@@ -112,5 +112,3 schainpy/scripts/ | |||||
112 | .vscode |
|
112 | .vscode | |
113 | trash |
|
113 | trash | |
114 | *.log |
|
114 | *.log | |
115 | schainpy/scripts/testDigitalRF.py |
|
|||
116 | schainpy/scripts/testDigitalRFWriter.py |
|
@@ -190,8 +190,7 class JROData(GenericData): | |||||
190 | profileIndex = None |
|
190 | profileIndex = None | |
191 | error = None |
|
191 | error = None | |
192 | data = None |
|
192 | data = None | |
193 |
|
|
193 | nmodes = None | |
194 |
|
||||
195 |
|
194 | |||
196 | def __str__(self): |
|
195 | def __str__(self): | |
197 |
|
196 | |||
@@ -462,6 +461,7 class Spectra(JROData): | |||||
462 | ippFactor = None |
|
461 | ippFactor = None | |
463 | profileIndex = 0 |
|
462 | profileIndex = 0 | |
464 | plotting = "spectra" |
|
463 | plotting = "spectra" | |
|
464 | ||||
465 | def __init__(self): |
|
465 | def __init__(self): | |
466 | ''' |
|
466 | ''' | |
467 | Constructor |
|
467 | Constructor | |
@@ -554,9 +554,12 class Spectra(JROData): | |||||
554 |
|
554 | |||
555 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
555 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
556 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
556 | velrange = deltav * (numpy.arange(self.nFFTPoints + | |
557 |
extrapoints) - self.nFFTPoints / 2.) |
|
557 | extrapoints) - self.nFFTPoints / 2.) | |
558 |
|
558 | |||
559 | return velrange |
|
559 | if self.nmodes: | |
|
560 | return velrange/self.nmodes | |||
|
561 | else: | |||
|
562 | return velrange | |||
560 |
|
563 | |||
561 | def getNPairs(self): |
|
564 | def getNPairs(self): | |
562 |
|
565 |
@@ -7,14 +7,190 from .plotting_codes import * | |||||
7 | from schainpy.model.proc.jroproc_base import MPDecorator |
|
7 | from schainpy.model.proc.jroproc_base import MPDecorator | |
8 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
9 |
|
9 | |||
10 |
class |
|
10 | class ParamLine_(Figure): | |
|
11 | ||||
|
12 | isConfig = None | |||
|
13 | ||||
|
14 | def __init__(self): | |||
|
15 | ||||
|
16 | self.isConfig = False | |||
|
17 | self.WIDTH = 300 | |||
|
18 | self.HEIGHT = 200 | |||
|
19 | self.counter_imagwr = 0 | |||
|
20 | ||||
|
21 | def getSubplots(self): | |||
|
22 | ||||
|
23 | nrow = self.nplots | |||
|
24 | ncol = 3 | |||
|
25 | return nrow, ncol | |||
|
26 | ||||
|
27 | def setup(self, id, nplots, wintitle, show): | |||
|
28 | ||||
|
29 | self.nplots = nplots | |||
|
30 | ||||
|
31 | self.createFigure(id=id, | |||
|
32 | wintitle=wintitle, | |||
|
33 | show=show) | |||
|
34 | ||||
|
35 | nrow,ncol = self.getSubplots() | |||
|
36 | colspan = 3 | |||
|
37 | rowspan = 1 | |||
|
38 | ||||
|
39 | for i in range(nplots): | |||
|
40 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) | |||
|
41 | ||||
|
42 | def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |||
|
43 | yreal = y[channelIndexList,:].real | |||
|
44 | yimag = y[channelIndexList,:].imag | |||
|
45 | ||||
|
46 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
47 | xlabel = "Range (Km)" | |||
|
48 | ylabel = "Intensity - IQ" | |||
|
49 | ||||
|
50 | if not self.isConfig: | |||
|
51 | nplots = len(channelIndexList) | |||
|
52 | ||||
|
53 | self.setup(id=id, | |||
|
54 | nplots=nplots, | |||
|
55 | wintitle='', | |||
|
56 | show=show) | |||
|
57 | ||||
|
58 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
59 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
60 | if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag)) | |||
|
61 | if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag)) | |||
|
62 | ||||
|
63 | self.isConfig = True | |||
|
64 | ||||
|
65 | self.setWinTitle(title) | |||
|
66 | ||||
|
67 | for i in range(len(self.axesList)): | |||
|
68 | title = "Channel %d" %(i) | |||
|
69 | axes = self.axesList[i] | |||
|
70 | ||||
|
71 | axes.pline(x, yreal[i,:], | |||
|
72 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
73 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
74 | ||||
|
75 | axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2) | |||
|
76 | ||||
|
77 | def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |||
|
78 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) | |||
|
79 | yreal = y.real | |||
|
80 | ||||
|
81 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
82 | xlabel = "Range (Km)" | |||
|
83 | ylabel = "Intensity" | |||
|
84 | ||||
|
85 | if not self.isConfig: | |||
|
86 | nplots = len(channelIndexList) | |||
|
87 | ||||
|
88 | self.setup(id=id, | |||
|
89 | nplots=nplots, | |||
|
90 | wintitle='', | |||
|
91 | show=show) | |||
|
92 | ||||
|
93 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
94 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
95 | if ymin == None: ymin = numpy.nanmin(yreal) | |||
|
96 | if ymax == None: ymax = numpy.nanmax(yreal) | |||
|
97 | ||||
|
98 | self.isConfig = True | |||
|
99 | ||||
|
100 | self.setWinTitle(title) | |||
|
101 | ||||
|
102 | for i in range(len(self.axesList)): | |||
|
103 | title = "Channel %d" %(i) | |||
|
104 | axes = self.axesList[i] | |||
|
105 | ychannel = yreal[i,:] | |||
|
106 | axes.pline(x, ychannel, | |||
|
107 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
108 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
109 | ||||
|
110 | ||||
|
111 | def run(self, dataOut, id, wintitle="", channelList=None, | |||
|
112 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, | |||
|
113 | figpath='./', figfile=None, show=True, wr_period=1, | |||
|
114 | ftp=False, server=None, folder=None, username=None, password=None): | |||
|
115 | ||||
|
116 | """ | |||
|
117 | ||||
|
118 | Input: | |||
|
119 | dataOut : | |||
|
120 | id : | |||
|
121 | wintitle : | |||
|
122 | channelList : | |||
|
123 | xmin : None, | |||
|
124 | xmax : None, | |||
|
125 | ymin : None, | |||
|
126 | ymax : None, | |||
|
127 | """ | |||
|
128 | ||||
|
129 | if channelList == None: | |||
|
130 | channelIndexList = dataOut.channelIndexList | |||
|
131 | else: | |||
|
132 | channelIndexList = [] | |||
|
133 | for channel in channelList: | |||
|
134 | if channel not in dataOut.channelList: | |||
|
135 | raise ValueError("Channel %d is not in dataOut.channelList" % channel) | |||
|
136 | channelIndexList.append(dataOut.channelList.index(channel)) | |||
|
137 | ||||
|
138 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |||
|
139 | ||||
|
140 | y = dataOut.RR | |||
|
141 | ||||
|
142 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
143 | xlabel = "Range (Km)" | |||
|
144 | ylabel = "Intensity" | |||
|
145 | ||||
|
146 | if not self.isConfig: | |||
|
147 | nplots = len(channelIndexList) | |||
|
148 | ||||
|
149 | self.setup(id=id, | |||
|
150 | nplots=nplots, | |||
|
151 | wintitle='', | |||
|
152 | show=show) | |||
|
153 | ||||
|
154 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
155 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
156 | if ymin == None: ymin = numpy.nanmin(y) | |||
|
157 | if ymax == None: ymax = numpy.nanmax(y) | |||
|
158 | ||||
|
159 | self.isConfig = True | |||
|
160 | ||||
|
161 | self.setWinTitle(title) | |||
|
162 | ||||
|
163 | for i in range(len(self.axesList)): | |||
|
164 | title = "Channel %d" %(i) | |||
|
165 | axes = self.axesList[i] | |||
|
166 | ychannel = y[i,:] | |||
|
167 | axes.pline(x, ychannel, | |||
|
168 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
169 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
170 | ||||
|
171 | ||||
|
172 | self.draw() | |||
|
173 | ||||
|
174 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex) | |||
|
175 | figfile = self.getFilename(name = str_datetime) | |||
|
176 | ||||
|
177 | self.save(figpath=figpath, | |||
|
178 | figfile=figfile, | |||
|
179 | save=save, | |||
|
180 | ftp=ftp, | |||
|
181 | wr_period=wr_period, | |||
|
182 | thisDatetime=thisDatetime) | |||
|
183 | ||||
|
184 | ||||
|
185 | ||||
|
186 | class SpcParamPlot_(Figure): | |||
11 |
|
187 | |||
12 | isConfig = None |
|
188 | isConfig = None | |
13 | __nsubplots = None |
|
189 | __nsubplots = None | |
14 |
|
190 | |||
15 | WIDTHPROF = None |
|
191 | WIDTHPROF = None | |
16 | HEIGHTPROF = None |
|
192 | HEIGHTPROF = None | |
17 |
PREFIX = ' |
|
193 | PREFIX = 'SpcParam' | |
18 |
|
194 | |||
19 | def __init__(self, **kwargs): |
|
195 | def __init__(self, **kwargs): | |
20 | Figure.__init__(self, **kwargs) |
|
196 | Figure.__init__(self, **kwargs) | |
@@ -83,7 +259,7 class FitGauPlot_(Figure): | |||||
83 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
259 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
84 | server=None, folder=None, username=None, password=None, |
|
260 | server=None, folder=None, username=None, password=None, | |
85 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
261 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
86 |
xaxis="frequency", colormap='jet', normFactor=None , |
|
262 | xaxis="frequency", colormap='jet', normFactor=None , Selector = 0): | |
87 |
|
263 | |||
88 | """ |
|
264 | """ | |
89 |
|
265 | |||
@@ -119,23 +295,22 class FitGauPlot_(Figure): | |||||
119 | # else: |
|
295 | # else: | |
120 | # factor = normFactor |
|
296 | # factor = normFactor | |
121 | if xaxis == "frequency": |
|
297 | if xaxis == "frequency": | |
122 | x = dataOut.spc_range[0] |
|
298 | x = dataOut.spcparam_range[0] | |
123 | xlabel = "Frequency (kHz)" |
|
299 | xlabel = "Frequency (kHz)" | |
124 |
|
300 | |||
125 | elif xaxis == "time": |
|
301 | elif xaxis == "time": | |
126 | x = dataOut.spc_range[1] |
|
302 | x = dataOut.spcparam_range[1] | |
127 | xlabel = "Time (ms)" |
|
303 | xlabel = "Time (ms)" | |
128 |
|
304 | |||
129 | else: |
|
305 | else: | |
130 | x = dataOut.spc_range[2] |
|
306 | x = dataOut.spcparam_range[2] | |
131 | xlabel = "Velocity (m/s)" |
|
307 | xlabel = "Velocity (m/s)" | |
132 |
|
308 | |||
133 |
ylabel = "Range ( |
|
309 | ylabel = "Range (km)" | |
134 |
|
310 | |||
135 | y = dataOut.getHeiRange() |
|
311 | y = dataOut.getHeiRange() | |
136 |
|
312 | |||
137 |
z = dataOut. |
|
313 | z = dataOut.SPCparam[Selector] /1966080.0#/ dataOut.normFactor#GauSelector] #dataOut.data_spc/factor | |
138 | print('GausSPC', z[0,32,10:40]) |
|
|||
139 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
314 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
140 | zdB = 10*numpy.log10(z) |
|
315 | zdB = 10*numpy.log10(z) | |
141 |
|
316 | |||
@@ -657,7 +832,7 class WindProfilerPlot_(Figure): | |||||
657 | # tmax = None |
|
832 | # tmax = None | |
658 |
|
833 | |||
659 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
834 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
660 |
y = dataOut.heightList |
|
835 | y = dataOut.heightList | |
661 | z = dataOut.data_output.copy() |
|
836 | z = dataOut.data_output.copy() | |
662 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
837 | nplots = z.shape[0] #Number of wind dimensions estimated | |
663 | nplotsw = nplots |
|
838 | nplotsw = nplots | |
@@ -666,13 +841,14 class WindProfilerPlot_(Figure): | |||||
666 | #If there is a SNR function defined |
|
841 | #If there is a SNR function defined | |
667 | if dataOut.data_SNR is not None: |
|
842 | if dataOut.data_SNR is not None: | |
668 | nplots += 1 |
|
843 | nplots += 1 | |
669 | SNR = dataOut.data_SNR |
|
844 | SNR = dataOut.data_SNR[0] | |
670 |
SNRavg = |
|
845 | SNRavg = SNR#numpy.average(SNR, axis=0) | |
671 |
|
846 | |||
672 | SNRdB = 10*numpy.log10(SNR) |
|
847 | SNRdB = 10*numpy.log10(SNR) | |
673 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
848 | SNRavgdB = 10*numpy.log10(SNRavg) | |
674 |
|
849 | |||
675 |
if SNRthresh == None: |
|
850 | if SNRthresh == None: | |
|
851 | SNRthresh = -5.0 | |||
676 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
852 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
677 |
|
853 | |||
678 | for i in range(nplotsw): |
|
854 | for i in range(nplotsw): | |
@@ -741,8 +917,7 class WindProfilerPlot_(Figure): | |||||
741 | axes = self.axesList[i*self.__nsubplots] |
|
917 | axes = self.axesList[i*self.__nsubplots] | |
742 |
|
918 | |||
743 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
919 | z1 = z[i,:].reshape((1,-1))*windFactor[i] | |
744 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
920 | ||
745 |
|
||||
746 | axes.pcolorbuffer(x, y, z1, |
|
921 | axes.pcolorbuffer(x, y, z1, | |
747 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
922 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
748 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
923 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
@@ -792,8 +967,8 class ParametersPlot_(Figure): | |||||
792 | self.isConfig = False |
|
967 | self.isConfig = False | |
793 | self.__nsubplots = 1 |
|
968 | self.__nsubplots = 1 | |
794 |
|
969 | |||
795 |
self.WIDTH = |
|
970 | self.WIDTH = 300 | |
796 |
self.HEIGHT = |
|
971 | self.HEIGHT = 550 | |
797 | self.WIDTHPROF = 120 |
|
972 | self.WIDTHPROF = 120 | |
798 | self.HEIGHTPROF = 0 |
|
973 | self.HEIGHTPROF = 0 | |
799 | self.counter_imagwr = 0 |
|
974 | self.counter_imagwr = 0 | |
@@ -905,7 +1080,7 class ParametersPlot_(Figure): | |||||
905 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1080 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
906 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1081 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
907 | xlabel = "" |
|
1082 | xlabel = "" | |
908 |
ylabel = "Range ( |
|
1083 | ylabel = "Range (km)" | |
909 |
|
1084 | |||
910 | update_figfile = False |
|
1085 | update_figfile = False | |
911 |
|
1086 | |||
@@ -949,24 +1124,81 class ParametersPlot_(Figure): | |||||
949 |
|
1124 | |||
950 | self.setWinTitle(title) |
|
1125 | self.setWinTitle(title) | |
951 |
|
1126 | |||
952 | for i in range(self.nchan): |
|
1127 | # for i in range(self.nchan): | |
953 | index = channelIndexList[i] |
|
1128 | # index = channelIndexList[i] | |
954 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1129 | # title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
955 | axes = self.axesList[i*self.plotFact] |
|
1130 | # axes = self.axesList[i*self.plotFact] | |
956 | z1 = z[i,:].reshape((1,-1)) |
|
1131 | # z1 = z[i,:].reshape((1,-1)) | |
957 | axes.pcolorbuffer(x, y, z1, |
|
1132 | # axes.pcolorbuffer(x, y, z1, | |
958 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1133 | # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
959 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1134 | # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
960 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) |
|
1135 | # ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |
961 |
|
1136 | # | ||
962 | if showSNR: |
|
1137 | # if showSNR: | |
963 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1138 | # title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
964 | axes = self.axesList[i*self.plotFact + 1] |
|
1139 | # axes = self.axesList[i*self.plotFact + 1] | |
965 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) |
|
1140 | # SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |
966 | axes.pcolorbuffer(x, y, SNRdB1, |
|
1141 | # axes.pcolorbuffer(x, y, SNRdB1, | |
967 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1142 | # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
968 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1143 | # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
969 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') |
|
1144 | # ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |
|
1145 | ||||
|
1146 | i=0 | |||
|
1147 | index = channelIndexList[i] | |||
|
1148 | title = "Factor de reflectividad Z [dBZ]" | |||
|
1149 | axes = self.axesList[i*self.plotFact] | |||
|
1150 | z1 = z[i,:].reshape((1,-1)) | |||
|
1151 | axes.pcolorbuffer(x, y, z1, | |||
|
1152 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |||
|
1153 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1154 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |||
|
1155 | ||||
|
1156 | if showSNR: | |||
|
1157 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1158 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1159 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1160 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1161 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1162 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1163 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
|
1164 | ||||
|
1165 | i=1 | |||
|
1166 | index = channelIndexList[i] | |||
|
1167 | title = "Velocidad vertical Doppler [m/s]" | |||
|
1168 | axes = self.axesList[i*self.plotFact] | |||
|
1169 | z1 = z[i,:].reshape((1,-1)) | |||
|
1170 | axes.pcolorbuffer(x, y, z1, | |||
|
1171 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=-10, zmax=10, | |||
|
1172 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1173 | ticksize=9, cblabel='', cbsize="1%",colormap='seismic_r') | |||
|
1174 | ||||
|
1175 | if showSNR: | |||
|
1176 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1177 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1178 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1179 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1180 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1181 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1182 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
|
1183 | ||||
|
1184 | i=2 | |||
|
1185 | index = channelIndexList[i] | |||
|
1186 | title = "Intensidad de lluvia [mm/h]" | |||
|
1187 | axes = self.axesList[i*self.plotFact] | |||
|
1188 | z1 = z[i,:].reshape((1,-1)) | |||
|
1189 | axes.pcolorbuffer(x, y, z1, | |||
|
1190 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=40, | |||
|
1191 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1192 | ticksize=9, cblabel='', cbsize="1%",colormap='ocean_r') | |||
|
1193 | ||||
|
1194 | if showSNR: | |||
|
1195 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1196 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1197 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1198 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1199 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1200 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1201 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
970 |
|
1202 | |||
971 |
|
1203 | |||
972 | self.draw() |
|
1204 | self.draw() | |
