCoord= 0, RecPhaseCalibr= 0, RecAmpCalibr= 0,
238 ReceiverGaindB= 0):
239
240 self.RecMgcNumber = RecMgcNumber #0x23030001
241 self.RecCounter = RecCounter
242 self.Off2StartNxtRec = Off2StartNxtRec
243 self.EpTimeStamp = EpTimeStamp
244 self.msCompTimeStamp = msCompTimeStamp
245 self.ExpTagName = ExpTagName
246 self.ExpComment = ExpComment
247 self.SiteLatDegrees = SiteLatDegrees
248 self.SiteLongDegrees = SiteLongDegrees
249 self.RTCgpsStatus = RTCgpsStatus
250 self.TransmitFrec = TransmitFrec
251 self.ReceiveFrec = ReceiveFrec
252 self.FirstOsciFrec = FirstOsciFrec
253 self.Polarisation = Polarisation
254 self.ReceiverFiltSett = ReceiverFiltSett
255 self.nModesInUse = nModesInUse
256 self.DualModeIndex = DualModeIndex
257 self.DualModeRange = DualModeRange
258 self.nDigChannels = nDigChannels
259 self.SampResolution = SampResolution
260 self.nRangeGatesSamp = nRangeGatesSamp
261 self.StartRangeSamp = StartRangeSamp
262 self.PRFhz = PRFhz
263 self.Integrations = Integrations
264 self.nDataPointsTrsf = nDataPointsTrsf
265 self.nReceiveBeams = nReceiveBeams
266 self.nSpectAverages = nSpectAverages
267 self.FFTwindowingInd = FFTwindowingInd
268 self.BeamAngleAzim = BeamAngleAzim
269 self.BeamAngleZen = BeamAngleZen
270 self.AntennaCoord = AntennaCoord
271 self.RecPhaseCalibr = RecPhaseCalibr
272 self.RecAmpCalibr = RecAmpCalibr
273 self.ReceiverGaindB = ReceiverGaindB
274
275
276 def read(self, fp):
277
278 startFp = fp.tell() #The method tell() returns the current position of the file read/write pointer within the file.
279
280 try:
281 header = numpy.fromfile(fp,RECORD_STRUCTURE,1)
282 except Exception, e:
283 print "System Header: " + e
284 return 0
285
286 self.RecMgcNumber = header['RecMgcNumber'][0] #0x23030001
287 self.RecCounter = header['RecCounter'][0]
288 self.Off2StartNxtRec = header['Off2StartNxtRec'][0]
289 self.EpTimeStamp = header['EpTimeStamp'][0]
290 self.msCompTimeStamp = header['msCompTimeStamp'][0]
291 self.ExpTagName = header['ExpTagName'][0]
292 self.ExpComment = header['ExpComment'][0]
293 self.SiteLatDegrees = header['SiteLatDegrees'][0]
294 self.SiteLongDegrees = header['SiteLongDegrees'][0]
295 self.RTCgpsStatus = header['RTCgpsStatus'][0]
296 self.TransmitFrec = header['TransmitFrec'][0]
297 self.ReceiveFrec = header['ReceiveFrec'][0]
298 self.FirstOsciFrec = header['FirstOsciFrec'][0]
299 self.Polarisation = header['Polarisation'][0]
300 self.ReceiverFiltSett = header['ReceiverFiltSett'][0]
301 self.nModesInUse = header['nModesInUse'][0]
302 self.DualModeIndex = header['DualModeIndex'][0]
303 self.DualModeRange = header['DualModeRange'][0]
304 self.nDigChannels = header['nDigChannels'][0]
305 self.SampResolution = header['SampResolution'][0]
306 self.nRangeGatesSamp = header['nRangeGatesSamp'][0]
307 self.StartRangeSamp = header['StartRangeSamp'][0]
308 self.PRFhz = header['PRFhz'][0]
309 self.Integrations = header['Integrations'][0]
310 self.nDataPointsTrsf = header['nDataPointsTrsf'][0]
311 self.nReceiveBeams = header['nReceiveBeams'][0]
312 self.nSpectAverages = header['nSpectAverages'][0]
313 self.FFTwindowingInd = header['FFTwindowingInd'][0]
314 self.BeamAngleAzim = header['BeamAngleAzim'][0]
315 self.BeamAngleZen = header['BeamAngleZen'][0]
316 self.AntennaCoord = header['AntennaCoord'][0]
317 self.RecPhaseCalibr = header['RecPhaseCalibr'][0]
318 self.RecAmpCalibr = header['RecAmpCalibr'][0]
319 self.ReceiverGaindB = header['ReceiverGaindB'][0]
320
321 Self.size = 180+20*3
322
323 endFp = self.size + startFp
324
325 if fp.tell() > endFp:
326 sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp.name)
327 return 0
328
329 if fp.tell() < endFp:
330 sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp.name)
331 return 0
332
333 return 1
334
335 def write(self, fp):
336
337 headerTuple = (self.RecMgcNumber,
338 self.RecCounter,
339 self.Off2StartNxtRec,
340 self.EpTimeStamp,
341 self.msCompTimeStamp,
342 self.ExpTagName,
343 self.ExpComment,
344 self.SiteLatDegrees,
345 self.SiteLongDegrees,
346 self.RTCgpsStatus,
347 self.TransmitFrec,
348 self.ReceiveFrec,
349 self.FirstOsciFrec,
350 self.Polarisation,
351 self.ReceiverFiltSett,
352 self.nModesInUse,
353 self.DualModeIndex,
354 self.DualModeRange,
355 self.nDigChannels,
356 self.SampResolution,
357 self.nRangeGatesSamp,
358 self.StartRangeSamp,
359 self.PRFhz,
360 self.Integrations,
361 self.nDataPointsTrsf,
362 self.nReceiveBeams,
363 self.nSpectAverages,
364 self.FFTwindowingInd,
365 self.BeamAngleAzim,
366 self.BeamAngleZen,
367 self.AntennaCoord,
368 self.RecPhaseCalibr,
369 self.RecAmpCalibr,
370 self.ReceiverGaindB)
371
372 # self.size,self.nSamples,
373 # self.nProfiles,
374 # self.nChannels,
375 # self.adcResolution,
376 # self.pciDioBusWidth
377
378 header = numpy.array(headerTuple,RECORD_STRUCTURE)
379 header.tofile(fp)
380
381 return 1
382
383
384 def get_dtype_index(numpy_dtype):
385
386 index = None
387
388 for i in range(len(NUMPY_DTYPE_LIST)):
389 if numpy_dtype == NUMPY_DTYPE_LIST[i]:
390 index = i
391 break
392
393 return index
394
395 def get_numpy_dtype(index):
396
397 #dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
398
399 return NUMPY_DTYPE_LIST[index]
400
401
402 def get_dtype_width(index):
403
404 return DTYPE_WIDTH[index] No newline at end of file
@@ -0,0 +1,469
1 import numpy
2 import datetime
3 import sys
4 import matplotlib
5
6 if 'linux' in sys.platform:
7 matplotlib.use("TKAgg")
8
9 if 'darwin' in sys.platform:
10 matplotlib.use('TKAgg')
11 #Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX'
12 import matplotlib.pyplot
13
14 from mpl_toolkits.axes_grid1 import make_axes_locatable
15 from matplotlib.ticker import FuncFormatter, LinearLocator
16
17 ###########################################
18 #Actualizacion de las funciones del driver
19 ###########################################
20
21 jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90]
22 blu_values = matplotlib.pyplot.get_cmap("seismic_r", 20)(numpy.arange(20))[10:15]
23 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list("jro", numpy.vstack((blu_values, jet_values)))
24 matplotlib.pyplot.register_cmap(cmap=ncmap)
25
26 def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi = 80):
27
28 matplotlib.pyplot.ioff()
29
30 fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=(1.0*width/dpi, 1.0*height/dpi))
31 fig.canvas.manager.set_window_title(wintitle)
32 # fig.canvas.manager.resize(width, height)
33 matplotlib.pyplot.ion()
34
35
36 if show:
37 matplotlib.pyplot.show()
38
39 return fig
40
41 def closeFigure(show=False, fig=None):
42
43 # matplotlib.pyplot.ioff()
44 # matplotlib.pyplot.pause(0)
45
46 if show:
47 matplotlib.pyplot.show()
48
49 if fig != None:
50 matplotlib.pyplot.close(fig)
51 # matplotlib.pyplot.pause(0)
52 # matplotlib.pyplot.ion()
53
54 return
55
56 matplotlib.pyplot.close("all")
57 # matplotlib.pyplot.pause(0)
58 # matplotlib.pyplot.ion()
59
60 return
61
62 def saveFigure(fig, filename):
63
64 # matplotlib.pyplot.ioff()
65 fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi)
66 # matplotlib.pyplot.ion()
67
68 def clearFigure(fig):
69
70 fig.clf()
71
72 def setWinTitle(fig, title):
73
74 fig.canvas.manager.set_window_title(title)
75
76 def setTitle(fig, title):
77
78 fig.suptitle(title)
79
80 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False):
81
82 matplotlib.pyplot.ioff()
83 matplotlib.pyplot.figure(fig.number)
84 axes = matplotlib.pyplot.subplot2grid((nrow, ncol),
85 (xpos, ypos),
86 colspan=colspan,
87 rowspan=rowspan,
88 polar=polar)
89
90 axes.grid(True)
91 matplotlib.pyplot.ion()
92 return axes
93
94 def setAxesText(ax, text):
95
96 ax.annotate(text,
97 xy = (.1, .99),
98 xycoords = 'figure fraction',
99 horizontalalignment = 'left',
100 verticalalignment = 'top',
101 fontsize = 10)
102
103 def printLabels(ax, xlabel, ylabel, title):
104
105 ax.set_xlabel(xlabel, size=11)
106 ax.set_ylabel(ylabel, size=11)
107 ax.set_title(title, size=8)
108
109 def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='',
110 ticksize=9, xtick_visible=True, ytick_visible=True,
111 nxticks=4, nyticks=10,
112 grid=None,color='blue'):
113
114 """
115
116 Input:
117 grid : None, 'both', 'x', 'y'
118 """
119
120 matplotlib.pyplot.ioff()
121
122 ax.set_xlim([xmin,xmax])
123 ax.set_ylim([ymin,ymax])
124
125 printLabels(ax, xlabel, ylabel, title)
126
127 ######################################################
128 if (xmax-xmin)<=1:
129 xtickspos = numpy.linspace(xmin,xmax,nxticks)
130 xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos])
131 ax.set_xticks(xtickspos)
132 else:
133 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
134 # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin)
135 ax.set_xticks(xtickspos)
136
137 for tick in ax.get_xticklabels():
138 tick.set_visible(xtick_visible)
139
140 for tick in ax.xaxis.get_major_ticks():
141 tick.label.set_fontsize(ticksize)
142
143 ######################################################
144 for tick in ax.get_yticklabels():
145 tick.set_visible(ytick_visible)
146
147 for tick in ax.yaxis.get_major_ticks():
148 tick.label.set_fontsize(ticksize)
149
150 ax.plot(x, y, color=color)
151 iplot = ax.lines[-1]
152
153 ######################################################
154 if '0.' in matplotlib.__version__[0:2]:
155 print "The matplotlib version has to be updated to 1.1 or newer"
156 return iplot
157
158 if '1.0.' in matplotlib.__version__[0:4]:
159 print "The matplotlib version has to be updated to 1.1 or newer"
160 return iplot
161
162 if grid != None:
163 ax.grid(b=True, which='major', axis=grid)
164
165 matplotlib.pyplot.tight_layout()
166
167 matplotlib.pyplot.ion()
168
169 return iplot
170
171 def set_linedata(ax, x, y, idline):
172
173 ax.lines[idline].set_data(x,y)
174
175 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
176
177 ax = iplot.get_axes()
178
179 printLabels(ax, xlabel, ylabel, title)
180
181 set_linedata(ax, x, y, idline=0)
182
183 def addpline(ax, x, y, color, linestyle, lw):
184
185 ax.plot(x,y,color=color,linestyle=linestyle,lw=lw)
186
187
188 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
189 xlabel='', ylabel='', title='', ticksize = 9,
190 colormap='jet',cblabel='', cbsize="5%",
191 XAxisAsTime=False):
192
193 matplotlib.pyplot.ioff()
194
195 divider = make_axes_locatable(ax)
196 ax_cb = divider.new_horizontal(size=cbsize, pad=0.05)
197 fig = ax.get_figure()
198 fig.add_axes(ax_cb)
199
200 ax.set_xlim([xmin,xmax])
201 ax.set_ylim([ymin,ymax])
202
203 printLabels(ax, xlabel, ylabel, title)
204
205 z = numpy.ma.masked_invalid(z)
206 cmap=matplotlib.pyplot.get_cmap(colormap)
207 cmap.set_bad('white',1.)
208 imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=cmap)
209 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
210 cb.set_label(cblabel)
211
212 # for tl in ax_cb.get_yticklabels():
213 # tl.set_visible(True)
214
215 for tick in ax.yaxis.get_major_ticks():
216 tick.label.set_fontsize(ticksize)
217
218 for tick in ax.xaxis.get_major_ticks():
219 tick.label.set_fontsize(ticksize)
220
221 for tick in cb.ax.get_yticklabels():
222 tick.set_fontsize(ticksize)
223
224 ax_cb.yaxis.tick_right()
225
226 if '0.' in matplotlib.__version__[0:2]:
227 print "The matplotlib version has to be updated to 1.1 or newer"
228 return imesh
229
230 if '1.0.' in matplotlib.__version__[0:4]:
231 print "The matplotlib version has to be updated to 1.1 or newer"
232 return imesh
233
234 matplotlib.pyplot.tight_layout()
235
236 if XAxisAsTime:
237
238 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
239 ax.xaxis.set_major_formatter(FuncFormatter(func))
240 ax.xaxis.set_major_locator(LinearLocator(7))
241 ax.grid(True)
242 matplotlib.pyplot.ion()
243 return imesh
244
245 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
246
247 z = z.T
248 ax = imesh.get_axes()
249 printLabels(ax, xlabel, ylabel, title)
250 imesh.set_array(z.ravel())
251 ax.grid(True)
252
253 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
254
255 printLabels(ax, xlabel, ylabel, title)
256 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
257 ax.grid(True)
258
259 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
260
261 printLabels(ax, xlabel, ylabel, title)
262
263 ax.collections.remove(ax.collections[0])
264
265 z = numpy.ma.masked_invalid(z)
266
267 cmap=matplotlib.pyplot.get_cmap(colormap)
268 cmap.set_bad('white',1.)
269
270 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=cmap)
271 ax.grid(True)
272
273 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
274 ticksize=9, xtick_visible=True, ytick_visible=True,
275 nxticks=4, nyticks=10,
276 grid=None):
277
278 """
279
280 Input:
281 grid : None, 'both', 'x', 'y'
282 """
283
284 matplotlib.pyplot.ioff()
285
286 lines = ax.plot(x.T, y)
287 leg = ax.legend(lines, legendlabels, loc='upper right')
288 leg.get_frame().set_alpha(0.5)
289 ax.set_xlim([xmin,xmax])
290 ax.set_ylim([ymin,ymax])
291 printLabels(ax, xlabel, ylabel, title)
292
293 xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
294 ax.set_xticks(xtickspos)
295
296 for tick in ax.get_xticklabels():
297 tick.set_visible(xtick_visible)
298
299 for tick in ax.xaxis.get_major_ticks():
300 tick.label.set_fontsize(ticksize)
301
302 for tick in ax.get_yticklabels():
303 tick.set_visible(ytick_visible)
304
305 for tick in ax.yaxis.get_major_ticks():
306 tick.label.set_fontsize(ticksize)
307
308 iplot = ax.lines[-1]
309
310 if '0.' in matplotlib.__version__[0:2]:
311 print "The matplotlib version has to be updated to 1.1 or newer"
312 return iplot
313
314 if '1.0.' in matplotlib.__version__[0:4]:
315 print "The matplotlib version has to be updated to 1.1 or newer"
316 return iplot
317
318 if grid != None:
319 ax.grid(b=True, which='major', axis=grid)
320
321 matplotlib.pyplot.tight_layout()
322
323 matplotlib.pyplot.ion()
324
325 return iplot
326
327
328 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
329
330 ax = iplot.get_axes()
331
332 printLabels(ax, xlabel, ylabel, title)
333
334 for i in range(len(ax.lines)):
335 line = ax.lines[i]
336 line.set_data(x[i,:],y)
337
338 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
339 ticksize=9, xtick_visible=True, ytick_visible=True,
340 nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None",
341 grid=None, XAxisAsTime=False):
342
343 """
344
345 Input:
346 grid : None, 'both', 'x', 'y'
347 """
348
349 matplotlib.pyplot.ioff()
350
351 # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle)
352 lines = ax.plot(x, y.T)
353 # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \
354 # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.)
355
356 leg = ax.legend(lines, legendlabels,
357 loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0)
358
359 for label in leg.get_texts(): label.set_fontsize(9)
360
361 ax.set_xlim([xmin,xmax])
362 ax.set_ylim([ymin,ymax])
363 printLabels(ax, xlabel, ylabel, title)
364
365 # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
366 # ax.set_xticks(xtickspos)
367
368 for tick in ax.get_xticklabels():
369 tick.set_visible(xtick_visible)
370
371 for tick in ax.xaxis.get_major_ticks():
372 tick.label.set_fontsize(ticksize)
373
374 for tick in ax.get_yticklabels():
375 tick.set_visible(ytick_visible)
376
377 for tick in ax.yaxis.get_major_ticks():
378 tick.label.set_fontsize(ticksize)
379
380 iplot = ax.lines[-1]
381
382 if '0.' in matplotlib.__version__[0:2]:
383 print "The matplotlib version has to be updated to 1.1 or newer"
384 return iplot
385
386 if '1.0.' in matplotlib.__version__[0:4]:
387 print "The matplotlib version has to be updated to 1.1 or newer"
388 return iplot
389
390 if grid != None:
391 ax.grid(b=True, which='major', axis=grid)
392
393 matplotlib.pyplot.tight_layout()
394
395 if XAxisAsTime:
396
397 func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
398 ax.xaxis.set_major_formatter(FuncFormatter(func))
399 ax.xaxis.set_major_locator(LinearLocator(7))
400
401 matplotlib.pyplot.ion()
402
403 return iplot
404
405 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
406
407 ax = iplot.get_axes()
408
409 printLabels(ax, xlabel, ylabel, title)
410
411 for i in range(len(ax.lines)):
412 line = ax.lines[i]
413 line.set_data(x,y[i,:])
414
415 def createPolar(ax, x, y,
416 xlabel='', ylabel='', title='', ticksize = 9,
417 colormap='jet',cblabel='', cbsize="5%",
418 XAxisAsTime=False):
419
420 matplotlib.pyplot.ioff()
421
422 ax.plot(x,y,'bo', markersize=5)
423 # ax.set_rmax(90)
424 ax.set_ylim(0,90)
425 ax.set_yticks(numpy.arange(0,90,20))
426 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11')
427 # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11')
428 # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical')
429 ax.yaxis.labelpad = 230
430 printLabels(ax, xlabel, ylabel, title)
431 iplot = ax.lines[-1]
432
433 if '0.' in matplotlib.__version__[0:2]:
434 print "The matplotlib version has to be updated to 1.1 or newer"
435 return iplot
436
437 if '1.0.' in matplotlib.__version__[0:4]:
438 print "The matplotlib version has to be updated to 1.1 or newer"
439 return iplot
440
441 # if grid != None:
442 # ax.grid(b=True, which='major', axis=grid)
443
444 matplotlib.pyplot.tight_layout()
445
446 matplotlib.pyplot.ion()
447
448
449 return iplot
450
451 def polar(iplot, x, y, xlabel='', ylabel='', title=''):
452
453 ax = iplot.get_axes()
454
455 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11')
456 printLabels(ax, xlabel, ylabel, title)
457
458 set_linedata(ax, x, y, idline=0)
459
460 def draw(fig):
461
462 if type(fig) == 'int':
463 raise ValueError, "Error drawing: Fig parameter should be a matplotlib figure object figure"
464
465 fig.canvas.draw()
466
467 def pause(interval=0.000001):
468
469 matplotlib.pyplot.pause(interval)
@@ -0,0 +1,321
1 import os, sys
2 import glob
3 import fnmatch
4 import datetime
5 import time
6 import re
7 import h5py
8 import numpy
9 import matplotlib.pyplot as plt
10
11 import pylab as plb
12 from scipy.optimize import curve_fit
13 from scipy import asarray as ar,exp
14 from scipy import stats
15
16 from duplicity.path import Path
17 from numpy.ma.core import getdata
18
19 SPEED_OF_LIGHT = 299792458
20 SPEED_OF_LIGHT = 3e8
21
22 try:
23 from gevent import sleep
24 except:
25 from time import sleep
26
27 from schainpy.model.data.jrodata import Spectra
28 #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader
29 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation
30 #from schainpy.model.io.jroIO_bltr import BLTRReader
31 from numpy import imag, shape, NaN
32
33
34 startFp = open('/home/erick/Documents/MIRA35C/20160117/20160117_0000.zspc',"rb")
35
36
37 FILE_HEADER = numpy.dtype([ #HEADER 1024bytes
38 ('Hname',numpy.str_,32), #Original file name
39 ('Htime',numpy.str_,32), #Date and time when the file was created
40 ('Hoper',numpy.str_,64), #Name of operator who created the file
41 ('Hplace',numpy.str_,128), #Place where the measurements was carried out
42 ('Hdescr',numpy.str_,256), #Description of measurements
43 ('Hdummy',numpy.str_,512), #Reserved space
44 #Main chunk
45 ('Msign','<i4'), #Main chunk signature FZKF or NUIG
46 ('MsizeData','<i4'), #Size of data block main chunk
47 #Processing DSP parameters
48 ('PPARsign','<i4'), #PPAR signature
49 ('PPARsize','<i4'), #PPAR size of block
50 ('PPARprf','<i4'), #Pulse repetition frequency
51 ('PPARpdr','<i4'), #Pulse duration
52 ('PPARsft','<i4'), #FFT length
53 ('PPARavc','<i4'), #Number of spectral (in-coherent) averages
54 ('PPARihp','<i4'), #Number of lowest range gate for moment estimation
55 ('PPARchg','<i4'), #Count for gates for moment estimation
56 ('PPARpol','<i4'), #switch on/off polarimetric measurements. Should be 1.
57 #Service DSP parameters
58 ('SPARatt','<i4'), #STC attenuation on the lowest ranges on/off
59 ('SPARtx','<i4'), #OBSOLETE
60 ('SPARaddGain0','<f4'), #OBSOLETE
61 ('SPARaddGain1','<f4'), #OBSOLETE
62 ('SPARwnd','<i4'), #Debug only. It normal mode it is 0.
63 ('SPARpos','<i4'), #Delay between sync pulse and tx pulse for phase corr, ns
64 ('SPARadd','<i4'), #"add to pulse" to compensate for delay between the leading edge of driver pulse and envelope of the RF signal.
65 ('SPARlen','<i4'), #Time for measuring txn pulse phase. OBSOLETE
66 ('SPARcal','<i4'), #OBSOLETE
67 ('SPARnos','<i4'), #OBSOLETE
68 ('SPARof0','<i4'), #detection threshold
69 ('SPARof1','<i4'), #OBSOLETE
70 ('SPARswt','<i4'), #2nd moment estimation threshold
71 ('SPARsum','<i4'), #OBSOLETE
72 ('SPARosc','<i4'), #flag Oscillosgram mode
73 ('SPARtst','<i4'), #OBSOLETE
74 ('SPARcor','<i4'), #OBSOLETE
75 ('SPARofs','<i4'), #OBSOLETE
76 ('SPARhsn','<i4'), #Hildebrand div noise detection on noise gate
77 ('SPARhsa','<f4'), #Hildebrand div noise detection on all gates
78 ('SPARcalibPow_M','<f4'), #OBSOLETE
79 ('SPARcalibSNR_M','<f4'), #OBSOLETE
80 ('SPARcalibPow_S','<f4'), #OBSOLETE
81 ('SPARcalibSNR_S','<f4'), #OBSOLETE
82 ('SPARrawGate1','<i4'), #Lowest range gate for spectra saving Raw_Gate1 >=5
83 ('SPARrawGate2','<i4'), #Number of range gates with atmospheric signal
84 ('SPARraw','<i4'), #flag - IQ or spectra saving on/off
85 ('SPARprc','<i4'),]) #flag - Moment estimation switched on/off
86
87
88
89 self.Hname= None
90 self.Htime= None
91 self.Hoper= None
92 self.Hplace= None
93 self.Hdescr= None
94 self.Hdummy= None
95
96 self.Msign=None
97 self.MsizeData=None
98
99 self.PPARsign=None
100 self.PPARsize=None
101 self.PPARprf=None
102 self.PPARpdr=None
103 self.PPARsft=None
104 self.PPARavc=None
105 self.PPARihp=None
106 self.PPARchg=None
107 self.PPARpol=None
108 #Service DSP parameters
109 self.SPARatt=None
110 self.SPARtx=None
111 self.SPARaddGain0=None
112 self.SPARaddGain1=None
113 self.SPARwnd=None
114 self.SPARpos=None
115 self.SPARadd=None
116 self.SPARlen=None
117 self.SPARcal=None
118 self.SPARnos=None
119 self.SPARof0=None
120 self.SPARof1=None
121 self.SPARswt=None
122 self.SPARsum=None
123 self.SPARosc=None
124 self.SPARtst=None
125 self.SPARcor=None
126 self.SPARofs=None
127 self.SPARhsn=None
128 self.SPARhsa=None
129 self.SPARcalibPow_M=None
130 self.SPARcalibSNR_M=None
131 self.SPARcalibPow_S=None
132 self.SPARcalibSNR_S=None
133 self.SPARrawGate1=None
134 self.SPARrawGate2=None
135 self.SPARraw=None
136 self.SPARprc=None
137
138
139
140 header = numpy.fromfile(fp, FILE_HEADER,1)
141 ''' numpy.fromfile(file, dtype, count, sep='')
142 file : file or str
143 Open file object or filename.
144
145 dtype : data-type
146 Data type of the returned array. For binary files, it is used to determine
147 the size and byte-order of the items in the file.
148
149 count : int
150 Number of items to read. -1 means all items (i.e., the complete file).
151
152 sep : str
153 Separator between items if file is a text file. Empty ("") separator means
154 the file should be treated as binary. Spaces (" ") in the separator match zero
155 or more whitespace characters. A separator consisting only of spaces must match
156 at least one whitespace.
