@@ -1,907 +1,906 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROHeaderIO.py 151 2012-10-31 19:00:51Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | import sys |
|
7 | 7 | import numpy |
|
8 | 8 | import copy |
|
9 | 9 | import datetime |
|
10 | 10 | import inspect |
|
11 | 11 | from schainpy.utils import log |
|
12 | 12 | |
|
13 | 13 | SPEED_OF_LIGHT = 299792458 |
|
14 | 14 | SPEED_OF_LIGHT = 3e8 |
|
15 | 15 | |
|
16 | 16 | BASIC_STRUCTURE = numpy.dtype([ |
|
17 | 17 | ('nSize', '<u4'), |
|
18 | 18 | ('nVersion', '<u2'), |
|
19 | 19 | ('nDataBlockId', '<u4'), |
|
20 | 20 | ('nUtime', '<u4'), |
|
21 | 21 | ('nMilsec', '<u2'), |
|
22 | 22 | ('nTimezone', '<i2'), |
|
23 | 23 | ('nDstflag', '<i2'), |
|
24 | 24 | ('nErrorCount', '<u4') |
|
25 | 25 | ]) |
|
26 | 26 | |
|
27 | 27 | SYSTEM_STRUCTURE = numpy.dtype([ |
|
28 | 28 | ('nSize', '<u4'), |
|
29 | 29 | ('nNumSamples', '<u4'), |
|
30 | 30 | ('nNumProfiles', '<u4'), |
|
31 | 31 | ('nNumChannels', '<u4'), |
|
32 | 32 | ('nADCResolution', '<u4'), |
|
33 | 33 | ('nPCDIOBusWidth', '<u4'), |
|
34 | 34 | ]) |
|
35 | 35 | |
|
36 | 36 | RADAR_STRUCTURE = numpy.dtype([ |
|
37 | 37 | ('nSize', '<u4'), |
|
38 | 38 | ('nExpType', '<u4'), |
|
39 | 39 | ('nNTx', '<u4'), |
|
40 | 40 | ('fIpp', '<f4'), |
|
41 | 41 | ('fTxA', '<f4'), |
|
42 | 42 | ('fTxB', '<f4'), |
|
43 | 43 | ('nNumWindows', '<u4'), |
|
44 | 44 | ('nNumTaus', '<u4'), |
|
45 | 45 | ('nCodeType', '<u4'), |
|
46 | 46 | ('nLine6Function', '<u4'), |
|
47 | 47 | ('nLine5Function', '<u4'), |
|
48 | 48 | ('fClock', '<f4'), |
|
49 | 49 | ('nPrePulseBefore', '<u4'), |
|
50 | 50 | ('nPrePulseAfter', '<u4'), |
|
51 | 51 | ('sRangeIPP', '<a20'), |
|
52 | 52 | ('sRangeTxA', '<a20'), |
|
53 | 53 | ('sRangeTxB', '<a20'), |
|
54 | 54 | ]) |
|
55 | 55 | |
|
56 | 56 | SAMPLING_STRUCTURE = numpy.dtype( |
|
57 | 57 | [('h0', '<f4'), ('dh', '<f4'), ('nsa', '<u4')]) |
|
58 | 58 | |
|
59 | 59 | |
|
60 | 60 | PROCESSING_STRUCTURE = numpy.dtype([ |
|
61 | 61 | ('nSize', '<u4'), |
|
62 | 62 | ('nDataType', '<u4'), |
|
63 | 63 | ('nSizeOfDataBlock', '<u4'), |
|
64 | 64 | ('nProfilesperBlock', '<u4'), |
|
65 | 65 | ('nDataBlocksperFile', '<u4'), |
|
66 | 66 | ('nNumWindows', '<u4'), |
|
67 | 67 | ('nProcessFlags', '<u4'), |
|
68 | 68 | ('nCoherentIntegrations', '<u4'), |
|
69 | 69 | ('nIncoherentIntegrations', '<u4'), |
|
70 | 70 | ('nTotalSpectra', '<u4') |
|
71 | 71 | ]) |
|
72 | 72 | |
|
73 | 73 | |
|
74 | 74 | class Header(object): |
|
75 | 75 | |
|
76 | 76 | def __init__(self): |
|
77 | 77 | raise NotImplementedError |
|
78 | 78 | |
|
79 | 79 | def copy(self): |
|
80 | 80 | return copy.deepcopy(self) |
|
81 | 81 | |
|
82 | 82 | def read(self): |
|
83 | 83 | |
|
84 | 84 | raise NotImplementedError |
|
85 | 85 | |
|
86 | 86 | def write(self): |
|
87 | 87 | |
|
88 | 88 | raise NotImplementedError |
|
89 | 89 | |
|
90 | 90 | def getAllowedArgs(self): |
|
91 | 91 | args = inspect.getargspec(self.__init__).args |
|
92 | 92 | try: |
|
93 | 93 | args.remove('self') |
|
94 | 94 | except: |
|
95 | 95 | pass |
|
96 | 96 | return args |
|
97 | 97 | |
|
98 | 98 | def getAsDict(self): |
|