@@ -1067,9 +1299,8 class Parameters1Plot_(Figure): | |||||
1067 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1299 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
1068 | server=None, folder=None, username=None, password=None, |
|
1300 | server=None, folder=None, username=None, password=None, | |
1069 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1301 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1070 | #print inspect.getargspec(self.run).args |
|
|||
1071 | """ |
|
|||
1072 |
|
1302 | |||
|
1303 | """ | |||
1073 | Input: |
|
1304 | Input: | |
1074 | dataOut : |
|
1305 | dataOut : | |
1075 | id : |
|
1306 | id : |
@@ -42,6 +42,8 class SpectraPlot_(Figure): | |||||
42 |
|
42 | |||
43 | self.__xfilter_ena = False |
|
43 | self.__xfilter_ena = False | |
44 | self.__yfilter_ena = False |
|
44 | self.__yfilter_ena = False | |
|
45 | ||||
|
46 | self.indice=1 | |||
45 |
|
47 | |||
46 | def getSubplots(self): |
|
48 | def getSubplots(self): | |
47 |
|
49 | |||
@@ -139,10 +141,9 class SpectraPlot_(Figure): | |||||
139 | x = dataOut.getVelRange(1) |
|
141 | x = dataOut.getVelRange(1) | |
140 | xlabel = "Velocity (m/s)" |
|
142 | xlabel = "Velocity (m/s)" | |
141 |
|
143 | |||
142 |
ylabel = "Range ( |
|
144 | ylabel = "Range (km)" | |
143 |
|
145 | |||
144 | y = dataOut.getHeiRange() |
|
146 | y = dataOut.getHeiRange() | |
145 |
|
||||
146 | z = dataOut.data_spc/factor |
|
147 | z = dataOut.data_spc/factor | |
147 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
148 | zdB = 10*numpy.log10(z) |
|
149 | zdB = 10*numpy.log10(z) | |
@@ -155,6 +156,7 class SpectraPlot_(Figure): | |||||
155 |
|
156 | |||
156 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
157 | title = wintitle + " Spectra" |
|
158 | title = wintitle + " Spectra" | |
|
159 | ||||
158 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
159 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
160 |
|
162 | |||
@@ -223,6 +225,7 class SpectraPlot_(Figure): | |||||
223 | ftp=ftp, |
|
225 | ftp=ftp, | |
224 | wr_period=wr_period, |
|
226 | wr_period=wr_period, | |
225 | thisDatetime=thisDatetime) |
|
227 | thisDatetime=thisDatetime) | |
|
228 | ||||
226 |
|
229 | |||
227 | return dataOut |
|
230 | return dataOut | |
228 | @MPDecorator |
|
231 | @MPDecorator | |
@@ -252,6 +255,8 class CrossSpectraPlot_(Figure): | |||||
252 | self.EXP_CODE = None |
|
255 | self.EXP_CODE = None | |
253 | self.SUB_EXP_CODE = None |
|
256 | self.SUB_EXP_CODE = None | |
254 | self.PLOT_POS = None |
|
257 | self.PLOT_POS = None | |
|
258 | ||||
|
259 | self.indice=0 | |||
255 |
|
260 | |||
256 | def getSubplots(self): |
|
261 | def getSubplots(self): | |
257 |
|
262 | |||
@@ -396,6 +401,7 class CrossSpectraPlot_(Figure): | |||||
396 | self.isConfig = True |
|
401 | self.isConfig = True | |
397 |
|
402 | |||
398 | self.setWinTitle(title) |
|
403 | self.setWinTitle(title) | |
|
404 | ||||
399 |
|
405 | |||
400 | for i in range(self.nplots): |
|
406 | for i in range(self.nplots): | |
401 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
407 | pair = dataOut.pairsList[pairsIndexList[i]] | |
@@ -420,7 +426,7 class CrossSpectraPlot_(Figure): | |||||
420 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
426 | xlabel=xlabel, ylabel=ylabel, title=title, | |
421 | ticksize=9, colormap=power_cmap, cblabel='') |
|
427 | ticksize=9, colormap=power_cmap, cblabel='') | |
422 |
|
428 | |||
423 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
429 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) | |
424 | coherence = numpy.abs(coherenceComplex) |
|
430 | coherence = numpy.abs(coherenceComplex) | |
425 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
431 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
426 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
432 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi | |
@@ -439,8 +445,6 class CrossSpectraPlot_(Figure): | |||||
439 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
445 | xlabel=xlabel, ylabel=ylabel, title=title, | |
440 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
446 | ticksize=9, colormap=phase_cmap, cblabel='') | |
441 |
|
447 | |||
442 |
|
||||
443 |
|
||||
444 | self.draw() |
|
448 | self.draw() | |
445 |
|
449 | |||
446 | self.save(figpath=figpath, |
|
450 | self.save(figpath=figpath, | |
@@ -470,7 +474,7 class RTIPlot_(Figure): | |||||
470 | self.__nsubplots = 1 |
|
474 | self.__nsubplots = 1 | |
471 |
|
475 | |||
472 | self.WIDTH = 800 |
|
476 | self.WIDTH = 800 | |
473 |
self.HEIGHT = |
|
477 | self.HEIGHT = 250 | |
474 | self.WIDTHPROF = 120 |
|
478 | self.WIDTHPROF = 120 | |
475 | self.HEIGHTPROF = 0 |
|
479 | self.HEIGHTPROF = 0 | |
476 | self.counter_imagwr = 0 |
|
480 | self.counter_imagwr = 0 | |
@@ -1497,9 +1501,6 class BeaconPhase_(Figure): | |||||
1497 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1501 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1498 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1502 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1499 |
|
1503 | |||
1500 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
|||
1501 | #print phase[dataOut.beacon_heiIndexList] |
|
|||
1502 |
|
||||
1503 | if dataOut.beacon_heiIndexList: |
|
1504 | if dataOut.beacon_heiIndexList: | |
1504 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1505 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1505 | else: |
|
1506 | else: |
@@ -434,7 +434,6 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='' | |||||
434 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
434 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): | |
435 |
|
435 | |||
436 | ax = iplot.axes |
|
436 | ax = iplot.axes | |
437 |
|
||||
438 | printLabels(ax, xlabel, ylabel, title) |
|
437 | printLabels(ax, xlabel, ylabel, title) | |
439 |
|
438 | |||
440 | for i in range(len(ax.lines)): |
|
439 | for i in range(len(ax.lines)): |
@@ -111,7 +111,6 class BLTRParamReader(JRODataReader, ProcessingUnit): | |||||
111 | timezone=0, |
|
111 | timezone=0, | |
112 | status_value=0, |
|
112 | status_value=0, | |
113 | **kwargs): |
|
113 | **kwargs): | |
114 |
|
||||
115 | self.path = path |
|
114 | self.path = path | |
116 | self.startDate = startDate |
|
115 | self.startDate = startDate | |
117 | self.endDate = endDate |
|
116 | self.endDate = endDate |
@@ -1815,7 +1815,7 class JRODataWriter(JRODataIO): | |||||
1815 |
|
1815 | |||
1816 | return 1 |
|
1816 | return 1 | |
1817 |
|
1817 | |||
1818 | def run(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): |
|
1818 | def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): | |
1819 |
|
1819 | |||
1820 | if not(self.isConfig): |
|
1820 | if not(self.isConfig): | |
1821 |
|
1821 |
This diff has been collapsed as it changes many lines, (607 lines changed) Show them Hide them | |||||
@@ -63,9 +63,6 class Header(object): | |||||
63 | if attr: |
|
63 | if attr: | |
64 | message += "%s = %s" % ("size", attr) + "\n" |
|
64 | message += "%s = %s" % ("size", attr) + "\n" | |
65 |
|
65 | |||
66 | # print message |
|
|||
67 |
|
||||
68 |
|
||||
69 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes |
|
66 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes | |
70 | ('FileMgcNumber', '<u4'), # 0x23020100 |
|
67 | ('FileMgcNumber', '<u4'), # 0x23020100 | |
71 | # No Of FDT data records in this file (0 or more) |
|
68 | # No Of FDT data records in this file (0 or more) | |
@@ -94,29 +91,6 class FileHeaderBLTR(Header): | |||||
94 |
|
91 | |||
95 | header = numpy.fromfile(startFp, FILE_STRUCTURE, 1) |
|
92 | header = numpy.fromfile(startFp, FILE_STRUCTURE, 1) | |
96 |
|
93 | |||
97 | print(' ') |
|
|||
98 | print('puntero file header', startFp.tell()) |
|
|||
99 | print(' ') |
|
|||
100 |
|
||||
101 | ''' numpy.fromfile(file, dtype, count, sep='') |
|
|||
102 | file : file or str |
|
|||
103 | Open file object or filename. |
|
|||
104 |
|
||||
105 | dtype : data-type |
|
|||
106 | Data type of the returned array. For binary files, it is used to determine |
|
|||
107 | the size and byte-order of the items in the file. |
|
|||
108 |
|
||||
109 | count : int |
|
|||
110 | Number of items to read. -1 means all items (i.e., the complete file). |
|
|||
111 |
|
||||
112 | sep : str |
|
|||
113 | Separator between items if file is a text file. Empty ("") separator means |
|
|||
114 | the file should be treated as binary. Spaces (" ") in the separator match zero |
|
|||
115 | or more whitespace characters. A separator consisting only of spaces must match |
|
|||
116 | at least one whitespace. |
|
|||
117 |
|
||||
118 | ''' |
|
|||
119 |
|
||||
120 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) |
|
94 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) | |
121 | # No Of FDT data records in this file (0 or more) |
|
95 | # No Of FDT data records in this file (0 or more) | |
122 | self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) |
|
96 | self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) | |
@@ -124,8 +98,6 class FileHeaderBLTR(Header): | |||||
124 | self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) |
|
98 | self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) | |
125 | self.SiteName = str(header['SiteName'][0]) |
|
99 | self.SiteName = str(header['SiteName'][0]) | |
126 |
|
100 | |||
127 | # print 'Numero de bloques', self.nFDTdataRecors |
|
|||
128 |
|
||||
129 | if self.size < 48: |
|
101 | if self.size < 48: | |
130 | return 0 |
|
102 | return 0 | |
131 |
|
103 | |||
@@ -316,36 +288,10 class RecordHeaderBLTR(Header): | |||||
316 | self.OffsetStartHeader = 48 |
|
288 | self.OffsetStartHeader = 48 | |
317 |
|
289 | |||
318 | def RHread(self, fp): |
|
290 | def RHread(self, fp): | |
319 | # print fp |
|
|||
320 | # startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. |
|
|||
321 | # The method tell() returns the current position of the file read/write pointer within the file. |
|
|||
322 | startFp = open(fp, "rb") |
|
291 | startFp = open(fp, "rb") | |
323 | # RecCounter=0 |
|
|||
324 | # Off2StartNxtRec=811248 |
|
|||
325 | OffRHeader = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec |
|
292 | OffRHeader = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | |
326 | print(' ') |
|
|||
327 | print('puntero Record Header', startFp.tell()) |
|
|||
328 | print(' ') |
|
|||
329 |
|
||||
330 | startFp.seek(OffRHeader, os.SEEK_SET) |
|
293 | startFp.seek(OffRHeader, os.SEEK_SET) | |
331 |
|
||||
332 | print(' ') |
|
|||
333 | print('puntero Record Header con seek', startFp.tell()) |
|
|||
334 | print(' ') |
|
|||
335 |
|
||||
336 | # print 'Posicion del bloque: ',OffRHeader |
|
|||
337 |
|
||||
338 | header = numpy.fromfile(startFp, RECORD_STRUCTURE, 1) |
|
294 | header = numpy.fromfile(startFp, RECORD_STRUCTURE, 1) | |
339 |
|
||||
340 | print(' ') |
|
|||
341 | print('puntero Record Header con seek', startFp.tell()) |
|
|||
342 | print(' ') |
|
|||
343 |
|
||||
344 | print(' ') |
|
|||
345 | # |
|
|||
346 | # print 'puntero Record Header despues de seek', header.tell() |
|
|||
347 | print(' ') |
|
|||
348 |
|
||||
349 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 |
|
295 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 | |
350 | self.RecCounter = int(header['RecCounter'][0]) |
|
296 | self.RecCounter = int(header['RecCounter'][0]) | |
351 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) |
|
297 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | |
@@ -397,52 +343,9 class RecordHeaderBLTR(Header): | |||||
397 |
|
343 | |||
398 | self.RHsize = 180 + 20 * self.nChannels |
|
344 | self.RHsize = 180 + 20 * self.nChannels | |
399 | self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 |
|
345 | self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 | |
400 | # print 'Datasize',self.Datasize |
|
|||
401 | endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec |
|
346 | endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | |
402 |
|
347 | |||
403 | print('==============================================') |
|
348 | ||
404 | print('RecMgcNumber ', self.RecMgcNumber) |
|
|||
405 | print('RecCounter ', self.RecCounter) |
|
|||
406 | print('Off2StartNxtRec ', self.Off2StartNxtRec) |
|
|||
407 | print('Off2StartData ', self.Off2StartData) |
|
|||
408 | print('Range Resolution ', self.SampResolution) |
|
|||
409 | print('First Height ', self.StartRangeSamp) |
|
|||
410 | print('PRF (Hz) ', self.PRFhz) |
|
|||
411 | print('Heights (K) ', self.nHeights) |
|
|||
412 | print('Channels (N) ', self.nChannels) |
|
|||
413 | print('Profiles (J) ', self.nProfiles) |
|
|||
414 | print('iCoh ', self.nCohInt) |
|
|||
415 | print('iInCoh ', self.nIncohInt) |
|
|||
416 | print('BeamAngleAzim ', self.BeamAngleAzim) |
|
|||
417 | print('BeamAngleZen ', self.BeamAngleZen) |
|
|||
418 |
|
||||
419 | # print 'ModoEnUso ',self.DualModeIndex |
|
|||
420 | # print 'UtcTime ',self.nUtime |
|
|||
421 | # print 'MiliSec ',self.nMilisec |
|
|||
422 | # print 'Exp TagName ',self.ExpTagName |
|
|||
423 | # print 'Exp Comment ',self.ExpComment |
|
|||
424 | # print 'FFT Window Index ',self.FFTwindowingInd |
|
|||
425 | # print 'N Dig. Channels ',self.nDigChannels |
|
|||
426 | print('Size de bloque ', self.RHsize) |
|
|||
427 | print('DataSize ', self.Datasize) |
|
|||
428 | print('BeamAngleAzim ', self.BeamAngleAzim) |
|
|||
429 | # print 'AntennaCoord0 ',self.AntennaCoord0 |
|
|||
430 | # print 'AntennaAngl0 ',self.AntennaAngl0 |
|
|||
431 | # print 'AntennaCoord1 ',self.AntennaCoord1 |
|
|||
432 | # print 'AntennaAngl1 ',self.AntennaAngl1 |
|
|||
433 | # print 'AntennaCoord2 ',self.AntennaCoord2 |
|
|||
434 | # print 'AntennaAngl2 ',self.AntennaAngl2 |
|
|||
435 | print('RecPhaseCalibr0 ', self.RecPhaseCalibr0) |
|
|||
436 | print('RecPhaseCalibr1 ', self.RecPhaseCalibr1) |
|
|||
437 | print('RecPhaseCalibr2 ', self.RecPhaseCalibr2) |
|
|||
438 | print('RecAmpCalibr0 ', self.RecAmpCalibr0) |
|
|||
439 | print('RecAmpCalibr1 ', self.RecAmpCalibr1) |
|
|||
440 | print('RecAmpCalibr2 ', self.RecAmpCalibr2) |
|
|||
441 | print('ReceiverGaindB0 ', self.ReceiverGaindB0) |
|
|||
442 | print('ReceiverGaindB1 ', self.ReceiverGaindB1) |
|
|||
443 | print('ReceiverGaindB2 ', self.ReceiverGaindB2) |
|
|||
444 | print('==============================================') |
|
|||
445 |
|
||||
446 | if OffRHeader > endFp: |
|
349 | if OffRHeader > endFp: | |
447 | sys.stderr.write( |
|
350 | sys.stderr.write( | |
448 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp) |
|
351 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp) | |
@@ -537,9 +440,6 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
537 | FileList.append(IndexFile) |
|
440 | FileList.append(IndexFile) | |
538 | nFiles += 1 |
|
441 | nFiles += 1 | |
539 |
|
442 | |||
540 | # print 'Files2Read' |
|
|||
541 | # print 'Existen '+str(nFiles)+' archivos .fdt' |
|
|||
542 |
|
||||
543 | self.filenameList = FileList # List of files from least to largest by names |
|
443 | self.filenameList = FileList # List of files from least to largest by names | |
544 |
|
444 | |||
545 | def run(self, **kwargs): |
|
445 | def run(self, **kwargs): | |
@@ -553,7 +453,6 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
553 | self.isConfig = True |
|
453 | self.isConfig = True | |
554 |
|
454 | |||
555 | self.getData() |
|
455 | self.getData() | |
556 | # print 'running' |
|
|||
557 |
|
456 | |||
558 | def setup(self, path=None, |
|
457 | def setup(self, path=None, | |
559 | startDate=None, |
|
458 | startDate=None, | |
@@ -590,22 +489,19 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
590 |
|
489 | |||
591 | if self.flagNoMoreFiles: |
|
490 | if self.flagNoMoreFiles: | |
592 | self.dataOut.flagNoData = True |
|
491 | self.dataOut.flagNoData = True | |
593 | print('NoData se vuelve true') |
|
|||
594 | return 0 |
|
492 | return 0 | |
595 |
|
493 | |||
596 | self.fp = self.path |
|
494 | self.fp = self.path | |
597 | self.Files2Read(self.fp) |
|
495 | self.Files2Read(self.fp) | |
598 | self.readFile(self.fp) |
|
496 | self.readFile(self.fp) | |
599 | self.dataOut.data_spc = self.data_spc |
|
497 | self.dataOut.data_spc = self.data_spc | |
600 |
self.dataOut.data_cspc = |
|
498 | self.dataOut.data_cspc =self.data_cspc | |
601 |
self.dataOut.data_output |
|
499 | self.dataOut.data_output=self.data_output | |
602 |
|
500 | |||
603 | print('self.dataOut.data_output', shape(self.dataOut.data_output)) |
|
501 | return self.dataOut.data_spc | |
604 |
|
502 | |||
605 | # self.removeDC() |
|
503 | ||
606 | return self.dataOut.data_spc |
|
504 | def readFile(self,fp): | |
607 |
|
||||
608 | def readFile(self, fp): |
|
|||
609 | ''' |
|
505 | ''' | |
610 | You must indicate if you are reading in Online or Offline mode and load the |
|
506 | You must indicate if you are reading in Online or Offline mode and load the | |
611 | The parameters for this file reading mode. |
|
507 | The parameters for this file reading mode. | |
@@ -615,23 +511,18 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
615 | 1. Get the BLTR FileHeader. |
|
511 | 1. Get the BLTR FileHeader. | |
616 | 2. Start reading the first block. |
|
512 | 2. Start reading the first block. | |
617 | ''' |
|
513 | ''' | |
618 |
|
514 | |||
619 | # The address of the folder is generated the name of the .fdt file that will be read |
|
|||
620 | print("File: ", self.fileSelector + 1) |
|
|||
621 |
|
||||
622 | if self.fileSelector < len(self.filenameList): |
|
515 | if self.fileSelector < len(self.filenameList): | |
623 |
|
516 | |||
624 | self.fpFile = str(fp) + '/' + \ |
|
517 | self.fpFile = str(fp) + '/' + \ | |
625 | str(self.filenameList[self.fileSelector]) |
|
518 | str(self.filenameList[self.fileSelector]) | |
626 | # print self.fpFile |
|
|||
627 | fheader = FileHeaderBLTR() |
|
519 | fheader = FileHeaderBLTR() | |
628 | fheader.FHread(self.fpFile) # Bltr FileHeader Reading |
|
520 | fheader.FHread(self.fpFile) # Bltr FileHeader Reading | |
629 | self.nFDTdataRecors = fheader.nFDTdataRecors |
|
521 | self.nFDTdataRecors = fheader.nFDTdataRecors | |
630 |
|
522 | |||
631 | self.readBlock() # Block reading |
|
523 | self.readBlock() # Block reading | |
632 | else: |
|
524 | else: | |
633 | print('readFile FlagNoData becomes true') |
|
525 | self.flagNoMoreFiles=True | |
634 | self.flagNoMoreFiles = True |