157
158 '''
159
160 Hname= str(header['Hname'][0])
161 Htime= str(header['Htime'][0])
162 Hoper= str(header['Hoper'][0])
163 Hplace= str(header['Hplace'][0])
164 Hdescr= str(header['Hdescr'][0])
165 Hdummy= str(header['Hdummy'][0])
166
167 Msign=header['Msign'][0]
168 MsizeData=header['MsizeData'][0]
169
170 PPARsign=header['PPARsign'][0]
171 PPARsize=header['PPARsize'][0]
172 PPARprf=header['PPARprf'][0]
173 PPARpdr=header['PPARpdr'][0]
174 PPARsft=header['PPARsft'][0]
175 PPARavc=header['PPARavc'][0]
176 PPARihp=header['PPARihp'][0]
177 PPARchg=header['PPARchg'][0]
178 PPARpol=header['PPARpol'][0]
179 #Service DSP parameters
180 SPARatt=header['SPARatt'][0]
181 SPARtx=header['SPARtx'][0]
182 SPARaddGain0=header['SPARaddGain0'][0]
183 SPARaddGain1=header['SPARaddGain1'][0]
184 SPARwnd=header['SPARwnd'][0]
185 SPARpos=header['SPARpos'][0]
186 SPARadd=header['SPARadd'][0]
187 SPARlen=header['SPARlen'][0]
188 SPARcal=header['SPARcal'][0]
189 SPARnos=header['SPARnos'][0]
190 SPARof0=header['SPARof0'][0]
191 SPARof1=header['SPARof1'][0]
192 SPARswt=header['SPARswt'][0]
193 SPARsum=header['SPARsum'][0]
194 SPARosc=header['SPARosc'][0]
195 SPARtst=header['SPARtst'][0]
196 SPARcor=header['SPARcor'][0]
197 SPARofs=header['SPARofs'][0]
198 SPARhsn=header['SPARhsn'][0]
199 SPARhsa=header['SPARhsa'][0]
200 SPARcalibPow_M=header['SPARcalibPow_M'][0]
201 SPARcalibSNR_M=header['SPARcalibSNR_M'][0]
202 SPARcalibPow_S=header['SPARcalibPow_S'][0]
203 SPARcalibSNR_S=header['SPARcalibSNR_S'][0]
204 SPARrawGate1=header['SPARrawGate1'][0]
205 SPARrawGate2=header['SPARrawGate2'][0]
206 SPARraw=header['SPARraw'][0]
207 SPARprc=header['SPARprc'][0]
208
209
210
211 SRVI_STRUCTURE = numpy.dtype([
212 ('frame_cnt','<u4'),#
213 ('time_t','<u4'), #
214 ('tpow','<f4'), #
215 ('npw1','<f4'), #
216 ('npw2','<f4'), #
217 ('cpw1','<f4'), #
218 ('pcw2','<f4'), #
219 ('ps_err','<u4'), #
220 ('te_err','<u4'), #
221 ('rc_err','<u4'), #
222 ('grs1','<u4'), #
223 ('grs2','<u4'), #
224 ('azipos','<f4'), #
225 ('azivel','<f4'), #
226 ('elvpos','<f4'), #
227 ('elvvel','<f4'), #
228 ('northAngle','<f4'), #
229 ('microsec','<u4'), #
230 ('azisetvel','<f4'), #
231 ('elvsetpos','<f4'), #
232 ('RadarConst','<f4'),]) #
233
234 JUMP_STRUCTURE = numpy.dtype([
235 ('jump','<u140'),#
236 ('SizeOfDataBlock1',numpy.str_,32),#
237 ('jump','<i4'),#
238 ('DataBlockTitleSRVI1',numpy.str_,32),#
239 ('SizeOfSRVI1','<i4'),])#
240
241
242
243 #frame_cnt=0, time_t= 0, tpow=0, npw1=0, npw2=0,
244 #cpw1=0, pcw2=0, ps_err=0, te_err=0, rc_err=0, grs1=0,
245 #grs2=0, azipos=0, azivel=0, elvpos=0, elvvel=0, northangle=0,
246 #microsec=0, azisetvel=0, elvsetpos=0, RadarConst=0
247
248
249 frame_cnt = frame_cnt
250 dwell = time_t
251 tpow = tpow
252 npw1 = npw1
253 npw2 = npw2
254 cpw1 = cpw1
255 pcw2 = pcw2
256 ps_err = ps_err
257 te_err = te_err
258 rc_err = rc_err
259 grs1 = grs1
260 grs2 = grs2
261 azipos = azipos
262 azivel = azivel
263 elvpos = elvpos
264 elvvel = elvvel
265 northAngle = northAngle
266 microsec = microsec
267 azisetvel = azisetvel
268 elvsetpos = elvsetpos
269 RadarConst5 = RadarConst
270
271
272
273 #print fp
274 #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file.
275 #startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file.
276 #RecCounter=0
277 #Off2StartNxtRec=811248
278 #print 'OffsetStartHeader ',self.OffsetStartHeader,'RecCounter ', self.RecCounter, 'Off2StartNxtRec ' , self.Off2StartNxtRec
279 #OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec
280 #startFp.seek(OffRHeader, os.SEEK_SET)
281 print 'debe ser 48, RecCounter*811248', self.OffsetStartHeader,self.RecCounter,self.Off2StartNxtRec
282 print 'Posicion del bloque: ',OffRHeader
283
284 header = numpy.fromfile(startFp,SRVI_STRUCTURE,1)
285
286 self.frame_cnt = header['frame_cnt'][0]#
287 self.time_t = header['frame_cnt'][0] #
288 self.tpow = header['frame_cnt'][0] #
289 self.npw1 = header['frame_cnt'][0] #
290 self.npw2 = header['frame_cnt'][0] #
291 self.cpw1 = header['frame_cnt'][0] #
292 self.pcw2 = header['frame_cnt'][0] #
293 self.ps_err = header['frame_cnt'][0] #
294 self.te_err = header['frame_cnt'][0] #
295 self.rc_err = header['frame_cnt'][0] #
296 self.grs1 = header['frame_cnt'][0] #
297 self.grs2 = header['frame_cnt'][0] #
298 self.azipos = header['frame_cnt'][0] #
299 self.azivel = header['frame_cnt'][0] #
300 self.elvpos = header['frame_cnt'][0] #
301 self.elvvel = header['frame_cnt'][0] #
302 self.northAngle = header['frame_cnt'][0] #
303 self.microsec = header['frame_cnt'][0] #
304 self.azisetvel = header['frame_cnt'][0] #
305 self.elvsetpos = header['frame_cnt'][0] #
306 self.RadarConst = header['frame_cnt'][0] #
307
308
309 self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz)
310
311 self.RHsize = 180+20*self.nChannels
312 self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4
313 #print 'Datasize',self.Datasize
314 endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec
315
316 print '=============================================='
317
318 print '=============================================='
319
320
321 No newline at end of file
@@ -0,0 +1,362
1 '''
2 Created on Nov 9, 2016
3
4 @author: roj- LouVD
5 '''
6
7
8 import os
9 import sys
10 import time
11 import glob
12 import datetime
13
14 import numpy
15
16 from schainpy.model.proc.jroproc_base import ProcessingUnit
17 from schainpy.model.data.jrodata import Parameters
18 from schainpy.model.io.jroIO_base import JRODataReader, isNumber
19
20 FILE_HEADER_STRUCTURE = numpy.dtype([
21 ('FMN', '<u4'),
22 ('nrec', '<u4'),
23 ('fr_offset', '<u4'),
24 ('id', '<u4'),
25 ('site', 'u1', (32,))
26 ])
27
28 REC_HEADER_STRUCTURE = numpy.dtype([
29 ('rmn', '<u4'),
30 ('rcounter', '<u4'),
31 ('nr_offset', '<u4'),
32 ('tr_offset', '<u4'),
33 ('time', '<u4'),
34 ('time_msec', '<u4'),
35 ('tag', 'u1', (32,)),
36 ('comments', 'u1', (32,)),
37 ('lat', '<f4'),
38 ('lon', '<f4'),
39 ('gps_status', '<u4'),
40 ('freq', '<u4'),
41 ('freq0', '<u4'),
42 ('nchan', '<u4'),
43 ('delta_r', '<u4'),
44 ('nranges', '<u4'),
45 ('r0', '<u4'),
46 ('prf', '<u4'),
47 ('ncoh', '<u4'),
48 ('npoints', '<u4'),
49 ('polarization', '<i4'),
50 ('rx_filter', '<u4'),
51 ('nmodes', '<u4'),
52 ('dmode_index', '<u4'),
53 ('dmode_rngcorr', '<u4'),
54 ('nrxs', '<u4'),
55 ('acf_length', '<u4'),
56 ('acf_lags', '<u4'),
57 ('sea_to_atmos', '<f4'),
58 ('sea_notch', '<u4'),
59 ('lh_sea', '<u4'),
60 ('hh_sea', '<u4'),
61 ('nbins_sea', '<u4'),
62 ('min_snr', '<f4'),
63 ('min_cc', '<f4'),
64 ('max_time_diff', '<f4')
65 ])
66
67 DATA_STRUCTURE = numpy.dtype([
68 ('range', '<u4'),
69 ('status', '<u4'),
70 ('zonal', '<f4'),
71 ('meridional', '<f4'),
72 ('vertical', '<f4'),
73 ('zonal_a', '<f4'),
74 ('meridional_a', '<f4'),
75 ('corrected_fading', '<f4'), # seconds
76 ('uncorrected_fading', '<f4'), # seconds
77 ('time_diff', '<f4'),
78 ('major_axis', '<f4'),
79 ('axial_ratio', '<f4'),
80 ('orientation', '<f4'),
81 ('sea_power', '<u4'),
82 ('sea_algorithm', '<u4')
83 ])
84
85 class BLTRParamReader(JRODataReader, ProcessingUnit):
86 '''
87 Boundary Layer and Tropospheric Radar (BLTR) reader, Wind velocities and SNR from *.sswma files
88 '''
89
90 ext = '.sswma'
91
92 def __init__(self, **kwargs):
93
94 ProcessingUnit.__init__(self , **kwargs)
95
96 self.dataOut = Parameters()
97 self.counter_records = 0
98 self.flagNoMoreFiles = 0
99 self.isConfig = False
100 self.filename = None
101
102 def setup(self,
103 path=None,
104 startDate=None,
105 endDate=None,
106 ext=None,
107 startTime=datetime.time(0, 0, 0),
108 endTime=datetime.time(23, 59, 59),
109 timezone=0,
110 status_value=0,
111 **kwargs):
112
113 self.path = path
114 self.startTime = startTime
115 self.endTime = endTime
116 self.status_value = status_value
117
118 if self.path is None:
119 raise ValueError, "The path is not valid"
120
121 if ext is None:
122 ext = self.ext
123
124 self.search_files(self.path, startDate, endDate, ext)
125 self.timezone = timezone
126 self.fileIndex = 0
127
128 if not self.fileList:
129 raise Warning, "There is no files matching these date in the folder: %s. \n Check 'startDate' and 'endDate' "%(path)
130
131 self.setNextFile()
132
133 def search_files(self, path, startDate, endDate, ext):
134 '''
135 Searching for BLTR rawdata file in path
136 Creating a list of file to proces included in [startDate,endDate]
137
138 Input:
139 path - Path to find BLTR rawdata files
140 startDate - Select file from this date
141 enDate - Select file until this date
142 ext - Extension of the file to read
143
144 '''
145
146 print 'Searching file in %s ' % (path)
147 foldercounter = 0
148 fileList0 = glob.glob1(path, "*%s" % ext)
149 fileList0.sort()
150
151 self.fileList = []
152 self.dateFileList = []
153
154 for thisFile in fileList0:
155 year = thisFile[-14:-10]
156 if not isNumber(year):
157 continue
158
159 month = thisFile[-10:-8]
160 if not isNumber(month):
161 continue
162
163 day = thisFile[-8:-6]
164 if not isNumber(day):
165 continue
166
167 year, month, day = int(year), int(month), int(day)
168 dateFile = datetime.date(year, month, day)
169
170 if (startDate > dateFile) or (endDate < dateFile):
171 continue
172
173 self.fileList.append(thisFile)
174 self.dateFileList.append(dateFile)
175
176 return
177
178 def setNextFile(self):
179
180 file_id = self.fileIndex
181
182 if file_id == len(self.fileList):
183 print '\nNo more files in the folder'
184 print 'Total number of file(s) read : {}'.format(self.fileIndex + 1)
185 self.flagNoMoreFiles = 1
186 return 0
187
188 print '\n[Setting file] (%s) ...' % self.fileList[file_id]
189 filename = os.path.join(self.path, self.fileList[file_id])
190
191 dirname, name = os.path.split(filename)
192 self.siteFile = name.split('.')[0] # 'peru2' ---> Piura - 'peru1' ---> Huancayo or Porcuya
193 if self.filename is not None:
194 self.fp.close()
195 self.filename = filename
196 self.fp = open(self.filename, 'rb')
197 self.header_file = numpy.fromfile(self.fp, FILE_HEADER_STRUCTURE, 1)
198 self.nrecords = self.header_file['nrec'][0]
199 self.sizeOfFile = os.path.getsize(self.filename)
200 self.counter_records = 0
201 self.flagIsNewFile = 0
202 self.fileIndex += 1
203
204 return 1
205
206 def readNextBlock(self):
207
208 while True:
209 if self.counter_records == self.nrecords:
210 self.flagIsNewFile = 1
211 if not self.setNextFile():
212 return 0
213
214 self.readBlock()
215
216 if (self.datatime.time() < self.startTime) or (self.datatime.time() > self.endTime):
217 print "[Reading] Record No. %d/%d -> %s [Skipping]" %(
218 self.counter_records,
219 self.nrecords,
220 self.datatime.ctime())
221 continue
222 break
223
224 print "[Reading] Record No. %d/%d -> %s" %(
225 self.counter_records,
226 self.nrecords,
227 self.datatime.ctime())
228
229 return 1
230
231 def readBlock(self):
232
233 pointer = self.fp.tell()
234 header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1)
235 self.nchannels = header_rec['nchan'][0]/2
236 self.kchan = header_rec['nrxs'][0]
237 self.nmodes = header_rec['nmodes'][0]
238 self.nranges = header_rec['nranges'][0]
239 self.fp.seek(pointer)
240 self.height = numpy.empty((self.nmodes, self.nranges))
241 self.snr = numpy.empty((self.nmodes, self.nchannels, self.nranges))
242 self.buffer = numpy.empty((self.nmodes, 3, self.nranges))
243
244 for mode in range(self.nmodes):
245 self.readHeader()
246 data = self.readData()
247 self.height[mode] = (data[0] - self.correction) / 1000.
248 self.buffer[mode] = data[1]
249 self.snr[mode] = data[2]
250
251 self.counter_records = self.counter_records + self.nmodes
252
253 return
254
255 def readHeader(self):
256 '''
257 RecordHeader of BLTR rawdata file
258 '''
259
260 header_structure = numpy.dtype(
261 REC_HEADER_STRUCTURE.descr + [
262 ('antenna_coord', 'f4', (2, self.nchannels)),
263 ('rx_gains', 'u4', (self.nchannels,)),
264 ('rx_analysis', 'u4', (self.nchannels,))
265 ]
266 )
267
268 self.header_rec = numpy.fromfile(self.fp, header_structure, 1)
269 self.lat = self.header_rec['lat'][0]
270 self.lon = self.header_rec['lon'][0]
271 self.delta = self.header_rec['delta_r'][0]
272 self.correction = self.header_rec['dmode_rngcorr'][0]
273 self.imode = self.header_rec['dmode_index'][0]
274 self.antenna = self.header_rec['antenna_coord']
275 self.rx_gains = self.header_rec['rx_gains']
276 self.time = self.header_rec['time'][0]
277 tseconds = self.header_rec['time'][0]
278 local_t1 = time.localtime(tseconds)
279 self.year = local_t1.tm_year
280 self.month = local_t1.tm_mon
281 self.day = local_t1.tm_mday
282 self.t = datetime.datetime(self.year, self.month, self.day)
283 self.datatime = datetime.datetime.utcfromtimestamp(self.time)
284
285 def readData(self):
286 '''
287 Reading and filtering data block record of BLTR rawdata file, filtering is according to status_value.
288
289 Input:
290 status_value - Array data is set to NAN for values that are not equal to status_value
291
292 '''
293
294 data_structure = numpy.dtype(
295 DATA_STRUCTURE.descr + [
296 ('rx_saturation', 'u4', (self.nchannels,)),
297 ('chan_offset', 'u4', (2 * self.nchannels,)),
298 ('rx_amp', 'u4', (self.nchannels,)),
299 ('rx_snr', 'f4', (self.nchannels,)),
300 ('cross_snr', 'f4', (self.kchan,)),
301 ('sea_power_relative', 'f4', (self.kchan,))]
302 )
303
304 data = numpy.fromfile(self.fp, data_structure, self.nranges)
305
306 height = data['range']
307 winds = numpy.array((data['zonal'], data['meridional'], data['vertical']))
308 snr = data['rx_snr'].T
309
310 winds[numpy.where(winds == -9999.)] = numpy.nan
311 winds[:, numpy.where(data['status'] != self.status_value)] = numpy.nan
312 snr[numpy.where(snr == -9999.)] = numpy.nan
313 snr[:, numpy.where(data['status'] != self.status_value)] = numpy.nan
314 snr = numpy.power(10, snr / 10)
315
316 return height, winds, snr
317
318 def set_output(self):
319 '''
320 Storing data from databuffer to dataOut object
321 '''
322
323 self.dataOut.data_SNR = self.snr
324 self.dataOut.height = self.height
325 self.dataOut.data_output = self.buffer
326 self.dataOut.utctimeInit = self.time
327 self.dataOut.utctime = self.dataOut.utctimeInit
328 self.dataOut.useLocalTime = False
329 self.dataOut.paramInterval = 157
330 self.dataOut.timezone = self.timezone
331 self.dataOut.site = self.siteFile
332 self.dataOut.nrecords = self.nrecords/self.nmodes
333 self.dataOut.sizeOfFile = self.sizeOfFile
334 self.dataOut.lat = self.lat
335 self.dataOut.lon = self.lon
336 self.dataOut.channelList = range(self.nchannels)
337 self.dataOut.kchan = self.kchan
338 # self.dataOut.nHeights = self.nranges
339 self.dataOut.delta = self.delta
340 self.dataOut.correction = self.correction
341 self.dataOut.nmodes = self.nmodes
342 self.dataOut.imode = self.imode
343 self.dataOut.antenna = self.antenna
344 self.dataOut.rx_gains = self.rx_gains
345 self.dataOut.flagNoData = False
346
347 def getData(self):
348 '''
349 Storing data from databuffer to dataOut object
350 '''
351 if self.flagNoMoreFiles:
352 self.dataOut.flagNoData = True
353 print 'No file left to process'
354 return 0
355
356 if not self.readNextBlock():
357 self.dataOut.flagNoData = True
358 return 0
359
360 self.set_output()
361
362 return 1
This diff has been collapsed as it changes many lines, (1154 lines changed) Show them Hide them
@@ -0,0 +1,1154
1 import os, sys
2 import glob
3 import fnmatch
4 import datetime
5 import time
6 import re
7 import h5py
8 import numpy
9 import matplotlib.pyplot as plt
10
11 import pylab as plb
12 from scipy.optimize import curve_fit
13 from scipy import asarray as ar, exp
14 from scipy import stats
15
16 from numpy.ma.core import getdata
17
18 SPEED_OF_LIGHT = 299792458
19 SPEED_OF_LIGHT = 3e8
20
21 try:
22 from gevent import sleep
23 except:
24 from time import sleep
25
26 from schainpy.model.data.jrodata import Spectra
27 #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader
28 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation
29 #from schainpy.model.io.jroIO_bltr import BLTRReader
30 from numpy import imag, shape, NaN
31
32 from jroIO_base import JRODataReader
33
34
35 class Header(object):
36
37 def __init__(self):
38 raise NotImplementedError
39
40
41 def read(self):
42
43 raise NotImplementedError
44
45 def write(self):
46
47 raise NotImplementedError
48
49 def printInfo(self):
50
51 message = "#"*50 + "\n"
52 message += self.__class__.__name__.upper() + "\n"
53 message += "#"*50 + "\n"
54
55 keyList = self.__dict__.keys()
56 keyList.sort()
57
58 for key in keyList:
59 message += "%s = %s" %(key, self.__dict__[key]) + "\n"
60
61 if "size" not in keyList:
62 attr = getattr(self, "size")
63
64 if attr:
65 message += "%s = %s" %("size", attr) + "\n"
66
67 #print message
68
69
70
71
72
73 FILE_STRUCTURE = numpy.dtype([ #HEADER 48bytes
74 ('FileMgcNumber','<u4'), #0x23020100
75 ('nFDTdataRecors','<u4'), #No Of FDT data records in this file (0 or more)
76 ('OffsetStartHeader','<u4'),
77 ('RadarUnitId','<u4'),
78 ('SiteName',numpy.str_,32), #Null terminated
79 ])
80
81 class FileHeaderBLTR(Header):
82
83 def __init__(self):
84
85 self.FileMgcNumber= 0 #0x23020100
86 self.nFDTdataRecors=0 #No Of FDT data records in this file (0 or more)
87 self.RadarUnitId= 0
88 self.OffsetStartHeader=0
89 self.SiteName= ""
90 self.size = 48
91
92 def FHread(self, fp):
93 #try:
94 startFp = open(fp,"rb")
95
96 header = numpy.fromfile(startFp, FILE_STRUCTURE,1)
97
98 print ' '
99 print 'puntero file header', startFp.tell()
100 print ' '
101
102
103 ''' numpy.fromfile(file, dtype, count, sep='')
104 file : file or str
105 Open file object or filename.
106
107 dtype : data-type
108 Data type of the returned array. For binary files, it is used to determine
109 the size and byte-order of the items in the file.
110
111 count : int
112 Number of items to read. -1 means all items (i.e., the complete file).
113
114 sep : str
115 Separator between items if file is a text file. Empty ("") separator means
116 the file should be treated as binary. Spaces (" ") in the separator match zero
117 or more whitespace characters. A separator consisting only of spaces must match
118 at least one whitespace.
119
120 '''
121
122
123
124 self.FileMgcNumber= hex(header['FileMgcNumber'][0])
125 self.nFDTdataRecors=int(header['nFDTdataRecors'][0]) #No Of FDT data records in this file (0 or more)
126 self.RadarUnitId= int(header['RadarUnitId'][0])
127 self.OffsetStartHeader= int(header['OffsetStartHeader'][0])
128 self.SiteName= str(header['SiteName'][0])
129
130 #print 'Numero de bloques', self.nFDTdataRecors
131
132
133 if self.size <48:
134 return 0
135
136 return 1
137
138
139 def write(self, fp):
140
141 headerTuple = (self.FileMgcNumber,
142 self.nFDTdataRecors,
143 self.RadarUnitId,
144 self.SiteName,
145 self.size)
146
147
148 header = numpy.array(headerTuple, FILE_STRUCTURE)
149 # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
150 header.tofile(fp)
151 ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default).
152
153 fid : file or str
154 An open file object, or a string containing a filename.
155
156 sep : str
157 Separator between array items for text output. If "" (empty), a binary file is written,
158 equivalent to file.write(a.tobytes()).
159
160 format : str
161 Format string for text file output. Each entry in the array is formatted to text by
162 first converting it to the closest Python type, and then using "format" % item.
163
164 '''
165
166 return 1
167
168
169
170
171
172 RECORD_STRUCTURE = numpy.dtype([ #RECORD HEADER 180+20N bytes
173 ('RecMgcNumber','<u4'), #0x23030001
174 ('RecCounter','<u4'), #Record counter(0,1, ...)
175 ('Off2StartNxtRec','<u4'), #Offset to start of next record form start of this record
176 ('Off2StartData','<u4'), #Offset to start of data from start of this record
177 ('nUtime','<i4'), #Epoch time stamp of start of acquisition (seconds)
178 ('nMilisec','<u4'), #Millisecond component of time stamp (0,...,999)
179 ('ExpTagName',numpy.str_,32), #Experiment tag name (null terminated)
180 ('ExpComment',numpy.str_,32), #Experiment comment (null terminated)
181 ('SiteLatDegrees','<f4'), #Site latitude (from GPS) in degrees (positive implies North)
182 ('SiteLongDegrees','<f4'), #Site longitude (from GPS) in degrees (positive implies East)
183 ('RTCgpsStatus','<u4'), #RTC GPS engine status (0=SEEK, 1=LOCK, 2=NOT FITTED, 3=UNAVAILABLE)
184 ('TransmitFrec','<u4'), #Transmit frequency (Hz)
185 ('ReceiveFrec','<u4'), #Receive frequency
186 ('FirstOsciFrec','<u4'), #First local oscillator frequency (Hz)
187 ('Polarisation','<u4'), #(0="O", 1="E", 2="linear 1", 3="linear2")
188 ('ReceiverFiltSett','<u4'), #Receiver filter settings (0,1,2,3)
189 ('nModesInUse','<u4'), #Number of modes in use (1 or 2)
190 ('DualModeIndex','<u4'), #Dual Mode index number for these data (0 or 1)
191 ('DualModeRange','<u4'), #Dual Mode range correction for these data (m)
192 ('nDigChannels','<u4'), #Number of digital channels acquired (2*N)
193 ('SampResolution','<u4'), #Sampling resolution (meters)
194 ('nHeights','<u4'), #Number of range gates sampled
195 ('StartRangeSamp','<u4'), #Start range of sampling (meters)
196 ('PRFhz','<u4'), #PRF (Hz)
197 ('nCohInt','<u4'), #Integrations
198 ('nProfiles','<u4'), #Number of data points transformed
199 ('nChannels','<u4'), #Number of receive beams stored in file (1 or N)
200 ('nIncohInt','<u4'), #Number of spectral averages
201 ('FFTwindowingInd','<u4'), #FFT windowing index (0 = no window)
202 ('BeamAngleAzim','<f4'), #Beam steer angle (azimuth) in degrees (clockwise from true North)
203 ('BeamAngleZen','<f4'), #Beam steer angle (zenith) in degrees (0=> vertical)
204 ('AntennaCoord0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
205 ('AntennaAngl0','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
206 ('AntennaCoord1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
207 ('AntennaAngl1','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
208 ('AntennaCoord2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
209 ('AntennaAngl2','<f4'), #Antenna coordinates (Range(meters), Bearing(degrees)) - N pairs
210 ('RecPhaseCalibr0','<f4'), #Receiver phase calibration (degrees) - N values
211 ('RecPhaseCalibr1','<f4'), #Receiver phase calibration (degrees) - N values
212 ('RecPhaseCalibr2','<f4'), #Receiver phase calibration (degrees) - N values
213 ('RecAmpCalibr0','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values
214 ('RecAmpCalibr1','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values
215 ('RecAmpCalibr2','<f4'), #Receiver amplitude calibration (ratio relative to receiver one) - N values
216 ('ReceiverGaindB0','<i4'), #Receiver gains in dB - N values
217 ('ReceiverGaindB1','<i4'), #Receiver gains in dB - N values
218 ('ReceiverGaindB2','<i4'), #Receiver gains in dB - N values
219 ])
220
221
222 class RecordHeaderBLTR(Header):
223
224 def __init__(self, RecMgcNumber=None, RecCounter= 0, Off2StartNxtRec= 811248,
225 nUtime= 0, nMilisec= 0, ExpTagName= None,
226 ExpComment=None, SiteLatDegrees=0, SiteLongDegrees= 0,
227 RTCgpsStatus= 0, TransmitFrec= 0, ReceiveFrec= 0,
228 FirstOsciFrec= 0, Polarisation= 0, ReceiverFiltSett= 0,
229 nModesInUse= 0, DualModeIndex= 0, DualModeRange= 0,
230 nDigChannels= 0, SampResolution= 0, nHeights= 0,
231 StartRangeSamp= 0, PRFhz= 0, nCohInt= 0,
232 nProfiles= 0, nChannels= 0, nIncohInt= 0,
233 FFTwindowingInd= 0, BeamAngleAzim= 0, BeamAngleZen= 0,
234 AntennaCoord0= 0, AntennaCoord1= 0, AntennaCoord2= 0,
235 RecPhaseCalibr0= 0, RecPhaseCalibr1= 0, RecPhaseCalibr2= 0,
236 RecAmpCalibr0= 0, RecAmpCalibr1= 0, RecAmpCalibr2= 0,
237 AntennaAngl0=0, AntennaAngl1=0, AntennaAngl2=0,
238 ReceiverGaindB0= 0, ReceiverGaindB1= 0, ReceiverGaindB2= 0, Off2StartData=0, OffsetStartHeader=0):
239
240 self.RecMgcNumber = RecMgcNumber #0x23030001
241 self.RecCounter = RecCounter
242 self.Off2StartNxtRec = Off2StartNxtRec
243 self.Off2StartData = Off2StartData
244 self.nUtime = nUtime
245 self.nMilisec = nMilisec
246 self.ExpTagName = ExpTagName
247 self.ExpComment = ExpComment
248 self.SiteLatDegrees = SiteLatDegrees
249 self.SiteLongDegrees = SiteLongDegrees
250 self.RTCgpsStatus = RTCgpsStatus
251 self.TransmitFrec = TransmitFrec
252 self.ReceiveFrec = ReceiveFrec
253 self.FirstOsciFrec = FirstOsciFrec
254 self.Polarisation = Polarisation
255 self.ReceiverFiltSett = ReceiverFiltSett
256 self.nModesInUse = nModesInUse
257 self.DualModeIndex = DualModeIndex
258 self.DualModeRange = DualModeRange
259 self.nDigChannels = nDigChannels
260 self.SampResolution = SampResolution
261 self.nHeights = nHeights
262 self.StartRangeSamp = StartRangeSamp
263 self.PRFhz = PRFhz
264 self.nCohInt = nCohInt
265 self.nProfiles = nProfiles
266 self.nChannels = nChannels
267 self.nIncohInt = nIncohInt
268 self.FFTwindowingInd = FFTwindowingInd
269 self.BeamAngleAzim = BeamAngleAzim
270 self.BeamAngleZen = BeamAngleZen
271 self.AntennaCoord0 = AntennaCoord0
272 self.AntennaAngl0 = AntennaAngl0
273 self.AntennaAngl1 = AntennaAngl1
274 self.AntennaAngl2 = AntennaAngl2
275 self.AntennaCoord1 = AntennaCoord1
276 self.AntennaCoord2 = AntennaCoord2
277 self.RecPhaseCalibr0 = RecPhaseCalibr0
278 self.RecPhaseCalibr1 = RecPhaseCalibr1
279 self.RecPhaseCalibr2 = RecPhaseCalibr2
280 self.RecAmpCalibr0 = RecAmpCalibr0
281 self.RecAmpCalibr1 = RecAmpCalibr1
282 self.RecAmpCalibr2 = RecAmpCalibr2
283 self.ReceiverGaindB0 = ReceiverGaindB0
284 self.ReceiverGaindB1 = ReceiverGaindB1
285 self.ReceiverGaindB2 = ReceiverGaindB2
286 self.OffsetStartHeader = 48
287
288
289
290 def RHread(self, fp):
291 #print fp
292 #startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file.
