@@ -1,396 +1,452 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Feb 7, 2012 |
|
3 | 3 | |
|
4 | 4 | @author $Author$ |
|
5 | 5 | @version $Id$ |
|
6 | 6 | ''' |
|
7 | 7 | |
|
8 | 8 | import os, sys |
|
9 | 9 | import numpy |
|
10 | 10 | |
|
11 | 11 | path = os.path.split(os.getcwd())[0] |
|
12 | 12 | sys.path.append(path) |
|
13 | 13 | |
|
14 | 14 | from Model.Voltage import Voltage |
|
15 | 15 | from IO.VoltageIO import VoltageWriter |
|
16 | 16 | from Graphics.VoltagePlot import Osciloscope |
|
17 | 17 | |
|
18 | 18 | class VoltageProcessor: |
|
19 | 19 | ''' |
|
20 | 20 | classdocs |
|
21 | 21 | ''' |
|
22 | 22 | |
|
23 | 23 | def __init__(self, voltageInObj, voltageOutObj=None): |
|
24 | 24 | ''' |
|
25 | 25 | Constructor |
|
26 | 26 | ''' |
|
27 | 27 | |
|
28 | 28 | self.voltageInObj = voltageInObj |
|
29 | 29 | |
|
30 | 30 | if voltageOutObj == None: |
|
31 | 31 | self.voltageOutObj = Voltage() |
|
32 | 32 | else: |
|
33 | 33 | self.voltageOutObj = voltageOutObj |
|
34 | 34 | |
|
35 | 35 | self.integratorIndex = None |
|
36 | 36 | self.decoderIndex = None |
|
37 | self.profSelectorIndex = None | |
|
37 | 38 | self.writerIndex = None |
|
38 | 39 | self.plotterIndex = None |
|
39 | 40 | |
|
40 | 41 | self.integratorList = [] |
|
41 | 42 | self.decoderList = [] |
|
43 | self.profileSelectorList = [] | |
|
42 | 44 | self.writerList = [] |
|
43 | 45 | self.plotterList = [] |
|
44 | 46 | |
|
45 | 47 | def init(self): |
|
48 | ||
|
46 | 49 | self.integratorIndex = 0 |
|
47 | 50 | self.decoderIndex = 0 |
|
51 | self.profSelectorIndex = 0 | |
|
48 | 52 | self.writerIndex = 0 |
|
49 | 53 | self.plotterIndex = 0 |
|
50 | 54 | self.voltageOutObj.copy(self.voltageInObj) |
|
51 | 55 | |
|
52 | def addWriter(self,wrpath): | |
|
56 | def addWriter(self, wrpath): | |
|
53 | 57 | objWriter = VoltageWriter(self.voltageOutObj) |
|
54 | 58 | objWriter.setup(wrpath) |
|
55 | 59 | self.writerList.append(objWriter) |
|
56 | 60 | |
|
57 | 61 | def addPlotter(self): |
|
58 | 62 | |
|
59 | 63 | plotObj = Osciloscope(self.voltageOutObj,self.plotterIndex) |
|
60 | 64 | self.plotterList.append(plotObj) |
|
61 | 65 | |
|
62 |
def addIntegrator(self, |
|
|
66 | def addIntegrator(self, nCohInt): | |
|
63 | 67 | |
|
64 |
objCohInt = CoherentIntegrator( |
|
|
68 | objCohInt = CoherentIntegrator(nCohInt) | |
|
65 | 69 | self.integratorList.append(objCohInt) |
|
66 | 70 | |
|
67 | def addDecoder(self,code,ncode,nbaud): | |
|
71 | def addDecoder(self, code, ncode, nbaud): | |
|
68 | 72 | |
|
69 | 73 | objDecoder = Decoder(code,ncode,nbaud) |
|
70 | 74 | self.decoderList.append(objDecoder) |
|
71 | 75 | |
|
76 | def addProfileSelector(self, nProfiles): | |
|
77 | ||
|
78 | objProfSelector = ProfileSelector(nProfiles) | |
|
79 | self.profileSelectorList.append(objProfSelector) | |
|
80 | ||
|
72 | 81 | def writeData(self,wrpath): |
|
82 | ||
|