|
|||
635 | self.dataOut.flagNoData = True |
|
526 | self.dataOut.flagNoData = True | |
636 | return 0 |
|
527 | return 0 | |
637 |
|
528 | |||
@@ -658,12 +549,11 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
658 | 2. Fill the buffer with the current block number. |
|
549 | 2. Fill the buffer with the current block number. | |
659 |
|
550 | |||
660 | ''' |
|
551 | ''' | |
661 |
|
552 | |||
662 |
if self.BlockCounter < self.nFDTdataRecors |
|
553 | if self.BlockCounter < self.nFDTdataRecors-1: | |
663 | print(self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') |
|
554 | if self.ReadMode==1: | |
664 | if self.ReadMode == 1: |
|
555 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) | |
665 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter + 1) |
|
556 | elif self.ReadMode==0: | |
666 | elif self.ReadMode == 0: |
|
|||
667 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) |
|
557 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | |
668 |
|
558 | |||
669 | rheader.RHread(self.fpFile) # Bltr FileHeader Reading |
|
559 | rheader.RHread(self.fpFile) # Bltr FileHeader Reading | |
@@ -683,31 +573,26 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
683 |
|
573 | |||
684 | self.nRdPairs = len(self.dataOut.pairsList) |
|
574 | self.nRdPairs = len(self.dataOut.pairsList) | |
685 | self.dataOut.nRdPairs = self.nRdPairs |
|
575 | self.dataOut.nRdPairs = self.nRdPairs | |
686 |
|
576 | self.__firstHeigth=rheader.StartRangeSamp | ||
687 |
self.__ |
|
577 | self.__deltaHeigth=rheader.SampResolution | |
688 | self.__deltaHeigth = rheader.SampResolution |
|
578 | self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth | |
689 |
self.dataOut. |
|
579 | self.dataOut.channelList = range(self.nChannels) | |
690 | numpy.array(list(range(self.nHeights))) * self.__deltaHeigth |
|
580 | self.dataOut.nProfiles=rheader.nProfiles | |
691 | self.dataOut.channelList = list(range(self.nChannels)) |
|
581 | self.dataOut.nIncohInt=rheader.nIncohInt | |
692 |
self.dataOut.n |
|
582 | self.dataOut.nCohInt=rheader.nCohInt | |
693 |
self.dataOut. |
|
583 | self.dataOut.ippSeconds= 1/float(rheader.PRFhz) | |
694 |
self.dataOut. |
|
584 | self.dataOut.PRF=rheader.PRFhz | |
695 |
self.dataOut. |
|
585 | self.dataOut.nFFTPoints=rheader.nProfiles | |
696 |
self.dataOut. |
|
586 | self.dataOut.utctime=rheader.nUtime | |
697 |
self.dataOut. |
|
587 | self.dataOut.timeZone=0 | |
698 | self.dataOut.utctime = rheader.nUtime |
|
588 | self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt | |
699 | self.dataOut.timeZone = 0 |
|
589 | self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | |
700 | self.dataOut.normFactor = self.dataOut.nProfiles * \ |
|
590 | ||
701 | self.dataOut.nIncohInt * self.dataOut.nCohInt |
|
591 | self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN | |
702 | self.dataOut.outputInterval = self.dataOut.ippSeconds * \ |
|
592 | self.dataOut.velocityX=[] | |
703 | self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles |
|
593 | self.dataOut.velocityY=[] | |
704 |
|
594 | self.dataOut.velocityV=[] | ||
705 | self.data_output = numpy.ones([3, rheader.nHeights]) * numpy.NaN |
|
595 | ||
706 | print('self.data_output', shape(self.data_output)) |
|
|||
707 | self.dataOut.velocityX = [] |
|
|||
708 | self.dataOut.velocityY = [] |
|
|||
709 | self.dataOut.velocityV = [] |
|
|||
710 |
|
||||
711 |
|
|
596 | '''Block Reading, the Block Data is received and Reshape is used to give it | |
712 | shape. |
|
597 | shape. | |
713 | ''' |
|
598 | ''' | |
@@ -734,18 +619,17 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
734 | y = rho * numpy.sin(phi) |
|
619 | y = rho * numpy.sin(phi) | |
735 | return(x, y) |
|
620 | return(x, y) | |
736 |
|
621 | |||
737 |
if self.DualModeIndex |
|
622 | if self.DualModeIndex==self.ReadMode: | |
738 |
|
623 | |||
739 | self.data_fft = numpy.fromfile( |
|
624 | self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) | |
740 | startDATA, [('complex', '<c8')], self.nProfiles * self.nChannels * self.nHeights) |
|
625 | self.data_fft = numpy.empty(101376) | |
741 |
|
626 | |||
742 |
self.data_fft |
|
627 | self.data_fft=self.data_fft.astype(numpy.dtype('complex')) | |
743 |
|
628 | |||
744 | self.data_block = numpy.reshape( |
|
629 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) | |
745 | self.data_fft, (self.nHeights, self.nChannels, self.nProfiles)) |
|
630 | ||
746 |
|
631 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) | ||
747 | self.data_block = numpy.transpose(self.data_block, (1, 2, 0)) |
|
632 | ||
748 |
|
||||
749 | copy = self.data_block.copy() |
|
633 | copy = self.data_block.copy() | |
750 | spc = copy * numpy.conjugate(copy) |
|
634 | spc = copy * numpy.conjugate(copy) | |
751 |
|
635 | |||
@@ -756,18 +640,8 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
756 |
|
640 | |||
757 | z = self.data_spc.copy() # /factor |
|
641 | z = self.data_spc.copy() # /factor | |
758 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
642 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
759 | #zdB = 10*numpy.log10(z) |
|
643 | self.dataOut.data_spc=self.data_spc | |
760 | print(' ') |
|
644 | self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor | |
761 | print('Z: ') |
|
|||
762 | print(shape(z)) |
|
|||
763 | print(' ') |
|
|||
764 | print(' ') |
|
|||
765 |
|
||||
766 | self.dataOut.data_spc = self.data_spc |
|
|||
767 |
|
||||
768 | self.noise = self.dataOut.getNoise( |
|
|||
769 | ymin_index=80, ymax_index=132) # /factor |
|
|||
770 | #noisedB = 10*numpy.log10(self.noise) |
|
|||
771 |
|
645 | |||
772 | ySamples = numpy.ones([3, self.nProfiles]) |
|
646 | ySamples = numpy.ones([3, self.nProfiles]) | |
773 | phase = numpy.ones([3, self.nProfiles]) |
|
647 | phase = numpy.ones([3, self.nProfiles]) | |
@@ -778,20 +652,16 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
778 | PhaseInter = numpy.ones(3) |
|
652 | PhaseInter = numpy.ones(3) | |
779 |
|
653 | |||
780 | '''****** Getting CrossSpectra ******''' |
|
654 | '''****** Getting CrossSpectra ******''' | |
781 |
cspc |
|
655 | cspc=self.data_block.copy() | |
782 |
self.data_cspc |
|
656 | self.data_cspc=self.data_block.copy() | |
783 |
|
657 | |||
784 |
xFrec |
|
658 | xFrec=self.getVelRange(1) | |
785 |
VelRange |
|
659 | VelRange=self.getVelRange(1) | |
786 |
self.dataOut.VelRange |
|
660 | self.dataOut.VelRange=VelRange | |
787 |
|
|
661 | ||
788 |
|
|
662 | ||
789 | # print 'xFrec',xFrec |
|
663 | for i in range(self.nRdPairs): | |
790 |
|
|
664 | ||
791 | # print ' ' |
|
|||
792 | # Height=35 |
|
|||
793 | for i in range(self.nRdPairs): |
|
|||
794 |
|
||||
795 | chan_index0 = self.dataOut.pairsList[i][0] |
|
665 | chan_index0 = self.dataOut.pairsList[i][0] | |
796 | chan_index1 = self.dataOut.pairsList[i][1] |
|
666 | chan_index1 = self.dataOut.pairsList[i][1] | |
797 |
|
667 | |||
@@ -820,361 +690,8 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
820 |
|
690 | |||
821 | self.dataOut.ChanDist = self.ChanDist |
|
691 | self.dataOut.ChanDist = self.ChanDist | |
822 |
|
692 | |||
823 |
|
693 | self.BlockCounter+=2 | ||
824 | # for Height in range(self.nHeights): |
|
694 | ||
825 | # |
|
|||
826 | # for i in range(self.nRdPairs): |
|
|||
827 | # |
|
|||
828 | # '''****** Line of Data SPC ******''' |
|
|||
829 | # zline=z[i,:,Height] |
|
|||
830 | # |
|
|||
831 | # '''****** DC is removed ******''' |
|
|||
832 | # DC=Find(zline,numpy.amax(zline)) |
|
|||
833 | # zline[DC]=(zline[DC-1]+zline[DC+1])/2 |
|
|||
834 | # |
|
|||
835 | # |
|
|||
836 | # '''****** SPC is normalized ******''' |
|
|||
837 | # FactNorm= zline.copy() / numpy.sum(zline.copy()) |
|
|||
838 | # FactNorm= FactNorm/numpy.sum(FactNorm) |
|
|||
839 | # |
|
|||
840 | # SmoothSPC=moving_average(FactNorm,N=3) |
|
|||
841 | # |
|
|||
842 | # xSamples = ar(range(len(SmoothSPC))) |
|
|||
843 | # ySamples[i] = SmoothSPC-self.noise[i] |
|
|||
844 | # |
|
|||
845 | # for i in range(self.nRdPairs): |
|
|||
846 | # |
|
|||
847 | # '''****** Line of Data CSPC ******''' |
|
|||
848 | # cspcLine=self.data_cspc[i,:,Height].copy() |
|
|||
849 | # |
|
|||
850 | # |
|
|||
851 | # |
|
|||
852 | # '''****** CSPC is normalized ******''' |
|
|||
853 | # chan_index0 = self.dataOut.pairsList[i][0] |
|
|||
854 | # chan_index1 = self.dataOut.pairsList[i][1] |
|
|||
855 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) |
|
|||
856 | # |
|
|||
857 | # |
|
|||
858 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) |
|
|||
859 | # |
|
|||
860 | # |
|
|||
861 | # CSPCSamples[i] = CSPCNorm-self.noise[i] |
|
|||
862 | # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
|||
863 | # |
|
|||
864 | # '''****** DC is removed ******''' |
|
|||
865 | # DC=Find(coherence[i],numpy.amax(coherence[i])) |
|
|||
866 | # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 |
|
|||
867 | # coherence[i]= moving_average(coherence[i],N=2) |
|
|||
868 | # |
|
|||
869 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
|||
870 | # |
|
|||
871 | # |
|
|||
872 | # '''****** Getting fij width ******''' |
|
|||
873 | # |
|
|||
874 | # yMean=[] |
|
|||
875 | # yMean2=[] |
|
|||
876 | # |
|
|||
877 | # for j in range(len(ySamples[1])): |
|
|||
878 | # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
|||
879 | # |
|
|||
880 | # '''******* Getting fitting Gaussian ******''' |
|
|||
881 | # meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
|||
882 | # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
|||
883 | # #print 'Height',Height,'SNR', meanGauss/sigma**2 |
|
|||
884 | # |
|
|||
885 | # if (abs(meanGauss/sigma**2) > 0.0001) : |
|
|||
886 | # |
|
|||
887 | # try: |
|
|||
888 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
|||
889 | # |
|
|||
890 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
|||
891 | # FitGauss=gaus(xSamples,*popt) |
|
|||
892 | # |
|
|||
893 | # else: |
|
|||
894 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
895 | # print 'Verificador: Dentro', Height |
|
|||
896 | # except RuntimeError: |
|
|||
897 | # |
|
|||
898 | # try: |
|
|||
899 | # for j in range(len(ySamples[1])): |
|
|||
900 | # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) |
|
|||
901 | # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) |
|
|||
902 | # FitGauss=gaus(xSamples,*popt) |
|
|||
903 | # print 'Verificador: Exepcion1', Height |
|
|||
904 | # except RuntimeError: |
|
|||
905 | # |
|
|||
906 | # try: |
|
|||
907 | # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) |
|
|||
908 | # FitGauss=gaus(xSamples,*popt) |
|
|||
909 | # print 'Verificador: Exepcion2', Height |
|
|||
910 | # except RuntimeError: |
|
|||
911 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
912 | # print 'Verificador: Exepcion3', Height |
|
|||
913 | # else: |
|
|||
914 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
915 | # #print 'Verificador: Fuera', Height |
|
|||
916 | # |
|
|||
917 | # |
|
|||
918 | # |
|
|||
919 | # Maximun=numpy.amax(yMean) |
|
|||
920 | # eMinus1=Maximun*numpy.exp(-1) |
|
|||
921 | # |
|
|||
922 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
|||
923 | # HalfWidth= xFrec[HWpos] |
|
|||
924 | # GCpos=Find(FitGauss, numpy.amax(FitGauss)) |
|
|||
925 | # Vpos=Find(FactNorm, numpy.amax(FactNorm)) |
|
|||
926 | # #Vpos=numpy.sum(FactNorm)/len(FactNorm) |
|
|||
927 | # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) |
|
|||
928 | # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos |
|
|||
929 | # '''****** Getting Fij ******''' |
|
|||
930 | # |
|
|||
931 | # GaussCenter=xFrec[GCpos] |
|
|||
932 | # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
|||
933 | # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
|||
934 | # else: |
|
|||
935 | # Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
|||
936 | # |
|
|||
937 | # '''****** Getting Frecuency range of significant data ******''' |
|
|||
938 | # |
|
|||
939 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
|||
940 | # |
|
|||
941 | # if Rangpos<GCpos: |
|
|||
942 | # Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
|||
943 | # else: |
|
|||
944 | # Range=numpy.array([2*GCpos-Rangpos,Rangpos]) |
|
|||
945 | # |
|
|||
946 | # FrecRange=xFrec[Range[0]:Range[1]] |
|
|||
947 | # |
|
|||
948 | # #print 'FrecRange', FrecRange |
|
|||
949 | # '''****** Getting SCPC Slope ******''' |
|
|||
950 | # |
|
|||
951 | # for i in range(self.nRdPairs): |
|
|||
952 | # |
|
|||
953 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: |
|
|||
954 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
|||
955 | # |
|
|||
956 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
|||
957 | # PhaseSlope[i]=slope |
|
|||
958 | # PhaseInter[i]=intercept |
|
|||
959 | # else: |
|
|||
960 | # PhaseSlope[i]=0 |
|
|||
961 | # PhaseInter[i]=0 |
|
|||
962 | # |
|
|||
963 | # # plt.figure(i+15) |
|
|||
964 | # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) |
|
|||
965 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
966 | # # plt.ylabel('Magnitud') |
|
|||
967 | # # #plt.subplot(311+i) |
|
|||
968 | # # plt.plot(FrecRange,PhaseRange,'b') |
|
|||
969 | # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') |
|
|||
970 | # |
|
|||
971 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) |
|
|||
972 | # |
|
|||
973 | # |
|
|||
974 | # '''Getting constant C''' |
|
|||
975 | # cC=(Fij*numpy.pi)**2 |
|
|||
976 | # |
|
|||
977 | # # '''Getting Eij and Nij''' |
|
|||
978 | # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) |
|
|||
979 | # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) |
|
|||
980 | # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) |
|
|||
981 | # # |
|
|||
982 | # # E01=AntennaX0-AntennaX1 |
|
|||
983 | # # N01=AntennaY0-AntennaY1 |
|
|||
984 | # # |
|
|||
985 | # # E02=AntennaX0-AntennaX2 |
|
|||
986 | # # N02=AntennaY0-AntennaY2 |
|
|||
987 | # # |
|
|||
988 | # # E12=AntennaX1-AntennaX2 |
|
|||
989 | # # N12=AntennaY1-AntennaY2 |
|
|||
990 | # |
|
|||
991 | # '''****** Getting constants F and G ******''' |
|
|||
992 | # MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
|||
993 | # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
|||
994 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
|||
995 | # MijResults=numpy.array([MijResult0,MijResult1]) |
|
|||
996 | # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
|||
997 | # |
|
|||
998 | # '''****** Getting constants A, B and H ******''' |
|
|||
999 | # W01=numpy.amax(coherence[0]) |
|
|||
1000 | # W02=numpy.amax(coherence[1]) |
|
|||
1001 | # W12=numpy.amax(coherence[2]) |
|
|||
1002 | # |
|
|||
1003 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1004 | # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1005 | # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1006 | # |
|
|||
1007 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
|||
1008 | # |
|
|||
1009 | # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
|||
1010 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
|||
1011 | # |
|
|||
1012 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
|||
1013 | # |
|
|||
1014 | # VxVyResults=numpy.array([-cF,-cG]) |
|
|||
1015 | # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
|||
1016 | # Vzon = Vy |
|
|||
1017 | # Vmer = Vx |
|
|||
1018 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
|||
1019 | # Vang=numpy.arctan2(Vmer,Vzon) |
|
|||
1020 | # |
|
|||
1021 | # if abs(Vy)<100 and abs(Vy)> 0.: |
|
|||
1022 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag |
|
|||
1023 | # #print 'Vmag',Vmag |
|
|||
1024 | # else: |
|
|||
1025 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) |
|
|||
1026 | # |
|
|||
1027 | # if abs(Vx)<100 and abs(Vx) > 0.: |
|
|||
1028 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang |
|
|||
1029 | # #print 'Vang',Vang |
|
|||
1030 | # else: |
|
|||
1031 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) |
|
|||
1032 | # |
|
|||
1033 | # if abs(GaussCenter)<2: |
|
|||
1034 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) |
|
|||
1035 | # |
|
|||
1036 | # else: |
|
|||
1037 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) |
|
|||
1038 | # |
|
|||
1039 | # |
|
|||
1040 | # # print '********************************************' |
|
|||
1041 | # # print 'HalfWidth ', HalfWidth |
|
|||
1042 | # # print 'Maximun ', Maximun |
|
|||
1043 | # # print 'eMinus1 ', eMinus1 |
|
|||
1044 | # # print 'Rangpos ', Rangpos |
|
|||
1045 | # # print 'GaussCenter ',GaussCenter |
|
|||
1046 | # # print 'E01 ',E01 |
|
|||
1047 | # # print 'N01 ',N01 |
|
|||
1048 | # # print 'E02 ',E02 |
|
|||
1049 | # # print 'N02 ',N02 |
|
|||
1050 | # # print 'E12 ',E12 |
|
|||
1051 | # # print 'N12 ',N12 |
|
|||
1052 | # #print 'self.dataOut.velocityX ', self.dataOut.velocityX |
|
|||
1053 | # # print 'Fij ', Fij |
|
|||
1054 | # # print 'cC ', cC |
|
|||
1055 | # # print 'cF ', cF |
|
|||
1056 | # # print 'cG ', cG |
|
|||
1057 | # # print 'cA ', cA |
|
|||
1058 | # # print 'cB ', cB |
|
|||
1059 | # # print 'cH ', cH |
|
|||
1060 | # # print 'Vx ', Vx |
|
|||
1061 | # # print 'Vy ', Vy |
|
|||
1062 | # # print 'Vmag ', Vmag |
|
|||
1063 | # # print 'Vang ', Vang*180/numpy.pi |
|
|||
1064 | # # print 'PhaseSlope ',PhaseSlope[0] |
|
|||
1065 | # # print 'PhaseSlope ',PhaseSlope[1] |
|
|||
1066 | # # print 'PhaseSlope ',PhaseSlope[2] |
|
|||
1067 | # # print '********************************************' |
|
|||
1068 | # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) |
|
|||
1069 | # |
|
|||
1070 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) |
|
|||
1071 | # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) |
|
|||
1072 | # #print 'self.dataOut.velocityV', self.dataOut.velocityV |
|
|||
1073 | # |
|
|||
1074 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) |
|
|||
1075 | # self.data_output[1]=numpy.array(self.dataOut.velocityY) |
|
|||
1076 | # self.data_output[2]=numpy.array(self.dataOut.velocityV) |
|
|||
1077 | # |
|
|||
1078 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] |
|
|||
1079 | # print ' ' |
|
|||
1080 | # print 'VmagAverage',numpy.mean(prin) |
|
|||
1081 | # print ' ' |
|
|||
1082 | # # plt.figure(5) |
|
|||
1083 | # # plt.subplot(211) |
|
|||
1084 | # # plt.plot(self.dataOut.velocityX,'yo:') |
|
|||
1085 | # # plt.subplot(212) |
|
|||