293 startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file.
294 #RecCounter=0
295 #Off2StartNxtRec=811248
296 OffRHeader= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec
297 print ' '
298 print 'puntero Record Header', startFp.tell()
299 print ' '
300
301
302 startFp.seek(OffRHeader, os.SEEK_SET)
303
304 print ' '
305 print 'puntero Record Header con seek', startFp.tell()
306 print ' '
307
308 #print 'Posicion del bloque: ',OffRHeader
309
310 header = numpy.fromfile(startFp,RECORD_STRUCTURE,1)
311
312 print ' '
313 print 'puntero Record Header con seek', startFp.tell()
314 print ' '
315
316 print ' '
317 #
318 #print 'puntero Record Header despues de seek', header.tell()
319 print ' '
320
321 self.RecMgcNumber = hex(header['RecMgcNumber'][0]) #0x23030001
322 self.RecCounter = int(header['RecCounter'][0])
323 self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0])
324 self.Off2StartData = int(header['Off2StartData'][0])
325 self.nUtime = header['nUtime'][0]
326 self.nMilisec = header['nMilisec'][0]
327 self.ExpTagName = str(header['ExpTagName'][0])
328 self.ExpComment = str(header['ExpComment'][0])
329 self.SiteLatDegrees = header['SiteLatDegrees'][0]
330 self.SiteLongDegrees = header['SiteLongDegrees'][0]
331 self.RTCgpsStatus = header['RTCgpsStatus'][0]
332 self.TransmitFrec = header['TransmitFrec'][0]
333 self.ReceiveFrec = header['ReceiveFrec'][0]
334 self.FirstOsciFrec = header['FirstOsciFrec'][0]
335 self.Polarisation = header['Polarisation'][0]
336 self.ReceiverFiltSett = header['ReceiverFiltSett'][0]
337 self.nModesInUse = header['nModesInUse'][0]
338 self.DualModeIndex = header['DualModeIndex'][0]
339 self.DualModeRange = header['DualModeRange'][0]
340 self.nDigChannels = header['nDigChannels'][0]
341 self.SampResolution = header['SampResolution'][0]
342 self.nHeights = header['nHeights'][0]
343 self.StartRangeSamp = header['StartRangeSamp'][0]
344 self.PRFhz = header['PRFhz'][0]
345 self.nCohInt = header['nCohInt'][0]
346 self.nProfiles = header['nProfiles'][0]
347 self.nChannels = header['nChannels'][0]
348 self.nIncohInt = header['nIncohInt'][0]
349 self.FFTwindowingInd = header['FFTwindowingInd'][0]
350 self.BeamAngleAzim = header['BeamAngleAzim'][0]
351 self.BeamAngleZen = header['BeamAngleZen'][0]
352 self.AntennaCoord0 = header['AntennaCoord0'][0]
353 self.AntennaAngl0 = header['AntennaAngl0'][0]
354 self.AntennaCoord1 = header['AntennaCoord1'][0]
355 self.AntennaAngl1 = header['AntennaAngl1'][0]
356 self.AntennaCoord2 = header['AntennaCoord2'][0]
357 self.AntennaAngl2 = header['AntennaAngl2'][0]
358 self.RecPhaseCalibr0 = header['RecPhaseCalibr0'][0]
359 self.RecPhaseCalibr1 = header['RecPhaseCalibr1'][0]
360 self.RecPhaseCalibr2 = header['RecPhaseCalibr2'][0]
361 self.RecAmpCalibr0 = header['RecAmpCalibr0'][0]
362 self.RecAmpCalibr1 = header['RecAmpCalibr1'][0]
363 self.RecAmpCalibr2 = header['RecAmpCalibr2'][0]
364 self.ReceiverGaindB0 = header['ReceiverGaindB0'][0]
365 self.ReceiverGaindB1 = header['ReceiverGaindB1'][0]
366 self.ReceiverGaindB2 = header['ReceiverGaindB2'][0]
367
368 self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz)
369
370 self.RHsize = 180+20*self.nChannels
371 self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4
372 #print 'Datasize',self.Datasize
373 endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec
374
375 print '=============================================='
376 print 'RecMgcNumber ',self.RecMgcNumber
377 print 'RecCounter ',self.RecCounter
378 print 'Off2StartNxtRec ',self.Off2StartNxtRec
379 print 'Off2StartData ',self.Off2StartData
380 print 'Range Resolution ',self.SampResolution
381 print 'First Height ',self.StartRangeSamp
382 print 'PRF (Hz) ',self.PRFhz
383 print 'Heights (K) ',self.nHeights
384 print 'Channels (N) ',self.nChannels
385 print 'Profiles (J) ',self.nProfiles
386 print 'iCoh ',self.nCohInt
387 print 'iInCoh ',self.nIncohInt
388 print 'BeamAngleAzim ',self.BeamAngleAzim
389 print 'BeamAngleZen ',self.BeamAngleZen
390
391 #print 'ModoEnUso ',self.DualModeIndex
392 #print 'UtcTime ',self.nUtime
393 #print 'MiliSec ',self.nMilisec
394 #print 'Exp TagName ',self.ExpTagName
395 #print 'Exp Comment ',self.ExpComment
396 #print 'FFT Window Index ',self.FFTwindowingInd
397 #print 'N Dig. Channels ',self.nDigChannels
398 print 'Size de bloque ',self.RHsize
399 print 'DataSize ',self.Datasize
400 print 'BeamAngleAzim ',self.BeamAngleAzim
401 #print 'AntennaCoord0 ',self.AntennaCoord0
402 #print 'AntennaAngl0 ',self.AntennaAngl0
403 #print 'AntennaCoord1 ',self.AntennaCoord1
404 #print 'AntennaAngl1 ',self.AntennaAngl1
405 #print 'AntennaCoord2 ',self.AntennaCoord2
406 #print 'AntennaAngl2 ',self.AntennaAngl2
407 print 'RecPhaseCalibr0 ',self.RecPhaseCalibr0
408 print 'RecPhaseCalibr1 ',self.RecPhaseCalibr1
409 print 'RecPhaseCalibr2 ',self.RecPhaseCalibr2
410 print 'RecAmpCalibr0 ',self.RecAmpCalibr0
411 print 'RecAmpCalibr1 ',self.RecAmpCalibr1
412 print 'RecAmpCalibr2 ',self.RecAmpCalibr2
413 print 'ReceiverGaindB0 ',self.ReceiverGaindB0
414 print 'ReceiverGaindB1 ',self.ReceiverGaindB1
415 print 'ReceiverGaindB2 ',self.ReceiverGaindB2
416 print '=============================================='
417
418 if OffRHeader > endFp:
419 sys.stderr.write("Warning %s: Size value read from System Header is lower than it has to be\n" %fp)
420 return 0
421
422 if OffRHeader < endFp:
423 sys.stderr.write("Warning %s: Size value read from System Header size is greater than it has to be\n" %fp)
424 return 0
425
426 return 1
427
428
429 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODataReader):
430
431 path = None
432 startDate = None
433 endDate = None
434 startTime = None
435 endTime = None
436 walk = None
437 isConfig = False
438
439
440 fileList= None
441
442 #metadata
443 TimeZone= None
444 Interval= None
445 heightList= None
446
447 #data
448 data= None
449 utctime= None
450
451
452
453 def __init__(self, **kwargs):
454
455 #Eliminar de la base la herencia
456 ProcessingUnit.__init__(self, **kwargs)
457
458 #self.isConfig = False
459
460 #self.pts2read_SelfSpectra = 0
461 #self.pts2read_CrossSpectra = 0
462 #self.pts2read_DCchannels = 0
463 #self.datablock = None
464 self.utc = None
465 self.ext = ".fdt"
466 self.optchar = "P"
467 self.fpFile=None
468 self.fp = None
469 self.BlockCounter=0
470 self.dtype = None
471 self.fileSizeByHeader = None
472 self.filenameList = []
473 self.fileSelector = 0
474 self.Off2StartNxtRec=0
475 self.RecCounter=0
476 self.flagNoMoreFiles = 0
477 self.data_spc=None
478 self.data_cspc=None
479 self.data_output=None
480 self.path = None
481 self.OffsetStartHeader=0
482 self.Off2StartData=0
483 self.ipp = 0
484 self.nFDTdataRecors=0
485 self.blocksize = 0
486 self.dataOut = Spectra()
487 self.profileIndex = 1 #Always
488 self.dataOut.flagNoData=False
489 self.dataOut.nRdPairs = 0
490 self.dataOut.pairsList = []
491 self.dataOut.data_spc=None
492 self.dataOut.noise=[]
493 self.dataOut.velocityX=[]
494 self.dataOut.velocityY=[]
495 self.dataOut.velocityV=[]
496
497
498
499 def Files2Read(self, fp):
500 '''
501 Function that indicates the number of .fdt files that exist in the folder to be read.
502 It also creates an organized list with the names of the files to read.
503 '''
504 #self.__checkPath()
505
506 ListaData=os.listdir(fp) #Gets the list of files within the fp address
507 ListaData=sorted(ListaData) #Sort the list of files from least to largest by names
508 nFiles=0 #File Counter
509 FileList=[] #A list is created that will contain the .fdt files
510 for IndexFile in ListaData :
511 if '.fdt' in IndexFile:
512 FileList.append(IndexFile)
513 nFiles+=1
514
515 #print 'Files2Read'
516 #print 'Existen '+str(nFiles)+' archivos .fdt'
517
518 self.filenameList=FileList #List of files from least to largest by names
519
520
521 def run(self, **kwargs):
522 '''
523 This method will be the one that will initiate the data entry, will be called constantly.
524 You should first verify that your Setup () is set up and then continue to acquire
525 the data to be processed with getData ().
526 '''
527 if not self.isConfig:
528 self.setup(**kwargs)
529 self.isConfig = True
530
531 self.getData()
532 #print 'running'
533
534
535 def setup(self, path=None,
536 startDate=None,
537 endDate=None,
538 startTime=None,
539 endTime=None,
540 walk=True,
541 timezone='utc',
542 code = None,
543 online=False,
544 ReadMode=None,
545 **kwargs):
546
547 self.isConfig = True
548
549 self.path=path
550 self.startDate=startDate
551 self.endDate=endDate
552 self.startTime=startTime
553 self.endTime=endTime
554 self.walk=walk
555 self.ReadMode=int(ReadMode)
556
557 pass
558
559
560 def getData(self):
561 '''
562 Before starting this function, you should check that there is still an unread file,
563 If there are still blocks to read or if the data block is empty.
564
565 You should call the file "read".
566
567 '''
568
569 if self.flagNoMoreFiles:
570 self.dataOut.flagNoData = True
571 print 'NoData se vuelve true'
572 return 0
573
574 self.fp=self.path
575 self.Files2Read(self.fp)
576 self.readFile(self.fp)
577 self.dataOut.data_spc = self.data_spc
578 self.dataOut.data_cspc =self.data_cspc
579 self.dataOut.data_output=self.data_output
580
581 print 'self.dataOut.data_output', shape(self.dataOut.data_output)
582
583 #self.removeDC()
584 return self.dataOut.data_spc
585
586
587 def readFile(self,fp):
588 '''
589 You must indicate if you are reading in Online or Offline mode and load the
590 The parameters for this file reading mode.
591
592 Then you must do 2 actions:
593
594 1. Get the BLTR FileHeader.
595 2. Start reading the first block.
596 '''
597
598 #The address of the folder is generated the name of the .fdt file that will be read
599 print "File: ",self.fileSelector+1
600
601 if self.fileSelector < len(self.filenameList):
602
603 self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector])
604 #print self.fpFile
605 fheader = FileHeaderBLTR()
606 fheader.FHread(self.fpFile) #Bltr FileHeader Reading
607 self.nFDTdataRecors=fheader.nFDTdataRecors
608
609 self.readBlock() #Block reading
610 else:
611 print 'readFile FlagNoData becomes true'
612 self.flagNoMoreFiles=True
613 self.dataOut.flagNoData = True
614 return 0
615
616 def getVelRange(self, extrapoints=0):
617 Lambda= SPEED_OF_LIGHT/50000000
618 PRF = self.dataOut.PRF#1./(self.dataOut.ippSeconds * self.dataOut.nCohInt)
619 Vmax=-Lambda/(4.*(1./PRF)*self.dataOut.nCohInt*2.)
620 deltafreq = PRF / (self.nProfiles)
621 deltavel = (Vmax*2) / (self.nProfiles)
622 freqrange = deltafreq*(numpy.arange(self.nProfiles)-self.nProfiles/2.) - deltafreq/2
623 velrange = deltavel*(numpy.arange(self.nProfiles)-self.nProfiles/2.)
624 return velrange
625
626 def readBlock(self):
627 '''
628 It should be checked if the block has data, if it is not passed to the next file.
629
630 Then the following is done:
631
632 1. Read the RecordHeader
633 2. Fill the buffer with the current block number.
634
635 '''
636
637 if self.BlockCounter < self.nFDTdataRecors-2:
638 print self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!'
639 if self.ReadMode==1:
640 rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1)
641 elif self.ReadMode==0:
642 rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter)
643
644 rheader.RHread(self.fpFile) #Bltr FileHeader Reading
645
646 self.OffsetStartHeader=rheader.OffsetStartHeader
647 self.RecCounter=rheader.RecCounter
648 self.Off2StartNxtRec=rheader.Off2StartNxtRec
649 self.Off2StartData=rheader.Off2StartData
650 self.nProfiles=rheader.nProfiles
651 self.nChannels=rheader.nChannels
652 self.nHeights=rheader.nHeights
653 self.frequency=rheader.TransmitFrec
654 self.DualModeIndex=rheader.DualModeIndex
655
656 self.pairsList =[(0,1),(0,2),(1,2)]
657 self.dataOut.pairsList = self.pairsList
658
659 self.nRdPairs=len(self.dataOut.pairsList)
660 self.dataOut.nRdPairs = self.nRdPairs
661
662 self.__firstHeigth=rheader.StartRangeSamp
663 self.__deltaHeigth=rheader.SampResolution
664 self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth
665 self.dataOut.channelList = range(self.nChannels)
666 self.dataOut.nProfiles=rheader.nProfiles
667 self.dataOut.nIncohInt=rheader.nIncohInt
668 self.dataOut.nCohInt=rheader.nCohInt
669 self.dataOut.ippSeconds= 1/float(rheader.PRFhz)
670 self.dataOut.PRF=rheader.PRFhz
671 self.dataOut.nFFTPoints=rheader.nProfiles
672 self.dataOut.utctime=rheader.nUtime
673 self.dataOut.timeZone=0
674 self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt
675 self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles
676
677 self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN
678 print 'self.data_output', shape(self.data_output)
679 self.dataOut.velocityX=[]
680 self.dataOut.velocityY=[]
681 self.dataOut.velocityV=[]
682
683 '''Block Reading, the Block Data is received and Reshape is used to give it
684 shape.
685 '''
686
687 #Procedure to take the pointer to where the date block starts
688 startDATA = open(self.fpFile,"rb")
689 OffDATA= self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec+self.Off2StartData
690 startDATA.seek(OffDATA, os.SEEK_SET)
691
692 def moving_average(x, N=2):
693 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
694
695 def gaus(xSamples,a,x0,sigma):
696 return a*exp(-(xSamples-x0)**2/(2*sigma**2))
697
698 def Find(x,value):
699 for index in range(len(x)):
700 if x[index]==value:
701 return index
702
703 def pol2cart(rho, phi):
704 x = rho * numpy.cos(phi)
705 y = rho * numpy.sin(phi)
706 return(x, y)
707
708
709
710
711 if self.DualModeIndex==self.ReadMode:
712
713 self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights )
714
715 self.data_fft=self.data_fft.astype(numpy.dtype('complex'))
716
717 self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles ))
718
719 self.data_block = numpy.transpose(self.data_block, (1,2,0))
720
721 copy = self.data_block.copy()
722 spc = copy * numpy.conjugate(copy)
723
724 self.data_spc = numpy.absolute(spc) # valor absoluto o magnitud
725
726 factor = self.dataOut.normFactor
727
728
729 z = self.data_spc.copy()#/factor
730 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
731 #zdB = 10*numpy.log10(z)
732 print ' '
733 print 'Z: '
734 print shape(z)
735 print ' '
736 print ' '
737
738 self.dataOut.data_spc=self.data_spc
739
740 self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor
741 #noisedB = 10*numpy.log10(self.noise)
742
743
744 ySamples=numpy.ones([3,self.nProfiles])
745 phase=numpy.ones([3,self.nProfiles])
746 CSPCSamples=numpy.ones([3,self.nProfiles],dtype=numpy.complex_)
747 coherence=numpy.ones([3,self.nProfiles])
748 PhaseSlope=numpy.ones(3)
749 PhaseInter=numpy.ones(3)
750
751 '''****** Getting CrossSpectra ******'''
752 cspc=self.data_block.copy()
753 self.data_cspc=self.data_block.copy()
754
755 xFrec=self.getVelRange(1)
756 VelRange=self.getVelRange(1)
757 self.dataOut.VelRange=VelRange
758 #print ' '
759 #print ' '
760 #print 'xFrec',xFrec
761 #print ' '
762 #print ' '
763 #Height=35
764 for i in range(self.nRdPairs):
765
766 chan_index0 = self.dataOut.pairsList[i][0]
767 chan_index1 = self.dataOut.pairsList[i][1]
768
769 self.data_cspc[i,:,:]=cspc[chan_index0,:,:] * numpy.conjugate(cspc[chan_index1,:,:])
770
771
772 '''Getting Eij and Nij'''
773 (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180)
774 (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180)
775 (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180)
776
777 E01=AntennaX0-AntennaX1
778 N01=AntennaY0-AntennaY1
779
780 E02=AntennaX0-AntennaX2
781 N02=AntennaY0-AntennaY2
782
783 E12=AntennaX1-AntennaX2
784 N12=AntennaY1-AntennaY2
785
786 self.ChanDist= numpy.array([[E01, N01],[E02,N02],[E12,N12]])
787
788 self.dataOut.ChanDist = self.ChanDist
789
790
791 # for Height in range(self.nHeights):
792 #
793 # for i in range(self.nRdPairs):
794 #
795 # '''****** Line of Data SPC ******'''
796 # zline=z[i,:,Height]
797 #
798 # '''****** DC is removed ******'''
799 # DC=Find(zline,numpy.amax(zline))
800 # zline[DC]=(zline[DC-1]+zline[DC+1])/2
801 #
802 #
803 # '''****** SPC is normalized ******'''
804 # FactNorm= zline.copy() / numpy.sum(zline.copy())
805 # FactNorm= FactNorm/numpy.sum(FactNorm)
806 #
807 # SmoothSPC=moving_average(FactNorm,N=3)
808 #
809 # xSamples = ar(range(len(SmoothSPC)))
810 # ySamples[i] = SmoothSPC-self.noise[i]
811 #
812 # for i in range(self.nRdPairs):
813 #
814 # '''****** Line of Data CSPC ******'''
815 # cspcLine=self.data_cspc[i,:,Height].copy()
816 #
817 #
818 #
819 # '''****** CSPC is normalized ******'''
820 # chan_index0 = self.dataOut.pairsList[i][0]
821 # chan_index1 = self.dataOut.pairsList[i][1]
822 # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])
823 #
824 #
825 # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor)
826 #
827 #
828 # CSPCSamples[i] = CSPCNorm-self.noise[i]
829 # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
830 #
831 # '''****** DC is removed ******'''
832 # DC=Find(coherence[i],numpy.amax(coherence[i]))
833 # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2
834 # coherence[i]= moving_average(coherence[i],N=2)
835 #
836 # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
837 #
838 #
839 # '''****** Getting fij width ******'''
840 #
841 # yMean=[]
842 # yMean2=[]
843 #
844 # for j in range(len(ySamples[1])):
845 # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]]))
846 #
847 # '''******* Getting fitting Gaussian ******'''
848 # meanGauss=sum(xSamples*yMean) / len(xSamples)
849 # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples)
850 # #print 'Height',Height,'SNR', meanGauss/sigma**2
851 #
852 # if (abs(meanGauss/sigma**2) > 0.0001) :
853 #
854 # try:
855 # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma])
856 #
857 # if numpy.amax(popt)>numpy.amax(yMean)*0.3:
858 # FitGauss=gaus(xSamples,*popt)
859 #
860 # else:
861 # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
862 # print 'Verificador: Dentro', Height
863 # except RuntimeError:
864 #
865 # try:
866 # for j in range(len(ySamples[1])):
867 # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]]))
868 # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma])
869 # FitGauss=gaus(xSamples,*popt)
870 # print 'Verificador: Exepcion1', Height
871 # except RuntimeError:
872 #
873 # try:
874 # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma])
875 # FitGauss=gaus(xSamples,*popt)
876 # print 'Verificador: Exepcion2', Height
877 # except RuntimeError:
878 # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
879 # print 'Verificador: Exepcion3', Height
880 # else:
881 # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
882 # #print 'Verificador: Fuera', Height
883 #
884 #
885 #
886 # Maximun=numpy.amax(yMean)
887 # eMinus1=Maximun*numpy.exp(-1)
888 #
889 # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1)))
890 # HalfWidth= xFrec[HWpos]
891 # GCpos=Find(FitGauss, numpy.amax(FitGauss))
892 # Vpos=Find(FactNorm, numpy.amax(FactNorm))
893 # #Vpos=numpy.sum(FactNorm)/len(FactNorm)
894 # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) )))
895 # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos
896 # '''****** Getting Fij ******'''
897 #
898 # GaussCenter=xFrec[GCpos]
899 # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0):
900 # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001
901 # else:
902 # Fij=abs(GaussCenter-HalfWidth)+0.0000001
903 #
904 # '''****** Getting Frecuency range of significant data ******'''
905 #
906 # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10)))
907 #
908 # if Rangpos<GCpos:
909 # Range=numpy.array([Rangpos,2*GCpos-Rangpos])
910 # else:
911 # Range=numpy.array([2*GCpos-Rangpos,Rangpos])
912 #
913 # FrecRange=xFrec[Range[0]:Range[1]]
914 #
915 # #print 'FrecRange', FrecRange
916 # '''****** Getting SCPC Slope ******'''
917 #
918 # for i in range(self.nRdPairs):
919 #
920 # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5:
921 # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3)
922 #
923 # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange)
924 # PhaseSlope[i]=slope
925 # PhaseInter[i]=intercept
926 # else:
927 # PhaseSlope[i]=0
928 # PhaseInter[i]=0
929 #
930 # # plt.figure(i+15)
931 # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1]))
932 # # plt.xlabel('Frecuencia (KHz)')
933 # # plt.ylabel('Magnitud')
934 # # #plt.subplot(311+i)
935 # # plt.plot(FrecRange,PhaseRange,'b')
936 # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r')
937 #
938 # #plt.axis([-0.6, 0.2, -3.2, 3.2])
939 #
940 #
941 # '''Getting constant C'''
942 # cC=(Fij*numpy.pi)**2
943 #
944 # # '''Getting Eij and Nij'''
945 # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180)
946 # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180)
947 # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180)
948 # #
949 # # E01=AntennaX0-AntennaX1
950 # # N01=AntennaY0-AntennaY1
951 # #
952 # # E02=AntennaX0-AntennaX2
953 # # N02=AntennaY0-AntennaY2
954 # #
955 # # E12=AntennaX1-AntennaX2
956 # # N12=AntennaY1-AntennaY2
957 #
958 # '''****** Getting constants F and G ******'''
959 # MijEijNij=numpy.array([[E02,N02], [E12,N12]])
960 # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
961 # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi)
962 # MijResults=numpy.array([MijResult0,MijResult1])
963 # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
964 #
965 # '''****** Getting constants A, B and H ******'''