99 | 99 | args = self.getAllowedArgs() |
|
100 | 100 | asDict = {} |
|
101 | 101 | for x in args: |
|
102 | 102 | asDict[x] = self[x] |
|
103 | 103 | return asDict |
|
104 | 104 | |
|
105 | 105 | def __getitem__(self, name): |
|
106 | 106 | return getattr(self, name) |
|
107 | 107 | |
|
108 | 108 | def printInfo(self): |
|
109 | 109 | |
|
110 | 110 | message = "#" * 50 + "\n" |
|
111 | 111 | message += self.__class__.__name__.upper() + "\n" |
|
112 | 112 | message += "#" * 50 + "\n" |
|
113 | 113 | |
|
114 | 114 | keyList = list(self.__dict__.keys()) |
|
115 | 115 | keyList.sort() |
|
116 | 116 | |
|
117 | 117 | for key in keyList: |
|
118 | 118 | message += "%s = %s" % (key, self.__dict__[key]) + "\n" |
|
119 | 119 | |
|
120 | 120 | if "size" not in keyList: |
|
121 | 121 | attr = getattr(self, "size") |
|
122 | 122 | |
|
123 | 123 | if attr: |
|
124 | 124 | message += "%s = %s" % ("size", attr) + "\n" |
|
125 | 125 | |
|
126 | 126 | print(message) |
|
127 | 127 | |
|
128 | 128 | |
|
129 | 129 | class BasicHeader(Header): |
|
130 | 130 | |
|
131 | 131 | size = None |
|
132 | 132 | version = None |
|
133 | 133 | dataBlock = None |
|
134 | 134 | utc = None |
|
135 | 135 | ltc = None |
|
136 | 136 | miliSecond = None |
|
137 | 137 | timeZone = None |
|
138 | 138 | dstFlag = None |
|
139 | 139 | errorCount = None |
|
140 | 140 | datatime = None |
|
141 | 141 | structure = BASIC_STRUCTURE |
|
142 | 142 | __LOCALTIME = None |
|
143 | 143 | |
|
144 | 144 | def __init__(self, useLocalTime=True): |
|
145 | 145 | |
|
146 | 146 | self.size = 24 |
|
147 | 147 | self.version = 0 |
|
148 | 148 | self.dataBlock = 0 |
|
149 | 149 | self.utc = 0 |
|
150 | 150 | self.miliSecond = 0 |
|
151 | 151 | self.timeZone = 0 |
|
152 | 152 | self.dstFlag = 0 |
|
153 | 153 | self.errorCount = 0 |
|
154 | 154 | |
|
155 | 155 | self.useLocalTime = useLocalTime |
|
156 | 156 | |
|
157 | 157 | def read(self, fp): |
|
158 | 158 | |
|
159 | 159 | self.length = 0 |
|
160 | 160 | try: |
|
161 | 161 | if hasattr(fp, 'read'): |
|
162 | 162 | header = numpy.fromfile(fp, BASIC_STRUCTURE, 1) |
|
163 | 163 | else: |
|
164 | 164 | header = numpy.fromstring(fp, BASIC_STRUCTURE, 1) |
|
165 | 165 | except Exception as e: |
|
166 | 166 | print("BasicHeader: ") |
|
167 | 167 | print(e) |
|
168 | 168 | return 0 |
|
169 | 169 | |
|
170 | 170 | self.size = int(header['nSize'][0]) |
|
171 | 171 | self.version = int(header['nVersion'][0]) |
|
172 | 172 | self.dataBlock = int(header['nDataBlockId'][0]) |
|
173 | 173 | self.utc = int(header['nUtime'][0]) |
|
174 | 174 | self.miliSecond = int(header['nMilsec'][0]) |
|
175 | 175 | self.timeZone = int(header['nTimezone'][0]) |
|
176 | 176 | self.dstFlag = int(header['nDstflag'][0]) |
|
177 | 177 | self.errorCount = int(header['nErrorCount'][0]) |
|
178 | 178 | |
|
179 | 179 | if self.size < 24: |
|
180 | 180 | return 0 |
|
181 | 181 | |
|
182 | 182 | self.length = header.nbytes |
|
183 | 183 | return 1 |
|
184 | 184 | |
|
185 | 185 | def write(self, fp): |
|
186 | 186 | |
|
187 | 187 | headerTuple = (self.size, self.version, self.dataBlock, self.utc, |
|
188 | 188 | self.miliSecond, self.timeZone, self.dstFlag, self.errorCount) |