1086 | # # plt.plot(self.dataOut.velocityY,'yo:') |
|
|||
1087 | # |
|
|||
1088 | # # plt.figure(1) |
|
|||
1089 | # # # plt.subplot(121) |
|
|||
1090 | # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') |
|
|||
1091 | # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
1092 | # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
1093 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
1094 | # # # plt.legend() |
|
|||
1095 | # # plt.title('DATOS A ALTURA DE 2850 METROS') |
|
|||
1096 | # # |
|
|||
1097 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1098 | # # plt.ylabel('Magnitud') |
|
|||
1099 | # # # plt.subplot(122) |
|
|||
1100 | # # # plt.title('Fit for Time Constant') |
|
|||
1101 | # # #plt.plot(xFrec,zline) |
|
|||
1102 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1103 | # # plt.plot(xFrec,FactNorm) |
|
|||
1104 | # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1105 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1106 | # # |
|
|||
1107 | # # plt.figure(10) |
|
|||
1108 | # # # plt.subplot(121) |
|
|||
1109 | # # plt.plot(xFrec,ySamples[0],'b',label='Ch0') |
|
|||
1110 | # # plt.plot(xFrec,ySamples[1],'y',label='Ch1') |
|
|||
1111 | # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
1112 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
1113 | # # plt.legend() |
|
|||
1114 | # # plt.title('SELFSPECTRA EN CANALES') |
|
|||
1115 | # # |
|
|||
1116 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1117 | # # plt.ylabel('Magnitud') |
|
|||
1118 | # # # plt.subplot(122) |
|
|||
1119 | # # # plt.title('Fit for Time Constant') |
|
|||
1120 | # # #plt.plot(xFrec,zline) |
|
|||
1121 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1122 | # # # plt.plot(xFrec,FactNorm) |
|
|||
1123 | # # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1124 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1125 | # # |
|
|||
1126 | # # plt.figure(9) |
|
|||
1127 | # # |
|
|||
1128 | # # |
|
|||
1129 | # # plt.title('DATOS SUAVIZADOS') |
|
|||
1130 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1131 | # # plt.ylabel('Magnitud') |
|
|||
1132 | # # plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1133 | # # |
|
|||
1134 | # # #plt.plot(xFrec,FactNorm) |
|
|||
1135 | # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1136 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1137 | # # # |
|
|||
1138 | # # plt.figure(2) |
|
|||
1139 | # # # #plt.subplot(121) |
|
|||
1140 | # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') |
|
|||
1141 | # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') |
|
|||
1142 | # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') |
|
|||
1143 | # # # #plt.plot(xFrec,phase) |
|
|||
1144 | # # # plt.xlabel('Suavizado, promediado KHz') |
|
|||
1145 | # # plt.title('SELFSPECTRA PROMEDIADO') |
|
|||
1146 | # # # #plt.subplot(122) |
|
|||
1147 | # # # #plt.plot(xSamples,zline) |
|
|||
1148 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1149 | # # plt.ylabel('Magnitud') |
|
|||
1150 | # # plt.legend() |
|
|||
1151 | # # # |
|
|||
1152 | # # # plt.figure(3) |
|
|||
1153 | # # # plt.subplot(311) |
|
|||
1154 | # # # #plt.plot(xFrec,phase[0]) |
|
|||
1155 | # # # plt.plot(xFrec,phase[0],'g') |
|
|||
1156 | # # # plt.subplot(312) |
|
|||
1157 | # # # plt.plot(xFrec,phase[1],'g') |
|
|||
1158 | # # # plt.subplot(313) |
|
|||
1159 | # # # plt.plot(xFrec,phase[2],'g') |
|
|||
1160 | # # # #plt.plot(xFrec,phase[2]) |
|
|||
1161 | # # # |
|
|||
1162 | # # # plt.figure(4) |
|
|||
1163 | # # # |
|
|||
1164 | # # # plt.plot(xSamples,coherence[0],'b') |
|
|||
1165 | # # # plt.plot(xSamples,coherence[1],'r') |
|
|||
1166 | # # # plt.plot(xSamples,coherence[2],'g') |
|
|||
1167 | # # plt.show() |
|
|||
1168 | # # # |
|
|||
1169 | # # # plt.clf() |
|
|||
1170 | # # # plt.cla() |
|
|||
1171 | # # # plt.close() |
|
|||
1172 | # |
|
|||
1173 | # print ' ' |
|
|||
1174 |
|
||||
1175 | self.BlockCounter += 2 |
|
|||
1176 |
|
||||
1177 | else: |
|
695 | else: | |
1178 |
self.fileSelector |
|
696 | self.fileSelector+=1 | |
1179 |
self.BlockCounter |
|
697 | self.BlockCounter=0 | |
1180 | print("Next File") No newline at end of file |
|
@@ -179,9 +179,6 class ParamReader(JRODataReader,ProcessingUnit): | |||||
179 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) |
|
179 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) | |
180 | print() |
|
180 | print() | |
181 |
|
181 | |||
182 | # for i in range(len(filenameList)): |
|
|||
183 | # print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) |
|
|||
184 |
|
||||
185 | self.filenameList = filenameList |
|
182 | self.filenameList = filenameList | |
186 | self.datetimeList = datetimeList |
|
183 | self.datetimeList = datetimeList | |
187 |
|
184 | |||
@@ -504,20 +501,11 class ParamReader(JRODataReader,ProcessingUnit): | |||||
504 |
|
501 | |||
505 | def getData(self): |
|
502 | def getData(self): | |
506 |
|
503 | |||
507 | # if self.flagNoMoreFiles: |
|
|||
508 | # self.dataOut.flagNoData = True |
|
|||
509 | # print 'Process finished' |
|
|||
510 | # return 0 |
|
|||
511 | # |
|
|||
512 | if self.blockIndex==self.blocksPerFile: |
|
504 | if self.blockIndex==self.blocksPerFile: | |
513 | if not( self.__setNextFileOffline() ): |
|
505 | if not( self.__setNextFileOffline() ): | |
514 | self.dataOut.flagNoData = True |
|
506 | self.dataOut.flagNoData = True | |
515 | return 0 |
|
507 | return 0 | |
516 |
|
508 | |||
517 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers |
|
|||
518 | # self.dataOut.flagNoData = True |
|
|||
519 | # return 0 |
|
|||
520 | # self.__readData() |
|
|||
521 | self.__setDataOut() |
|
509 | self.__setDataOut() | |
522 | self.dataOut.flagNoData = False |
|
510 | self.dataOut.flagNoData = False | |
523 |
|
511 | |||
@@ -637,7 +625,10 class ParamWriter(Operation): | |||||
637 | dsDict['variable'] = self.dataList[i] |
|
625 | dsDict['variable'] = self.dataList[i] | |
638 | #--------------------- Conditionals ------------------------ |
|
626 | #--------------------- Conditionals ------------------------ | |
639 | #There is no data |
|
627 | #There is no data | |
|
628 | ||||
|
629 | ||||
640 | if dataAux is None: |
|
630 | if dataAux is None: | |
|
631 | ||||
641 | return 0 |
|
632 | return 0 | |
642 |
|
633 | |||
643 | #Not array, just a number |
|
634 | #Not array, just a number | |
@@ -821,7 +812,7 class ParamWriter(Operation): | |||||
821 | return False |
|
812 | return False | |
822 |
|
813 | |||
823 | def setNextFile(self): |
|
814 | def setNextFile(self): | |
824 |
|
815 | |||
825 | ext = self.ext |
|
816 | ext = self.ext | |
826 | path = self.path |
|
817 | path = self.path | |
827 | setFile = self.setFile |
|
818 | setFile = self.setFile | |
@@ -1095,7 +1086,6 class ParamWriter(Operation): | |||||
1095 | return |
|
1086 | return | |
1096 |
|
1087 | |||
1097 | self.isConfig = True |
|
1088 | self.isConfig = True | |
1098 | # self.putMetadata() |
|
|||
1099 | self.setNextFile() |
|
1089 | self.setNextFile() | |
1100 |
|
1090 | |||
1101 | self.putData() |
|
1091 | self.putData() |
@@ -413,9 +413,7 class SpectraWriter(JRODataWriter, Operation): | |||||
413 |
|
413 | |||
414 | data_dc = None |
|
414 | data_dc = None | |
415 |
|
415 | |||
416 | # dataOut = None |
|
416 | def __init__(self): | |
417 |
|
||||
418 | def __init__(self):#, **kwargs): |
|
|||
419 | """ |
|
417 | """ | |
420 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. |
|
418 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. | |
421 |
|
419 | |||
@@ -429,9 +427,7 class SpectraWriter(JRODataWriter, Operation): | |||||
429 | Return: None |
|
427 | Return: None | |
430 | """ |
|
428 | """ | |
431 |
|
429 | |||
432 |
Operation.__init__(self) |
|
430 | Operation.__init__(self) | |
433 |
|
||||
434 | #self.isConfig = False |
|
|||
435 |
|
431 | |||
436 | self.nTotalBlocks = 0 |
|
432 | self.nTotalBlocks = 0 | |
437 |
|
433 | |||
@@ -496,7 +492,7 class SpectraWriter(JRODataWriter, Operation): | |||||
496 |
|
492 | |||
497 |
|
493 | |||
498 | def writeBlock(self): |
|
494 | def writeBlock(self): | |
499 | """ |
|
495 | """processingHeaderObj | |
500 | Escribe el buffer en el file designado |
|
496 | Escribe el buffer en el file designado | |
501 |
|
497 | |||
502 | Affected: |
|
498 | Affected: | |
@@ -519,8 +515,10 class SpectraWriter(JRODataWriter, Operation): | |||||
519 | data.tofile(self.fp) |
|
515 | data.tofile(self.fp) | |
520 |
|
516 | |||
521 | if self.data_cspc is not None: |
|
517 | if self.data_cspc is not None: | |
522 | data = numpy.zeros( self.shape_cspc_Buffer, self.dtype ) |
|
518 | ||
523 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) |
|
519 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) | |
|
520 | #data = numpy.zeros( numpy.shape(cspc), self.dtype ) | |||
|
521 | #print 'data.shape', self.shape_cspc_Buffer | |||
524 | if not self.processingHeaderObj.shif_fft: |
|
522 | if not self.processingHeaderObj.shif_fft: | |
525 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
523 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |
526 | data['real'] = cspc.real |
|
524 | data['real'] = cspc.real | |
@@ -529,8 +527,9 class SpectraWriter(JRODataWriter, Operation): | |||||
529 | data.tofile(self.fp) |
|
527 | data.tofile(self.fp) | |
530 |
|
528 | |||
531 | if self.data_dc is not None: |
|
529 | if self.data_dc is not None: | |
532 | data = numpy.zeros( self.shape_dc_Buffer, self.dtype ) |
|
530 | ||
533 | dc = self.data_dc |
|
531 | dc = self.data_dc | |
|
532 | data = numpy.zeros( numpy.shape(dc), self.dtype ) | |||
534 | data['real'] = dc.real |
|
533 | data['real'] = dc.real | |
535 | data['imag'] = dc.imag |
|
534 | data['imag'] = dc.imag | |
536 | data = data.reshape((-1)) |
|
535 | data = data.reshape((-1)) |
This diff has been collapsed as it changes many lines, (1209 lines changed) Show them Hide them | |||||
@@ -10,11 +10,7 import importlib | |||||
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import types |
|
|||
14 | from functools import partial |
|
|||
15 | import time |
|
13 | import time | |
16 | #from sklearn.cluster import KMeans |
|
|||
17 |
|
||||
18 |
|
14 | |||
19 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
20 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
@@ -128,6 +124,7 class ParametersProc(ProcessingUnit): | |||||
128 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
124 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
129 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
125 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
130 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
126 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
|
127 | # self.dataOut.normFactor = self.dataIn.normFactor | |||
131 | self.dataOut.pairsList = self.dataIn.pairsList |
|
128 | self.dataOut.pairsList = self.dataIn.pairsList | |
132 | self.dataOut.groupList = self.dataIn.pairsList |
|
129 | self.dataOut.groupList = self.dataIn.pairsList | |
133 | self.dataOut.flagNoData = False |
|
130 | self.dataOut.flagNoData = False | |
@@ -136,9 +133,9 class ParametersProc(ProcessingUnit): | |||||
136 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
133 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
137 | else: self.dataOut.ChanDist = None |
|
134 | else: self.dataOut.ChanDist = None | |
138 |
|
135 | |||
139 | if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
136 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
140 | self.dataOut.VelRange = self.dataIn.VelRange |
|
137 | # self.dataOut.VelRange = self.dataIn.VelRange | |
141 | else: self.dataOut.VelRange = None |
|
138 | #else: self.dataOut.VelRange = None | |
142 |
|
139 | |||
143 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
140 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
144 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
141 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
@@ -184,9 +181,112 class ParametersProc(ProcessingUnit): | |||||
184 | def target(tups): |
|
181 | def target(tups): | |
185 |
|
182 | |||
186 | obj, args = tups |
|
183 | obj, args = tups | |
187 | #print 'TARGETTT', obj, args |
|
184 | ||
188 | return obj.FitGau(args) |
|
185 | return obj.FitGau(args) | |
189 |
|
186 | |||
|
187 | ||||
|
188 | class SpectralFilters(Operation): | |||
|
189 | ||||
|
190 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |||
|
191 | ||||
|
192 | LimitR : It is the limit in m/s of Rainfall | |||
|
193 | LimitW : It is the limit in m/s for Winds | |||
|
194 | ||||
|
195 | Input: | |||
|
196 | ||||
|
197 | self.dataOut.data_pre : SPC and CSPC | |||
|
198 | self.dataOut.spc_range : To select wind and rainfall velocities | |||
|
199 | ||||
|
200 | Affected: | |||
|
201 | ||||
|
202 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |||
|
203 | self.dataOut.spcparam_range : Used in SpcParamPlot | |||
|
204 | self.dataOut.SPCparam : Used in PrecipitationProc | |||
|
205 | ||||
|
206 | ||||
|
207 | ''' | |||
|
208 | ||||
|
209 | def __init__(self): | |||
|
210 | Operation.__init__(self) | |||
|
211 | self.i=0 | |||
|
212 | ||||
|
213 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |||
|
214 | ||||
|
215 | ||||
|
216 | #Limite de vientos | |||
|
217 | LimitR = PositiveLimit | |||
|
218 | LimitN = NegativeLimit | |||
|
219 | ||||
|
220 | self.spc = dataOut.data_pre[0].copy() | |||
|
221 | self.cspc = dataOut.data_pre[1].copy() | |||
|
222 | ||||
|
223 | self.Num_Hei = self.spc.shape[2] | |||
|
224 | self.Num_Bin = self.spc.shape[1] | |||
|
225 | self.Num_Chn = self.spc.shape[0] | |||
|
226 | ||||
|
227 | VelRange = dataOut.spc_range[2] | |||
|
228 | TimeRange = dataOut.spc_range[1] | |||
|
229 | FrecRange = dataOut.spc_range[0] | |||
|
230 | ||||
|
231 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |||
|
232 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |||
|
233 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |||
|
234 | ||||
|
235 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |||
|
236 | Breaker1R=numpy.where(VelRange == Breaker1R) | |||
|
237 | ||||
|
238 | Delta = self.Num_Bin/2 - Breaker1R[0] | |||
|
239 | ||||
|
240 | ||||
|
241 | '''Reacomodando SPCrange''' | |||
|
242 | ||||
|
243 | VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0) | |||
|
244 | ||||
|
245 | VelRange[-(self.Num_Bin/2):]+= Vmax | |||
|
246 | ||||
|
247 | FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0) | |||
|
248 | ||||
|
249 | FrecRange[-(self.Num_Bin/2):]+= Fmax | |||
|
250 | ||||
|
251 | TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0) | |||
|
252 | ||||
|
253 | TimeRange[-(self.Num_Bin/2):]+= Tmax | |||
|
254 | ||||
|
255 | ''' ------------------ ''' | |||
|
256 | ||||
|
257 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |||
|
258 | Breaker2R=numpy.where(VelRange == Breaker2R) | |||
|
259 | ||||
|
260 | ||||
|
261 | SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1) | |||
|
262 | ||||
|
263 | SPCcut = SPCroll.copy() | |||
|
264 | for i in range(self.Num_Chn): | |||
|
265 | ||||
|
266 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |||
|
267 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |||
|
268 | ||||
|
269 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |||
|
270 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |||
|
271 | ||||
|
272 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |||
|
273 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |||
|
274 | ||||
|
275 | SPC_ch1 = SPCroll | |||
|
276 | ||||
|
277 | SPC_ch2 = SPCcut | |||
|
278 | ||||
|
279 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |||
|
280 | dataOut.SPCparam = numpy.asarray(SPCparam) | |||
|
281 | ||||
|
282 | ||||
|
283 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |||
|
284 | ||||
|
285 | dataOut.spcparam_range[2]=VelRange | |||
|
286 | dataOut.spcparam_range[1]=TimeRange | |||
|
287 | dataOut.spcparam_range[0]=FrecRange | |||
|
288 | ||||
|
289 | ||||
190 | class GaussianFit(Operation): |
|
290 | class GaussianFit(Operation): | |
191 |
|
291 | |||
192 | ''' |
|
292 | ''' | |
@@ -198,15 +298,15 class GaussianFit(Operation): | |||||
198 | self.dataOut.data_pre : SelfSpectra |
|
298 | self.dataOut.data_pre : SelfSpectra | |
199 |
|
299 | |||
200 | Output: |
|
300 | Output: | |
201 |
self.dataOut. |
|
301 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
202 |
|
302 | |||
203 | ''' |
|
303 | ''' | |
204 |
def __init__(self |
|
304 | def __init__(self): | |
205 |
Operation.__init__(self |
|
305 | Operation.__init__(self) | |
206 | self.i=0 |
|
306 | self.i=0 | |
207 |
|
307 | |||
208 |
|
308 | |||
209 |
def run(self, dataOut, num_intg=7, pnoise=1., |
|
309 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
210 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
310 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
211 | input: spc |
|
311 | input: spc | |
212 | output: |
|
312 | output: | |
@@ -214,31 +314,12 class GaussianFit(Operation): | |||||
214 | """ |
|
314 | """ | |
215 |
|
315 | |||
216 | self.spc = dataOut.data_pre[0].copy() |
|
316 | self.spc = dataOut.data_pre[0].copy() | |
217 |
|
||||
218 |
|
||||
219 | print('SelfSpectra Shape', numpy.asarray(self.spc).shape) |
|
|||
220 |
|
||||
221 |
|
||||
222 | #plt.figure(50) |
|
|||
223 | #plt.subplot(121) |
|
|||
224 | #plt.plot(self.spc,'k',label='spc(66)') |
|
|||
225 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
226 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
227 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
228 | #plt.legend() |
|
|||
229 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
|||
230 | #plt.show() |
|
|||
231 |
|
||||
232 | self.Num_Hei = self.spc.shape[2] |
|
317 | self.Num_Hei = self.spc.shape[2] | |
233 | #self.Num_Bin = len(self.spc) |
|
|||
234 | self.Num_Bin = self.spc.shape[1] |
|
318 | self.Num_Bin = self.spc.shape[1] | |
235 | self.Num_Chn = self.spc.shape[0] |
|
319 | self.Num_Chn = self.spc.shape[0] | |
236 |
|
||||
237 | Vrange = dataOut.abscissaList |
|
320 | Vrange = dataOut.abscissaList | |
238 |
|
321 | |||
239 | #print 'self.spc2', numpy.asarray(self.spc).shape |
|
322 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
240 |
|
||||
241 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) |
|
|||
242 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