966 # W01=numpy.amax(coherence[0])
967 # W02=numpy.amax(coherence[1])
968 # W12=numpy.amax(coherence[2])
969 #
970 # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
971 # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
972 # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
973 #
974 # WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
975 #
976 # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ])
977 # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
978 #
979 # VxVy=numpy.array([[cA,cH],[cH,cB]])
980 #
981 # VxVyResults=numpy.array([-cF,-cG])
982 # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
983 # Vzon = Vy
984 # Vmer = Vx
985 # Vmag=numpy.sqrt(Vzon**2+Vmer**2)
986 # Vang=numpy.arctan2(Vmer,Vzon)
987 #
988 # if abs(Vy)<100 and abs(Vy)> 0.:
989 # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag
990 # #print 'Vmag',Vmag
991 # else:
992 # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN)
993 #
994 # if abs(Vx)<100 and abs(Vx) > 0.:
995 # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang
996 # #print 'Vang',Vang
997 # else:
998 # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN)
999 #
1000 # if abs(GaussCenter)<2:
1001 # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos])
1002 #
1003 # else:
1004 # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN)
1005 #
1006 #
1007 # # print '********************************************'
1008 # # print 'HalfWidth ', HalfWidth
1009 # # print 'Maximun ', Maximun
1010 # # print 'eMinus1 ', eMinus1
1011 # # print 'Rangpos ', Rangpos
1012 # # print 'GaussCenter ',GaussCenter
1013 # # print 'E01 ',E01
1014 # # print 'N01 ',N01
1015 # # print 'E02 ',E02
1016 # # print 'N02 ',N02
1017 # # print 'E12 ',E12
1018 # # print 'N12 ',N12
1019 # #print 'self.dataOut.velocityX ', self.dataOut.velocityX
1020 # # print 'Fij ', Fij
1021 # # print 'cC ', cC
1022 # # print 'cF ', cF
1023 # # print 'cG ', cG
1024 # # print 'cA ', cA
1025 # # print 'cB ', cB
1026 # # print 'cH ', cH
1027 # # print 'Vx ', Vx
1028 # # print 'Vy ', Vy
1029 # # print 'Vmag ', Vmag
1030 # # print 'Vang ', Vang*180/numpy.pi
1031 # # print 'PhaseSlope ',PhaseSlope[0]
1032 # # print 'PhaseSlope ',PhaseSlope[1]
1033 # # print 'PhaseSlope ',PhaseSlope[2]
1034 # # print '********************************************'
1035 # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY)
1036 #
1037 # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX)
1038 # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY)
1039 # #print 'self.dataOut.velocityV', self.dataOut.velocityV
1040 #
1041 # self.data_output[0]=numpy.array(self.dataOut.velocityX)
1042 # self.data_output[1]=numpy.array(self.dataOut.velocityY)
1043 # self.data_output[2]=numpy.array(self.dataOut.velocityV)
1044 #
1045 # prin= self.data_output[0][~numpy.isnan(self.data_output[0])]
1046 # print ' '
1047 # print 'VmagAverage',numpy.mean(prin)
1048 # print ' '
1049 # # plt.figure(5)
1050 # # plt.subplot(211)
1051 # # plt.plot(self.dataOut.velocityX,'yo:')
1052 # # plt.subplot(212)
1053 # # plt.plot(self.dataOut.velocityY,'yo:')
1054 #
1055 # # plt.figure(1)
1056 # # # plt.subplot(121)
1057 # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0')
1058 # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1')
1059 # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2')
1060 # # # plt.plot(xFrec,FitGauss,'yo:',label='fit')
1061 # # # plt.legend()
1062 # # plt.title('DATOS A ALTURA DE 2850 METROS')
1063 # #
1064 # # plt.xlabel('Frecuencia (KHz)')
1065 # # plt.ylabel('Magnitud')
1066 # # # plt.subplot(122)
1067 # # # plt.title('Fit for Time Constant')
1068 # # #plt.plot(xFrec,zline)
1069 # # #plt.plot(xFrec,SmoothSPC,'g')
1070 # # plt.plot(xFrec,FactNorm)
1071 # # plt.axis([-4, 4, 0, 0.15])
1072 # # # plt.xlabel('SelfSpectra KHz')
1073 # #
1074 # # plt.figure(10)
1075 # # # plt.subplot(121)
1076 # # plt.plot(xFrec,ySamples[0],'b',label='Ch0')
1077 # # plt.plot(xFrec,ySamples[1],'y',label='Ch1')
1078 # # plt.plot(xFrec,ySamples[2],'r',label='Ch2')
1079 # # # plt.plot(xFrec,FitGauss,'yo:',label='fit')
1080 # # plt.legend()
1081 # # plt.title('SELFSPECTRA EN CANALES')
1082 # #
1083 # # plt.xlabel('Frecuencia (KHz)')
1084 # # plt.ylabel('Magnitud')
1085 # # # plt.subplot(122)
1086 # # # plt.title('Fit for Time Constant')
1087 # # #plt.plot(xFrec,zline)
1088 # # #plt.plot(xFrec,SmoothSPC,'g')
1089 # # # plt.plot(xFrec,FactNorm)
1090 # # # plt.axis([-4, 4, 0, 0.15])
1091 # # # plt.xlabel('SelfSpectra KHz')
1092 # #
1093 # # plt.figure(9)
1094 # #
1095 # #
1096 # # plt.title('DATOS SUAVIZADOS')
1097 # # plt.xlabel('Frecuencia (KHz)')
1098 # # plt.ylabel('Magnitud')
1099 # # plt.plot(xFrec,SmoothSPC,'g')
1100 # #
1101 # # #plt.plot(xFrec,FactNorm)
1102 # # plt.axis([-4, 4, 0, 0.15])
1103 # # # plt.xlabel('SelfSpectra KHz')
1104 # # #
1105 # # plt.figure(2)
1106 # # # #plt.subplot(121)
1107 # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra')
1108 # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano')
1109 # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo')
1110 # # # #plt.plot(xFrec,phase)
1111 # # # plt.xlabel('Suavizado, promediado KHz')
1112 # # plt.title('SELFSPECTRA PROMEDIADO')
1113 # # # #plt.subplot(122)
1114 # # # #plt.plot(xSamples,zline)
1115 # # plt.xlabel('Frecuencia (KHz)')
1116 # # plt.ylabel('Magnitud')
1117 # # plt.legend()
1118 # # #
1119 # # # plt.figure(3)
1120 # # # plt.subplot(311)
1121 # # # #plt.plot(xFrec,phase[0])
1122 # # # plt.plot(xFrec,phase[0],'g')
1123 # # # plt.subplot(312)
1124 # # # plt.plot(xFrec,phase[1],'g')
1125 # # # plt.subplot(313)
1126 # # # plt.plot(xFrec,phase[2],'g')
1127 # # # #plt.plot(xFrec,phase[2])
1128 # # #
1129 # # # plt.figure(4)
1130 # # #
1131 # # # plt.plot(xSamples,coherence[0],'b')
1132 # # # plt.plot(xSamples,coherence[1],'r')
1133 # # # plt.plot(xSamples,coherence[2],'g')
1134 # # plt.show()
1135 # # #
1136 # # # plt.clf()
1137 # # # plt.cla()
1138 # # # plt.close()
1139 #
1140 # print ' '
1141
1142
1143
1144 self.BlockCounter+=2
1145
1146 else:
1147 self.fileSelector+=1
1148 self.BlockCounter=0
1149 print "Next File"
1150
1151
1152
1153
1154
@@ -0,0 +1,243
1 '''
2 Created on Aug 1, 2017
3
4 @author: Juan C. Espinoza
5 '''
6
7 import os
8 import sys
9 import time
10 import json
11 import datetime
12
13 import numpy
14
15 try:
16 import madrigal
17 import madrigal.cedar
18 except:
19 print 'You should install "madrigal library" module if you want to read/write Madrigal data'
20
21 from schainpy.model.proc.jroproc_base import Operation
22 from schainpy.model.data.jrodata import Parameters
23
24 MISSING = -32767
25 DEF_CATALOG = {
26 'principleInvestigator': 'Marco Milla',
27 'expPurpose': None,
28 'expMode': None,
29 'cycleTime': None,
30 'correlativeExp': None,
31 'sciRemarks': None,
32 'instRemarks': None
33 }
34 DEF_HEADER = {
35 'kindatDesc': None,
36 'analyst': 'Jicamarca User',
37 'comments': None,
38 'history': None
39 }
40 MNEMONICS = {
41 10: 'jro',
42 11: 'jbr',
43 840: 'jul',
44 13: 'jas',
45 1000: 'pbr',
46 1001: 'hbr',
47 1002: 'obr',
48 }
49
50 def load_json(obj):
51 '''
52 Parse json as string instead of unicode
53 '''
54
55 if isinstance(obj, str):
56 obj = json.loads(obj)
57
58 return {str(k): load_json(v) if isinstance(v, dict) else str(v) if isinstance(v, unicode) else v
59 for k, v in obj.items()}
60
61
62 class MAD2Writer(Operation):
63
64 def __init__(self, **kwargs):
65
66 Operation.__init__(self, **kwargs)
67 self.dataOut = Parameters()
68 self.path = None
69 self.dataOut = None
70 self.ext = '.dat'
71
72 return
73
74 def run(self, dataOut, path, oneDList, twoDParam='', twoDList='{}', metadata='{}', **kwargs):
75 '''
76 Inputs:
77 path - path where files will be created
78 oneDList - json of one-dimensional parameters in record where keys
79 are Madrigal codes (integers or mnemonics) and values the corresponding
80 dataOut attribute e.g: {
81 'gdlatr': 'lat',
82 'gdlonr': 'lon',
83 'gdlat2':'lat',
84 'glon2':'lon'}
85 twoDParam - independent parameter to get the number of rows e.g:
86 heighList
87 twoDList - json of two-dimensional parameters in record where keys
88 are Madrigal codes (integers or mnemonics) and values the corresponding
89 dataOut attribute if multidimensional array specify as tupple
90 ('attr', pos) e.g: {
91 'gdalt': 'heightList',
92 'vn1p2': ('data_output', 0),
93 'vn2p2': ('data_output', 1),
94 'vn3': ('data_output', 2),
95 'snl': ('data_SNR', 'db')
96 }
97 metadata - json of madrigal metadata (kinst, kindat, catalog and header)
98 '''
99 if not self.isConfig:
100 self.setup(dataOut, path, oneDList, twoDParam, twoDList, metadata, **kwargs)
101 self.isConfig = True
102
103 self.putData()
104 return
105
106 def setup(self, dataOut, path, oneDList, twoDParam, twoDList, metadata, **kwargs):
107 '''
108 Configure Operation
109 '''
110
111 self.dataOut = dataOut
112 self.nmodes = self.dataOut.nmodes
113 self.path = path
114 self.blocks = kwargs.get('blocks', None)
115 self.counter = 0
116 self.oneDList = load_json(oneDList)
117 self.twoDList = load_json(twoDList)
118 self.twoDParam = twoDParam
119 meta = load_json(metadata)
120 self.kinst = meta.get('kinst')
121 self.kindat = meta.get('kindat')
122 self.catalog = meta.get('catalog', DEF_CATALOG)
123 self.header = meta.get('header', DEF_HEADER)
124
125 return
126
127 def setFile(self):
128 '''
129 Create new cedar file object
130 '''
131
132 self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal
133 date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
134
135 filename = '%s%s_%s%s' % (self.mnemonic,
136 date.strftime('%Y%m%d_%H%M%S'),
137 self.dataOut.mode,
138 self.ext)
139
140 self.fullname = os.path.join(self.path, filename)
141
142 if os.path.isfile(self.fullname) :
143 print "Destination path '%s' already exists. Previous file deleted. " %self.fullname
144 os.remove(self.fullname)
145
146 try:
147 print '[Writing] creating file : %s' % (self.fullname)
148 self.cedarObj = madrigal.cedar.MadrigalCedarFile(self.fullname, True)
149 except ValueError, e:
150 print '[Error]: Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile" '
151 return
152
153 return 1
154
155 def writeBlock(self):
156 '''
157 Add data records to cedar file taking data from oneDList and twoDList
158 attributes.
159 Allowed parameters in: parcodes.tab
160 '''
161
162 startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
163 endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
164 nrows = len(getattr(self.dataOut, self.twoDParam))
165
166 rec = madrigal.cedar.MadrigalDataRecord(
167 self.kinst,
168 self.kindat,
169 startTime.year,
170 startTime.month,
171 startTime.day,
172 startTime.hour,
173 startTime.minute,
174 startTime.second,
175 startTime.microsecond/10000,
176 endTime.year,
177 endTime.month,
178 endTime.day,
179 endTime.hour,
180 endTime.minute,
181 endTime.second,
182 endTime.microsecond/10000,
183 self.oneDList.keys(),
184 self.twoDList.keys(),
185 nrows
186 )
187
188 # Setting 1d values
189 for key in self.oneDList:
190 rec.set1D(key, getattr(self.dataOut, self.oneDList[key]))
191
192 # Setting 2d values
193 invalid = numpy.isnan(self.dataOut.data_output)
194 self.dataOut.data_output[invalid] = MISSING
195 out = {}
196 for key, value in self.twoDList.items():
197 if isinstance(value, str):
198 out[key] = getattr(self.dataOut, value)
199 elif isinstance(value, tuple):
200 attr, x = value
201 if isinstance(x, (int, float)):
202 out[key] = getattr(self.dataOut, attr)[int(x)]
203 elif x.lower()=='db':
204 tmp = getattr(self.dataOut, attr)
205 SNRavg = numpy.average(tmp, axis=0)
206 out[key] = 10*numpy.log10(SNRavg)
207
208 for n in range(nrows):
209 for key in out:
210 rec.set2D(key, n, out[key][n])
211
212 self.cedarObj.append(rec)
213 self.cedarObj.dump()
214 print '[Writing] Record No. {} (mode {}).'.format(
215 self.counter,
216 self.dataOut.mode
217 )
218
219 def setHeader(self):
220 '''
221 Create an add catalog and header to cedar file
222 '''
223
224 header = madrigal.cedar.CatalogHeaderCreator(self.fullname)
225 header.createCatalog(**self.catalog)
226 header.createHeader(**self.header)
227 header.write()
228
229 def putData(self):
230
231 if self.dataOut.flagNoData:
232 return 0
233
234 if self.counter == 0:
235 self.setFile()
236
237 if self.counter <= self.dataOut.nrecords:
238 self.writeBlock()
239 self.counter += 1
240
241 if self.counter == self.dataOut.nrecords or self.counter == self.blocks:
242 self.setHeader()
243 self.counter = 0
This diff has been collapsed as it changes many lines, (803 lines changed) Show them Hide them
@@ -0,0 +1,803
1 import os, sys
2 import glob
3 import fnmatch
4 import datetime
5 import time
6 import re
7 import h5py
8 import numpy
9 import matplotlib.pyplot as plt
10
11 import pylab as plb
12 from scipy.optimize import curve_fit
13 from scipy import asarray as ar,exp
14 from scipy import stats
15
16 from numpy.ma.core import getdata
17
18 SPEED_OF_LIGHT = 299792458
19 SPEED_OF_LIGHT = 3e8
20
21 try:
22 from gevent import sleep
23 except:
24 from time import sleep
25
26 from schainpy.model.data.jrodata import Spectra
27 #from schainpy.model.data.BLTRheaderIO import FileHeader, RecordHeader
28 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation
29 #from schainpy.model.io.jroIO_bltr import BLTRReader
30 from numpy import imag, shape, NaN, empty
31
32
33
34 class Header(object):
35
36 def __init__(self):
37 raise NotImplementedError
38
39
40 def read(self):
41
42 raise NotImplementedError
43
44 def write(self):
45
46 raise NotImplementedError
47
48 def printInfo(self):
49
50 message = "#"*50 + "\n"
51 message += self.__class__.__name__.upper() + "\n"
52 message += "#"*50 + "\n"
53
54 keyList = self.__dict__.keys()
55 keyList.sort()
56
57 for key in keyList:
58 message += "%s = %s" %(key, self.__dict__[key]) + "\n"
59
60 if "size" not in keyList:
61 attr = getattr(self, "size")
62
63 if attr:
64 message += "%s = %s" %("size", attr) + "\n"
65
66 #print message
67
68
69 FILE_HEADER = numpy.dtype([ #HEADER 1024bytes
70 ('Hname','a32'), #Original file name
71 ('Htime',numpy.str_,32), #Date and time when the file was created
72 ('Hoper',numpy.str_,64), #Name of operator who created the file
73 ('Hplace',numpy.str_,128), #Place where the measurements was carried out
74 ('Hdescr',numpy.str_,256), #Description of measurements
75 ('Hdummy',numpy.str_,512), #Reserved space
76 #Main chunk 8bytes
77 ('Msign',numpy.str_,4), #Main chunk signature FZKF or NUIG
78 ('MsizeData','<i4'), #Size of data block main chunk
79 #Processing DSP parameters 36bytes
80 ('PPARsign',numpy.str_,4), #PPAR signature
81 ('PPARsize','<i4'), #PPAR size of block
82 ('PPARprf','<i4'), #Pulse repetition frequency
83 ('PPARpdr','<i4'), #Pulse duration
84 ('PPARsft','<i4'), #FFT length
85 ('PPARavc','<i4'), #Number of spectral (in-coherent) averages
86 ('PPARihp','<i4'), #Number of lowest range gate for moment estimation
87 ('PPARchg','<i4'), #Count for gates for moment estimation
88 ('PPARpol','<i4'), #switch on/off polarimetric measurements. Should be 1.
89 #Service DSP parameters 112bytes
90 ('SPARatt','<i4'), #STC attenuation on the lowest ranges on/off
91 ('SPARtx','<i4'), #OBSOLETE
92 ('SPARaddGain0','<f4'), #OBSOLETE
93 ('SPARaddGain1','<f4'), #OBSOLETE
94 ('SPARwnd','<i4'), #Debug only. It normal mode it is 0.
95 ('SPARpos','<i4'), #Delay between sync pulse and tx pulse for phase corr, ns
96 ('SPARadd','<i4'), #"add to pulse" to compensate for delay between the leading edge of driver pulse and envelope of the RF signal.
97 ('SPARlen','<i4'), #Time for measuring txn pulse phase. OBSOLETE
98 ('SPARcal','<i4'), #OBSOLETE
99 ('SPARnos','<i4'), #OBSOLETE
100 ('SPARof0','<i4'), #detection threshold
101 ('SPARof1','<i4'), #OBSOLETE
102 ('SPARswt','<i4'), #2nd moment estimation threshold
103 ('SPARsum','<i4'), #OBSOLETE
104 ('SPARosc','<i4'), #flag Oscillosgram mode
105 ('SPARtst','<i4'), #OBSOLETE
106 ('SPARcor','<i4'), #OBSOLETE
107 ('SPARofs','<i4'), #OBSOLETE
108 ('SPARhsn','<i4'), #Hildebrand div noise detection on noise gate
109 ('SPARhsa','<f4'), #Hildebrand div noise detection on all gates
110 ('SPARcalibPow_M','<f4'), #OBSOLETE
111 ('SPARcalibSNR_M','<f4'), #OBSOLETE
112 ('SPARcalibPow_S','<f4'), #OBSOLETE
113 ('SPARcalibSNR_S','<f4'), #OBSOLETE
114 ('SPARrawGate1','<i4'), #Lowest range gate for spectra saving Raw_Gate1 >=5
115 ('SPARrawGate2','<i4'), #Number of range gates with atmospheric signal
116 ('SPARraw','<i4'), #flag - IQ or spectra saving on/off
117 ('SPARprc','<i4'),]) #flag - Moment estimation switched on/off
118
119
120
121 class FileHeaderMIRA35c(Header):
122
123 def __init__(self):
124
125 self.Hname= None
126 self.Htime= None
127 self.Hoper= None
128 self.Hplace= None
129 self.Hdescr= None
130 self.Hdummy= None
131
132 self.Msign=None
133 self.MsizeData=None
134
135 self.PPARsign=None
136 self.PPARsize=None
137 self.PPARprf=None
138 self.PPARpdr=None
139 self.PPARsft=None
140 self.PPARavc=None
141 self.PPARihp=None
142 self.PPARchg=None
143 self.PPARpol=None
144 #Service DSP parameters
145 self.SPARatt=None
146 self.SPARtx=None
147 self.SPARaddGain0=None
148 self.SPARaddGain1=None
149 self.SPARwnd=None
150 self.SPARpos=None
151 self.SPARadd=None
152 self.SPARlen=None
153 self.SPARcal=None
154 self.SPARnos=None
155 self.SPARof0=None
156 self.SPARof1=None
157 self.SPARswt=None
158 self.SPARsum=None
159 self.SPARosc=None
160 self.SPARtst=None
161 self.SPARcor=None
162 self.SPARofs=None
163 self.SPARhsn=None
164 self.SPARhsa=None
165 self.SPARcalibPow_M=None
166 self.SPARcalibSNR_M=None
167 self.SPARcalibPow_S=None
168 self.SPARcalibSNR_S=None
169 self.SPARrawGate1=None
170 self.SPARrawGate2=None
171 self.SPARraw=None
172 self.SPARprc=None
173
174 self.FHsize=1180
175
176 def FHread(self, fp):
177
178 header = numpy.fromfile(fp, FILE_HEADER,1)
179 ''' numpy.fromfile(file, dtype, count, sep='')
180 file : file or str
181 Open file object or filename.
182
183 dtype : data-type
184 Data type of the returned array. For binary files, it is used to determine
185 the size and byte-order of the items in the file.
186
187 count : int
188 Number of items to read. -1 means all items (i.e., the complete file).
189
190 sep : str
191 Separator between items if file is a text file. Empty ("") separator means
192 the file should be treated as binary. Spaces (" ") in the separator match zero
193 or more whitespace characters. A separator consisting only of spaces must match
194 at least one whitespace.
195
196 '''
197
198
199 self.Hname= str(header['Hname'][0])
200 self.Htime= str(header['Htime'][0])
201 self.Hoper= str(header['Hoper'][0])
202 self.Hplace= str(header['Hplace'][0])
203 self.Hdescr= str(header['Hdescr'][0])
204 self.Hdummy= str(header['Hdummy'][0])
205 #1024
206
207 self.Msign=str(header['Msign'][0])
208 self.MsizeData=header['MsizeData'][0]
209 #8
210
211 self.PPARsign=str(header['PPARsign'][0])
212 self.PPARsize=header['PPARsize'][0]
213 self.PPARprf=header['PPARprf'][0]
214 self.PPARpdr=header['PPARpdr'][0]
215 self.PPARsft=header['PPARsft'][0]
216 self.PPARavc=header['PPARavc'][0]
217 self.PPARihp=header['PPARihp'][0]
218 self.PPARchg=header['PPARchg'][0]
219 self.PPARpol=header['PPARpol'][0]
220 #Service DSP parameters
221 #36
222
223 self.SPARatt=header['SPARatt'][0]
224 self.SPARtx=header['SPARtx'][0]
225 self.SPARaddGain0=header['SPARaddGain0'][0]
226 self.SPARaddGain1=header['SPARaddGain1'][0]
227 self.SPARwnd=header['SPARwnd'][0]
228 self.SPARpos=header['SPARpos'][0]
229 self.SPARadd=header['SPARadd'][0]
230 self.SPARlen=header['SPARlen'][0]
231 self.SPARcal=header['SPARcal'][0]
232 self.SPARnos=header['SPARnos'][0]
233 self.SPARof0=header['SPARof0'][0]
234 self.SPARof1=header['SPARof1'][0]
235 self.SPARswt=header['SPARswt'][0]
236 self.SPARsum=header['SPARsum'][0]
237 self.SPARosc=header['SPARosc'][0]
238 self.SPARtst=header['SPARtst'][0]
239 self.SPARcor=header['SPARcor'][0]
240 self.SPARofs=header['SPARofs'][0]
241 self.SPARhsn=header['SPARhsn'][0]
242 self.SPARhsa=header['SPARhsa'][0]
243 self.SPARcalibPow_M=header['SPARcalibPow_M'][0]
244 self.SPARcalibSNR_M=header['SPARcalibSNR_M'][0]
245 self.SPARcalibPow_S=header['SPARcalibPow_S'][0]
246 self.SPARcalibSNR_S=header['SPARcalibSNR_S'][0]
247 self.SPARrawGate1=header['SPARrawGate1'][0]
248 self.SPARrawGate2=header['SPARrawGate2'][0]
249 self.SPARraw=header['SPARraw'][0]
250 self.SPARprc=header['SPARprc'][0]
251 #112
252 #1180
253 #print 'Pointer fp header', fp.tell()
254 #print ' '
255 #print 'SPARrawGate'
256 #print self.SPARrawGate2 - self.SPARrawGate1
257
258 #print ' '
259 #print 'Hname'
260 #print self.Hname
261
262 #print ' '
263 #print 'Msign'
264 #print self.Msign
265
266 def write(self, fp):
267
268 headerTuple = (self.Hname,
269 self.Htime,
270 self.Hoper,
271 self.Hplace,
272 self.Hdescr,
273 self.Hdummy)
274
275
276 header = numpy.array(headerTuple, FILE_HEADER)
277 # numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
278 header.tofile(fp)
279 ''' ndarray.tofile(fid, sep, format) Write array to a file as text or binary (default).
280
281 fid : file or str
282 An open file object, or a string containing a filename.
283
284 sep : str
285 Separator between array items for text output. If "" (empty), a binary file is written,
286 equivalent to file.write(a.tobytes()).
287
288 format : str
289 Format string for text file output. Each entry in the array is formatted to text by
290 first converting it to the closest Python type, and then using "format" % item.
