@@ -1,4022 +1,4025 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize, interpolate, signal, stats, ndimage |
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
4 | import scipy |
|
4 | import scipy | |
5 | import re |
|
5 | import re | |
6 | import datetime |
|
6 | import datetime | |
7 | import copy |
|
7 | import copy | |
8 | import sys |
|
8 | import sys | |
9 | import importlib |
|
9 | import importlib | |
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import copy_reg |
|
13 | ||
14 | import cPickle |
|
14 | ||
15 | import types |
|
15 | ||
16 | from functools import partial |
|
|||
17 | import time |
|
16 | import time | |
18 | #from sklearn.cluster import KMeans |
|
17 | #from sklearn.cluster import KMeans | |
19 |
|
18 | |||
20 | import matplotlib.pyplot as plt |
|
19 | import matplotlib.pyplot as plt | |
21 |
|
20 | |||
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
21 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
23 | from jroproc_base import ProcessingUnit, Operation |
|
22 | from jroproc_base import ProcessingUnit, Operation | |
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon |
|
23 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
25 | from scipy import asarray as ar,exp |
|
24 | from scipy import asarray as ar,exp | |
26 | from scipy.optimize import curve_fit |
|
25 | from scipy.optimize import curve_fit | |
27 |
|
26 | |||
28 | import warnings |
|
27 | import warnings | |
29 | from numpy import NaN |
|
28 | from numpy import NaN | |
30 | from scipy.optimize.optimize import OptimizeWarning |
|
29 | from scipy.optimize.optimize import OptimizeWarning | |
31 | warnings.filterwarnings('ignore') |
|
30 | warnings.filterwarnings('ignore') | |
32 |
|
31 | |||
33 |
|
32 | |||
34 | SPEED_OF_LIGHT = 299792458 |
|
33 | SPEED_OF_LIGHT = 299792458 | |
35 |
|
34 | |||
36 |
|
35 | |||
37 | '''solving pickling issue''' |
|
36 | '''solving pickling issue''' | |
38 |
|
37 | |||
39 | def _pickle_method(method): |
|
38 | def _pickle_method(method): | |
40 | func_name = method.im_func.__name__ |
|
39 | func_name = method.im_func.__name__ | |
41 | obj = method.im_self |
|
40 | obj = method.im_self | |
42 | cls = method.im_class |
|
41 | cls = method.im_class | |
43 | return _unpickle_method, (func_name, obj, cls) |
|
42 | return _unpickle_method, (func_name, obj, cls) | |
44 |
|
43 | |||
45 | def _unpickle_method(func_name, obj, cls): |
|
44 | def _unpickle_method(func_name, obj, cls): | |
46 | for cls in cls.mro(): |
|
45 | for cls in cls.mro(): | |
47 | try: |
|
46 | try: | |
48 | func = cls.__dict__[func_name] |
|
47 | func = cls.__dict__[func_name] | |
49 | except KeyError: |
|
48 | except KeyError: | |
50 | pass |
|
49 | pass | |
51 | else: |
|
50 | else: | |
52 | break |
|
51 | break | |
53 | return func.__get__(obj, cls) |
|
52 | return func.__get__(obj, cls) | |
54 |
|
53 | |||
55 | class ParametersProc(ProcessingUnit): |
|
54 | class ParametersProc(ProcessingUnit): | |
56 |
|
55 | |||
57 | nSeconds = None |
|
56 | nSeconds = None | |
58 |
|
57 | |||
59 | def __init__(self): |
|
58 | def __init__(self): | |
60 | ProcessingUnit.__init__(self) |
|
59 | ProcessingUnit.__init__(self) | |
61 |
|
60 | |||
62 | # self.objectDict = {} |
|
61 | # self.objectDict = {} | |
63 | self.buffer = None |
|
62 | self.buffer = None | |
64 | self.firstdatatime = None |
|
63 | self.firstdatatime = None | |
65 | self.profIndex = 0 |
|
64 | self.profIndex = 0 | |
66 | self.dataOut = Parameters() |
|
65 | self.dataOut = Parameters() | |
67 |
|
66 | |||
68 | def __updateObjFromInput(self): |
|
67 | def __updateObjFromInput(self): | |
69 |
|
68 | |||
70 | self.dataOut.inputUnit = self.dataIn.type |
|
69 | self.dataOut.inputUnit = self.dataIn.type | |
71 |
|
70 | |||
72 | self.dataOut.timeZone = self.dataIn.timeZone |
|
71 | self.dataOut.timeZone = self.dataIn.timeZone | |
73 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
72 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
74 | self.dataOut.errorCount = self.dataIn.errorCount |
|
73 | self.dataOut.errorCount = self.dataIn.errorCount | |
75 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
74 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
76 |
|
75 | |||
77 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
76 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
78 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
77 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
79 | self.dataOut.channelList = self.dataIn.channelList |
|
78 | self.dataOut.channelList = self.dataIn.channelList | |
80 | self.dataOut.heightList = self.dataIn.heightList |
|
79 | self.dataOut.heightList = self.dataIn.heightList | |
81 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
80 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
82 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
81 | # self.dataOut.nHeights = self.dataIn.nHeights | |
83 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
82 | # self.dataOut.nChannels = self.dataIn.nChannels | |
84 | self.dataOut.nBaud = self.dataIn.nBaud |
|
83 | self.dataOut.nBaud = self.dataIn.nBaud | |
85 | self.dataOut.nCode = self.dataIn.nCode |
|
84 | self.dataOut.nCode = self.dataIn.nCode | |
86 | self.dataOut.code = self.dataIn.code |
|
85 | self.dataOut.code = self.dataIn.code | |
87 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
86 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
88 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
87 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
89 | # self.dataOut.utctime = self.firstdatatime |
|
88 | # self.dataOut.utctime = self.firstdatatime | |
90 | self.dataOut.utctime = self.dataIn.utctime |
|
89 | self.dataOut.utctime = self.dataIn.utctime | |
91 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
90 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
92 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
91 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
93 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
92 | self.dataOut.nCohInt = self.dataIn.nCohInt | |
94 | # self.dataOut.nIncohInt = 1 |
|
93 | # self.dataOut.nIncohInt = 1 | |
95 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
94 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
96 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
95 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
97 | self.dataOut.timeInterval1 = self.dataIn.timeInterval |
|
96 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
98 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
97 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
99 | self.dataOut.frequency = self.dataIn.frequency |
|
98 | self.dataOut.frequency = self.dataIn.frequency | |
100 | self.dataOut.noise = self.dataIn.noise |
|
99 | self.dataOut.noise = self.dataIn.noise | |
101 |
|
100 | |||
102 |
|
101 | |||
103 |
|
102 | |||
104 | def run(self): |
|
103 | def run(self): | |
105 |
|
104 | |||
106 | #---------------------- Voltage Data --------------------------- |
|
105 | #---------------------- Voltage Data --------------------------- | |
107 |
|
106 | |||
108 | if self.dataIn.type == "Voltage": |
|
107 | if self.dataIn.type == "Voltage": | |
109 |
|
108 | |||
110 | self.__updateObjFromInput() |
|
109 | self.__updateObjFromInput() | |
111 | self.dataOut.data_pre = self.dataIn.data.copy() |
|
110 | self.dataOut.data_pre = self.dataIn.data.copy() | |
112 | self.dataOut.flagNoData = False |
|
111 | self.dataOut.flagNoData = False | |
113 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
112 | self.dataOut.utctimeInit = self.dataIn.utctime | |
114 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds |
|
113 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
115 | return |
|
114 | return | |
116 |
|
115 | |||
117 | #---------------------- Spectra Data --------------------------- |
|
116 | #---------------------- Spectra Data --------------------------- | |
118 |
|
117 | |||
119 | if self.dataIn.type == "Spectra": |
|
118 | if self.dataIn.type == "Spectra": | |
120 |
|
119 | |||
121 | self.dataOut.data_pre = (self.dataIn.data_spc , self.dataIn.data_cspc) |
|
120 | self.dataOut.data_pre = (self.dataIn.data_spc , self.dataIn.data_cspc) | |
122 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape |
|
121 | print 'self.dataIn.data_spc', self.dataIn.data_spc.shape | |
123 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
122 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
124 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
123 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
125 | self.dataOut.spc_range = numpy.asanyarray((self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) )) |
|
124 | self.dataOut.spc_range = numpy.asanyarray((self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1) )) | |
126 |
|
125 | |||
127 | self.dataOut.normFactor = self.dataIn.normFactor |
|
126 | self.dataOut.normFactor = self.dataIn.normFactor | |
128 | #self.dataOut.outputInterval = self.dataIn.outputInterval |
|
127 | #self.dataOut.outputInterval = self.dataIn.outputInterval | |
129 | self.dataOut.groupList = self.dataIn.pairsList |
|
128 | self.dataOut.groupList = self.dataIn.pairsList | |
130 | self.dataOut.flagNoData = False |
|
129 | self.dataOut.flagNoData = False | |
131 | #print 'datain chandist ',self.dataIn.ChanDist |
|
130 | #print 'datain chandist ',self.dataIn.ChanDist | |
132 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels |
|
131 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |
133 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
132 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
134 | else: self.dataOut.ChanDist = None |
|
133 | else: self.dataOut.ChanDist = None | |
135 |
|
134 | |||
136 | print 'datain chandist ',self.dataOut.ChanDist |
|
135 | print 'datain chandist ',self.dataOut.ChanDist | |
137 |
|
136 | |||
138 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
137 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
139 | # self.dataOut.VelRange = self.dataIn.VelRange |
|
138 | # self.dataOut.VelRange = self.dataIn.VelRange | |
140 | #else: self.dataOut.VelRange = None |
|
139 | #else: self.dataOut.VelRange = None | |
141 |
|
140 | |||
142 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
141 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
143 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
142 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
144 |
|
143 | |||
145 | if hasattr(self.dataIn, 'NPW'): #NPW |
|
144 | if hasattr(self.dataIn, 'NPW'): #NPW | |
146 | self.dataOut.NPW = self.dataIn.NPW |
|
145 | self.dataOut.NPW = self.dataIn.NPW | |
147 |
|
146 | |||
148 | if hasattr(self.dataIn, 'COFA'): #COFA |
|
147 | if hasattr(self.dataIn, 'COFA'): #COFA | |
149 | self.dataOut.COFA = self.dataIn.COFA |
|
148 | self.dataOut.COFA = self.dataIn.COFA | |
150 |
|
149 | |||
151 |
|
150 | |||
152 |
|
151 | |||
153 | #---------------------- Correlation Data --------------------------- |
|
152 | #---------------------- Correlation Data --------------------------- | |
154 |
|
153 | |||
155 | if self.dataIn.type == "Correlation": |
|
154 | if self.dataIn.type == "Correlation": | |
156 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() |
|
155 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
157 |
|
156 | |||
158 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) |
|
157 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
159 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) |
|
158 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
160 | self.dataOut.groupList = (acf_pairs, ccf_pairs) |
|
159 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
161 |
|
160 | |||
162 | self.dataOut.abscissaList = self.dataIn.lagRange |
|
161 | self.dataOut.abscissaList = self.dataIn.lagRange | |
163 | self.dataOut.noise = self.dataIn.noise |
|
162 | self.dataOut.noise = self.dataIn.noise | |
164 | self.dataOut.data_SNR = self.dataIn.SNR |
|
163 | self.dataOut.data_SNR = self.dataIn.SNR | |
165 | self.dataOut.flagNoData = False |
|
164 | self.dataOut.flagNoData = False | |
166 | self.dataOut.nAvg = self.dataIn.nAvg |
|
165 | self.dataOut.nAvg = self.dataIn.nAvg | |
167 |
|
166 | |||
168 | #---------------------- Parameters Data --------------------------- |
|
167 | #---------------------- Parameters Data --------------------------- | |
169 |
|
168 | |||
170 | if self.dataIn.type == "Parameters": |
|
169 | if self.dataIn.type == "Parameters": | |
171 | self.dataOut.copy(self.dataIn) |
|
170 | self.dataOut.copy(self.dataIn) | |
172 | self.dataOut.flagNoData = False |
|
171 | self.dataOut.flagNoData = False | |
173 |
|
172 | |||
174 | return True |
|
173 | return True | |
175 |
|
174 | |||
176 | self.__updateObjFromInput() |
|
175 | self.__updateObjFromInput() | |
177 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
176 | self.dataOut.utctimeInit = self.dataIn.utctime | |
178 | self.dataOut.paramInterval = self.dataIn.timeInterval |
|
177 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
179 |
|
178 | |||
180 | return |
|
179 | return | |
181 |
|
180 | |||
182 |
|
181 | |||
183 | def target(tups): |
|
182 | def target(tups): | |
184 |
|
183 | |||
185 | obj, args = tups |
|
184 | obj, args = tups | |
186 | #print 'TARGETTT', obj, args |
|
185 | #print 'TARGETTT', obj, args | |
187 | return obj.FitGau(args) |
|
186 | return obj.FitGau(args) | |
188 |
|
187 | |||
189 |
|
188 | |||
190 | class SpectralFilters(Operation): |
|
189 | class SpectralFilters(Operation): | |
191 |
|
190 | |||
192 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR |
|
191 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |
193 |
|
192 | |||
194 | LimitR : It is the limit in m/s of Rainfall |
|
193 | LimitR : It is the limit in m/s of Rainfall | |
195 | LimitW : It is the limit in m/s for Winds |
|
194 | LimitW : It is the limit in m/s for Winds | |
196 |
|
195 | |||
197 | Input: |
|
196 | Input: | |
198 |
|
197 | |||
199 | self.dataOut.data_pre : SPC and CSPC |
|
198 | self.dataOut.data_pre : SPC and CSPC | |
200 | self.dataOut.spc_range : To select wind and rainfall velocities |
|
199 | self.dataOut.spc_range : To select wind and rainfall velocities | |
201 |
|
200 | |||
202 | Affected: |
|
201 | Affected: | |
203 |
|
202 | |||
204 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind |
|
203 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |
205 | self.dataOut.spcparam_range : Used in SpcParamPlot |
|
204 | self.dataOut.spcparam_range : Used in SpcParamPlot | |
206 | self.dataOut.SPCparam : Used in PrecipitationProc |
|
205 | self.dataOut.SPCparam : Used in PrecipitationProc | |
207 |
|
206 | |||
208 |
|
207 | |||
209 | ''' |
|
208 | ''' | |
210 |
|
209 | |||
211 | def __init__(self, **kwargs): |
|
210 | def __init__(self, **kwargs): | |
212 | Operation.__init__(self, **kwargs) |
|
211 | Operation.__init__(self, **kwargs) | |
213 | self.i=0 |
|
212 | self.i=0 | |
214 |
|
213 | |||
215 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): |
|
214 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |
216 |
|
215 | |||
217 |
|
216 | |||
218 | #Limite de vientos |
|
217 | #Limite de vientos | |
219 | LimitR = PositiveLimit |
|
218 | LimitR = PositiveLimit | |
220 | LimitN = NegativeLimit |
|
219 | LimitN = NegativeLimit | |
221 |
|
220 | |||
222 | self.spc = dataOut.data_pre[0].copy() |
|
221 | self.spc = dataOut.data_pre[0].copy() | |
223 | self.cspc = dataOut.data_pre[1].copy() |
|
222 | self.cspc = dataOut.data_pre[1].copy() | |
224 |
|
223 | |||
225 | self.Num_Hei = self.spc.shape[2] |
|
224 | self.Num_Hei = self.spc.shape[2] | |
226 | self.Num_Bin = self.spc.shape[1] |
|
225 | self.Num_Bin = self.spc.shape[1] | |
227 | self.Num_Chn = self.spc.shape[0] |
|
226 | self.Num_Chn = self.spc.shape[0] | |
228 |
|
227 | |||
229 | VelRange = dataOut.spc_range[2] |
|
228 | VelRange = dataOut.spc_range[2] | |
230 | TimeRange = dataOut.spc_range[1] |
|
229 | TimeRange = dataOut.spc_range[1] | |
231 | FrecRange = dataOut.spc_range[0] |
|
230 | FrecRange = dataOut.spc_range[0] | |
232 |
|
231 | |||
233 | Vmax= 2*numpy.max(dataOut.spc_range[2]) |
|
232 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |
234 | Tmax= 2*numpy.max(dataOut.spc_range[1]) |
|
233 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |
235 | Fmax= 2*numpy.max(dataOut.spc_range[0]) |
|
234 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |
236 |
|
235 | |||
237 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] |
|
236 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |
238 | Breaker1R=numpy.where(VelRange == Breaker1R) |
|
237 | Breaker1R=numpy.where(VelRange == Breaker1R) | |
239 |
|
238 | |||
240 | Delta = self.Num_Bin/2 - Breaker1R[0] |
|
239 | Delta = self.Num_Bin/2 - Breaker1R[0] | |
241 |
|
240 | |||
242 | #Breaker1W=VelRange[numpy.abs(VelRange-(-LimitW)).argmin()] |
|
241 | #Breaker1W=VelRange[numpy.abs(VelRange-(-LimitW)).argmin()] | |
243 | #Breaker1W=numpy.where(VelRange == Breaker1W) |
|
242 | #Breaker1W=numpy.where(VelRange == Breaker1W) | |
244 |
|
243 | |||
245 | #Breaker2W=VelRange[numpy.abs(VelRange-(LimitW)).argmin()] |
|
244 | #Breaker2W=VelRange[numpy.abs(VelRange-(LimitW)).argmin()] | |
246 | #Breaker2W=numpy.where(VelRange == Breaker2W) |
|
245 | #Breaker2W=numpy.where(VelRange == Breaker2W) | |
247 |
|
246 | |||
248 |
|
247 | |||
249 | '''Reacomodando SPCrange''' |
|
248 | '''Reacomodando SPCrange''' | |
250 |
|
249 | |||
251 | VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0) |
|
250 | VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0) | |
252 |
|
251 | |||
253 | VelRange[-(self.Num_Bin/2):]+= Vmax |
|
252 | VelRange[-(self.Num_Bin/2):]+= Vmax | |
254 |
|
253 | |||
255 | FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0) |
|
254 | FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0) | |
256 |
|
255 | |||
257 | FrecRange[-(self.Num_Bin/2):]+= Fmax |
|
256 | FrecRange[-(self.Num_Bin/2):]+= Fmax | |
258 |
|
257 | |||
259 | TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0) |
|
258 | TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0) | |
260 |
|
259 | |||
261 | TimeRange[-(self.Num_Bin/2):]+= Tmax |
|
260 | TimeRange[-(self.Num_Bin/2):]+= Tmax | |
262 |
|
261 | |||
263 | ''' ------------------ ''' |
|
262 | ''' ------------------ ''' | |
264 |
|
263 | |||
265 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] |
|
264 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |
266 | Breaker2R=numpy.where(VelRange == Breaker2R) |
|
265 | Breaker2R=numpy.where(VelRange == Breaker2R) | |
267 |
|
266 | |||
268 |
|
267 | |||
269 | SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1) |
|
268 | SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1) | |
270 |
|
269 | |||
271 | SPCcut = SPCroll.copy() |
|
270 | SPCcut = SPCroll.copy() | |
272 | for i in range(self.Num_Chn): |
|
271 | for i in range(self.Num_Chn): | |
273 |
|
272 | |||
274 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] |
|
273 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |
275 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] |
|
274 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |
276 |
|
275 | |||
277 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] |
|
276 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |
278 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 |
|
277 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |
279 |
|
278 | |||
280 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] |
|
279 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |
281 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 |
|
280 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |
282 |
|
281 | |||
283 | #self.spc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] |
|
282 | #self.spc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] | |
284 | #self.spc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] |
|
283 | #self.spc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] | |
285 |
|
284 | |||
286 | #self.cspc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] |
|
285 | #self.cspc[i, 0:int(Breaker1W[0]) ,:] = dataOut.noise[i] | |
287 | #self.cspc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] |
|
286 | #self.cspc[i, int(Breaker2W[0]):self.Num_Bin ,:] = dataOut.noise[i] | |
288 |
|
287 | |||
289 |
|
288 | |||
290 |
|
289 | |||
291 |
|
290 | |||
292 |
|
291 | |||
293 | SPC_ch1 = SPCroll |
|
292 | SPC_ch1 = SPCroll | |
294 |
|
293 | |||
295 | SPC_ch2 = SPCcut |
|
294 | SPC_ch2 = SPCcut | |
296 |
|
295 | |||
297 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) |
|
296 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |
298 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
297 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
299 |
|
298 | |||
300 | #dataOut.data_pre= (self.spc , self.cspc) |
|
299 | #dataOut.data_pre= (self.spc , self.cspc) | |
301 |
|
300 | |||
302 | #dataOut.data_preParam = (self.spc , self.cspc) |
|
301 | #dataOut.data_preParam = (self.spc , self.cspc) | |
303 |
|
302 | |||
304 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) |
|
303 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |
305 |
|
304 | |||
306 | dataOut.spcparam_range[2]=VelRange |
|
305 | dataOut.spcparam_range[2]=VelRange | |
307 | dataOut.spcparam_range[1]=TimeRange |
|
306 | dataOut.spcparam_range[1]=TimeRange | |
308 | dataOut.spcparam_range[0]=FrecRange |
|
307 | dataOut.spcparam_range[0]=FrecRange | |
309 |
|
308 | |||
310 |
|
309 | |||
311 |
|
310 | |||
312 |
|
311 | |||
313 | class GaussianFit(Operation): |
|
312 | class GaussianFit(Operation): | |
314 |
|
313 | |||
315 | ''' |
|
314 | ''' | |
316 | Function that fit of one and two generalized gaussians (gg) based |
|
315 | Function that fit of one and two generalized gaussians (gg) based | |
317 | on the PSD shape across an "power band" identified from a cumsum of |
|
316 | on the PSD shape across an "power band" identified from a cumsum of | |
318 | the measured spectrum - noise. |
|
317 | the measured spectrum - noise. | |
319 |
|
318 | |||
320 | Input: |
|
319 | Input: | |
321 | self.dataOut.data_pre : SelfSpectra |
|
320 | self.dataOut.data_pre : SelfSpectra | |
322 |
|
321 | |||
323 | Output: |
|
322 | Output: | |
324 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 |
|
323 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
325 |
|
324 | |||
326 | ''' |
|
325 | ''' | |
327 | def __init__(self, **kwargs): |
|
326 | def __init__(self, **kwargs): | |
328 | Operation.__init__(self, **kwargs) |
|
327 | Operation.__init__(self, **kwargs) | |
329 | self.i=0 |
|
328 | self.i=0 | |
330 |
|
329 | |||
331 |
|
330 | |||
332 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points |
|
331 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
333 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
332 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
334 | input: spc |
|
333 | input: spc | |
335 | output: |
|
334 | output: | |
336 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise |
|
335 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |
337 | """ |
|
336 | """ | |
338 |
|
337 | |||
339 | self.spc = dataOut.data_pre[0].copy() |
|
338 | self.spc = dataOut.data_pre[0].copy() | |
340 |
|
339 | |||
341 |
|
340 | |||
342 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape |
|
341 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape | |
343 |
|
342 | |||
344 |
|
343 | |||
345 | #plt.figure(50) |
|
344 | #plt.figure(50) | |
346 | #plt.subplot(121) |
|
345 | #plt.subplot(121) | |
347 | #plt.plot(self.spc,'k',label='spc(66)') |
|
346 | #plt.plot(self.spc,'k',label='spc(66)') | |
348 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
347 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |
349 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
348 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |
350 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
349 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |
351 | #plt.legend() |
|
350 | #plt.legend() | |
352 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
351 | #plt.title('DATOS A ALTURA DE 7500 METROS') | |
353 | #plt.show() |
|
352 | #plt.show() | |
354 |
|
353 | |||
355 | self.Num_Hei = self.spc.shape[2] |
|
354 | self.Num_Hei = self.spc.shape[2] | |
356 | #self.Num_Bin = len(self.spc) |
|
355 | #self.Num_Bin = len(self.spc) | |
357 | self.Num_Bin = self.spc.shape[1] |
|
356 | self.Num_Bin = self.spc.shape[1] | |
358 | self.Num_Chn = self.spc.shape[0] |
|
357 | self.Num_Chn = self.spc.shape[0] | |
359 | Vrange = dataOut.abscissaList |
|
358 | Vrange = dataOut.abscissaList | |
360 |
|
359 | |||
361 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) |
|
360 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
362 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
361 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
363 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
362 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
364 | SPC_ch1[:] = numpy.NaN |
|
363 | SPC_ch1[:] = numpy.NaN | |
365 | SPC_ch2[:] = numpy.NaN |
|
364 | SPC_ch2[:] = numpy.NaN | |
366 |
|
365 | |||
367 |
|
366 | |||
368 | start_time = time.time() |
|
367 | start_time = time.time() | |
369 |
|
368 | |||
370 | noise_ = dataOut.spc_noise[0].copy() |
|
369 | noise_ = dataOut.spc_noise[0].copy() | |
371 |
|
370 | |||
372 |
|
371 | |||
373 | pool = Pool(processes=self.Num_Chn) |
|
372 | pool = Pool(processes=self.Num_Chn) | |
374 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
373 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
375 | objs = [self for __ in range(self.Num_Chn)] |
|
374 | objs = [self for __ in range(self.Num_Chn)] | |
376 | attrs = zip(objs, args) |
|
375 | attrs = zip(objs, args) | |
377 | gauSPC = pool.map(target, attrs) |
|
376 | gauSPC = pool.map(target, attrs) | |
378 | dataOut.SPCparam = numpy.asarray(SPCparam) |
|
377 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
379 |
|
378 | |||
380 |
|
379 | |||
381 |
|
380 | |||
382 | print '========================================================' |
|
381 | print '========================================================' | |
383 | print 'total_time: ', time.time()-start_time |
|
382 | print 'total_time: ', time.time()-start_time | |
384 |
|
383 | |||
385 | # re-normalizing spc and noise |
|
384 | # re-normalizing spc and noise | |
386 | # This part differs from gg1 |
|
385 | # This part differs from gg1 | |
387 |
|
386 | |||
388 |
|
387 | |||
389 |
|
388 | |||
390 | ''' Parameters: |
|
389 | ''' Parameters: | |
391 | 1. Amplitude |
|
390 | 1. Amplitude | |
392 | 2. Shift |
|
391 | 2. Shift | |
393 | 3. Width |
|
392 | 3. Width | |
394 | 4. Power |
|
393 | 4. Power | |
395 | ''' |
|
394 | ''' | |
396 |
|
395 | |||
397 |
|
396 | |||
398 | ############################################################################### |
|
397 | ############################################################################### | |
399 | def FitGau(self, X): |
|
398 | def FitGau(self, X): | |
400 |
|
399 | |||
401 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
400 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
402 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
401 | #print 'VARSSSS', ch, pnoise, noise, num_intg | |
403 |
|
402 | |||
404 | #print 'HEIGHTS', self.Num_Hei |
|
403 | #print 'HEIGHTS', self.Num_Hei | |
405 |
|
404 | |||
406 | SPCparam = [] |
|
405 | SPCparam = [] | |
407 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
406 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
408 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
407 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
409 | SPC_ch1[:] = 0#numpy.NaN |
|
408 | SPC_ch1[:] = 0#numpy.NaN | |
410 | SPC_ch2[:] = 0#numpy.NaN |
|
409 | SPC_ch2[:] = 0#numpy.NaN | |
411 |
|
410 | |||
412 |
|
411 | |||
413 |
|
412 | |||
414 | for ht in range(self.Num_Hei): |
|
413 | for ht in range(self.Num_Hei): | |
415 | #print (numpy.asarray(self.spc).shape) |
|
414 | #print (numpy.asarray(self.spc).shape) | |
416 |
|
415 | |||
417 | #print 'TTTTT', ch , ht |
|
416 | #print 'TTTTT', ch , ht | |
418 | #print self.spc.shape |
|
417 | #print self.spc.shape | |
419 |
|
418 | |||
420 |
|
419 | |||
421 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
420 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
422 |
|
421 | |||
423 | ############################################# |
|
422 | ############################################# | |
424 | # normalizing spc and noise |
|
423 | # normalizing spc and noise | |
425 | # This part differs from gg1 |
|
424 | # This part differs from gg1 | |
426 | spc_norm_max = max(spc) |
|
425 | spc_norm_max = max(spc) | |
427 | #spc = spc / spc_norm_max |
|
426 | #spc = spc / spc_norm_max | |
428 | pnoise = pnoise #/ spc_norm_max |
|
427 | pnoise = pnoise #/ spc_norm_max | |
429 | ############################################# |
|
428 | ############################################# | |
430 |
|
429 | |||
431 | fatspectra=1.0 |
|
430 | fatspectra=1.0 | |
432 |
|
431 | |||
433 | wnoise = noise_ #/ spc_norm_max |
|
432 | wnoise = noise_ #/ spc_norm_max | |
434 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
433 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
435 | #if wnoise>1.1*pnoise: # to be tested later |
|
434 | #if wnoise>1.1*pnoise: # to be tested later | |
436 | # wnoise=pnoise |
|
435 | # wnoise=pnoise | |
437 | noisebl=wnoise*0.9; |
|
436 | noisebl=wnoise*0.9; | |
438 | noisebh=wnoise*1.1 |
|
437 | noisebh=wnoise*1.1 | |
439 | spc=spc-wnoise |
|
438 | spc=spc-wnoise | |
440 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
439 | # print 'wnoise', noise_[0], spc_norm_max, wnoise | |
441 | minx=numpy.argmin(spc) |
|
440 | minx=numpy.argmin(spc) | |
442 | #spcs=spc.copy() |
|
441 | #spcs=spc.copy() | |
443 | spcs=numpy.roll(spc,-minx) |
|
442 | spcs=numpy.roll(spc,-minx) | |
444 | cum=numpy.cumsum(spcs) |
|
443 | cum=numpy.cumsum(spcs) | |
445 | tot_noise=wnoise * self.Num_Bin #64; |
|
444 | tot_noise=wnoise * self.Num_Bin #64; | |
446 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
445 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |
447 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
446 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |
448 | #snr=tot_signal/tot_noise |
|
447 | #snr=tot_signal/tot_noise | |
449 | #snr=cum[-1]/tot_noise |
|
448 | #snr=cum[-1]/tot_noise | |
450 | snr = sum(spcs)/tot_noise |
|
449 | snr = sum(spcs)/tot_noise | |
451 | snrdB=10.*numpy.log10(snr) |
|
450 | snrdB=10.*numpy.log10(snr) | |
452 |
|
451 | |||
453 | if snrdB < SNRlimit : |
|
452 | if snrdB < SNRlimit : | |
454 | snr = numpy.NaN |
|
453 | snr = numpy.NaN | |
455 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
454 | SPC_ch1[:,ht] = 0#numpy.NaN | |
456 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
455 | SPC_ch1[:,ht] = 0#numpy.NaN | |
457 | SPCparam = (SPC_ch1,SPC_ch2) |
|
456 | SPCparam = (SPC_ch1,SPC_ch2) | |
458 | continue |
|
457 | continue | |
459 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
458 | #print 'snr',snrdB #, sum(spcs) , tot_noise | |
460 |
|
459 | |||
461 |
|
460 | |||
462 |
|
461 | |||
463 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
462 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
464 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
463 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
465 |
|
464 | |||
466 | cummax=max(cum); |
|
465 | cummax=max(cum); | |
467 | epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
466 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |
468 | cumlo=cummax*epsi; |
|
467 | cumlo=cummax*epsi; | |
469 | cumhi=cummax*(1-epsi) |
|
468 | cumhi=cummax*(1-epsi) | |
470 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
469 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
471 |
|
470 | |||
472 |
|
471 | |||
473 | if len(powerindex) < 1:# case for powerindex 0 |
|
472 | if len(powerindex) < 1:# case for powerindex 0 | |
474 | continue |
|
473 | continue | |
475 | powerlo=powerindex[0] |
|
474 | powerlo=powerindex[0] | |
476 | powerhi=powerindex[-1] |
|
475 | powerhi=powerindex[-1] | |
477 | powerwidth=powerhi-powerlo |
|
476 | powerwidth=powerhi-powerlo | |
478 |
|
477 | |||
479 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
478 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |
480 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
479 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |
481 | midpeak=(firstpeak+secondpeak)/2. |
|
480 | midpeak=(firstpeak+secondpeak)/2. | |
482 | firstamp=spcs[int(firstpeak)] |
|
481 | firstamp=spcs[int(firstpeak)] | |
483 | secondamp=spcs[int(secondpeak)] |
|
482 | secondamp=spcs[int(secondpeak)] | |
484 | midamp=spcs[int(midpeak)] |
|
483 | midamp=spcs[int(midpeak)] | |
485 |
|
484 | |||
486 | x=numpy.arange( self.Num_Bin ) |
|
485 | x=numpy.arange( self.Num_Bin ) | |
487 | y_data=spc+wnoise |
|
486 | y_data=spc+wnoise | |
488 |
|
487 | |||
489 | ''' single Gaussian ''' |
|
488 | ''' single Gaussian ''' | |
490 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
489 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
491 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
490 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
492 | power0=2. |
|
491 | power0=2. | |
493 | amplitude0=midamp |
|
492 | amplitude0=midamp | |
494 | state0=[shift0,width0,amplitude0,power0,wnoise] |
|
493 | state0=[shift0,width0,amplitude0,power0,wnoise] | |
495 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
494 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |
496 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
495 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
497 |
|
496 | |||
498 | chiSq1=lsq1[1]; |
|
497 | chiSq1=lsq1[1]; | |
499 |
|
498 | |||
500 |
|
499 | |||
501 | if fatspectra<1.0 and powerwidth<4: |
|
500 | if fatspectra<1.0 and powerwidth<4: | |
502 | choice=0 |
|
501 | choice=0 | |
503 | Amplitude0=lsq1[0][2] |
|
502 | Amplitude0=lsq1[0][2] | |
504 | shift0=lsq1[0][0] |
|
503 | shift0=lsq1[0][0] | |
505 | width0=lsq1[0][1] |
|
504 | width0=lsq1[0][1] | |
506 | p0=lsq1[0][3] |
|
505 | p0=lsq1[0][3] | |
507 | Amplitude1=0. |
|
506 | Amplitude1=0. | |
508 | shift1=0. |
|
507 | shift1=0. | |
509 | width1=0. |
|
508 | width1=0. | |
510 | p1=0. |
|
509 | p1=0. | |
511 | noise=lsq1[0][4] |
|
510 | noise=lsq1[0][4] | |
512 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
511 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
513 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
512 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
514 |
|
513 | |||
515 | ''' two gaussians ''' |
|
514 | ''' two gaussians ''' | |
516 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
515 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
517 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
516 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
518 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
517 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
519 | width0=powerwidth/6.; |
|
518 | width0=powerwidth/6.; | |
520 | width1=width0 |
|
519 | width1=width0 | |
521 | power0=2.; |
|
520 | power0=2.; | |
522 | power1=power0 |
|
521 | power1=power0 | |
523 | amplitude0=firstamp; |
|
522 | amplitude0=firstamp; | |
524 | amplitude1=secondamp |
|
523 | amplitude1=secondamp | |
525 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
524 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |
526 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
525 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
527 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
526 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
528 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
527 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
529 |
|
528 | |||
530 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) |
|
529 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
531 |
|
530 | |||
532 |
|
531 | |||
533 | chiSq2=lsq2[1]; |
|
532 | chiSq2=lsq2[1]; | |
534 |
|
533 | |||
535 |
|
534 | |||
536 |
|
535 | |||
537 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
536 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
538 |
|
537 | |||
539 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
538 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
540 | if oneG: |
|
539 | if oneG: | |
541 | choice=0 |
|
540 | choice=0 | |