73 | 83 | if self.voltageOutObj.flagNoData: |
|
74 |
|
|
|
84 | return 0 | |
|
75 | 85 | |
|
76 | 86 | if len(self.writerList) <= self.writerIndex: |
|
77 | 87 | self.addWriter(wrpath) |
|
78 | 88 | |
|
79 | 89 | self.writerList[self.writerIndex].putData() |
|
80 | 90 | |
|
81 | 91 | # myWrObj = self.writerList[self.writerIndex] |
|
82 | 92 | # myWrObj.putData() |
|
83 | 93 | |
|
84 | 94 | self.writerIndex += 1 |
|
85 | 95 | |
|
86 | 96 | def plotData(self,idProfile, type, xmin=None, xmax=None, ymin=None, ymax=None, winTitle=''): |
|
87 | 97 | if self.voltageOutObj.flagNoData: |
|
88 |
|
|
|
98 | return 0 | |
|
89 | 99 | |
|
90 | 100 | if len(self.plotterList) <= self.plotterIndex: |
|
91 | 101 | self.addPlotter() |
|
92 | 102 | |
|
93 | 103 | self.plotterList[self.plotterIndex].plotData(type=type, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,winTitle=winTitle) |
|
94 | 104 | |
|
95 | 105 | self.plotterIndex += 1 |
|
96 | 106 | |
|
97 | 107 | def integrator(self, N): |
|
108 | ||
|
98 | 109 | if self.voltageOutObj.flagNoData: |
|
99 |
|
|
|
110 | return 0 | |
|
100 | 111 | |
|
101 | 112 | if len(self.integratorList) <= self.integratorIndex: |
|
102 | 113 | self.addIntegrator(N) |
|
103 | 114 | |
|
104 | 115 | myCohIntObj = self.integratorList[self.integratorIndex] |
|
105 | 116 | myCohIntObj.exe(self.voltageOutObj.data) |
|
106 | 117 | |
|
107 | 118 | if myCohIntObj.flag: |
|
108 | 119 | self.voltageOutObj.data = myCohIntObj.data |
|
109 | 120 | self.voltageOutObj.m_ProcessingHeader.coherentInt *= N |
|
110 | 121 | self.voltageOutObj.flagNoData = False |
|
111 | 122 | |
|
112 | 123 | else: |
|
113 | 124 | self.voltageOutObj.flagNoData = True |
|
114 | 125 | |
|
115 | 126 | self.integratorIndex += 1 |
|
116 | 127 | |
|
117 | 128 | def decoder(self,code=None,type = 0): |
|
129 | ||
|
118 | 130 | if self.voltageOutObj.flagNoData: |
|
119 |
|
|
|
131 | return 0 | |
|
132 | ||
|
120 | 133 | if code == None: |
|
121 | 134 | code = self.voltageOutObj.m_RadarControllerHeader.code |
|
122 | 135 | ncode, nbaud = code.shape |
|
123 | 136 | |
|
124 | 137 | if len(self.decoderList) <= self.decoderIndex: |
|
125 | 138 | self.addDecoder(code,ncode,nbaud) |
|
126 | 139 | |
|
127 | 140 | myDecodObj = self.decoderList[self.decoderIndex] |
|
128 | 141 | myDecodObj.exe(data=self.voltageOutObj.data,type=type) |
|
129 | 142 | |
|
130 | 143 | if myDecodObj.flag: |
|
131 | 144 | self.voltageOutObj.data = myDecodObj.data |
|
132 | 145 | self.voltageOutObj.flagNoData = False |
|
133 | 146 | else: |
|
134 | 147 | self.voltageOutObj.flagNoData = True |
|
135 | 148 | |
|
136 | 149 | self.decoderIndex += 1 |
|
137 | 150 | |
|
138 | 151 | |
|
139 | 152 | def filterByHei(self, window): |
|
140 | 153 | pass |
|
141 | 154 | |
|
142 | 155 | |
|
143 | 156 | def selectChannels(self, channelList): |
|
144 | 157 | """ |
|