291
292 '''
293
294 return 1
295
296 SRVI_HEADER = numpy.dtype([
297 ('SignatureSRVI1',numpy.str_,4),#
298 ('SizeOfDataBlock1','<i4'),#
299 ('DataBlockTitleSRVI1',numpy.str_,4),#
300 ('SizeOfSRVI1','<i4'),])#
301
302 class SRVIHeader(Header):
303 def __init__(self, SignatureSRVI1=0, SizeOfDataBlock1=0, DataBlockTitleSRVI1=0, SizeOfSRVI1=0):
304
305 self.SignatureSRVI1 = SignatureSRVI1
306 self.SizeOfDataBlock1 = SizeOfDataBlock1
307 self.DataBlockTitleSRVI1 = DataBlockTitleSRVI1
308 self.SizeOfSRVI1 = SizeOfSRVI1
309
310 self.SRVIHsize=16
311
312 def SRVIread(self, fp):
313
314 header = numpy.fromfile(fp, SRVI_HEADER,1)
315
316 self.SignatureSRVI1 = str(header['SignatureSRVI1'][0])
317 self.SizeOfDataBlock1 = header['SizeOfDataBlock1'][0]
318 self.DataBlockTitleSRVI1 = str(header['DataBlockTitleSRVI1'][0])
319 self.SizeOfSRVI1 = header['SizeOfSRVI1'][0]
320 #16
321 print 'Pointer fp SRVIheader', fp.tell()
322
323
324 SRVI_STRUCTURE = numpy.dtype([
325 ('frame_cnt','<u4'),#
326 ('time_t','<u4'), #
327 ('tpow','<f4'), #
328 ('npw1','<f4'), #
329 ('npw2','<f4'), #
330 ('cpw1','<f4'), #
331 ('pcw2','<f4'), #
332 ('ps_err','<u4'), #
333 ('te_err','<u4'), #
334 ('rc_err','<u4'), #
335 ('grs1','<u4'), #
336 ('grs2','<u4'), #
337 ('azipos','<f4'), #
338 ('azivel','<f4'), #
339 ('elvpos','<f4'), #
340 ('elvvel','<f4'), #
341 ('northAngle','<f4'), #
342 ('microsec','<u4'), #
343 ('azisetvel','<f4'), #
344 ('elvsetpos','<f4'), #
345 ('RadarConst','<f4'),]) #
346
347
348
349
350 class RecordHeader(Header):
351
352
353 def __init__(self, frame_cnt=0, time_t= 0, tpow=0, npw1=0, npw2=0,
354 cpw1=0, pcw2=0, ps_err=0, te_err=0, rc_err=0, grs1=0,
355 grs2=0, azipos=0, azivel=0, elvpos=0, elvvel=0, northangle=0,
356 microsec=0, azisetvel=0, elvsetpos=0, RadarConst=0 , RecCounter=0, Off2StartNxtRec=0):
357
358
359 self.frame_cnt = frame_cnt
360 self.dwell = time_t
361 self.tpow = tpow
362 self.npw1 = npw1
363 self.npw2 = npw2
364 self.cpw1 = cpw1
365 self.pcw2 = pcw2
366 self.ps_err = ps_err
367 self.te_err = te_err
368 self.rc_err = rc_err
369 self.grs1 = grs1
370 self.grs2 = grs2
371 self.azipos = azipos
372 self.azivel = azivel
373 self.elvpos = elvpos
374 self.elvvel = elvvel
375 self.northAngle = northangle
376 self.microsec = microsec
377 self.azisetvel = azisetvel
378 self.elvsetpos = elvsetpos
379 self.RadarConst = RadarConst
380 self.RHsize=84
381 self.RecCounter = RecCounter
382 self.Off2StartNxtRec=Off2StartNxtRec
383
384 def RHread(self, fp):
385
386 #startFp = open(fp,"rb") #The method tell() returns the current position of the file read/write pointer within the file.
387
388 #OffRHeader= 1180 + self.RecCounter*(self.Off2StartNxtRec)
389 #startFp.seek(OffRHeader, os.SEEK_SET)
390
391 #print 'Posicion del bloque: ',OffRHeader
392
393 header = numpy.fromfile(fp,SRVI_STRUCTURE,1)
394
395 self.frame_cnt = header['frame_cnt'][0]#
396 self.time_t = header['time_t'][0] #
397 self.tpow = header['tpow'][0] #
398 self.npw1 = header['npw1'][0] #
399 self.npw2 = header['npw2'][0] #
400 self.cpw1 = header['cpw1'][0] #
401 self.pcw2 = header['pcw2'][0] #
402 self.ps_err = header['ps_err'][0] #
403 self.te_err = header['te_err'][0] #
404 self.rc_err = header['rc_err'][0] #
405 self.grs1 = header['grs1'][0] #
406 self.grs2 = header['grs2'][0] #
407 self.azipos = header['azipos'][0] #
408 self.azivel = header['azivel'][0] #
409 self.elvpos = header['elvpos'][0] #
410 self.elvvel = header['elvvel'][0] #
411 self.northAngle = header['northAngle'][0] #
412 self.microsec = header['microsec'][0] #
413 self.azisetvel = header['azisetvel'][0] #
414 self.elvsetpos = header['elvsetpos'][0] #
415 self.RadarConst = header['RadarConst'][0] #
416 #84
417
418 #print 'Pointer fp RECheader', fp.tell()
419
420 #self.ipp= 0.5*(SPEED_OF_LIGHT/self.PRFhz)
421
422 #self.RHsize = 180+20*self.nChannels
423 #self.Datasize= self.nProfiles*self.nChannels*self.nHeights*2*4
424 #print 'Datasize',self.Datasize
425 #endFp = self.OffsetStartHeader + self.RecCounter*self.Off2StartNxtRec
426
427 print '=============================================='
428
429 print '=============================================='
430
431
432 return 1
433
434 class MIRA35CReader (ProcessingUnit,FileHeaderMIRA35c,SRVIHeader,RecordHeader):
435
436 path = None
437 startDate = None
438 endDate = None
439 startTime = None
440 endTime = None
441 walk = None
442 isConfig = False
443
444
445 fileList= None
446
447 #metadata
448 TimeZone= None
449 Interval= None
450 heightList= None
451
452 #data
453 data= None
454 utctime= None
455
456
457
458 def __init__(self, **kwargs):
459
460 #Eliminar de la base la herencia
461 ProcessingUnit.__init__(self, **kwargs)
462 self.PointerReader = 0
463 self.FileHeaderFlag = False
464 self.utc = None
465 self.ext = ".zspca"
466 self.optchar = "P"
467 self.fpFile=None
468 self.fp = None
469 self.BlockCounter=0
470 self.dtype = None
471 self.fileSizeByHeader = None
472 self.filenameList = []
473 self.fileSelector = 0
474 self.Off2StartNxtRec=0
475 self.RecCounter=0
476 self.flagNoMoreFiles = 0
477 self.data_spc=None
478 #self.data_cspc=None
479 self.data_output=None
480 self.path = None
481 self.OffsetStartHeader=0
482 self.Off2StartData=0
483 self.ipp = 0
484 self.nFDTdataRecors=0
485 self.blocksize = 0
486 self.dataOut = Spectra()
487 self.profileIndex = 1 #Always
488 self.dataOut.flagNoData=False
489 self.dataOut.nRdPairs = 0
490 self.dataOut.pairsList = []
491 self.dataOut.data_spc=None
492
493 self.dataOut.normFactor=1
494 self.nextfileflag = True
495 self.dataOut.RadarConst = 0
496 self.dataOut.HSDV = []
497 self.dataOut.NPW = []
498 self.dataOut.COFA = []
499 self.dataOut.noise = 0
500
501
502 def Files2Read(self, fp):
503 '''
504 Function that indicates the number of .fdt files that exist in the folder to be read.
505 It also creates an organized list with the names of the files to read.
506 '''
507 #self.__checkPath()
508
509 ListaData=os.listdir(fp) #Gets the list of files within the fp address
510 ListaData=sorted(ListaData) #Sort the list of files from least to largest by names
511 nFiles=0 #File Counter
512 FileList=[] #A list is created that will contain the .fdt files
513 for IndexFile in ListaData :
514 if '.zspca' in IndexFile and '.gz' not in IndexFile:
515 FileList.append(IndexFile)
516 nFiles+=1
517
518 #print 'Files2Read'
519 #print 'Existen '+str(nFiles)+' archivos .fdt'
520
521 self.filenameList=FileList #List of files from least to largest by names
522
523
524 def run(self, **kwargs):
525 '''
526 This method will be the one that will initiate the data entry, will be called constantly.
527 You should first verify that your Setup () is set up and then continue to acquire
528 the data to be processed with getData ().
529 '''
530 if not self.isConfig:
531 self.setup(**kwargs)
532 self.isConfig = True
533
534 self.getData()
535
536
537 def setup(self, path=None,
538 startDate=None,
539 endDate=None,
540 startTime=None,
541 endTime=None,
542 walk=True,
543 timezone='utc',
544 code = None,
545 online=False,
546 ReadMode=None, **kwargs):
547
548 self.isConfig = True
549
550 self.path=path
551 self.startDate=startDate
552 self.endDate=endDate
553 self.startTime=startTime
554 self.endTime=endTime
555 self.walk=walk
556 #self.ReadMode=int(ReadMode)
557
558 pass
559
560
561 def getData(self):
562 '''
563 Before starting this function, you should check that there is still an unread file,
564 If there are still blocks to read or if the data block is empty.
565
566 You should call the file "read".
567
568 '''
569
570 if self.flagNoMoreFiles:
571 self.dataOut.flagNoData = True
572 print 'NoData se vuelve true'
573 return 0
574
575 self.fp=self.path
576 self.Files2Read(self.fp)
577 self.readFile(self.fp)
578
579 self.dataOut.data_spc = self.dataOut_spc#self.data_spc.copy()
580 self.dataOut.RadarConst = self.RadarConst
581 self.dataOut.data_output=self.data_output
582 self.dataOut.noise = self.dataOut.getNoise()
583 #print 'ACAAAAAA', self.dataOut.noise
584 self.dataOut.data_spc = self.dataOut.data_spc+self.dataOut.noise
585 #print 'self.dataOut.noise',self.dataOut.noise
586
587
588 return self.dataOut.data_spc
589
590
591 def readFile(self,fp):
592 '''
593 You must indicate if you are reading in Online or Offline mode and load the
594 The parameters for this file reading mode.
595
596 Then you must do 2 actions:
597
598 1. Get the BLTR FileHeader.
599 2. Start reading the first block.
600 '''
601
602 #The address of the folder is generated the name of the .fdt file that will be read
603 print "File: ",self.fileSelector+1
604
605 if self.fileSelector < len(self.filenameList):
606
607 self.fpFile=str(fp)+'/'+str(self.filenameList[self.fileSelector])
608
609 if self.nextfileflag==True:
610 self.fp = open(self.fpFile,"rb")
611 self.nextfileflag==False
612
613 '''HERE STARTING THE FILE READING'''
614
615
616 self.fheader = FileHeaderMIRA35c()
617 self.fheader.FHread(self.fp) #Bltr FileHeader Reading
618
619
620 self.SPARrawGate1 = self.fheader.SPARrawGate1
621 self.SPARrawGate2 = self.fheader.SPARrawGate2
622 self.Num_Hei = self.SPARrawGate2 - self.SPARrawGate1
623 self.Num_Bins = self.fheader.PPARsft
624 self.dataOut.nFFTPoints = self.fheader.PPARsft
625
626
627 self.Num_inCoh = self.fheader.PPARavc
628 self.dataOut.PRF = self.fheader.PPARprf
629 self.dataOut.frequency = 34.85*10**9
630 self.Lambda = SPEED_OF_LIGHT/self.dataOut.frequency
631 self.dataOut.ippSeconds= 1./float(self.dataOut.PRF)
632
633 pulse_width = self.fheader.PPARpdr * 10**-9
634 self.__deltaHeigth = 0.5 * SPEED_OF_LIGHT * pulse_width
635
636 self.data_spc = numpy.zeros((self.Num_Hei, self.Num_Bins,2))#
637 self.dataOut.HSDV = numpy.zeros((self.Num_Hei, 2))
638
639 self.Ze = numpy.zeros(self.Num_Hei)
640 self.ETA = numpy.zeros(([2,self.Num_Hei]))
641
642
643
644 self.readBlock() #Block reading
645
646 else:
647 print 'readFile FlagNoData becomes true'
648 self.flagNoMoreFiles=True
649 self.dataOut.flagNoData = True
650 self.FileHeaderFlag == True
651 return 0
652
653
654
655 def readBlock(self):
656 '''
657 It should be checked if the block has data, if it is not passed to the next file.
658
659 Then the following is done:
660
661 1. Read the RecordHeader
662 2. Fill the buffer with the current block number.
663
664 '''
665
666 if self.PointerReader > 1180:
667 self.fp.seek(self.PointerReader , os.SEEK_SET)
668 self.FirstPoint = self.PointerReader
669
670 else :
671 self.FirstPoint = 1180
672
673
674
675 self.srviHeader = SRVIHeader()
676
677 self.srviHeader.SRVIread(self.fp) #Se obtiene la cabecera del SRVI
678
679 self.blocksize = self.srviHeader.SizeOfDataBlock1 # Se obtiene el tamao del bloque
680
681 if self.blocksize == 148:
682 print 'blocksize == 148 bug'
683 jump = numpy.fromfile(self.fp,[('jump',numpy.str_,140)] ,1)
684
685 self.srviHeader.SRVIread(self.fp) #Se obtiene la cabecera del SRVI
686
687 if not self.srviHeader.SizeOfSRVI1:
688 self.fileSelector+=1
689 self.nextfileflag==True
690 self.FileHeaderFlag == True
691
692 self.recordheader = RecordHeader()
693 self.recordheader.RHread(self.fp)
694 self.RadarConst = self.recordheader.RadarConst
695 dwell = self.recordheader.time_t
696 npw1 = self.recordheader.npw1
697 npw2 = self.recordheader.npw2
698
699
700 self.dataOut.channelList = range(1)
701 self.dataOut.nIncohInt = self.Num_inCoh
702 self.dataOut.nProfiles = self.Num_Bins
703 self.dataOut.nCohInt = 1
704 self.dataOut.windowOfFilter = 1
705 self.dataOut.utctime = dwell
706 self.dataOut.timeZone=0
707
708 self.dataOut.outputInterval = self.dataOut.getTimeInterval()
709 self.dataOut.heightList = self.SPARrawGate1*self.__deltaHeigth + numpy.array(range(self.Num_Hei))*self.__deltaHeigth
710
711
712
713 self.HSDVsign = numpy.fromfile( self.fp, [('HSDV',numpy.str_,4)],1)
714 self.SizeHSDV = numpy.fromfile( self.fp, [('SizeHSDV','<i4')],1)
715 self.HSDV_Co = numpy.fromfile( self.fp, [('HSDV_Co','<f4')],self.Num_Hei)
716 self.HSDV_Cx = numpy.fromfile( self.fp, [('HSDV_Cx','<f4')],self.Num_Hei)
717
718 self.COFAsign = numpy.fromfile( self.fp, [('COFA',numpy.str_,4)],1)
719 self.SizeCOFA = numpy.fromfile( self.fp, [('SizeCOFA','<i4')],1)
720 self.COFA_Co = numpy.fromfile( self.fp, [('COFA_Co','<f4')],self.Num_Hei)
721 self.COFA_Cx = numpy.fromfile( self.fp, [('COFA_Cx','<f4')],self.Num_Hei)
722
723 self.ZSPCsign = numpy.fromfile(self.fp, [('ZSPCsign',numpy.str_,4)],1)
724 self.SizeZSPC = numpy.fromfile(self.fp, [('SizeZSPC','<i4')],1)
725
726 self.dataOut.HSDV[0]=self.HSDV_Co[:][0]
727 self.dataOut.HSDV[1]=self.HSDV_Cx[:][0]
728
729 for irg in range(self.Num_Hei):
730 nspc = numpy.fromfile(self.fp, [('nspc','int16')],1)[0][0] # Number of spectral sub pieces containing significant power
731
732 for k in range(nspc):
733 binIndex = numpy.fromfile(self.fp, [('binIndex','int16')],1)[0][0] # Index of the spectral bin where the piece is beginning
734 nbins = numpy.fromfile(self.fp, [('nbins','int16')],1)[0][0] # Number of bins of the piece
735
736 #Co_Channel
737 jbin = numpy.fromfile(self.fp, [('jbin','uint16')],nbins)[0][0] # Spectrum piece to be normaliced
738 jmax = numpy.fromfile(self.fp, [('jmax','float32')],1)[0][0] # Maximun piece to be normaliced
739
740
741 self.data_spc[irg,binIndex:binIndex+nbins,0] = self.data_spc[irg,binIndex:binIndex+nbins,0]+jbin/65530.*jmax
742
743 #Cx_Channel
744 jbin = numpy.fromfile(self.fp, [('jbin','uint16')],nbins)[0][0]
745 jmax = numpy.fromfile(self.fp, [('jmax','float32')],1)[0][0]
746
747
748 self.data_spc[irg,binIndex:binIndex+nbins,1] = self.data_spc[irg,binIndex:binIndex+nbins,1]+jbin/65530.*jmax
749
750 for bin in range(self.Num_Bins):
751
752 self.data_spc[:,bin,0] = self.data_spc[:,bin,0] - self.dataOut.HSDV[:,0]
753
754 self.data_spc[:,bin,1] = self.data_spc[:,bin,1] - self.dataOut.HSDV[:,1]
755
756
757 numpy.set_printoptions(threshold='nan')
758
759 self.data_spc = numpy.where(self.data_spc > 0. , self.data_spc, 0)
760
761 self.dataOut.COFA = numpy.array([self.COFA_Co , self.COFA_Cx])
762
763 print ' '
764 print 'SPC',numpy.shape(self.dataOut.data_spc)
765 #print 'SPC',self.dataOut.data_spc
766
767 noinor1 = 713031680
768 noinor2 = 30
769
770 npw1 = 1#0**(npw1/10) * noinor1 * noinor2
771 npw2 = 1#0**(npw2/10) * noinor1 * noinor2
772 self.dataOut.NPW = numpy.array([npw1, npw2])
773
774 print ' '
775
776 self.data_spc = numpy.transpose(self.data_spc, (2,1,0))
777 self.data_spc = numpy.fft.fftshift(self.data_spc, axes = 1)
778
779 self.data_spc = numpy.fliplr(self.data_spc)
780
781 self.data_spc = numpy.where(self.data_spc > 0. , self.data_spc, 0)
782 self.dataOut_spc= numpy.ones([1, self.Num_Bins , self.Num_Hei])
783 self.dataOut_spc[0,:,:] = self.data_spc[0,:,:]
784 #print 'SHAPE', self.dataOut_spc.shape
785 #For nyquist correction:
786 #fix = 20 # ~3m/s
787 #shift = self.Num_Bins/2 + fix
788 #self.data_spc = numpy.array([ self.data_spc[: , self.Num_Bins-shift+1: , :] , self.data_spc[: , 0:self.Num_Bins-shift , :]])
789
790
791
792 '''Block Reading, the Block Data is received and Reshape is used to give it
793 shape.
794 '''
795
796 self.PointerReader = self.fp.tell()
797
798
799
800
801
802
803 No newline at end of file
@@ -0,0 +1,403
1 '''
2 Created on Oct 24, 2016
3
4 @author: roj- LouVD
5 '''
6
7 import numpy
8 import copy
9 import datetime
10 import time
11 from time import gmtime
12
13 from numpy import transpose
14
15 from jroproc_base import ProcessingUnit, Operation
16 from schainpy.model.data.jrodata import Parameters
17
18
19 class BLTRParametersProc(ProcessingUnit):
20 '''
21 Processing unit for BLTR parameters data (winds)
22
23 Inputs:
24 self.dataOut.nmodes - Number of operation modes
25 self.dataOut.nchannels - Number of channels
26 self.dataOut.nranges - Number of ranges
27
28 self.dataOut.data_SNR - SNR array
29 self.dataOut.data_output - Zonal, Vertical and Meridional velocity array
30 self.dataOut.height - Height array (km)
31 self.dataOut.time - Time array (seconds)
32
33 self.dataOut.fileIndex -Index of the file currently read
34 self.dataOut.lat - Latitude coordinate of BLTR location
35
36 self.dataOut.doy - Experiment doy (number of the day in the current year)
37 self.dataOut.month - Experiment month
38 self.dataOut.day - Experiment day
39 self.dataOut.year - Experiment year
40 '''
41
42 def __init__(self, **kwargs):
43 '''
44 Inputs: None
45 '''
46 ProcessingUnit.__init__(self, **kwargs)
47 self.dataOut = Parameters()
48 self.isConfig = False
49
50 def setup(self, mode):
51 '''
52 '''
53 self.dataOut.mode = mode
54
55 def run(self, mode, snr_threshold=None):
56 '''
57 Inputs:
58 mode = High resolution (0) or Low resolution (1) data
59 snr_threshold = snr filter value
60 '''
61
62 if not self.isConfig:
63 self.setup(mode)
64 self.isConfig = True
65
66 if self.dataIn.type == 'Parameters':
67 self.dataOut.copy(self.dataIn)
68
69 self.dataOut.data_output = self.dataOut.data_output[mode]
70 self.dataOut.heightList = self.dataOut.height[0]
71 self.dataOut.data_SNR = self.dataOut.data_SNR[mode]
72
73 if snr_threshold is not None:
74 SNRavg = numpy.average(self.dataOut.data_SNR, axis=0)
75 SNRavgdB = 10*numpy.log10(SNRavg)
76 for i in range(3):
77 self.dataOut.data_output[i][SNRavgdB <= snr_threshold] = numpy.nan
78
79 # TODO
80 class OutliersFilter(Operation):
81
82 def __init__(self, **kwargs):
83 '''
84 '''
85 Operation.__init__(self, **kwargs)
86
87 def run(self, svalue2, method, factor, filter, npoints=9):
88 '''
89 Inputs:
90 svalue - string to select array velocity
91 svalue2 - string to choose axis filtering
92 method - 0 for SMOOTH or 1 for MEDIAN
93 factor - number used to set threshold
94 filter - 1 for data filtering using the standard deviation criteria else 0
95 npoints - number of points for mask filter
96 '''
97
98 print ' Outliers Filter {} {} / threshold = {}'.format(svalue, svalue, factor)
99
100
101 yaxis = self.dataOut.heightList
102 xaxis = numpy.array([[self.dataOut.utctime]])
103
104 # Zonal
105 value_temp = self.dataOut.data_output[0]
106
107 # Zonal
108 value_temp = self.dataOut.data_output[1]
109
110 # Vertical
111 value_temp = numpy.transpose(self.dataOut.data_output[2])
112
113 htemp = yaxis
114 std = value_temp
115 for h in range(len(htemp)):
116 nvalues_valid = len(numpy.where(numpy.isfinite(value_temp[h]))[0])
117 minvalid = npoints
118
119 #only if valid values greater than the minimum required (10%)
120 if nvalues_valid > minvalid:
121
122 if method == 0:
123 #SMOOTH
124 w = value_temp[h] - self.Smooth(input=value_temp[h], width=npoints, edge_truncate=1)
125
126
127 if method == 1:
128 #MEDIAN
129 w = value_temp[h] - self.Median(input=value_temp[h], width = npoints)
130
131 dw = numpy.std(w[numpy.where(numpy.isfinite(w))],ddof = 1)
132
133 threshold = dw*factor
134 value_temp[numpy.where(w > threshold),h] = numpy.nan
135 value_temp[numpy.where(w < -1*threshold),h] = numpy.nan
136
137
138 #At the end
139 if svalue2 == 'inHeight':
140 value_temp = numpy.transpose(value_temp)
141 output_array[:,m] = value_temp
142
143 if svalue == 'zonal':
144 self.dataOut.data_output[0] = output_array
145
146 elif svalue == 'meridional':
147 self.dataOut.data_output[1] = output_array
148
149 elif svalue == 'vertical':
150 self.dataOut.data_output[2] = output_array
151
152 return self.dataOut.data_output
153
154
155 def Median(self,input,width):
156 '''
157 Inputs:
158 input - Velocity array
159 width - Number of points for mask filter
160
161 '''
162
163 if numpy.mod(width,2) == 1:
164 pc = int((width - 1) / 2)
165 cont = 0
166 output = []
167
168 for i in range(len(input)):
169 if i >= pc and i < len(input) - pc:
170 new2 = input[i-pc:i+pc+1]
171 temp = numpy.where(numpy.isfinite(new2))
172 new = new2[temp]
173 value = numpy.median(new)
174 output.append(value)
175
176 output = numpy.array(output)
177 output = numpy.hstack((input[0:pc],output))
178 output = numpy.hstack((output,input[-pc:len(input)]))
179
180 return output
181
182 def Smooth(self,input,width,edge_truncate = None):
183 '''
184 Inputs:
185 input - Velocity array
186 width - Number of points for mask filter
187 edge_truncate - 1 for truncate the convolution product else
188
189 '''
190
191 if numpy.mod(width,2) == 0:
192 real_width = width + 1
193 nzeros = width / 2
194 else:
195 real_width = width
196 nzeros = (width - 1) / 2
197
198 half_width = int(real_width)/2
199 length = len(input)
200
201 gate = numpy.ones(real_width,dtype='float')
202 norm_of_gate = numpy.sum(gate)
203
204 nan_process = 0
205 nan_id = numpy.where(numpy.isnan(input))
206 if len(nan_id[0]) > 0:
207 nan_process = 1
208 pb = numpy.zeros(len(input))
209 pb[nan_id] = 1.
210 input[nan_id] = 0.
211
212 if edge_truncate == True:
213 output = numpy.convolve(input/norm_of_gate,gate,mode='same')
214 elif edge_truncate == False or edge_truncate == None:
215 output = numpy.convolve(input/norm_of_gate,gate,mode='valid')
216 output = numpy.hstack((input[0:half_width],output))
217 output = numpy.hstack((output,input[len(input)-half_width:len(input)]))
218
219 if nan_process:
220 pb = numpy.convolve(pb/norm_of_gate,gate,mode='valid')
221 pb = numpy.hstack((numpy.zeros(half_width),pb))
222 pb = numpy.hstack((pb,numpy.zeros(half_width)))
223 output[numpy.where(pb > 0.9999)] = numpy.nan
224 input[nan_id] = numpy.nan
225 return output
226
227 def Average(self,aver=0,nhaver=1):
228 '''
229 Inputs:
230 aver - Indicates the time period over which is averaged or consensus data
231 nhaver - Indicates the decimation factor in heights
232
233 '''
234 nhpoints = 48
235
236 lat_piura = -5.17
237 lat_huancayo = -12.04
238 lat_porcuya = -5.8
239
240 if '%2.2f'%self.dataOut.lat == '%2.2f'%lat_piura:
241 hcm = 3.
242 if self.dataOut.year == 2003 :
243 if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
244 nhpoints = 12
245
246 elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_huancayo:
247 hcm = 3.
248 if self.dataOut.year == 2003 :
249 if self.dataOut.doy >= 25 and self.dataOut.doy < 64:
250 nhpoints = 12
251
252
253 elif '%2.2f'%self.dataOut.lat == '%2.2f'%lat_porcuya:
254 hcm = 5.#2
255
256 pdata = 0.2
257 taver = [1,2,3,4,6,8,12,24]
258 t0 = 0
259 tf = 24
260 ntime =(tf-t0)/taver[aver]
261 ti = numpy.arange(ntime)
262 tf = numpy.arange(ntime) + taver[aver]
263
264
265 old_height = self.dataOut.heightList
266
267 if nhaver > 1:
268 num_hei = len(self.dataOut.heightList)/nhaver/self.dataOut.nmodes
269 deltha = 0.05*nhaver
270 minhvalid = pdata*nhaver
271 for im in range(self.dataOut.nmodes):
272 new_height = numpy.arange(num_hei)*deltha + self.dataOut.height[im,0] + deltha/2.