542 | else: |
|
541 | else: | |
543 | w1=lsq2[0][1]; w2=lsq2[0][5] |
|
542 | w1=lsq2[0][1]; w2=lsq2[0][5] | |
544 | a1=lsq2[0][2]; a2=lsq2[0][6] |
|
543 | a1=lsq2[0][2]; a2=lsq2[0][6] | |
545 | p1=lsq2[0][3]; p2=lsq2[0][7] |
|
544 | p1=lsq2[0][3]; p2=lsq2[0][7] | |
546 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
545 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
547 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
546 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
548 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
547 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
549 |
|
548 | |||
550 | if gp1>gp2: |
|
549 | if gp1>gp2: | |
551 | if a1>0.7*a2: |
|
550 | if a1>0.7*a2: | |
552 | choice=1 |
|
551 | choice=1 | |
553 | else: |
|
552 | else: | |
554 | choice=2 |
|
553 | choice=2 | |
555 | elif gp2>gp1: |
|
554 | elif gp2>gp1: | |
556 | if a2>0.7*a1: |
|
555 | if a2>0.7*a1: | |
557 | choice=2 |
|
556 | choice=2 | |
558 | else: |
|
557 | else: | |
559 | choice=1 |
|
558 | choice=1 | |
560 | else: |
|
559 | else: | |
561 | choice=numpy.argmax([a1,a2])+1 |
|
560 | choice=numpy.argmax([a1,a2])+1 | |
562 | #else: |
|
561 | #else: | |
563 | #choice=argmin([std2a,std2b])+1 |
|
562 | #choice=argmin([std2a,std2b])+1 | |
564 |
|
563 | |||
565 | else: # with low SNR go to the most energetic peak |
|
564 | else: # with low SNR go to the most energetic peak | |
566 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
565 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
567 |
|
566 | |||
568 |
|
567 | |||
569 | shift0=lsq2[0][0]; |
|
568 | shift0=lsq2[0][0]; | |
570 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
569 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
571 | shift1=lsq2[0][4]; |
|
570 | shift1=lsq2[0][4]; | |
572 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) |
|
571 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |
573 |
|
572 | |||
574 | max_vel = 1.0 |
|
573 | max_vel = 1.0 | |
575 |
|
574 | |||
576 | #first peak will be 0, second peak will be 1 |
|
575 | #first peak will be 0, second peak will be 1 | |
577 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range |
|
576 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
578 | shift0=lsq2[0][0] |
|
577 | shift0=lsq2[0][0] | |
579 | width0=lsq2[0][1] |
|
578 | width0=lsq2[0][1] | |
580 | Amplitude0=lsq2[0][2] |
|
579 | Amplitude0=lsq2[0][2] | |
581 | p0=lsq2[0][3] |
|
580 | p0=lsq2[0][3] | |
582 |
|
581 | |||
583 | shift1=lsq2[0][4] |
|
582 | shift1=lsq2[0][4] | |
584 | width1=lsq2[0][5] |
|
583 | width1=lsq2[0][5] | |
585 | Amplitude1=lsq2[0][6] |
|
584 | Amplitude1=lsq2[0][6] | |
586 | p1=lsq2[0][7] |
|
585 | p1=lsq2[0][7] | |
587 | noise=lsq2[0][8] |
|
586 | noise=lsq2[0][8] | |
588 | else: |
|
587 | else: | |
589 | shift1=lsq2[0][0] |
|
588 | shift1=lsq2[0][0] | |
590 | width1=lsq2[0][1] |
|
589 | width1=lsq2[0][1] | |
591 | Amplitude1=lsq2[0][2] |
|
590 | Amplitude1=lsq2[0][2] | |
592 | p1=lsq2[0][3] |
|
591 | p1=lsq2[0][3] | |
593 |
|
592 | |||
594 | shift0=lsq2[0][4] |
|
593 | shift0=lsq2[0][4] | |
595 | width0=lsq2[0][5] |
|
594 | width0=lsq2[0][5] | |
596 | Amplitude0=lsq2[0][6] |
|
595 | Amplitude0=lsq2[0][6] | |
597 | p0=lsq2[0][7] |
|
596 | p0=lsq2[0][7] | |
598 | noise=lsq2[0][8] |
|
597 | noise=lsq2[0][8] | |
599 |
|
598 | |||
600 | if Amplitude0<0.05: # in case the peak is noise |
|
599 | if Amplitude0<0.05: # in case the peak is noise | |
601 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] |
|
600 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
602 | if Amplitude1<0.05: |
|
601 | if Amplitude1<0.05: | |
603 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] |
|
602 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
604 |
|
603 | |||
605 |
|
604 | |||
606 | # if choice==0: # pick the single gaussian fit |
|
605 | # if choice==0: # pick the single gaussian fit | |
607 | # Amplitude0=lsq1[0][2] |
|
606 | # Amplitude0=lsq1[0][2] | |
608 | # shift0=lsq1[0][0] |
|
607 | # shift0=lsq1[0][0] | |
609 | # width0=lsq1[0][1] |
|
608 | # width0=lsq1[0][1] | |
610 | # p0=lsq1[0][3] |
|
609 | # p0=lsq1[0][3] | |
611 | # Amplitude1=0. |
|
610 | # Amplitude1=0. | |
612 | # shift1=0. |
|
611 | # shift1=0. | |
613 | # width1=0. |
|
612 | # width1=0. | |
614 | # p1=0. |
|
613 | # p1=0. | |
615 | # noise=lsq1[0][4] |
|
614 | # noise=lsq1[0][4] | |
616 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
615 | # elif choice==1: # take the first one of the 2 gaussians fitted | |
617 | # Amplitude0 = lsq2[0][2] |
|
616 | # Amplitude0 = lsq2[0][2] | |
618 | # shift0 = lsq2[0][0] |
|
617 | # shift0 = lsq2[0][0] | |
619 | # width0 = lsq2[0][1] |
|
618 | # width0 = lsq2[0][1] | |
620 | # p0 = lsq2[0][3] |
|
619 | # p0 = lsq2[0][3] | |
621 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
620 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |
622 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
621 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |
623 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
622 | # width1 = lsq2[0][5] # This is 0 in gg1 | |
624 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
623 | # p1 = lsq2[0][7] # This is 0 in gg1 | |
625 | # noise = lsq2[0][8] |
|
624 | # noise = lsq2[0][8] | |
626 | # else: # the second one |
|
625 | # else: # the second one | |
627 | # Amplitude0 = lsq2[0][6] |
|
626 | # Amplitude0 = lsq2[0][6] | |
628 | # shift0 = lsq2[0][4] |
|
627 | # shift0 = lsq2[0][4] | |
629 | # width0 = lsq2[0][5] |
|
628 | # width0 = lsq2[0][5] | |
630 | # p0 = lsq2[0][7] |
|
629 | # p0 = lsq2[0][7] | |
631 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
630 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |
632 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
631 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |
633 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
632 | # width1 = lsq2[0][1] # This is 0 in gg1 | |
634 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
633 | # p1 = lsq2[0][3] # This is 0 in gg1 | |
635 | # noise = lsq2[0][8] |
|
634 | # noise = lsq2[0][8] | |
636 |
|
635 | |||
637 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
636 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |
638 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
637 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
639 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
638 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
640 | #print 'SPC_ch1.shape',SPC_ch1.shape |
|
639 | #print 'SPC_ch1.shape',SPC_ch1.shape | |
641 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
640 | #print 'SPC_ch2.shape',SPC_ch2.shape | |
642 | #dataOut.data_param = SPC_ch1 |
|
641 | #dataOut.data_param = SPC_ch1 | |
643 | SPCparam = (SPC_ch1,SPC_ch2) |
|
642 | SPCparam = (SPC_ch1,SPC_ch2) | |
644 | #GauSPC[1] = SPC_ch2 |
|
643 | #GauSPC[1] = SPC_ch2 | |
645 |
|
644 | |||
646 | # print 'shift0', shift0 |
|
645 | # print 'shift0', shift0 | |
647 | # print 'Amplitude0', Amplitude0 |
|
646 | # print 'Amplitude0', Amplitude0 | |
648 | # print 'width0', width0 |
|
647 | # print 'width0', width0 | |
649 | # print 'p0', p0 |
|
648 | # print 'p0', p0 | |
650 | # print '========================' |
|
649 | # print '========================' | |
651 | # print 'shift1', shift1 |
|
650 | # print 'shift1', shift1 | |
652 | # print 'Amplitude1', Amplitude1 |
|
651 | # print 'Amplitude1', Amplitude1 | |
653 | # print 'width1', width1 |
|
652 | # print 'width1', width1 | |
654 | # print 'p1', p1 |
|
653 | # print 'p1', p1 | |
655 | # print 'noise', noise |
|
654 | # print 'noise', noise | |
656 | # print 's_noise', wnoise |
|
655 | # print 's_noise', wnoise | |
657 |
|
656 | |||
658 | return GauSPC |
|
657 | return GauSPC | |
659 |
|
658 | |||
660 | def y_model1(self,x,state): |
|
659 | def y_model1(self,x,state): | |
661 | shift0,width0,amplitude0,power0,noise=state |
|
660 | shift0,width0,amplitude0,power0,noise=state | |
662 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
661 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
663 |
|
662 | |||
664 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
663 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
665 |
|
664 | |||
666 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
665 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
667 | return model0+model0u+model0d+noise |
|
666 | return model0+model0u+model0d+noise | |
668 |
|
667 | |||
669 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist |
|
668 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |
670 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state |
|
669 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |
671 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) |
|
670 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |
672 |
|
671 | |||
673 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) |
|
672 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |
674 |
|
673 | |||
675 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) |
|
674 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |
676 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) |
|
675 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |
677 |
|
676 | |||
678 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) |
|
677 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |
679 |
|
678 | |||
680 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) |
|
679 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |
681 | return model0+model0u+model0d+model1+model1u+model1d+noise |
|
680 | return model0+model0u+model0d+model1+model1u+model1d+noise | |
682 |
|
681 | |||
683 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. |
|
682 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |
684 |
|
683 | |||
685 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented |
|
684 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
686 |
|
685 | |||
687 | def misfit2(self,state,y_data,x,num_intg): |
|
686 | def misfit2(self,state,y_data,x,num_intg): | |
688 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
687 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
689 |
|
688 | |||
690 |
|
689 | |||
691 |
|
690 | |||
692 | class PrecipitationProc(Operation): |
|
691 | class PrecipitationProc(Operation): | |
693 |
|
692 | |||
694 | ''' |
|
693 | ''' | |
695 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) |
|
694 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |
696 |
|
695 | |||
697 | Input: |
|
696 | Input: | |
698 | self.dataOut.data_pre : SelfSpectra |
|
697 | self.dataOut.data_pre : SelfSpectra | |
699 |
|
698 | |||
700 | Output: |
|
699 | Output: | |
701 |
|
700 | |||
702 | self.dataOut.data_output : Reflectivity factor, rainfall Rate |
|
701 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |
703 |
|
702 | |||
704 |
|
703 | |||
705 | Parameters affected: |
|
704 | Parameters affected: | |
706 | ''' |
|
705 | ''' | |
707 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
706 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
708 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
707 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
709 |
|
708 | |||
710 |
|
709 | |||
711 |
|
710 | |||
712 | def Moments(self, ySamples, xSamples): |
|
711 | def Moments(self, ySamples, xSamples): | |
713 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
712 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
714 | yNorm = ySamples / Pot |
|
713 | yNorm = ySamples / Pot | |
715 |
|
714 | |||
716 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
715 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
717 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
716 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
718 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
717 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
719 |
|
718 | |||
720 | return numpy.array([Pot, Vr, Desv]) |
|
719 | return numpy.array([Pot, Vr, Desv]) | |
721 |
|
720 | |||
722 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, |
|
721 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |
723 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): |
|
722 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |
724 |
|
723 | |||
725 |
|
724 | |||
726 | Velrange = dataOut.spcparam_range[2] |
|
725 | Velrange = dataOut.spcparam_range[2] | |
727 | FrecRange = dataOut.spcparam_range[0] |
|
726 | FrecRange = dataOut.spcparam_range[0] | |
728 |
|
727 | |||
729 | dV= Velrange[1]-Velrange[0] |
|
728 | dV= Velrange[1]-Velrange[0] | |
730 | dF= FrecRange[1]-FrecRange[0] |
|
729 | dF= FrecRange[1]-FrecRange[0] | |
731 |
|
730 | |||
732 | if radar == "MIRA35C" : |
|
731 | if radar == "MIRA35C" : | |
733 |
|
732 | |||
734 | self.spc = dataOut.data_pre[0].copy() |
|
733 | self.spc = dataOut.data_pre[0].copy() | |
735 | self.Num_Hei = self.spc.shape[2] |
|
734 | self.Num_Hei = self.spc.shape[2] | |
736 | self.Num_Bin = self.spc.shape[1] |
|
735 | self.Num_Bin = self.spc.shape[1] | |
737 | self.Num_Chn = self.spc.shape[0] |
|
736 | self.Num_Chn = self.spc.shape[0] | |
738 | Ze = self.dBZeMODE2(dataOut) |
|
737 | Ze = self.dBZeMODE2(dataOut) | |
739 |
|
738 | |||
740 | else: |
|
739 | else: | |
741 |
|
740 | |||
742 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # |
|
741 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |
743 | self.Num_Hei = self.spc.shape[2] |
|
742 | self.Num_Hei = self.spc.shape[2] | |
744 | self.Num_Bin = self.spc.shape[1] |
|
743 | self.Num_Bin = self.spc.shape[1] | |
745 | self.Num_Chn = self.spc.shape[0] |
|
744 | self.Num_Chn = self.spc.shape[0] | |
746 | print '==================== SPC SHAPE',numpy.shape(self.spc) |
|
745 | print '==================== SPC SHAPE',numpy.shape(self.spc) | |
747 |
|
746 | |||
748 |
|
747 | |||
749 | ''' Se obtiene la constante del RADAR ''' |
|
748 | ''' Se obtiene la constante del RADAR ''' | |
750 |
|
749 | |||
751 | self.Pt = Pt |
|
750 | self.Pt = Pt | |
752 | self.Gt = Gt |
|
751 | self.Gt = Gt | |
753 | self.Gr = Gr |
|
752 | self.Gr = Gr | |
754 | self.Lambda = Lambda |
|
753 | self.Lambda = Lambda | |
755 | self.aL = aL |
|
754 | self.aL = aL | |
756 | self.tauW = tauW |
|
755 | self.tauW = tauW | |
757 | self.ThetaT = ThetaT |
|
756 | self.ThetaT = ThetaT | |
758 | self.ThetaR = ThetaR |
|
757 | self.ThetaR = ThetaR | |
759 |
|
758 | |||
760 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
759 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
761 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) |
|
760 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
762 |
RadarConstant = |
|
761 | RadarConstant = 5e-27 * Numerator / Denominator # | |
763 | print '***' |
|
762 | print '***' | |
764 | print '*** RadarConstant' , RadarConstant, '****' |
|
763 | print '*** RadarConstant' , RadarConstant, '****' | |
765 | print '***' |
|
764 | print '***' | |
766 | ''' ============================= ''' |
|
765 | ''' ============================= ''' | |
767 |
|
766 | |||
768 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) |
|
767 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | |
769 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) |
|
768 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
770 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) |
|
769 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
771 |
|
770 | |||
772 | self.spc[ numpy.where(self.spc < 0)] = 0 |
|
771 | self.spc[ numpy.where(self.spc < 0)] = 0 | |
773 |
|
772 | |||
774 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) |
|
773 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |
775 | SPCmean[ numpy.where(SPCmean < 0)] = 0 |
|
774 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |
776 |
|
775 | |||
777 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
776 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
778 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
777 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
779 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
778 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
780 |
|
779 | |||
781 | Pr = SPCmean[:,:] |
|
780 | Pr = SPCmean[:,:] | |
782 |
|
781 | |||
783 | VelMeteoro = numpy.mean(SPCmean,axis=0) |
|
782 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |
784 |
|
783 | |||
785 | #print '==================== Vel SHAPE',VelMeteoro |
|
784 | #print '==================== Vel SHAPE',VelMeteoro | |
786 |
|
785 | |||
787 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
786 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
788 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
787 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
789 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) |
|
788 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |
790 |
|
|
789 | V_mean = numpy.zeros(self.Num_Hei) | |
791 | del_V = numpy.zeros(self.Num_Hei) |
|
790 | del_V = numpy.zeros(self.Num_Hei) | |
792 | Z = numpy.zeros(self.Num_Hei) |
|
791 | Z = numpy.zeros(self.Num_Hei) | |
793 | Ze = numpy.zeros(self.Num_Hei) |
|
792 | Ze = numpy.zeros(self.Num_Hei) | |
794 | RR = numpy.zeros(self.Num_Hei) |
|
793 | RR = numpy.zeros(self.Num_Hei) | |
795 |
|
794 | |||
796 | Range = dataOut.heightList*1000. |
|
795 | Range = dataOut.heightList*1000. | |
797 |
|
796 | |||
798 | for R in range(self.Num_Hei): |
|
797 | for R in range(self.Num_Hei): | |
799 |
|
798 | |||
800 | h = Range[R] + Altitude #Range from ground to radar pulse altitude |
|
799 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
801 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
800 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
802 |
|
801 | |||
803 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 |
|
802 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
804 |
|
803 | |||
805 | '''NOTA: ETA(n) dn = ETA(f) df |
|
804 | '''NOTA: ETA(n) dn = ETA(f) df | |
806 |
|
805 | |||
807 | dn = 1 Diferencial de muestreo |
|
806 | dn = 1 Diferencial de muestreo | |
808 | df = ETA(n) / ETA(f) |
|
807 | df = ETA(n) / ETA(f) | |
809 |
|
808 | |||
810 | ''' |
|
809 | ''' | |
811 |
|
810 | |||
812 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) |
|
811 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |
813 |
|
812 | |||
814 | ETAv[:,R]=ETAn[:,R]/dV |
|
813 | ETAv[:,R]=ETAn[:,R]/dV | |
815 |
|
814 | |||
816 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) |
|
815 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |
817 |
|
816 | |||
818 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) |
|
817 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |
819 |
|
818 | |||
820 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] |
|
819 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |
821 |
|
820 | |||
822 |
DMoments = self.Moments(Pr[:,R], |
|
821 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |
823 |
|
822 | |||
824 | try: |
|
823 | try: | |
825 |
popt01,pcov = curve_fit(self.gaus, |
|
824 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |
826 | except: |
|
825 | except: | |
827 | popt01=numpy.zeros(3) |
|
826 | popt01=numpy.zeros(3) | |
828 | popt01[1]= DMoments[1] |
|
827 | popt01[1]= DMoments[1] | |
829 |
|
|
828 | if popt01[1]<0 or popt01[1]>20: | |
|
829 | popt01[1]=numpy.NaN | |||
|
830 | ||||
|
831 | V_mean[R]=popt01[1] | |||
830 |
|
832 | |||
831 |
Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 ) |
|
833 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |
832 |
|
834 | |||
833 |
RR[R] = |
|
835 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |
834 |
|
836 | |||
835 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( numpy.pi**5 * Km) |
|
837 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |
836 |
|
838 | |||
837 |
|
839 | |||
838 |
|
840 | |||
839 | RR2 = (Z/200)**(1/1.6) |
|
841 | RR2 = (Z/200)**(1/1.6) | |
840 | dBRR = 10*numpy.log10(RR) |
|
842 | dBRR = 10*numpy.log10(RR) | |
841 | dBRR2 = 10*numpy.log10(RR2) |
|
843 | dBRR2 = 10*numpy.log10(RR2) | |
842 |
|
844 | |||
843 | dBZe = 10*numpy.log10(Ze) |
|
845 | dBZe = 10*numpy.log10(Ze) | |
844 | dBZ = 10*numpy.log10(Z) |
|
846 | dBZ = 10*numpy.log10(Z) | |
845 |
|
847 | |||
846 | dataOut.data_output = Z |
|
848 | dataOut.data_output = Z | |
847 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) |
|
849 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
848 | dataOut.channelList = [0,1,2] |
|
850 | dataOut.channelList = [0,1,2] | |
849 |
|
851 | |||
850 | dataOut.data_param[0]=dBZ |
|
852 | dataOut.data_param[0]=dBZ | |
851 |
dataOut.data_param[1]= |
|
853 | dataOut.data_param[1]=V_mean | |
852 | dataOut.data_param[2]=RR |
|
854 | dataOut.data_param[2]=RR | |
853 |
|
855 | |||
854 | #print 'VELRANGE', Velrange |
|
856 | #print 'VELRANGE', Velrange | |
855 | print 'Range', len(Range) |
|
857 | #print 'Range', len(Range) | |
856 | print 'delv',del_V |
|
858 | #print 'delv',del_V | |
857 |
|
|
859 | # print 'DRANGE', D_range[:,56] | |
858 | print 'NOISE', dataOut.noise[0], 10*numpy.log10(dataOut.noise[0]) |
|
860 | # #print 'NOISE', dataOut.noise[0], 10*numpy.log10(dataOut.noise[0]) | |
859 | print 'radarconstant', RadarConstant |
|
861 | # print 'radarconstant', RadarConstant | |
860 |
print ' |
|
862 | # #print 'ETAn SHAPE', ETAn.shape | |
861 |
# print 'ETAn |
|
863 | # # print 'ETAn ', numpy.nansum(ETAn, axis=0) | |
862 |
# print 'ETA |
|
864 | # # print 'ETAd ', numpy.nansum(ETAd, axis=0) | |
863 |
# print ' |
|
865 | # print 'Pr ', numpy.nansum(Pr, axis=0) | |
864 |
print ' |
|
866 | # print 'dataOut.SPCparam[1]', numpy.nansum(dataOut.SPCparam[1][0], axis=0) | |
865 | print 'dataOut.SPCparam[1]', numpy.nansum(dataOut.SPCparam[1][0], axis=0) |
|
|||
866 | # print 'Ze ', dBZe |
|
867 | # print 'Ze ', dBZe | |
867 |
|
|
868 | print 'Z ', dBZ | |
868 | print 'RR2 ', RR2 |
|
869 | # print 'Ndist',N_dist[:,56] | |
|
870 | # #print 'RR2 ', RR2 | |||
869 | print 'RR ', RR |
|
871 | print 'RR ', RR | |
|
872 | print 'Vr', V_mean | |||
870 | #print 'RR2 ', dBRR2 |
|
873 | #print 'RR2 ', dBRR2 | |
871 | #print 'D_mean', D_mean |
|
874 | #print 'D_mean', D_mean | |
872 | #print 'del_V', del_V |
|
875 | #print 'del_V', del_V | |
873 | #print 'D_range',D_range.shape, D_range[:,30] |
|
876 | #print 'D_range',D_range.shape, D_range[:,30] | |
874 | #print 'Velrange', Velrange |
|
877 | #print 'Velrange', Velrange | |
875 | #print 'numpy.nansum( N_dist[:,R]', numpy.nansum( N_dist, axis=0) |
|
878 | #print 'numpy.nansum( N_dist[:,R]', numpy.nansum( N_dist, axis=0) | |
876 | #print 'dataOut.data_param SHAPE', dataOut.data_param.shape |
|
879 | #print 'dataOut.data_param SHAPE', dataOut.data_param.shape | |
877 |
|
880 | |||
878 |
|
881 | |||
879 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
882 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
880 |
|
883 | |||
881 | NPW = dataOut.NPW |
|
884 | NPW = dataOut.NPW | |
882 | COFA = dataOut.COFA |
|
885 | COFA = dataOut.COFA | |
883 |
|
886 | |||
884 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) |
|
887 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |
885 | RadarConst = dataOut.RadarConst |
|
888 | RadarConst = dataOut.RadarConst | |
886 | #frequency = 34.85*10**9 |
|
889 | #frequency = 34.85*10**9 | |
887 |
|
890 | |||
888 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) |
|
891 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |
889 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
892 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
890 |
|
893 | |||
891 | ETA = numpy.sum(SNR,1) |
|
894 | ETA = numpy.sum(SNR,1) | |
892 | print 'ETA' , ETA |
|
895 | print 'ETA' , ETA | |
893 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
896 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
894 |
|
897 | |||
895 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
898 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
896 |
|
899 | |||
897 | for r in range(self.Num_Hei): |
|
900 | for r in range(self.Num_Hei): | |
898 |
|
901 | |||
899 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) |
|
902 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |
900 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) |
|
903 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |
901 |
|
904 | |||
902 | return Ze |
|
905 | return Ze | |
903 |
|
906 | |||
904 | # def GetRadarConstant(self): |
|
907 | # def GetRadarConstant(self): | |
905 | # |
|
908 | # | |
906 | # """ |
|
909 | # """ | |
907 | # Constants: |
|
910 | # Constants: | |
908 | # |
|
911 | # | |
909 | # Pt: Transmission Power dB 5kW 5000 |
|
912 | # Pt: Transmission Power dB 5kW 5000 | |
910 | # Gt: Transmission Gain dB 24.7 dB 295.1209 |
|
913 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
911 | # Gr: Reception Gain dB 18.5 dB 70.7945 |
|
914 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
912 | # Lambda: Wavelenght m 0.6741 m 0.6741 |
|
915 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
913 | # aL: Attenuation loses dB 4dB 2.5118 |
|
916 | # aL: Attenuation loses dB 4dB 2.5118 | |
914 | # tauW: Width of transmission pulse s 4us 4e-6 |
|
917 | # tauW: Width of transmission pulse s 4us 4e-6 | |
915 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 |
|
918 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
916 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 |
|
919 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
917 | # |
|
920 | # | |
918 | # """ |
|
921 | # """ | |
919 | # |
|
922 | # | |
920 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
923 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
921 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
924 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
922 | # RadarConstant = Numerator / Denominator |
|
925 | # RadarConstant = Numerator / Denominator | |
923 | # |
|
926 | # | |
924 | # return RadarConstant |
|
927 | # return RadarConstant | |
925 |
|
928 | |||
926 |
|
929 | |||
927 |
|
930 | |||
928 | class FullSpectralAnalysis(Operation): |
|
931 | class FullSpectralAnalysis(Operation): | |
929 |
|
932 | |||
930 | """ |
|
933 | """ | |
931 | Function that implements Full Spectral Analisys technique. |
|
934 | Function that implements Full Spectral Analisys technique. | |
932 |
|
935 | |||
933 | Input: |
|
936 | Input: | |
934 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data |
|
937 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data | |
935 | self.dataOut.groupList : Pairlist of channels |
|
938 | self.dataOut.groupList : Pairlist of channels | |
936 | self.dataOut.ChanDist : Physical distance between receivers |
|
939 | self.dataOut.ChanDist : Physical distance between receivers | |
937 |
|
940 | |||
938 |
|
941 | |||
939 | Output: |
|
942 | Output: | |
940 |
|
943 | |||
941 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind |
|
944 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |
942 |
|
945 | |||
943 |
|
946 | |||
944 | Parameters affected: Winds, height range, SNR |
|
947 | Parameters affected: Winds, height range, SNR | |
945 |
|
948 | |||
946 | """ |
|
949 | """ | |
947 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): |
|
950 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): | |
948 |
|
951 | |||
949 | self.indice=int(numpy.random.rand()*1000) |
|
952 | self.indice=int(numpy.random.rand()*1000) | |
950 |
|
953 | |||
951 | spc = dataOut.data_pre[0].copy() |
|
954 | spc = dataOut.data_pre[0].copy() | |
952 | cspc = dataOut.data_pre[1] |
|
955 | cspc = dataOut.data_pre[1] | |
953 |
|
956 | |||
954 | nChannel = spc.shape[0] |
|
957 | nChannel = spc.shape[0] | |
955 | nProfiles = spc.shape[1] |
|
958 | nProfiles = spc.shape[1] | |
956 | nHeights = spc.shape[2] |
|
959 | nHeights = spc.shape[2] | |
957 |
|
960 | |||
958 | pairsList = dataOut.groupList |
|
961 | pairsList = dataOut.groupList | |
959 | if dataOut.ChanDist is not None : |
|
962 | if dataOut.ChanDist is not None : | |
960 | ChanDist = dataOut.ChanDist |
|
963 | ChanDist = dataOut.ChanDist | |
961 | else: |
|
964 | else: | |
962 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) |
|
965 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |
963 |
|
966 | |||
964 | FrecRange = dataOut.spc_range[0] |
|
967 | FrecRange = dataOut.spc_range[0] | |
965 |
|
968 | |||
966 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
969 | ySamples=numpy.ones([nChannel,nProfiles]) | |
967 | phase=numpy.ones([nChannel,nProfiles]) |
|
970 | phase=numpy.ones([nChannel,nProfiles]) | |
968 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) |
|
971 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) | |
969 | coherence=numpy.ones([nChannel,nProfiles]) |
|
972 | coherence=numpy.ones([nChannel,nProfiles]) | |
970 | PhaseSlope=numpy.ones(nChannel) |
|
973 | PhaseSlope=numpy.ones(nChannel) | |
971 | PhaseInter=numpy.ones(nChannel) |
|
974 | PhaseInter=numpy.ones(nChannel) | |
972 | data_SNR=numpy.zeros([nProfiles]) |
|
975 | data_SNR=numpy.zeros([nProfiles]) | |
973 |
|
976 | |||
974 | data = dataOut.data_pre |
|
977 | data = dataOut.data_pre | |
975 | noise = dataOut.noise |
|
978 | noise = dataOut.noise | |
976 |
|
979 | |||
977 | dataOut.data_SNR = (numpy.mean(spc,axis=1)- noise[0]) / noise[0] |
|
980 | dataOut.data_SNR = (numpy.mean(spc,axis=1)- noise[0]) / noise[0] | |
978 |
|
981 | |||
979 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 |
|
982 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |
980 |
|
983 | |||
981 |
|
984 | |||
982 | #FirstMoment = dataOut.moments[0,1,:]#numpy.average(dataOut.data_param[:,1,:],0) |
|
985 | #FirstMoment = dataOut.moments[0,1,:]#numpy.average(dataOut.data_param[:,1,:],0) | |
983 | #SecondMoment = numpy.average(dataOut.moments[:,2,:],0) |
|
986 | #SecondMoment = numpy.average(dataOut.moments[:,2,:],0) | |
984 |
|
987 | |||
985 | #SNRdBMean = [] |
|
988 | #SNRdBMean = [] | |
986 |
|
989 | |||
987 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN |
|
990 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | |
988 |
|
991 | |||
989 | velocityX=[] |
|
992 | velocityX=[] | |
990 | velocityY=[] |
|
993 | velocityY=[] | |
991 | velocityV=[] |
|
994 | velocityV=[] | |
992 | PhaseLine=[] |
|
995 | PhaseLine=[] | |
993 |
|
996 | |||
994 | dbSNR = 10*numpy.log10(dataOut.data_SNR) |
|
997 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
995 | dbSNR = numpy.average(dbSNR,0) |
|
998 | dbSNR = numpy.average(dbSNR,0) | |
996 |
|
999 | |||
997 | for Height in range(nHeights): |
|
1000 | for Height in range(nHeights): | |
998 |
|
1001 | |||
999 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) |
|
1002 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) | |
1000 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) |
|
1003 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) | |
1001 |
|
1004 | |||
1002 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
1005 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
1003 | velocityX=numpy.append(velocityX, -Vzon)#Vmag |
|
1006 | velocityX=numpy.append(velocityX, -Vzon)#Vmag | |
1004 |
|
1007 | |||
1005 | else: |
|
1008 | else: | |
1006 | #print 'Vzon',Vzon |
|
1009 | #print 'Vzon',Vzon | |
1007 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
1010 | velocityX=numpy.append(velocityX, numpy.NaN) | |
1008 |
|
1011 | |||
1009 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
1012 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
1010 | velocityY=numpy.append(velocityY, -Vmer)#Vang |
|
1013 | velocityY=numpy.append(velocityY, -Vmer)#Vang | |
1011 |
|
1014 | |||
1012 | else: |
|
1015 | else: | |
1013 | #print 'Vmer',Vmer |
|
1016 | #print 'Vmer',Vmer | |
1014 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
1017 | velocityY=numpy.append(velocityY, numpy.NaN) | |
1015 |
|
1018 | |||
1016 | if dbSNR[Height] > SNRlimit: |
|
1019 | if dbSNR[Height] > SNRlimit: | |
1017 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) |
|
1020 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) | |
1018 | else: |
|
1021 | else: | |
1019 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
1022 | velocityV=numpy.append(velocityV, numpy.NaN) | |
1020 | #FirstMoment[Height]= numpy.NaN |
|
1023 | #FirstMoment[Height]= numpy.NaN | |
1021 | # if SNRdBMean[Height] <12: |
|
1024 | # if SNRdBMean[Height] <12: | |
1022 | # FirstMoment[Height] = numpy.NaN |
|
1025 | # FirstMoment[Height] = numpy.NaN | |
1023 | # velocityX[Height] = numpy.NaN |
|
1026 | # velocityX[Height] = numpy.NaN | |
1024 | # velocityY[Height] = numpy.NaN |
|
1027 | # velocityY[Height] = numpy.NaN | |
1025 |
|
1028 | |||
1026 |
|
1029 | |||
1027 |
|
1030 | |||
1028 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) |
|
1031 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) | |
1029 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) |
|
1032 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) | |
1030 | data_output[2] = -velocityV#FirstMoment |
|
1033 | data_output[2] = -velocityV#FirstMoment | |
1031 |
|
1034 | |||
1032 |
print ' |
|
1035 | print 'data_output', data_output.shape | |
1033 | #print FirstMoment |
|
1036 | #print FirstMoment | |
1034 | # print 'velocityX',numpy.shape(data_output[0]) |
|
1037 | # print 'velocityX',numpy.shape(data_output[0]) | |
1035 | # print 'velocityX',data_output[0] |
|
1038 | # print 'velocityX',data_output[0] | |
1036 | # print ' ' |
|
1039 | # print ' ' | |
1037 | # print 'velocityY',numpy.shape(data_output[1]) |
|
1040 | # print 'velocityY',numpy.shape(data_output[1]) | |
1038 | # print 'velocityY',data_output[1] |
|
1041 | # print 'velocityY',data_output[1] | |
1039 | # print 'velocityV',data_output[2] |
|
1042 | # print 'velocityV',data_output[2] | |
1040 | # print 'PhaseLine',PhaseLine |
|
1043 | # print 'PhaseLine',PhaseLine | |
1041 | #print numpy.array(velocityY) |
|
1044 | #print numpy.array(velocityY) | |
1042 | #print 'SNR' |
|
1045 | #print 'SNR' | |
1043 | #print 10*numpy.log10(dataOut.data_SNR) |
|
1046 | #print 10*numpy.log10(dataOut.data_SNR) | |
1044 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
1047 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) | |
1045 | print ' ' |
|
1048 | print ' ' | |
1046 |
|
1049 | |||
1047 | xFrec=FrecRange[0:spc.shape[1]] |
|
1050 | xFrec=FrecRange[0:spc.shape[1]] | |
1048 |
|
1051 | |||
1049 | dataOut.data_output=data_output |
|
1052 | dataOut.data_output=data_output | |
1050 |
|
1053 | |||
1051 | return |
|
1054 | return | |
1052 |
|
1055 | |||
1053 |
|
1056 | |||
1054 | def moving_average(self,x, N=2): |
|
1057 | def moving_average(self,x, N=2): | |
1055 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
1058 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1056 |
|
1059 | |||
1057 | def gaus(self,xSamples,Amp,Mu,Sigma): |
|
1060 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1058 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) |
|
1061 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
1059 |
|
1062 | |||
1060 |
|
1063 | |||
1061 |
|
|
1064 | ||
1062 | def Moments(self, ySamples, xSamples): |
|
1065 | def Moments(self, ySamples, xSamples): | |
1063 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 |
|
1066 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
1064 | yNorm = ySamples / Pot |
|
1067 | yNorm = ySamples / Pot | |
1065 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento |
|
1068 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
1066 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento |
|
1069 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |
1067 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral |
|
1070 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |
1068 |
|
1071 | |||
1069 | return numpy.array([Pot, Vr, Desv]) |
|
1072 | return numpy.array([Pot, Vr, Desv]) | |
1070 |
|
1073 | |||
1071 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): |
|
1074 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
1072 |
|
1075 | |||
1073 |
|
1076 | |||
1074 |
|
1077 | |||
1075 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1078 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1076 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1079 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1077 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
1080 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1078 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
1081 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1079 | PhaseSlope=numpy.zeros(spc.shape[0]) |
|