323 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
243 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
324 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
244 | SPC_ch1[:] = numpy.NaN |
|
325 | SPC_ch1[:] = numpy.NaN | |
@@ -250,272 +331,12 class GaussianFit(Operation): | |||||
250 | noise_ = dataOut.spc_noise[0].copy() |
|
331 | noise_ = dataOut.spc_noise[0].copy() | |
251 |
|
332 | |||
252 |
|
333 | |||
253 |
|
||||
254 | pool = Pool(processes=self.Num_Chn) |
|
334 | pool = Pool(processes=self.Num_Chn) | |
255 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
335 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
256 | objs = [self for __ in range(self.Num_Chn)] |
|
336 | objs = [self for __ in range(self.Num_Chn)] | |
257 | attrs = list(zip(objs, args)) |
|
337 | attrs = list(zip(objs, args)) | |
258 | gauSPC = pool.map(target, attrs) |
|
338 | gauSPC = pool.map(target, attrs) | |
259 |
dataOut. |
|
339 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
260 | # ret = [] |
|
|||
261 | # for n in range(self.Num_Chn): |
|
|||
262 | # self.FitGau(args[n]) |
|
|||
263 | # dataOut.GauSPC = ret |
|
|||
264 |
|
||||
265 |
|
||||
266 |
|
||||
267 | # for ch in range(self.Num_Chn): |
|
|||
268 | # |
|
|||
269 | # for ht in range(self.Num_Hei): |
|
|||
270 | # #print (numpy.asarray(self.spc).shape) |
|
|||
271 | # spc = numpy.asarray(self.spc)[ch,:,ht] |
|
|||
272 | # |
|
|||
273 | # ############################################# |
|
|||
274 | # # normalizing spc and noise |
|
|||
275 | # # This part differs from gg1 |
|
|||
276 | # spc_norm_max = max(spc) |
|
|||
277 | # spc = spc / spc_norm_max |
|
|||
278 | # pnoise = pnoise / spc_norm_max |
|
|||
279 | # ############################################# |
|
|||
280 | # |
|
|||
281 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's |
|
|||
282 | # fatspectra=1.0 |
|
|||
283 | # else: |
|
|||
284 | # fatspectra=0.5 |
|
|||
285 | # |
|
|||
286 | # wnoise = noise_ / spc_norm_max |
|
|||
287 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise |
|
|||
288 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
|||
289 | # #if wnoise>1.1*pnoise: # to be tested later |
|
|||
290 | # # wnoise=pnoise |
|
|||
291 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
|||
292 | # spc=spc-wnoise |
|
|||
293 | # |
|
|||
294 | # minx=numpy.argmin(spc) |
|
|||
295 | # spcs=numpy.roll(spc,-minx) |
|
|||
296 | # cum=numpy.cumsum(spcs) |
|
|||
297 | # tot_noise=wnoise * self.Num_Bin #64; |
|
|||
298 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
|||
299 | # #snr=tot_signal/tot_noise |
|
|||
300 | # #snr=cum[-1]/tot_noise |
|
|||
301 | # |
|
|||
302 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
|||
303 | # |
|
|||
304 | # snr = sum(spcs)/tot_noise |
|
|||
305 | # snrdB=10.*numpy.log10(snr) |
|
|||
306 | # |
|
|||
307 | # #if snrdB < -9 : |
|
|||
308 | # # snrdB = numpy.NaN |
|
|||
309 | # # continue |
|
|||
310 | # |
|
|||
311 | # #print 'snr',snrdB # , sum(spcs) , tot_noise |
|
|||
312 | # |
|
|||
313 | # |
|
|||
314 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
|||
315 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
316 | # |
|
|||
317 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
|||
318 | # cumlo=cummax*epsi; |
|
|||
319 | # cumhi=cummax*(1-epsi) |
|
|||
320 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
|||
321 | # |
|
|||
322 | # #if len(powerindex)==1: |
|
|||
323 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
324 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
325 | # #elif len(powerindex)<4*fatspectra: |
|
|||
326 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
327 | # |
|
|||
328 | # if len(powerindex) < 1:# case for powerindex 0 |
|
|||
329 | # continue |
|
|||
330 | # powerlo=powerindex[0] |
|
|||
331 | # powerhi=powerindex[-1] |
|
|||
332 | # powerwidth=powerhi-powerlo |
|
|||
333 | # |
|
|||
334 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
|||
335 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
|||
336 | # midpeak=(firstpeak+secondpeak)/2. |
|
|||
337 | # firstamp=spcs[int(firstpeak)] |
|
|||
338 | # secondamp=spcs[int(secondpeak)] |
|
|||
339 | # midamp=spcs[int(midpeak)] |
|
|||
340 | # #x=numpy.spc.shape[1] |
|
|||
341 | # |
|
|||
342 | # #x=numpy.arange(64) |
|
|||
343 | # x=numpy.arange( self.Num_Bin ) |
|
|||
344 | # y_data=spc+wnoise |
|
|||
345 | # |
|
|||
346 | # # single gaussian |
|
|||
347 | # #shift0=numpy.mod(midpeak+minx,64) |
|
|||
348 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
|||
349 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
|||
350 | # power0=2. |
|
|||
351 | # amplitude0=midamp |
|
|||
352 | # state0=[shift0,width0,amplitude0,power0,wnoise] |
|
|||
353 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
354 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
355 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) |
|
|||
356 | # # bnds = range of fft, power width, amplitude, power, noise |
|
|||
357 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
|||
358 | # |
|
|||
359 | # chiSq1=lsq1[1]; |
|
|||
360 | # jack1= self.y_jacobian1(x,lsq1[0]) |
|
|||
361 | # |
|
|||
362 | # |
|
|||
363 | # try: |
|
|||
364 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
|||
365 | # except: |
|
|||
366 | # std1=32.; sigmas1=numpy.ones(5) |
|
|||
367 | # else: |
|
|||
368 | # std1=sigmas1[0] |
|
|||
369 | # |
|
|||
370 | # |
|
|||
371 | # if fatspectra<1.0 and powerwidth<4: |
|
|||
372 | # choice=0 |
|
|||
373 | # Amplitude0=lsq1[0][2] |
|
|||
374 | # shift0=lsq1[0][0] |
|
|||
375 | # width0=lsq1[0][1] |
|
|||
376 | # p0=lsq1[0][3] |
|
|||
377 | # Amplitude1=0. |
|
|||
378 | # shift1=0. |
|
|||
379 | # width1=0. |
|
|||
380 | # p1=0. |
|
|||
381 | # noise=lsq1[0][4] |
|
|||
382 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
|||
383 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
|||
384 | # |
|
|||
385 | # # two gaussians |
|
|||
386 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
|||
387 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
|||
388 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
|||
389 | # width0=powerwidth/6.; |
|
|||
390 | # width1=width0 |
|
|||
391 | # power0=2.; |
|
|||
392 | # power1=power0 |
|
|||
393 | # amplitude0=firstamp; |
|
|||
394 | # amplitude1=secondamp |
|
|||
395 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
|||
396 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
397 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
398 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
|||
399 | # |
|
|||
400 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
|||
401 | # |
|
|||
402 | # |
|
|||
403 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
|||
404 | # |
|
|||
405 | # |
|
|||
406 | # try: |
|
|||
407 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
|||
408 | # except: |
|
|||
409 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
|||
410 | # else: |
|
|||
411 | # std2a=sigmas2[0]; std2b=sigmas2[4] |
|
|||
412 | # |
|
|||
413 | # |
|
|||
414 | # |
|
|||
415 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
|||
416 | # |
|
|||
417 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
|||
418 | # if oneG: |
|
|||
419 | # choice=0 |
|
|||
420 | # else: |
|
|||
421 | # w1=lsq2[0][1]; w2=lsq2[0][5] |
|
|||
422 | # a1=lsq2[0][2]; a2=lsq2[0][6] |
|
|||
423 | # p1=lsq2[0][3]; p2=lsq2[0][7] |
|
|||
424 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
|||
425 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
|||
426 | # |
|
|||
427 | # if gp1>gp2: |
|
|||
428 | # if a1>0.7*a2: |
|
|||
429 | # choice=1 |
|
|||
430 | # else: |
|
|||
431 | # choice=2 |
|
|||
432 | # elif gp2>gp1: |
|
|||
433 | # if a2>0.7*a1: |
|
|||
434 | # choice=2 |
|
|||
435 | # else: |
|
|||
436 | # choice=1 |
|
|||
437 | # else: |
|
|||
438 | # choice=numpy.argmax([a1,a2])+1 |
|
|||
439 | # #else: |
|
|||
440 | # #choice=argmin([std2a,std2b])+1 |
|
|||
441 | # |
|
|||
442 | # else: # with low SNR go to the most energetic peak |
|
|||
443 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
|||
444 | # |
|
|||
445 | # #print 'choice',choice |
|
|||
446 | # |
|
|||
447 | # if choice==0: # pick the single gaussian fit |
|
|||
448 | # Amplitude0=lsq1[0][2] |
|
|||
449 | # shift0=lsq1[0][0] |
|
|||
450 | # width0=lsq1[0][1] |
|
|||
451 | # p0=lsq1[0][3] |
|
|||
452 | # Amplitude1=0. |
|
|||
453 | # shift1=0. |
|
|||
454 | # width1=0. |
|
|||
455 | # p1=0. |
|
|||
456 | # noise=lsq1[0][4] |
|
|||
457 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
|||
458 | # Amplitude0 = lsq2[0][2] |
|
|||
459 | # shift0 = lsq2[0][0] |
|
|||
460 | # width0 = lsq2[0][1] |
|
|||
461 | # p0 = lsq2[0][3] |
|
|||
462 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
|||
463 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
|||
464 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
|||
465 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
|||
466 | # noise = lsq2[0][8] |
|
|||
467 | # else: # the second one |
|
|||
468 | # Amplitude0 = lsq2[0][6] |
|
|||
469 | # shift0 = lsq2[0][4] |
|
|||
470 | # width0 = lsq2[0][5] |
|
|||
471 | # p0 = lsq2[0][7] |
|
|||
472 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
|||
473 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
|||
474 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
|||
475 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
|||
476 | # noise = lsq2[0][8] |
|
|||
477 | # |
|
|||
478 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
|||
479 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
|||
480 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
|||
481 | # #print 'SPC_ch1.shape',SPC_ch1.shape |
|
|||
482 | # #print 'SPC_ch2.shape',SPC_ch2.shape |
|
|||
483 | # #dataOut.data_param = SPC_ch1 |
|
|||
484 | # GauSPC[0] = SPC_ch1 |
|
|||
485 | # GauSPC[1] = SPC_ch2 |
|
|||
486 |
|
||||
487 | # #plt.gcf().clear() |
|
|||
488 | # plt.figure(50+self.i) |
|
|||
489 | # self.i=self.i+1 |
|
|||
490 | # #plt.subplot(121) |
|
|||
491 | # plt.plot(self.spc,'k')#,label='spc(66)') |
|
|||
492 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') |
|
|||
493 | # #plt.plot(SPC_ch2,'r')#,label='gg2') |
|
|||
494 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
495 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
496 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
497 | # plt.legend() |
|
|||
498 | # plt.title('DATOS A ALTURA DE 7500 METROS') |
|
|||
499 | # plt.show() |
|
|||
500 | # print 'shift0', shift0 |
|
|||
501 | # print 'Amplitude0', Amplitude0 |
|
|||
502 | # print 'width0', width0 |
|
|||
503 | # print 'p0', p0 |
|
|||
504 | # print '========================' |
|
|||
505 | # print 'shift1', shift1 |
|
|||
506 | # print 'Amplitude1', Amplitude1 |
|
|||
507 | # print 'width1', width1 |
|
|||
508 | # print 'p1', p1 |
|
|||
509 | # print 'noise', noise |
|
|||
510 | # print 's_noise', wnoise |
|
|||
511 |
|
||||
512 | print('========================================================') |
|
|||
513 | print('total_time: ', time.time()-start_time) |
|
|||
514 |
|
||||
515 | # re-normalizing spc and noise |
|
|||
516 | # This part differs from gg1 |
|
|||
517 |
|
||||
518 |
|
||||
519 |
|
340 | |||
520 | ''' Parameters: |
|
341 | ''' Parameters: | |
521 | 1. Amplitude |
|
342 | 1. Amplitude | |
@@ -524,16 +345,11 class GaussianFit(Operation): | |||||
524 | 4. Power |
|
345 | 4. Power | |
525 | ''' |
|
346 | ''' | |
526 |
|
347 | |||
527 |
|
||||
528 | ############################################################################### |
|
|||
529 | def FitGau(self, X): |
|
348 | def FitGau(self, X): | |
530 |
|
349 | |||
531 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
350 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
532 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
351 | ||
533 |
|
352 | SPCparam = [] | ||
534 | #print 'HEIGHTS', self.Num_Hei |
|
|||
535 |
|
||||
536 | GauSPC = [] |
|
|||
537 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
353 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
538 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
354 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
539 | SPC_ch1[:] = 0#numpy.NaN |
|
355 | SPC_ch1[:] = 0#numpy.NaN | |
@@ -542,10 +358,6 class GaussianFit(Operation): | |||||
542 |
|
358 | |||
543 |
|
359 | |||
544 | for ht in range(self.Num_Hei): |
|
360 | for ht in range(self.Num_Hei): | |
545 | #print (numpy.asarray(self.spc).shape) |
|
|||
546 |
|
||||
547 | #print 'TTTTT', ch , ht |
|
|||
548 | #print self.spc.shape |
|
|||
549 |
|
361 | |||
550 |
|
362 | |||
551 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
363 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
@@ -554,27 +366,26 class GaussianFit(Operation): | |||||
554 | # normalizing spc and noise |
|
366 | # normalizing spc and noise | |
555 | # This part differs from gg1 |
|
367 | # This part differs from gg1 | |
556 | spc_norm_max = max(spc) |
|
368 | spc_norm_max = max(spc) | |
557 | spc = spc / spc_norm_max |
|
369 | #spc = spc / spc_norm_max | |
558 | pnoise = pnoise / spc_norm_max |
|
370 | pnoise = pnoise #/ spc_norm_max | |
559 | ############################################# |
|
371 | ############################################# | |
560 |
|
|
372 | ||
561 | fatspectra=1.0 |
|
373 | fatspectra=1.0 | |
562 |
|
374 | |||
563 | wnoise = noise_ / spc_norm_max |
|
375 | wnoise = noise_ #/ spc_norm_max | |
564 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
376 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
565 | #if wnoise>1.1*pnoise: # to be tested later |
|
377 | #if wnoise>1.1*pnoise: # to be tested later | |
566 | # wnoise=pnoise |
|
378 | # wnoise=pnoise | |
567 |
noisebl=wnoise*0.9; |
|
379 | noisebl=wnoise*0.9; | |
|
380 | noisebh=wnoise*1.1 | |||
568 | spc=spc-wnoise |
|
381 | spc=spc-wnoise | |
569 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
382 | ||
570 | minx=numpy.argmin(spc) |
|
383 | minx=numpy.argmin(spc) | |
|
384 | #spcs=spc.copy() | |||
571 | spcs=numpy.roll(spc,-minx) |
|
385 | spcs=numpy.roll(spc,-minx) | |
572 | cum=numpy.cumsum(spcs) |
|
386 | cum=numpy.cumsum(spcs) | |
573 | tot_noise=wnoise * self.Num_Bin #64; |
|
387 | tot_noise=wnoise * self.Num_Bin #64; | |
574 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
388 | ||
575 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
|||
576 | #snr=tot_signal/tot_noise |
|
|||
577 | #snr=cum[-1]/tot_noise |
|
|||
578 | snr = sum(spcs)/tot_noise |
|
389 | snr = sum(spcs)/tot_noise | |
579 | snrdB=10.*numpy.log10(snr) |
|
390 | snrdB=10.*numpy.log10(snr) | |
580 |
|
391 | |||
@@ -582,16 +393,15 class GaussianFit(Operation): | |||||
582 | snr = numpy.NaN |
|
393 | snr = numpy.NaN | |
583 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
394 | SPC_ch1[:,ht] = 0#numpy.NaN | |
584 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
395 | SPC_ch1[:,ht] = 0#numpy.NaN | |
585 |
|
|
396 | SPCparam = (SPC_ch1,SPC_ch2) | |
586 | continue |
|
397 | continue | |
587 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
|||
588 |
|
||||
589 |
|
398 | |||
590 |
|
399 | |||
591 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
400 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
592 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
401 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
593 |
|
402 | |||
594 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
403 | cummax=max(cum); | |
|
404 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |||
595 | cumlo=cummax*epsi; |
|
405 | cumlo=cummax*epsi; | |
596 | cumhi=cummax*(1-epsi) |
|
406 | cumhi=cummax*(1-epsi) | |
597 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
407 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
@@ -613,7 +423,7 class GaussianFit(Operation): | |||||
613 | x=numpy.arange( self.Num_Bin ) |
|
423 | x=numpy.arange( self.Num_Bin ) | |
614 | y_data=spc+wnoise |
|
424 | y_data=spc+wnoise | |
615 |
|
425 | |||
616 |
|
|
426 | ''' single Gaussian ''' | |
617 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
427 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
618 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
428 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
619 | power0=2. |
|
429 | power0=2. | |
@@ -623,16 +433,7 class GaussianFit(Operation): | |||||
623 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
433 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
624 |
|
434 | |||
625 | chiSq1=lsq1[1]; |
|
435 | chiSq1=lsq1[1]; | |
626 | jack1= self.y_jacobian1(x,lsq1[0]) |
|
436 | ||
627 |
|
||||
628 |
|
||||
629 | try: |
|
|||
630 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
|||
631 | except: |
|
|||
632 | std1=32.; sigmas1=numpy.ones(5) |
|
|||
633 | else: |
|
|||
634 | std1=sigmas1[0] |
|
|||
635 |
|
||||
636 |
|
437 | |||
637 | if fatspectra<1.0 and powerwidth<4: |
|
438 | if fatspectra<1.0 and powerwidth<4: | |
638 | choice=0 |
|
439 | choice=0 | |
@@ -648,7 +449,7 class GaussianFit(Operation): | |||||
648 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
449 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
649 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
450 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
650 |
|
451 | |||
651 |
|
|
452 | ''' two gaussians ''' | |
652 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
453 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
653 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
454 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
654 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
455 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
@@ -663,24 +464,16 class GaussianFit(Operation): | |||||
663 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
464 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
664 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
465 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
665 |
|
466 | |||
666 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
467 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
667 |
|
468 | |||
668 |
|
469 | |||
669 |
chiSq2=lsq2[1]; |
|
470 | chiSq2=lsq2[1]; | |
|
471 | ||||
670 |
|
472 | |||
671 |
|
473 | |||
672 | try: |
|
|||