|
189 | 189 | header = numpy.array(headerTuple, BASIC_STRUCTURE) |
|
190 | 190 | header.tofile(fp) |
|
191 | 191 | |
|
192 | 192 | return 1 |
|
193 | 193 | |
|
194 | 194 | def get_ltc(self): |
|
195 | 195 | |
|
196 | 196 | return self.utc - self.timeZone * 60 |
|
197 | 197 | |
|
198 | 198 | def set_ltc(self, value): |
|
199 | 199 | |
|
200 | 200 | self.utc = value + self.timeZone * 60 |
|
201 | 201 | |
|
202 | 202 | def get_datatime(self): |
|
203 | 203 | |
|
204 | 204 | return datetime.datetime.utcfromtimestamp(self.ltc) |
|
205 | 205 | |
|
206 | 206 | ltc = property(get_ltc, set_ltc) |
|
207 | 207 | datatime = property(get_datatime) |
|
208 | 208 | |
|
209 | 209 | |
|
210 | 210 | class SystemHeader(Header): |
|
211 | 211 | |
|
212 | 212 | size = None |
|
213 | 213 | nSamples = None |
|
214 | 214 | nProfiles = None |
|
215 | 215 | nChannels = None |
|
216 | 216 | adcResolution = None |
|
217 | 217 | pciDioBusWidth = None |
|
218 | 218 | structure = SYSTEM_STRUCTURE |
|
219 | 219 | |
|
220 | 220 | def __init__(self, nSamples=0, nProfiles=0, nChannels=0, adcResolution=14, pciDioBusWidth=0): |
|
221 | 221 | |
|
222 | 222 | self.size = 24 |
|
223 | 223 | self.nSamples = nSamples |
|
224 | 224 | self.nProfiles = nProfiles |
|
225 | 225 | self.nChannels = nChannels |
|
226 | 226 | self.adcResolution = adcResolution |
|
227 | 227 | self.pciDioBusWidth = pciDioBusWidth |
|
228 | 228 | |
|
229 | 229 | def read(self, fp): |
|
230 | 230 | self.length = 0 |
|
231 | 231 | try: |
|
232 | 232 | startFp = fp.tell() |
|
233 | 233 | except Exception as e: |
|
234 | 234 | startFp = None |
|
235 | 235 | pass |
|
236 | 236 | |
|
237 | 237 | try: |
|
238 | 238 | if hasattr(fp, 'read'): |
|
239 | 239 | header = numpy.fromfile(fp, SYSTEM_STRUCTURE, 1) |
|
240 | 240 | else: |
|
241 | 241 | header = numpy.fromstring(fp, SYSTEM_STRUCTURE, 1) |
|
242 | 242 | except Exception as e: |
|
243 | 243 | print("System Header: " + str(e)) |
|
244 | 244 | return 0 |
|
245 | 245 | |
|
246 | 246 | self.size = header['nSize'][0] |
|
247 | 247 | self.nSamples = header['nNumSamples'][0] |
|
248 | 248 | self.nProfiles = header['nNumProfiles'][0] |
|
249 | 249 | self.nChannels = header['nNumChannels'][0] |
|
250 | 250 | self.adcResolution = header['nADCResolution'][0] |
|
251 | 251 | self.pciDioBusWidth = header['nPCDIOBusWidth'][0] |
|
252 | 252 | |
|
253 | 253 | if startFp is not None: |
|
254 | 254 | endFp = self.size + startFp |
|
255 | 255 | |
|
256 | 256 | if fp.tell() > endFp: |
|
257 | 257 | sys.stderr.write( |
|
258 | 258 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp.name) |
|
259 | 259 | return 0 |
|
260 | 260 | |
|
261 | 261 | if fp.tell() < endFp: |
|
262 | 262 | sys.stderr.write( |
|
263 | 263 | "Warning %s: Size value read from System Header size is greater than it has to be\n" % fp.name) |
|
264 | 264 | return 0 |
|
265 | 265 | |
|
266 | 266 | self.length = header.nbytes |
|
267 | 267 | return 1 |
|
268 | 268 | |
|
269 | 269 | def write(self, fp): |
|
270 | 270 | |
|
271 | 271 | headerTuple = (self.size, self.nSamples, self.nProfiles, |
|
272 | 272 | self.nChannels, self.adcResolution, self.pciDioBusWidth) |