1082 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
1080 | PhaseInter=numpy.ones(spc.shape[0]) |
|
1083 | PhaseInter=numpy.ones(spc.shape[0]) | |
1081 | xFrec=AbbsisaRange[0][0:spc.shape[1]] |
|
1084 | xFrec=AbbsisaRange[0][0:spc.shape[1]] | |
1082 | xVel =AbbsisaRange[2][0:spc.shape[1]] |
|
1085 | xVel =AbbsisaRange[2][0:spc.shape[1]] | |
1083 | Vv=numpy.empty(spc.shape[2])*0 |
|
1086 | Vv=numpy.empty(spc.shape[2])*0 | |
1084 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# |
|
1087 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# | |
1085 |
|
1088 | |||
1086 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) |
|
1089 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) | |
1087 | CSPCmoments = [] |
|
1090 | CSPCmoments = [] | |
1088 | cspcNoise = numpy.empty(3) |
|
1091 | cspcNoise = numpy.empty(3) | |
1089 |
|
1092 | |||
1090 | '''Getting Eij and Nij''' |
|
1093 | '''Getting Eij and Nij''' | |
1091 |
|
1094 | |||
1092 | E01=ChanDist[0][0] |
|
1095 | E01=ChanDist[0][0] | |
1093 | N01=ChanDist[0][1] |
|
1096 | N01=ChanDist[0][1] | |
1094 |
|
1097 | |||
1095 | E02=ChanDist[1][0] |
|
1098 | E02=ChanDist[1][0] | |
1096 | N02=ChanDist[1][1] |
|
1099 | N02=ChanDist[1][1] | |
1097 |
|
1100 | |||
1098 | E12=ChanDist[2][0] |
|
1101 | E12=ChanDist[2][0] | |
1099 | N12=ChanDist[2][1] |
|
1102 | N12=ChanDist[2][1] | |
1100 |
|
1103 | |||
1101 | z = spc.copy() |
|
1104 | z = spc.copy() | |
1102 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1105 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1103 |
|
1106 | |||
1104 | for i in range(spc.shape[0]): |
|
1107 | for i in range(spc.shape[0]): | |
1105 |
|
1108 | |||
1106 | '''****** Line of Data SPC ******''' |
|
1109 | '''****** Line of Data SPC ******''' | |
1107 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido |
|
1110 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido | |
1108 |
|
1111 | |||
1109 | '''****** SPC is normalized ******''' |
|
1112 | '''****** SPC is normalized ******''' | |
1110 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido |
|
1113 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido | |
1111 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado |
|
1114 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado | |
1112 |
|
1115 | |||
1113 | xSamples = xFrec # Se toma el rango de frecuncias |
|
1116 | xSamples = xFrec # Se toma el rango de frecuncias | |
1114 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado |
|
1117 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado | |
1115 |
|
1118 | |||
1116 | for i in range(spc.shape[0]): |
|
1119 | for i in range(spc.shape[0]): | |
1117 |
|
1120 | |||
1118 | '''****** Line of Data CSPC ******''' |
|
1121 | '''****** Line of Data CSPC ******''' | |
1119 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido |
|
1122 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido | |
1120 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido |
|
1123 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido | |
1121 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado |
|
1124 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado | |
1122 |
|
1125 | |||
1123 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' |
|
1126 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' | |
1124 | chan_index0 = pairsList[i][0] |
|
1127 | chan_index0 = pairsList[i][0] | |
1125 | chan_index1 = pairsList[i][1] |
|
1128 | chan_index1 = pairsList[i][1] | |
1126 |
|
1129 | |||
1127 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 |
|
1130 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 | |
1128 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) |
|
1131 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) | |
1129 |
|
1132 | |||
1130 | CSPCSamples[i] = CSPCNorm |
|
1133 | CSPCSamples[i] = CSPCNorm | |
1131 |
|
1134 | |||
1132 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
1135 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1133 |
|
1136 | |||
1134 | #coherence[i]= self.moving_average(coherence[i],N=1) |
|
1137 | #coherence[i]= self.moving_average(coherence[i],N=1) | |
1135 |
|
1138 | |||
1136 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
1139 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1137 |
|
1140 | |||
1138 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), |
|
1141 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), | |
1139 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), |
|
1142 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), | |
1140 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) |
|
1143 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) | |
1141 |
|
1144 | |||
1142 | #print '##### SUMA de SPC #####', len(ySamples) |
|
1145 | #print '##### SUMA de SPC #####', len(ySamples) | |
1143 | #print numpy.sum(ySamples[0]) |
|
1146 | #print numpy.sum(ySamples[0]) | |
1144 | #print '##### SUMA de CSPC #####', len(coherence) |
|
1147 | #print '##### SUMA de CSPC #####', len(coherence) | |
1145 | #print numpy.sum(numpy.abs(CSPCNorm)) |
|
1148 | #print numpy.sum(numpy.abs(CSPCNorm)) | |
1146 | #print numpy.sum(coherence[0]) |
|
1149 | #print numpy.sum(coherence[0]) | |
1147 | # print 'len',len(xSamples) |
|
1150 | # print 'len',len(xSamples) | |
1148 | # print 'CSPCmoments', numpy.shape(CSPCmoments) |
|
1151 | # print 'CSPCmoments', numpy.shape(CSPCmoments) | |
1149 | # print CSPCmoments |
|
1152 | # print CSPCmoments | |
1150 | # print '#######################' |
|
1153 | # print '#######################' | |
1151 |
|
1154 | |||
1152 | popt=[1e-10,0,1e-10] |
|
1155 | popt=[1e-10,0,1e-10] | |
1153 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] |
|
1156 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |
1154 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 |
|
1157 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |
1155 |
|
1158 | |||
1156 | CSPCMask01 = numpy.abs(CSPCSamples[0]) |
|
1159 | CSPCMask01 = numpy.abs(CSPCSamples[0]) | |
1157 | CSPCMask02 = numpy.abs(CSPCSamples[1]) |
|
1160 | CSPCMask02 = numpy.abs(CSPCSamples[1]) | |
1158 | CSPCMask12 = numpy.abs(CSPCSamples[2]) |
|
1161 | CSPCMask12 = numpy.abs(CSPCSamples[2]) | |
1159 |
|
1162 | |||
1160 | mask01 = ~numpy.isnan(CSPCMask01) |
|
1163 | mask01 = ~numpy.isnan(CSPCMask01) | |
1161 | mask02 = ~numpy.isnan(CSPCMask02) |
|
1164 | mask02 = ~numpy.isnan(CSPCMask02) | |
1162 | mask12 = ~numpy.isnan(CSPCMask12) |
|
1165 | mask12 = ~numpy.isnan(CSPCMask12) | |
1163 |
|
1166 | |||
1164 | #mask = ~numpy.isnan(CSPCMask01) |
|
1167 | #mask = ~numpy.isnan(CSPCMask01) | |
1165 | CSPCMask01 = CSPCMask01[mask01] |
|
1168 | CSPCMask01 = CSPCMask01[mask01] | |
1166 | CSPCMask02 = CSPCMask02[mask02] |
|
1169 | CSPCMask02 = CSPCMask02[mask02] | |
1167 | CSPCMask12 = CSPCMask12[mask12] |
|
1170 | CSPCMask12 = CSPCMask12[mask12] | |
1168 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) |
|
1171 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) | |
1169 |
|
1172 | |||
1170 |
|
1173 | |||
1171 |
|
1174 | |||
1172 | '''***Fit Gauss CSPC01***''' |
|
1175 | '''***Fit Gauss CSPC01***''' | |
1173 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : |
|
1176 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : | |
1174 | try: |
|
1177 | try: | |
1175 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) |
|
1178 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1176 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) |
|
1179 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
1177 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) |
|
1180 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |
1178 | FitGauss01 = self.gaus(xSamples,*popt01) |
|
1181 | FitGauss01 = self.gaus(xSamples,*popt01) | |
1179 | FitGauss02 = self.gaus(xSamples,*popt02) |
|
1182 | FitGauss02 = self.gaus(xSamples,*popt02) | |
1180 | FitGauss12 = self.gaus(xSamples,*popt12) |
|
1183 | FitGauss12 = self.gaus(xSamples,*popt12) | |
1181 | except: |
|
1184 | except: | |
1182 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) |
|
1185 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) | |
1183 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) |
|
1186 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) | |
1184 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) |
|
1187 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) | |
1185 |
|
1188 | |||
1186 |
|
1189 | |||
1187 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) |
|
1190 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) | |
1188 |
|
1191 | |||
1189 | '''****** Getting fij width ******''' |
|
1192 | '''****** Getting fij width ******''' | |
1190 |
|
1193 | |||
1191 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] |
|
1194 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] | |
1192 |
|
1195 | |||
1193 | '''******* Getting fitting Gaussian *******''' |
|
1196 | '''******* Getting fitting Gaussian *******''' | |
1194 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) |
|
1197 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) | |
1195 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) |
|
1198 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) | |
1196 |
|
1199 | |||
1197 | yMoments = self.Moments(yMean, xSamples) |
|
1200 | yMoments = self.Moments(yMean, xSamples) | |
1198 |
|
1201 | |||
1199 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: |
|
1202 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: | |
1200 | try: |
|
1203 | try: | |
1201 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) |
|
1204 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) | |
1202 | FitGauss=self.gaus(xSamples,*popt) |
|
1205 | FitGauss=self.gaus(xSamples,*popt) | |
1203 |
|
1206 | |||
1204 | except :#RuntimeError: |
|
1207 | except :#RuntimeError: | |
1205 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1208 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1206 |
|
1209 | |||
1207 |
|
1210 | |||
1208 | else: |
|
1211 | else: | |
1209 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1212 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1210 |
|
1213 | |||
1211 |
|
1214 | |||
1212 |
|
1215 | |||
1213 | '''****** Getting Fij ******''' |
|
1216 | '''****** Getting Fij ******''' | |
1214 | Fijcspc = CSPCopt[:,2]/2*3 |
|
1217 | Fijcspc = CSPCopt[:,2]/2*3 | |
1215 |
|
1218 | |||
1216 |
|
1219 | |||
1217 | GaussCenter = popt[1] #xFrec[GCpos] |
|
1220 | GaussCenter = popt[1] #xFrec[GCpos] | |
1218 | #Punto en Eje X de la Gaussiana donde se encuentra el centro |
|
1221 | #Punto en Eje X de la Gaussiana donde se encuentra el centro | |
1219 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] |
|
1222 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |
1220 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] |
|
1223 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |
1221 |
|
1224 | |||
1222 | #Punto e^-1 hubicado en la Gaussiana |
|
1225 | #Punto e^-1 hubicado en la Gaussiana | |
1223 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) |
|
1226 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) | |
1224 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" |
|
1227 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |
1225 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] |
|
1228 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |
1226 |
|
1229 | |||
1227 | if xSamples[PointFij] > xSamples[PointGauCenter]: |
|
1230 | if xSamples[PointFij] > xSamples[PointGauCenter]: | |
1228 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] |
|
1231 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] | |
1229 |
|
1232 | |||
1230 | else: |
|
1233 | else: | |
1231 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] |
|
1234 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] | |
1232 |
|
1235 | |||
1233 | # print 'CSPCopt' |
|
1236 | # print 'CSPCopt' | |
1234 | # print CSPCopt |
|
1237 | # print CSPCopt | |
1235 | # print 'popt' |
|
1238 | # print 'popt' | |
1236 | # print popt |
|
1239 | # print popt | |
1237 | # print '#######################################' |
|
1240 | # print '#######################################' | |
1238 | #print 'dataOut.data_param', numpy.shape(data_param) |
|
1241 | #print 'dataOut.data_param', numpy.shape(data_param) | |
1239 | #print 'dataOut.data_param0', data_param[0,0,Height] |
|
1242 | #print 'dataOut.data_param0', data_param[0,0,Height] | |
1240 | #print 'dataOut.data_param1', data_param[0,1,Height] |
|
1243 | #print 'dataOut.data_param1', data_param[0,1,Height] | |
1241 | #print 'dataOut.data_param2', data_param[0,2,Height] |
|
1244 | #print 'dataOut.data_param2', data_param[0,2,Height] | |
1242 |
|
1245 | |||
1243 |
|
1246 | |||
1244 | # print 'yMoments', yMoments |
|
1247 | # print 'yMoments', yMoments | |
1245 | # print 'Moments', SPCmoments |
|
1248 | # print 'Moments', SPCmoments | |
1246 | # print 'Fij2 Moment', Fij |
|
1249 | # print 'Fij2 Moment', Fij | |
1247 | # #print 'Fij', Fij, 'popt[2]/2',popt[2]/2 |
|
1250 | # #print 'Fij', Fij, 'popt[2]/2',popt[2]/2 | |
1248 | # print 'Fijcspc',Fijcspc |
|
1251 | # print 'Fijcspc',Fijcspc | |
1249 | # print '#######################################' |
|
1252 | # print '#######################################' | |
1250 |
|
1253 | |||
1251 |
|
1254 | |||
1252 | '''****** Taking frequency ranges from SPCs ******''' |
|
1255 | '''****** Taking frequency ranges from SPCs ******''' | |
1253 |
|
1256 | |||
1254 |
|
1257 | |||
1255 | #GaussCenter = popt[1] #Primer momento 01 |
|
1258 | #GaussCenter = popt[1] #Primer momento 01 | |
1256 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 |
|
1259 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 | |
1257 | Range = numpy.empty(2) |
|
1260 | Range = numpy.empty(2) | |
1258 | Range[0] = GaussCenter - GauWidth |
|
1261 | Range[0] = GaussCenter - GauWidth | |
1259 | Range[1] = GaussCenter + GauWidth |
|
1262 | Range[1] = GaussCenter + GauWidth | |
1260 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) |
|
1263 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) | |
1261 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] |
|
1264 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |
1262 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] |
|
1265 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |
1263 |
|
1266 | |||
1264 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] |
|
1267 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1265 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] |
|
1268 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1266 |
|
1269 | |||
1267 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) |
|
1270 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) | |
1268 |
|
1271 | |||
1269 | FrecRange = xFrec[ Range[0] : Range[1] ] |
|
1272 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
1270 | VelRange = xVel[ Range[0] : Range[1] ] |
|
1273 | VelRange = xVel[ Range[0] : Range[1] ] | |
1271 |
|
1274 | |||
1272 |
|
1275 | |||
1273 | #print 'RANGE: ', Range |
|
1276 | #print 'RANGE: ', Range | |
1274 | #print 'FrecRange', numpy.shape(FrecRange)#,FrecRange |
|
1277 | #print 'FrecRange', numpy.shape(FrecRange)#,FrecRange | |
1275 | #print 'len: ', len(FrecRange) |
|
1278 | #print 'len: ', len(FrecRange) | |
1276 |
|
1279 | |||
1277 | '''****** Getting SCPC Slope ******''' |
|
1280 | '''****** Getting SCPC Slope ******''' | |
1278 |
|
1281 | |||
1279 | for i in range(spc.shape[0]): |
|
1282 | for i in range(spc.shape[0]): | |
1280 |
|
1283 | |||
1281 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: |
|
1284 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: | |
1282 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1285 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
1283 |
|
1286 | |||
1284 | #print 'Ancho espectral Frecuencias', FrecRange[-1]-FrecRange[0], 'Hz' |
|
1287 | #print 'Ancho espectral Frecuencias', FrecRange[-1]-FrecRange[0], 'Hz' | |
1285 | #print 'Ancho espectral Velocidades', VelRange[-1]-VelRange[0], 'm/s' |
|
1288 | #print 'Ancho espectral Velocidades', VelRange[-1]-VelRange[0], 'm/s' | |
1286 | #print 'FrecRange', len(FrecRange) , FrecRange |
|
1289 | #print 'FrecRange', len(FrecRange) , FrecRange | |
1287 | #print 'VelRange', len(VelRange) , VelRange |
|
1290 | #print 'VelRange', len(VelRange) , VelRange | |
1288 | #print 'PhaseRange', numpy.shape(PhaseRange), PhaseRange |
|
1291 | #print 'PhaseRange', numpy.shape(PhaseRange), PhaseRange | |
1289 | #print ' ' |
|
1292 | #print ' ' | |
1290 |
|
1293 | |||
1291 | '''***********************VelRange******************''' |
|
1294 | '''***********************VelRange******************''' | |
1292 |
|
1295 | |||
1293 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) |
|
1296 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |
1294 |
|
1297 | |||
1295 | if len(FrecRange) == len(PhaseRange): |
|
1298 | if len(FrecRange) == len(PhaseRange): | |
1296 | try: |
|
1299 | try: | |
1297 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) |
|
1300 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) | |
1298 | PhaseSlope[i]=slope |
|
1301 | PhaseSlope[i]=slope | |
1299 | PhaseInter[i]=intercept |
|
1302 | PhaseInter[i]=intercept | |
1300 | except: |
|
1303 | except: | |
1301 | PhaseSlope[i]=0 |
|
1304 | PhaseSlope[i]=0 | |
1302 | PhaseInter[i]=0 |
|
1305 | PhaseInter[i]=0 | |
1303 | else: |
|
1306 | else: | |
1304 | PhaseSlope[i]=0 |
|
1307 | PhaseSlope[i]=0 | |
1305 | PhaseInter[i]=0 |
|
1308 | PhaseInter[i]=0 | |
1306 | else: |
|
1309 | else: | |
1307 | PhaseSlope[i]=0 |
|
1310 | PhaseSlope[i]=0 | |
1308 | PhaseInter[i]=0 |
|
1311 | PhaseInter[i]=0 | |
1309 |
|
1312 | |||
1310 |
|
1313 | |||
1311 | '''Getting constant C''' |
|
1314 | '''Getting constant C''' | |
1312 | cC=(Fij*numpy.pi)**2 |
|
1315 | cC=(Fij*numpy.pi)**2 | |
1313 |
|
1316 | |||
1314 | '''****** Getting constants F and G ******''' |
|
1317 | '''****** Getting constants F and G ******''' | |
1315 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
1318 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |
1316 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1319 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1317 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1320 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1318 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1321 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1319 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1322 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1320 |
|
1323 | |||
1321 | '''****** Getting constants A, B and H ******''' |
|
1324 | '''****** Getting constants A, B and H ******''' | |
1322 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) |
|
1325 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) | |
1323 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) |
|
1326 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) | |
1324 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) |
|
1327 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) | |
1325 |
|
1328 | |||
1326 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
1329 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1327 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
1330 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1328 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
1331 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1329 |
|
1332 | |||
1330 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1333 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1331 |
|
1334 | |||
1332 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
1335 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |
1333 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1336 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1334 |
|
1337 | |||
1335 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1338 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1336 | VxVyResults=numpy.array([-cF,-cG]) |
|
1339 | VxVyResults=numpy.array([-cF,-cG]) | |
1337 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1340 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1338 |
|
1341 | |||
1339 | #print 'MijResults, cC, PhaseSlope', MijResults, cC, PhaseSlope |
|
1342 | #print 'MijResults, cC, PhaseSlope', MijResults, cC, PhaseSlope | |
1340 | #print 'W01,02,12', W01, W02, W12 |
|
1343 | #print 'W01,02,12', W01, W02, W12 | |
1341 | #print 'WijResult0,1,2',WijResult0, WijResult1, WijResult2, 'Results', WijResults |
|
1344 | #print 'WijResult0,1,2',WijResult0, WijResult1, WijResult2, 'Results', WijResults | |
1342 | #print 'cA,cB,cH, cF, cG', cA, cB, cH, cF, cG |
|
1345 | #print 'cA,cB,cH, cF, cG', cA, cB, cH, cF, cG | |
1343 | #print 'VxVy', VxVyResults |
|
1346 | #print 'VxVy', VxVyResults | |
1344 | #print '###########################****************************************' |
|
1347 | #print '###########################****************************************' | |
1345 | Vzon = Vy |
|
1348 | Vzon = Vy | |
1346 | Vmer = Vx |
|
1349 | Vmer = Vx | |
1347 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1350 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1348 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1351 | Vang=numpy.arctan2(Vmer,Vzon) | |
1349 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: |
|
1352 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: | |
1350 | Vver=popt[1] |
|
1353 | Vver=popt[1] | |
1351 | else: |
|
1354 | else: | |
1352 | Vver=numpy.NaN |
|
1355 | Vver=numpy.NaN | |
1353 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) |
|
1356 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) | |
1354 |
|
1357 | |||
1355 |
|
1358 | |||
1356 | # ''' Ploteo por altura ''' |
|
1359 | # ''' Ploteo por altura ''' | |
1357 | # if Height == 28: |
|
1360 | # if Height == 28: | |
1358 | # for i in range(3): |
|
1361 | # for i in range(3): | |
1359 | # #print 'FASE', numpy.shape(phase), y[25] |
|
1362 | # #print 'FASE', numpy.shape(phase), y[25] | |
1360 | # #print numpy.shape(coherence) |
|
1363 | # #print numpy.shape(coherence) | |
1361 | # fig = plt.figure(10+self.indice) |
|
1364 | # fig = plt.figure(10+self.indice) | |
1362 | # #plt.plot( x[0:256],coherence[:,25] ) |
|
1365 | # #plt.plot( x[0:256],coherence[:,25] ) | |
1363 | # #cohAv = numpy.average(coherence[i],1) |
|
1366 | # #cohAv = numpy.average(coherence[i],1) | |
1364 | # Pendiente = FrecRange * PhaseSlope[i] |
|
1367 | # Pendiente = FrecRange * PhaseSlope[i] | |
1365 | # plt.plot( FrecRange, Pendiente) |
|
1368 | # plt.plot( FrecRange, Pendiente) | |
1366 | # plt.plot( xFrec,phase[i]) |
|
1369 | # plt.plot( xFrec,phase[i]) | |
1367 | # |
|
1370 | # | |
1368 | # CSPCmean = numpy.mean(numpy.abs(CSPCSamples),0) |
|
1371 | # CSPCmean = numpy.mean(numpy.abs(CSPCSamples),0) | |
1369 | # #plt.plot(xFrec, FitGauss01) |
|
1372 | # #plt.plot(xFrec, FitGauss01) | |
1370 | # #plt.plot(xFrec, CSPCmean) |
|
1373 | # #plt.plot(xFrec, CSPCmean) | |
1371 | # #plt.plot(xFrec, numpy.abs(CSPCSamples[0])) |
|
1374 | # #plt.plot(xFrec, numpy.abs(CSPCSamples[0])) | |
1372 | # #plt.plot(xFrec, FitGauss) |
|
1375 | # #plt.plot(xFrec, FitGauss) | |
1373 | # #plt.plot(xFrec, yMean) |
|
1376 | # #plt.plot(xFrec, yMean) | |
1374 | # #plt.plot(xFrec, numpy.abs(coherence[0])) |
|
1377 | # #plt.plot(xFrec, numpy.abs(coherence[0])) | |
1375 | # |
|
1378 | # | |
1376 | # #plt.axis([-12, 12, 15, 50]) |
|
1379 | # #plt.axis([-12, 12, 15, 50]) | |
1377 | # #plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) |
|
1380 | # #plt.title("%s" %( '%s %s, Channel %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S") , i))) | |
1378 | # plt.ylabel('Desfase [rad]') |
|
1381 | # plt.ylabel('Desfase [rad]') | |
1379 | # #plt.ylabel('CSPC normalizado') |
|
1382 | # #plt.ylabel('CSPC normalizado') | |
1380 | # plt.xlabel('Frec range [Hz]') |
|
1383 | # plt.xlabel('Frec range [Hz]') | |
1381 |
|
1384 | |||
1382 | #fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) |
|
1385 | #fig.savefig('/home/erick/Documents/Pics/to{}.png'.format(self.indice)) | |
1383 |
|
1386 | |||
1384 | # plt.show() |
|
1387 | # plt.show() | |
1385 | # self.indice=self.indice+1 |
|
1388 | # self.indice=self.indice+1 | |
1386 |
|
1389 | |||
1387 |
|
1390 | |||
1388 |
|
1391 | |||
1389 |
|
1392 | |||
1390 |
|
1393 | |||
1391 | # print 'vzon y vmer', Vzon, Vmer |
|
1394 | # print 'vzon y vmer', Vzon, Vmer | |
1392 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC |
|
1395 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC | |
1393 |
|
1396 | |||
1394 | class SpectralMoments(Operation): |
|
1397 | class SpectralMoments(Operation): | |
1395 |
|
1398 | |||
1396 | ''' |
|
1399 | ''' | |
1397 | Function SpectralMoments() |
|
1400 | Function SpectralMoments() | |
1398 |
|
1401 | |||
1399 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
1402 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |
1400 |
|
1403 | |||
1401 | Type of dataIn: Spectra |
|
1404 | Type of dataIn: Spectra | |
1402 |
|
1405 | |||
1403 | Configuration Parameters: |
|
1406 | Configuration Parameters: | |
1404 |
|
1407 | |||
1405 | dirCosx : Cosine director in X axis |
|
1408 | dirCosx : Cosine director in X axis | |
1406 | dirCosy : Cosine director in Y axis |
|
1409 | dirCosy : Cosine director in Y axis | |
1407 |
|
1410 | |||
1408 | elevation : |
|
1411 | elevation : | |
1409 | azimuth : |
|
1412 | azimuth : | |
1410 |
|
1413 | |||
1411 | Input: |
|
1414 | Input: | |
1412 | channelList : simple channel list to select e.g. [2,3,7] |
|
1415 | channelList : simple channel list to select e.g. [2,3,7] | |
1413 | self.dataOut.data_pre : Spectral data |
|
1416 | self.dataOut.data_pre : Spectral data | |
1414 | self.dataOut.abscissaList : List of frequencies |
|
1417 | self.dataOut.abscissaList : List of frequencies | |
1415 | self.dataOut.noise : Noise level per channel |
|
1418 | self.dataOut.noise : Noise level per channel | |
1416 |
|
1419 | |||
1417 | Affected: |
|
1420 | Affected: | |
1418 | self.dataOut.moments : Parameters per channel |
|
1421 | self.dataOut.moments : Parameters per channel | |
1419 | self.dataOut.data_SNR : SNR per channel |
|
1422 | self.dataOut.data_SNR : SNR per channel | |
1420 |
|
1423 | |||
1421 | ''' |
|
1424 | ''' | |
1422 |
|
1425 | |||
1423 | def run(self, dataOut): |
|
1426 | def run(self, dataOut): | |
1424 |
|
1427 | |||
1425 | #dataOut.data_pre = dataOut.data_pre[0] |
|
1428 | #dataOut.data_pre = dataOut.data_pre[0] | |
1426 | data = dataOut.data_pre[0] |
|
1429 | data = dataOut.data_pre[0] | |
1427 | absc = dataOut.abscissaList[:-1] |
|
1430 | absc = dataOut.abscissaList[:-1] | |
1428 | noise = dataOut.noise |
|
1431 | noise = dataOut.noise | |
1429 | nChannel = data.shape[0] |
|
1432 | nChannel = data.shape[0] | |
1430 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) |
|
1433 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
1431 |
|
1434 | |||
1432 | for ind in range(nChannel): |
|
1435 | for ind in range(nChannel): | |
1433 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1436 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1434 |
|
1437 | |||
1435 | dataOut.moments = data_param[:,1:,:] |
|
1438 | dataOut.moments = data_param[:,1:,:] | |
1436 | dataOut.data_SNR = data_param[:,0] |
|
1439 | dataOut.data_SNR = data_param[:,0] | |
1437 | return |
|
1440 | return | |
1438 |
|
1441 | |||
1439 | def __calculateMoments(self, oldspec, oldfreq, n0, |
|
1442 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
1440 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1443 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
1441 |
|
1444 | |||
1442 | if (nicoh == None): nicoh = 1 |
|
1445 | if (nicoh == None): nicoh = 1 | |
1443 | if (graph == None): graph = 0 |
|
1446 | if (graph == None): graph = 0 | |
1444 | if (smooth == None): smooth = 0 |
|
1447 | if (smooth == None): smooth = 0 | |
1445 | elif (self.smooth < 3): smooth = 0 |
|
1448 | elif (self.smooth < 3): smooth = 0 | |
1446 |
|
1449 | |||
1447 | if (type1 == None): type1 = 0 |
|
1450 | if (type1 == None): type1 = 0 | |
1448 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
1451 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
1449 | if (snrth == None): snrth = -3 |
|
1452 | if (snrth == None): snrth = -3 | |
1450 | if (dc == None): dc = 0 |
|
1453 | if (dc == None): dc = 0 | |
1451 | if (aliasing == None): aliasing = 0 |
|
1454 | if (aliasing == None): aliasing = 0 | |
1452 | if (oldfd == None): oldfd = 0 |
|
1455 | if (oldfd == None): oldfd = 0 | |
1453 | if (wwauto == None): wwauto = 0 |
|
1456 | if (wwauto == None): wwauto = 0 | |
1454 |
|
1457 | |||
1455 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
1458 | if (n0 < 1.e-20): n0 = 1.e-20 | |
1456 |
|
1459 | |||
1457 | freq = oldfreq |
|
1460 | freq = oldfreq | |
1458 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
1461 | vec_power = numpy.zeros(oldspec.shape[1]) | |
1459 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1462 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1460 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1463 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1461 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1464 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
1462 |
|
1465 | |||
1463 | oldspec = numpy.ma.masked_invalid(oldspec) |
|
1466 | oldspec = numpy.ma.masked_invalid(oldspec) | |
1464 |
|
1467 | |||
1465 | for ind in range(oldspec.shape[1]): |
|
1468 | for ind in range(oldspec.shape[1]): | |
1466 |
|
1469 | |||
1467 | spec = oldspec[:,ind] |
|
1470 | spec = oldspec[:,ind] | |
1468 | aux = spec*fwindow |
|
1471 | aux = spec*fwindow | |
1469 | max_spec = aux.max() |
|
1472 | max_spec = aux.max() | |
1470 | m = list(aux).index(max_spec) |
|
1473 | m = list(aux).index(max_spec) | |
1471 |
|
1474 | |||
1472 | #Smooth |
|
1475 | #Smooth | |
1473 | if (smooth == 0): spec2 = spec |
|
1476 | if (smooth == 0): spec2 = spec | |
1474 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
1477 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
1475 |
|
1478 | |||
1476 | # Calculo de Momentos |
|
1479 | # Calculo de Momentos | |
1477 | bb = spec2[range(m,spec2.size)] |
|
1480 | bb = spec2[range(m,spec2.size)] | |
1478 | bb = (bb<n0).nonzero() |
|
1481 | bb = (bb<n0).nonzero() | |
1479 | bb = bb[0] |
|
1482 | bb = bb[0] | |
1480 |
|
1483 | |||
1481 | ss = spec2[range(0,m + 1)] |
|
1484 | ss = spec2[range(0,m + 1)] | |
1482 | ss = (ss<n0).nonzero() |
|
1485 | ss = (ss<n0).nonzero() | |
1483 | ss = ss[0] |
|
1486 | ss = ss[0] | |
1484 |
|
1487 | |||
1485 | if (bb.size == 0): |
|
1488 | if (bb.size == 0): | |
1486 | bb0 = spec.size - 1 - m |
|
1489 | bb0 = spec.size - 1 - m | |
1487 | else: |
|
1490 | else: | |
1488 | bb0 = bb[0] - 1 |
|
1491 | bb0 = bb[0] - 1 | |
1489 | if (bb0 < 0): |
|
1492 | if (bb0 < 0): | |
1490 | bb0 = 0 |
|
1493 | bb0 = 0 | |
1491 |
|
1494 | |||
1492 | if (ss.size == 0): ss1 = 1 |
|
1495 | if (ss.size == 0): ss1 = 1 | |
1493 | else: ss1 = max(ss) + 1 |
|
1496 | else: ss1 = max(ss) + 1 | |
1494 |
|
1497 | |||
1495 | if (ss1 > m): ss1 = m |
|
1498 | if (ss1 > m): ss1 = m | |
1496 |
|
1499 | |||
1497 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
1500 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
1498 | power = ( (spec2[valid] - n0) * fwindow[valid] ).sum() |
|
1501 | power = ( (spec2[valid] - n0) * fwindow[valid] ).sum() | |
1499 | fd = ( (spec2[valid]- n0) * freq[valid] * fwindow[valid] ).sum() / power |
|
1502 | fd = ( (spec2[valid]- n0) * freq[valid] * fwindow[valid] ).sum() / power | |
1500 |
|
1503 | |||
1501 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1504 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1502 | snr = (spec2.mean()-n0)/n0 |
|
1505 | snr = (spec2.mean()-n0)/n0 | |
1503 |
|
1506 | |||
1504 | if (snr < 1.e-20) : |
|
1507 | if (snr < 1.e-20) : | |
1505 | snr = 1.e-20 |
|
1508 | snr = 1.e-20 | |
1506 |
|
1509 | |||
1507 | vec_power[ind] = power |
|
1510 | vec_power[ind] = power | |
1508 | vec_fd[ind] = fd |
|
1511 | vec_fd[ind] = fd | |
1509 | vec_w[ind] = w |
|
1512 | vec_w[ind] = w | |
1510 | vec_snr[ind] = snr |
|
1513 | vec_snr[ind] = snr | |
1511 |
|
1514 | |||
1512 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1515 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1513 | return moments |
|
1516 | return moments | |
1514 |
|
1517 | |||
1515 | #------------------ Get SA Parameters -------------------------- |
|
1518 | #------------------ Get SA Parameters -------------------------- | |
1516 |
|
1519 | |||
1517 | def GetSAParameters(self): |
|
1520 | def GetSAParameters(self): | |
1518 | #SA en frecuencia |
|
1521 | #SA en frecuencia | |
1519 | pairslist = self.dataOut.groupList |
|
1522 | pairslist = self.dataOut.groupList | |
1520 | num_pairs = len(pairslist) |
|
1523 | num_pairs = len(pairslist) | |
1521 |
|
1524 | |||
1522 | vel = self.dataOut.abscissaList |
|
1525 | vel = self.dataOut.abscissaList | |
1523 | spectra = self.dataOut.data_pre |
|
1526 | spectra = self.dataOut.data_pre | |
1524 | cspectra = self.dataIn.data_cspc |
|
1527 | cspectra = self.dataIn.data_cspc | |
1525 | delta_v = vel[1] - vel[0] |
|
1528 | delta_v = vel[1] - vel[0] | |
1526 |
|
1529 | |||
1527 | #Calculating the power spectrum |
|
1530 | #Calculating the power spectrum | |
1528 | spc_pow = numpy.sum(spectra, 3)*delta_v |
|
1531 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
1529 | #Normalizing Spectra |
|
1532 | #Normalizing Spectra | |
1530 | norm_spectra = spectra/spc_pow |
|
1533 | norm_spectra = spectra/spc_pow | |
1531 | #Calculating the norm_spectra at peak |
|
1534 | #Calculating the norm_spectra at peak | |
1532 | max_spectra = numpy.max(norm_spectra, 3) |
|
1535 | max_spectra = numpy.max(norm_spectra, 3) | |
1533 |
|
1536 | |||
1534 | #Normalizing Cross Spectra |
|
1537 | #Normalizing Cross Spectra | |
1535 | norm_cspectra = numpy.zeros(cspectra.shape) |
|
1538 | norm_cspectra = numpy.zeros(cspectra.shape) | |
1536 |
|
1539 | |||
1537 | for i in range(num_chan): |
|
1540 | for i in range(num_chan): | |
1538 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) |
|
1541 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
1539 |
|
1542 | |||
1540 | max_cspectra = numpy.max(norm_cspectra,2) |
|
1543 | max_cspectra = numpy.max(norm_cspectra,2) | |
1541 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) |
|
1544 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
1542 |
|
1545 | |||
1543 | for i in range(num_pairs): |
|
1546 | for i in range(num_pairs): | |
1544 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) |
|
1547 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
1545 | #------------------- Get Lags ---------------------------------- |
|
1548 | #------------------- Get Lags ---------------------------------- | |
1546 |
|
1549 | |||
1547 | class SALags(Operation): |
|
1550 | class SALags(Operation): | |
1548 | ''' |
|
1551 | ''' | |
1549 | Function GetMoments() |
|
1552 | Function GetMoments() | |
1550 |
|
1553 | |||
1551 | Input: |
|
1554 | Input: | |
1552 | self.dataOut.data_pre |
|
1555 | self.dataOut.data_pre | |
1553 | self.dataOut.abscissaList |
|
1556 | self.dataOut.abscissaList | |
1554 | self.dataOut.noise |
|
1557 | self.dataOut.noise | |
1555 | self.dataOut.normFactor |
|
1558 | self.dataOut.normFactor | |
1556 | self.dataOut.data_SNR |
|
1559 | self.dataOut.data_SNR | |
1557 | self.dataOut.groupList |
|
1560 | self.dataOut.groupList | |
1558 | self.dataOut.nChannels |
|
1561 | self.dataOut.nChannels | |
1559 |
|
1562 | |||
1560 | Affected: |
|
1563 | Affected: | |
1561 | self.dataOut.data_param |
|
1564 | self.dataOut.data_param | |
1562 |
|
1565 | |||
1563 | ''' |
|
1566 | ''' | |
1564 | def run(self, dataOut): |
|
1567 | def run(self, dataOut): | |
1565 | data_acf = dataOut.data_pre[0] |
|
1568 | data_acf = dataOut.data_pre[0] | |
1566 | data_ccf = dataOut.data_pre[1] |
|
1569 | data_ccf = dataOut.data_pre[1] | |
1567 | normFactor_acf = dataOut.normFactor[0] |
|
1570 | normFactor_acf = dataOut.normFactor[0] | |
1568 | normFactor_ccf = dataOut.normFactor[1] |
|
1571 | normFactor_ccf = dataOut.normFactor[1] | |
1569 | pairs_acf = dataOut.groupList[0] |
|
1572 | pairs_acf = dataOut.groupList[0] | |
1570 | pairs_ccf = dataOut.groupList[1] |
|
1573 | pairs_ccf = dataOut.groupList[1] | |
1571 |
|
1574 | |||
1572 | nHeights = dataOut.nHeights |
|
1575 | nHeights = dataOut.nHeights | |
1573 | absc = dataOut.abscissaList |
|