673 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
|||
674 | except: |
|
|||
675 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
|||
676 | else: |
|
|||
677 | std2a=sigmas2[0]; std2b=sigmas2[4] |
|
|||
678 |
|
||||
679 |
|
||||
680 |
|
||||
681 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
474 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
682 |
|
475 | |||
683 |
if snrdB>- |
|
476 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
684 | if oneG: |
|
477 | if oneG: | |
685 | choice=0 |
|
478 | choice=0 | |
686 | else: |
|
479 | else: | |
@@ -690,7 +483,7 class GaussianFit(Operation): | |||||
690 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
483 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
691 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
484 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
692 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
485 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
693 |
|
486 | |||
694 | if gp1>gp2: |
|
487 | if gp1>gp2: | |
695 | if a1>0.7*a2: |
|
488 | if a1>0.7*a2: | |
696 | choice=1 |
|
489 | choice=1 | |
@@ -710,13 +503,15 class GaussianFit(Operation): | |||||
710 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
503 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
711 |
|
504 | |||
712 |
|
505 | |||
713 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
506 | shift0=lsq2[0][0]; | |
714 |
|
|
507 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
|
508 | shift1=lsq2[0][4]; | |||
|
509 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |||
715 |
|
510 | |||
716 |
max_vel = |
|
511 | max_vel = 1.0 | |
717 |
|
512 | |||
718 | #first peak will be 0, second peak will be 1 |
|
513 | #first peak will be 0, second peak will be 1 | |
719 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range |
|
514 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
720 | shift0=lsq2[0][0] |
|
515 | shift0=lsq2[0][0] | |
721 | width0=lsq2[0][1] |
|
516 | width0=lsq2[0][1] | |
722 | Amplitude0=lsq2[0][2] |
|
517 | Amplitude0=lsq2[0][2] | |
@@ -739,120 +534,18 class GaussianFit(Operation): | |||||
739 | p0=lsq2[0][7] |
|
534 | p0=lsq2[0][7] | |
740 | noise=lsq2[0][8] |
|
535 | noise=lsq2[0][8] | |
741 |
|
536 | |||
742 |
if Amplitude0<0. |
|
537 | if Amplitude0<0.05: # in case the peak is noise | |
743 |
shift0,width0,Amplitude0,p0 = |
|
538 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
744 |
if Amplitude1<0. |
|
539 | if Amplitude1<0.05: | |
745 |
shift1,width1,Amplitude1,p1 = |
|
540 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
746 |
|
|
541 | ||
747 |
|
|
542 | ||
748 | # if choice==0: # pick the single gaussian fit |
|
|||
749 | # Amplitude0=lsq1[0][2] |
|
|||
750 | # shift0=lsq1[0][0] |
|
|||
751 | # width0=lsq1[0][1] |
|
|||
752 | # p0=lsq1[0][3] |
|
|||
753 | # Amplitude1=0. |
|
|||
754 | # shift1=0. |
|
|||
755 | # width1=0. |
|
|||
756 | # p1=0. |
|
|||
757 | # noise=lsq1[0][4] |
|
|||
758 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
|||
759 | # Amplitude0 = lsq2[0][2] |
|
|||
760 | # shift0 = lsq2[0][0] |
|
|||
761 | # width0 = lsq2[0][1] |
|
|||
762 | # p0 = lsq2[0][3] |
|
|||
763 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
|||
764 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
|||
765 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
|||
766 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
|||
767 | # noise = lsq2[0][8] |
|
|||
768 | # else: # the second one |
|
|||
769 | # Amplitude0 = lsq2[0][6] |
|
|||
770 | # shift0 = lsq2[0][4] |
|
|||
771 | # width0 = lsq2[0][5] |
|
|||
772 | # p0 = lsq2[0][7] |
|
|||
773 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
|||
774 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
|||
775 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
|||
776 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
|||
777 | # noise = lsq2[0][8] |
|
|||
778 |
|
||||
779 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
|||
780 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
543 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
781 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
544 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
782 |
|
|
545 | SPCparam = (SPC_ch1,SPC_ch2) | |
783 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
|||
784 | #dataOut.data_param = SPC_ch1 |
|
|||
785 | GauSPC = (SPC_ch1,SPC_ch2) |
|
|||
786 | #GauSPC[1] = SPC_ch2 |
|
|||
787 |
|
||||
788 | # print 'shift0', shift0 |
|
|||
789 | # print 'Amplitude0', Amplitude0 |
|
|||
790 | # print 'width0', width0 |
|
|||
791 | # print 'p0', p0 |
|
|||
792 | # print '========================' |
|
|||
793 | # print 'shift1', shift1 |
|
|||
794 | # print 'Amplitude1', Amplitude1 |
|
|||
795 | # print 'width1', width1 |
|
|||
796 | # print 'p1', p1 |
|
|||
797 | # print 'noise', noise |
|
|||
798 | # print 's_noise', wnoise |
|
|||
799 |
|
546 | |||
800 | return GauSPC |
|
|||
801 |
|
||||
802 |
|
||||
803 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. |
|
|||
804 | y_model=self.y_model1(x,state) |
|
|||
805 | s0,w0,a0,p0,n=state |
|
|||
806 | e0=((x-s0)/w0)**2; |
|
|||
807 |
|
||||
808 | e0u=((x-s0-self.Num_Bin)/w0)**2; |
|
|||
809 |
|
||||
810 | e0d=((x-s0+self.Num_Bin)/w0)**2 |
|
|||
811 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
|||
812 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
|||
813 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
|||
814 | JA=m0+m0u+m0d |
|
|||
815 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
|||
816 |
|
||||
817 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
|||
818 |
|
||||
819 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
820 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) |
|
|||
821 | return jack1.T |
|
|||
822 |
|
||||
823 | def y_jacobian2(self,x,state): |
|
|||
824 | y_model=self.y_model2(x,state) |
|
|||
825 | s0,w0,a0,p0,s1,w1,a1,p1,n=state |
|
|||
826 | e0=((x-s0)/w0)**2; |
|
|||
827 |
|
||||
828 | e0u=((x-s0- self.Num_Bin )/w0)**2; |
|
|||
829 |
|
||||
830 | e0d=((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
831 | e1=((x-s1)/w1)**2; |
|
|||
832 |
|
547 | |||
833 | e1u=((x-s1- self.Num_Bin )/w1)**2; |
|
548 | return GauSPC | |
834 |
|
||||
835 | e1d=((x-s1+ self.Num_Bin )/w1)**2 |
|
|||
836 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
|||
837 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
|||
838 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
|||
839 | m1=numpy.exp(-0.5*e1**(p1/2.)); |
|
|||
840 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); |
|
|||
841 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) |
|
|||
842 | JA=m0+m0u+m0d |
|
|||
843 | JA1=m1+m1u+m1d |
|
|||
844 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
|||
845 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) |
|
|||
846 |
|
||||
847 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
|||
848 |
|
||||
849 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) |
|
|||
850 |
|
||||
851 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
852 |
|
||||
853 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 |
|
|||
854 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) |
|
|||
855 | return jack2.T |
|
|||
856 |
|
549 | |||
857 | def y_model1(self,x,state): |
|
550 | def y_model1(self,x,state): | |
858 | shift0,width0,amplitude0,power0,noise=state |
|
551 | shift0,width0,amplitude0,power0,noise=state | |
@@ -884,6 +577,7 class GaussianFit(Operation): | |||||
884 | def misfit2(self,state,y_data,x,num_intg): |
|
577 | def misfit2(self,state,y_data,x,num_intg): | |
885 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
578 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
886 |
|
579 | |||
|
580 | ||||
887 |
|
581 | |||
888 | class PrecipitationProc(Operation): |
|
582 | class PrecipitationProc(Operation): | |
889 |
|
583 | |||
@@ -900,24 +594,61 class PrecipitationProc(Operation): | |||||
900 |
|
594 | |||
901 | Parameters affected: |
|
595 | Parameters affected: | |
902 | ''' |
|
596 | ''' | |
903 |
|
||||
904 |
|
597 | |||
905 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, |
|
598 | def __init__(self): | |
906 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): |
|
599 | Operation.__init__(self) | |
|
600 | self.i=0 | |||
|
601 | ||||
|
602 | ||||
|
603 | def gaus(self,xSamples,Amp,Mu,Sigma): | |||
|
604 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |||
|
605 | ||||
|
606 | ||||
|
607 | ||||
|
608 | def Moments(self, ySamples, xSamples): | |||
|
609 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |||
|
610 | yNorm = ySamples / Pot | |||
|
611 | ||||
|
612 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |||
|
613 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |||
|
614 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |||
|
615 | ||||
|
616 | return numpy.array([Pot, Vr, Desv]) | |||
|
617 | ||||
|
618 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |||
|
619 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |||
907 |
|
620 | |||
908 | self.spc = dataOut.data_pre[0].copy() |
|
|||
909 | self.Num_Hei = self.spc.shape[2] |
|
|||
910 | self.Num_Bin = self.spc.shape[1] |
|
|||
911 | self.Num_Chn = self.spc.shape[0] |
|
|||
912 |
|
621 | |||
913 |
Velrange = dataOut. |
|
622 | Velrange = dataOut.spcparam_range[2] | |
|
623 | FrecRange = dataOut.spcparam_range[0] | |||
|
624 | ||||
|
625 | dV= Velrange[1]-Velrange[0] | |||
|
626 | dF= FrecRange[1]-FrecRange[0] | |||
914 |
|
627 | |||
915 | if radar == "MIRA35C" : |
|
628 | if radar == "MIRA35C" : | |
916 |
|
629 | |||
|
630 | self.spc = dataOut.data_pre[0].copy() | |||
|
631 | self.Num_Hei = self.spc.shape[2] | |||
|
632 | self.Num_Bin = self.spc.shape[1] | |||
|
633 | self.Num_Chn = self.spc.shape[0] | |||
917 | Ze = self.dBZeMODE2(dataOut) |
|
634 | Ze = self.dBZeMODE2(dataOut) | |
918 |
|
635 | |||
919 | else: |
|
636 | else: | |
920 |
|
637 | |||
|
638 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |||
|
639 | ||||
|
640 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |||
|
641 | ||||
|
642 | self.spc[:,:,0:7]= numpy.NaN | |||
|
643 | ||||
|
644 | """##########################################""" | |||
|
645 | ||||
|
646 | self.Num_Hei = self.spc.shape[2] | |||
|
647 | self.Num_Bin = self.spc.shape[1] | |||
|
648 | self.Num_Chn = self.spc.shape[0] | |||
|
649 | ||||
|
650 | ''' Se obtiene la constante del RADAR ''' | |||
|
651 | ||||
921 | self.Pt = Pt |
|
652 | self.Pt = Pt | |
922 | self.Gt = Gt |
|
653 | self.Gt = Gt | |
923 | self.Gr = Gr |
|
654 | self.Gr = Gr | |
@@ -927,48 +658,101 class PrecipitationProc(Operation): | |||||
927 | self.ThetaT = ThetaT |
|
658 | self.ThetaT = ThetaT | |
928 | self.ThetaR = ThetaR |
|
659 | self.ThetaR = ThetaR | |
929 |
|
660 | |||
930 | RadarConstant = GetRadarConstant() |
|
661 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
931 | SPCmean = numpy.mean(self.spc,0) |
|
662 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
932 | ETA = numpy.zeros(self.Num_Hei) |
|
663 | RadarConstant = 5e-26 * Numerator / Denominator # | |
933 | Pr = numpy.sum(SPCmean,0) |
|
|||
934 |
|
664 | |||
935 | #for R in range(self.Num_Hei): |
|
665 | ''' ============================= ''' | |
936 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
666 | ||
937 |
|
667 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | ||
938 | D_range = numpy.zeros(self.Num_Hei) |
|
668 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
939 | EqSec = numpy.zeros(self.Num_Hei) |
|
669 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
|
670 | ||||
|
671 | self.spc[ numpy.where(self.spc < 0)] = 0 | |||
|
672 | ||||
|
673 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |||
|
674 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |||
|
675 | ||||
|
676 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
677 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
678 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
679 | ||||
|
680 | Pr = SPCmean[:,:] | |||
|
681 | ||||
|
682 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |||
|
683 | ||||
|
684 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
685 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
686 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
687 | V_mean = numpy.zeros(self.Num_Hei) | |||
940 | del_V = numpy.zeros(self.Num_Hei) |
|
688 | del_V = numpy.zeros(self.Num_Hei) | |
|
689 | Z = numpy.zeros(self.Num_Hei) | |||
|
690 | Ze = numpy.zeros(self.Num_Hei) | |||
|
691 | RR = numpy.zeros(self.Num_Hei) | |||
|
692 | ||||
|
693 | Range = dataOut.heightList*1000. | |||
941 |
|
694 | |||
942 | for R in range(self.Num_Hei): |
|
695 | for R in range(self.Num_Hei): | |
943 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
|||
944 |
|
696 | |||
945 | h = R + Altitude #Range from ground to radar pulse altitude |
|
697 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
946 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
698 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
947 |
|
699 | |||
948 |
D_range[R] = numpy.log( (9.65 - (Velrange[ |
|
700 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
949 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) |
|
701 | ||
|
702 | '''NOTA: ETA(n) dn = ETA(f) df | |||
|
703 | ||||
|
704 | dn = 1 Diferencial de muestreo | |||
|
705 | df = ETA(n) / ETA(f) | |||
|
706 | ||||
|
707 | ''' | |||
|
708 | ||||
|
709 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |||
|
710 | ||||
|
711 | ETAv[:,R]=ETAn[:,R]/dV | |||
|
712 | ||||
|
713 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |||
|
714 | ||||
|
715 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |||
|
716 | ||||
|
717 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |||
|
718 | ||||
|
719 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |||
|
720 | ||||
|
721 | try: | |||
|
722 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |||
|
723 | except: | |||
|
724 | popt01=numpy.zeros(3) | |||
|
725 | popt01[1]= DMoments[1] | |||
|
726 | ||||
|
727 | if popt01[1]<0 or popt01[1]>20: | |||
|
728 | popt01[1]=numpy.NaN | |||
|
729 | ||||
|
730 | ||||
|
731 | V_mean[R]=popt01[1] | |||
|
732 | ||||
|
733 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |||
|
734 | ||||
|
735 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |||
|
736 | ||||
|
737 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |||
950 |
|
738 | |||
951 | N_dist[R] = ETA[R] / SIGMA[R] |
|
|||
952 |
|
||||
953 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) |
|
|||
954 | Z = numpy.sum( N_dist * D_range**6 ) |
|
|||
955 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate |
|
|||
956 |
|
739 | |||
957 |
|
740 | |||
958 |
RR = (Z |
|
741 | RR2 = (Z/200)**(1/1.6) | |
959 | dBRR = 10*numpy.log10(RR) |
|
742 | dBRR = 10*numpy.log10(RR) | |
|
743 | dBRR2 = 10*numpy.log10(RR2) | |||
960 |
|
744 | |||
961 | dBZe = 10*numpy.log10(Ze) |
|
745 | dBZe = 10*numpy.log10(Ze) | |
962 | dataOut.data_output = Ze |
|
746 | dBZ = 10*numpy.log10(Z) | |
963 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) |
|
747 | ||
964 |
dataOut. |
|
748 | dataOut.data_output = RR[8] | |
965 | print('channelList', dataOut.channelList) |
|
749 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
966 |
dataOut. |
|
750 | dataOut.channelList = [0,1,2] | |
967 | dataOut.data_param[1]=dBRR |
|
751 | ||
968 | print('RR SHAPE', dBRR.shape) |
|
752 | dataOut.data_param[0]=dBZ | |
969 | print('Ze SHAPE', dBZe.shape) |
|
753 | dataOut.data_param[1]=V_mean | |
970 | print('dataOut.data_param SHAPE', dataOut.data_param.shape) |
|
754 | dataOut.data_param[2]=RR | |
971 |
|
755 | |||
972 |
|
756 | |||
973 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
757 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
974 |
|
758 | |||
@@ -983,7 +767,7 class PrecipitationProc(Operation): | |||||
983 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
767 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
984 |
|
768 | |||
985 | ETA = numpy.sum(SNR,1) |
|
769 | ETA = numpy.sum(SNR,1) | |
986 | print('ETA' , ETA) |
|
770 | ||
987 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
771 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
988 |
|
772 | |||
989 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
773 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
@@ -995,26 +779,27 class PrecipitationProc(Operation): | |||||
995 |
|
779 | |||
996 | return Ze |
|
780 | return Ze | |
997 |
|
781 | |||
998 | def GetRadarConstant(self): |
|
782 | # def GetRadarConstant(self): | |
999 |
|
783 | # | ||
1000 | """ |
|
784 | # """ | |
1001 | Constants: |
|
785 | # Constants: | |
1002 |
|
786 | # | ||
1003 | Pt: Transmission Power dB |
|
787 | # Pt: Transmission Power dB 5kW 5000 | |
1004 | Gt: Transmission Gain dB |
|
788 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
1005 | Gr: Reception Gain dB |
|
789 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
1006 | Lambda: Wavelenght m |
|
790 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
1007 |
aL: |
|
791 | # aL: Attenuation loses dB 4dB 2.5118 | |
1008 | tauW: Width of transmission pulse s |
|
792 | # tauW: Width of transmission pulse s 4us 4e-6 | |
1009 | ThetaT: Transmission antenna bean angle rad |
|
793 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
1010 | ThetaR: Reception antenna beam angle rad |
|
794 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
1011 |
|
795 | # | ||
1012 | """ |
|
796 | # """ | |
1013 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
797 | # | |
1014 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
798 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1015 | RadarConstant = Numerator / Denominator |
|
799 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1016 |
|
800 | # RadarConstant = Numerator / Denominator | ||
1017 | return RadarConstant |
|
801 | # | |
|
802 | # return RadarConstant | |||
1018 |
|
803 | |||
1019 |
|
804 | |||
1020 |
|
805 | |||
@@ -1037,10 +822,20 class FullSpectralAnalysis(Operation): | |||||
1037 | Parameters affected: Winds, height range, SNR |
|
822 | Parameters affected: Winds, height range, SNR | |
1038 |
|
823 | |||
1039 | """ |
|
824 | """ | |
1040 |
def run(self, dataOut, |
|
825 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7): | |