|
273 | 273 | header = numpy.array(headerTuple, SYSTEM_STRUCTURE) |
|
274 | 274 | header.tofile(fp) |
|
275 | 275 | |
|
276 | 276 | return 1 |
|
277 | 277 | |
|
278 | 278 | |
|
279 | 279 | class RadarControllerHeader(Header): |
|
280 | 280 | |
|
281 | 281 | expType = None |
|
282 | 282 | nTx = None |
|
283 | 283 | ipp = None |
|
284 | 284 | txA = None |
|
285 | 285 | txB = None |
|
286 | 286 | nWindows = None |
|
287 | 287 | numTaus = None |
|
288 | 288 | codeType = None |
|
289 | 289 | line6Function = None |
|
290 | 290 | line5Function = None |
|
291 | 291 | fClock = None |
|
292 | 292 | prePulseBefore = None |
|
293 | 293 | prePulseAfter = None |
|
294 | 294 | rangeIpp = None |
|
295 | 295 | rangeTxA = None |
|
296 | 296 | rangeTxB = None |
|
297 | 297 | structure = RADAR_STRUCTURE |
|
298 | 298 | __size = None |
|
299 | 299 | |
|
300 | 300 | def __init__(self, expType=2, nTx=1, |
|
301 | 301 | ipp=None, txA=0, txB=0, |
|
302 | 302 | nWindows=None, nHeights=None, firstHeight=None, deltaHeight=None, |
|
303 | 303 | numTaus=0, line6Function=0, line5Function=0, fClock=None, |
|
304 | 304 | prePulseBefore=0, prePulseAfter=0, |
|
305 | 305 | codeType=0, nCode=0, nBaud=0, code=None, |
|
306 | 306 | flip1=0, flip2=0): |
|
307 | 307 | |
|
308 | 308 | # self.size = 116 |
|
309 | 309 | self.expType = expType |
|
310 | 310 | self.nTx = nTx |
|
311 | 311 | self.ipp = ipp |
|
312 | 312 | self.txA = txA |
|
313 | 313 | self.txB = txB |
|
314 | 314 | self.rangeIpp = ipp |
|
315 | 315 | self.rangeTxA = txA |
|
316 | 316 | self.rangeTxB = txB |
|
317 | 317 | |
|
318 | 318 | self.nWindows = nWindows |
|
319 | 319 | self.numTaus = numTaus |
|
320 | 320 | self.codeType = codeType |
|
321 | 321 | self.line6Function = line6Function |
|
322 | 322 | self.line5Function = line5Function |
|
323 | 323 | self.fClock = fClock |
|
324 | 324 | self.prePulseBefore = prePulseBefore |
|
325 | 325 | self.prePulseAfter = prePulseAfter |
|
326 | 326 | |
|
327 | 327 | self.nHeights = nHeights |
|
328 | 328 | self.firstHeight = firstHeight |
|
329 | 329 | self.deltaHeight = deltaHeight |
|
330 | 330 | self.samplesWin = nHeights |
|
331 | 331 | |
|
332 | 332 | self.nCode = nCode |
|
333 | 333 | self.nBaud = nBaud |
|
334 | 334 | self.code = code |
|
335 | 335 | self.flip1 = flip1 |
|
336 | 336 | self.flip2 = flip2 |
|
337 | 337 | |
|
338 | 338 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
339 | 339 | # self.dynamic = numpy.array([],numpy.dtype('byte')) |
|
340 | 340 | |
|
341 | 341 | if self.fClock is None and self.deltaHeight is not None: |
|
342 | 342 | self.fClock = 0.15 / (deltaHeight * 1e-6) # 0.15Km / (height * 1u) |
|
343 | 343 | |
|
344 | 344 | def read(self, fp): |
|
345 | 345 | self.length = 0 |
|
346 | 346 | try: |
|
347 | 347 | startFp = fp.tell() |
|
348 | 348 | except Exception as e: |
|
349 | 349 | startFp = None |
|
350 | 350 | pass |
|
351 | 351 | |
|
352 | 352 | try: |
|
353 | 353 | if hasattr(fp, 'read'): |
|
354 | 354 | header = numpy.fromfile(fp, RADAR_STRUCTURE, 1) |
|
355 | 355 | else: |
|
356 | 356 | header = numpy.fromstring(fp, RADAR_STRUCTURE, 1) |
|