1576 | absc = dataOut.abscissaList | |
1574 | noise = dataOut.noise |
|
1577 | noise = dataOut.noise | |
1575 | SNR = dataOut.data_SNR |
|
1578 | SNR = dataOut.data_SNR | |
1576 | nChannels = dataOut.nChannels |
|
1579 | nChannels = dataOut.nChannels | |
1577 | # pairsList = dataOut.groupList |
|
1580 | # pairsList = dataOut.groupList | |
1578 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1581 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1579 |
|
1582 | |||
1580 | for l in range(len(pairs_acf)): |
|
1583 | for l in range(len(pairs_acf)): | |
1581 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] |
|
1584 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
1582 |
|
1585 | |||
1583 | for l in range(len(pairs_ccf)): |
|
1586 | for l in range(len(pairs_ccf)): | |
1584 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] |
|
1587 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
1585 |
|
1588 | |||
1586 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) |
|
1589 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
1587 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) |
|
1590 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
1588 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) |
|
1591 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
1589 | return |
|
1592 | return | |
1590 |
|
1593 | |||
1591 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1594 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
1592 | # |
|
1595 | # | |
1593 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1596 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1594 | # |
|
1597 | # | |
1595 | # for l in range(len(pairsList)): |
|
1598 | # for l in range(len(pairsList)): | |
1596 | # firstChannel = pairsList[l][0] |
|
1599 | # firstChannel = pairsList[l][0] | |
1597 | # secondChannel = pairsList[l][1] |
|
1600 | # secondChannel = pairsList[l][1] | |
1598 | # |
|
1601 | # | |
1599 | # #Obteniendo pares de Autocorrelacion |
|
1602 | # #Obteniendo pares de Autocorrelacion | |
1600 | # if firstChannel == secondChannel: |
|
1603 | # if firstChannel == secondChannel: | |
1601 | # pairsAutoCorr[firstChannel] = int(l) |
|
1604 | # pairsAutoCorr[firstChannel] = int(l) | |
1602 | # |
|
1605 | # | |
1603 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1606 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
1604 | # |
|
1607 | # | |
1605 | # pairsCrossCorr = range(len(pairsList)) |
|
1608 | # pairsCrossCorr = range(len(pairsList)) | |
1606 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1609 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1607 | # |
|
1610 | # | |
1608 | # return pairsAutoCorr, pairsCrossCorr |
|
1611 | # return pairsAutoCorr, pairsCrossCorr | |
1609 |
|
1612 | |||
1610 | def __calculateTaus(self, data_acf, data_ccf, lagRange): |
|
1613 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
1611 |
|
1614 | |||
1612 | lag0 = data_acf.shape[1]/2 |
|
1615 | lag0 = data_acf.shape[1]/2 | |
1613 | #Funcion de Autocorrelacion |
|
1616 | #Funcion de Autocorrelacion | |
1614 | mean_acf = stats.nanmean(data_acf, axis = 0) |
|
1617 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
1615 |
|
1618 | |||
1616 | #Obtencion Indice de TauCross |
|
1619 | #Obtencion Indice de TauCross | |
1617 | ind_ccf = data_ccf.argmax(axis = 1) |
|
1620 | ind_ccf = data_ccf.argmax(axis = 1) | |
1618 | #Obtencion Indice de TauAuto |
|
1621 | #Obtencion Indice de TauAuto | |
1619 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') |
|
1622 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
1620 | ccf_lag0 = data_ccf[:,lag0,:] |
|
1623 | ccf_lag0 = data_ccf[:,lag0,:] | |
1621 |
|
1624 | |||
1622 | for i in range(ccf_lag0.shape[0]): |
|
1625 | for i in range(ccf_lag0.shape[0]): | |
1623 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) |
|
1626 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
1624 |
|
1627 | |||
1625 | #Obtencion de TauCross y TauAuto |
|
1628 | #Obtencion de TauCross y TauAuto | |
1626 | tau_ccf = lagRange[ind_ccf] |
|
1629 | tau_ccf = lagRange[ind_ccf] | |
1627 | tau_acf = lagRange[ind_acf] |
|
1630 | tau_acf = lagRange[ind_acf] | |
1628 |
|
1631 | |||
1629 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) |
|
1632 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
1630 |
|
1633 | |||
1631 | tau_ccf[Nan1,Nan2] = numpy.nan |
|
1634 | tau_ccf[Nan1,Nan2] = numpy.nan | |
1632 | tau_acf[Nan1,Nan2] = numpy.nan |
|
1635 | tau_acf[Nan1,Nan2] = numpy.nan | |
1633 | tau = numpy.vstack((tau_ccf,tau_acf)) |
|
1636 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
1634 |
|
1637 | |||
1635 | return tau |
|
1638 | return tau | |
1636 |
|
1639 | |||
1637 | def __calculateLag1Phase(self, data, lagTRange): |
|
1640 | def __calculateLag1Phase(self, data, lagTRange): | |
1638 | data1 = stats.nanmean(data, axis = 0) |
|
1641 | data1 = stats.nanmean(data, axis = 0) | |
1639 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
1642 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
1640 |
|
1643 | |||
1641 | phase = numpy.angle(data1[lag1,:]) |
|
1644 | phase = numpy.angle(data1[lag1,:]) | |
1642 |
|
1645 | |||
1643 | return phase |
|
1646 | return phase | |
1644 |
|
1647 | |||
1645 | class SpectralFitting(Operation): |
|
1648 | class SpectralFitting(Operation): | |
1646 | ''' |
|
1649 | ''' | |
1647 | Function GetMoments() |
|
1650 | Function GetMoments() | |
1648 |
|
1651 | |||
1649 | Input: |
|
1652 | Input: | |
1650 | Output: |
|
1653 | Output: | |
1651 | Variables modified: |
|
1654 | Variables modified: | |
1652 | ''' |
|
1655 | ''' | |
1653 |
|
1656 | |||
1654 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): |
|
1657 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
1655 |
|
1658 | |||
1656 |
|
1659 | |||
1657 | if path != None: |
|
1660 | if path != None: | |
1658 | sys.path.append(path) |
|
1661 | sys.path.append(path) | |
1659 | self.dataOut.library = importlib.import_module(file) |
|
1662 | self.dataOut.library = importlib.import_module(file) | |
1660 |
|
1663 | |||
1661 | #To be inserted as a parameter |
|
1664 | #To be inserted as a parameter | |
1662 | groupArray = numpy.array(groupList) |
|
1665 | groupArray = numpy.array(groupList) | |
1663 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1666 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1664 | self.dataOut.groupList = groupArray |
|
1667 | self.dataOut.groupList = groupArray | |
1665 |
|
1668 | |||
1666 | nGroups = groupArray.shape[0] |
|
1669 | nGroups = groupArray.shape[0] | |
1667 | nChannels = self.dataIn.nChannels |
|
1670 | nChannels = self.dataIn.nChannels | |
1668 | nHeights=self.dataIn.heightList.size |
|
1671 | nHeights=self.dataIn.heightList.size | |
1669 |
|
1672 | |||
1670 | #Parameters Array |
|
1673 | #Parameters Array | |
1671 | self.dataOut.data_param = None |
|
1674 | self.dataOut.data_param = None | |
1672 |
|
1675 | |||
1673 | #Set constants |
|
1676 | #Set constants | |
1674 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1677 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1675 | self.dataOut.constants = constants |
|
1678 | self.dataOut.constants = constants | |
1676 | M = self.dataIn.normFactor |
|
1679 | M = self.dataIn.normFactor | |
1677 | N = self.dataIn.nFFTPoints |
|
1680 | N = self.dataIn.nFFTPoints | |
1678 | ippSeconds = self.dataIn.ippSeconds |
|
1681 | ippSeconds = self.dataIn.ippSeconds | |
1679 | K = self.dataIn.nIncohInt |
|
1682 | K = self.dataIn.nIncohInt | |
1680 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1683 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1681 |
|
1684 | |||
1682 | #List of possible combinations |
|
1685 | #List of possible combinations | |
1683 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1686 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1684 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1687 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1685 |
|
1688 | |||
1686 | if getSNR: |
|
1689 | if getSNR: | |
1687 | listChannels = groupArray.reshape((groupArray.size)) |
|
1690 | listChannels = groupArray.reshape((groupArray.size)) | |
1688 | listChannels.sort() |
|
1691 | listChannels.sort() | |
1689 | noise = self.dataIn.getNoise() |
|
1692 | noise = self.dataIn.getNoise() | |
1690 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1693 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1691 |
|
1694 | |||
1692 | for i in range(nGroups): |
|
1695 | for i in range(nGroups): | |
1693 | coord = groupArray[i,:] |
|
1696 | coord = groupArray[i,:] | |
1694 |
|
1697 | |||
1695 | #Input data array |
|
1698 | #Input data array | |
1696 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1699 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1697 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1700 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1698 |
|
1701 | |||
1699 | #Cross Spectra data array for Covariance Matrixes |
|
1702 | #Cross Spectra data array for Covariance Matrixes | |
1700 | ind = 0 |
|
1703 | ind = 0 | |
1701 | for pairs in listComb: |
|
1704 | for pairs in listComb: | |
1702 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1705 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1703 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1706 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1704 | ind += 1 |
|
1707 | ind += 1 | |
1705 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1708 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1706 | dataCross = dataCross**2/K |
|
1709 | dataCross = dataCross**2/K | |
1707 |
|
1710 | |||
1708 | for h in range(nHeights): |
|
1711 | for h in range(nHeights): | |
1709 | # print self.dataOut.heightList[h] |
|
1712 | # print self.dataOut.heightList[h] | |
1710 |
|
1713 | |||
1711 | #Input |
|
1714 | #Input | |
1712 | d = data[:,h] |
|
1715 | d = data[:,h] | |
1713 |
|
1716 | |||
1714 | #Covariance Matrix |
|
1717 | #Covariance Matrix | |
1715 | D = numpy.diag(d**2/K) |
|
1718 | D = numpy.diag(d**2/K) | |
1716 | ind = 0 |
|
1719 | ind = 0 | |
1717 | for pairs in listComb: |
|
1720 | for pairs in listComb: | |
1718 | #Coordinates in Covariance Matrix |
|
1721 | #Coordinates in Covariance Matrix | |
1719 | x = pairs[0] |
|
1722 | x = pairs[0] | |
1720 | y = pairs[1] |
|
1723 | y = pairs[1] | |
1721 | #Channel Index |
|
1724 | #Channel Index | |
1722 | S12 = dataCross[ind,:,h] |
|
1725 | S12 = dataCross[ind,:,h] | |
1723 | D12 = numpy.diag(S12) |
|
1726 | D12 = numpy.diag(S12) | |
1724 | #Completing Covariance Matrix with Cross Spectras |
|
1727 | #Completing Covariance Matrix with Cross Spectras | |
1725 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1728 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1726 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1729 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1727 | ind += 1 |
|
1730 | ind += 1 | |
1728 | Dinv=numpy.linalg.inv(D) |
|
1731 | Dinv=numpy.linalg.inv(D) | |
1729 | L=numpy.linalg.cholesky(Dinv) |
|
1732 | L=numpy.linalg.cholesky(Dinv) | |
1730 | LT=L.T |
|
1733 | LT=L.T | |
1731 |
|
1734 | |||
1732 | dp = numpy.dot(LT,d) |
|
1735 | dp = numpy.dot(LT,d) | |
1733 |
|
1736 | |||
1734 | #Initial values |
|
1737 | #Initial values | |
1735 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1738 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1736 |
|
1739 | |||
1737 | if (h>0)and(error1[3]<5): |
|
1740 | if (h>0)and(error1[3]<5): | |
1738 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1741 | p0 = self.dataOut.data_param[i,:,h-1] | |
1739 | else: |
|
1742 | else: | |
1740 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1743 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1741 |
|
1744 | |||
1742 | try: |
|
1745 | try: | |
1743 | #Least Squares |
|
1746 | #Least Squares | |
1744 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1747 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1745 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1748 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1746 | #Chi square error |
|
1749 | #Chi square error | |
1747 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1750 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1748 | #Error with Jacobian |
|
1751 | #Error with Jacobian | |
1749 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1752 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1750 | except: |
|
1753 | except: | |
1751 | minp = p0*numpy.nan |
|
1754 | minp = p0*numpy.nan | |
1752 | error0 = numpy.nan |
|
1755 | error0 = numpy.nan | |
1753 | error1 = p0*numpy.nan |
|
1756 | error1 = p0*numpy.nan | |
1754 |
|
1757 | |||
1755 | #Save |
|
1758 | #Save | |
1756 | if self.dataOut.data_param == None: |
|
1759 | if self.dataOut.data_param == None: | |
1757 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1760 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1758 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1761 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1759 |
|
1762 | |||
1760 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1763 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1761 | self.dataOut.data_param[i,:,h] = minp |
|
1764 | self.dataOut.data_param[i,:,h] = minp | |
1762 | return |
|
1765 | return | |
1763 |
|
1766 | |||
1764 | def __residFunction(self, p, dp, LT, constants): |
|
1767 | def __residFunction(self, p, dp, LT, constants): | |
1765 |
|
1768 | |||
1766 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1769 | fm = self.dataOut.library.modelFunction(p, constants) | |
1767 | fmp=numpy.dot(LT,fm) |
|
1770 | fmp=numpy.dot(LT,fm) | |
1768 |
|
1771 | |||
1769 | return dp-fmp |
|
1772 | return dp-fmp | |
1770 |
|
1773 | |||
1771 | def __getSNR(self, z, noise): |
|
1774 | def __getSNR(self, z, noise): | |
1772 |
|
1775 | |||
1773 | avg = numpy.average(z, axis=1) |
|
1776 | avg = numpy.average(z, axis=1) | |
1774 | SNR = (avg.T-noise)/noise |
|
1777 | SNR = (avg.T-noise)/noise | |
1775 | SNR = SNR.T |
|
1778 | SNR = SNR.T | |
1776 | return SNR |
|
1779 | return SNR | |
1777 |
|
1780 | |||
1778 | def __chisq(p,chindex,hindex): |
|
1781 | def __chisq(p,chindex,hindex): | |
1779 | #similar to Resid but calculates CHI**2 |
|
1782 | #similar to Resid but calculates CHI**2 | |
1780 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1783 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1781 | dp=numpy.dot(LT,d) |
|
1784 | dp=numpy.dot(LT,d) | |
1782 | fmp=numpy.dot(LT,fm) |
|
1785 | fmp=numpy.dot(LT,fm) | |
1783 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1786 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1784 | return chisq |
|
1787 | return chisq | |
1785 |
|
1788 | |||
1786 | class WindProfiler(Operation): |
|
1789 | class WindProfiler(Operation): | |
1787 |
|
1790 | |||
1788 | __isConfig = False |
|
1791 | __isConfig = False | |
1789 |
|
1792 | |||
1790 | __initime = None |
|
1793 | __initime = None | |
1791 | __lastdatatime = None |
|
1794 | __lastdatatime = None | |
1792 | __integrationtime = None |
|
1795 | __integrationtime = None | |
1793 |
|
1796 | |||
1794 | __buffer = None |
|
1797 | __buffer = None | |
1795 |
|
1798 | |||
1796 | __dataReady = False |
|
1799 | __dataReady = False | |
1797 |
|
1800 | |||
1798 | __firstdata = None |
|
1801 | __firstdata = None | |
1799 |
|
1802 | |||
1800 | n = None |
|
1803 | n = None | |
1801 |
|
1804 | |||
1802 | def __init__(self, **kwargs): |
|
1805 | def __init__(self, **kwargs): | |
1803 | Operation.__init__(self, **kwargs) |
|
1806 | Operation.__init__(self, **kwargs) | |
1804 |
|
1807 | |||
1805 | def __calculateCosDir(self, elev, azim): |
|
1808 | def __calculateCosDir(self, elev, azim): | |
1806 | zen = (90 - elev)*numpy.pi/180 |
|
1809 | zen = (90 - elev)*numpy.pi/180 | |
1807 | azim = azim*numpy.pi/180 |
|
1810 | azim = azim*numpy.pi/180 | |
1808 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1811 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1809 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1812 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1810 |
|
1813 | |||
1811 | signX = numpy.sign(numpy.cos(azim)) |
|
1814 | signX = numpy.sign(numpy.cos(azim)) | |
1812 | signY = numpy.sign(numpy.sin(azim)) |
|
1815 | signY = numpy.sign(numpy.sin(azim)) | |
1813 |
|
1816 | |||
1814 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1817 | cosDirX = numpy.copysign(cosDirX, signX) | |
1815 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1818 | cosDirY = numpy.copysign(cosDirY, signY) | |
1816 | return cosDirX, cosDirY |
|
1819 | return cosDirX, cosDirY | |
1817 |
|
1820 | |||
1818 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1821 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1819 |
|
1822 | |||
1820 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1823 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1821 | zenith_arr = numpy.arccos(dir_cosw) |
|
1824 | zenith_arr = numpy.arccos(dir_cosw) | |
1822 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1825 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1823 |
|
1826 | |||
1824 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1827 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1825 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1828 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1826 |
|
1829 | |||
1827 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1830 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1828 |
|
1831 | |||
1829 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1832 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1830 |
|
1833 | |||
1831 | # |
|
1834 | # | |
1832 | if horOnly: |
|
1835 | if horOnly: | |
1833 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1836 | A = numpy.c_[dir_cosu,dir_cosv] | |
1834 | else: |
|
1837 | else: | |
1835 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1838 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1836 | A = numpy.asmatrix(A) |
|
1839 | A = numpy.asmatrix(A) | |
1837 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1840 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1838 |
|
1841 | |||
1839 | return A1 |
|
1842 | return A1 | |
1840 |
|
1843 | |||
1841 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1844 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1842 | listPhi = phi.tolist() |
|
1845 | listPhi = phi.tolist() | |
1843 | maxid = listPhi.index(max(listPhi)) |
|
1846 | maxid = listPhi.index(max(listPhi)) | |
1844 | minid = listPhi.index(min(listPhi)) |
|
1847 | minid = listPhi.index(min(listPhi)) | |
1845 |
|
1848 | |||
1846 | rango = range(len(phi)) |
|
1849 | rango = range(len(phi)) | |
1847 | # rango = numpy.delete(rango,maxid) |
|
1850 | # rango = numpy.delete(rango,maxid) | |
1848 |
|
1851 | |||
1849 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1852 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1850 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1853 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1851 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1854 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1852 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1855 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1853 |
|
1856 | |||
1854 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1857 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1855 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1858 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1856 |
|
1859 | |||
1857 | for i in rango: |
|
1860 | for i in rango: | |
1858 | x = heiRang*math.cos(phi[i]) |
|
1861 | x = heiRang*math.cos(phi[i]) | |
1859 | y1 = velRadial[i,:] |
|
1862 | y1 = velRadial[i,:] | |
1860 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1863 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1861 |
|
1864 | |||
1862 | x1 = heiRang1 |
|
1865 | x1 = heiRang1 | |
1863 | y11 = f1(x1) |
|
1866 | y11 = f1(x1) | |
1864 |
|
1867 | |||
1865 | y2 = SNR[i,:] |
|
1868 | y2 = SNR[i,:] | |
1866 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1869 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1867 | y21 = f2(x1) |
|
1870 | y21 = f2(x1) | |
1868 |
|
1871 | |||
1869 | velRadial1[i,:] = y11 |
|
1872 | velRadial1[i,:] = y11 | |
1870 | SNR1[i,:] = y21 |
|
1873 | SNR1[i,:] = y21 | |
1871 |
|
1874 | |||
1872 | return heiRang1, velRadial1, SNR1 |
|
1875 | return heiRang1, velRadial1, SNR1 | |
1873 |
|
1876 | |||
1874 | def __calculateVelUVW(self, A, velRadial): |
|
1877 | def __calculateVelUVW(self, A, velRadial): | |
1875 |
|
1878 | |||
1876 | #Operacion Matricial |
|
1879 | #Operacion Matricial | |
1877 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1880 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1878 | # for ind in range(velRadial.shape[1]): |
|
1881 | # for ind in range(velRadial.shape[1]): | |
1879 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1882 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1880 | # velUVW = velUVW.transpose() |
|
1883 | # velUVW = velUVW.transpose() | |
1881 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1884 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1882 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1885 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1883 |
|
1886 | |||
1884 |
|
1887 | |||
1885 | return velUVW |
|
1888 | return velUVW | |
1886 |
|
1889 | |||
1887 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1890 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1888 |
|
1891 | |||
1889 | def techniqueDBS(self, kwargs): |
|
1892 | def techniqueDBS(self, kwargs): | |
1890 | """ |
|
1893 | """ | |
1891 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1894 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1892 |
|
1895 | |||
1893 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1896 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1894 | Direction correction (if necessary), Ranges and SNR |
|
1897 | Direction correction (if necessary), Ranges and SNR | |
1895 |
|
1898 | |||
1896 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1899 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1897 |
|
1900 | |||
1898 | Parameters affected: Winds, height range, SNR |
|
1901 | Parameters affected: Winds, height range, SNR | |
1899 | """ |
|
1902 | """ | |
1900 | velRadial0 = kwargs['velRadial'] |
|
1903 | velRadial0 = kwargs['velRadial'] | |
1901 | heiRang = kwargs['heightList'] |
|
1904 | heiRang = kwargs['heightList'] | |
1902 | SNR0 = kwargs['SNR'] |
|
1905 | SNR0 = kwargs['SNR'] | |
1903 |
|
1906 | |||
1904 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1907 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1905 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1908 | theta_x = numpy.array(kwargs['dirCosx']) | |
1906 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1909 | theta_y = numpy.array(kwargs['dirCosy']) | |
1907 | else: |
|
1910 | else: | |
1908 | elev = numpy.array(kwargs['elevation']) |
|
1911 | elev = numpy.array(kwargs['elevation']) | |
1909 | azim = numpy.array(kwargs['azimuth']) |
|
1912 | azim = numpy.array(kwargs['azimuth']) | |
1910 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1913 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1911 | azimuth = kwargs['correctAzimuth'] |
|
1914 | azimuth = kwargs['correctAzimuth'] | |
1912 | if kwargs.has_key('horizontalOnly'): |
|
1915 | if kwargs.has_key('horizontalOnly'): | |
1913 | horizontalOnly = kwargs['horizontalOnly'] |
|
1916 | horizontalOnly = kwargs['horizontalOnly'] | |
1914 | else: horizontalOnly = False |
|
1917 | else: horizontalOnly = False | |
1915 | if kwargs.has_key('correctFactor'): |
|
1918 | if kwargs.has_key('correctFactor'): | |
1916 | correctFactor = kwargs['correctFactor'] |
|
1919 | correctFactor = kwargs['correctFactor'] | |
1917 | else: correctFactor = 1 |
|
1920 | else: correctFactor = 1 | |
1918 | if kwargs.has_key('channelList'): |
|
1921 | if kwargs.has_key('channelList'): | |
1919 | channelList = kwargs['channelList'] |
|
1922 | channelList = kwargs['channelList'] | |
1920 | if len(channelList) == 2: |
|
1923 | if len(channelList) == 2: | |
1921 | horizontalOnly = True |
|
1924 | horizontalOnly = True | |
1922 | arrayChannel = numpy.array(channelList) |
|
1925 | arrayChannel = numpy.array(channelList) | |
1923 | param = param[arrayChannel,:,:] |
|
1926 | param = param[arrayChannel,:,:] | |
1924 | theta_x = theta_x[arrayChannel] |
|
1927 | theta_x = theta_x[arrayChannel] | |
1925 | theta_y = theta_y[arrayChannel] |
|
1928 | theta_y = theta_y[arrayChannel] | |
1926 |
|
1929 | |||
1927 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) |
|
1930 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
1928 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) |
|
1931 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
1929 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1932 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1930 |
|
1933 | |||
1931 | #Calculo de Componentes de la velocidad con DBS |
|
1934 | #Calculo de Componentes de la velocidad con DBS | |
1932 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1935 | winds = self.__calculateVelUVW(A,velRadial1) | |
1933 |
|
1936 | |||
1934 | return winds, heiRang1, SNR1 |
|
1937 | return winds, heiRang1, SNR1 | |
1935 |
|
1938 | |||
1936 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): |
|
1939 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
1937 |
|
1940 | |||
1938 | nPairs = len(pairs_ccf) |
|
1941 | nPairs = len(pairs_ccf) | |
1939 | posx = numpy.asarray(posx) |
|
1942 | posx = numpy.asarray(posx) | |
1940 | posy = numpy.asarray(posy) |
|
1943 | posy = numpy.asarray(posy) | |
1941 |
|
1944 | |||
1942 | #Rotacion Inversa para alinear con el azimuth |
|
1945 | #Rotacion Inversa para alinear con el azimuth | |
1943 | if azimuth!= None: |
|
1946 | if azimuth!= None: | |
1944 | azimuth = azimuth*math.pi/180 |
|
1947 | azimuth = azimuth*math.pi/180 | |
1945 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1948 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1946 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1949 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1947 | else: |
|
1950 | else: | |
1948 | posx1 = posx |
|
1951 | posx1 = posx | |
1949 | posy1 = posy |
|
1952 | posy1 = posy | |
1950 |
|
1953 | |||
1951 | #Calculo de Distancias |
|
1954 | #Calculo de Distancias | |
1952 | distx = numpy.zeros(nPairs) |
|
1955 | distx = numpy.zeros(nPairs) | |
1953 | disty = numpy.zeros(nPairs) |
|
1956 | disty = numpy.zeros(nPairs) | |
1954 | dist = numpy.zeros(nPairs) |
|
1957 | dist = numpy.zeros(nPairs) | |
1955 | ang = numpy.zeros(nPairs) |
|
1958 | ang = numpy.zeros(nPairs) | |
1956 |
|
1959 | |||
1957 | for i in range(nPairs): |
|
1960 | for i in range(nPairs): | |
1958 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] |
|
1961 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
1959 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] |
|
1962 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
1960 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1963 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1961 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1964 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1962 |
|
1965 | |||
1963 | return distx, disty, dist, ang |
|
1966 | return distx, disty, dist, ang | |
1964 | #Calculo de Matrices |
|
1967 | #Calculo de Matrices | |
1965 | # nPairs = len(pairs) |
|
1968 | # nPairs = len(pairs) | |
1966 | # ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1969 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
1967 | # dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1970 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
1968 | # |
|
1971 | # | |
1969 | # for j in range(nPairs): |
|
1972 | # for j in range(nPairs): | |
1970 | # dist1[j,0,0] = dist[pairs[j][0]] |
|
1973 | # dist1[j,0,0] = dist[pairs[j][0]] | |
1971 | # dist1[j,1,0] = dist[pairs[j][1]] |
|
1974 | # dist1[j,1,0] = dist[pairs[j][1]] | |
1972 | # ang1[j,0,0] = ang[pairs[j][0]] |
|
1975 | # ang1[j,0,0] = ang[pairs[j][0]] | |
1973 | # ang1[j,1,0] = ang[pairs[j][1]] |
|
1976 | # ang1[j,1,0] = ang[pairs[j][1]] | |
1974 | # |
|
1977 | # | |
1975 | # return distx,disty, dist1,ang1 |
|
1978 | # return distx,disty, dist1,ang1 | |
1976 |
|
1979 | |||
1977 |
|
1980 | |||
1978 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1981 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1979 |
|
1982 | |||
1980 | Ts = lagTRange[1] - lagTRange[0] |
|
1983 | Ts = lagTRange[1] - lagTRange[0] | |
1981 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1984 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1982 |
|
1985 | |||
1983 | return velW |
|
1986 | return velW | |
1984 |
|
1987 | |||
1985 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1988 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1986 | nPairs = tau1.shape[0] |
|
1989 | nPairs = tau1.shape[0] | |
1987 | nHeights = tau1.shape[1] |
|
1990 | nHeights = tau1.shape[1] | |
1988 | vel = numpy.zeros((nPairs,3,nHeights)) |
|
1991 | vel = numpy.zeros((nPairs,3,nHeights)) | |
1989 | dist1 = numpy.reshape(dist, (dist.size,1)) |
|
1992 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
1990 |
|
1993 | |||
1991 | angCos = numpy.cos(ang) |
|
1994 | angCos = numpy.cos(ang) | |
1992 | angSin = numpy.sin(ang) |
|
1995 | angSin = numpy.sin(ang) | |
1993 |
|
1996 | |||
1994 | vel0 = dist1*tau1/(2*tau2**2) |
|
1997 | vel0 = dist1*tau1/(2*tau2**2) | |
1995 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1998 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1996 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1999 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1997 |
|
2000 | |||
1998 | ind = numpy.where(numpy.isinf(vel)) |
|
2001 | ind = numpy.where(numpy.isinf(vel)) | |
1999 | vel[ind] = numpy.nan |
|
2002 | vel[ind] = numpy.nan | |
2000 |
|
2003 | |||
2001 | return vel |
|
2004 | return vel | |
2002 |
|
2005 | |||
2003 | # def __getPairsAutoCorr(self, pairsList, nChannels): |
|
2006 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
2004 | # |
|
2007 | # | |
2005 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
2008 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
2006 | # |
|
2009 | # | |
2007 | # for l in range(len(pairsList)): |
|
2010 | # for l in range(len(pairsList)): | |
2008 | # firstChannel = pairsList[l][0] |
|
2011 | # firstChannel = pairsList[l][0] | |
2009 | # secondChannel = pairsList[l][1] |
|
2012 | # secondChannel = pairsList[l][1] | |
2010 | # |
|
2013 | # | |
2011 | # #Obteniendo pares de Autocorrelacion |
|
2014 | # #Obteniendo pares de Autocorrelacion | |
2012 | # if firstChannel == secondChannel: |
|
2015 | # if firstChannel == secondChannel: | |
2013 | # pairsAutoCorr[firstChannel] = int(l) |
|
2016 | # pairsAutoCorr[firstChannel] = int(l) | |
2014 | # |
|
2017 | # | |
2015 | # pairsAutoCorr = pairsAutoCorr.astype(int) |
|
2018 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
2016 | # |
|
2019 | # | |
2017 | # pairsCrossCorr = range(len(pairsList)) |
|
2020 | # pairsCrossCorr = range(len(pairsList)) | |
2018 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
2021 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
2019 | # |
|
2022 | # | |
2020 | # return pairsAutoCorr, pairsCrossCorr |
|
2023 | # return pairsAutoCorr, pairsCrossCorr | |
2021 |
|
2024 | |||
2022 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
2025 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
2023 | def techniqueSA(self, kwargs): |
|
2026 | def techniqueSA(self, kwargs): | |
2024 |
|
2027 | |||
2025 | """ |
|
2028 | """ | |
2026 | Function that implements Spaced Antenna (SA) technique. |
|
2029 | Function that implements Spaced Antenna (SA) technique. | |
2027 |
|
2030 | |||
2028 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
2031 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
2029 | Direction correction (if necessary), Ranges and SNR |
|
2032 | Direction correction (if necessary), Ranges and SNR | |
2030 |
|
2033 | |||
2031 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
2034 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
2032 |
|
2035 | |||
2033 | Parameters affected: Winds |
|
2036 | Parameters affected: Winds | |
2034 | """ |
|
2037 | """ | |
2035 | position_x = kwargs['positionX'] |
|
2038 | position_x = kwargs['positionX'] | |
2036 | position_y = kwargs['positionY'] |
|
2039 | position_y = kwargs['positionY'] | |
2037 | azimuth = kwargs['azimuth'] |
|
2040 | azimuth = kwargs['azimuth'] | |
2038 |
|
2041 | |||
2039 | if kwargs.has_key('correctFactor'): |
|
2042 | if kwargs.has_key('correctFactor'): | |
2040 | correctFactor = kwargs['correctFactor'] |
|
2043 | correctFactor = kwargs['correctFactor'] | |
2041 | else: |
|
2044 | else: | |
2042 | correctFactor = 1 |
|
2045 | correctFactor = 1 | |
2043 |
|
2046 | |||
2044 | groupList = kwargs['groupList'] |
|
2047 | groupList = kwargs['groupList'] | |
2045 | pairs_ccf = groupList[1] |
|
2048 | pairs_ccf = groupList[1] | |
2046 | tau = kwargs['tau'] |
|
2049 | tau = kwargs['tau'] | |
2047 | _lambda = kwargs['_lambda'] |
|
2050 | _lambda = kwargs['_lambda'] | |
2048 |
|
2051 | |||
2049 | #Cross Correlation pairs obtained |
|
2052 | #Cross Correlation pairs obtained | |
2050 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) |
|
2053 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
2051 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
2054 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
2052 | # pairsSelArray = numpy.array(pairsSelected) |
|
2055 | # pairsSelArray = numpy.array(pairsSelected) | |
2053 | # pairs = [] |
|
2056 | # pairs = [] | |
2054 | # |
|
2057 | # | |
2055 | # #Wind estimation pairs obtained |
|
2058 | # #Wind estimation pairs obtained | |
2056 | # for i in range(pairsSelArray.shape[0]/2): |
|
2059 | # for i in range(pairsSelArray.shape[0]/2): | |
2057 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
2060 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
2058 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
2061 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
2059 | # pairs.append((ind1,ind2)) |
|
2062 | # pairs.append((ind1,ind2)) | |
2060 |
|
2063 | |||
2061 | indtau = tau.shape[0]/2 |
|
2064 | indtau = tau.shape[0]/2 | |
2062 | tau1 = tau[:indtau,:] |
|
2065 | tau1 = tau[:indtau,:] | |
2063 | tau2 = tau[indtau:-1,:] |
|
2066 | tau2 = tau[indtau:-1,:] | |
2064 | # tau1 = tau1[pairs,:] |
|
2067 | # tau1 = tau1[pairs,:] | |
2065 | # tau2 = tau2[pairs,:] |
|
2068 | # tau2 = tau2[pairs,:] | |
2066 | phase1 = tau[-1,:] |
|
2069 | phase1 = tau[-1,:] | |
2067 |
|
2070 | |||
2068 | #--------------------------------------------------------------------- |
|
2071 | #--------------------------------------------------------------------- | |
2069 | #Metodo Directo |
|
2072 | #Metodo Directo | |
2070 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) |
|
2073 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
2071 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
2074 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
2072 | winds = stats.nanmean(winds, axis=0) |
|
2075 | winds = stats.nanmean(winds, axis=0) | |
2073 | #--------------------------------------------------------------------- |
|
2076 | #--------------------------------------------------------------------- | |
2074 | #Metodo General |
|
2077 | #Metodo General | |
2075 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
2078 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
2076 | # #Calculo Coeficientes de Funcion de Correlacion |
|
2079 | # #Calculo Coeficientes de Funcion de Correlacion | |
2077 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
2080 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
2078 | # #Calculo de Velocidades |
|
2081 | # #Calculo de Velocidades | |
2079 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
2082 | # winds = self.calculateVelUV(F,G,A,B,H) | |
2080 |
|
2083 | |||
2081 | #--------------------------------------------------------------------- |
|
2084 | #--------------------------------------------------------------------- | |
2082 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
2085 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
2083 | winds = correctFactor*winds |
|
2086 | winds = correctFactor*winds | |
2084 | return winds |
|
2087 | return winds | |
2085 |