145 | 158 | Selecciona un bloque de datos en base a canales y pares segun el channelList y el pairList |
|
146 | 159 | |
|
147 | 160 | Input: |
|
148 | 161 | channelList : lista sencilla de canales a seleccionar por ej. (2,3,7) |
|
149 | 162 | pairList : tupla de pares que se desea selecionar por ej. ( (0,1), (0,2) ) |
|
150 | 163 | |
|
151 | 164 | Affected: |
|
152 | 165 | self.dataOutObj.datablock |
|
153 | 166 | self.dataOutObj.nChannels |
|
154 | 167 | self.dataOutObj.m_SystemHeader.numChannels |
|
155 | 168 | self.voltageOutObj.m_ProcessingHeader.blockSize |
|
156 | 169 | |
|
157 | 170 | Return: |
|
158 | 171 | None |
|
159 | 172 | """ |
|
160 | 173 | if not(channelList): |
|
161 | 174 | return |
|
162 | 175 | |
|
163 | 176 | channels = 0 |
|
164 | 177 | profiles = self.voltageOutObj.nProfiles |
|
165 | 178 | heights = self.voltageOutObj.m_ProcessingHeader.numHeights |
|
166 | 179 | |
|
167 | 180 | #self spectra |
|
168 | 181 | channels = len(channelList) |
|
169 | 182 | data = numpy.zeros( (channels,profiles,heights), dtype='complex' ) |
|
170 | 183 | for index,channel in enumerate(channelList): |
|
171 | 184 | data[index,:,:] = self.voltageOutObj.data_spc[channel,:,:] |
|
172 | 185 | |
|
173 | 186 | self.voltageOutObj.datablock = data |
|
174 | 187 | |
|
175 | 188 | #fill the m_ProcessingHeader.spectraComb up |
|
176 | 189 | channels = len(channelList) |
|
177 | 190 | |
|
178 | 191 | self.voltageOutObj.channelList = channelList |
|
179 | 192 | self.voltageOutObj.nChannels = nchannels |
|
180 | 193 | self.voltageOutObj.m_ProcessingHeader.totalSpectra = nchannels |
|
181 | 194 | self.voltageOutObj.m_SystemHeader.numChannels = nchannels |
|
182 | 195 | self.voltageOutObj.m_ProcessingHeader.blockSize = data.size |
|
183 | 196 | |
|
184 | 197 | |
|
185 | 198 | def selectHeightsByValue(self, minHei, maxHei): |
|
186 | 199 | """ |
|
187 | 200 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
188 | 201 | minHei <= height <= maxHei |
|
189 | 202 | |
|
190 | 203 | Input: |
|
191 | 204 | minHei : valor minimo de altura a considerar |
|
192 | 205 | maxHei : valor maximo de altura a considerar |
|
193 | 206 | |
|
194 | 207 | Affected: |
|
195 | 208 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
196 | 209 | |
|
197 | 210 | Return: |
|
198 | 211 | None |
|
199 | 212 | """ |
|
200 | 213 | minIndex = 0 |
|
201 | 214 | maxIndex = 0 |
|
202 | 215 | data = self.dataOutObj.heightList |
|
203 | 216 | |
|
204 | 217 | for i,val in enumerate(data): |
|
205 | 218 | if val < minHei: |
|
206 | 219 | continue |
|
207 | 220 | else: |
|
208 | 221 | minIndex = i; |
|
209 | 222 | break |
|
210 | 223 | |
|
211 | 224 | for i,val in enumerate(data): |
|
212 | 225 | if val <= maxHei: |
|
213 | 226 | maxIndex = i; |
|
214 | 227 | else: |
|
215 | 228 | break |
|
216 | 229 | |
|
217 | 230 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
218 | 231 | |
|
219 | 232 | |
|