357 | 357 | self.length += header.nbytes |
|
358 | 358 | except Exception as e: |
|
359 | 359 | print("RadarControllerHeader: " + str(e)) |
|
360 | 360 | return 0 |
|
361 | 361 | |
|
362 | 362 | size = int(header['nSize'][0]) |
|
363 | 363 | self.expType = int(header['nExpType'][0]) |
|
364 | 364 | self.nTx = int(header['nNTx'][0]) |
|
365 | 365 | self.ipp = float(header['fIpp'][0]) |
|
366 | 366 | self.txA = float(header['fTxA'][0]) |
|
367 | 367 | self.txB = float(header['fTxB'][0]) |
|
368 | 368 | self.nWindows = int(header['nNumWindows'][0]) |
|
369 | 369 | self.numTaus = int(header['nNumTaus'][0]) |
|
370 | 370 | self.codeType = int(header['nCodeType'][0]) |
|
371 | 371 | self.line6Function = int(header['nLine6Function'][0]) |
|
372 | 372 | self.line5Function = int(header['nLine5Function'][0]) |
|
373 | 373 | self.fClock = float(header['fClock'][0]) |
|
374 | 374 | self.prePulseBefore = int(header['nPrePulseBefore'][0]) |
|
375 | 375 | self.prePulseAfter = int(header['nPrePulseAfter'][0]) |
|
376 | 376 | self.rangeIpp = header['sRangeIPP'][0] |
|
377 | 377 | self.rangeTxA = header['sRangeTxA'][0] |
|
378 | 378 | self.rangeTxB = header['sRangeTxB'][0] |
|
379 | 379 | |
|
380 | 380 | try: |
|
381 | 381 | if hasattr(fp, 'read'): |
|
382 | 382 | samplingWindow = numpy.fromfile( |
|
383 | 383 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
384 | 384 | else: |
|
385 | 385 | samplingWindow = numpy.fromstring( |
|
386 | 386 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
387 | 387 | self.length += samplingWindow.nbytes |
|
388 | 388 | except Exception as e: |
|
389 | 389 | print("RadarControllerHeader: " + str(e)) |
|
390 | 390 | return 0 |
|
391 | 391 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
392 | 392 | self.firstHeight = samplingWindow['h0'] |
|
393 | 393 | self.deltaHeight = samplingWindow['dh'] |
|
394 | 394 | self.samplesWin = samplingWindow['nsa'] |
|
395 | 395 | |
|
396 | 396 | try: |
|
397 | 397 | if hasattr(fp, 'read'): |
|
398 | 398 | self.Taus = numpy.fromfile(fp, '<f4', self.numTaus) |
|
399 | 399 | else: |
|
400 | 400 | self.Taus = numpy.fromstring( |
|
401 | 401 | fp[self.length:], '<f4', self.numTaus) |
|
402 | 402 | self.length += self.Taus.nbytes |
|
403 | 403 | except Exception as e: |
|
404 | 404 | print("RadarControllerHeader: " + str(e)) |
|
405 | 405 | return 0 |
|
406 | 406 | |
|
407 | 407 | self.code_size = 0 |
|
408 | 408 | if self.codeType != 0: |
|
409 | 409 | |
|
410 | 410 | try: |
|
411 | 411 | if hasattr(fp, 'read'): |
|
412 | 412 | self.nCode = numpy.fromfile(fp, '<u4', 1)[0] |
|
413 | 413 | self.length += self.nCode.nbytes |
|
414 | 414 | self.nBaud = numpy.fromfile(fp, '<u4', 1)[0] |
|
415 | 415 | self.length += self.nBaud.nbytes |
|
416 | 416 | else: |
|
417 | 417 | self.nCode = numpy.fromstring( |
|
418 | 418 | fp[self.length:], '<u4', 1)[0] |
|
419 | 419 | self.length += self.nCode.nbytes |
|
420 | 420 | self.nBaud = numpy.fromstring( |
|
421 | 421 | fp[self.length:], '<u4', 1)[0] |
|
422 | 422 | self.length += self.nBaud.nbytes |
|
423 | 423 | except Exception as e: |
|
424 | 424 | print("RadarControllerHeader: " + str(e)) |
|