273
274
275 data_fHeigths_List = []
276 data_fZonal_List = []
277 data_fMeridional_List = []
278 data_fVertical_List = []
279 startDTList = []
280
281
282 for i in range(ntime):
283 height = old_height
284
285 start = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(ti[i])) - datetime.timedelta(hours = 5)
286 stop = datetime.datetime(self.dataOut.year,self.dataOut.month,self.dataOut.day) + datetime.timedelta(hours = int(tf[i])) - datetime.timedelta(hours = 5)
287
288
289 limit_sec1 = time.mktime(start.timetuple())
290 limit_sec2 = time.mktime(stop.timetuple())
291
292 t1 = numpy.where(self.f_timesec >= limit_sec1)
293 t2 = numpy.where(self.f_timesec < limit_sec2)
294 time_select = []
295 for val_sec in t1[0]:
296 if val_sec in t2[0]:
297 time_select.append(val_sec)
298
299
300 time_select = numpy.array(time_select,dtype = 'int')
301 minvalid = numpy.ceil(pdata*nhpoints)
302
303 zon_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
304 mer_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
305 ver_aver = numpy.zeros([self.dataOut.nranges,self.dataOut.nmodes],dtype='f4') + numpy.nan
306
307 if nhaver > 1:
308 new_zon_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
309 new_mer_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
310 new_ver_aver = numpy.zeros([num_hei,self.dataOut.nmodes],dtype='f4') + numpy.nan
311
312 if len(time_select) > minvalid:
313 time_average = self.f_timesec[time_select]
314
315 for im in range(self.dataOut.nmodes):
316
317 for ih in range(self.dataOut.nranges):
318 if numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im])) >= minvalid:
319 zon_aver[ih,im] = numpy.nansum(self.f_zon[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_zon[time_select,ih,im]))
320
321 if numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im])) >= minvalid:
322 mer_aver[ih,im] = numpy.nansum(self.f_mer[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_mer[time_select,ih,im]))
323
324 if numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im])) >= minvalid:
325 ver_aver[ih,im] = numpy.nansum(self.f_ver[time_select,ih,im]) / numpy.sum(numpy.isfinite(self.f_ver[time_select,ih,im]))
326
327 if nhaver > 1:
328 for ih in range(num_hei):
329 hvalid = numpy.arange(nhaver) + nhaver*ih
330
331 if numpy.sum(numpy.isfinite(zon_aver[hvalid,im])) >= minvalid:
332 new_zon_aver[ih,im] = numpy.nansum(zon_aver[hvalid,im]) / numpy.sum(numpy.isfinite(zon_aver[hvalid,im]))
333
334 if numpy.sum(numpy.isfinite(mer_aver[hvalid,im])) >= minvalid:
335 new_mer_aver[ih,im] = numpy.nansum(mer_aver[hvalid,im]) / numpy.sum(numpy.isfinite(mer_aver[hvalid,im]))
336
337 if numpy.sum(numpy.isfinite(ver_aver[hvalid,im])) >= minvalid:
338 new_ver_aver[ih,im] = numpy.nansum(ver_aver[hvalid,im]) / numpy.sum(numpy.isfinite(ver_aver[hvalid,im]))
339 if nhaver > 1:
340 zon_aver = new_zon_aver
341 mer_aver = new_mer_aver
342 ver_aver = new_ver_aver
343 height = new_height
344
345
346 tstart = time_average[0]
347 tend = time_average[-1]
348 startTime = time.gmtime(tstart)
349
350 year = startTime.tm_year
351 month = startTime.tm_mon
352 day = startTime.tm_mday
353 hour = startTime.tm_hour
354 minute = startTime.tm_min
355 second = startTime.tm_sec
356
357 startDTList.append(datetime.datetime(year,month,day,hour,minute,second))
358
359
360 o_height = numpy.array([])
361 o_zon_aver = numpy.array([])
362 o_mer_aver = numpy.array([])
363 o_ver_aver = numpy.array([])
364 if self.dataOut.nmodes > 1:
365 for im in range(self.dataOut.nmodes):
366
367 if im == 0:
368 h_select = numpy.where(numpy.bitwise_and(height[0,:] >=0,height[0,:] <= hcm,numpy.isfinite(height[0,:])))
369 else:
370 h_select = numpy.where(numpy.bitwise_and(height[1,:] > hcm,height[1,:] < 20,numpy.isfinite(height[1,:])))
371
372
373 ht = h_select[0]
374
375 o_height = numpy.hstack((o_height,height[im,ht]))
376 o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
377 o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
378 o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
379
380 data_fHeigths_List.append(o_height)
381 data_fZonal_List.append(o_zon_aver)
382 data_fMeridional_List.append(o_mer_aver)
383 data_fVertical_List.append(o_ver_aver)
384
385
386 else:
387 h_select = numpy.where(numpy.bitwise_and(height[0,:] <= hcm,numpy.isfinite(height[0,:])))
388 ht = h_select[0]
389 o_height = numpy.hstack((o_height,height[im,ht]))
390 o_zon_aver = numpy.hstack((o_zon_aver,zon_aver[ht,im]))
391 o_mer_aver = numpy.hstack((o_mer_aver,mer_aver[ht,im]))
392 o_ver_aver = numpy.hstack((o_ver_aver,ver_aver[ht,im]))
393
394 data_fHeigths_List.append(o_height)
395 data_fZonal_List.append(o_zon_aver)
396 data_fMeridional_List.append(o_mer_aver)
397 data_fVertical_List.append(o_ver_aver)
398
399
400 return startDTList, data_fHeigths_List, data_fZonal_List, data_fMeridional_List, data_fVertical_List
401
402
403 No newline at end of file
@@ -1180,6 +1180,8 class Parameters(Spectra):
1180 1180
1181 1181 noise_estimation = None
1182 1182
1183 GauSPC = None #Fit gaussian SPC
1184
1183 1185
1184 1186 def __init__(self):
1185 1187 '''
@@ -1213,8 +1215,15 class Parameters(Spectra):
1213 1215 else:
1214 1216 return self.paramInterval
1215 1217
1218 def setValue(self, value):
1219
1220 print "This property should not be initialized"
1221
1222 return
1223
1216 1224 def getNoise(self):
1217 1225
1218 1226 return self.spc_noise
1219 1227
1220 1228 timeInterval = property(getTimeInterval)
1229 noise = property(getNoise, setValue, "I'm the 'Noise' property.")
@@ -14,8 +14,8 class CorrelationPlot(Figure):
14 14 HEIGHTPROF = None
15 15 PREFIX = 'corr'
16 16
17 def __init__(self, **kwargs):
18 Figure.__init__(self, **kwargs)
17 def __init__(self):
18
19 19 self.isConfig = False
20 20 self.__nsubplots = 1
21 21
@@ -20,9 +20,8 class SpectraHeisScope(Figure):
20 20 HEIGHTPROF = None
21 21 PREFIX = 'spc'
22 22
23 def __init__(self, **kwargs):
23 def __init__(self):
24 24
25 Figure.__init__(self, **kwargs)
26 25 self.isConfig = False
27 26 self.__nsubplots = 1
28 27
@@ -180,8 +179,8 class RTIfromSpectraHeis(Figure):
180 179
181 180 PREFIX = 'rtinoise'
182 181
183 def __init__(self, **kwargs):
184 Figure.__init__(self, **kwargs)
182 def __init__(self):
183
185 184 self.timerange = 24*60*60
186 185 self.isConfig = False
187 186 self.__nsubplots = 1
@@ -6,6 +6,217 from figure import Figure, isRealtime, isTimeInHourRange
6 6 from plotting_codes import *
7 7
8 8
9 class FitGauPlot(Figure):
10
11 isConfig = None
12 __nsubplots = None
13
14 WIDTHPROF = None
15 HEIGHTPROF = None
16 PREFIX = 'fitgau'
17
18 def __init__(self, **kwargs):
19 Figure.__init__(self, **kwargs)
20 self.isConfig = False
21 self.__nsubplots = 1
22
23 self.WIDTH = 250
24 self.HEIGHT = 250
25 self.WIDTHPROF = 120
26 self.HEIGHTPROF = 0
27 self.counter_imagwr = 0
28
29 self.PLOT_CODE = SPEC_CODE
30
31 self.FTP_WEI = None
32 self.EXP_CODE = None
33 self.SUB_EXP_CODE = None
34 self.PLOT_POS = None
35
36 self.__xfilter_ena = False
37 self.__yfilter_ena = False
38
39 def getSubplots(self):
40
41 ncol = int(numpy.sqrt(self.nplots)+0.9)
42 nrow = int(self.nplots*1./ncol + 0.9)
43
44 return nrow, ncol
45
46 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
47
48 self.__showprofile = showprofile
49 self.nplots = nplots
50
51 ncolspan = 1
52 colspan = 1
53 if showprofile:
54 ncolspan = 3
55 colspan = 2
56 self.__nsubplots = 2
57
58 self.createFigure(id = id,
59 wintitle = wintitle,
60 widthplot = self.WIDTH + self.WIDTHPROF,
61 heightplot = self.HEIGHT + self.HEIGHTPROF,
62 show=show)
63
64 nrow, ncol = self.getSubplots()
65
66 counter = 0
67 for y in range(nrow):
68 for x in range(ncol):
69
70 if counter >= self.nplots:
71 break
72
73 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
74
75 if showprofile:
76 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
77
78 counter += 1
79
80 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
81 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
82 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
83 server=None, folder=None, username=None, password=None,
84 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
85 xaxis="frequency", colormap='jet', normFactor=None , GauSelector = 1):
86
87 """
88
89 Input:
90 dataOut :
91 id :
92 wintitle :
93 channelList :
94 showProfile :
95 xmin : None,
96 xmax : None,
97 ymin : None,
98 ymax : None,
99 zmin : None,
100 zmax : None
101 """
102 if realtime:
103 if not(isRealtime(utcdatatime = dataOut.utctime)):
104 print 'Skipping this plot function'
105 return
106
107 if channelList == None:
108 channelIndexList = dataOut.channelIndexList
109 else:
110 channelIndexList = []
111 for channel in channelList:
112 if channel not in dataOut.channelList:
113 raise ValueError, "Channel %d is not in dataOut.channelList" %channel
114 channelIndexList.append(dataOut.channelList.index(channel))
115
116 # if normFactor is None:
117 # factor = dataOut.normFactor
118 # else:
119 # factor = normFactor
120 if xaxis == "frequency":
121 x = dataOut.spc_range[0]
122 xlabel = "Frequency (kHz)"
123
124 elif xaxis == "time":
125 x = dataOut.spc_range[1]
126 xlabel = "Time (ms)"
127
128 else:
129 x = dataOut.spc_range[2]
130 xlabel = "Velocity (m/s)"
131
132 ylabel = "Range (Km)"
133
134 y = dataOut.getHeiRange()
135
136 z = dataOut.GauSPC[:,GauSelector,:,:] #GauSelector] #dataOut.data_spc/factor
137 print 'GausSPC', z[0,32,10:40]
138 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
139 zdB = 10*numpy.log10(z)
140
141 avg = numpy.average(z, axis=1)
142 avgdB = 10*numpy.log10(avg)
143
144 noise = dataOut.spc_noise
145 noisedB = 10*numpy.log10(noise)
146
147 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
148 title = wintitle + " Spectra"
149 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
150 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
151
152 if not self.isConfig:
153
154 nplots = len(channelIndexList)
155
156 self.setup(id=id,
157 nplots=nplots,
158 wintitle=wintitle,
159 showprofile=showprofile,
160 show=show)
161
162 if xmin == None: xmin = numpy.nanmin(x)
163 if xmax == None: xmax = numpy.nanmax(x)
164 if ymin == None: ymin = numpy.nanmin(y)
165 if ymax == None: ymax = numpy.nanmax(y)
166 if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3
167 if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3
168
169 self.FTP_WEI = ftp_wei
170 self.EXP_CODE = exp_code
171 self.SUB_EXP_CODE = sub_exp_code
172 self.PLOT_POS = plot_pos
173
174 self.isConfig = True
175
176 self.setWinTitle(title)
177
178 for i in range(self.nplots):
179 index = channelIndexList[i]
180 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
181 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime)
182 if len(dataOut.beam.codeList) != 0:
183 title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime)
184
185 axes = self.axesList[i*self.__nsubplots]
186 axes.pcolor(x, y, zdB[index,:,:],
187 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
188 xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap,
189 ticksize=9, cblabel='')
190
191 if self.__showprofile:
192 axes = self.axesList[i*self.__nsubplots +1]
193 axes.pline(avgdB[index,:], y,
194 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
195 xlabel='dB', ylabel='', title='',
196 ytick_visible=False,
197 grid='x')
198
199 noiseline = numpy.repeat(noisedB[index], len(y))
200 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
201
202 self.draw()
203
204 if figfile == None:
205 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
206 name = str_datetime
207 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
208 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
209 figfile = self.getFilename(name)
210
211 self.save(figpath=figpath,
212 figfile=figfile,
213 save=save,
214 ftp=ftp,
215 wr_period=wr_period,
216 thisDatetime=thisDatetime)
217
218
219
9 220 class MomentsPlot(Figure):
10 221
11 222 isConfig = None
@@ -446,8 +657,7 class WindProfilerPlot(Figure):
446 657 # tmin = None
447 658 # tmax = None
448 659
449
450 x = dataOut.getTimeRange1(dataOut.outputInterval)
660 x = dataOut.getTimeRange1(dataOut.paramInterval)
451 661 y = dataOut.heightList
452 662 z = dataOut.data_output.copy()
453 663 nplots = z.shape[0] #Number of wind dimensions estimated
@@ -559,7 +769,7 class WindProfilerPlot(Figure):
559 769 thisDatetime=thisDatetime,
560 770 update_figfile=update_figfile)
561 771
562 if dataOut.ltctime + dataOut.outputInterval >= self.xmax:
772 if dataOut.ltctime + dataOut.paramInterval >= self.xmax:
563 773 self.counter_imagwr = wr_period
564 774 self.isConfig = False
565 775 update_figfile = True
@@ -636,12 +846,12 class ParametersPlot(Figure):
636 846
637 847 counter += 1
638 848
639 def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap=True,
849 def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet",
640 850 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None,
641 851 showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None,
642 852 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
643 853 server=None, folder=None, username=None, password=None,
644 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
854 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None):
645 855 """
646 856
647 857 Input:
@@ -658,10 +868,9 class ParametersPlot(Figure):
658 868 zmax : None
659 869 """
660 870
661 if colormap:
662 colormap="jet"
663 else:
664 colormap="RdBu_r"
871 if HEIGHT is not None:
872 self.HEIGHT = HEIGHT
873
665 874
666 875 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
667 876 return
@@ -86,7 +86,7 class SpectraPlot(Figure):
86 86 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
87 87 server=None, folder=None, username=None, password=None,
88 88 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
89 xaxis="velocity", **kwargs):
89 xaxis="frequency", colormap='jet', normFactor=None):
90 90
91 91 """
92 92
@@ -103,9 +103,6 class SpectraPlot(Figure):
103 103 zmin : None,
104 104 zmax : None
105 105 """
106
107 colormap = kwargs.get('colormap','jet')
108
109 106 if realtime:
110 107 if not(isRealtime(utcdatatime = dataOut.utctime)):
111 108 print 'Skipping this plot function'
@@ -120,8 +117,10 class SpectraPlot(Figure):
120 117 raise ValueError, "Channel %d is not in dataOut.channelList" %channel
121 118 channelIndexList.append(dataOut.channelList.index(channel))
122 119
120 if normFactor is None:
123 121 factor = dataOut.normFactor
124
122 else:
123 factor = normFactor
125 124 if xaxis == "frequency":
126 125 x = dataOut.getFreqRange(1)/1000.
127 126 xlabel = "Frequency (kHz)"
@@ -282,7 +281,7 class CrossSpectraPlot(Figure):
282 281 save=False, figpath='./', figfile=None, ftp=False, wr_period=1,
283 282 power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True,
284 283 server=None, folder=None, username=None, password=None,
285 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0,
284 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None,
286 285 xaxis='frequency'):
287 286
288 287 """
@@ -316,7 +315,10 class CrossSpectraPlot(Figure):
316 315 if len(pairsIndexList) > 4:
317 316 pairsIndexList = pairsIndexList[0:4]
318 317
318 if normFactor is None:
319 319 factor = dataOut.normFactor
320 else:
321 factor = normFactor
320 322 x = dataOut.getVelRange(1)
321 323 y = dataOut.getHeiRange()
322 324 z = dataOut.data_spc[:,:,:]/factor
@@ -517,10 +519,10 class RTIPlot(Figure):
517 519
518 520 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True',
519 521 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
520 timerange=None,
522 timerange=None, colormap='jet',
521 523 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
522 524 server=None, folder=None, username=None, password=None,
523 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, **kwargs):
525 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None):
524 526
525 527 """
526 528
@@ -538,7 +540,10 class RTIPlot(Figure):
538 540 zmax : None
539 541 """
540 542
541 colormap = kwargs.get('colormap', 'jet')
543 #colormap = kwargs.get('colormap', 'jet')
544 if HEIGHT is not None:
545 self.HEIGHT = HEIGHT
546
542 547 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
543 548 return
544 549
@@ -551,20 +556,21 class RTIPlot(Figure):
551 556 raise ValueError, "Channel %d is not in dataOut.channelList"
552 557 channelIndexList.append(dataOut.channelList.index(channel))
553 558
554 if hasattr(dataOut, 'normFactor'):
559 if normFactor is None:
555 560 factor = dataOut.normFactor
556 561 else:
557 factor = 1
562 factor = normFactor
558 563
559 564 # factor = dataOut.normFactor
560 565 x = dataOut.getTimeRange()
561 566 y = dataOut.getHeiRange()
562 567
563 # z = dataOut.data_spc/factor
564 # z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
565 # avg = numpy.average(z, axis=1)
566 # avgdB = 10.*numpy.log10(avg)
567 avgdB = dataOut.getPower()
568 z = dataOut.data_spc/factor
569 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
570 avg = numpy.average(z, axis=1)
571 avgdB = 10.*numpy.log10(avg)
572 # avgdB = dataOut.getPower()
573
568 574
569 575 thisDatetime = dataOut.datatime
570 576 # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
@@ -1111,6 +1117,7 class Noise(Figure):
1111 1117
1112 1118 PREFIX = 'noise'
1113 1119
1120
1114 1121 def __init__(self, **kwargs):
1115 1122 Figure.__init__(self, **kwargs)
1116 1123 self.timerange = 24*60*60
@@ -88,6 +88,8 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False):
88 88 rowspan=rowspan,
89 89 polar=polar)
90 90
91 axes.grid(True)
92
91 93 matplotlib.pyplot.ion()
92 94 return axes
93 95
@@ -174,7 +176,7 def set_linedata(ax, x, y, idline):
174 176
175 177 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
176 178
177 ax = iplot.axes
179 ax = iplot.get_axes()
178 180
179 181 printLabels(ax, xlabel, ylabel, title)
180 182
@@ -204,7 +206,7 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
204 206
205 207 z = numpy.ma.masked_invalid(z)
206 208 cmap=matplotlib.pyplot.get_cmap(colormap)
207 cmap.set_bad('black', 1.)
209 cmap.set_bad('white',1.)
208 210 imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=cmap)
209 211 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
210 212 cb.set_label(cblabel)
@@ -239,21 +241,32 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
239 241 ax.xaxis.set_major_formatter(FuncFormatter(func))
240 242 ax.xaxis.set_major_locator(LinearLocator(7))
241 243
244 ax.grid(True)
242 245 matplotlib.pyplot.ion()
243 246 return imesh
244 247
245 248 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
246 249
250 z = numpy.ma.masked_invalid(z)
251
252 cmap=matplotlib.pyplot.get_cmap('jet')
253 cmap.set_bad('white',1.)
254
247 255 z = z.T
248 ax = imesh.axes
256 ax = imesh.get_axes()
249 257 printLabels(ax, xlabel, ylabel, title)
250 258 imesh.set_array(z.ravel())
259 ax.grid(True)
260
251 261
252 262 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
253 263
254 264 printLabels(ax, xlabel, ylabel, title)
255
265 z = numpy.ma.masked_invalid(z)
266 cmap=matplotlib.pyplot.get_cmap(colormap)
267 cmap.set_bad('white',1.)
256 268 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap))
269 ax.grid(True)
257 270
258 271 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
259 272
@@ -264,10 +277,11 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', col
264 277 z = numpy.ma.masked_invalid(z)
265 278
266 279 cmap=matplotlib.pyplot.get_cmap(colormap)
267 cmap.set_bad('black', 1.)
268
280 cmap.set_bad('white',1.)
269 281
270 282 ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=cmap)
283 ax.grid(True)
284
271 285
272 286 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
273 287 ticksize=9, xtick_visible=True, ytick_visible=True,
@@ -326,7 +340,7 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', tit
326 340
327 341 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
328 342
329 ax = iplot.axes
343 ax = iplot.get_axes()
330 344
331 345 printLabels(ax, xlabel, ylabel, title)
332 346
@@ -403,8 +417,7 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel=''
403 417
404 418 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
405 419
406 ax = iplot.axes
407
420 ax = iplot.get_axes()
408 421 printLabels(ax, xlabel, ylabel, title)
409 422
410 423 for i in range(len(ax.lines)):
@@ -425,7 +438,7 def createPolar(ax, x, y,
425 438 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11')
426 439 # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11')
427 440 # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical')
428 ax.yaxis.labelpad = 40
441 ax.yaxis.labelpad = 230
429 442 printLabels(ax, xlabel, ylabel, title)
430 443 iplot = ax.lines[-1]
431 444
@@ -449,7 +462,7 def createPolar(ax, x, y,
449 462
450 463 def polar(iplot, x, y, xlabel='', ylabel='', title=''):
451 464
452 ax = iplot.axes
465 ax = iplot.get_axes()
453 466
454 467 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11')
455 468 printLabels(ax, xlabel, ylabel, title)
@@ -12,3 +12,10 from jroIO_usrp import *
12 12 from jroIO_kamisr import *
13 13 from jroIO_param import *
14 14 from jroIO_hf import *
15
16 from jroIO_madrigal import *
17
18 from bltrIO_param import *
19 from jroIO_bltr import *
20 from jroIO_mira35c import *
21
@@ -1432,11 +1432,12 class JRODataReader(JRODataIO):
1432 1432 print "[Reading] Number of read blocks %04d" %self.nTotalBlocks
1433 1433
1434 1434 def printNumberOfBlock(self):
1435 'SPAM!'
1435 1436
1436 if self.flagIsNewBlock:
1437 print "[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks,
1438 self.processingHeaderObj.dataBlocksPerFile,
1439 self.dataOut.datatime.ctime())
1437 # if self.flagIsNewBlock:
1438 # print "[Reading] Block No. %d/%d -> %s" %(self.nReadBlocks,
1439 # self.processingHeaderObj.dataBlocksPerFile,
1440 # self.dataOut.datatime.ctime())
1440 1441
1441 1442 def printInfo(self):
1442 1443
@@ -178,8 +178,8 class ParamReader(ProcessingUnit):
178 178 print "[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)
179 179 print
180 180
181 for i in range(len(filenameList)):
182 print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime())
181 # for i in range(len(filenameList)):
182 # print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime())
183 183
184 184 self.filenameList = filenameList
185 185 self.datetimeList = datetimeList
@@ -11,6 +11,7 from schainpy.model.data.jroheaderIO import PROCFLAG, BasicHeader, SystemHeader,
11 11 from schainpy.model.data.jrodata import Spectra
12 12
13 13 class SpectraReader(JRODataReader, ProcessingUnit):
14
14 15 """
15 16 Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
16 17 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
@@ -20,6 +21,7 class SpectraReader(JRODataReader, ProcessingUnit):
20 21 paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
21 22 canales * alturas (DC Channels)
22 23
24
23 25 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
24 26 RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
25 27 cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
@@ -74,6 +76,7 class SpectraReader(JRODataReader, ProcessingUnit):
74 76 Inicializador de la clase SpectraReader para la lectura de datos de espectros.
75 77
76 78 Inputs:
79
77 80 dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para
78 81 almacenar un perfil de datos cada vez que se haga un requerimiento
79 82 (getData). El perfil sera obtenido a partir del buffer de datos,
@@ -81,12 +84,15 class SpectraReader(JRODataReader, ProcessingUnit):
81 84 bloque de datos.
82 85 Si este parametro no es pasado se creara uno internamente.