|
826 | ||||
|
827 | self.indice=int(numpy.random.rand()*1000) | |||
1041 |
|
828 | |||
1042 | spc = dataOut.data_pre[0].copy() |
|
829 | spc = dataOut.data_pre[0].copy() | |
1043 |
cspc = dataOut.data_pre[1] |
|
830 | cspc = dataOut.data_pre[1] | |
|
831 | ||||
|
832 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |||
|
833 | ||||
|
834 | SNRspc = spc.copy() | |||
|
835 | SNRspc[:,:,0:7]= numpy.NaN | |||
|
836 | ||||
|
837 | """##########################################""" | |||
|
838 | ||||
1044 |
|
839 | |||
1045 | nChannel = spc.shape[0] |
|
840 | nChannel = spc.shape[0] | |
1046 | nProfiles = spc.shape[1] |
|
841 | nProfiles = spc.shape[1] | |
@@ -1050,14 +845,9 class FullSpectralAnalysis(Operation): | |||||
1050 | if dataOut.ChanDist is not None : |
|
845 | if dataOut.ChanDist is not None : | |
1051 | ChanDist = dataOut.ChanDist |
|
846 | ChanDist = dataOut.ChanDist | |
1052 | else: |
|
847 | else: | |
1053 |
ChanDist = numpy.array([[ |
|
848 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
1054 |
|
||||
1055 | #print 'ChanDist', ChanDist |
|
|||
1056 |
|
849 | |||
1057 | if dataOut.VelRange is not None: |
|
850 | FrecRange = dataOut.spc_range[0] | |
1058 | VelRange= dataOut.VelRange |
|
|||
1059 | else: |
|
|||
1060 | VelRange= dataOut.abscissaList |
|
|||
1061 |
|
851 | |||
1062 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
852 | ySamples=numpy.ones([nChannel,nProfiles]) | |
1063 | phase=numpy.ones([nChannel,nProfiles]) |
|
853 | phase=numpy.ones([nChannel,nProfiles]) | |
@@ -1065,113 +855,108 class FullSpectralAnalysis(Operation): | |||||
1065 | coherence=numpy.ones([nChannel,nProfiles]) |
|
855 | coherence=numpy.ones([nChannel,nProfiles]) | |
1066 | PhaseSlope=numpy.ones(nChannel) |
|
856 | PhaseSlope=numpy.ones(nChannel) | |
1067 | PhaseInter=numpy.ones(nChannel) |
|
857 | PhaseInter=numpy.ones(nChannel) | |
1068 | dataSNR = dataOut.data_SNR |
|
858 | data_SNR=numpy.zeros([nProfiles]) | |
1069 |
|
||||
1070 |
|
||||
1071 |
|
859 | |||
1072 | data = dataOut.data_pre |
|
860 | data = dataOut.data_pre | |
1073 | noise = dataOut.noise |
|
861 | noise = dataOut.noise | |
1074 | print('noise',noise) |
|
|||
1075 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) |
|
|||
1076 |
|
862 | |||
1077 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) |
|
863 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
1078 | #SNRdBMean = [] |
|
|||
1079 |
|
||||
1080 |
|
864 | |||
1081 | #for j in range(nHeights): |
|
865 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |
1082 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) |
|
866 | ||
1083 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) |
|
867 | ||
1084 |
|
868 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | ||
1085 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN |
|
|||
1086 |
|
869 | |||
1087 | velocityX=[] |
|
870 | velocityX=[] | |
1088 | velocityY=[] |
|
871 | velocityY=[] | |
1089 | velocityV=[] |
|
872 | velocityV=[] | |
|
873 | PhaseLine=[] | |||
1090 |
|
874 | |||
1091 | dbSNR = 10*numpy.log10(dataSNR) |
|
875 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
1092 | dbSNR = numpy.average(dbSNR,0) |
|
876 | dbSNR = numpy.average(dbSNR,0) | |
|
877 | ||||
1093 | for Height in range(nHeights): |
|
878 | for Height in range(nHeights): | |
1094 |
|
879 | |||
1095 |
[Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, |
|
880 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) | |
|
881 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) | |||
1096 |
|
882 | |||
1097 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
883 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
1098 | velocityX=numpy.append(velocityX, Vzon)#Vmag |
|
884 | velocityX=numpy.append(velocityX, Vzon)#Vmag | |
1099 |
|
885 | |||
1100 | else: |
|
886 | else: | |
1101 | print('Vzon',Vzon) |
|
|||
1102 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
887 | velocityX=numpy.append(velocityX, numpy.NaN) | |
1103 |
|
888 | |||
1104 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
889 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
1105 | velocityY=numpy.append(velocityY, Vmer)#Vang |
|
890 | velocityY=numpy.append(velocityY, -Vmer)#Vang | |
1106 |
|
891 | |||
1107 | else: |
|
892 | else: | |
1108 | print('Vmer',Vmer) |
|
|||
1109 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
893 | velocityY=numpy.append(velocityY, numpy.NaN) | |
1110 |
|
894 | |||
1111 | if dbSNR[Height] > SNRlimit: |
|
895 | if dbSNR[Height] > SNRlimit: | |
1112 |
velocityV=numpy.append(velocityV, |
|
896 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) | |
1113 | else: |
|
897 | else: | |
1114 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
898 | velocityV=numpy.append(velocityV, numpy.NaN) | |
1115 | #FirstMoment[Height]= numpy.NaN |
|
899 | ||
1116 | # if SNRdBMean[Height] <12: |
|
900 | ||
1117 | # FirstMoment[Height] = numpy.NaN |
|
|||
1118 | # velocityX[Height] = numpy.NaN |
|
|||
1119 | # velocityY[Height] = numpy.NaN |
|
|||
1120 |
|
||||
1121 |
|
||||
1122 | data_output[0]=numpy.array(velocityX) |
|
|||
1123 | data_output[1]=numpy.array(velocityY) |
|
|||
1124 | data_output[2]=-velocityV#FirstMoment |
|
|||
1125 |
|
||||
1126 | print(' ') |
|
|||
1127 | #print 'FirstMoment' |
|
|||
1128 | #print FirstMoment |
|
|||
1129 | print('velocityX',data_output[0]) |
|
|||
1130 | print(' ') |
|
|||
1131 | print('velocityY',data_output[1]) |
|
|||
1132 | #print numpy.array(velocityY) |
|
|||
1133 | print(' ') |
|
|||
1134 | #print 'SNR' |
|
|||
1135 | #print 10*numpy.log10(dataOut.data_SNR) |
|
|||
1136 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
|||
1137 | print(' ') |
|
|||
1138 |
|
901 | |||
|
902 | '''Nota: Cambiar el signo de numpy.array(velocityX) cuando se intente procesar datos de BLTR''' | |||
|
903 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) | |||
|
904 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) | |||
|
905 | data_output[2] = velocityV#FirstMoment | |||
|
906 | ||||
|
907 | xFrec=FrecRange[0:spc.shape[1]] | |||
1139 |
|
908 | |||
1140 | dataOut.data_output=data_output |
|
909 | dataOut.data_output=data_output | |
|
910 | ||||
1141 | return |
|
911 | return | |
1142 |
|
912 | |||
1143 |
|
913 | |||
1144 | def moving_average(self,x, N=2): |
|
914 | def moving_average(self,x, N=2): | |
1145 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
915 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1146 |
|
916 | |||
1147 |
def gaus(self,xSamples, |
|
917 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1148 |
return |
|
918 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
|
919 | ||||
|
920 | ||||
1149 |
|
921 | |||
1150 |
def |
|
922 | def Moments(self, ySamples, xSamples): | |
1151 | for index in range(len(x)): |
|
923 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
1152 | if x[index]==value: |
|
924 | yNorm = ySamples / Pot | |
1153 | return index |
|
925 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
|
926 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |||
|
927 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |||
|
928 | ||||
|
929 | return numpy.array([Pot, Vr, Desv]) | |||
1154 |
|
930 | |||
1155 |
def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, |
|
931 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
|
932 | ||||
|
933 | ||||
1156 |
|
934 | |||
1157 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
935 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1158 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
936 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1159 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
937 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1160 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
938 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1161 |
PhaseSlope=numpy.o |
|
939 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
1162 | PhaseInter=numpy.ones(spc.shape[0]) |
|
940 | PhaseInter=numpy.ones(spc.shape[0]) | |
1163 | xFrec=VelRange |
|
941 | xFrec=AbbsisaRange[0][0:spc.shape[1]] | |
|
942 | xVel =AbbsisaRange[2][0:spc.shape[1]] | |||
|
943 | Vv=numpy.empty(spc.shape[2])*0 | |||
|
944 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# | |||
|
945 | ||||
|
946 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) | |||
|
947 | CSPCmoments = [] | |||
|
948 | cspcNoise = numpy.empty(3) | |||
1164 |
|
949 | |||
1165 | '''Getting Eij and Nij''' |
|
950 | '''Getting Eij and Nij''' | |
1166 |
|
951 | |||
1167 |
|
|
952 | Xi01=ChanDist[0][0] | |
1168 |
|
|
953 | Eta01=ChanDist[0][1] | |
1169 |
|
954 | |||
1170 |
|
|
955 | Xi02=ChanDist[1][0] | |
1171 |
|
|
956 | Eta02=ChanDist[1][1] | |
1172 |
|
957 | |||
1173 |
|
|
958 | Xi12=ChanDist[2][0] | |
1174 |
|
|
959 | Eta12=ChanDist[2][1] | |
1175 |
|
960 | |||
1176 | z = spc.copy() |
|
961 | z = spc.copy() | |
1177 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
962 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
@@ -1179,176 +964,197 class FullSpectralAnalysis(Operation): | |||||
1179 | for i in range(spc.shape[0]): |
|
964 | for i in range(spc.shape[0]): | |
1180 |
|
965 | |||
1181 | '''****** Line of Data SPC ******''' |
|
966 | '''****** Line of Data SPC ******''' | |
1182 | zline=z[i,:,Height] |
|
967 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido | |
1183 |
|
968 | |||
1184 | '''****** SPC is normalized ******''' |
|
969 | '''****** SPC is normalized ******''' | |
1185 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) |
|
970 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido | |
1186 | FactNorm= FactNorm/numpy.sum(FactNorm) |
|
971 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado | |
1187 |
|
972 | |||
1188 | SmoothSPC=self.moving_average(FactNorm,N=3) |
|
973 | xSamples = xFrec # Se toma el rango de frecuncias | |
1189 |
|
974 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado | ||
1190 | xSamples = ar(list(range(len(SmoothSPC)))) |
|
|||
1191 | ySamples[i] = SmoothSPC |
|
|||
1192 |
|
||||
1193 | #dbSNR=10*numpy.log10(dataSNR) |
|
|||
1194 | print(' ') |
|
|||
1195 | print(' ') |
|
|||
1196 | print(' ') |
|
|||
1197 |
|
||||
1198 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] |
|
|||
1199 | print('SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20]) |
|
|||
1200 | print('noise',noise) |
|
|||
1201 | print('zline',zline.shape, zline[0:20]) |
|
|||
1202 | print('FactNorm',FactNorm.shape, FactNorm[0:20]) |
|
|||
1203 | print('FactNorm suma', numpy.sum(FactNorm)) |
|
|||
1204 |
|
975 | |||
1205 | for i in range(spc.shape[0]): |
|
976 | for i in range(spc.shape[0]): | |
1206 |
|
977 | |||
1207 | '''****** Line of Data CSPC ******''' |
|
978 | '''****** Line of Data CSPC ******''' | |
1208 | cspcLine=cspc[i,:,Height].copy() |
|
979 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido | |
|
980 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido | |||
|
981 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado | |||
1209 |
|
982 | |||
1210 | '''****** CSPC is normalized ******''' |
|
983 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' | |
1211 | chan_index0 = pairsList[i][0] |
|
984 | chan_index0 = pairsList[i][0] | |
1212 | chan_index1 = pairsList[i][1] |
|
985 | chan_index1 = pairsList[i][1] | |
1213 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # |
|
|||
1214 |
|
986 | |||
1215 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) |
|
987 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 | |
|
988 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) | |||
1216 |
|
989 | |||
1217 | CSPCSamples[i] = CSPCNorm |
|
990 | CSPCSamples[i] = CSPCNorm | |
|
991 | ||||
1218 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
992 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1219 |
|
993 | |||
1220 |
coherence[i]= self.moving_average(coherence[i],N= |
|
994 | #coherence[i]= self.moving_average(coherence[i],N=1) | |
1221 |
|
995 | |||
1222 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
996 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1223 |
|
997 | |||
1224 | print('cspcLine', cspcLine.shape, cspcLine[0:20]) |
|
998 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), | |
1225 | print('CSPCFactor', CSPCFactor)#, CSPCFactor[0:20] |
|
999 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), | |
1226 | print(numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i]) |
|
1000 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) | |
1227 | print('CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20]) |
|
|||
1228 | print('CSPCNorm suma', numpy.sum(CSPCNorm)) |
|
|||
1229 | print('CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20]) |
|
|||
1230 |
|
1001 | |||
1231 | '''****** Getting fij width ******''' |
|
1002 | ||
|
1003 | popt=[1e-10,0,1e-10] | |||
|
1004 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |||
|
1005 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |||
|
1006 | ||||
|
1007 | CSPCMask01 = numpy.abs(CSPCSamples[0]) | |||
|
1008 | CSPCMask02 = numpy.abs(CSPCSamples[1]) | |||
|
1009 | CSPCMask12 = numpy.abs(CSPCSamples[2]) | |||
|
1010 | ||||
|
1011 | mask01 = ~numpy.isnan(CSPCMask01) | |||
|
1012 | mask02 = ~numpy.isnan(CSPCMask02) | |||
|
1013 | mask12 = ~numpy.isnan(CSPCMask12) | |||
1232 |
|
1014 | |||
1233 | yMean=[] |
|
1015 | #mask = ~numpy.isnan(CSPCMask01) | |
1234 | yMean2=[] |
|
1016 | CSPCMask01 = CSPCMask01[mask01] | |
|
1017 | CSPCMask02 = CSPCMask02[mask02] | |||
|
1018 | CSPCMask12 = CSPCMask12[mask12] | |||
|
1019 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) | |||
1235 |
|
1020 | |||
1236 | for j in range(len(ySamples[1])): |
|
|||
1237 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
|||
1238 |
|
1021 | |||
1239 | '''******* Getting fitting Gaussian ******''' |
|
|||
1240 | meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
|||
1241 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
|||
1242 |
|
1022 | |||
1243 | print('****************************') |
|
1023 | '''***Fit Gauss CSPC01***''' | |
1244 | print('len(xSamples): ',len(xSamples)) |
|
1024 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : | |
1245 | print('yMean: ', yMean.shape, yMean[0:20]) |
|
1025 | try: | |
1246 | print('ySamples', ySamples.shape, ySamples[0,0:20]) |
|
1026 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1247 | print('xSamples: ',xSamples.shape, xSamples[0:20]) |
|
1027 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
|
1028 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |||
|
1029 | FitGauss01 = self.gaus(xSamples,*popt01) | |||
|
1030 | FitGauss02 = self.gaus(xSamples,*popt02) | |||
|
1031 | FitGauss12 = self.gaus(xSamples,*popt12) | |||
|
1032 | except: | |||
|
1033 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) | |||
|
1034 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) | |||
|
1035 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) | |||
|
1036 | ||||
|
1037 | ||||
|
1038 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) | |||
|
1039 | ||||
|
1040 | '''****** Getting fij width ******''' | |||
|
1041 | ||||
|
1042 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] | |||
|
1043 | ||||
|
1044 | '''******* Getting fitting Gaussian *******''' | |||
|
1045 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) | |||
|
1046 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) | |||
1248 |
|
1047 | |||
1249 | print('meanGauss',meanGauss) |
|
1048 | yMoments = self.Moments(yMean, xSamples) | |
1250 | print('sigma',sigma) |
|
|||
1251 |
|
1049 | |||
1252 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): |
|
1050 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: | |
1253 | if dbSNR > SNRlimit : |
|
1051 | try: | |
1254 | try: |
|
1052 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) | |
1255 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
1053 | FitGauss=self.gaus(xSamples,*popt) | |
1256 |
|
1054 | |||
1257 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
|||
1258 | FitGauss=self.gaus(xSamples,*popt) |
|
|||
1259 |
|
||||
1260 | else: |
|
|||
1261 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
1262 | print('Verificador: Dentro', Height) |
|
|||
1263 | except :#RuntimeError: |
|
1055 | except :#RuntimeError: | |
1264 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1056 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1265 |
|
1057 | |||
1266 |
|
1058 | |||
1267 | else: |
|
1059 | else: | |
1268 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1060 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1269 |
|
1061 | |||
1270 | Maximun=numpy.amax(yMean) |
|
|||
1271 | eMinus1=Maximun*numpy.exp(-1)#*0.8 |
|
|||
1272 |
|
1062 | |||
1273 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
|||
1274 | HalfWidth= xFrec[HWpos] |
|
|||
1275 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) |
|
|||
1276 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) |
|
|||
1277 |
|
||||
1278 | #Vpos=FirstMoment[] |
|
|||
1279 |
|
1063 | |||
1280 | '''****** Getting Fij ******''' |
|
1064 | '''****** Getting Fij ******''' | |
|
1065 | Fijcspc = CSPCopt[:,2]/2*3 | |||
|
1066 | ||||
|
1067 | ||||
|
1068 | GaussCenter = popt[1] #xFrec[GCpos] | |||
|
1069 | #Punto en Eje X de la Gaussiana donde se encuentra el centro | |||
|
1070 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |||
|
1071 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |||
|
1072 | ||||
|
1073 | #Punto e^-1 hubicado en la Gaussiana | |||
|
1074 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) | |||
|
1075 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |||
|
1076 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |||
1281 |
|
1077 | |||
1282 | GaussCenter=xFrec[GCpos] |
|
1078 | if xSamples[PointFij] > xSamples[PointGauCenter]: | |
1283 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
1079 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] | |
1284 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
1080 | ||
1285 | else: |
|
1081 | else: | |
1286 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
1082 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] | |
|
1083 | ||||
|
1084 | ||||
|
1085 | '''****** Taking frequency ranges from SPCs ******''' | |||
1287 |