425 | 425 | return 0 |
|
426 | 426 | code = numpy.empty([self.nCode, self.nBaud], dtype='i1') |
|
427 | 427 | |
|
428 | 428 | for ic in range(self.nCode): |
|
429 | 429 | try: |
|
430 | 430 | if hasattr(fp, 'read'): |
|
431 | 431 | temp = numpy.fromfile(fp, 'u4', int( |
|
432 | 432 | numpy.ceil(self.nBaud / 32.))) |
|
433 | 433 | else: |
|
434 | 434 | temp = numpy.fromstring( |
|
435 | 435 | fp, 'u4', int(numpy.ceil(self.nBaud / 32.))) |
|
436 | 436 | self.length += temp.nbytes |
|
437 | 437 | except Exception as e: |
|
438 | 438 | print("RadarControllerHeader: " + str(e)) |
|
439 | 439 | return 0 |
|
440 | 440 | |
|
441 | 441 | for ib in range(self.nBaud - 1, -1, -1): |
|
442 | log.error(ib / 32) | |
|
443 | 442 | code[ic, ib] = temp[int(ib / 32)] % 2 |
|
444 | 443 | temp[int(ib / 32)] = temp[int(ib / 32)] / 2 |
|
445 | 444 | |
|
446 | 445 | self.code = 2.0 * code - 1.0 |
|
447 | 446 | self.code_size = int(numpy.ceil(self.nBaud / 32.)) * self.nCode * 4 |
|
448 | 447 | |
|
449 | 448 | # if self.line5Function == RCfunction.FLIP: |
|
450 | 449 | # self.flip1 = numpy.fromfile(fp,'<u4',1) |
|
451 | 450 | # |
|
452 | 451 | # if self.line6Function == RCfunction.FLIP: |
|
453 | 452 | # self.flip2 = numpy.fromfile(fp,'<u4',1) |
|
454 | 453 | if startFp is not None: |
|
455 | 454 | endFp = size + startFp |
|
456 | 455 | |
|
457 | 456 | if fp.tell() != endFp: |
|
458 | 457 | # fp.seek(endFp) |
|
459 | 458 | print("%s: Radar Controller Header size is not consistent: from data [%d] != from header field [%d]" % (fp.name, fp.tell() - startFp, size)) |
|
460 | 459 | # return 0 |
|
461 | 460 | |
|
462 | 461 | if fp.tell() > endFp: |
|
463 | 462 | sys.stderr.write( |
|
464 | 463 | "Warning %s: Size value read from Radar Controller header is lower than it has to be\n" % fp.name) |
|
465 | 464 | # return 0 |
|
466 | 465 | |
|
467 | 466 | if fp.tell() < endFp: |
|
468 | 467 | sys.stderr.write( |
|
469 | 468 | "Warning %s: Size value read from Radar Controller header is greater than it has to be\n" % fp.name) |
|
470 | 469 | |
|
471 | 470 | return 1 |
|
472 | 471 | |
|
473 | 472 | def write(self, fp): |
|
474 | 473 | |
|
475 | 474 | headerTuple = (self.size, |
|
476 | 475 | self.expType, |
|
477 | 476 | self.nTx, |
|
478 | 477 | self.ipp, |
|
479 | 478 | self.txA, |
|
480 | 479 | self.txB, |
|
481 | 480 | self.nWindows, |
|
482 | 481 | self.numTaus, |
|
483 | 482 | self.codeType, |
|
484 | 483 | self.line6Function, |
|
485 | 484 | self.line5Function, |
|
486 | 485 | self.fClock, |
|
487 | 486 | self.prePulseBefore, |
|
488 | 487 | self.prePulseAfter, |
|
489 | 488 | self.rangeIpp, |
|
490 | 489 | self.rangeTxA, |
|
491 | 490 | self.rangeTxB) |
|
492 | 491 | |
|
493 | 492 | header = numpy.array(headerTuple, RADAR_STRUCTURE) |
|
494 | 493 | header.tofile(fp) |
|
495 | 494 | |
|
496 | 495 | sampleWindowTuple = ( |
|
497 | 496 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
498 | 497 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
499 | 498 | samplingWindow.tofile(fp) |
|
500 | 499 | |
|
501 | 500 | if self.numTaus > 0: |
|
502 | 501 | self.Taus.tofile(fp) |
|
503 | 502 | |
|
504 | 503 | if self.codeType != 0: |
