@@ -621,6 +621,7 class ParametersPlot(Figure): | |||
|
621 | 621 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
622 | 622 | parameterIndex = None, onlyPositive = False, |
|
623 | 623 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, |
|
624 | DOP = True, | |
|
624 | 625 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
625 | 626 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
626 | 627 | server=None, folder=None, username=None, password=None, |
@@ -651,6 +652,21 class ParametersPlot(Figure): | |||
|
651 | 652 | |
|
652 | 653 | nchan = len(channelIndexList) #Number of channels being plotted |
|
653 | 654 | |
|
655 | if nchan < 1: | |
|
656 | return | |
|
657 | ||
|
658 | nGraphsByChannel = 0 | |
|
659 | ||
|
660 | if SNR: | |
|
661 | nGraphsByChannel += 1 | |
|
662 | if DOP: | |
|
663 | nGraphsByChannel += 1 | |
|
664 | ||
|
665 | if nGraphsByChannel < 1: | |
|
666 | return | |
|
667 | ||
|
668 | nplots = nGraphsByChannel*nchan | |
|
669 | ||
|
654 | 670 | if timerange != None: |
|
655 | 671 | self.timerange = timerange |
|
656 | 672 | |
@@ -658,12 +674,13 class ParametersPlot(Figure): | |||
|
658 | 674 | #tmax = None |
|
659 | 675 | if parameterIndex == None: |
|
660 | 676 | parameterIndex = 1 |
|
677 | ||
|
661 | 678 | x = dataOut.getTimeRange1() |
|
662 | 679 | y = dataOut.heightList |
|
663 | 680 | z = data_param[channelIndexList,parameterIndex,:].copy() |
|
664 | 681 | |
|
665 | 682 | zRange = dataOut.abscissaList |
|
666 |
n |
|
|
683 | # nChannels = z.shape[0] #Number of wind dimensions estimated | |
|
667 | 684 | # thisDatetime = dataOut.datatime |
|
668 | 685 | |
|
669 | 686 | if dataOut.data_SNR != None: |
@@ -678,8 +695,6 class ParametersPlot(Figure): | |||
|
678 | 695 | xlabel = "" |
|
679 | 696 | ylabel = "Range (Km)" |
|
680 | 697 | |
|
681 | if SNR: nplots = 2*nplots | |
|
682 | ||
|
683 | 698 | if onlyPositive: |
|
684 | 699 | colormap = "jet" |
|
685 | 700 | zmin = 0 |
@@ -700,7 +715,7 class ParametersPlot(Figure): | |||
|
700 | 715 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
701 | 716 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
702 | 717 | |
|
703 |
if SNR |
|
|
718 | if SNR: | |
|
704 | 719 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
705 | 720 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
706 | 721 | |
@@ -719,23 +734,24 class ParametersPlot(Figure): | |||
|
719 | 734 | x[1] = self.xmax |
|
720 | 735 | |
|
721 | 736 | for i in range(nchan): |
|
722 | if SNR: j = 2*i | |
|
723 | else: j = i | |
|
724 | 737 | |
|
725 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
738 | j = nGraphsByChannel*i | |
|
726 | 739 | |
|
727 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
728 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
729 | axes = self.axesList[j*self.__nsubplots] | |
|
730 | z1 = z[i,:].reshape((1,-1)) | |
|
731 | axes.pcolorbuffer(x, y, z1, | |
|
732 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
733 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |
|
734 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
|
740 | if DOP: | |
|
741 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
742 | ||
|
743 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
|
744 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
|
745 | axes = self.axesList[j] | |
|
746 | z1 = z[i,:].reshape((1,-1)) | |
|
747 | axes.pcolorbuffer(x, y, z1, | |
|
748 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
749 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |
|
750 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
|
735 | 751 | |
|
736 | 752 | if SNR: |
|
737 | 753 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
738 |
axes = self.axesList[(j + 1) |
|
|
754 | axes = self.axesList[(j + nGraphsByChannel-1)] | |
|
739 | 755 | z1 = SNRdB[i,:].reshape((1,-1)) |
|
740 | 756 | axes.pcolorbuffer(x, y, z1, |
|
741 | 757 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
General Comments 0
You need to be logged in to leave comments.
Login now