|
1086 | |||
1288 | '''****** Getting Frecuency range of significant data ******''' |
|
|||
1289 |
|
1087 | |||
1290 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
1088 | #GaussCenter = popt[1] #Primer momento 01 | |
|
1089 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 | |||
|
1090 | Range = numpy.empty(2) | |||
|
1091 | Range[0] = GaussCenter - GauWidth | |||
|
1092 | Range[1] = GaussCenter + GauWidth | |||
|
1093 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) | |||
|
1094 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |||
|
1095 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |||
1291 |
|
1096 | |||
1292 | if Rangpos<GCpos: |
|
1097 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1293 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
1098 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1294 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): |
|
1099 | ||
1295 |
|
|
1100 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) | |
1296 |
|
|
1101 | ||
1297 | Range = numpy.array([0,0]) |
|
1102 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
|
1103 | VelRange = xVel[ Range[0] : Range[1] ] | |||
1298 |
|
1104 | |||
1299 | print(' ') |
|
|||
1300 | print('GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1)) |
|
|||
1301 | print('Rangpos',Rangpos) |
|
|||
1302 | print('RANGE: ', Range) |
|
|||
1303 | FrecRange=xFrec[Range[0]:Range[1]] |
|
|||
1304 |
|
1105 | |||
1305 | '''****** Getting SCPC Slope ******''' |
|
1106 | '''****** Getting SCPC Slope ******''' | |
1306 |
|
1107 | |||
1307 | for i in range(spc.shape[0]): |
|
1108 | for i in range(spc.shape[0]): | |
1308 |
|
1109 | |||
1309 |
if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0. |
|
1110 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: | |
1310 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1111 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
|
1112 | ||||
|
1113 | '''***********************VelRange******************''' | |||
|
1114 | ||||
|
1115 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |||
1311 |
|
1116 | |||
1312 | print('FrecRange', len(FrecRange) , FrecRange) |
|
|||
1313 | print('PhaseRange', len(PhaseRange), PhaseRange) |
|
|||
1314 | print(' ') |
|
|||
1315 | if len(FrecRange) == len(PhaseRange): |
|
1117 | if len(FrecRange) == len(PhaseRange): | |
1316 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
1118 | try: | |
1317 | PhaseSlope[i]=slope |
|
1119 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) | |
1318 |
|
|
1120 | PhaseSlope[i]=slope | |
|
1121 | PhaseInter[i]=intercept | |||
|
1122 | except: | |||
|
1123 | PhaseSlope[i]=0 | |||
|
1124 | PhaseInter[i]=0 | |||
1319 | else: |
|
1125 | else: | |
1320 | PhaseSlope[i]=0 |
|
1126 | PhaseSlope[i]=0 | |
1321 | PhaseInter[i]=0 |
|
1127 | PhaseInter[i]=0 | |
1322 | else: |
|
1128 | else: | |
1323 | PhaseSlope[i]=0 |
|
1129 | PhaseSlope[i]=0 | |
1324 | PhaseInter[i]=0 |
|
1130 | PhaseInter[i]=0 | |
1325 |
|
1131 | |||
|
1132 | ||||
1326 | '''Getting constant C''' |
|
1133 | '''Getting constant C''' | |
1327 | cC=(Fij*numpy.pi)**2 |
|
1134 | cC=(Fij*numpy.pi)**2 | |
1328 |
|
1135 | |||
1329 | '''****** Getting constants F and G ******''' |
|
1136 | '''****** Getting constants F and G ******''' | |
1330 |
MijEijNij=numpy.array([[ |
|
1137 | MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1331 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1138 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1332 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1139 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1333 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1140 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1334 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1141 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1335 |
|
1142 | |||
1336 | '''****** Getting constants A, B and H ******''' |
|
1143 | '''****** Getting constants A, B and H ******''' | |
1337 | W01=numpy.amax(coherence[0]) |
|
1144 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) | |
1338 | W02=numpy.amax(coherence[1]) |
|
1145 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) | |
1339 | W12=numpy.amax(coherence[2]) |
|
1146 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) | |
1340 |
|
1147 | |||
1341 |
WijResult0=((cF* |
|
1148 | WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1342 |
WijResult1=((cF* |
|
1149 | WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1343 |
WijResult2=((cF* |
|
1150 | WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1344 |
|
1151 | |||
1345 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1152 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1346 |
|
1153 | |||
1347 |
WijEijNij=numpy.array([ [ |
|
1154 | WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1348 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1155 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1349 |
|
1156 | |||
1350 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1157 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1351 |
|
||||
1352 | VxVyResults=numpy.array([-cF,-cG]) |
|
1158 | VxVyResults=numpy.array([-cF,-cG]) | |
1353 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1159 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1354 |
|
1160 | |||
@@ -1356,10 +1162,15 class FullSpectralAnalysis(Operation): | |||||
1356 | Vmer = Vx |
|
1162 | Vmer = Vx | |
1357 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1163 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1358 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1164 | Vang=numpy.arctan2(Vmer,Vzon) | |
1359 | Vver=xFrec[Vpos] |
|
1165 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: | |
1360 | print('vzon y vmer', Vzon, Vmer) |
|
1166 | Vver=popt[1] | |
1361 | return Vzon, Vmer, Vver, GaussCenter |
|
1167 | else: | |
1362 |
|
1168 | Vver=numpy.NaN | ||
|
1169 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) | |||
|
1170 | ||||
|
1171 | ||||
|
1172 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC | |||
|
1173 | ||||
1363 | class SpectralMoments(Operation): |
|
1174 | class SpectralMoments(Operation): | |
1364 |
|
1175 | |||
1365 | ''' |
|
1176 | ''' | |
@@ -1384,7 +1195,7 class SpectralMoments(Operation): | |||||
1384 | self.dataOut.noise : Noise level per channel |
|
1195 | self.dataOut.noise : Noise level per channel | |
1385 |
|
1196 | |||
1386 | Affected: |
|
1197 | Affected: | |
1387 |
self.dataOut. |
|
1198 | self.dataOut.moments : Parameters per channel | |
1388 | self.dataOut.data_SNR : SNR per channel |
|
1199 | self.dataOut.data_SNR : SNR per channel | |
1389 |
|
1200 | |||
1390 | ''' |
|
1201 | ''' | |
@@ -1401,7 +1212,7 class SpectralMoments(Operation): | |||||
1401 | for ind in range(nChannel): |
|
1212 | for ind in range(nChannel): | |
1402 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1213 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1403 |
|
1214 | |||
1404 |
dataOut. |
|
1215 | dataOut.moments = data_param[:,1:,:] | |
1405 | dataOut.data_SNR = data_param[:,0] |
|
1216 | dataOut.data_SNR = data_param[:,0] | |
1406 | dataOut.data_DOP = data_param[:,1] |
|
1217 | dataOut.data_DOP = data_param[:,1] | |
1407 | dataOut.data_MEAN = data_param[:,2] |
|
1218 | dataOut.data_MEAN = data_param[:,2] | |
@@ -1431,6 +1242,8 class SpectralMoments(Operation): | |||||
1431 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1242 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1432 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1243 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1433 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1244 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
|
1245 | ||||
|
1246 | oldspec = numpy.ma.masked_invalid(oldspec) | |||
1434 |
|
1247 | |||
1435 | for ind in range(oldspec.shape[1]): |
|
1248 | for ind in range(oldspec.shape[1]): | |
1436 |
|
1249 | |||
@@ -1469,7 +1282,7 class SpectralMoments(Operation): | |||||
1469 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1282 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
1470 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1283 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1471 | snr = (spec2.mean()-n0)/n0 |
|
1284 | snr = (spec2.mean()-n0)/n0 | |
1472 |
|
|
1285 | ||
1473 | if (snr < 1.e-20) : |
|
1286 | if (snr < 1.e-20) : | |
1474 | snr = 1.e-20 |
|
1287 | snr = 1.e-20 | |
1475 |
|
1288 | |||
@@ -1477,7 +1290,7 class SpectralMoments(Operation): | |||||
1477 | vec_fd[ind] = fd |
|
1290 | vec_fd[ind] = fd | |
1478 | vec_w[ind] = w |
|
1291 | vec_w[ind] = w | |
1479 | vec_snr[ind] = snr |
|
1292 | vec_snr[ind] = snr | |
1480 |
|
|
1293 | ||
1481 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1294 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1482 | return moments |
|
1295 | return moments | |
1483 |
|
1296 | |||
@@ -1675,7 +1488,6 class SpectralFitting(Operation): | |||||
1675 | dataCross = dataCross**2/K |
|
1488 | dataCross = dataCross**2/K | |
1676 |
|
1489 | |||
1677 | for h in range(nHeights): |
|
1490 | for h in range(nHeights): | |
1678 | # print self.dataOut.heightList[h] |
|
|||
1679 |
|
1491 | |||
1680 | #Input |
|
1492 | #Input | |
1681 | d = data[:,h] |
|
1493 | d = data[:,h] | |
@@ -1734,7 +1546,7 class SpectralFitting(Operation): | |||||
1734 |
|
1546 | |||
1735 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1547 | fm = self.dataOut.library.modelFunction(p, constants) | |
1736 | fmp=numpy.dot(LT,fm) |
|
1548 | fmp=numpy.dot(LT,fm) | |
1737 |
|
|
1549 | ||
1738 | return dp-fmp |
|
1550 | return dp-fmp | |
1739 |
|
1551 | |||
1740 | def __getSNR(self, z, noise): |
|
1552 | def __getSNR(self, z, noise): | |
@@ -1768,8 +1580,8 class WindProfiler(Operation): | |||||
1768 |
|
1580 | |||
1769 | n = None |
|
1581 | n = None | |
1770 |
|
1582 | |||
1771 |
def __init__(self |
|
1583 | def __init__(self): | |
1772 |
Operation.__init__(self |
|
1584 | Operation.__init__(self) | |
1773 |
|
1585 | |||
1774 | def __calculateCosDir(self, elev, azim): |
|
1586 | def __calculateCosDir(self, elev, azim): | |
1775 | zen = (90 - elev)*numpy.pi/180 |
|
1587 | zen = (90 - elev)*numpy.pi/180 | |
@@ -2071,12 +1883,9 class WindProfiler(Operation): | |||||
2071 |
|
1883 | |||
2072 | Parameters affected: Winds |
|
1884 | Parameters affected: Winds | |
2073 | ''' |
|
1885 | ''' | |
2074 | # print arrayMeteor.shape |
|
|||
2075 | #Settings |
|
1886 | #Settings | |
2076 | nInt = (heightMax - heightMin)/2 |
|
1887 | nInt = (heightMax - heightMin)/2 | |
2077 | # print nInt |
|
|||
2078 | nInt = int(nInt) |
|
1888 | nInt = int(nInt) | |
2079 | # print nInt |
|
|||
2080 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1889 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2081 |
|
1890 | |||
2082 | #Filter errors |
|
1891 | #Filter errors | |
@@ -2475,8 +2284,8 class WindProfiler(Operation): | |||||
2475 |
|
2284 | |||
2476 | class EWDriftsEstimation(Operation): |
|
2285 | class EWDriftsEstimation(Operation): | |
2477 |
|
2286 | |||
2478 |
def __init__(self |
|
2287 | def __init__(self): | |
2479 |
Operation.__init__(self |
|
2288 | Operation.__init__(self) | |
2480 |
|
2289 | |||
2481 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2290 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2482 | listPhi = phi.tolist() |
|
2291 | listPhi = phi.tolist() |
@@ -159,9 +159,7 class SpectraProc(ProcessingUnit): | |||||
159 | dtype='complex') |
|
159 | dtype='complex') | |
160 |
|
160 | |||
161 | if self.dataIn.flagDataAsBlock: |
|
161 | if self.dataIn.flagDataAsBlock: | |
162 | # data dimension: [nChannels, nProfiles, nSamples] |
|
|||
163 | nVoltProfiles = self.dataIn.data.shape[1] |
|
162 | nVoltProfiles = self.dataIn.data.shape[1] | |
164 | # nVoltProfiles = self.dataIn.nProfiles |
|
|||
165 |
|
163 | |||
166 | if nVoltProfiles == nProfiles: |
|
164 | if nVoltProfiles == nProfiles: | |
167 | self.buffer = self.dataIn.data.copy() |
|
165 | self.buffer = self.dataIn.data.copy() | |
@@ -299,7 +297,57 class SpectraProc(ProcessingUnit): | |||||
299 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
297 | self.__selectPairsByChannel(self.dataOut.channelList) | |
300 |
|
298 | |||
301 | return 1 |
|
299 | return 1 | |
|
300 | ||||
|
301 | ||||
|
302 | def selectFFTs(self, minFFT, maxFFT ): | |||
|
303 | """ | |||
|
304 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |||
|
305 | minFFT<= FFT <= maxFFT | |||
|
306 | """ | |||
|
307 | ||||
|
308 | if (minFFT > maxFFT): | |||
|
309 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |||
|
310 | ||||
|
311 | if (minFFT < self.dataOut.getFreqRange()[0]): | |||
|
312 | minFFT = self.dataOut.getFreqRange()[0] | |||
|
313 | ||||
|
314 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |||
|
315 | maxFFT = self.dataOut.getFreqRange()[-1] | |||
|
316 | ||||
|
317 | minIndex = 0 | |||
|
318 | maxIndex = 0 | |||
|
319 | FFTs = self.dataOut.getFreqRange() | |||
|
320 | ||||
|
321 | inda = numpy.where(FFTs >= minFFT) | |||
|
322 | indb = numpy.where(FFTs <= maxFFT) | |||
|
323 | ||||
|
324 | try: | |||
|
325 | minIndex = inda[0][0] | |||
|
326 | except: | |||
|
327 | minIndex = 0 | |||
|
328 | ||||
|
329 | try: | |||
|
330 | maxIndex = indb[0][-1] | |||
|
331 | except: | |||
|
332 | maxIndex = len(FFTs) | |||
|
333 | ||||
|
334 | self.selectFFTsByIndex(minIndex, maxIndex) | |||
302 |
|
335 | |||
|
336 | return 1 | |||
|
337 | ||||
|
338 | ||||
|
339 | def setH0(self, h0, deltaHeight = None): | |||
|
340 | ||||
|
341 | if not deltaHeight: | |||
|
342 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |||
|
343 | ||||
|
344 | nHeights = self.dataOut.nHeights | |||
|
345 | ||||
|
346 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |||
|
347 | ||||
|
348 | self.dataOut.heightList = newHeiRange | |||
|
349 | ||||
|
350 | ||||
303 | def selectHeights(self, minHei, maxHei): |
|
351 | def selectHeights(self, minHei, maxHei): | |
304 | """ |
|
352 | """ | |
305 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
353 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
@@ -316,9 +364,9 class SpectraProc(ProcessingUnit): | |||||
316 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
364 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
317 | """ |
|
365 | """ | |
318 |
|
366 | |||
|
367 | ||||
319 | if (minHei > maxHei): |
|
368 | if (minHei > maxHei): | |
320 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % ( |
|
369 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) | |
321 | minHei, maxHei)) |
|
|||
322 |
|
370 | |||
323 | if (minHei < self.dataOut.heightList[0]): |
|
371 | if (minHei < self.dataOut.heightList[0]): | |
324 | minHei = self.dataOut.heightList[0] |
|
372 | minHei = self.dataOut.heightList[0] | |
@@ -344,6 +392,7 class SpectraProc(ProcessingUnit): | |||||
344 | maxIndex = len(heights) |
|
392 | maxIndex = len(heights) | |
345 |
|
393 | |||
346 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
394 | self.selectHeightsByIndex(minIndex, maxIndex) | |
|
395 | ||||
347 |
|
396 | |||
348 | return 1 |
|
397 | return 1 | |
349 |
|
398 | |||
@@ -389,6 +438,40 class SpectraProc(ProcessingUnit): | |||||
389 |
|
438 | |||
390 | return 1 |
|
439 | return 1 | |
391 |
|
440 | |||
|
441 | def selectFFTsByIndex(self, minIndex, maxIndex): | |||
|
442 | """ | |||
|
443 | ||||
|
444 | """ | |||
|
445 | ||||
|
446 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
447 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
448 | ||||
|
449 | if (maxIndex >= self.dataOut.nProfiles): | |||
|
450 | maxIndex = self.dataOut.nProfiles-1 | |||
|
451 | ||||
|
452 | #Spectra | |||
|
453 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |||
|
454 | ||||
|
455 | data_cspc = None | |||
|
456 | if self.dataOut.data_cspc is not None: | |||
|
457 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |||
|
458 | ||||
|
459 | data_dc = None | |||
|
460 | if self.dataOut.data_dc is not None: | |||
|
461 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |||
|
462 | ||||
|
463 | self.dataOut.data_spc = data_spc | |||
|
464 | self.dataOut.data_cspc = data_cspc | |||
|
465 | self.dataOut.data_dc = data_dc | |||
|
466 | ||||
|
467 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |||
|
468 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |||
|
469 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |||
|
470 | ||||
|
471 | return 1 | |||
|
472 | ||||
|
473 | ||||
|
474 | ||||
392 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
475 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
393 | """ |
|
476 | """ | |
394 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
477 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
@@ -494,7 +577,32 class SpectraProc(ProcessingUnit): | |||||
494 |
|
577 | |||
495 | return 1 |
|
578 | return 1 | |
496 |
|
579 | |||
497 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
580 | def removeInterference2(self): | |
|
581 | ||||
|
582 | cspc = self.dataOut.data_cspc | |||
|
583 | spc = self.dataOut.data_spc | |||
|
584 | Heights = numpy.arange(cspc.shape[2]) | |||
|
585 | realCspc = numpy.abs(cspc) | |||
|
586 | ||||
|
587 | for i in range(cspc.shape[0]): | |||
|
588 | LinePower= numpy.sum(realCspc[i], axis=0) | |||
|
589 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |||
|
590 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |||
|
591 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |||
|
592 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |||
|
593 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |||
|
594 | ||||
|
595 | ||||
|
596 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |||
|
597 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |||
|
598 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |||
|
599 | cspc[i,InterferenceRange,:] = numpy.NaN | |||
|
600 | ||||
|
601 | ||||
|
602 | ||||
|
603 | self.dataOut.data_cspc = cspc | |||
|
604 | ||||
|
605 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |||
498 |
|
606 | |||
499 | jspectra = self.dataOut.data_spc |
|
607 | jspectra = self.dataOut.data_spc | |
500 | jcspectra = self.dataOut.data_cspc |
|
608 | jcspectra = self.dataOut.data_cspc |
1 | NO CONTENT: file was removed |
|
NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now