|
2088 | |||
2086 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
2089 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
2087 |
|
2090 | |||
2088 | dataTime = currentTime + paramInterval |
|
2091 | dataTime = currentTime + paramInterval | |
2089 | deltaTime = dataTime - self.__initime |
|
2092 | deltaTime = dataTime - self.__initime | |
2090 |
|
2093 | |||
2091 | if deltaTime >= outputInterval or deltaTime < 0: |
|
2094 | if deltaTime >= outputInterval or deltaTime < 0: | |
2092 | self.__dataReady = True |
|
2095 | self.__dataReady = True | |
2093 | return |
|
2096 | return | |
2094 |
|
2097 | |||
2095 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
2098 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
2096 | ''' |
|
2099 | ''' | |
2097 | Function that implements winds estimation technique with detected meteors. |
|
2100 | Function that implements winds estimation technique with detected meteors. | |
2098 |
|
2101 | |||
2099 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2102 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
2100 |
|
2103 | |||
2101 | Output: Winds estimation (Zonal and Meridional) |
|
2104 | Output: Winds estimation (Zonal and Meridional) | |
2102 |
|
2105 | |||
2103 | Parameters affected: Winds |
|
2106 | Parameters affected: Winds | |
2104 | ''' |
|
2107 | ''' | |
2105 | # print arrayMeteor.shape |
|
2108 | # print arrayMeteor.shape | |
2106 | #Settings |
|
2109 | #Settings | |
2107 | nInt = (heightMax - heightMin)/2 |
|
2110 | nInt = (heightMax - heightMin)/2 | |
2108 | # print nInt |
|
2111 | # print nInt | |
2109 | nInt = int(nInt) |
|
2112 | nInt = int(nInt) | |
2110 | # print nInt |
|
2113 | # print nInt | |
2111 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
2114 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2112 |
|
2115 | |||
2113 | #Filter errors |
|
2116 | #Filter errors | |
2114 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
2117 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
2115 | finalMeteor = arrayMeteor[error,:] |
|
2118 | finalMeteor = arrayMeteor[error,:] | |
2116 |
|
2119 | |||
2117 | #Meteor Histogram |
|
2120 | #Meteor Histogram | |
2118 | finalHeights = finalMeteor[:,2] |
|
2121 | finalHeights = finalMeteor[:,2] | |
2119 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
2122 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
2120 | nMeteorsPerI = hist[0] |
|
2123 | nMeteorsPerI = hist[0] | |
2121 | heightPerI = hist[1] |
|
2124 | heightPerI = hist[1] | |
2122 |
|
2125 | |||
2123 | #Sort of meteors |
|
2126 | #Sort of meteors | |
2124 | indSort = finalHeights.argsort() |
|
2127 | indSort = finalHeights.argsort() | |
2125 | finalMeteor2 = finalMeteor[indSort,:] |
|
2128 | finalMeteor2 = finalMeteor[indSort,:] | |
2126 |
|
2129 | |||
2127 | # Calculating winds |
|
2130 | # Calculating winds | |
2128 | ind1 = 0 |
|
2131 | ind1 = 0 | |
2129 | ind2 = 0 |
|
2132 | ind2 = 0 | |
2130 |
|
2133 | |||
2131 | for i in range(nInt): |
|
2134 | for i in range(nInt): | |
2132 | nMet = nMeteorsPerI[i] |
|
2135 | nMet = nMeteorsPerI[i] | |
2133 | ind1 = ind2 |
|
2136 | ind1 = ind2 | |
2134 | ind2 = ind1 + nMet |
|
2137 | ind2 = ind1 + nMet | |
2135 |
|
2138 | |||
2136 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
2139 | meteorAux = finalMeteor2[ind1:ind2,:] | |
2137 |
|
2140 | |||
2138 | if meteorAux.shape[0] >= meteorThresh: |
|
2141 | if meteorAux.shape[0] >= meteorThresh: | |
2139 | vel = meteorAux[:, 6] |
|
2142 | vel = meteorAux[:, 6] | |
2140 | zen = meteorAux[:, 4]*numpy.pi/180 |
|
2143 | zen = meteorAux[:, 4]*numpy.pi/180 | |
2141 | azim = meteorAux[:, 3]*numpy.pi/180 |
|
2144 | azim = meteorAux[:, 3]*numpy.pi/180 | |
2142 |
|
2145 | |||
2143 | n = numpy.cos(zen) |
|
2146 | n = numpy.cos(zen) | |
2144 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
2147 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
2145 | # l = m*numpy.tan(azim) |
|
2148 | # l = m*numpy.tan(azim) | |
2146 | l = numpy.sin(zen)*numpy.sin(azim) |
|
2149 | l = numpy.sin(zen)*numpy.sin(azim) | |
2147 | m = numpy.sin(zen)*numpy.cos(azim) |
|
2150 | m = numpy.sin(zen)*numpy.cos(azim) | |
2148 |
|
2151 | |||
2149 | A = numpy.vstack((l, m)).transpose() |
|
2152 | A = numpy.vstack((l, m)).transpose() | |
2150 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
2153 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
2151 | windsAux = numpy.dot(A1, vel) |
|
2154 | windsAux = numpy.dot(A1, vel) | |
2152 |
|
2155 | |||
2153 | winds[0,i] = windsAux[0] |
|
2156 | winds[0,i] = windsAux[0] | |
2154 | winds[1,i] = windsAux[1] |
|
2157 | winds[1,i] = windsAux[1] | |
2155 |
|
2158 | |||
2156 | return winds, heightPerI[:-1] |
|
2159 | return winds, heightPerI[:-1] | |
2157 |
|
2160 | |||
2158 | def techniqueNSM_SA(self, **kwargs): |
|
2161 | def techniqueNSM_SA(self, **kwargs): | |
2159 | metArray = kwargs['metArray'] |
|
2162 | metArray = kwargs['metArray'] | |
2160 | heightList = kwargs['heightList'] |
|
2163 | heightList = kwargs['heightList'] | |
2161 | timeList = kwargs['timeList'] |
|
2164 | timeList = kwargs['timeList'] | |
2162 |
|
2165 | |||
2163 | rx_location = kwargs['rx_location'] |
|
2166 | rx_location = kwargs['rx_location'] | |
2164 | groupList = kwargs['groupList'] |
|
2167 | groupList = kwargs['groupList'] | |
2165 | azimuth = kwargs['azimuth'] |
|
2168 | azimuth = kwargs['azimuth'] | |
2166 | dfactor = kwargs['dfactor'] |
|
2169 | dfactor = kwargs['dfactor'] | |
2167 | k = kwargs['k'] |
|
2170 | k = kwargs['k'] | |
2168 |
|
2171 | |||
2169 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) |
|
2172 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
2170 | d = dist*dfactor |
|
2173 | d = dist*dfactor | |
2171 | #Phase calculation |
|
2174 | #Phase calculation | |
2172 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) |
|
2175 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
2173 |
|
2176 | |||
2174 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities |
|
2177 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
2175 |
|
2178 | |||
2176 | velEst = numpy.zeros((heightList.size,2))*numpy.nan |
|
2179 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
2177 | azimuth1 = azimuth1*numpy.pi/180 |
|
2180 | azimuth1 = azimuth1*numpy.pi/180 | |
2178 |
|
2181 | |||
2179 | for i in range(heightList.size): |
|
2182 | for i in range(heightList.size): | |
2180 | h = heightList[i] |
|
2183 | h = heightList[i] | |
2181 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] |
|
2184 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
2182 | metHeight = metArray1[indH,:] |
|
2185 | metHeight = metArray1[indH,:] | |
2183 | if metHeight.shape[0] >= 2: |
|
2186 | if metHeight.shape[0] >= 2: | |
2184 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities |
|
2187 | velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities | |
2185 | iazim = metHeight[:,1].astype(int) |
|
2188 | iazim = metHeight[:,1].astype(int) | |
2186 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths |
|
2189 | azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths | |
2187 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) |
|
2190 | A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux))) | |
2188 | A = numpy.asmatrix(A) |
|
2191 | A = numpy.asmatrix(A) | |
2189 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() |
|
2192 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
2190 | velHor = numpy.dot(A1,velAux) |
|
2193 | velHor = numpy.dot(A1,velAux) | |
2191 |
|
2194 | |||
2192 | velEst[i,:] = numpy.squeeze(velHor) |
|
2195 | velEst[i,:] = numpy.squeeze(velHor) | |
2193 | return velEst |
|
2196 | return velEst | |
2194 |
|
2197 | |||
2195 | def __getPhaseSlope(self, metArray, heightList, timeList): |
|
2198 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
2196 | meteorList = [] |
|
2199 | meteorList = [] | |
2197 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 |
|
2200 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
2198 | #Putting back together the meteor matrix |
|
2201 | #Putting back together the meteor matrix | |
2199 | utctime = metArray[:,0] |
|
2202 | utctime = metArray[:,0] | |
2200 | uniqueTime = numpy.unique(utctime) |
|
2203 | uniqueTime = numpy.unique(utctime) | |
2201 |
|
2204 | |||
2202 | phaseDerThresh = 0.5 |
|
2205 | phaseDerThresh = 0.5 | |
2203 | ippSeconds = timeList[1] - timeList[0] |
|
2206 | ippSeconds = timeList[1] - timeList[0] | |
2204 | sec = numpy.where(timeList>1)[0][0] |
|
2207 | sec = numpy.where(timeList>1)[0][0] | |
2205 | nPairs = metArray.shape[1] - 6 |
|
2208 | nPairs = metArray.shape[1] - 6 | |
2206 | nHeights = len(heightList) |
|
2209 | nHeights = len(heightList) | |
2207 |
|
2210 | |||
2208 | for t in uniqueTime: |
|
2211 | for t in uniqueTime: | |
2209 | metArray1 = metArray[utctime==t,:] |
|
2212 | metArray1 = metArray[utctime==t,:] | |
2210 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh |
|
2213 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
2211 | tmet = metArray1[:,1].astype(int) |
|
2214 | tmet = metArray1[:,1].astype(int) | |
2212 | hmet = metArray1[:,2].astype(int) |
|
2215 | hmet = metArray1[:,2].astype(int) | |
2213 |
|
2216 | |||
2214 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) |
|
2217 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
2215 | metPhase[:,:] = numpy.nan |
|
2218 | metPhase[:,:] = numpy.nan | |
2216 | metPhase[:,hmet,tmet] = metArray1[:,6:].T |
|
2219 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
2217 |
|
2220 | |||
2218 | #Delete short trails |
|
2221 | #Delete short trails | |
2219 | metBool = ~numpy.isnan(metPhase[0,:,:]) |
|
2222 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
2220 | heightVect = numpy.sum(metBool, axis = 1) |
|
2223 | heightVect = numpy.sum(metBool, axis = 1) | |
2221 | metBool[heightVect<sec,:] = False |
|
2224 | metBool[heightVect<sec,:] = False | |
2222 | metPhase[:,heightVect<sec,:] = numpy.nan |
|
2225 | metPhase[:,heightVect<sec,:] = numpy.nan | |
2223 |
|
2226 | |||
2224 | #Derivative |
|
2227 | #Derivative | |
2225 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) |
|
2228 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
2226 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) |
|
2229 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
2227 | metPhase[phDerAux] = numpy.nan |
|
2230 | metPhase[phDerAux] = numpy.nan | |
2228 |
|
2231 | |||
2229 | #--------------------------METEOR DETECTION ----------------------------------------- |
|
2232 | #--------------------------METEOR DETECTION ----------------------------------------- | |
2230 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] |
|
2233 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
2231 |
|
2234 | |||
2232 | for p in numpy.arange(nPairs): |
|
2235 | for p in numpy.arange(nPairs): | |
2233 | phase = metPhase[p,:,:] |
|
2236 | phase = metPhase[p,:,:] | |
2234 | phDer = metDer[p,:,:] |
|
2237 | phDer = metDer[p,:,:] | |
2235 |
|
2238 | |||
2236 | for h in indMet: |
|
2239 | for h in indMet: | |
2237 | height = heightList[h] |
|
2240 | height = heightList[h] | |
2238 | phase1 = phase[h,:] #82 |
|
2241 | phase1 = phase[h,:] #82 | |
2239 | phDer1 = phDer[h,:] |
|
2242 | phDer1 = phDer[h,:] | |
2240 |
|
2243 | |||
2241 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap |
|
2244 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
2242 |
|
2245 | |||
2243 | indValid = numpy.where(~numpy.isnan(phase1))[0] |
|
2246 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
2244 | initMet = indValid[0] |
|
2247 | initMet = indValid[0] | |
2245 | endMet = 0 |
|
2248 | endMet = 0 | |
2246 |
|
2249 | |||
2247 | for i in range(len(indValid)-1): |
|
2250 | for i in range(len(indValid)-1): | |
2248 |
|
2251 | |||
2249 | #Time difference |
|
2252 | #Time difference | |
2250 | inow = indValid[i] |
|
2253 | inow = indValid[i] | |
2251 | inext = indValid[i+1] |
|
2254 | inext = indValid[i+1] | |
2252 | idiff = inext - inow |
|
2255 | idiff = inext - inow | |
2253 | #Phase difference |
|
2256 | #Phase difference | |
2254 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) |
|
2257 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
2255 |
|
2258 | |||
2256 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor |
|
2259 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
2257 | sizeTrail = inow - initMet + 1 |
|
2260 | sizeTrail = inow - initMet + 1 | |
2258 | if sizeTrail>3*sec: #Too short meteors |
|
2261 | if sizeTrail>3*sec: #Too short meteors | |
2259 | x = numpy.arange(initMet,inow+1)*ippSeconds |
|
2262 | x = numpy.arange(initMet,inow+1)*ippSeconds | |
2260 | y = phase1[initMet:inow+1] |
|
2263 | y = phase1[initMet:inow+1] | |
2261 | ynnan = ~numpy.isnan(y) |
|
2264 | ynnan = ~numpy.isnan(y) | |
2262 | x = x[ynnan] |
|
2265 | x = x[ynnan] | |
2263 | y = y[ynnan] |
|
2266 | y = y[ynnan] | |
2264 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) |
|
2267 | slope, intercept, r_value, p_value, std_err = stats.linregress(x,y) | |
2265 | ylin = x*slope + intercept |
|
2268 | ylin = x*slope + intercept | |
2266 | rsq = r_value**2 |
|
2269 | rsq = r_value**2 | |
2267 | if rsq > 0.5: |
|
2270 | if rsq > 0.5: | |
2268 | vel = slope#*height*1000/(k*d) |
|
2271 | vel = slope#*height*1000/(k*d) | |
2269 | estAux = numpy.array([utctime,p,height, vel, rsq]) |
|
2272 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
2270 | meteorList.append(estAux) |
|
2273 | meteorList.append(estAux) | |
2271 | initMet = inext |
|
2274 | initMet = inext | |
2272 | metArray2 = numpy.array(meteorList) |
|
2275 | metArray2 = numpy.array(meteorList) | |
2273 |
|
2276 | |||
2274 | return metArray2 |
|
2277 | return metArray2 | |
2275 |
|
2278 | |||
2276 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): |
|
2279 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
2277 |
|
2280 | |||
2278 | azimuth1 = numpy.zeros(len(pairslist)) |
|
2281 | azimuth1 = numpy.zeros(len(pairslist)) | |
2279 | dist = numpy.zeros(len(pairslist)) |
|
2282 | dist = numpy.zeros(len(pairslist)) | |
2280 |
|
2283 | |||
2281 | for i in range(len(rx_location)): |
|
2284 | for i in range(len(rx_location)): | |
2282 | ch0 = pairslist[i][0] |
|
2285 | ch0 = pairslist[i][0] | |
2283 | ch1 = pairslist[i][1] |
|
2286 | ch1 = pairslist[i][1] | |
2284 |
|
2287 | |||
2285 | diffX = rx_location[ch0][0] - rx_location[ch1][0] |
|
2288 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
2286 | diffY = rx_location[ch0][1] - rx_location[ch1][1] |
|
2289 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
2287 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi |
|
2290 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
2288 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) |
|
2291 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
2289 |
|
2292 | |||
2290 | azimuth1 -= azimuth0 |
|
2293 | azimuth1 -= azimuth0 | |
2291 | return azimuth1, dist |
|
2294 | return azimuth1, dist | |
2292 |
|
2295 | |||
2293 | def techniqueNSM_DBS(self, **kwargs): |
|
2296 | def techniqueNSM_DBS(self, **kwargs): | |
2294 | metArray = kwargs['metArray'] |
|
2297 | metArray = kwargs['metArray'] | |
2295 | heightList = kwargs['heightList'] |
|
2298 | heightList = kwargs['heightList'] | |
2296 | timeList = kwargs['timeList'] |
|
2299 | timeList = kwargs['timeList'] | |
2297 | zenithList = kwargs['zenithList'] |
|
2300 | zenithList = kwargs['zenithList'] | |
2298 | nChan = numpy.max(cmet) + 1 |
|
2301 | nChan = numpy.max(cmet) + 1 | |
2299 | nHeights = len(heightList) |
|
2302 | nHeights = len(heightList) | |
2300 |
|
2303 | |||
2301 | utctime = metArray[:,0] |
|
2304 | utctime = metArray[:,0] | |
2302 | cmet = metArray[:,1] |
|
2305 | cmet = metArray[:,1] | |
2303 | hmet = metArray1[:,3].astype(int) |
|
2306 | hmet = metArray1[:,3].astype(int) | |
2304 | h1met = heightList[hmet]*zenithList[cmet] |
|
2307 | h1met = heightList[hmet]*zenithList[cmet] | |
2305 | vmet = metArray1[:,5] |
|
2308 | vmet = metArray1[:,5] | |
2306 |
|
2309 | |||
2307 | for i in range(nHeights - 1): |
|
2310 | for i in range(nHeights - 1): | |
2308 | hmin = heightList[i] |
|
2311 | hmin = heightList[i] | |
2309 | hmax = heightList[i + 1] |
|
2312 | hmax = heightList[i + 1] | |
2310 |
|
2313 | |||
2311 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] |
|
2314 | vthisH = vmet[(h1met>=hmin) & (h1met<hmax)] | |
2312 |
|
2315 | |||
2313 |
|
2316 | |||
2314 |
|
2317 | |||
2315 | return data_output |
|
2318 | return data_output | |
2316 |
|
2319 | |||
2317 | def run(self, dataOut, technique, positionY, positionX, azimuth, **kwargs): |
|
2320 | def run(self, dataOut, technique, positionY, positionX, azimuth, **kwargs): | |
2318 |
|
2321 | |||
2319 | param = dataOut.data_param |
|
2322 | param = dataOut.data_param | |
2320 | if dataOut.abscissaList != None: |
|
2323 | if dataOut.abscissaList != None: | |
2321 | absc = dataOut.abscissaList[:-1] |
|
2324 | absc = dataOut.abscissaList[:-1] | |
2322 | noise = dataOut.noise |
|
2325 | noise = dataOut.noise | |
2323 | heightList = dataOut.heightList |
|
2326 | heightList = dataOut.heightList | |
2324 | SNR = dataOut.data_SNR |
|
2327 | SNR = dataOut.data_SNR | |
2325 |
|
2328 | |||
2326 | if technique == 'DBS': |
|
2329 | if technique == 'DBS': | |
2327 |
|
2330 | |||
2328 | kwargs['velRadial'] = param[:,1,:] #Radial velocity |
|
2331 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
2329 | kwargs['heightList'] = heightList |
|
2332 | kwargs['heightList'] = heightList | |
2330 | kwargs['SNR'] = SNR |
|
2333 | kwargs['SNR'] = SNR | |
2331 |
|
2334 | |||
2332 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function |
|
2335 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
2333 | dataOut.utctimeInit = dataOut.utctime |
|
2336 | dataOut.utctimeInit = dataOut.utctime | |
2334 | dataOut.outputInterval = dataOut.paramInterval |
|
2337 | dataOut.outputInterval = dataOut.paramInterval | |
2335 |
|
2338 | |||
2336 | elif technique == 'SA': |
|
2339 | elif technique == 'SA': | |
2337 |
|
2340 | |||
2338 | #Parameters |
|
2341 | #Parameters | |
2339 | # position_x = kwargs['positionX'] |
|
2342 | # position_x = kwargs['positionX'] | |
2340 | # position_y = kwargs['positionY'] |
|
2343 | # position_y = kwargs['positionY'] | |
2341 | # azimuth = kwargs['azimuth'] |
|
2344 | # azimuth = kwargs['azimuth'] | |
2342 | # |
|
2345 | # | |
2343 | # if kwargs.has_key('crosspairsList'): |
|
2346 | # if kwargs.has_key('crosspairsList'): | |
2344 | # pairs = kwargs['crosspairsList'] |
|
2347 | # pairs = kwargs['crosspairsList'] | |
2345 | # else: |
|
2348 | # else: | |
2346 | # pairs = None |
|
2349 | # pairs = None | |
2347 | # |
|
2350 | # | |
2348 | # if kwargs.has_key('correctFactor'): |
|
2351 | # if kwargs.has_key('correctFactor'): | |
2349 | # correctFactor = kwargs['correctFactor'] |
|
2352 | # correctFactor = kwargs['correctFactor'] | |
2350 | # else: |
|
2353 | # else: | |
2351 | # correctFactor = 1 |
|
2354 | # correctFactor = 1 | |
2352 |
|
2355 | |||
2353 | # tau = dataOut.data_param |
|
2356 | # tau = dataOut.data_param | |
2354 | # _lambda = dataOut.C/dataOut.frequency |
|
2357 | # _lambda = dataOut.C/dataOut.frequency | |
2355 | # pairsList = dataOut.groupList |
|
2358 | # pairsList = dataOut.groupList | |
2356 | # nChannels = dataOut.nChannels |
|
2359 | # nChannels = dataOut.nChannels | |
2357 |
|
2360 | |||
2358 | kwargs['groupList'] = dataOut.groupList |
|
2361 | kwargs['groupList'] = dataOut.groupList | |
2359 | kwargs['tau'] = dataOut.data_param |
|
2362 | kwargs['tau'] = dataOut.data_param | |
2360 | kwargs['_lambda'] = dataOut.C/dataOut.frequency |
|
2363 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
2361 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
2364 | # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
2362 | dataOut.data_output = self.techniqueSA(kwargs) |
|
2365 | dataOut.data_output = self.techniqueSA(kwargs) | |
2363 | dataOut.utctimeInit = dataOut.utctime |
|
2366 | dataOut.utctimeInit = dataOut.utctime | |
2364 | dataOut.outputInterval = dataOut.timeInterval |
|
2367 | dataOut.outputInterval = dataOut.timeInterval | |
2365 |
|
2368 | |||
2366 | elif technique == 'Meteors': |
|
2369 | elif technique == 'Meteors': | |
2367 | dataOut.flagNoData = True |
|
2370 | dataOut.flagNoData = True | |
2368 | self.__dataReady = False |
|
2371 | self.__dataReady = False | |
2369 |
|
2372 | |||
2370 | if kwargs.has_key('nHours'): |
|
2373 | if kwargs.has_key('nHours'): | |
2371 | nHours = kwargs['nHours'] |
|
2374 | nHours = kwargs['nHours'] | |
2372 | else: |
|
2375 | else: | |
2373 | nHours = 1 |
|
2376 | nHours = 1 | |
2374 |
|
2377 | |||
2375 | if kwargs.has_key('meteorsPerBin'): |
|
2378 | if kwargs.has_key('meteorsPerBin'): | |
2376 | meteorThresh = kwargs['meteorsPerBin'] |
|
2379 | meteorThresh = kwargs['meteorsPerBin'] | |
2377 | else: |
|
2380 | else: | |
2378 | meteorThresh = 6 |
|
2381 | meteorThresh = 6 | |
2379 |
|
2382 | |||
2380 | if kwargs.has_key('hmin'): |
|
2383 | if kwargs.has_key('hmin'): | |
2381 | hmin = kwargs['hmin'] |
|
2384 | hmin = kwargs['hmin'] | |
2382 | else: hmin = 70 |
|
2385 | else: hmin = 70 | |
2383 | if kwargs.has_key('hmax'): |
|
2386 | if kwargs.has_key('hmax'): | |
2384 | hmax = kwargs['hmax'] |
|
2387 | hmax = kwargs['hmax'] | |
2385 | else: hmax = 110 |
|
2388 | else: hmax = 110 | |
2386 |
|
2389 | |||
2387 | dataOut.outputInterval = nHours*3600 |
|
2390 | dataOut.outputInterval = nHours*3600 | |
2388 |
|
2391 | |||
2389 | if self.__isConfig == False: |
|
2392 | if self.__isConfig == False: | |
2390 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2393 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2391 | #Get Initial LTC time |
|
2394 | #Get Initial LTC time | |
2392 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2395 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2393 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2396 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2394 |
|
2397 | |||
2395 | self.__isConfig = True |
|
2398 | self.__isConfig = True | |
2396 |
|
2399 | |||
2397 | if self.__buffer == None: |
|
2400 | if self.__buffer == None: | |
2398 | self.__buffer = dataOut.data_param |
|
2401 | self.__buffer = dataOut.data_param | |
2399 | self.__firstdata = copy.copy(dataOut) |
|
2402 | self.__firstdata = copy.copy(dataOut) | |
2400 |
|
2403 | |||
2401 | else: |
|
2404 | else: | |
2402 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2405 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2403 |
|
2406 | |||
2404 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2407 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2405 |
|
2408 | |||
2406 | if self.__dataReady: |
|
2409 | if self.__dataReady: | |
2407 | dataOut.utctimeInit = self.__initime |
|
2410 | dataOut.utctimeInit = self.__initime | |
2408 |
|
2411 | |||
2409 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2412 | self.__initime += dataOut.outputInterval #to erase time offset | |
2410 |
|
2413 | |||
2411 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
2414 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
2412 | dataOut.flagNoData = False |
|
2415 | dataOut.flagNoData = False | |
2413 | self.__buffer = None |
|
2416 | self.__buffer = None | |
2414 |
|
2417 | |||
2415 | elif technique == 'Meteors1': |
|
2418 | elif technique == 'Meteors1': | |
2416 | dataOut.flagNoData = True |
|
2419 | dataOut.flagNoData = True | |
2417 | self.__dataReady = False |
|
2420 | self.__dataReady = False | |
2418 |
|
2421 | |||
2419 | if kwargs.has_key('nMins'): |
|
2422 | if kwargs.has_key('nMins'): | |
2420 | nMins = kwargs['nMins'] |
|
2423 | nMins = kwargs['nMins'] | |
2421 | else: nMins = 20 |
|
2424 | else: nMins = 20 | |
2422 | if kwargs.has_key('rx_location'): |
|
2425 | if kwargs.has_key('rx_location'): | |
2423 | rx_location = kwargs['rx_location'] |
|
2426 | rx_location = kwargs['rx_location'] | |
2424 | else: rx_location = [(0,1),(1,1),(1,0)] |
|
2427 | else: rx_location = [(0,1),(1,1),(1,0)] | |
2425 | if kwargs.has_key('azimuth'): |
|
2428 | if kwargs.has_key('azimuth'): | |
2426 | azimuth = kwargs['azimuth'] |
|
2429 | azimuth = kwargs['azimuth'] | |
2427 | else: azimuth = 51 |
|
2430 | else: azimuth = 51 | |
2428 | if kwargs.has_key('dfactor'): |
|
2431 | if kwargs.has_key('dfactor'): | |
2429 | dfactor = kwargs['dfactor'] |
|
2432 | dfactor = kwargs['dfactor'] | |
2430 | if kwargs.has_key('mode'): |
|
2433 | if kwargs.has_key('mode'): | |
2431 | mode = kwargs['mode'] |
|
2434 | mode = kwargs['mode'] | |
2432 | else: mode = 'SA' |
|
2435 | else: mode = 'SA' | |
2433 |
|
2436 | |||
2434 | #Borrar luego esto |
|
2437 | #Borrar luego esto | |
2435 | if dataOut.groupList == None: |
|
2438 | if dataOut.groupList == None: | |
2436 | dataOut.groupList = [(0,1),(0,2),(1,2)] |
|
2439 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
2437 | groupList = dataOut.groupList |
|
2440 | groupList = dataOut.groupList | |
2438 | C = 3e8 |
|
2441 | C = 3e8 | |
2439 | freq = 50e6 |
|
2442 | freq = 50e6 | |
2440 | lamb = C/freq |
|
2443 | lamb = C/freq | |
2441 | k = 2*numpy.pi/lamb |
|
2444 | k = 2*numpy.pi/lamb | |
2442 |
|
2445 | |||
2443 | timeList = dataOut.abscissaList |
|
2446 | timeList = dataOut.abscissaList | |
2444 | heightList = dataOut.heightList |
|
2447 | heightList = dataOut.heightList | |
2445 |
|
2448 | |||
2446 | if self.__isConfig == False: |
|
2449 | if self.__isConfig == False: | |
2447 | dataOut.outputInterval = nMins*60 |
|
2450 | dataOut.outputInterval = nMins*60 | |
2448 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
2451 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2449 | #Get Initial LTC time |
|
2452 | #Get Initial LTC time | |
2450 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
2453 | initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
2451 | minuteAux = initime.minute |
|
2454 | minuteAux = initime.minute | |
2452 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) |
|
2455 | minuteNew = int(numpy.floor(minuteAux/nMins)*nMins) | |
2453 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
2456 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2454 |
|
2457 | |||
2455 | self.__isConfig = True |
|
2458 | self.__isConfig = True | |
2456 |
|
2459 | |||
2457 | if self.__buffer == None: |
|
2460 | if self.__buffer == None: | |
2458 | self.__buffer = dataOut.data_param |
|
2461 | self.__buffer = dataOut.data_param | |
2459 | self.__firstdata = copy.copy(dataOut) |
|
2462 | self.__firstdata = copy.copy(dataOut) | |
2460 |
|
2463 | |||
2461 | else: |
|
2464 | else: | |
2462 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
2465 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2463 |
|
2466 | |||
2464 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
2467 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2465 |
|
2468 | |||
2466 | if self.__dataReady: |
|
2469 | if self.__dataReady: | |
2467 | dataOut.utctimeInit = self.__initime |
|
2470 | dataOut.utctimeInit = self.__initime | |
2468 | self.__initime += dataOut.outputInterval #to erase time offset |
|
2471 | self.__initime += dataOut.outputInterval #to erase time offset | |
2469 |
|
2472 | |||
2470 | metArray = self.__buffer |
|
2473 | metArray = self.__buffer | |
2471 | if mode == 'SA': |
|
2474 | if mode == 'SA': | |
2472 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) |
|
2475 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
2473 | elif mode == 'DBS': |
|
2476 | elif mode == 'DBS': | |
2474 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) |
|
2477 | dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList) | |
2475 | dataOut.data_output = dataOut.data_output.T |
|
2478 | dataOut.data_output = dataOut.data_output.T | |
2476 | dataOut.flagNoData = False |
|
2479 | dataOut.flagNoData = False | |
2477 | self.__buffer = None |
|
2480 | self.__buffer = None | |
2478 |
|
2481 | |||
2479 | return |
|
2482 | return | |
2480 |
|
2483 | |||
2481 | class EWDriftsEstimation(Operation): |
|
2484 | class EWDriftsEstimation(Operation): | |
2482 |
|
2485 | |||
2483 | def __init__(self): |
|
2486 | def __init__(self): | |
2484 | Operation.__init__(self) |
|
2487 | Operation.__init__(self) | |
2485 |
|
2488 | |||
2486 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2489 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2487 | listPhi = phi.tolist() |
|
2490 | listPhi = phi.tolist() | |
2488 | maxid = listPhi.index(max(listPhi)) |
|
2491 | maxid = listPhi.index(max(listPhi)) | |
2489 | minid = listPhi.index(min(listPhi)) |
|
2492 | minid = listPhi.index(min(listPhi)) | |
2490 |
|
2493 | |||
2491 | rango = range(len(phi)) |
|
2494 | rango = range(len(phi)) | |
2492 | # rango = numpy.delete(rango,maxid) |
|
2495 | # rango = numpy.delete(rango,maxid) | |
2493 |
|
2496 | |||
2494 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
2497 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
2495 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
2498 | heiRangAux = heiRang*math.cos(phi[minid]) | |
2496 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
2499 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
2497 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
2500 | heiRang1 = numpy.delete(heiRang1,indOut) | |
2498 |
|
2501 | |||
2499 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2502 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2500 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
2503 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
2501 |
|
2504 | |||
2502 | for i in rango: |
|
2505 | for i in rango: | |
2503 | x = heiRang*math.cos(phi[i]) |
|
2506 | x = heiRang*math.cos(phi[i]) | |
2504 | y1 = velRadial[i,:] |
|
2507 | y1 = velRadial[i,:] | |
2505 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
2508 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
2506 |
|
2509 | |||
2507 | x1 = heiRang1 |
|
2510 | x1 = heiRang1 | |
2508 | y11 = f1(x1) |
|
2511 | y11 = f1(x1) | |
2509 |
|
2512 | |||
2510 | y2 = SNR[i,:] |
|
2513 | y2 = SNR[i,:] | |
2511 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
2514 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
2512 | y21 = f2(x1) |
|
2515 | y21 = f2(x1) | |
2513 |
|
2516 | |||
2514 | velRadial1[i,:] = y11 |
|
2517 | velRadial1[i,:] = y11 | |
2515 | SNR1[i,:] = y21 |
|
2518 | SNR1[i,:] = y21 | |
2516 |
|
2519 | |||
2517 | return heiRang1, velRadial1, SNR1 |
|
2520 | return heiRang1, velRadial1, SNR1 | |
2518 |
|
2521 | |||
2519 | def run(self, dataOut, zenith, zenithCorrection): |
|
2522 | def run(self, dataOut, zenith, zenithCorrection): | |
2520 | heiRang = dataOut.heightList |
|
2523 | heiRang = dataOut.heightList | |
2521 | velRadial = dataOut.data_param[:,3,:] |
|
2524 | velRadial = dataOut.data_param[:,3,:] | |
2522 | SNR = dataOut.data_SNR |
|
2525 | SNR = dataOut.data_SNR | |
2523 |
|
2526 | |||
2524 | zenith = numpy.array(zenith) |
|
2527 | zenith = numpy.array(zenith) | |
2525 | zenith -= zenithCorrection |
|
2528 | zenith -= zenithCorrection | |
2526 | zenith *= numpy.pi/180 |
|
2529 | zenith *= numpy.pi/180 | |
2527 |
|
2530 | |||
2528 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
2531 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
2529 |
|
2532 | |||
2530 | alp = zenith[0] |
|
2533 | alp = zenith[0] | |
2531 | bet = zenith[1] |
|
2534 | bet = zenith[1] | |
2532 |
|
2535 | |||
2533 | w_w = velRadial1[0,:] |
|
2536 | w_w = velRadial1[0,:] | |
2534 | w_e = velRadial1[1,:] |
|
2537 | w_e = velRadial1[1,:] | |
2535 |
|
2538 | |||
2536 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
2539 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
2537 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
2540 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
2538 |
|
2541 | |||
2539 | winds = numpy.vstack((u,w)) |
|
2542 | winds = numpy.vstack((u,w)) | |
2540 |
|
2543 | |||
2541 | dataOut.heightList = heiRang1 |
|
2544 | dataOut.heightList = heiRang1 | |
2542 | dataOut.data_output = winds |
|
2545 | dataOut.data_output = winds | |
2543 | dataOut.data_SNR = SNR1 |
|
2546 | dataOut.data_SNR = SNR1 | |
2544 |
|
2547 | |||
2545 | dataOut.utctimeInit = dataOut.utctime |
|
2548 | dataOut.utctimeInit = dataOut.utctime | |
2546 | dataOut.outputInterval = dataOut.timeInterval |
|
2549 | dataOut.outputInterval = dataOut.timeInterval | |
2547 | return |
|
2550 | return | |
2548 |
|
2551 | |||
2549 | #--------------- Non Specular Meteor ---------------- |
|
2552 | #--------------- Non Specular Meteor ---------------- | |
2550 |
|
2553 | |||
2551 | class NonSpecularMeteorDetection(Operation): |
|
2554 | class NonSpecularMeteorDetection(Operation): | |
2552 |
|
2555 | |||
2553 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): |
|
2556 | def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False): | |
2554 | data_acf = self.dataOut.data_pre[0] |
|
2557 | data_acf = self.dataOut.data_pre[0] | |
2555 | data_ccf = self.dataOut.data_pre[1] |
|
2558 | data_ccf = self.dataOut.data_pre[1] | |
2556 |
|
2559 | |||
2557 | lamb = self.dataOut.C/self.dataOut.frequency |
|
2560 | lamb = self.dataOut.C/self.dataOut.frequency | |
2558 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt |
|
2561 | tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt | |
2559 | paramInterval = self.dataOut.paramInterval |
|
2562 | paramInterval = self.dataOut.paramInterval | |
2560 |
|
2563 | |||
2561 | nChannels = data_acf.shape[0] |
|
2564 | nChannels = data_acf.shape[0] | |
2562 | nLags = data_acf.shape[1] |
|
2565 | nLags = data_acf.shape[1] | |
2563 | nProfiles = data_acf.shape[2] |
|
2566 | nProfiles = data_acf.shape[2] | |
2564 | nHeights = self.dataOut.nHeights |
|
2567 | nHeights = self.dataOut.nHeights | |
2565 | nCohInt = self.dataOut.nCohInt |
|
2568 | nCohInt = self.dataOut.nCohInt | |
2566 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) |
|
2569 | sec = numpy.round(nProfiles/self.dataOut.paramInterval) | |
2567 | heightList = self.dataOut.heightList |
|
2570 | heightList = self.dataOut.heightList | |
2568 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg |
|
2571 | ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg | |
2569 | utctime = self.dataOut.utctime |
|
2572 | utctime = self.dataOut.utctime | |
2570 |
|
2573 | |||
2571 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) |
|
2574 | self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds) | |
2572 |
|
2575 | |||
2573 | #------------------------ SNR -------------------------------------- |
|
2576 | #------------------------ SNR -------------------------------------- | |
2574 | power = data_acf[:,0,:,:].real |
|
2577 | power = data_acf[:,0,:,:].real | |
2575 | noise = numpy.zeros(nChannels) |
|
2578 | noise = numpy.zeros(nChannels) | |
2576 | SNR = numpy.zeros(power.shape) |
|
2579 | SNR = numpy.zeros(power.shape) | |
2577 | for i in range(nChannels): |
|
2580 | for i in range(nChannels): | |
2578 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) |
|
2581 | noise[i] = hildebrand_sekhon(power[i,:], nCohInt) | |
2579 | SNR[i] = (power[i]-noise[i])/noise[i] |
|
2582 | SNR[i] = (power[i]-noise[i])/noise[i] | |
2580 | SNRm = numpy.nanmean(SNR, axis = 0) |
|
2583 | SNRm = numpy.nanmean(SNR, axis = 0) | |
2581 | SNRdB = 10*numpy.log10(SNR) |
|
2584 | SNRdB = 10*numpy.log10(SNR) | |
2582 |
|
2585 | |||
2583 | if mode == 'SA': |
|
2586 | if mode == 'SA': | |
2584 | nPairs = data_ccf.shape[0] |
|
2587 | nPairs = data_ccf.shape[0] | |
2585 | #---------------------- Coherence and Phase -------------------------- |
|
2588 | #---------------------- Coherence and Phase -------------------------- | |
2586 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2589 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2587 | # phase1 = numpy.copy(phase) |
|
2590 | # phase1 = numpy.copy(phase) | |
2588 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) |
|
2591 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
2589 |
|
2592 | |||
2590 | for p in range(nPairs): |
|
2593 | for p in range(nPairs): | |
2591 | ch0 = self.dataOut.groupList[p][0] |
|
2594 | ch0 = self.dataOut.groupList[p][0] | |
2592 | ch1 = self.dataOut.groupList[p][1] |
|
2595 | ch1 = self.dataOut.groupList[p][1] | |
2593 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) |
|
2596 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
2594 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter |
|
2597 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