220 | 233 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
221 | 234 | """ |
|
222 | 235 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
223 | 236 | minIndex <= index <= maxIndex |
|
224 | 237 | |
|
225 | 238 | Input: |
|
226 | 239 | minIndex : valor minimo de altura a considerar |
|
227 | 240 | maxIndex : valor maximo de altura a considerar |
|
228 | 241 | |
|
229 | 242 | Affected: |
|
230 | 243 | self.voltageOutObj.datablock |
|
231 | 244 | self.voltageOutObj.m_ProcessingHeader.numHeights |
|
232 | 245 | self.voltageOutObj.m_ProcessingHeader.blockSize |
|
233 | 246 | self.voltageOutObj.heightList |
|
234 | 247 | self.voltageOutObj.nHeights |
|
235 | 248 | self.voltageOutObj.m_RadarControllerHeader.numHeights |
|
236 | 249 | |
|
237 | 250 | Return: |
|
238 | 251 | None |
|
239 | 252 | """ |
|
240 | 253 | channels = self.voltageOutObj.nChannels |
|
241 | 254 | profiles = self.voltageOutObj.nProfiles |
|
242 | 255 | newheis = maxIndex - minIndex + 1 |
|
243 | 256 | firstHeight = 0 |
|
244 | 257 | |
|
245 | 258 | #voltage |
|
246 | 259 | data = numpy.zeros( (channels,profiles,newheis), dtype='complex' ) |
|
247 | 260 | for i in range(channels): |
|
248 | 261 | data[i] = self.voltageOutObj.data_spc[i,:,minIndex:maxIndex+1] |
|
249 | 262 | |
|
250 | 263 | self.voltageOutObj.datablock = data |
|
251 | 264 | |
|
252 | 265 | firstHeight = self.dataOutObj.heightList[minIndex] |
|
253 | 266 | |
|
254 | 267 | self.voltageOutObj.nHeights = newheis |
|
255 | 268 | self.voltageOutObj.m_ProcessingHeader.blockSize = data.size |
|
256 | 269 | self.voltageOutObj.m_ProcessingHeader.numHeights = newheis |
|
257 | 270 | self.voltageOutObj.m_ProcessingHeader.firstHeight = firstHeight |
|
258 | 271 | self.voltageOutObj.m_RadarControllerHeader = newheis |
|
259 | 272 | |
|
260 | 273 | xi = firstHeight |
|
261 | 274 | step = self.voltageOutObj.m_ProcessingHeader.deltaHeight |
|
262 | 275 | xf = xi + newheis * step |
|
263 | 276 | self.voltageOutObj.heightList = numpy.arange(xi, xf, step) |
|
264 | 277 | |
|
265 | 278 | |
|
266 | def selectProfiles(self, minIndex, maxIndex): | |
|
279 | def selectProfiles(self, minIndex, maxIndex, nProfiles): | |
|
267 | 280 | """ |
|
268 | 281 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
269 | 282 | minIndex <= index <= maxIndex |
|
270 | 283 | |
|
271 | 284 | Input: |
|
272 | 285 | minIndex : valor minimo de altura a considerar |
|
273 | 286 | maxIndex : valor maximo de altura a considerar |
|
274 | 287 | |
|
275 | 288 | Affected: |
|
276 | 289 | self.voltageOutObj.datablock |
|
277 | 290 | self.voltageOutObj.m_ProcessingHeader.numHeights |
|
278 | 291 | self.voltageOutObj.heightList |
|
279 | 292 | |
|
280 | 293 | Return: |
|
281 | 294 | None |
|
282 | 295 | """ |
|
283 | channels = self.voltageOutObj.nChannels | |
|
284 | heights = self.voltageOutObj.m_ProcessingHeader.numHeights | |
|