|
505 | 504 | nCode = numpy.array(self.nCode, '<u4') |
|
506 | 505 | nCode.tofile(fp) |
|
507 | 506 | nBaud = numpy.array(self.nBaud, '<u4') |
|
508 | 507 | nBaud.tofile(fp) |
|
509 | 508 | code1 = (self.code + 1.0) / 2. |
|
510 | 509 | |
|
511 | 510 | for ic in range(self.nCode): |
|
512 | 511 | tempx = numpy.zeros(int(numpy.ceil(self.nBaud / 32.))) |
|
513 | 512 | start = 0 |
|
514 | 513 | end = 32 |
|
515 | 514 | for i in range(len(tempx)): |
|
516 | 515 | code_selected = code1[ic, start:end] |
|
517 | 516 | for j in range(len(code_selected) - 1, -1, -1): |
|
518 | 517 | if code_selected[j] == 1: |
|
519 | 518 | tempx[i] = tempx[i] + \ |
|
520 | 519 | 2**(len(code_selected) - 1 - j) |
|
521 | 520 | start = start + 32 |
|
522 | 521 | end = end + 32 |
|
523 | 522 | |
|
524 | 523 | tempx = tempx.astype('u4') |
|
525 | 524 | tempx.tofile(fp) |
|
526 | 525 | |
|
527 | 526 | # if self.line5Function == RCfunction.FLIP: |
|
528 | 527 | # self.flip1.tofile(fp) |
|
529 | 528 | # |
|
530 | 529 | # if self.line6Function == RCfunction.FLIP: |
|
531 | 530 | # self.flip2.tofile(fp) |
|
532 | 531 | |
|
533 | 532 | return 1 |
|
534 | 533 | |
|
535 | 534 | def get_ippSeconds(self): |
|
536 | 535 | ''' |
|
537 | 536 | ''' |
|
538 | 537 | ippSeconds = 2.0 * 1000 * self.ipp / SPEED_OF_LIGHT |
|
539 | 538 | |
|
540 | 539 | return ippSeconds |
|
541 | 540 | |
|
542 | 541 | def set_ippSeconds(self, ippSeconds): |
|
543 | 542 | ''' |
|
544 | 543 | ''' |
|
545 | 544 | |
|
546 | 545 | self.ipp = ippSeconds * SPEED_OF_LIGHT / (2.0 * 1000) |
|
547 | 546 | |
|
548 | 547 | return |
|
549 | 548 | |
|
550 | 549 | def get_size(self): |
|
551 | 550 | |
|
552 | 551 | self.__size = 116 + 12 * self.nWindows + 4 * self.numTaus |
|
553 | 552 | |
|
554 | 553 | if self.codeType != 0: |
|
555 | 554 | self.__size += 4 + 4 + 4 * self.nCode * \ |
|
556 | 555 | numpy.ceil(self.nBaud / 32.) |
|
557 | 556 | |
|
558 | 557 | return self.__size |
|
559 | 558 | |
|
560 | 559 | def set_size(self, value): |
|
561 | 560 | |
|
562 | 561 | raise IOError("size is a property and it cannot be set, just read") |
|
563 | 562 | |
|
564 | 563 | return |
|
565 | 564 | |
|
566 | 565 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
567 | 566 | size = property(get_size, set_size) |
|
568 | 567 | |
|
569 | 568 | |
|
570 | 569 | class ProcessingHeader(Header): |
|
571 | 570 | |
|
572 | 571 | # size = None |
|
573 | 572 | dtype = None |
|
574 | 573 | blockSize = None |
|
575 | 574 | profilesPerBlock = None |
|
576 | 575 | dataBlocksPerFile = None |
|
577 | 576 | nWindows = None |
|
578 | 577 | processFlags = None |
|
579 | 578 | nCohInt = None |
|
580 | 579 | nIncohInt = None |
|
581 | 580 | totalSpectra = None |
|
582 | 581 | structure = PROCESSING_STRUCTURE |
|
583 | 582 | flag_dc = None |
|
584 | 583 | flag_cspc = None |
|
585 | 584 | |
|
586 | 585 | def __init__(self, dtype=0, blockSize=0, profilesPerBlock=0, dataBlocksPerFile=0, nWindows=0, processFlags=0, nCohInt=0, |
|
587 | 586 | nIncohInt=0, totalSpectra=0, nHeights=0, firstHeight=0, deltaHeight=0, samplesWin=0, spectraComb=0, nCode=0, |
|