2595 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2598 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
2596 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter |
|
2599 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
2597 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2600 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
2598 | coh = numpy.nanmax(coh1, axis = 0) |
|
2601 | coh = numpy.nanmax(coh1, axis = 0) | |
2599 | # struc = numpy.ones((5,1)) |
|
2602 | # struc = numpy.ones((5,1)) | |
2600 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) |
|
2603 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
2601 | #---------------------- Radial Velocity ---------------------------- |
|
2604 | #---------------------- Radial Velocity ---------------------------- | |
2602 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) |
|
2605 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
2603 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) |
|
2606 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
2604 |
|
2607 | |||
2605 | if allData: |
|
2608 | if allData: | |
2606 | boolMetFin = ~numpy.isnan(SNRm) |
|
2609 | boolMetFin = ~numpy.isnan(SNRm) | |
2607 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2610 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2608 | else: |
|
2611 | else: | |
2609 | #------------------------ Meteor mask --------------------------------- |
|
2612 | #------------------------ Meteor mask --------------------------------- | |
2610 | # #SNR mask |
|
2613 | # #SNR mask | |
2611 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) |
|
2614 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
2612 | # |
|
2615 | # | |
2613 | # #Erase small objects |
|
2616 | # #Erase small objects | |
2614 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2617 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
2615 | # |
|
2618 | # | |
2616 | # auxEEJ = numpy.sum(boolMet1,axis=0) |
|
2619 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
2617 | # indOver = auxEEJ>nProfiles*0.8 #Use this later |
|
2620 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
2618 | # indEEJ = numpy.where(indOver)[0] |
|
2621 | # indEEJ = numpy.where(indOver)[0] | |
2619 | # indNEEJ = numpy.where(~indOver)[0] |
|
2622 | # indNEEJ = numpy.where(~indOver)[0] | |
2620 | # |
|
2623 | # | |
2621 | # boolMetFin = boolMet1 |
|
2624 | # boolMetFin = boolMet1 | |
2622 | # |
|
2625 | # | |
2623 | # if indEEJ.size > 0: |
|
2626 | # if indEEJ.size > 0: | |
2624 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2627 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
2625 | # |
|
2628 | # | |
2626 | # boolMet2 = coh > cohThresh |
|
2629 | # boolMet2 = coh > cohThresh | |
2627 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) |
|
2630 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
2628 | # |
|
2631 | # | |
2629 | # #Final Meteor mask |
|
2632 | # #Final Meteor mask | |
2630 | # boolMetFin = boolMet1|boolMet2 |
|
2633 | # boolMetFin = boolMet1|boolMet2 | |
2631 |
|
2634 | |||
2632 | #Coherence mask |
|
2635 | #Coherence mask | |
2633 | boolMet1 = coh > 0.75 |
|
2636 | boolMet1 = coh > 0.75 | |
2634 | struc = numpy.ones((30,1)) |
|
2637 | struc = numpy.ones((30,1)) | |
2635 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) |
|
2638 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
2636 |
|
2639 | |||
2637 | #Derivative mask |
|
2640 | #Derivative mask | |
2638 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) |
|
2641 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
2639 | boolMet2 = derPhase < 0.2 |
|
2642 | boolMet2 = derPhase < 0.2 | |
2640 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) |
|
2643 | # boolMet2 = ndimage.morphology.binary_opening(boolMet2) | |
2641 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) |
|
2644 | # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1))) | |
2642 | boolMet2 = ndimage.median_filter(boolMet2,size=5) |
|
2645 | boolMet2 = ndimage.median_filter(boolMet2,size=5) | |
2643 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) |
|
2646 | boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool))) | |
2644 | # #Final mask |
|
2647 | # #Final mask | |
2645 | # boolMetFin = boolMet2 |
|
2648 | # boolMetFin = boolMet2 | |
2646 | boolMetFin = boolMet1&boolMet2 |
|
2649 | boolMetFin = boolMet1&boolMet2 | |
2647 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) |
|
2650 | # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin) | |
2648 | #Creating data_param |
|
2651 | #Creating data_param | |
2649 | coordMet = numpy.where(boolMetFin) |
|
2652 | coordMet = numpy.where(boolMetFin) | |
2650 |
|
2653 | |||
2651 | tmet = coordMet[0] |
|
2654 | tmet = coordMet[0] | |
2652 | hmet = coordMet[1] |
|
2655 | hmet = coordMet[1] | |
2653 |
|
2656 | |||
2654 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) |
|
2657 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
2655 | data_param[:,0] = utctime |
|
2658 | data_param[:,0] = utctime | |
2656 | data_param[:,1] = tmet |
|
2659 | data_param[:,1] = tmet | |
2657 | data_param[:,2] = hmet |
|
2660 | data_param[:,2] = hmet | |
2658 | data_param[:,3] = SNRm[tmet,hmet] |
|
2661 | data_param[:,3] = SNRm[tmet,hmet] | |
2659 | data_param[:,4] = velRad[tmet,hmet] |
|
2662 | data_param[:,4] = velRad[tmet,hmet] | |
2660 | data_param[:,5] = coh[tmet,hmet] |
|
2663 | data_param[:,5] = coh[tmet,hmet] | |
2661 | data_param[:,6:] = phase[:,tmet,hmet].T |
|
2664 | data_param[:,6:] = phase[:,tmet,hmet].T | |
2662 |
|
2665 | |||
2663 | elif mode == 'DBS': |
|
2666 | elif mode == 'DBS': | |
2664 | self.dataOut.groupList = numpy.arange(nChannels) |
|
2667 | self.dataOut.groupList = numpy.arange(nChannels) | |
2665 |
|
2668 | |||
2666 | #Radial Velocities |
|
2669 | #Radial Velocities | |
2667 | # phase = numpy.angle(data_acf[:,1,:,:]) |
|
2670 | # phase = numpy.angle(data_acf[:,1,:,:]) | |
2668 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2671 | phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
2669 | velRad = phase*lamb/(4*numpy.pi*tSamp) |
|
2672 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
2670 |
|
2673 | |||
2671 | #Spectral width |
|
2674 | #Spectral width | |
2672 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) |
|
2675 | acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
2673 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) |
|
2676 | acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
2674 |
|
2677 | |||
2675 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) |
|
2678 | spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2)) | |
2676 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) |
|
2679 | # velRad = ndimage.median_filter(velRad, size = (1,5,1)) | |
2677 | if allData: |
|
2680 | if allData: | |
2678 | boolMetFin = ~numpy.isnan(SNRdB) |
|
2681 | boolMetFin = ~numpy.isnan(SNRdB) | |
2679 | else: |
|
2682 | else: | |
2680 | #SNR |
|
2683 | #SNR | |
2681 | boolMet1 = (SNRdB>SNRthresh) #SNR mask |
|
2684 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
2682 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) |
|
2685 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
2683 |
|
2686 | |||
2684 | #Radial velocity |
|
2687 | #Radial velocity | |
2685 | boolMet2 = numpy.abs(velRad) < 30 |
|
2688 | boolMet2 = numpy.abs(velRad) < 30 | |
2686 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) |
|
2689 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
2687 |
|
2690 | |||
2688 | #Spectral Width |
|
2691 | #Spectral Width | |
2689 | boolMet3 = spcWidth < 30 |
|
2692 | boolMet3 = spcWidth < 30 | |
2690 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) |
|
2693 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
2691 | # boolMetFin = self.__erase_small(boolMet1, 10,5) |
|
2694 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
2692 | boolMetFin = boolMet1&boolMet2&boolMet3 |
|
2695 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
2693 |
|
2696 | |||
2694 | #Creating data_param |
|
2697 | #Creating data_param | |
2695 | coordMet = numpy.where(boolMetFin) |
|
2698 | coordMet = numpy.where(boolMetFin) | |
2696 |
|
2699 | |||
2697 | cmet = coordMet[0] |
|
2700 | cmet = coordMet[0] | |
2698 | tmet = coordMet[1] |
|
2701 | tmet = coordMet[1] | |
2699 | hmet = coordMet[2] |
|
2702 | hmet = coordMet[2] | |
2700 |
|
2703 | |||
2701 | data_param = numpy.zeros((tmet.size, 7)) |
|
2704 | data_param = numpy.zeros((tmet.size, 7)) | |
2702 | data_param[:,0] = utctime |
|
2705 | data_param[:,0] = utctime | |
2703 | data_param[:,1] = cmet |
|
2706 | data_param[:,1] = cmet | |
2704 | data_param[:,2] = tmet |
|
2707 | data_param[:,2] = tmet | |
2705 | data_param[:,3] = hmet |
|
2708 | data_param[:,3] = hmet | |
2706 | data_param[:,4] = SNR[cmet,tmet,hmet].T |
|
2709 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
2707 | data_param[:,5] = velRad[cmet,tmet,hmet].T |
|
2710 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
2708 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T |
|
2711 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
2709 |
|
2712 | |||
2710 | # self.dataOut.data_param = data_int |
|
2713 | # self.dataOut.data_param = data_int | |
2711 | if len(data_param) == 0: |
|
2714 | if len(data_param) == 0: | |
2712 | self.dataOut.flagNoData = True |
|
2715 | self.dataOut.flagNoData = True | |
2713 | else: |
|
2716 | else: | |
2714 | self.dataOut.data_param = data_param |
|
2717 | self.dataOut.data_param = data_param | |
2715 |
|
2718 | |||
2716 | def __erase_small(self, binArray, threshX, threshY): |
|
2719 | def __erase_small(self, binArray, threshX, threshY): | |
2717 | labarray, numfeat = ndimage.measurements.label(binArray) |
|
2720 | labarray, numfeat = ndimage.measurements.label(binArray) | |
2718 | binArray1 = numpy.copy(binArray) |
|
2721 | binArray1 = numpy.copy(binArray) | |
2719 |
|
2722 | |||
2720 | for i in range(1,numfeat + 1): |
|
2723 | for i in range(1,numfeat + 1): | |
2721 | auxBin = (labarray==i) |
|
2724 | auxBin = (labarray==i) | |
2722 | auxSize = auxBin.sum() |
|
2725 | auxSize = auxBin.sum() | |
2723 |
|
2726 | |||
2724 | x,y = numpy.where(auxBin) |
|
2727 | x,y = numpy.where(auxBin) | |
2725 | widthX = x.max() - x.min() |
|
2728 | widthX = x.max() - x.min() | |
2726 | widthY = y.max() - y.min() |
|
2729 | widthY = y.max() - y.min() | |
2727 |
|
2730 | |||
2728 | #width X: 3 seg -> 12.5*3 |
|
2731 | #width X: 3 seg -> 12.5*3 | |
2729 | #width Y: |
|
2732 | #width Y: | |
2730 |
|
2733 | |||
2731 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): |
|
2734 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
2732 | binArray1[auxBin] = False |
|
2735 | binArray1[auxBin] = False | |
2733 |
|
2736 | |||
2734 | return binArray1 |
|
2737 | return binArray1 | |
2735 |
|
2738 | |||
2736 | #--------------- Specular Meteor ---------------- |
|
2739 | #--------------- Specular Meteor ---------------- | |
2737 |
|
2740 | |||
2738 | class SMDetection(Operation): |
|
2741 | class SMDetection(Operation): | |
2739 | ''' |
|
2742 | ''' | |
2740 | Function DetectMeteors() |
|
2743 | Function DetectMeteors() | |
2741 | Project developed with paper: |
|
2744 | Project developed with paper: | |
2742 | HOLDSWORTH ET AL. 2004 |
|
2745 | HOLDSWORTH ET AL. 2004 | |
2743 |
|
2746 | |||
2744 | Input: |
|
2747 | Input: | |
2745 | self.dataOut.data_pre |
|
2748 | self.dataOut.data_pre | |
2746 |
|
2749 | |||
2747 | centerReceiverIndex: From the channels, which is the center receiver |
|
2750 | centerReceiverIndex: From the channels, which is the center receiver | |
2748 |
|
2751 | |||
2749 | hei_ref: Height reference for the Beacon signal extraction |
|
2752 | hei_ref: Height reference for the Beacon signal extraction | |
2750 | tauindex: |
|
2753 | tauindex: | |
2751 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2754 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
2752 |
|
2755 | |||
2753 | cohDetection: Whether to user Coherent detection or not |
|
2756 | cohDetection: Whether to user Coherent detection or not | |
2754 | cohDet_timeStep: Coherent Detection calculation time step |
|
2757 | cohDet_timeStep: Coherent Detection calculation time step | |
2755 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2758 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
2756 |
|
2759 | |||
2757 | noise_timeStep: Noise calculation time step |
|
2760 | noise_timeStep: Noise calculation time step | |
2758 | noise_multiple: Noise multiple to define signal threshold |
|
2761 | noise_multiple: Noise multiple to define signal threshold | |
2759 |
|
2762 | |||
2760 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2763 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
2761 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2764 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
2762 |
|
2765 | |||
2763 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2766 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
2764 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2767 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
2765 |
|
2768 | |||
2766 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2769 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
2767 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2770 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
2768 | azimuth: Azimuth angle correction |
|
2771 | azimuth: Azimuth angle correction | |
2769 |
|
2772 | |||
2770 | Affected: |
|
2773 | Affected: | |
2771 | self.dataOut.data_param |
|
2774 | self.dataOut.data_param | |
2772 |
|
2775 | |||
2773 | Rejection Criteria (Errors): |
|
2776 | Rejection Criteria (Errors): | |
2774 | 0: No error; analysis OK |
|
2777 | 0: No error; analysis OK | |
2775 | 1: SNR < SNR threshold |
|
2778 | 1: SNR < SNR threshold | |
2776 | 2: angle of arrival (AOA) ambiguously determined |
|
2779 | 2: angle of arrival (AOA) ambiguously determined | |
2777 | 3: AOA estimate not feasible |
|
2780 | 3: AOA estimate not feasible | |
2778 | 4: Large difference in AOAs obtained from different antenna baselines |
|
2781 | 4: Large difference in AOAs obtained from different antenna baselines | |
2779 | 5: echo at start or end of time series |
|
2782 | 5: echo at start or end of time series | |
2780 | 6: echo less than 5 examples long; too short for analysis |
|
2783 | 6: echo less than 5 examples long; too short for analysis | |
2781 | 7: echo rise exceeds 0.3s |
|
2784 | 7: echo rise exceeds 0.3s | |
2782 | 8: echo decay time less than twice rise time |
|
2785 | 8: echo decay time less than twice rise time | |
2783 | 9: large power level before echo |
|
2786 | 9: large power level before echo | |
2784 | 10: large power level after echo |
|
2787 | 10: large power level after echo | |
2785 | 11: poor fit to amplitude for estimation of decay time |
|
2788 | 11: poor fit to amplitude for estimation of decay time | |
2786 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
2789 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
2787 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
2790 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
2788 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2791 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
2789 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2792 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
2790 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2793 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
2791 |
|
2794 | |||
2792 | 17: phase difference in meteor Reestimation |
|
2795 | 17: phase difference in meteor Reestimation | |
2793 |
|
2796 | |||
2794 | Data Storage: |
|
2797 | Data Storage: | |
2795 | Meteors for Wind Estimation (8): |
|
2798 | Meteors for Wind Estimation (8): | |
2796 | Utc Time | Range Height |
|
2799 | Utc Time | Range Height | |
2797 | Azimuth Zenith errorCosDir |
|
2800 | Azimuth Zenith errorCosDir | |
2798 | VelRad errorVelRad |
|
2801 | VelRad errorVelRad | |
2799 | Phase0 Phase1 Phase2 Phase3 |
|
2802 | Phase0 Phase1 Phase2 Phase3 | |
2800 | TypeError |
|
2803 | TypeError | |
2801 |
|
2804 | |||
2802 | ''' |
|
2805 | ''' | |
2803 |
|
2806 | |||
2804 | def run(self, dataOut, hei_ref = None, tauindex = 0, |
|
2807 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
2805 | phaseOffsets = None, |
|
2808 | phaseOffsets = None, | |
2806 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
2809 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
2807 | noise_timeStep = 4, noise_multiple = 4, |
|
2810 | noise_timeStep = 4, noise_multiple = 4, | |
2808 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
2811 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
2809 | phaseThresh = 20, SNRThresh = 5, |
|
2812 | phaseThresh = 20, SNRThresh = 5, | |
2810 | hmin = 50, hmax=150, azimuth = 0, |
|
2813 | hmin = 50, hmax=150, azimuth = 0, | |
2811 | channelPositions = None) : |
|
2814 | channelPositions = None) : | |
2812 |
|
2815 | |||
2813 |
|
2816 | |||
2814 | #Getting Pairslist |
|
2817 | #Getting Pairslist | |
2815 | if channelPositions == None: |
|
2818 | if channelPositions == None: | |
2816 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
2819 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2817 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
2820 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2818 | meteorOps = SMOperations() |
|
2821 | meteorOps = SMOperations() | |
2819 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
2822 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2820 | heiRang = dataOut.getHeiRange() |
|
2823 | heiRang = dataOut.getHeiRange() | |
2821 | #Get Beacon signal - No Beacon signal anymore |
|
2824 | #Get Beacon signal - No Beacon signal anymore | |
2822 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
2825 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
2823 | # |
|
2826 | # | |
2824 | # if hei_ref != None: |
|
2827 | # if hei_ref != None: | |
2825 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
2828 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
2826 | # |
|
2829 | # | |
2827 |
|
2830 | |||
2828 |
|
2831 | |||
2829 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
2832 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
2830 | # see if the user put in pre defined phase shifts |
|
2833 | # see if the user put in pre defined phase shifts | |
2831 | voltsPShift = dataOut.data_pre.copy() |
|
2834 | voltsPShift = dataOut.data_pre.copy() | |
2832 |
|
2835 | |||
2833 | # if predefinedPhaseShifts != None: |
|
2836 | # if predefinedPhaseShifts != None: | |
2834 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
2837 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
2835 | # |
|
2838 | # | |
2836 | # # elif beaconPhaseShifts: |
|
2839 | # # elif beaconPhaseShifts: | |
2837 | # # #get hardware phase shifts using beacon signal |
|
2840 | # # #get hardware phase shifts using beacon signal | |
2838 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
2841 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
2839 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
2842 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
2840 | # |
|
2843 | # | |
2841 | # else: |
|
2844 | # else: | |
2842 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2845 | # hardwarePhaseShifts = numpy.zeros(5) | |
2843 | # |
|
2846 | # | |
2844 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
2847 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
2845 | # for i in range(self.dataOut.data_pre.shape[0]): |
|
2848 | # for i in range(self.dataOut.data_pre.shape[0]): | |
2846 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
2849 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
2847 |
|
2850 | |||
2848 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
2851 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
2849 |
|
2852 | |||
2850 | #Remove DC |
|
2853 | #Remove DC | |
2851 | voltsDC = numpy.mean(voltsPShift,1) |
|
2854 | voltsDC = numpy.mean(voltsPShift,1) | |
2852 | voltsDC = numpy.mean(voltsDC,1) |
|
2855 | voltsDC = numpy.mean(voltsDC,1) | |
2853 | for i in range(voltsDC.shape[0]): |
|
2856 | for i in range(voltsDC.shape[0]): | |
2854 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
2857 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
2855 |
|
2858 | |||
2856 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
2859 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
2857 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
2860 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
2858 |
|
2861 | |||
2859 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
2862 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
2860 | #Coherent Detection |
|
2863 | #Coherent Detection | |
2861 | if cohDetection: |
|
2864 | if cohDetection: | |
2862 | #use coherent detection to get the net power |
|
2865 | #use coherent detection to get the net power | |
2863 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
2866 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
2864 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) |
|
2867 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
2865 |
|
2868 | |||
2866 | #Non-coherent detection! |
|
2869 | #Non-coherent detection! | |
2867 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
2870 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
2868 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
2871 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
2869 |
|
2872 | |||
2870 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
2873 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
2871 | #Get noise |
|
2874 | #Get noise | |
2872 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) |
|
2875 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
2873 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
2876 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
2874 | #Get signal threshold |
|
2877 | #Get signal threshold | |
2875 | signalThresh = noise_multiple*noise |
|
2878 | signalThresh = noise_multiple*noise | |
2876 | #Meteor echoes detection |
|
2879 | #Meteor echoes detection | |
2877 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
2880 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
2878 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
2881 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
2879 |
|
2882 | |||
2880 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
2883 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
2881 | #Parameters |
|
2884 | #Parameters | |
2882 | heiRange = dataOut.getHeiRange() |
|
2885 | heiRange = dataOut.getHeiRange() | |
2883 | rangeInterval = heiRange[1] - heiRange[0] |
|
2886 | rangeInterval = heiRange[1] - heiRange[0] | |
2884 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
2887 | rangeLimit = multDet_rangeLimit/rangeInterval | |
2885 | timeLimit = multDet_timeLimit/dataOut.timeInterval |
|
2888 | timeLimit = multDet_timeLimit/dataOut.timeInterval | |
2886 | #Multiple detection removals |
|
2889 | #Multiple detection removals | |
2887 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
2890 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
2888 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
2891 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
2889 |
|
2892 | |||
2890 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
2893 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
2891 | #Parameters |
|
2894 | #Parameters | |
2892 | phaseThresh = phaseThresh*numpy.pi/180 |
|
2895 | phaseThresh = phaseThresh*numpy.pi/180 | |
2893 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
2896 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
2894 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
2897 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
2895 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) |
|
2898 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency) | |
2896 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
2899 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
2897 | #Estimation of decay times (Errors N 7, 8, 11) |
|
2900 | #Estimation of decay times (Errors N 7, 8, 11) | |
2898 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) |
|
2901 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
2899 | #******************* END OF METEOR REESTIMATION ******************* |
|
2902 | #******************* END OF METEOR REESTIMATION ******************* | |
2900 |
|
2903 | |||
2901 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
2904 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
2902 | #Calculating Radial Velocity (Error N 15) |
|
2905 | #Calculating Radial Velocity (Error N 15) | |
2903 | radialStdThresh = 10 |
|
2906 | radialStdThresh = 10 | |
2904 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) |
|
2907 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
2905 |
|
2908 | |||
2906 | if len(listMeteors4) > 0: |
|
2909 | if len(listMeteors4) > 0: | |
2907 | #Setting New Array |
|
2910 | #Setting New Array | |
2908 | date = dataOut.utctime |
|
2911 | date = dataOut.utctime | |
2909 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
2912 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
2910 |
|
2913 | |||
2911 | #Correcting phase offset |
|
2914 | #Correcting phase offset | |
2912 | if phaseOffsets != None: |
|
2915 | if phaseOffsets != None: | |
2913 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
2916 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2914 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
2917 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2915 |
|
2918 | |||
2916 | #Second Pairslist |
|
2919 | #Second Pairslist | |
2917 | pairsList = [] |
|
2920 | pairsList = [] | |
2918 | pairx = (0,1) |
|
2921 | pairx = (0,1) | |
2919 | pairy = (2,3) |
|
2922 | pairy = (2,3) | |
2920 | pairsList.append(pairx) |
|
2923 | pairsList.append(pairx) | |
2921 | pairsList.append(pairy) |
|
2924 | pairsList.append(pairy) | |
2922 |
|
2925 | |||
2923 | jph = numpy.array([0,0,0,0]) |
|
2926 | jph = numpy.array([0,0,0,0]) | |
2924 | h = (hmin,hmax) |
|
2927 | h = (hmin,hmax) | |
2925 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
2928 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2926 |
|
2929 | |||
2927 | # #Calculate AOA (Error N 3, 4) |
|
2930 | # #Calculate AOA (Error N 3, 4) | |
2928 | # #JONES ET AL. 1998 |
|
2931 | # #JONES ET AL. 1998 | |
2929 | # error = arrayParameters[:,-1] |
|
2932 | # error = arrayParameters[:,-1] | |
2930 | # AOAthresh = numpy.pi/8 |
|
2933 | # AOAthresh = numpy.pi/8 | |
2931 | # phases = -arrayParameters[:,9:13] |
|
2934 | # phases = -arrayParameters[:,9:13] | |
2932 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
2935 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
2933 | # |
|
2936 | # | |
2934 | # #Calculate Heights (Error N 13 and 14) |
|
2937 | # #Calculate Heights (Error N 13 and 14) | |
2935 | # error = arrayParameters[:,-1] |
|
2938 | # error = arrayParameters[:,-1] | |
2936 | # Ranges = arrayParameters[:,2] |
|
2939 | # Ranges = arrayParameters[:,2] | |
2937 | # zenith = arrayParameters[:,5] |
|
2940 | # zenith = arrayParameters[:,5] | |
2938 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) |
|
2941 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
2939 | # error = arrayParameters[:,-1] |
|
2942 | # error = arrayParameters[:,-1] | |
2940 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
2943 | #********************* END OF PARAMETERS CALCULATION ************************** | |
2941 |
|
2944 | |||
2942 | #***************************+ PASS DATA TO NEXT STEP ********************** |
|
2945 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
2943 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) |
|
2946 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
2944 | dataOut.data_param = arrayParameters |
|
2947 | dataOut.data_param = arrayParameters | |
2945 |
|
2948 | |||
2946 | if arrayParameters == None: |
|
2949 | if arrayParameters == None: | |
2947 | dataOut.flagNoData = True |
|
2950 | dataOut.flagNoData = True | |
2948 | else: |
|
2951 | else: | |
2949 | dataOut.flagNoData = True |
|
2952 | dataOut.flagNoData = True | |
2950 |
|
2953 | |||
2951 | return |
|
2954 | return | |
2952 |
|
2955 | |||
2953 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
2956 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
2954 |
|
2957 | |||
2955 | minIndex = min(newheis[0]) |
|
2958 | minIndex = min(newheis[0]) | |
2956 | maxIndex = max(newheis[0]) |
|
2959 | maxIndex = max(newheis[0]) | |
2957 |
|
2960 | |||
2958 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
2961 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
2959 | nLength = voltage.shape[1]/n |
|
2962 | nLength = voltage.shape[1]/n | |
2960 | nMin = 0 |
|
2963 | nMin = 0 | |
2961 | nMax = 0 |
|
2964 | nMax = 0 | |
2962 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
2965 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
2963 |
|
2966 | |||
2964 | for i in range(n): |
|
2967 | for i in range(n): | |
2965 | nMax += nLength |
|
2968 | nMax += nLength | |
2966 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
2969 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
2967 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
2970 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
2968 | phaseOffset[:,i] = phaseCCF.transpose() |
|
2971 | phaseOffset[:,i] = phaseCCF.transpose() | |
2969 | nMin = nMax |
|
2972 | nMin = nMax | |
2970 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
2973 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
2971 |
|
2974 | |||
2972 | #Remove Outliers |
|
2975 | #Remove Outliers | |
2973 | factor = 2 |
|
2976 | factor = 2 | |
2974 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
2977 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
2975 | dw = numpy.std(wt,axis = 1) |
|
2978 | dw = numpy.std(wt,axis = 1) | |
2976 | dw = dw.reshape((dw.size,1)) |
|
2979 | dw = dw.reshape((dw.size,1)) | |
2977 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
2980 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
2978 | phaseOffset[ind] = numpy.nan |
|
2981 | phaseOffset[ind] = numpy.nan | |
2979 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
2982 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
2980 |
|
2983 | |||
2981 | return phaseOffset |
|
2984 | return phaseOffset | |
2982 |
|
2985 | |||
2983 | def __shiftPhase(self, data, phaseShift): |
|
2986 | def __shiftPhase(self, data, phaseShift): | |
2984 | #this will shift the phase of a complex number |
|
2987 | #this will shift the phase of a complex number | |
2985 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
2988 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
2986 | return dataShifted |
|
2989 | return dataShifted | |
2987 |
|
2990 | |||
2988 | def __estimatePhaseDifference(self, array, pairslist): |
|
2991 | def __estimatePhaseDifference(self, array, pairslist): | |
2989 | nChannel = array.shape[0] |
|
2992 | nChannel = array.shape[0] | |
2990 | nHeights = array.shape[2] |
|
2993 | nHeights = array.shape[2] | |
2991 | numPairs = len(pairslist) |
|
2994 | numPairs = len(pairslist) | |
2992 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
2995 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
2993 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
2996 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
2994 |
|
2997 | |||
2995 | #Correct phases |
|
2998 | #Correct phases | |
2996 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
2999 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
2997 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3000 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2998 |
|
3001 | |||
2999 | if indDer[0].shape[0] > 0: |
|
3002 | if indDer[0].shape[0] > 0: | |
3000 | for i in range(indDer[0].shape[0]): |
|
3003 | for i in range(indDer[0].shape[0]): | |
3001 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
3004 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
3002 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
3005 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
3003 |
|
3006 | |||
3004 | # for j in range(numSides): |
|
3007 | # for j in range(numSides): | |
3005 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
3008 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
3006 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
3009 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
3007 | # |
|
3010 | # | |
3008 | #Linear |
|
3011 | #Linear | |
3009 | phaseInt = numpy.zeros((numPairs,1)) |
|
3012 | phaseInt = numpy.zeros((numPairs,1)) | |
3010 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
3013 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
3011 | for j in range(numPairs): |
|
3014 | for j in range(numPairs): | |
3012 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
3015 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
3013 | phaseInt[j] = fit[1] |
|
3016 | phaseInt[j] = fit[1] | |
3014 | #Phase Differences |
|
3017 | #Phase Differences | |
3015 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
3018 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
3016 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
3019 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
3017 |
|
3020 | |||
3018 | #Dealias |
|
3021 | #Dealias | |
3019 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) |
|
3022 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
3020 | # indAlias = numpy.where(phaseArrival > numpy.pi) |
|
3023 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
3021 | # phaseArrival[indAlias] -= 2*numpy.pi |
|
3024 | # phaseArrival[indAlias] -= 2*numpy.pi | |
3022 | # indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
3025 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
3023 | # phaseArrival[indAlias] += 2*numpy.pi |
|
3026 | # phaseArrival[indAlias] += 2*numpy.pi | |
3024 |
|
3027 | |||
3025 | return phaseDiff, phaseArrival |
|
3028 | return phaseDiff, phaseArrival | |
3026 |
|
3029 | |||
3027 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
3030 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
3028 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
3031 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
3029 | #find the phase shifts of each channel over 1 second intervals |
|
3032 | #find the phase shifts of each channel over 1 second intervals | |
3030 | #only look at ranges below the beacon signal |
|
3033 | #only look at ranges below the beacon signal | |
3031 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3034 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3032 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
3035 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
3033 | numHeights = volts.shape[2] |
|
3036 | numHeights = volts.shape[2] | |
3034 | nChannel = volts.shape[0] |
|
3037 | nChannel = volts.shape[0] | |
3035 | voltsCohDet = volts.copy() |
|
3038 | voltsCohDet = volts.copy() | |
3036 |
|
3039 | |||
3037 | pairsarray = numpy.array(pairslist) |
|
3040 | pairsarray = numpy.array(pairslist) | |
3038 | indSides = pairsarray[:,1] |
|
3041 | indSides = pairsarray[:,1] | |
3039 | # indSides = numpy.array(range(nChannel)) |
|
3042 | # indSides = numpy.array(range(nChannel)) | |
3040 | # indSides = numpy.delete(indSides, indCenter) |
|
3043 | # indSides = numpy.delete(indSides, indCenter) | |
3041 | # |
|
3044 | # | |
3042 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
3045 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
3043 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
3046 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
3044 |
|
3047 | |||
3045 | startInd = 0 |
|
3048 | startInd = 0 | |
3046 | endInd = 0 |
|
3049 | endInd = 0 | |
3047 |
|
3050 | |||
3048 | for i in range(numBlocks): |
|
3051 | for i in range(numBlocks): | |
3049 | startInd = endInd |
|
3052 | startInd = endInd | |
3050 | endInd = endInd + listBlocks[i].shape[1] |
|
3053 | endInd = endInd + listBlocks[i].shape[1] | |
3051 |
|
3054 | |||
3052 | arrayBlock = listBlocks[i] |
|
3055 | arrayBlock = listBlocks[i] | |
3053 | # arrayBlockCenter = listCenter[i] |
|
3056 | # arrayBlockCenter = listCenter[i] | |
3054 |
|
3057 | |||
3055 | #Estimate the Phase Difference |
|
3058 | #Estimate the Phase Difference | |
3056 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