285 | newprofiles = maxIndex - minIndex + 1 | |
|
286 | ||
|
287 | #voltage | |
|
288 | data = numpy.zeros( (channels,newprofiles,heights), dtype='complex' ) | |
|
289 | for i in range(channels): | |
|
290 | data[i,:,:] = self.voltageOutObj.data_spc[i,minIndex:maxIndex+1,:] | |
|
291 | ||
|
292 | self.voltageOutObj.datablock = data | |
|
293 | ||
|
294 | self.voltageOutObj.m_ProcessingHeader.blockSize = data.size | |
|
295 | self.voltageOutObj.nProfiles = newprofiles | |
|
296 | self.voltageOutObj.m_SystemHeader.numProfiles = newprofiles | |
|
297 | ||
|
296 | ||
|
297 | if self.voltageOutObj.flagNoData: | |
|
298 | return 0 | |
|
299 | ||
|
300 | if self.profSelectorIndex >= len(self.profileSelectorList): | |
|
301 | self.addProfileSelector(nProfiles) | |
|
302 | ||
|
303 | profileSelectorObj = self.profileSelectorList[self.profSelectorIndex] | |
|
304 | ||
|
305 | if profileSelectorObj.isProfileInRange(minIndex, maxIndex): | |
|
306 | self.voltageOutObj.flagNoData = False | |
|
307 | self.profSelectorIndex += 1 | |
|
308 | return 1 | |
|
309 | ||
|
310 | self.voltageOutObj.flagNoData = True | |
|
311 | self.profSelectorIndex += 1 | |
|
312 | ||
|
313 | return 0 | |
|
298 | 314 | |
|
299 | 315 | def selectNtxs(self, ntx): |
|
300 | 316 | pass |
|
301 | 317 | |
|
302 | 318 | |
|
303 | 319 | class Decoder: |
|
320 | ||
|
304 | 321 | def __init__(self,code, ncode, nbaud): |
|
322 | ||
|
305 | 323 | self.buffer = None |
|
306 | 324 | self.profCounter = 1 |
|
307 | 325 | self.nCode = ncode |
|
308 | 326 | self.nBaud = nbaud |
|
309 | 327 | self.codeIndex = 0 |
|
310 | 328 | self.code = code #this is a List |
|
311 | 329 | self.fft_code = None |
|
312 | 330 | self.flag = False |
|
313 | 331 | self.setCodeFft = False |
|
314 | 332 | |
|
315 | 333 | def exe(self, data, ndata=None, type = 0): |
|
334 | ||
|
316 | 335 | if ndata == None: ndata = data.shape[1] |
|
317 | 336 | |
|
318 | 337 | if type == 0: |
|
319 | 338 | self.convolutionInFreq(data,ndata) |
|
320 | 339 | |
|
321 | 340 | if type == 1: |
|
322 | 341 | self.convolutionInTime(data, ndata) |
|
323 | 342 | |
|
324 | def convolutionInFreq(self,data,ndata): | |
|
343 | def convolutionInFreq(self,data, ndata): | |
|
325 | 344 | |
|
326 | 345 | newcode = numpy.zeros(ndata) |
|
327 | 346 | newcode[0:self.nBaud] = self.code[self.codeIndex] |
|
328 | 347 | |
|
329 | 348 | self.codeIndex += 1 |
|
330 | 349 | |
|
331 | 350 | fft_data = numpy.fft.fft(data, axis=1) |
|
332 | 351 | fft_code = numpy.conj(numpy.fft.fft(newcode)) |
|
333 | 352 | fft_code = fft_code.reshape(1,len(fft_code)) |
|
334 | 353 | |
|
335 | 354 | conv = fft_data.copy() |
|
336 | 355 | conv.fill(0) |
|
337 | 356 | |
|
338 | 357 | conv = fft_data*fft_code # This other way to calculate multiplication between bidimensional arrays |
|
339 | 358 | # for i in range(ndata): |
|
340 | 359 | # conv[i,:] = fft_data[i,:]*fft_code[i] |
|