83 86
87
84 88 Affected:
89
85 90 self.dataOut
86 91
87 92 Return : None
88 93 """
89 94
95
90 96 #Eliminar de la base la herencia
91 97 ProcessingUnit.__init__(self, **kwargs)
92 98
@@ -207,6 +213,7 class SpectraReader(JRODataReader, ProcessingUnit):
207 213 for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
208 214 if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
209 215 self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
216
210 217 else:
211 218 self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
212 219 self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
@@ -238,6 +245,7 class SpectraReader(JRODataReader, ProcessingUnit):
238 245
239 246 Variables afectadas:
240 247
248
241 249 self.flagIsNewFile
242 250 self.flagIsNewBlock
243 251 self.nTotalBlocks
@@ -248,6 +256,16 class SpectraReader(JRODataReader, ProcessingUnit):
248 256 Exceptions:
249 257 Si un bloque leido no es un bloque valido
250 258 """
259 print ' ======================================================== '
260 print ' '
261 print ' '
262 print self.processingHeaderObj.totalSpectra, 'TotalSpectra', type(self.processingHeaderObj.totalSpectra)
263 print self.processingHeaderObj.spectraComb, 'SpectraComb', type(self.processingHeaderObj.spectraComb)
264 print ' '
265 print ' '
266 print ' ======================================================== '
267
268
251 269 blockOk_flag = False
252 270 fpointer = self.fp.tell()
253 271
@@ -277,11 +295,13 class SpectraReader(JRODataReader, ProcessingUnit):
277 295 self.data_spc = spc
278 296
279 297 if self.processingHeaderObj.flag_cspc:
298
280 299 cspc = numpy.transpose( cspc, (0,2,1) )
281 300 self.data_cspc = cspc['real'] + cspc['imag']*1j
282 301 else:
283 302 self.data_cspc = None
284 303
304
285 305 if self.processingHeaderObj.flag_dc:
286 306 self.data_dc = dc['real'] + dc['imag']*1j
287 307 else:
@@ -366,6 +386,7 class SpectraReader(JRODataReader, ProcessingUnit):
366 386 self.dataOut.flagNoData = True
367 387 return 0
368 388
389
369 390 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
370 391
371 392 if self.data_spc is None:
@@ -413,11 +434,12 class SpectraWriter(JRODataWriter, Operation):
413 434
414 435 # dataOut = None
415 436
416 def __init__(self, **kwargs):
437 def __init__(self):
417 438 """
418 439 Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
419 440
420 441 Affected:
442
421 443 self.dataOut
422 444 self.basicHeaderObj
423 445 self.systemHeaderObj
@@ -427,7 +449,7 class SpectraWriter(JRODataWriter, Operation):
427 449 Return: None
428 450 """
429 451
430 Operation.__init__(self, **kwargs)
452 Operation.__init__(self)
431 453
432 454 self.isConfig = False
433 455
@@ -437,6 +459,7 class SpectraWriter(JRODataWriter, Operation):
437 459
438 460 self.data_cspc = None
439 461
462
440 463 self.data_dc = None
441 464
442 465 self.fp = None
@@ -470,6 +493,7 class SpectraWriter(JRODataWriter, Operation):
470 493 return 1
471 494
472 495
496
473 497 def setBlockDimension(self):
474 498 """
475 499 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
@@ -497,6 +521,7 class SpectraWriter(JRODataWriter, Operation):
497 521 """
498 522 Escribe el buffer en el file designado
499 523
524
500 525 Affected:
501 526 self.data_spc
502 527 self.data_cspc
@@ -526,6 +551,7 class SpectraWriter(JRODataWriter, Operation):
526 551 data = data.reshape((-1))
527 552 data.tofile(self.fp)
528 553
554
529 555 if self.data_dc is not None:
530 556 data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
531 557 dc = self.data_dc
@@ -542,6 +568,7 class SpectraWriter(JRODataWriter, Operation):
542 568 # if self.data_cspc is not None:
543 569 # self.data_cspc.fill(0)
544 570
571
545 572 self.flagIsNewFile = 0
546 573 self.flagIsNewBlock = 1
547 574 self.nTotalBlocks += 1
@@ -554,6 +581,7 class SpectraWriter(JRODataWriter, Operation):
554 581 """
555 582 Setea un bloque de datos y luego los escribe en un file
556 583
584
557 585 Affected:
558 586 self.data_spc
559 587 self.data_cspc
@@ -571,9 +599,7 class SpectraWriter(JRODataWriter, Operation):
571 599
572 600 if self.dataOut.flagDiscontinuousBlock:
573 601 self.data_spc.fill(0)
574 if self.dataOut.data_cspc is not None:
575 602 self.data_cspc.fill(0)
576 if self.dataOut.data_dc is not None:
577 603 self.data_dc.fill(0)
578 604 self.setNextFile()
579 605
@@ -595,6 +621,7 class SpectraWriter(JRODataWriter, Operation):
595 621
596 622 return 1
597 623
624
598 625 def __getBlockSize(self):
599 626 '''
600 627 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
@@ -647,6 +674,7 class SpectraWriter(JRODataWriter, Operation):
647 674 self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels
648 675 self.processingHeaderObj.shif_fft = self.dataOut.flagShiftFFT
649 676
677
650 678 if self.processingHeaderObj.totalSpectra > 0:
651 679 channelList = []
652 680 for channel in range(self.dataOut.nChannels):
@@ -528,10 +528,16 class VoltageReader(JRODataReader, ProcessingUnit):
528 528
529 529 self.getBasicHeader()
530 530
531 #print self.basicHeaderObj.printInfo()
532 #print self.systemHeaderObj.printInfo()
533 #print self.radarControllerHeaderObj.printInfo()
534 #print self.processingHeaderObj.printInfo()
535
531 536 self.dataOut.realtime = self.online
532 537
533 538 return self.dataOut.data
534 539
540
535 541 class VoltageWriter(JRODataWriter, Operation):
536 542 """
537 543 Esta clase permite escribir datos de voltajes a archivos procesados (.r). La escritura
@@ -12,3 +12,4 from jroproc_correlation import *
12 12 from jroproc_parameters import *
13 13 from jroproc_spectra_lags import *
14 14 from jroproc_spectra_acf import *
15 from bltrproc_parameters import *
This diff has been collapsed as it changes many lines, (1365 lines changed) Show them Hide them
@@ -1,15 +1,62
1 1 import numpy
2 2 import math
3 3 from scipy import optimize, interpolate, signal, stats, ndimage
4 import scipy
4 5 import re
5 6 import datetime
6 7 import copy
7 8 import sys
8 9 import importlib
9 10 import itertools
10
11 from multiprocessing import Pool, TimeoutError
12 from multiprocessing.pool import ThreadPool
13 import copy_reg
14 import cPickle
15 import types
16 from functools import partial
17 import time
18 #from sklearn.cluster import KMeans
19
20 import matplotlib.pyplot as plt
21
22 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
11 23 from jroproc_base import ProcessingUnit, Operation
12 24 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
25 from scipy import asarray as ar,exp
26 from scipy.optimize import curve_fit
27
28 import warnings
29 from numpy import NaN
30 from scipy.optimize.optimize import OptimizeWarning
31 warnings.filterwarnings('ignore')
32
33
34 SPEED_OF_LIGHT = 299792458
35
36
37 '''solving pickling issue'''
38
39 def _pickle_method(method):
40 func_name = method.im_func.__name__
41 obj = method.im_self
42 cls = method.im_class
43 return _unpickle_method, (func_name, obj, cls)
44
45 def _unpickle_method(func_name, obj, cls):
46 for cls in cls.mro():
47 try:
48 func = cls.__dict__[func_name]
49 except KeyError:
50 pass
51 else:
52 break
53 return func.__get__(obj, cls)
54
55
56
57
58
59
13 60
14 61
15 62 class ParametersProc(ProcessingUnit):
@@ -57,7 +104,9 class ParametersProc(ProcessingUnit):
57 104 self.dataOut.timeInterval1 = self.dataIn.timeInterval
58 105 self.dataOut.heightList = self.dataIn.getHeiRange()
59 106 self.dataOut.frequency = self.dataIn.frequency
60 #self.dataOut.noise = self.dataIn.noise
107 self.dataOut.noise = self.dataIn.noise
108
109
61 110
62 111 def run(self):
63 112
@@ -77,17 +126,36 class ParametersProc(ProcessingUnit):
77 126 if self.dataIn.type == "Spectra":
78 127
79 128 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
80 self.dataOut.data_spc = self.dataIn.data_spc
81 self.dataOut.data_cspc = self.dataIn.data_cspc
82 self.dataOut.nProfiles = self.dataIn.nProfiles
83 self.dataOut.nIncohInt = self.dataIn.nIncohInt
84 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
85 self.dataOut.ippFactor = self.dataIn.ippFactor
86 #self.dataOut.normFactor = self.dataIn.getNormFactor()
87 self.dataOut.pairsList = self.dataIn.pairsList
88 self.dataOut.groupList = self.dataIn.pairsList
129 print 'self.dataIn.data_spc', self.dataIn.data_spc.shape
89 130 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
131 self.dataOut.spc_noise = self.dataIn.getNoise()
132 self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) )
133
134 self.dataOut.normFactor = self.dataIn.normFactor
135 #self.dataOut.outputInterval = self.dataIn.outputInterval
136 self.dataOut.groupList = self.dataIn.pairsList
90 137 self.dataOut.flagNoData = False
138 #print 'datain chandist ',self.dataIn.ChanDist
139 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
140 self.dataOut.ChanDist = self.dataIn.ChanDist
141 else: self.dataOut.ChanDist = None
142
143 print 'datain chandist ',self.dataOut.ChanDist
144
145 if hasattr(self.dataIn, 'VelRange'): #Velocities range
146 self.dataOut.VelRange = self.dataIn.VelRange
147 else: self.dataOut.VelRange = None
148
149 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
150 self.dataOut.RadarConst = self.dataIn.RadarConst
151
152 if hasattr(self.dataIn, 'NPW'): #NPW
153 self.dataOut.NPW = self.dataIn.NPW
154
155 if hasattr(self.dataIn, 'COFA'): #COFA
156 self.dataOut.COFA = self.dataIn.COFA
157
158
91 159
92 160 #---------------------- Correlation Data ---------------------------
93 161
@@ -108,7 +176,6 class ParametersProc(ProcessingUnit):
108 176
109 177 if self.dataIn.type == "Parameters":
110 178 self.dataOut.copy(self.dataIn)
111 self.dataOut.utctimeInit = self.dataIn.utctime
112 179 self.dataOut.flagNoData = False
113 180
114 181 return True
@@ -119,6 +186,1186 class ParametersProc(ProcessingUnit):
119 186
120 187 return
121 188
189
190 def target(tups):
191
192 obj, args = tups
193 #print 'TARGETTT', obj, args
194 return obj.FitGau(args)
195
196 class GaussianFit(Operation):
197
198 '''
199 Function that fit of one and two generalized gaussians (gg) based
200 on the PSD shape across an "power band" identified from a cumsum of
201 the measured spectrum - noise.
202
203 Input:
204 self.dataOut.data_pre : SelfSpectra
205
206 Output:
207 self.dataOut.GauSPC : SPC_ch1, SPC_ch2
208
209 '''
210 def __init__(self, **kwargs):
211 Operation.__init__(self, **kwargs)
212 self.i=0
213
214
215 def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
216 """This routine will find a couple of generalized Gaussians to a power spectrum
217 input: spc
218 output:
219 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
220 """
221
222 self.spc = dataOut.data_pre[0].copy()
223
224
225 print 'SelfSpectra Shape', numpy.asarray(self.spc).shape
226
227
228 #plt.figure(50)
229 #plt.subplot(121)
230 #plt.plot(self.spc,'k',label='spc(66)')
231 #plt.plot(xFrec,ySamples[1],'g',label='Ch1')
232 #plt.plot(xFrec,ySamples[2],'r',label='Ch2')
233 #plt.plot(xFrec,FitGauss,'yo:',label='fit')
234 #plt.legend()
235 #plt.title('DATOS A ALTURA DE 7500 METROS')
236 #plt.show()
237
238 self.Num_Hei = self.spc.shape[2]
239 #self.Num_Bin = len(self.spc)
240 self.Num_Bin = self.spc.shape[1]
241 self.Num_Chn = self.spc.shape[0]
242
243 Vrange = dataOut.abscissaList
244
245 #print 'self.spc2', numpy.asarray(self.spc).shape
246
247 GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei])
248 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
249 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
250 SPC_ch1[:] = numpy.NaN
251 SPC_ch2[:] = numpy.NaN
252
253
254 start_time = time.time()
255
256 noise_ = dataOut.spc_noise[0].copy()
257
258
259
260 pool = Pool(processes=self.Num_Chn)
261 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
262 objs = [self for __ in range(self.Num_Chn)]
263 attrs = zip(objs, args)
264 gauSPC = pool.map(target, attrs)
265 dataOut.GauSPC = numpy.asarray(gauSPC)
266 # ret = []
267 # for n in range(self.Num_Chn):
268 # self.FitGau(args[n])
269 # dataOut.GauSPC = ret
270
271
272
273 # for ch in range(self.Num_Chn):
274 #
275 # for ht in range(self.Num_Hei):
276 # #print (numpy.asarray(self.spc).shape)
277 # spc = numpy.asarray(self.spc)[ch,:,ht]
278 #
279 # #############################################
280 # # normalizing spc and noise
281 # # This part differs from gg1
282 # spc_norm_max = max(spc)
283 # spc = spc / spc_norm_max
284 # pnoise = pnoise / spc_norm_max
285 # #############################################
286 #
287 # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's
288 # fatspectra=1.0
289 # else:
290 # fatspectra=0.5
291 #
292 # wnoise = noise_ / spc_norm_max
293 # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise
294 # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
295 # #if wnoise>1.1*pnoise: # to be tested later
296 # # wnoise=pnoise
297 # noisebl=wnoise*0.9; noisebh=wnoise*1.1
298 # spc=spc-wnoise
299 #
300 # minx=numpy.argmin(spc)
301 # spcs=numpy.roll(spc,-minx)
302 # cum=numpy.cumsum(spcs)
303 # tot_noise=wnoise * self.Num_Bin #64;
304 # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? '''
305 # #snr=tot_signal/tot_noise
306 # #snr=cum[-1]/tot_noise
307 #
308 # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise
309 #
310 # snr = sum(spcs)/tot_noise
311 # snrdB=10.*numpy.log10(snr)
312 #
313 # #if snrdB < -9 :
314 # # snrdB = numpy.NaN
315 # # continue
316 #
317 # #print 'snr',snrdB # , sum(spcs) , tot_noise
318 #
319 #
320 # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
321 # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
322 #
323 # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region
324 # cumlo=cummax*epsi;
325 # cumhi=cummax*(1-epsi)
326 # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
327 #
328 # #if len(powerindex)==1:
329 # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
330 # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
331 # #elif len(powerindex)<4*fatspectra:
332 # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
333 #
334 # if len(powerindex) < 1:# case for powerindex 0
335 # continue
336 # powerlo=powerindex[0]
337 # powerhi=powerindex[-1]
338 # powerwidth=powerhi-powerlo
339 #
340 # firstpeak=powerlo+powerwidth/10.# first gaussian energy location
341 # secondpeak=powerhi-powerwidth/10.#second gaussian energy location
342 # midpeak=(firstpeak+secondpeak)/2.
343 # firstamp=spcs[int(firstpeak)]
344 # secondamp=spcs[int(secondpeak)]
345 # midamp=spcs[int(midpeak)]
346 # #x=numpy.spc.shape[1]
347 #
348 # #x=numpy.arange(64)
349 # x=numpy.arange( self.Num_Bin )
350 # y_data=spc+wnoise
351 #
352 # # single gaussian
353 # #shift0=numpy.mod(midpeak+minx,64)
354 # shift0=numpy.mod(midpeak+minx, self.Num_Bin )
355 # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
356 # power0=2.
357 # amplitude0=midamp
358 # state0=[shift0,width0,amplitude0,power0,wnoise]
359 # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
360 # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
361 # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5))
362 # # bnds = range of fft, power width, amplitude, power, noise
363 # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
364 #
365 # chiSq1=lsq1[1];
366 # jack1= self.y_jacobian1(x,lsq1[0])
367 #
368 #
369 # try:
370 # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1))))
371 # except:
372 # std1=32.; sigmas1=numpy.ones(5)
373 # else:
374 # std1=sigmas1[0]
375 #
376 #
377 # if fatspectra<1.0 and powerwidth<4:
378 # choice=0
379 # Amplitude0=lsq1[0][2]
380 # shift0=lsq1[0][0]
381 # width0=lsq1[0][1]
382 # p0=lsq1[0][3]
383 # Amplitude1=0.
384 # shift1=0.
385 # width1=0.
386 # p1=0.
387 # noise=lsq1[0][4]
388 # #return (numpy.array([shift0,width0,Amplitude0,p0]),
389 # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
390 #
391 # # two gaussians
392 # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
393 # shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
394 # shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
395 # width0=powerwidth/6.;
396 # width1=width0
397 # power0=2.;
398 # power1=power0
399 # amplitude0=firstamp;
400 # amplitude1=secondamp
401 # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
402 # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
403 # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
404 # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
405 #
406 # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
407 #
408 #
409 # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0])
410 #
411 #
412 # try:
413 # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2))))
414 # except:
415 # std2a=32.; std2b=32.; sigmas2=numpy.ones(9)
416 # else:
417 # std2a=sigmas2[0]; std2b=sigmas2[4]
418 #
419 #
420 #
421 # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
422 #
423 # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error
424 # if oneG:
425 # choice=0
426 # else:
427 # w1=lsq2[0][1]; w2=lsq2[0][5]
428 # a1=lsq2[0][2]; a2=lsq2[0][6]
429 # p1=lsq2[0][3]; p2=lsq2[0][7]
430 # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
431 # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
432 #
433 # if gp1>gp2:
434 # if a1>0.7*a2:
435 # choice=1
436 # else:
437 # choice=2
438 # elif gp2>gp1:
439 # if a2>0.7*a1:
440 # choice=2
441 # else:
442 # choice=1
443 # else:
444 # choice=numpy.argmax([a1,a2])+1
445 # #else:
446 # #choice=argmin([std2a,std2b])+1
447 #
448 # else: # with low SNR go to the most energetic peak
449 # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
450 #
451 # #print 'choice',choice
452 #
453 # if choice==0: # pick the single gaussian fit
454 # Amplitude0=lsq1[0][2]
455 # shift0=lsq1[0][0]
456 # width0=lsq1[0][1]
457 # p0=lsq1[0][3]
458 # Amplitude1=0.
459 # shift1=0.
460 # width1=0.
461 # p1=0.
462 # noise=lsq1[0][4]
463 # elif choice==1: # take the first one of the 2 gaussians fitted
464 # Amplitude0 = lsq2[0][2]
465 # shift0 = lsq2[0][0]
466 # width0 = lsq2[0][1]
467 # p0 = lsq2[0][3]
468 # Amplitude1 = lsq2[0][6] # This is 0 in gg1
469 # shift1 = lsq2[0][4] # This is 0 in gg1
470 # width1 = lsq2[0][5] # This is 0 in gg1
471 # p1 = lsq2[0][7] # This is 0 in gg1
472 # noise = lsq2[0][8]
473 # else: # the second one
474 # Amplitude0 = lsq2[0][6]
475 # shift0 = lsq2[0][4]
476 # width0 = lsq2[0][5]
477 # p0 = lsq2[0][7]
478 # Amplitude1 = lsq2[0][2] # This is 0 in gg1
479 # shift1 = lsq2[0][0] # This is 0 in gg1
480 # width1 = lsq2[0][1] # This is 0 in gg1
481 # p1 = lsq2[0][3] # This is 0 in gg1
482 # noise = lsq2[0][8]
483 #
484 # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0)
485 # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
486 # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
487 # #print 'SPC_ch1.shape',SPC_ch1.shape
488 # #print 'SPC_ch2.shape',SPC_ch2.shape
489 # #dataOut.data_param = SPC_ch1
490 # GauSPC[0] = SPC_ch1
491 # GauSPC[1] = SPC_ch2
492
493 # #plt.gcf().clear()
494 # plt.figure(50+self.i)
495 # self.i=self.i+1
496 # #plt.subplot(121)
497 # plt.plot(self.spc,'k')#,label='spc(66)')
498 # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1')
499 # #plt.plot(SPC_ch2,'r')#,label='gg2')
500 # #plt.plot(xFrec,ySamples[1],'g',label='Ch1')
501 # #plt.plot(xFrec,ySamples[2],'r',label='Ch2')
502 # #plt.plot(xFrec,FitGauss,'yo:',label='fit')
503 # plt.legend()
504 # plt.title('DATOS A ALTURA DE 7500 METROS')
505 # plt.show()
506 # print 'shift0', shift0
507 # print 'Amplitude0', Amplitude0
508 # print 'width0', width0
509 # print 'p0', p0
510 # print '========================'
511 # print 'shift1', shift1
512 # print 'Amplitude1', Amplitude1
513 # print 'width1', width1
514 # print 'p1', p1
515 # print 'noise', noise
516 # print 's_noise', wnoise
517
518 print '========================================================'
519 print 'total_time: ', time.time()-start_time
520
521 # re-normalizing spc and noise
522 # This part differs from gg1
523
524
525
526 ''' Parameters:
527 1. Amplitude
528 2. Shift
529 3. Width
530 4. Power
531 '''
532
533
534 ###############################################################################
535 def FitGau(self, X):
536
537 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
538 #print 'VARSSSS', ch, pnoise, noise, num_intg
539
540 #print 'HEIGHTS', self.Num_Hei
541
542 GauSPC = []
543 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
544 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
545 SPC_ch1[:] = 0#numpy.NaN
546 SPC_ch2[:] = 0#numpy.NaN
547
548
549
550 for ht in range(self.Num_Hei):
551 #print (numpy.asarray(self.spc).shape)
552
553 #print 'TTTTT', ch , ht
554 #print self.spc.shape
555
556
557 spc = numpy.asarray(self.spc)[ch,:,ht]
558
559 #############################################
560 # normalizing spc and noise
561 # This part differs from gg1
562 spc_norm_max = max(spc)
563 spc = spc / spc_norm_max
564 pnoise = pnoise / spc_norm_max
565 #############################################
566
567 fatspectra=1.0
568
569 wnoise = noise_ / spc_norm_max
570 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
571 #if wnoise>1.1*pnoise: # to be tested later
572 # wnoise=pnoise
573 noisebl=wnoise*0.9; noisebh=wnoise*1.1
574 spc=spc-wnoise
575 # print 'wnoise', noise_[0], spc_norm_max, wnoise
576 minx=numpy.argmin(spc)
577 spcs=numpy.roll(spc,-minx)
578 cum=numpy.cumsum(spcs)
579 tot_noise=wnoise * self.Num_Bin #64;
580 #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise
581 #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? '''
582 #snr=tot_signal/tot_noise
583 #snr=cum[-1]/tot_noise
584 snr = sum(spcs)/tot_noise
585 snrdB=10.*numpy.log10(snr)
586
587 if snrdB < SNRlimit :
588 snr = numpy.NaN
589 SPC_ch1[:,ht] = 0#numpy.NaN
590 SPC_ch1[:,ht] = 0#numpy.NaN
591 GauSPC = (SPC_ch1,SPC_ch2)
592 continue
593 #print 'snr',snrdB #, sum(spcs) , tot_noise
594
595
596
597 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
598 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
599
600 cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region
601 cumlo=cummax*epsi;
602 cumhi=cummax*(1-epsi)
603 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
604
605
606 if len(powerindex) < 1:# case for powerindex 0
607 continue
608 powerlo=powerindex[0]
609 powerhi=powerindex[-1]
610 powerwidth=powerhi-powerlo
611
612 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
613 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
614 midpeak=(firstpeak+secondpeak)/2.
615 firstamp=spcs[int(firstpeak)]
616 secondamp=spcs[int(secondpeak)]
617 midamp=spcs[int(midpeak)]
618
619 x=numpy.arange( self.Num_Bin )
620 y_data=spc+wnoise
621
622 # single gaussian
623 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
624 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
625 power0=2.
626 amplitude0=midamp
627 state0=[shift0,width0,amplitude0,power0,wnoise]
628 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
629 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
630
631 chiSq1=lsq1[1];
632 jack1= self.y_jacobian1(x,lsq1[0])
633
634
635 try:
636 sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1))))
637 except:
638 std1=32.; sigmas1=numpy.ones(5)
639 else:
640 std1=sigmas1[0]
641
642
643 if fatspectra<1.0 and powerwidth<4:
644 choice=0
645 Amplitude0=lsq1[0][2]
646 shift0=lsq1[0][0]
647 width0=lsq1[0][1]
648 p0=lsq1[0][3]
649 Amplitude1=0.
650 shift1=0.
651 width1=0.
652 p1=0.
653 noise=lsq1[0][4]
654 #return (numpy.array([shift0,width0,Amplitude0,p0]),
655 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
656
657 # two gaussians
658 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
659 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
660 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
661 width0=powerwidth/6.;
662 width1=width0
663 power0=2.;
664 power1=power0
665 amplitude0=firstamp;
666 amplitude1=secondamp
667 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
668 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
669 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
670 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
671
672 lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
673
674
675 chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0])
676
677
678 try:
679 sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2))))
680 except:
681 std2a=32.; std2b=32.; sigmas2=numpy.ones(9)
682 else:
683 std2a=sigmas2[0]; std2b=sigmas2[4]
684
685
686
687 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
688
689 if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error
690 if oneG:
691 choice=0
692 else:
693 w1=lsq2[0][1]; w2=lsq2[0][5]
694 a1=lsq2[0][2]; a2=lsq2[0][6]
695 p1=lsq2[0][3]; p2=lsq2[0][7]
696 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
697 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
698 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
699
700 if gp1>gp2:
701 if a1>0.7*a2:
702 choice=1
703 else:
704 choice=2
705 elif gp2>gp1:
706 if a2>0.7*a1:
707 choice=2
708 else:
709 choice=1
710 else:
711 choice=numpy.argmax([a1,a2])+1
712 #else:
713 #choice=argmin([std2a,std2b])+1
714
715 else: # with low SNR go to the most energetic peak
716 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
717
718
719 shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
720 shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
721
722 max_vel = 20
723
724 #first peak will be 0, second peak will be 1
725 if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range
726 shift0=lsq2[0][0]
727 width0=lsq2[0][1]
728 Amplitude0=lsq2[0][2]
729 p0=lsq2[0][3]
730
731 shift1=lsq2[0][4]
732 width1=lsq2[0][5]
733 Amplitude1=lsq2[0][6]
734 p1=lsq2[0][7]
735 noise=lsq2[0][8]
736 else:
737 shift1=lsq2[0][0]
738 width1=lsq2[0][1]
739 Amplitude1=lsq2[0][2]
740 p1=lsq2[0][3]
741
742 shift0=lsq2[0][4]
743 width0=lsq2[0][5]
744 Amplitude0=lsq2[0][6]
745 p0=lsq2[0][7]
746 noise=lsq2[0][8]
747
748 if Amplitude0<0.1: # in case the peak is noise
749 shift0,width0,Amplitude0,p0 = 4*[numpy.NaN]
750 if Amplitude1<0.1:
751 shift1,width1,Amplitude1,p1 = 4*[numpy.NaN]
752
753
754 # if choice==0: # pick the single gaussian fit
755 # Amplitude0=lsq1[0][2]
756 # shift0=lsq1[0][0]
757 # width0=lsq1[0][1]
758 # p0=lsq1[0][3]
759 # Amplitude1=0.
760 # shift1=0.
761 # width1=0.
762 # p1=0.
763 # noise=lsq1[0][4]
764 # elif choice==1: # take the first one of the 2 gaussians fitted
765 # Amplitude0 = lsq2[0][2]
766 # shift0 = lsq2[0][0]
767 # width0 = lsq2[0][1]
768 # p0 = lsq2[0][3]
769 # Amplitude1 = lsq2[0][6] # This is 0 in gg1
770 # shift1 = lsq2[0][4] # This is 0 in gg1
771 # width1 = lsq2[0][5] # This is 0 in gg1
772 # p1 = lsq2[0][7] # This is 0 in gg1
773 # noise = lsq2[0][8]
774 # else: # the second one
775 # Amplitude0 = lsq2[0][6]
776 # shift0 = lsq2[0][4]
777 # width0 = lsq2[0][5]
778 # p0 = lsq2[0][7]
779 # Amplitude1 = lsq2[0][2] # This is 0 in gg1
780 # shift1 = lsq2[0][0] # This is 0 in gg1
781 # width1 = lsq2[0][1] # This is 0 in gg1
782 # p1 = lsq2[0][3] # This is 0 in gg1
783 # noise = lsq2[0][8]
784
785 #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0)
786 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
787 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
788 #print 'SPC_ch1.shape',SPC_ch1.shape
789 #print 'SPC_ch2.shape',SPC_ch2.shape
790 #dataOut.data_param = SPC_ch1
791 GauSPC = (SPC_ch1,SPC_ch2)
792 #GauSPC[1] = SPC_ch2
793
794 # print 'shift0', shift0
795 # print 'Amplitude0', Amplitude0
796 # print 'width0', width0
797 # print 'p0', p0
798 # print '========================'
799 # print 'shift1', shift1
800 # print 'Amplitude1', Amplitude1
801 # print 'width1', width1
802 # print 'p1', p1
803 # print 'noise', noise
804 # print 's_noise', wnoise
805
806 return GauSPC
807
808
809 def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination.
810 y_model=self.y_model1(x,state)
811 s0,w0,a0,p0,n=state
812 e0=((x-s0)/w0)**2;
813
814 e0u=((x-s0-self.Num_Bin)/w0)**2;
815
816 e0d=((x-s0+self.Num_Bin)/w0)**2
817 m0=numpy.exp(-0.5*e0**(p0/2.));
818 m0u=numpy.exp(-0.5*e0u**(p0/2.));
819 m0d=numpy.exp(-0.5*e0d**(p0/2.))
820 JA=m0+m0u+m0d
821 JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d)
822
823 JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)
824
825 JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2
826 jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model])
827 return jack1.T
828
829 def y_jacobian2(self,x,state):
830 y_model=self.y_model2(x,state)
831 s0,w0,a0,p0,s1,w1,a1,p1,n=state
832 e0=((x-s0)/w0)**2;
833
834 e0u=((x-s0- self.Num_Bin )/w0)**2;
835
836 e0d=((x-s0+ self.Num_Bin )/w0)**2
837 e1=((x-s1)/w1)**2;
838
839 e1u=((x-s1- self.Num_Bin )/w1)**2;
840
841 e1d=((x-s1+ self.Num_Bin )/w1)**2
842 m0=numpy.exp(-0.5*e0**(p0/2.));
843 m0u=numpy.exp(-0.5*e0u**(p0/2.));
844 m0d=numpy.exp(-0.5*e0d**(p0/2.))