3059 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
3057 | #Phase Difference RMS |
|
3060 | #Phase Difference RMS | |
3058 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
3061 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
3059 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
3062 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
3060 | indPhase = numpy.where(phaseRMSaux==4) |
|
3063 | indPhase = numpy.where(phaseRMSaux==4) | |
3061 | #Shifting |
|
3064 | #Shifting | |
3062 | if indPhase[0].shape[0] > 0: |
|
3065 | if indPhase[0].shape[0] > 0: | |
3063 | for j in range(indSides.size): |
|
3066 | for j in range(indSides.size): | |
3064 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
3067 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
3065 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
3068 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
3066 |
|
3069 | |||
3067 | return voltsCohDet |
|
3070 | return voltsCohDet | |
3068 |
|
3071 | |||
3069 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
3072 | def __calculateCCF(self, volts, pairslist ,laglist): | |
3070 |
|
3073 | |||
3071 | nHeights = volts.shape[2] |
|
3074 | nHeights = volts.shape[2] | |
3072 | nPoints = volts.shape[1] |
|
3075 | nPoints = volts.shape[1] | |
3073 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
3076 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
3074 |
|
3077 | |||
3075 | for i in range(len(pairslist)): |
|
3078 | for i in range(len(pairslist)): | |
3076 | volts1 = volts[pairslist[i][0]] |
|
3079 | volts1 = volts[pairslist[i][0]] | |
3077 | volts2 = volts[pairslist[i][1]] |
|
3080 | volts2 = volts[pairslist[i][1]] | |
3078 |
|
3081 | |||
3079 | for t in range(len(laglist)): |
|
3082 | for t in range(len(laglist)): | |
3080 | idxT = laglist[t] |
|
3083 | idxT = laglist[t] | |
3081 | if idxT >= 0: |
|
3084 | if idxT >= 0: | |
3082 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
3085 | vStacked = numpy.vstack((volts2[idxT:,:], | |
3083 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
3086 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
3084 | else: |
|
3087 | else: | |
3085 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
3088 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
3086 | volts2[:(nPoints + idxT),:])) |
|
3089 | volts2[:(nPoints + idxT),:])) | |
3087 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
3090 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
3088 |
|
3091 | |||
3089 | vStacked = None |
|
3092 | vStacked = None | |
3090 | return voltsCCF |
|
3093 | return voltsCCF | |
3091 |
|
3094 | |||
3092 | def __getNoise(self, power, timeSegment, timeInterval): |
|
3095 | def __getNoise(self, power, timeSegment, timeInterval): | |
3093 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
3096 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
3094 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
3097 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
3095 | numHeights = power.shape[1] |
|
3098 | numHeights = power.shape[1] | |
3096 |
|
3099 | |||
3097 | listPower = numpy.array_split(power, numBlocks, 0) |
|
3100 | listPower = numpy.array_split(power, numBlocks, 0) | |
3098 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
3101 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
3099 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
3102 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
3100 |
|
3103 | |||
3101 | startInd = 0 |
|
3104 | startInd = 0 | |
3102 | endInd = 0 |
|
3105 | endInd = 0 | |
3103 |
|
3106 | |||
3104 | for i in range(numBlocks): #split por canal |
|
3107 | for i in range(numBlocks): #split por canal | |
3105 | startInd = endInd |
|
3108 | startInd = endInd | |
3106 | endInd = endInd + listPower[i].shape[0] |
|
3109 | endInd = endInd + listPower[i].shape[0] | |
3107 |
|
3110 | |||
3108 | arrayBlock = listPower[i] |
|
3111 | arrayBlock = listPower[i] | |
3109 | noiseAux = numpy.mean(arrayBlock, 0) |
|
3112 | noiseAux = numpy.mean(arrayBlock, 0) | |
3110 | # noiseAux = numpy.median(noiseAux) |
|
3113 | # noiseAux = numpy.median(noiseAux) | |
3111 | # noiseAux = numpy.mean(arrayBlock) |
|
3114 | # noiseAux = numpy.mean(arrayBlock) | |
3112 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
3115 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
3113 |
|
3116 | |||
3114 | noiseAux1 = numpy.mean(arrayBlock) |
|
3117 | noiseAux1 = numpy.mean(arrayBlock) | |
3115 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
3118 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
3116 |
|
3119 | |||
3117 | return noise, noise1 |
|
3120 | return noise, noise1 | |
3118 |
|
3121 | |||
3119 | def __findMeteors(self, power, thresh): |
|
3122 | def __findMeteors(self, power, thresh): | |
3120 | nProf = power.shape[0] |
|
3123 | nProf = power.shape[0] | |
3121 | nHeights = power.shape[1] |
|
3124 | nHeights = power.shape[1] | |
3122 | listMeteors = [] |
|
3125 | listMeteors = [] | |
3123 |
|
3126 | |||
3124 | for i in range(nHeights): |
|
3127 | for i in range(nHeights): | |
3125 | powerAux = power[:,i] |
|
3128 | powerAux = power[:,i] | |
3126 | threshAux = thresh[:,i] |
|
3129 | threshAux = thresh[:,i] | |
3127 |
|
3130 | |||
3128 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
3131 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
3129 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
3132 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
3130 |
|
3133 | |||
3131 | j = 0 |
|
3134 | j = 0 | |
3132 |
|
3135 | |||
3133 | while (j < indUPthresh.size - 2): |
|
3136 | while (j < indUPthresh.size - 2): | |
3134 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
3137 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
3135 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
3138 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
3136 | indDNthresh = indDNthresh[indDNAux] |
|
3139 | indDNthresh = indDNthresh[indDNAux] | |
3137 |
|
3140 | |||
3138 | if (indDNthresh.size > 0): |
|
3141 | if (indDNthresh.size > 0): | |
3139 | indEnd = indDNthresh[0] - 1 |
|
3142 | indEnd = indDNthresh[0] - 1 | |
3140 | indInit = indUPthresh[j] |
|
3143 | indInit = indUPthresh[j] | |
3141 |
|
3144 | |||
3142 | meteor = powerAux[indInit:indEnd + 1] |
|
3145 | meteor = powerAux[indInit:indEnd + 1] | |
3143 | indPeak = meteor.argmax() + indInit |
|
3146 | indPeak = meteor.argmax() + indInit | |
3144 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
3147 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
3145 |
|
3148 | |||
3146 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
3149 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
3147 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
3150 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
3148 | else: j+=1 |
|
3151 | else: j+=1 | |
3149 | else: j+=1 |
|
3152 | else: j+=1 | |
3150 |
|
3153 | |||
3151 | return listMeteors |
|
3154 | return listMeteors | |
3152 |
|
3155 | |||
3153 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
3156 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
3154 |
|
3157 | |||
3155 | arrayMeteors = numpy.asarray(listMeteors) |
|
3158 | arrayMeteors = numpy.asarray(listMeteors) | |
3156 | listMeteors1 = [] |
|
3159 | listMeteors1 = [] | |
3157 |
|
3160 | |||
3158 | while arrayMeteors.shape[0] > 0: |
|
3161 | while arrayMeteors.shape[0] > 0: | |
3159 | FLAs = arrayMeteors[:,4] |
|
3162 | FLAs = arrayMeteors[:,4] | |
3160 | maxFLA = FLAs.argmax() |
|
3163 | maxFLA = FLAs.argmax() | |
3161 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
3164 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
3162 |
|
3165 | |||
3163 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
3166 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
3164 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
3167 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
3165 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
3168 | MeteorHeight = arrayMeteors[maxFLA,0] | |
3166 |
|
3169 | |||
3167 | #Check neighborhood |
|
3170 | #Check neighborhood | |
3168 | maxHeightIndex = MeteorHeight + rangeLimit |
|
3171 | maxHeightIndex = MeteorHeight + rangeLimit | |
3169 | minHeightIndex = MeteorHeight - rangeLimit |
|
3172 | minHeightIndex = MeteorHeight - rangeLimit | |
3170 | minTimeIndex = MeteorInitTime - timeLimit |
|
3173 | minTimeIndex = MeteorInitTime - timeLimit | |
3171 | maxTimeIndex = MeteorEndTime + timeLimit |
|
3174 | maxTimeIndex = MeteorEndTime + timeLimit | |
3172 |
|
3175 | |||
3173 | #Check Heights |
|
3176 | #Check Heights | |
3174 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
3177 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
3175 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
3178 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
3176 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
3179 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
3177 |
|
3180 | |||
3178 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
3181 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
3179 |
|
3182 | |||
3180 | return listMeteors1 |
|
3183 | return listMeteors1 | |
3181 |
|
3184 | |||
3182 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
3185 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
3183 | numHeights = volts.shape[2] |
|
3186 | numHeights = volts.shape[2] | |
3184 | nChannel = volts.shape[0] |
|
3187 | nChannel = volts.shape[0] | |
3185 |
|
3188 | |||
3186 | thresholdPhase = thresh[0] |
|
3189 | thresholdPhase = thresh[0] | |
3187 | thresholdNoise = thresh[1] |
|
3190 | thresholdNoise = thresh[1] | |
3188 | thresholdDB = float(thresh[2]) |
|
3191 | thresholdDB = float(thresh[2]) | |
3189 |
|
3192 | |||
3190 | thresholdDB1 = 10**(thresholdDB/10) |
|
3193 | thresholdDB1 = 10**(thresholdDB/10) | |
3191 | pairsarray = numpy.array(pairslist) |
|
3194 | pairsarray = numpy.array(pairslist) | |
3192 | indSides = pairsarray[:,1] |
|
3195 | indSides = pairsarray[:,1] | |
3193 |
|
3196 | |||
3194 | pairslist1 = list(pairslist) |
|
3197 | pairslist1 = list(pairslist) | |
3195 | pairslist1.append((0,1)) |
|
3198 | pairslist1.append((0,1)) | |
3196 | pairslist1.append((3,4)) |
|
3199 | pairslist1.append((3,4)) | |
3197 |
|
3200 | |||
3198 | listMeteors1 = [] |
|
3201 | listMeteors1 = [] | |
3199 | listPowerSeries = [] |
|
3202 | listPowerSeries = [] | |
3200 | listVoltageSeries = [] |
|
3203 | listVoltageSeries = [] | |
3201 | #volts has the war data |
|
3204 | #volts has the war data | |
3202 |
|
3205 | |||
3203 | if frequency == 30e6: |
|
3206 | if frequency == 30e6: | |
3204 | timeLag = 45*10**-3 |
|
3207 | timeLag = 45*10**-3 | |
3205 | else: |
|
3208 | else: | |
3206 | timeLag = 15*10**-3 |
|
3209 | timeLag = 15*10**-3 | |
3207 | lag = numpy.ceil(timeLag/timeInterval) |
|
3210 | lag = numpy.ceil(timeLag/timeInterval) | |
3208 |
|
3211 | |||
3209 | for i in range(len(listMeteors)): |
|
3212 | for i in range(len(listMeteors)): | |
3210 |
|
3213 | |||
3211 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
3214 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
3212 | meteorAux = numpy.zeros(16) |
|
3215 | meteorAux = numpy.zeros(16) | |
3213 |
|
3216 | |||
3214 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
3217 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
3215 | mHeight = listMeteors[i][0] |
|
3218 | mHeight = listMeteors[i][0] | |
3216 | mStart = listMeteors[i][1] |
|
3219 | mStart = listMeteors[i][1] | |
3217 | mPeak = listMeteors[i][2] |
|
3220 | mPeak = listMeteors[i][2] | |
3218 | mEnd = listMeteors[i][3] |
|
3221 | mEnd = listMeteors[i][3] | |
3219 |
|
3222 | |||
3220 | #get the volt data between the start and end times of the meteor |
|
3223 | #get the volt data between the start and end times of the meteor | |
3221 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
3224 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
3222 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3225 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3223 |
|
3226 | |||
3224 | #3.6. Phase Difference estimation |
|
3227 | #3.6. Phase Difference estimation | |
3225 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
3228 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
3226 |
|
3229 | |||
3227 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
3230 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
3228 | #meteorVolts0.- all Channels, all Profiles |
|
3231 | #meteorVolts0.- all Channels, all Profiles | |
3229 | meteorVolts0 = volts[:,:,mHeight] |
|
3232 | meteorVolts0 = volts[:,:,mHeight] | |
3230 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
3233 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
3231 | meteorNoise = noise[:,mHeight] |
|
3234 | meteorNoise = noise[:,mHeight] | |
3232 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
3235 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
3233 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
3236 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
3234 |
|
3237 | |||
3235 | #Times reestimation |
|
3238 | #Times reestimation | |
3236 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
3239 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
3237 | if mStart1.size > 0: |
|
3240 | if mStart1.size > 0: | |
3238 | mStart1 = mStart1[-1] + 1 |
|
3241 | mStart1 = mStart1[-1] + 1 | |
3239 |
|
3242 | |||
3240 | else: |
|
3243 | else: | |
3241 | mStart1 = mPeak |
|
3244 | mStart1 = mPeak | |
3242 |
|
3245 | |||
3243 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
3246 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
3244 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
3247 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
3245 | if mEndDecayTime1.size == 0: |
|
3248 | if mEndDecayTime1.size == 0: | |
3246 | mEndDecayTime1 = powerNet0.size |
|
3249 | mEndDecayTime1 = powerNet0.size | |
3247 | else: |
|
3250 | else: | |
3248 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
3251 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
3249 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
3252 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
3250 |
|
3253 | |||
3251 | #meteorVolts1.- all Channels, from start to end |
|
3254 | #meteorVolts1.- all Channels, from start to end | |
3252 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
3255 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
3253 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
3256 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
3254 | if meteorVolts2.shape[1] == 0: |
|
3257 | if meteorVolts2.shape[1] == 0: | |
3255 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
3258 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
3256 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
3259 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
3257 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
3260 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
3258 | ##################### END PARAMETERS REESTIMATION ######################### |
|
3261 | ##################### END PARAMETERS REESTIMATION ######################### | |
3259 |
|
3262 | |||
3260 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
3263 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
3261 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3264 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
3262 | if meteorVolts2.shape[1] > 0: |
|
3265 | if meteorVolts2.shape[1] > 0: | |
3263 | #Phase Difference re-estimation |
|
3266 | #Phase Difference re-estimation | |
3264 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
3267 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
3265 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
3268 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
3266 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
3269 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
3267 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
3270 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
3268 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
3271 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
3269 |
|
3272 | |||
3270 | #Phase Difference RMS |
|
3273 | #Phase Difference RMS | |
3271 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
3274 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
3272 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
3275 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
3273 | #Data from Meteor |
|
3276 | #Data from Meteor | |
3274 | mPeak1 = powerNet1.argmax() + mStart1 |
|
3277 | mPeak1 = powerNet1.argmax() + mStart1 | |
3275 | mPeakPower1 = powerNet1.max() |
|
3278 | mPeakPower1 = powerNet1.max() | |
3276 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
3279 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
3277 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
3280 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
3278 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
3281 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
3279 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
3282 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
3280 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
3283 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
3281 | #Vectorize |
|
3284 | #Vectorize | |
3282 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
3285 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
3283 | meteorAux[7:11] = phaseDiffint[0:4] |
|
3286 | meteorAux[7:11] = phaseDiffint[0:4] | |
3284 |
|
3287 | |||
3285 | #Rejection Criterions |
|
3288 | #Rejection Criterions | |
3286 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
3289 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
3287 | meteorAux[-1] = 17 |
|
3290 | meteorAux[-1] = 17 | |
3288 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
3291 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
3289 | meteorAux[-1] = 1 |
|
3292 | meteorAux[-1] = 1 | |
3290 |
|
3293 | |||
3291 |
|
3294 | |||
3292 | else: |
|
3295 | else: | |
3293 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
3296 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
3294 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
3297 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
3295 | PowerSeries = 0 |
|
3298 | PowerSeries = 0 | |
3296 |
|
3299 | |||
3297 | listMeteors1.append(meteorAux) |
|
3300 | listMeteors1.append(meteorAux) | |
3298 | listPowerSeries.append(PowerSeries) |
|
3301 | listPowerSeries.append(PowerSeries) | |
3299 | listVoltageSeries.append(meteorVolts1) |
|
3302 | listVoltageSeries.append(meteorVolts1) | |
3300 |
|
3303 | |||
3301 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
3304 | return listMeteors1, listPowerSeries, listVoltageSeries | |
3302 |
|
3305 | |||
3303 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
3306 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
3304 |
|
3307 | |||
3305 | threshError = 10 |
|
3308 | threshError = 10 | |
3306 | #Depending if it is 30 or 50 MHz |
|
3309 | #Depending if it is 30 or 50 MHz | |
3307 | if frequency == 30e6: |
|
3310 | if frequency == 30e6: | |
3308 | timeLag = 45*10**-3 |
|
3311 | timeLag = 45*10**-3 | |
3309 | else: |
|
3312 | else: | |
3310 | timeLag = 15*10**-3 |
|
3313 | timeLag = 15*10**-3 | |
3311 | lag = numpy.ceil(timeLag/timeInterval) |
|
3314 | lag = numpy.ceil(timeLag/timeInterval) | |
3312 |
|
3315 | |||
3313 | listMeteors1 = [] |
|
3316 | listMeteors1 = [] | |
3314 |
|
3317 | |||
3315 | for i in range(len(listMeteors)): |
|
3318 | for i in range(len(listMeteors)): | |
3316 | meteorPower = listPower[i] |
|
3319 | meteorPower = listPower[i] | |
3317 | meteorAux = listMeteors[i] |
|
3320 | meteorAux = listMeteors[i] | |
3318 |
|
3321 | |||
3319 | if meteorAux[-1] == 0: |
|
3322 | if meteorAux[-1] == 0: | |
3320 |
|
3323 | |||
3321 | try: |
|
3324 | try: | |
3322 | indmax = meteorPower.argmax() |
|
3325 | indmax = meteorPower.argmax() | |
3323 | indlag = indmax + lag |
|
3326 | indlag = indmax + lag | |
3324 |
|
3327 | |||
3325 | y = meteorPower[indlag:] |
|
3328 | y = meteorPower[indlag:] | |
3326 | x = numpy.arange(0, y.size)*timeLag |
|
3329 | x = numpy.arange(0, y.size)*timeLag | |
3327 |
|
3330 | |||
3328 | #first guess |
|
3331 | #first guess | |
3329 | a = y[0] |
|
3332 | a = y[0] | |
3330 | tau = timeLag |
|
3333 | tau = timeLag | |
3331 | #exponential fit |
|
3334 | #exponential fit | |
3332 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
3335 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
3333 | y1 = self.__exponential_function(x, *popt) |
|
3336 | y1 = self.__exponential_function(x, *popt) | |
3334 | #error estimation |
|
3337 | #error estimation | |
3335 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
3338 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
3336 |
|
3339 | |||
3337 | decayTime = popt[1] |
|
3340 | decayTime = popt[1] | |
3338 | riseTime = indmax*timeInterval |
|
3341 | riseTime = indmax*timeInterval | |
3339 | meteorAux[11:13] = [decayTime, error] |
|
3342 | meteorAux[11:13] = [decayTime, error] | |
3340 |
|
3343 | |||
3341 | #Table items 7, 8 and 11 |
|
3344 | #Table items 7, 8 and 11 | |
3342 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
3345 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
3343 | meteorAux[-1] = 7 |
|
3346 | meteorAux[-1] = 7 | |
3344 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
3347 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
3345 | meteorAux[-1] = 8 |
|
3348 | meteorAux[-1] = 8 | |
3346 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
3349 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
3347 | meteorAux[-1] = 11 |
|
3350 | meteorAux[-1] = 11 | |
3348 |
|
3351 | |||
3349 |
|
3352 | |||
3350 | except: |
|
3353 | except: | |
3351 | meteorAux[-1] = 11 |
|
3354 | meteorAux[-1] = 11 | |
3352 |
|
3355 | |||
3353 |
|
3356 | |||
3354 | listMeteors1.append(meteorAux) |
|
3357 | listMeteors1.append(meteorAux) | |
3355 |
|
3358 | |||
3356 | return listMeteors1 |
|
3359 | return listMeteors1 | |
3357 |
|
3360 | |||
3358 | #Exponential Function |
|
3361 | #Exponential Function | |
3359 |
|
3362 | |||
3360 | def __exponential_function(self, x, a, tau): |
|
3363 | def __exponential_function(self, x, a, tau): | |
3361 | y = a*numpy.exp(-x/tau) |
|
3364 | y = a*numpy.exp(-x/tau) | |
3362 | return y |
|
3365 | return y | |
3363 |
|
3366 | |||
3364 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
3367 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
3365 |
|
3368 | |||
3366 | pairslist1 = list(pairslist) |
|
3369 | pairslist1 = list(pairslist) | |
3367 | pairslist1.append((0,1)) |
|
3370 | pairslist1.append((0,1)) | |
3368 | pairslist1.append((3,4)) |
|
3371 | pairslist1.append((3,4)) | |
3369 | numPairs = len(pairslist1) |
|
3372 | numPairs = len(pairslist1) | |
3370 | #Time Lag |
|
3373 | #Time Lag | |
3371 | timeLag = 45*10**-3 |
|
3374 | timeLag = 45*10**-3 | |
3372 | c = 3e8 |
|
3375 | c = 3e8 | |
3373 | lag = numpy.ceil(timeLag/timeInterval) |
|
3376 | lag = numpy.ceil(timeLag/timeInterval) | |
3374 | freq = 30e6 |
|
3377 | freq = 30e6 | |
3375 |
|
3378 | |||
3376 | listMeteors1 = [] |
|
3379 | listMeteors1 = [] | |
3377 |
|
3380 | |||
3378 | for i in range(len(listMeteors)): |
|
3381 | for i in range(len(listMeteors)): | |
3379 | meteorAux = listMeteors[i] |
|
3382 | meteorAux = listMeteors[i] | |
3380 | if meteorAux[-1] == 0: |
|
3383 | if meteorAux[-1] == 0: | |
3381 | mStart = listMeteors[i][1] |
|
3384 | mStart = listMeteors[i][1] | |
3382 | mPeak = listMeteors[i][2] |
|
3385 | mPeak = listMeteors[i][2] | |
3383 | mLag = mPeak - mStart + lag |
|
3386 | mLag = mPeak - mStart + lag | |
3384 |
|
3387 | |||
3385 | #get the volt data between the start and end times of the meteor |
|
3388 | #get the volt data between the start and end times of the meteor | |
3386 | meteorVolts = listVolts[i] |
|
3389 | meteorVolts = listVolts[i] | |
3387 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
3390 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
3388 |
|
3391 | |||
3389 | #Get CCF |
|
3392 | #Get CCF | |
3390 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
3393 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
3391 |
|
3394 | |||
3392 | #Method 2 |
|
3395 | #Method 2 | |
3393 | slopes = numpy.zeros(numPairs) |
|
3396 | slopes = numpy.zeros(numPairs) | |
3394 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
3397 | time = numpy.array([-2,-1,1,2])*timeInterval | |
3395 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
3398 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
3396 |
|
3399 | |||
3397 | #Correct phases |
|
3400 | #Correct phases | |
3398 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
3401 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
3399 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
3402 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
3400 |
|
3403 | |||
3401 | if indDer[0].shape[0] > 0: |
|
3404 | if indDer[0].shape[0] > 0: | |
3402 | for i in range(indDer[0].shape[0]): |
|
3405 | for i in range(indDer[0].shape[0]): | |
3403 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
3406 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
3404 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
3407 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
3405 |
|
3408 | |||
3406 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
3409 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
3407 | for j in range(numPairs): |
|
3410 | for j in range(numPairs): | |
3408 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
3411 | fit = stats.linregress(time, angAllCCF[j,:]) | |
3409 | slopes[j] = fit[0] |
|
3412 | slopes[j] = fit[0] | |
3410 |
|
3413 | |||
3411 | #Remove Outlier |
|
3414 | #Remove Outlier | |
3412 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3415 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3413 | # slopes = numpy.delete(slopes,indOut) |
|
3416 | # slopes = numpy.delete(slopes,indOut) | |
3414 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
3417 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
3415 | # slopes = numpy.delete(slopes,indOut) |
|
3418 | # slopes = numpy.delete(slopes,indOut) | |
3416 |
|
3419 | |||
3417 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3420 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
3418 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
3421 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
3419 | meteorAux[-2] = radialError |
|
3422 | meteorAux[-2] = radialError | |
3420 | meteorAux[-3] = radialVelocity |
|
3423 | meteorAux[-3] = radialVelocity | |
3421 |
|
3424 | |||
3422 | #Setting Error |
|
3425 | #Setting Error | |
3423 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
3426 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
3424 | if numpy.abs(radialVelocity) > 200: |
|
3427 | if numpy.abs(radialVelocity) > 200: | |
3425 | meteorAux[-1] = 15 |
|
3428 | meteorAux[-1] = 15 | |
3426 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
3429 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
3427 | elif radialError > radialStdThresh: |
|
3430 | elif radialError > radialStdThresh: | |
3428 | meteorAux[-1] = 12 |
|
3431 | meteorAux[-1] = 12 | |
3429 |
|
3432 | |||
3430 | listMeteors1.append(meteorAux) |
|
3433 | listMeteors1.append(meteorAux) | |
3431 | return listMeteors1 |
|
3434 | return listMeteors1 | |
3432 |
|
3435 | |||
3433 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
3436 | def __setNewArrays(self, listMeteors, date, heiRang): | |
3434 |
|
3437 | |||
3435 | #New arrays |
|
3438 | #New arrays | |
3436 | arrayMeteors = numpy.array(listMeteors) |
|
3439 | arrayMeteors = numpy.array(listMeteors) | |
3437 | arrayParameters = numpy.zeros((len(listMeteors), 13)) |
|
3440 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
3438 |
|
3441 | |||
3439 | #Date inclusion |
|
3442 | #Date inclusion | |
3440 | # date = re.findall(r'\((.*?)\)', date) |
|
3443 | # date = re.findall(r'\((.*?)\)', date) | |
3441 | # date = date[0].split(',') |
|
3444 | # date = date[0].split(',') | |
3442 | # date = map(int, date) |
|
3445 | # date = map(int, date) | |
3443 | # |
|
3446 | # | |
3444 | # if len(date)<6: |
|
3447 | # if len(date)<6: | |
3445 | # date.append(0) |
|
3448 | # date.append(0) | |
3446 | # |
|
3449 | # | |
3447 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
3450 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
3448 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
3451 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
3449 | arrayDate = numpy.tile(date, (len(listMeteors))) |
|
3452 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
3450 |
|
3453 | |||
3451 | #Meteor array |
|
3454 | #Meteor array | |
3452 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
3455 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
3453 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
3456 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
3454 |
|
3457 | |||
3455 | #Parameters Array |
|
3458 | #Parameters Array | |
3456 | arrayParameters[:,0] = arrayDate #Date |
|
3459 | arrayParameters[:,0] = arrayDate #Date | |
3457 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range |
|
3460 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
3458 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error |
|
3461 | arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |
3459 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases |
|
3462 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
3460 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error |
|
3463 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
3461 |
|
3464 | |||
3462 |
|
3465 | |||
3463 | return arrayParameters |
|
3466 | return arrayParameters | |
3464 |
|
3467 | |||
3465 | class CorrectSMPhases(Operation): |
|
3468 | class CorrectSMPhases(Operation): | |
3466 |
|
3469 | |||
3467 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): |
|
3470 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
3468 |
|
3471 | |||
3469 | arrayParameters = dataOut.data_param |
|
3472 | arrayParameters = dataOut.data_param | |
3470 | pairsList = [] |
|
3473 | pairsList = [] | |
3471 | pairx = (0,1) |
|
3474 | pairx = (0,1) | |
3472 | pairy = (2,3) |
|
3475 | pairy = (2,3) | |
3473 | pairsList.append(pairx) |
|
3476 | pairsList.append(pairx) | |
3474 | pairsList.append(pairy) |
|
3477 | pairsList.append(pairy) | |
3475 | jph = numpy.zeros(4) |
|
3478 | jph = numpy.zeros(4) | |
3476 |
|
3479 | |||
3477 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 |
|
3480 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
3478 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) |
|
3481 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
3479 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) |
|
3482 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
3480 |
|
3483 | |||
3481 | meteorOps = SMOperations() |
|
3484 | meteorOps = SMOperations() | |
3482 | if channelPositions == None: |
|
3485 | if channelPositions == None: | |
3483 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3486 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3484 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3487 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3485 |
|
3488 | |||
3486 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3489 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3487 | h = (hmin,hmax) |
|
3490 | h = (hmin,hmax) | |
3488 |
|
3491 | |||
3489 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) |
|
3492 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
3490 |
|
3493 | |||
3491 | dataOut.data_param = arrayParameters |
|
3494 | dataOut.data_param = arrayParameters | |
3492 | return |
|
3495 | return | |
3493 |
|
3496 | |||
3494 | class SMPhaseCalibration(Operation): |
|
3497 | class SMPhaseCalibration(Operation): | |
3495 |
|
3498 | |||
3496 | __buffer = None |
|
3499 | __buffer = None | |
3497 |
|
3500 | |||
3498 | __initime = None |
|
3501 | __initime = None | |
3499 |
|
3502 | |||
3500 | __dataReady = False |
|
3503 | __dataReady = False | |
3501 |
|
3504 | |||
3502 | __isConfig = False |
|
3505 | __isConfig = False | |
3503 |
|
3506 | |||
3504 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): |
|
3507 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
3505 |
|
3508 | |||
3506 | dataTime = currentTime + paramInterval |
|
3509 | dataTime = currentTime + paramInterval | |
3507 | deltaTime = dataTime - initTime |
|
3510 | deltaTime = dataTime - initTime | |
3508 |
|
3511 | |||
3509 | if deltaTime >= outputInterval or deltaTime < 0: |
|
3512 | if deltaTime >= outputInterval or deltaTime < 0: | |
3510 | return True |
|
3513 | return True | |
3511 |
|
3514 | |||
3512 | return False |
|
3515 | return False | |
3513 |
|
3516 | |||
3514 | def __getGammas(self, pairs, d, phases): |
|
3517 | def __getGammas(self, pairs, d, phases): | |
3515 | gammas = numpy.zeros(2) |
|
3518 | gammas = numpy.zeros(2) | |
3516 |
|
3519 | |||
3517 | for i in range(len(pairs)): |
|
3520 | for i in range(len(pairs)): | |
3518 |
|
3521 | |||
3519 | pairi = pairs[i] |
|
3522 | pairi = pairs[i] | |
3520 |
|
3523 | |||
3521 | phip3 = phases[:,pairi[1]] |
|
3524 | phip3 = phases[:,pairi[1]] | |
3522 | d3 = d[pairi[1]] |
|
3525 | d3 = d[pairi[1]] | |
3523 | phip2 = phases[:,pairi[0]] |
|
3526 | phip2 = phases[:,pairi[0]] | |
3524 | d2 = d[pairi[0]] |
|
3527 | d2 = d[pairi[0]] | |
3525 | #Calculating gamma |
|
3528 | #Calculating gamma | |
3526 | # jdcos = alp1/(k*d1) |
|
3529 | # jdcos = alp1/(k*d1) | |
3527 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) |
|
3530 | # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0))) | |
3528 | jgamma = -phip2*d3/d2 - phip3 |
|
3531 | jgamma = -phip2*d3/d2 - phip3 | |
3529 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) |
|
3532 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
3530 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi |
|
3533 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
3531 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi |
|
3534 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
3532 |
|
3535 | |||
3533 | #Revised distribution |
|
3536 | #Revised distribution | |
3534 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) |
|
3537 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
3535 |
|
3538 | |||
3536 | #Histogram |
|
3539 | #Histogram | |
3537 | nBins = 64.0 |
|
3540 | nBins = 64.0 | |
3538 | rmin = -0.5*numpy.pi |
|
3541 | rmin = -0.5*numpy.pi | |
3539 | rmax = 0.5*numpy.pi |
|
3542 | rmax = 0.5*numpy.pi | |
3540 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) |
|
3543 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
3541 |
|
3544 | |||
3542 | meteorsY = phaseHisto[0] |
|
3545 | meteorsY = phaseHisto[0] | |
3543 | phasesX = phaseHisto[1][:-1] |
|
3546 | phasesX = phaseHisto[1][:-1] | |
3544 | width = phasesX[1] - phasesX[0] |
|
3547 | width = phasesX[1] - phasesX[0] | |
3545 | phasesX += width/2 |
|
3548 | phasesX += width/2 | |
3546 |
|
3549 | |||
3547 | #Gaussian aproximation |
|
3550 | #Gaussian aproximation | |
3548 | bpeak = meteorsY.argmax() |
|
3551 | bpeak = meteorsY.argmax() | |
3549 | peak = meteorsY.max() |
|
3552 | peak = meteorsY.max() | |
3550 | jmin = bpeak - 5 |
|
3553 | jmin = bpeak - 5 | |
3551 | jmax = bpeak + 5 + 1 |
|
3554 | jmax = bpeak + 5 + 1 | |
3552 |
|
3555 | |||
3553 | if jmin<0: |
|
3556 | if jmin<0: | |
3554 | jmin = 0 |
|
3557 | jmin = 0 | |
3555 | jmax = 6 |
|
3558 | jmax = 6 | |
3556 | elif jmax > meteorsY.size: |
|
3559 | elif jmax > meteorsY.size: | |
3557 | jmin = meteorsY.size - 6 |
|
3560 | jmin = meteorsY.size - 6 | |
3558 | jmax = meteorsY.size |
|
3561 | jmax = meteorsY.size | |
3559 |
|
3562 | |||
3560 | x0 = numpy.array([peak,bpeak,50]) |
|
3563 | x0 = numpy.array([peak,bpeak,50]) | |
3561 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) |
|
3564 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
3562 |
|
3565 | |||
3563 | #Gammas |
|
3566 | #Gammas | |
3564 | gammas[i] = coeff[0][1] |
|
3567 | gammas[i] = coeff[0][1] | |
3565 |
|
3568 | |||
3566 | return gammas |
|
3569 | return gammas | |
3567 |
|
3570 | |||
3568 | def __residualFunction(self, coeffs, y, t): |
|
3571 | def __residualFunction(self, coeffs, y, t): | |
3569 |
|
3572 | |||
3570 | return y - self.__gauss_function(t, coeffs) |