341 | 360 | |
|
342 | 361 | self.data = numpy.fft.ifft(conv,axis=1) |
|
343 | 362 | self.flag = True |
|
344 | 363 | |
|
345 | 364 | if self.profCounter == self.nCode: |
|
346 | 365 | self.profCounter = 0 |
|
347 | 366 | self.codeIndex = 0 |
|
348 | 367 | |
|
349 | 368 | self.profCounter += 1 |
|
350 | 369 | |
|
351 | 370 | def convolutionInTime(self, data, ndata): |
|
352 | 371 | |
|
353 | 372 | nchannel = data.shape[1] |
|
354 | 373 | newcode = self.code[self.codeIndex] |
|
355 | 374 | self.codeIndex += 1 |
|
356 | 375 | conv = data.copy() |
|
357 | 376 | for i in range(nchannel): |
|
358 | 377 | conv[i,:] = numpy.correlate(data[i,:], newcode, 'same') |
|
359 | 378 | |
|
360 | 379 | self.data = conv |
|
361 | 380 | self.flag = True |
|
362 | 381 | |
|
363 | 382 | if self.profCounter == self.nCode: |
|
364 | 383 | self.profCounter = 0 |
|
365 | 384 | self.codeIndex = 0 |
|
366 | 385 | |
|
367 | 386 | self.profCounter += 1 |
|
368 | 387 | |
|
369 | 388 | |
|
370 | 389 | class CoherentIntegrator: |
|
390 | ||
|
371 | 391 | def __init__(self, N): |
|
392 | ||
|
372 | 393 | self.profCounter = 1 |
|
373 | 394 | self.data = None |
|
374 | 395 | self.buffer = None |
|
375 | 396 | self.flag = False |
|
376 | 397 | self.nCohInt = N |
|
377 | 398 | |
|
378 | def exe(self,data): | |
|
399 | def exe(self, data): | |
|
379 | 400 | |
|
380 | 401 | if self.buffer == None: |
|
381 | 402 | self.buffer = data |
|
382 | 403 | else: |
|
383 | 404 | self.buffer = self.buffer + data |
|
384 | 405 | |
|
385 | 406 | if self.profCounter == self.nCohInt: |
|
386 | 407 | self.data = self.buffer |
|
387 | 408 | self.buffer = None |
|
388 | 409 | self.profCounter = 0 |
|
389 | 410 | self.flag = True |
|
390 | 411 | else: |
|
391 | 412 | self.flag = False |
|
392 | 413 | |
|
393 | 414 | self.profCounter += 1 |
|
394 | 415 | |
|
395 | ||
|
416 | class ProfileSelector(): | |
|
417 | ||
|
418 | indexProfile = None | |
|
419 | # Tamaño total de los perfiles | |
|
420 | nProfiles = None | |
|
421 | ||
|
422 | def __init__(self, nProfiles): | |
|
423 | ||
|
424 | self.indexProfile = 0 | |
|
425 | self.nProfiles = nProfiles | |
|
426 | ||
|
427 | def isProfileInRange(self, minIndex, maxIndex): | |
|
428 | ||
|
429 | if minIndex < self.indexProfile: | |
|
430 | self.indexProfile += 1 | |
|
431 | return False | |
|
432 | ||
|
433 | if maxIndex > self.indexProfile: | |
|
434 | self.indexProfile += 1 | |
|
435 | return False | |
|
436 | ||
|
437 | self.indexProfile += 1 | |
|
438 | ||
|
439 | return True | |
|
440 | ||
|
441 | def isProfileInList(self, profileList): | |
|
442 | ||
|
443 | if self.indexProfile not in profileList: | |
|
444 | self.indexProfile += 1 | |
|
445 | return False | |
|
446 | ||
|
447 | self.indexProfile += 1 | |
|
448 | ||
|
449 | return True | |
|
450 | ||
|
451 | ||
|
396 | 452 | No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now