845 m1=numpy.exp(-0.5*e1**(p1/2.));
846 m1u=numpy.exp(-0.5*e1u**(p1/2.));
847 m1d=numpy.exp(-0.5*e1d**(p1/2.))
848 JA=m0+m0u+m0d
849 JA1=m1+m1u+m1d
850 JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d)
851 JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d)
852
853 JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)
854
855 JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)
856
857 JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2
858
859 JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2
860 jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model])
861 return jack2.T
862
863 def y_model1(self,x,state):
864 shift0,width0,amplitude0,power0,noise=state
865 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
866
867 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
868
869 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
870 return model0+model0u+model0d+noise
871
872 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
873 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
874 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
875
876 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
877
878 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
879 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
880
881 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
882
883 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
884 return model0+model0u+model0d+model1+model1u+model1d+noise
885
886 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
887
888 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
889
890 def misfit2(self,state,y_data,x,num_intg):
891 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
892
893
894 class PrecipitationProc(Operation):
895
896 '''
897 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
898
899 Input:
900 self.dataOut.data_pre : SelfSpectra
901
902 Output:
903
904 self.dataOut.data_output : Reflectivity factor, rainfall Rate
905
906
907 Parameters affected:
908 '''
909
910
911 def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None,
912 tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None):
913
914 self.spc = dataOut.data_pre[0].copy()
915 self.Num_Hei = self.spc.shape[2]
916 self.Num_Bin = self.spc.shape[1]
917 self.Num_Chn = self.spc.shape[0]
918
919 Velrange = dataOut.abscissaList
920
921 if radar == "MIRA35C" :
922
923 Ze = self.dBZeMODE2(dataOut)
924
925 else:
926
927 self.Pt = Pt
928 self.Gt = Gt
929 self.Gr = Gr
930 self.Lambda = Lambda
931 self.aL = aL
932 self.tauW = tauW
933 self.ThetaT = ThetaT
934 self.ThetaR = ThetaR
935
936 RadarConstant = GetRadarConstant()
937 SPCmean = numpy.mean(self.spc,0)
938 ETA = numpy.zeros(self.Num_Hei)
939 Pr = numpy.sum(SPCmean,0)
940
941 #for R in range(self.Num_Hei):
942 # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA)
943
944 D_range = numpy.zeros(self.Num_Hei)
945 EqSec = numpy.zeros(self.Num_Hei)
946 del_V = numpy.zeros(self.Num_Hei)
947
948 for R in range(self.Num_Hei):
949 ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA)
950
951 h = R + Altitude #Range from ground to radar pulse altitude
952 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
953
954 D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity
955 SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma)
956
957 N_dist[R] = ETA[R] / SIGMA[R]
958
959 Ze = (ETA * Lambda**4) / (numpy.pi * Km)
960 Z = numpy.sum( N_dist * D_range**6 )
961 RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate
962
963
964 RR = (Ze/200)**(1/1.6)
965 dBRR = 10*numpy.log10(RR)
966
967 dBZe = 10*numpy.log10(Ze)
968 dataOut.data_output = Ze
969 dataOut.data_param = numpy.ones([2,self.Num_Hei])
970 dataOut.channelList = [0,1]
971 print 'channelList', dataOut.channelList
972 dataOut.data_param[0]=dBZe
973 dataOut.data_param[1]=dBRR
974 print 'RR SHAPE', dBRR.shape
975 print 'Ze SHAPE', dBZe.shape
976 print 'dataOut.data_param SHAPE', dataOut.data_param.shape
977
978
979 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
980
981 NPW = dataOut.NPW
982 COFA = dataOut.COFA
983
984 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
985 RadarConst = dataOut.RadarConst
986 #frequency = 34.85*10**9
987
988 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
989 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
990
991 ETA = numpy.sum(SNR,1)
992 print 'ETA' , ETA
993 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
994
995 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
996
997 for r in range(self.Num_Hei):
998
999 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
1000 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
1001
1002 return Ze
1003
1004 def GetRadarConstant(self):
1005
1006 """
1007 Constants:
1008
1009 Pt: Transmission Power dB
1010 Gt: Transmission Gain dB
1011 Gr: Reception Gain dB
1012 Lambda: Wavelenght m
1013 aL: Attenuation loses dB
1014 tauW: Width of transmission pulse s
1015 ThetaT: Transmission antenna bean angle rad
1016 ThetaR: Reception antenna beam angle rad
1017
1018 """
1019 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
1020 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
1021 RadarConstant = Numerator / Denominator
1022
1023 return RadarConstant
1024
1025
1026
1027 class FullSpectralAnalysis(Operation):
1028
1029 """
1030 Function that implements Full Spectral Analisys technique.
1031
1032 Input:
1033 self.dataOut.data_pre : SelfSpectra and CrossSPectra data
1034 self.dataOut.groupList : Pairlist of channels
1035 self.dataOut.ChanDist : Physical distance between receivers
1036
1037
1038 Output:
1039
1040 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
1041
1042
1043 Parameters affected: Winds, height range, SNR
1044
1045 """
1046 def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7):
1047
1048 spc = dataOut.data_pre[0].copy()
1049 cspc = dataOut.data_pre[1].copy()
1050
1051 nChannel = spc.shape[0]
1052 nProfiles = spc.shape[1]
1053 nHeights = spc.shape[2]
1054
1055 pairsList = dataOut.groupList
1056 if dataOut.ChanDist is not None :
1057 ChanDist = dataOut.ChanDist
1058 else:
1059 ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]])
1060
1061 #print 'ChanDist', ChanDist
1062
1063 if dataOut.VelRange is not None:
1064 VelRange= dataOut.VelRange
1065 else:
1066 VelRange= dataOut.abscissaList
1067
1068 ySamples=numpy.ones([nChannel,nProfiles])
1069 phase=numpy.ones([nChannel,nProfiles])
1070 CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_)
1071 coherence=numpy.ones([nChannel,nProfiles])
1072 PhaseSlope=numpy.ones(nChannel)
1073 PhaseInter=numpy.ones(nChannel)
1074 dataSNR = dataOut.data_SNR
1075
1076
1077
1078 data = dataOut.data_pre
1079 noise = dataOut.noise
1080 print 'noise',noise
1081 #SNRdB = 10*numpy.log10(dataOut.data_SNR)
1082
1083 FirstMoment = numpy.average(dataOut.data_param[:,1,:],0)
1084 #SNRdBMean = []
1085
1086
1087 #for j in range(nHeights):
1088 # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]]))
1089 # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]]))
1090
1091 data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN
1092
1093 velocityX=[]
1094 velocityY=[]
1095 velocityV=[]
1096
1097 dbSNR = 10*numpy.log10(dataSNR)
1098 dbSNR = numpy.average(dbSNR,0)
1099 for Height in range(nHeights):
1100
1101 [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit)
1102
1103 if abs(Vzon)<100. and abs(Vzon)> 0.:
1104 velocityX=numpy.append(velocityX, Vzon)#Vmag
1105
1106 else:
1107 print 'Vzon',Vzon
1108 velocityX=numpy.append(velocityX, numpy.NaN)
1109
1110 if abs(Vmer)<100. and abs(Vmer) > 0.:
1111 velocityY=numpy.append(velocityY, Vmer)#Vang
1112
1113 else:
1114 print 'Vmer',Vmer
1115 velocityY=numpy.append(velocityY, numpy.NaN)
1116
1117 if dbSNR[Height] > SNRlimit:
1118 velocityV=numpy.append(velocityV, FirstMoment[Height])
1119 else:
1120 velocityV=numpy.append(velocityV, numpy.NaN)
1121 #FirstMoment[Height]= numpy.NaN
1122 # if SNRdBMean[Height] <12:
1123 # FirstMoment[Height] = numpy.NaN
1124 # velocityX[Height] = numpy.NaN
1125 # velocityY[Height] = numpy.NaN
1126
1127
1128 data_output[0]=numpy.array(velocityX)
1129 data_output[1]=numpy.array(velocityY)
1130 data_output[2]=-velocityV#FirstMoment
1131
1132 print ' '
1133 #print 'FirstMoment'
1134 #print FirstMoment
1135 print 'velocityX',data_output[0]
1136 print ' '
1137 print 'velocityY',data_output[1]
1138 #print numpy.array(velocityY)
1139 print ' '
1140 #print 'SNR'
1141 #print 10*numpy.log10(dataOut.data_SNR)
1142 #print numpy.shape(10*numpy.log10(dataOut.data_SNR))
1143 print ' '
1144
1145
1146 dataOut.data_output=data_output
1147 return
1148
1149
1150 def moving_average(self,x, N=2):
1151 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
1152
1153 def gaus(self,xSamples,a,x0,sigma):
1154 return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2))
1155
1156 def Find(self,x,value):
1157 for index in range(len(x)):
1158 if x[index]==value:
1159 return index
1160
1161 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit):
1162
1163 ySamples=numpy.ones([spc.shape[0],spc.shape[1]])
1164 phase=numpy.ones([spc.shape[0],spc.shape[1]])
1165 CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_)
1166 coherence=numpy.ones([spc.shape[0],spc.shape[1]])
1167 PhaseSlope=numpy.ones(spc.shape[0])
1168 PhaseInter=numpy.ones(spc.shape[0])
1169 xFrec=VelRange
1170
1171 '''Getting Eij and Nij'''
1172
1173 E01=ChanDist[0][0]
1174 N01=ChanDist[0][1]
1175
1176 E02=ChanDist[1][0]
1177 N02=ChanDist[1][1]
1178
1179 E12=ChanDist[2][0]
1180 N12=ChanDist[2][1]
1181
1182 z = spc.copy()
1183 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
1184
1185 for i in range(spc.shape[0]):
1186
1187 '''****** Line of Data SPC ******'''
1188 zline=z[i,:,Height]
1189
1190 '''****** SPC is normalized ******'''
1191 FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy())
1192 FactNorm= FactNorm/numpy.sum(FactNorm)
1193
1194 SmoothSPC=self.moving_average(FactNorm,N=3)
1195
1196 xSamples = ar(range(len(SmoothSPC)))
1197 ySamples[i] = SmoothSPC
1198
1199 #dbSNR=10*numpy.log10(dataSNR)
1200 print ' '
1201 print ' '
1202 print ' '
1203
1204 #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120]
1205 print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20]
1206 print 'noise',noise
1207 print 'zline',zline.shape, zline[0:20]
1208 print 'FactNorm',FactNorm.shape, FactNorm[0:20]
1209 print 'FactNorm suma', numpy.sum(FactNorm)
1210
1211 for i in range(spc.shape[0]):
1212
1213 '''****** Line of Data CSPC ******'''
1214 cspcLine=cspc[i,:,Height].copy()
1215
1216 '''****** CSPC is normalized ******'''
1217 chan_index0 = pairsList[i][0]
1218 chan_index1 = pairsList[i][1]
1219 CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) #
1220
1221 CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor)
1222
1223 CSPCSamples[i] = CSPCNorm
1224 coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
1225
1226 coherence[i]= self.moving_average(coherence[i],N=2)
1227
1228 phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
1229
1230 print 'cspcLine', cspcLine.shape, cspcLine[0:20]
1231 print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20]
1232 print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i]
1233 print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20]
1234 print 'CSPCNorm suma', numpy.sum(CSPCNorm)
1235 print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20]
1236
1237 '''****** Getting fij width ******'''
1238
1239 yMean=[]
1240 yMean2=[]
1241
1242 for j in range(len(ySamples[1])):
1243 yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]]))
1244
1245 '''******* Getting fitting Gaussian ******'''
1246 meanGauss=sum(xSamples*yMean) / len(xSamples)
1247 sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples)
1248
1249 print '****************************'
1250 print 'len(xSamples): ',len(xSamples)
1251 print 'yMean: ', yMean.shape, yMean[0:20]
1252 print 'ySamples', ySamples.shape, ySamples[0,0:20]
1253 print 'xSamples: ',xSamples.shape, xSamples[0:20]
1254
1255 print 'meanGauss',meanGauss
1256 print 'sigma',sigma
1257
1258 #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001):
1259 if dbSNR > SNRlimit :
1260 try:
1261 popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma])
1262
1263 if numpy.amax(popt)>numpy.amax(yMean)*0.3:
1264 FitGauss=self.gaus(xSamples,*popt)
1265
1266 else:
1267 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1268 print 'Verificador: Dentro', Height
1269 except :#RuntimeError:
1270 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1271
1272
1273 else:
1274 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1275
1276 Maximun=numpy.amax(yMean)
1277 eMinus1=Maximun*numpy.exp(-1)#*0.8
1278
1279 HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1)))
1280 HalfWidth= xFrec[HWpos]
1281 GCpos=self.Find(FitGauss, numpy.amax(FitGauss))
1282 Vpos=self.Find(FactNorm, numpy.amax(FactNorm))
1283
1284 #Vpos=FirstMoment[]
1285
1286 '''****** Getting Fij ******'''
1287
1288 GaussCenter=xFrec[GCpos]
1289 if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0):
1290 Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001
1291 else:
1292 Fij=abs(GaussCenter-HalfWidth)+0.0000001
1293
1294 '''****** Getting Frecuency range of significant data ******'''
1295
1296 Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10)))
1297
1298 if Rangpos<GCpos:
1299 Range=numpy.array([Rangpos,2*GCpos-Rangpos])
1300 elif Rangpos< ( len(xFrec)- len(xFrec)*0.1):
1301 Range=numpy.array([2*GCpos-Rangpos,Rangpos])
1302 else:
1303 Range = numpy.array([0,0])
1304
1305 print ' '
1306 print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1)
1307 print 'Rangpos',Rangpos
1308 print 'RANGE: ', Range
1309 FrecRange=xFrec[Range[0]:Range[1]]
1310
1311 '''****** Getting SCPC Slope ******'''
1312
1313 for i in range(spc.shape[0]):
1314
1315 if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5:
1316 PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3)
1317
1318 print 'FrecRange', len(FrecRange) , FrecRange
1319 print 'PhaseRange', len(PhaseRange), PhaseRange
1320 print ' '
1321 if len(FrecRange) == len(PhaseRange):
1322 slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange)
1323 PhaseSlope[i]=slope
1324 PhaseInter[i]=intercept
1325 else:
1326 PhaseSlope[i]=0
1327 PhaseInter[i]=0
1328 else:
1329 PhaseSlope[i]=0
1330 PhaseInter[i]=0
1331
1332 '''Getting constant C'''
1333 cC=(Fij*numpy.pi)**2
1334
1335 '''****** Getting constants F and G ******'''
1336 MijEijNij=numpy.array([[E02,N02], [E12,N12]])
1337 MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
1338 MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi)
1339 MijResults=numpy.array([MijResult0,MijResult1])
1340 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1341
1342 '''****** Getting constants A, B and H ******'''
1343 W01=numpy.amax(coherence[0])
1344 W02=numpy.amax(coherence[1])
1345 W12=numpy.amax(coherence[2])
1346
1347 WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
1348 WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
1349 WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
1350
1351 WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
1352
1353 WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ])
1354 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1355
1356 VxVy=numpy.array([[cA,cH],[cH,cB]])
1357
1358 VxVyResults=numpy.array([-cF,-cG])
1359 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1360
1361 Vzon = Vy
1362 Vmer = Vx
1363 Vmag=numpy.sqrt(Vzon**2+Vmer**2)
1364 Vang=numpy.arctan2(Vmer,Vzon)
1365 Vver=xFrec[Vpos]
1366 print 'vzon y vmer', Vzon, Vmer
1367 return Vzon, Vmer, Vver, GaussCenter
1368
122 1369 class SpectralMoments(Operation):
123 1370
124 1371 '''
@@ -162,25 +1409,23 class SpectralMoments(Operation):
162 1409
163 1410 dataOut.data_param = data_param[:,1:,:]
164 1411 dataOut.data_SNR = data_param[:,0]
165 dataOut.data_DOP = data_param[:,1]
166 dataOut.data_MEAN = data_param[:,2]
167 dataOut.data_STD = data_param[:,3]
168 1412 return
169 1413
170 def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1414 def __calculateMoments(self, oldspec, oldfreq, n0,
1415 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
171 1416
172 if (nicoh is None): nicoh = 1
173 if (graph is None): graph = 0
174 if (smooth is None): smooth = 0
1417 if (nicoh == None): nicoh = 1
1418 if (graph == None): graph = 0
1419 if (smooth == None): smooth = 0
175 1420 elif (self.smooth < 3): smooth = 0
176 1421
177 if (type1 is None): type1 = 0
178 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
179 if (snrth is None): snrth = -3
180 if (dc is None): dc = 0
181 if (aliasing is None): aliasing = 0
182 if (oldfd is None): oldfd = 0
183 if (wwauto is None): wwauto = 0
1422 if (type1 == None): type1 = 0
1423 if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1
1424 if (snrth == None): snrth = -3
1425 if (dc == None): dc = 0
1426 if (aliasing == None): aliasing = 0
1427 if (oldfd == None): oldfd = 0
1428 if (wwauto == None): wwauto = 0
184 1429
185 1430 if (n0 < 1.e-20): n0 = 1.e-20
186 1431
@@ -247,8 +1492,8 class SpectralMoments(Operation):
247 1492 num_pairs = len(pairslist)
248 1493
249 1494 vel = self.dataOut.abscissaList
250 spectra = self.dataOut.data_pre[0]
251 cspectra = self.dataOut.data_pre[1]
1495 spectra = self.dataOut.data_pre
1496 cspectra = self.dataIn.data_cspc
252 1497 delta_v = vel[1] - vel[0]
253 1498
254 1499 #Calculating the power spectrum
@@ -480,7 +1725,7 class SpectralFitting(Operation):
480 1725 error1 = p0*numpy.nan
481 1726
482 1727 #Save
483 if self.dataOut.data_param is None:
1728 if self.dataOut.data_param == None:
484 1729 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
485 1730 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
486 1731
@@ -526,6 +1771,9 class WindProfiler(Operation):
526 1771
527 1772 n = None
528 1773
1774 def __init__(self):
1775 Operation.__init__(self)
1776
529 1777 def __calculateCosDir(self, elev, azim):
530 1778 zen = (90 - elev)*numpy.pi/180
531 1779 azim = azim*numpy.pi/180
@@ -816,7 +2064,7 class WindProfiler(Operation):
816 2064 self.__dataReady = True
817 2065 return
818 2066
819 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
2067 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
820 2068 '''
821 2069 Function that implements winds estimation technique with detected meteors.
822 2070
@@ -828,7 +2076,7 class WindProfiler(Operation):
828 2076 '''
829 2077 # print arrayMeteor.shape
830 2078 #Settings
831 nInt = (heightMax - heightMin)/binkm
2079 nInt = (heightMax - heightMin)/2
832 2080 # print nInt
833 2081 nInt = int(nInt)
834 2082 # print nInt
@@ -1130,11 +2378,6 class WindProfiler(Operation):
1130 2378 hmax = kwargs['hmax']
1131 2379 else: hmax = 110
1132 2380
1133 if kwargs.has_key('BinKm'):
1134 binkm = kwargs['BinKm']
1135 else:
1136 binkm = 2
1137
1138 2381 dataOut.outputInterval = nHours*3600
1139 2382
1140 2383 if self.__isConfig == False:
@@ -1145,7 +2388,7 class WindProfiler(Operation):
1145 2388
1146 2389 self.__isConfig = True
1147 2390
1148 if self.__buffer is None:
2391 if self.__buffer == None:
1149 2392 self.__buffer = dataOut.data_param
1150 2393 self.__firstdata = copy.copy(dataOut)
1151 2394
@@ -1159,7 +2402,7 class WindProfiler(Operation):
1159 2402
1160 2403 self.__initime += dataOut.outputInterval #to erase time offset
1161 2404
1162 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
2405 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
1163 2406 dataOut.flagNoData = False
1164 2407 self.__buffer = None
1165 2408
@@ -1187,7 +2430,7 class WindProfiler(Operation):
1187 2430 else: mode = 'SA'
1188 2431
1189 2432 #Borrar luego esto
1190 if dataOut.groupList is None:
2433 if dataOut.groupList == None:
1191 2434 dataOut.groupList = [(0,1),(0,2),(1,2)]
1192 2435 groupList = dataOut.groupList
1193 2436 C = 3e8
@@ -1209,7 +2452,7 class WindProfiler(Operation):
1209 2452
1210 2453 self.__isConfig = True
1211 2454
1212 if self.__buffer is None:
2455 if self.__buffer == None:
1213 2456 self.__buffer = dataOut.data_param
1214 2457 self.__firstdata = copy.copy(dataOut)
1215 2458
@@ -1235,6 +2478,8 class WindProfiler(Operation):
1235 2478
1236 2479 class EWDriftsEstimation(Operation):
1237 2480
2481 def __init__(self):
2482 Operation.__init__(self)
1238 2483
1239 2484 def __correctValues(self, heiRang, phi, velRadial, SNR):
1240 2485 listPhi = phi.tolist()
@@ -1569,7 +2814,7 class SMDetection(Operation):
1569 2814
1570 2815
1571 2816 #Getting Pairslist
1572 if channelPositions is None:
2817 if channelPositions == None:
1573 2818 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
1574 2819 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
1575 2820 meteorOps = SMOperations()
@@ -1700,7 +2945,7 class SMDetection(Operation):
1700 2945 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
1701 2946 dataOut.data_param = arrayParameters
1702 2947
1703 if arrayParameters is None:
2948 if arrayParameters == None:
1704 2949 dataOut.flagNoData = True
1705 2950 else:
1706 2951 dataOut.flagNoData = True
@@ -1894,7 +3139,7 class SMDetection(Operation):
1894 3139
1895 3140 if (indDNthresh.size > 0):
1896 3141 indEnd = indDNthresh[0] - 1
1897 indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
3142 indInit = indUPthresh[j]
1898 3143
1899 3144 meteor = powerAux[indInit:indEnd + 1]
1900 3145 indPeak = meteor.argmax() + indInit
@@ -1949,19 +3194,19 class SMDetection(Operation):
1949 3194 indSides = pairsarray[:,1]
1950 3195
1951 3196 pairslist1 = list(pairslist)
1952 pairslist1.append((0,4))
1953 pairslist1.append((1,3))
3197 pairslist1.append((0,1))
3198 pairslist1.append((3,4))
1954 3199
1955 3200 listMeteors1 = []
1956 3201 listPowerSeries = []
1957 3202 listVoltageSeries = []
1958 3203 #volts has the war data
1959 3204
1960 if frequency == 30.175e6:
3205 if frequency == 30e6:
1961 3206 timeLag = 45*10**-3
1962 3207 else:
1963 3208 timeLag = 15*10**-3
1964 lag = int(numpy.ceil(timeLag/timeInterval))
3209 lag = numpy.ceil(timeLag/timeInterval)
1965 3210
1966 3211 for i in range(len(listMeteors)):
1967 3212
@@ -1969,10 +3214,10 class SMDetection(Operation):
1969 3214 meteorAux = numpy.zeros(16)
1970 3215
1971 3216 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
1972 mHeight = int(listMeteors[i][0])
1973 mStart = int(listMeteors[i][1])
1974 mPeak = int(listMeteors[i][2])
1975 mEnd = int(listMeteors[i][3])
3217 mHeight = listMeteors[i][0]
3218 mStart = listMeteors[i][1]
3219 mPeak = listMeteors[i][2]
3220 mEnd = listMeteors[i][3]
1976 3221
1977 3222 #get the volt data between the start and end times of the meteor
1978 3223 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
@@ -2061,11 +3306,11 class SMDetection(Operation):
2061 3306
2062 3307 threshError = 10
2063 3308 #Depending if it is 30 or 50 MHz
2064 if frequency == 30.175e6:
3309 if frequency == 30e6:
2065 3310 timeLag = 45*10**-3
2066 3311 else:
2067 3312 timeLag = 15*10**-3
2068 lag = int(numpy.ceil(timeLag/timeInterval))
3313 lag = numpy.ceil(timeLag/timeInterval)
2069 3314
2070 3315 listMeteors1 = []
2071 3316
@@ -2121,14 +3366,14 class SMDetection(Operation):
2121 3366 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
2122 3367
2123 3368 pairslist1 = list(pairslist)
2124 pairslist1.append((0,4))
2125 pairslist1.append((1,3))
3369 pairslist1.append((0,1))
3370 pairslist1.append((3,4))
2126 3371 numPairs = len(pairslist1)
2127 3372 #Time Lag
2128 3373 timeLag = 45*10**-3
2129 3374 c = 3e8
2130 3375 lag = numpy.ceil(timeLag/timeInterval)
2131 freq = 30.175e6
3376 freq = 30e6
2132 3377
2133 3378 listMeteors1 = []
2134 3379
@@ -2149,7 +3394,7 class SMDetection(Operation):
2149 3394 #Method 2
2150 3395 slopes = numpy.zeros(numPairs)
2151 3396 time = numpy.array([-2,-1,1,2])*timeInterval
2152 angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
3397 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
2153 3398
2154 3399 #Correct phases
2155 3400 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
@@ -2236,7 +3481,7 class CorrectSMPhases(Operation):
2236 3481 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
2237 3482
2238 3483 meteorOps = SMOperations()
2239 if channelPositions is None:
3484 if channelPositions == None:
2240 3485 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2241 3486 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2242 3487
@@ -2413,7 +3658,7 class SMPhaseCalibration(Operation):
2413 3658
2414 3659 self.__isConfig = True
2415 3660
2416 if self.__buffer is None:
3661 if self.__buffer == None:
2417 3662 self.__buffer = dataOut.data_param.copy()
2418 3663
2419 3664 else:
@@ -2469,7 +3714,6 class SMPhaseCalibration(Operation):
2469 3714 phasesOff = phasesOff.reshape((1,phasesOff.size))
2470 3715 dataOut.data_output = -phasesOff
2471 3716 dataOut.flagNoData = False
2472 dataOut.channelList = pairslist0
2473 3717 self.__buffer = None
2474 3718
2475 3719
@@ -2803,3 +4047,4 class SMOperations():
2803 4047 # error[indInvalid1] = 13
2804 4048 #
2805 4049 # return heights, error
4050 No newline at end of file
@@ -902,3 +902,4 class IncohInt(Operation):
902 902 dataOut.nIncohInt *= self.n
903 903 dataOut.utctime = avgdatatime
904 904 dataOut.flagNoData = False
905
@@ -42,7 +42,7 setup(name="schainpy",
42 42 scripts=['schainpy/gui/schainGUI'],
43 43 ext_modules=[Extension("cSchain", ["schainpy/model/proc/extensions.c"], include_dirs=[numpy.get_include()])],
44 44 install_requires=[
45 "scipy >= 0.14.0",
45 "scipy >= 0.13.0",
46 46 "h5py >= 2.2.1",
47 47 "matplotlib >= 1.4.2",
48 48 "pyfits >= 3.4",
@@ -1,1 +0,0
1 You should install "digital_rf_hdf5" module if you want to read USRP data
General Comments 0
You need to be logged in to leave comments. Login now