|
3573 | return y - self.__gauss_function(t, coeffs) | |
3571 |
|
3574 | |||
3572 | def __gauss_function(self, t, coeffs): |
|
3575 | def __gauss_function(self, t, coeffs): | |
3573 |
|
3576 | |||
3574 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) |
|
3577 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
3575 |
|
3578 | |||
3576 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): |
|
3579 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
3577 | meteorOps = SMOperations() |
|
3580 | meteorOps = SMOperations() | |
3578 | nchan = 4 |
|
3581 | nchan = 4 | |
3579 | pairx = pairsList[0] |
|
3582 | pairx = pairsList[0] | |
3580 | pairy = pairsList[1] |
|
3583 | pairy = pairsList[1] | |
3581 | center_xangle = 0 |
|
3584 | center_xangle = 0 | |
3582 | center_yangle = 0 |
|
3585 | center_yangle = 0 | |
3583 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) |
|
3586 | range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |
3584 | ntimes = len(range_angle) |
|
3587 | ntimes = len(range_angle) | |
3585 |
|
3588 | |||
3586 | nstepsx = 20.0 |
|
3589 | nstepsx = 20.0 | |
3587 | nstepsy = 20.0 |
|
3590 | nstepsy = 20.0 | |
3588 |
|
3591 | |||
3589 | for iz in range(ntimes): |
|
3592 | for iz in range(ntimes): | |
3590 | min_xangle = -range_angle[iz]/2 + center_xangle |
|
3593 | min_xangle = -range_angle[iz]/2 + center_xangle | |
3591 | max_xangle = range_angle[iz]/2 + center_xangle |
|
3594 | max_xangle = range_angle[iz]/2 + center_xangle | |
3592 | min_yangle = -range_angle[iz]/2 + center_yangle |
|
3595 | min_yangle = -range_angle[iz]/2 + center_yangle | |
3593 | max_yangle = range_angle[iz]/2 + center_yangle |
|
3596 | max_yangle = range_angle[iz]/2 + center_yangle | |
3594 |
|
3597 | |||
3595 | inc_x = (max_xangle-min_xangle)/nstepsx |
|
3598 | inc_x = (max_xangle-min_xangle)/nstepsx | |
3596 | inc_y = (max_yangle-min_yangle)/nstepsy |
|
3599 | inc_y = (max_yangle-min_yangle)/nstepsy | |
3597 |
|
3600 | |||
3598 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle |
|
3601 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
3599 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle |
|
3602 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
3600 | penalty = numpy.zeros((nstepsx,nstepsy)) |
|
3603 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
3601 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) |
|
3604 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
3602 | jph = numpy.zeros(nchan) |
|
3605 | jph = numpy.zeros(nchan) | |
3603 |
|
3606 | |||
3604 | # Iterations looking for the offset |
|
3607 | # Iterations looking for the offset | |
3605 | for iy in range(int(nstepsy)): |
|
3608 | for iy in range(int(nstepsy)): | |
3606 | for ix in range(int(nstepsx)): |
|
3609 | for ix in range(int(nstepsx)): | |
3607 | jph[pairy[1]] = alpha_y[iy] |
|
3610 | jph[pairy[1]] = alpha_y[iy] | |
3608 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] |
|
3611 | jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]] | |
3609 |
|
3612 | |||
3610 | jph[pairx[1]] = alpha_x[ix] |
|
3613 | jph[pairx[1]] = alpha_x[ix] | |
3611 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] |
|
3614 | jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]] | |
3612 |
|
3615 | |||
3613 | jph_array[:,ix,iy] = jph |
|
3616 | jph_array[:,ix,iy] = jph | |
3614 |
|
3617 | |||
3615 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) |
|
3618 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph) | |
3616 | error = meteorsArray1[:,-1] |
|
3619 | error = meteorsArray1[:,-1] | |
3617 | ind1 = numpy.where(error==0)[0] |
|
3620 | ind1 = numpy.where(error==0)[0] | |
3618 | penalty[ix,iy] = ind1.size |
|
3621 | penalty[ix,iy] = ind1.size | |
3619 |
|
3622 | |||
3620 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) |
|
3623 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
3621 | phOffset = jph_array[:,i,j] |
|
3624 | phOffset = jph_array[:,i,j] | |
3622 |
|
3625 | |||
3623 | center_xangle = phOffset[pairx[1]] |
|
3626 | center_xangle = phOffset[pairx[1]] | |
3624 | center_yangle = phOffset[pairy[1]] |
|
3627 | center_yangle = phOffset[pairy[1]] | |
3625 |
|
3628 | |||
3626 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) |
|
3629 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
3627 | phOffset = phOffset*180/numpy.pi |
|
3630 | phOffset = phOffset*180/numpy.pi | |
3628 | return phOffset |
|
3631 | return phOffset | |
3629 |
|
3632 | |||
3630 |
|
3633 | |||
3631 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): |
|
3634 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
3632 |
|
3635 | |||
3633 | dataOut.flagNoData = True |
|
3636 | dataOut.flagNoData = True | |
3634 | self.__dataReady = False |
|
3637 | self.__dataReady = False | |
3635 | dataOut.outputInterval = nHours*3600 |
|
3638 | dataOut.outputInterval = nHours*3600 | |
3636 |
|
3639 | |||
3637 | if self.__isConfig == False: |
|
3640 | if self.__isConfig == False: | |
3638 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
3641 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
3639 | #Get Initial LTC time |
|
3642 | #Get Initial LTC time | |
3640 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) |
|
3643 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
3641 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
3644 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
3642 |
|
3645 | |||
3643 | self.__isConfig = True |
|
3646 | self.__isConfig = True | |
3644 |
|
3647 | |||
3645 | if self.__buffer == None: |
|
3648 | if self.__buffer == None: | |
3646 | self.__buffer = dataOut.data_param.copy() |
|
3649 | self.__buffer = dataOut.data_param.copy() | |
3647 |
|
3650 | |||
3648 | else: |
|
3651 | else: | |
3649 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) |
|
3652 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
3650 |
|
3653 | |||
3651 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
3654 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
3652 |
|
3655 | |||
3653 | if self.__dataReady: |
|
3656 | if self.__dataReady: | |
3654 | dataOut.utctimeInit = self.__initime |
|
3657 | dataOut.utctimeInit = self.__initime | |
3655 | self.__initime += dataOut.outputInterval #to erase time offset |
|
3658 | self.__initime += dataOut.outputInterval #to erase time offset | |
3656 |
|
3659 | |||
3657 | freq = dataOut.frequency |
|
3660 | freq = dataOut.frequency | |
3658 | c = dataOut.C #m/s |
|
3661 | c = dataOut.C #m/s | |
3659 | lamb = c/freq |
|
3662 | lamb = c/freq | |
3660 | k = 2*numpy.pi/lamb |
|
3663 | k = 2*numpy.pi/lamb | |
3661 | azimuth = 0 |
|
3664 | azimuth = 0 | |
3662 | h = (hmin, hmax) |
|
3665 | h = (hmin, hmax) | |
3663 | pairs = ((0,1),(2,3)) |
|
3666 | pairs = ((0,1),(2,3)) | |
3664 |
|
3667 | |||
3665 | if channelPositions == None: |
|
3668 | if channelPositions == None: | |
3666 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T |
|
3669 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
3667 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella |
|
3670 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
3668 | meteorOps = SMOperations() |
|
3671 | meteorOps = SMOperations() | |
3669 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) |
|
3672 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
3670 |
|
3673 | |||
3671 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] |
|
3674 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
3672 |
|
3675 | |||
3673 | meteorsArray = self.__buffer |
|
3676 | meteorsArray = self.__buffer | |
3674 | error = meteorsArray[:,-1] |
|
3677 | error = meteorsArray[:,-1] | |
3675 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) |
|
3678 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
3676 | ind1 = numpy.where(boolError)[0] |
|
3679 | ind1 = numpy.where(boolError)[0] | |
3677 | meteorsArray = meteorsArray[ind1,:] |
|
3680 | meteorsArray = meteorsArray[ind1,:] | |
3678 | meteorsArray[:,-1] = 0 |
|
3681 | meteorsArray[:,-1] = 0 | |
3679 | phases = meteorsArray[:,8:12] |
|
3682 | phases = meteorsArray[:,8:12] | |
3680 |
|
3683 | |||
3681 | #Calculate Gammas |
|
3684 | #Calculate Gammas | |
3682 | gammas = self.__getGammas(pairs, distances, phases) |
|
3685 | gammas = self.__getGammas(pairs, distances, phases) | |
3683 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 |
|
3686 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
3684 | #Calculate Phases |
|
3687 | #Calculate Phases | |
3685 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) |
|
3688 | phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray) | |
3686 | phasesOff = phasesOff.reshape((1,phasesOff.size)) |
|
3689 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
3687 | dataOut.data_output = -phasesOff |
|
3690 | dataOut.data_output = -phasesOff | |
3688 | dataOut.flagNoData = False |
|
3691 | dataOut.flagNoData = False | |
3689 | self.__buffer = None |
|
3692 | self.__buffer = None | |
3690 |
|
3693 | |||
3691 |
|
3694 | |||
3692 | return |
|
3695 | return | |
3693 |
|
3696 | |||
3694 | class SMOperations(): |
|
3697 | class SMOperations(): | |
3695 |
|
3698 | |||
3696 | def __init__(self): |
|
3699 | def __init__(self): | |
3697 |
|
3700 | |||
3698 | return |
|
3701 | return | |
3699 |
|
3702 | |||
3700 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): |
|
3703 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
3701 |
|
3704 | |||
3702 | arrayParameters = arrayParameters0.copy() |
|
3705 | arrayParameters = arrayParameters0.copy() | |
3703 | hmin = h[0] |
|
3706 | hmin = h[0] | |
3704 | hmax = h[1] |
|
3707 | hmax = h[1] | |
3705 |
|
3708 | |||
3706 | #Calculate AOA (Error N 3, 4) |
|
3709 | #Calculate AOA (Error N 3, 4) | |
3707 | #JONES ET AL. 1998 |
|
3710 | #JONES ET AL. 1998 | |
3708 | AOAthresh = numpy.pi/8 |
|
3711 | AOAthresh = numpy.pi/8 | |
3709 | error = arrayParameters[:,-1] |
|
3712 | error = arrayParameters[:,-1] | |
3710 | phases = -arrayParameters[:,8:12] + jph |
|
3713 | phases = -arrayParameters[:,8:12] + jph | |
3711 | # phases = numpy.unwrap(phases) |
|
3714 | # phases = numpy.unwrap(phases) | |
3712 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) |
|
3715 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
3713 |
|
3716 | |||
3714 | #Calculate Heights (Error N 13 and 14) |
|
3717 | #Calculate Heights (Error N 13 and 14) | |
3715 | error = arrayParameters[:,-1] |
|
3718 | error = arrayParameters[:,-1] | |
3716 | Ranges = arrayParameters[:,1] |
|
3719 | Ranges = arrayParameters[:,1] | |
3717 | zenith = arrayParameters[:,4] |
|
3720 | zenith = arrayParameters[:,4] | |
3718 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
3721 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
3719 |
|
3722 | |||
3720 | #----------------------- Get Final data ------------------------------------ |
|
3723 | #----------------------- Get Final data ------------------------------------ | |
3721 | # error = arrayParameters[:,-1] |
|
3724 | # error = arrayParameters[:,-1] | |
3722 | # ind1 = numpy.where(error==0)[0] |
|
3725 | # ind1 = numpy.where(error==0)[0] | |
3723 | # arrayParameters = arrayParameters[ind1,:] |
|
3726 | # arrayParameters = arrayParameters[ind1,:] | |
3724 |
|
3727 | |||
3725 | return arrayParameters |
|
3728 | return arrayParameters | |
3726 |
|
3729 | |||
3727 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): |
|
3730 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
3728 |
|
3731 | |||
3729 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3732 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3730 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) |
|
3733 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
3731 |
|
3734 | |||
3732 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3735 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3733 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3736 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3734 | arrayAOA[:,2] = cosDirError |
|
3737 | arrayAOA[:,2] = cosDirError | |
3735 |
|
3738 | |||
3736 | azimuthAngle = arrayAOA[:,0] |
|
3739 | azimuthAngle = arrayAOA[:,0] | |
3737 | zenithAngle = arrayAOA[:,1] |
|
3740 | zenithAngle = arrayAOA[:,1] | |
3738 |
|
3741 | |||
3739 | #Setting Error |
|
3742 | #Setting Error | |
3740 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] |
|
3743 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
3741 | error[indError] = 0 |
|
3744 | error[indError] = 0 | |
3742 | #Number 3: AOA not fesible |
|
3745 | #Number 3: AOA not fesible | |
3743 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3746 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3744 | error[indInvalid] = 3 |
|
3747 | error[indInvalid] = 3 | |
3745 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3748 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3746 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3749 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3747 | error[indInvalid] = 4 |
|
3750 | error[indInvalid] = 4 | |
3748 | return arrayAOA, error |
|
3751 | return arrayAOA, error | |
3749 |
|
3752 | |||
3750 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): |
|
3753 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
3751 |
|
3754 | |||
3752 | #Initializing some variables |
|
3755 | #Initializing some variables | |
3753 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3756 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3754 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3757 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3755 |
|
3758 | |||
3756 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3759 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3757 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3760 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3758 |
|
3761 | |||
3759 |
|
3762 | |||
3760 | for i in range(2): |
|
3763 | for i in range(2): | |
3761 | ph0 = arrayPhase[:,pairsList[i][0]] |
|
3764 | ph0 = arrayPhase[:,pairsList[i][0]] | |
3762 | ph1 = arrayPhase[:,pairsList[i][1]] |
|
3765 | ph1 = arrayPhase[:,pairsList[i][1]] | |
3763 | d0 = distances[pairsList[i][0]] |
|
3766 | d0 = distances[pairsList[i][0]] | |
3764 | d1 = distances[pairsList[i][1]] |
|
3767 | d1 = distances[pairsList[i][1]] | |
3765 |
|
3768 | |||
3766 | ph0_aux = ph0 + ph1 |
|
3769 | ph0_aux = ph0 + ph1 | |
3767 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) |
|
3770 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
3768 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi |
|
3771 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
3769 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3772 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
3770 | #First Estimation |
|
3773 | #First Estimation | |
3771 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) |
|
3774 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
3772 |
|
3775 | |||
3773 | #Most-Accurate Second Estimation |
|
3776 | #Most-Accurate Second Estimation | |
3774 | phi1_aux = ph0 - ph1 |
|
3777 | phi1_aux = ph0 - ph1 | |
3775 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3778 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3776 | #Direction Cosine 1 |
|
3779 | #Direction Cosine 1 | |
3777 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) |
|
3780 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
3778 |
|
3781 | |||
3779 | #Searching the correct Direction Cosine |
|
3782 | #Searching the correct Direction Cosine | |
3780 | cosdir0_aux = cosdir0[:,i] |
|
3783 | cosdir0_aux = cosdir0[:,i] | |
3781 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3784 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3782 | #Minimum Distance |
|
3785 | #Minimum Distance | |
3783 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3786 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3784 | indcos = cosDiff.argmin(axis = 1) |
|
3787 | indcos = cosDiff.argmin(axis = 1) | |
3785 | #Saving Value obtained |
|
3788 | #Saving Value obtained | |
3786 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3789 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3787 |
|
3790 | |||
3788 | return cosdir0, cosdir |
|
3791 | return cosdir0, cosdir | |
3789 |
|
3792 | |||
3790 | def __calculateAOA(self, cosdir, azimuth): |
|
3793 | def __calculateAOA(self, cosdir, azimuth): | |
3791 | cosdirX = cosdir[:,0] |
|
3794 | cosdirX = cosdir[:,0] | |
3792 | cosdirY = cosdir[:,1] |
|
3795 | cosdirY = cosdir[:,1] | |
3793 |
|
3796 | |||
3794 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3797 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3795 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east |
|
3798 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
3796 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3799 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3797 |
|
3800 | |||
3798 | return angles |
|
3801 | return angles | |
3799 |
|
3802 | |||
3800 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3803 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3801 |
|
3804 | |||
3802 | Ramb = 375 #Ramb = c/(2*PRF) |
|
3805 | Ramb = 375 #Ramb = c/(2*PRF) | |
3803 | Re = 6371 #Earth Radius |
|
3806 | Re = 6371 #Earth Radius | |
3804 | heights = numpy.zeros(Ranges.shape) |
|
3807 | heights = numpy.zeros(Ranges.shape) | |
3805 |
|
3808 | |||
3806 | R_aux = numpy.array([0,1,2])*Ramb |
|
3809 | R_aux = numpy.array([0,1,2])*Ramb | |
3807 | R_aux = R_aux.reshape(1,R_aux.size) |
|
3810 | R_aux = R_aux.reshape(1,R_aux.size) | |
3808 |
|
3811 | |||
3809 | Ranges = Ranges.reshape(Ranges.size,1) |
|
3812 | Ranges = Ranges.reshape(Ranges.size,1) | |
3810 |
|
3813 | |||
3811 | Ri = Ranges + R_aux |
|
3814 | Ri = Ranges + R_aux | |
3812 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
3815 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
3813 |
|
3816 | |||
3814 | #Check if there is a height between 70 and 110 km |
|
3817 | #Check if there is a height between 70 and 110 km | |
3815 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
3818 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
3816 | ind_h = numpy.where(h_bool == 1)[0] |
|
3819 | ind_h = numpy.where(h_bool == 1)[0] | |
3817 |
|
3820 | |||
3818 | hCorr = hi[ind_h, :] |
|
3821 | hCorr = hi[ind_h, :] | |
3819 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
3822 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
3820 |
|
3823 | |||
3821 | hCorr = hi[ind_hCorr] |
|
3824 | hCorr = hi[ind_hCorr] | |
3822 | heights[ind_h] = hCorr |
|
3825 | heights[ind_h] = hCorr | |
3823 |
|
3826 | |||
3824 | #Setting Error |
|
3827 | #Setting Error | |
3825 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
3828 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
3826 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
3829 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
3827 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] |
|
3830 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
3828 | error[indError] = 0 |
|
3831 | error[indError] = 0 | |
3829 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
3832 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
3830 | error[indInvalid2] = 14 |
|
3833 | error[indInvalid2] = 14 | |
3831 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
3834 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
3832 | error[indInvalid1] = 13 |
|
3835 | error[indInvalid1] = 13 | |
3833 |
|
3836 | |||
3834 | return heights, error |
|
3837 | return heights, error | |
3835 |
|
3838 | |||
3836 | def getPhasePairs(self, channelPositions): |
|
3839 | def getPhasePairs(self, channelPositions): | |
3837 | chanPos = numpy.array(channelPositions) |
|
3840 | chanPos = numpy.array(channelPositions) | |
3838 | listOper = list(itertools.combinations(range(5),2)) |
|
3841 | listOper = list(itertools.combinations(range(5),2)) | |
3839 |
|
3842 | |||
3840 | distances = numpy.zeros(4) |
|
3843 | distances = numpy.zeros(4) | |
3841 | axisX = [] |
|
3844 | axisX = [] | |
3842 | axisY = [] |
|
3845 | axisY = [] | |
3843 | distX = numpy.zeros(3) |
|
3846 | distX = numpy.zeros(3) | |
3844 | distY = numpy.zeros(3) |
|
3847 | distY = numpy.zeros(3) | |
3845 | ix = 0 |
|
3848 | ix = 0 | |
3846 | iy = 0 |
|
3849 | iy = 0 | |
3847 |
|
3850 | |||
3848 | pairX = numpy.zeros((2,2)) |
|
3851 | pairX = numpy.zeros((2,2)) | |
3849 | pairY = numpy.zeros((2,2)) |
|
3852 | pairY = numpy.zeros((2,2)) | |
3850 |
|
3853 | |||
3851 | for i in range(len(listOper)): |
|
3854 | for i in range(len(listOper)): | |
3852 | pairi = listOper[i] |
|
3855 | pairi = listOper[i] | |
3853 |
|
3856 | |||
3854 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) |
|
3857 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
3855 |
|
3858 | |||
3856 | if posDif[0] == 0: |
|
3859 | if posDif[0] == 0: | |
3857 | axisY.append(pairi) |
|
3860 | axisY.append(pairi) | |
3858 | distY[iy] = posDif[1] |
|
3861 | distY[iy] = posDif[1] | |
3859 | iy += 1 |
|
3862 | iy += 1 | |
3860 | elif posDif[1] == 0: |
|
3863 | elif posDif[1] == 0: | |
3861 | axisX.append(pairi) |
|
3864 | axisX.append(pairi) | |
3862 | distX[ix] = posDif[0] |
|
3865 | distX[ix] = posDif[0] | |
3863 | ix += 1 |
|
3866 | ix += 1 | |
3864 |
|
3867 | |||
3865 | for i in range(2): |
|
3868 | for i in range(2): | |
3866 | if i==0: |
|
3869 | if i==0: | |
3867 | dist0 = distX |
|
3870 | dist0 = distX | |
3868 | axis0 = axisX |
|
3871 | axis0 = axisX | |
3869 | else: |
|
3872 | else: | |
3870 | dist0 = distY |
|
3873 | dist0 = distY | |
3871 | axis0 = axisY |
|
3874 | axis0 = axisY | |
3872 |
|
3875 | |||
3873 | side = numpy.argsort(dist0)[:-1] |
|
3876 | side = numpy.argsort(dist0)[:-1] | |
3874 | axis0 = numpy.array(axis0)[side,:] |
|
3877 | axis0 = numpy.array(axis0)[side,:] | |
3875 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) |
|
3878 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
3876 | axis1 = numpy.unique(numpy.reshape(axis0,4)) |
|
3879 | axis1 = numpy.unique(numpy.reshape(axis0,4)) | |
3877 | side = axis1[axis1 != chanC] |
|
3880 | side = axis1[axis1 != chanC] | |
3878 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] |
|
3881 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
3879 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] |
|
3882 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
3880 | if diff1<0: |
|
3883 | if diff1<0: | |
3881 | chan2 = side[0] |
|
3884 | chan2 = side[0] | |
3882 | d2 = numpy.abs(diff1) |
|
3885 | d2 = numpy.abs(diff1) | |
3883 | chan1 = side[1] |
|
3886 | chan1 = side[1] | |
3884 | d1 = numpy.abs(diff2) |
|
3887 | d1 = numpy.abs(diff2) | |
3885 | else: |
|
3888 | else: | |
3886 | chan2 = side[1] |
|
3889 | chan2 = side[1] | |
3887 | d2 = numpy.abs(diff2) |
|
3890 | d2 = numpy.abs(diff2) | |
3888 | chan1 = side[0] |
|
3891 | chan1 = side[0] | |
3889 | d1 = numpy.abs(diff1) |
|
3892 | d1 = numpy.abs(diff1) | |
3890 |
|
3893 | |||
3891 | if i==0: |
|
3894 | if i==0: | |
3892 | chanCX = chanC |
|
3895 | chanCX = chanC | |
3893 | chan1X = chan1 |
|
3896 | chan1X = chan1 | |
3894 | chan2X = chan2 |
|
3897 | chan2X = chan2 | |
3895 | distances[0:2] = numpy.array([d1,d2]) |
|
3898 | distances[0:2] = numpy.array([d1,d2]) | |
3896 | else: |
|
3899 | else: | |
3897 | chanCY = chanC |
|
3900 | chanCY = chanC | |
3898 | chan1Y = chan1 |
|
3901 | chan1Y = chan1 | |
3899 | chan2Y = chan2 |
|
3902 | chan2Y = chan2 | |
3900 | distances[2:4] = numpy.array([d1,d2]) |
|
3903 | distances[2:4] = numpy.array([d1,d2]) | |
3901 | # axisXsides = numpy.reshape(axisX[ix,:],4) |
|
3904 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
3902 | # |
|
3905 | # | |
3903 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) |
|
3906 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
3904 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) |
|
3907 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
3905 | # |
|
3908 | # | |
3906 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] |
|
3909 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
3907 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] |
|
3910 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
3908 | # channel25X = int(pairX[0,ind25X]) |
|
3911 | # channel25X = int(pairX[0,ind25X]) | |
3909 | # channel20X = int(pairX[1,ind20X]) |
|
3912 | # channel20X = int(pairX[1,ind20X]) | |
3910 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] |
|
3913 | # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0] | |
3911 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] |
|
3914 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
3912 | # channel25Y = int(pairY[0,ind25Y]) |
|
3915 | # channel25Y = int(pairY[0,ind25Y]) | |
3913 | # channel20Y = int(pairY[1,ind20Y]) |
|
3916 | # channel20Y = int(pairY[1,ind20Y]) | |
3914 |
|
3917 | |||
3915 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] |
|
3918 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
3916 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] |
|
3919 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
3917 |
|
3920 | |||
3918 | return pairslist, distances |
|
3921 | return pairslist, distances | |
3919 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
3922 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
3920 | # |
|
3923 | # | |
3921 | # arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
3924 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
3922 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
3925 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
3923 | # |
|
3926 | # | |
3924 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
3927 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
3925 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
3928 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
3926 | # arrayAOA[:,2] = cosDirError |
|
3929 | # arrayAOA[:,2] = cosDirError | |
3927 | # |
|
3930 | # | |
3928 | # azimuthAngle = arrayAOA[:,0] |
|
3931 | # azimuthAngle = arrayAOA[:,0] | |
3929 | # zenithAngle = arrayAOA[:,1] |
|
3932 | # zenithAngle = arrayAOA[:,1] | |
3930 | # |
|
3933 | # | |
3931 | # #Setting Error |
|
3934 | # #Setting Error | |
3932 | # #Number 3: AOA not fesible |
|
3935 | # #Number 3: AOA not fesible | |
3933 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
3936 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
3934 | # error[indInvalid] = 3 |
|
3937 | # error[indInvalid] = 3 | |
3935 | # #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
3938 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
3936 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
3939 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
3937 | # error[indInvalid] = 4 |
|
3940 | # error[indInvalid] = 4 | |
3938 | # return arrayAOA, error |
|
3941 | # return arrayAOA, error | |
3939 | # |
|
3942 | # | |
3940 | # def __getDirectionCosines(self, arrayPhase, pairsList): |
|
3943 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
3941 | # |
|
3944 | # | |
3942 | # #Initializing some variables |
|
3945 | # #Initializing some variables | |
3943 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
3946 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
3944 | # ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
3947 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
3945 | # |
|
3948 | # | |
3946 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
3949 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
3947 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
3950 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
3948 | # |
|
3951 | # | |
3949 | # |
|
3952 | # | |
3950 | # for i in range(2): |
|
3953 | # for i in range(2): | |
3951 | # #First Estimation |
|
3954 | # #First Estimation | |
3952 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
3955 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
3953 | # #Dealias |
|
3956 | # #Dealias | |
3954 | # indcsi = numpy.where(phi0_aux > numpy.pi) |
|
3957 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
3955 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3958 | # phi0_aux[indcsi] -= 2*numpy.pi | |
3956 | # indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
3959 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
3957 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3960 | # phi0_aux[indcsi] += 2*numpy.pi | |
3958 | # #Direction Cosine 0 |
|
3961 | # #Direction Cosine 0 | |
3959 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
3962 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
3960 | # |
|
3963 | # | |
3961 | # #Most-Accurate Second Estimation |
|
3964 | # #Most-Accurate Second Estimation | |
3962 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
3965 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
3963 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
3966 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
3964 | # #Direction Cosine 1 |
|
3967 | # #Direction Cosine 1 | |
3965 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
3968 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
3966 | # |
|
3969 | # | |
3967 | # #Searching the correct Direction Cosine |
|
3970 | # #Searching the correct Direction Cosine | |
3968 | # cosdir0_aux = cosdir0[:,i] |
|
3971 | # cosdir0_aux = cosdir0[:,i] | |
3969 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
3972 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
3970 | # #Minimum Distance |
|
3973 | # #Minimum Distance | |
3971 | # cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
3974 | # cosDiff = (cosdir1 - cosdir0_aux)**2 | |
3972 | # indcos = cosDiff.argmin(axis = 1) |
|
3975 | # indcos = cosDiff.argmin(axis = 1) | |
3973 | # #Saving Value obtained |
|
3976 | # #Saving Value obtained | |
3974 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
3977 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
3975 | # |
|
3978 | # | |
3976 | # return cosdir0, cosdir |
|
3979 | # return cosdir0, cosdir | |
3977 | # |
|
3980 | # | |
3978 | # def __calculateAOA(self, cosdir, azimuth): |
|
3981 | # def __calculateAOA(self, cosdir, azimuth): | |
3979 | # cosdirX = cosdir[:,0] |
|
3982 | # cosdirX = cosdir[:,0] | |
3980 | # cosdirY = cosdir[:,1] |
|
3983 | # cosdirY = cosdir[:,1] | |
3981 | # |
|
3984 | # | |
3982 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
3985 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
3983 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
3986 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
3984 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
3987 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
3985 | # |
|
3988 | # | |
3986 | # return angles |
|
3989 | # return angles | |
3987 | # |
|
3990 | # | |
3988 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
3991 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
3989 | # |
|
3992 | # | |
3990 | # Ramb = 375 #Ramb = c/(2*PRF) |
|
3993 | # Ramb = 375 #Ramb = c/(2*PRF) | |
3991 | # Re = 6371 #Earth Radius |
|
3994 | # Re = 6371 #Earth Radius | |
3992 | # heights = numpy.zeros(Ranges.shape) |
|
3995 | # heights = numpy.zeros(Ranges.shape) | |
3993 | # |
|
3996 | # | |
3994 | # R_aux = numpy.array([0,1,2])*Ramb |
|
3997 | # R_aux = numpy.array([0,1,2])*Ramb | |
3995 | # R_aux = R_aux.reshape(1,R_aux.size) |
|
3998 | # R_aux = R_aux.reshape(1,R_aux.size) | |
3996 | # |
|
3999 | # | |
3997 | # Ranges = Ranges.reshape(Ranges.size,1) |
|
4000 | # Ranges = Ranges.reshape(Ranges.size,1) | |
3998 | # |
|
4001 | # | |
3999 | # Ri = Ranges + R_aux |
|
4002 | # Ri = Ranges + R_aux | |
4000 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
4003 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
4001 | # |
|
4004 | # | |
4002 | # #Check if there is a height between 70 and 110 km |
|
4005 | # #Check if there is a height between 70 and 110 km | |
4003 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
4006 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
4004 | # ind_h = numpy.where(h_bool == 1)[0] |
|
4007 | # ind_h = numpy.where(h_bool == 1)[0] | |
4005 | # |
|
4008 | # | |
4006 | # hCorr = hi[ind_h, :] |
|
4009 | # hCorr = hi[ind_h, :] | |
4007 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
4010 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
4008 | # |
|
4011 | # | |
4009 | # hCorr = hi[ind_hCorr] |
|
4012 | # hCorr = hi[ind_hCorr] | |
4010 | # heights[ind_h] = hCorr |
|
4013 | # heights[ind_h] = hCorr | |
4011 | # |
|
4014 | # | |
4012 | # #Setting Error |
|
4015 | # #Setting Error | |
4013 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
4016 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
4014 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4017 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
4015 | # |
|
4018 | # | |
4016 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4019 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
4017 | # error[indInvalid2] = 14 |
|
4020 | # error[indInvalid2] = 14 | |
4018 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
4021 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
4019 | # error[indInvalid1] = 13 |
|
4022 | # error[indInvalid1] = 13 | |
4020 | # |
|
4023 | # | |
4021 | # return heights, error |
|
4024 | # return heights, error | |
4022 | No newline at end of file |
|
4025 |
@@ -1,1 +1,1 | |||||
1 |
<Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/ |
|
1 | <Project description="Segundo Test" id="191" name="test01"><ReadUnit datatype="SpectraReader" id="1911" inputId="0" name="SpectraReader"><Operation id="19111" name="run" priority="1" type="self"><Parameter format="str" id="191111" name="datatype" value="SpectraReader" /><Parameter format="str" id="191112" name="path" value="/data/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /><Parameter format="date" id="191113" name="startDate" value="2018/02/01" /><Parameter format="date" id="191114" name="endDate" value="2018/02/01" /><Parameter format="time" id="191115" name="startTime" value="17:00:00" /><Parameter format="time" id="191116" name="endTime" value="20:00:00" /><Parameter format="int" id="191118" name="online" value="0" /><Parameter format="int" id="191119" name="walk" value="1" /></Operation><Operation id="19112" name="printInfo" priority="2" type="self" /><Operation id="19113" name="printNumberOfBlock" priority="3" type="self" /></ReadUnit><ProcUnit datatype="Parameters" id="1913" inputId="1912" name="ParametersProc"><Operation id="19131" name="run" priority="1" type="self" /><Operation id="19132" name="SpectralFilters" priority="2" type="other"><Parameter format="float" id="191321" name="PositiveLimit" value="1.5" /><Parameter format="float" id="191322" name="NegativeLimit" value="3.5" /></Operation><Operation id="19133" name="PrecipitationProc" priority="3" type="other" /><Operation id="19134" name="ParametersPlot" priority="4" type="other"><Parameter format="int" id="191341" name="id" value="10" /><Parameter format="str" id="191342" name="wintitle" value="First_gg" /><Parameter format="str" id="191343" name="colormap" value="ocean_r" /><Parameter format="int" id="191344" name="zmin" value="00" /><Parameter format="int" id="191345" name="zmax" value="40" /><Parameter format="int" id="191346" name="ymin" value="0" /><Parameter format="int" id="191347" name="ymax" value="11" /><Parameter format="int" id="191348" name="xmin" value="17" /><Parameter format="int" id="191349" name="xmax" value="20" /><Parameter format="int" id="191350" name="save" value="1" /><Parameter format="str" id="191351" name="figpath" value="/data/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdataCLAIRE/Extra" /></Operation><Operation id="19135" name="ParamWriter" priority="5" type="other"><Parameter format="str" id="191351" name="path" value="/data/CLAIRE/CLAIRE_WINDS_2MHZ/DATA/pdatatest/test1024" /><Parameter format="int" id="191352" name="blocksPerFile" value="100" /><Parameter format="list" id="191353" name="metadataList" value="heightList,timeZone,paramInterval" /><Parameter format="list" id="191354" name="dataList" value="data_output,data_SNR,utctime,utctimeInit" /></Operation></ProcUnit><ProcUnit datatype="SpectraProc" id="1912" inputId="1911" name="SpectraProc"><Operation id="19121" name="run" priority="1" type="self" /><Operation id="19122" name="setRadarFrequency" priority="2" type="self"><Parameter format="float" id="191221" name="frequency" value="445.09e6" /></Operation></ProcUnit></Project> No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now