588 | 587 | code=0, nBaud=None, shif_fft=False, flag_dc=False, flag_cspc=False, flag_decode=False, flag_deflip=False |
|
589 | 588 | ): |
|
590 | 589 | |
|
591 | 590 | # self.size = 0 |
|
592 | 591 | self.dtype = dtype |
|
593 | 592 | self.blockSize = blockSize |
|
594 | 593 | self.profilesPerBlock = 0 |
|
595 | 594 | self.dataBlocksPerFile = 0 |
|
596 | 595 | self.nWindows = 0 |
|
597 | 596 | self.processFlags = 0 |
|
598 | 597 | self.nCohInt = 0 |
|
599 | 598 | self.nIncohInt = 0 |
|
600 | 599 | self.totalSpectra = 0 |
|
601 | 600 | |
|
602 | 601 | self.nHeights = 0 |
|
603 | 602 | self.firstHeight = 0 |
|
604 | 603 | self.deltaHeight = 0 |
|
605 | 604 | self.samplesWin = 0 |
|
606 | 605 | self.spectraComb = 0 |
|
607 | 606 | self.nCode = None |
|
608 | 607 | self.code = None |
|
609 | 608 | self.nBaud = None |
|
610 | 609 | |
|
611 | 610 | self.shif_fft = False |
|
612 | 611 | self.flag_dc = False |
|
613 | 612 | self.flag_cspc = False |
|
614 | 613 | self.flag_decode = False |
|
615 | 614 | self.flag_deflip = False |
|
616 | 615 | self.length = 0 |
|
617 | 616 | |
|
618 | 617 | def read(self, fp): |
|
619 | 618 | self.length = 0 |
|
620 | 619 | try: |
|
621 | 620 | startFp = fp.tell() |
|
622 | 621 | except Exception as e: |
|
623 | 622 | startFp = None |
|
624 | 623 | pass |
|
625 | 624 | |
|
626 | 625 | try: |
|
627 | 626 | if hasattr(fp, 'read'): |
|
628 | 627 | header = numpy.fromfile(fp, PROCESSING_STRUCTURE, 1) |
|
629 | 628 | else: |
|
630 | 629 | header = numpy.fromstring(fp, PROCESSING_STRUCTURE, 1) |
|
631 | 630 | self.length += header.nbytes |
|
632 | 631 | except Exception as e: |
|
633 | 632 | print("ProcessingHeader: " + str(e)) |
|
634 | 633 | return 0 |
|
635 | 634 | |
|
636 | 635 | size = int(header['nSize'][0]) |
|
637 | 636 | self.dtype = int(header['nDataType'][0]) |
|
638 | 637 | self.blockSize = int(header['nSizeOfDataBlock'][0]) |
|
639 | 638 | self.profilesPerBlock = int(header['nProfilesperBlock'][0]) |
|
640 | 639 | self.dataBlocksPerFile = int(header['nDataBlocksperFile'][0]) |
|
641 | 640 | self.nWindows = int(header['nNumWindows'][0]) |
|
642 | 641 | self.processFlags = header['nProcessFlags'] |
|
643 | 642 | self.nCohInt = int(header['nCoherentIntegrations'][0]) |
|
644 | 643 | self.nIncohInt = int(header['nIncoherentIntegrations'][0]) |
|
645 | 644 | self.totalSpectra = int(header['nTotalSpectra'][0]) |
|
646 | 645 | |
|
647 | 646 | try: |
|
648 | 647 | if hasattr(fp, 'read'): |
|
649 | 648 | samplingWindow = numpy.fromfile( |
|
650 | 649 | fp, SAMPLING_STRUCTURE, self.nWindows) |
|
651 | 650 | else: |
|
652 | 651 | samplingWindow = numpy.fromstring( |
|
653 | 652 | fp[self.length:], SAMPLING_STRUCTURE, self.nWindows) |
|
654 | 653 | self.length += samplingWindow.nbytes |
|
655 | 654 | except Exception as e: |
|
656 | 655 | print("ProcessingHeader: " + str(e)) |
|
657 | 656 | return 0 |
|
658 | 657 | |
|
659 | 658 | self.nHeights = int(numpy.sum(samplingWindow['nsa'])) |
|
660 | 659 | self.firstHeight = float(samplingWindow['h0'][0]) |
|
661 | 660 | self.deltaHeight = float(samplingWindow['dh'][0]) |
|
662 | 661 | self.samplesWin = samplingWindow['nsa'][0] |
|
663 | 662 | |
|
664 | 663 | try: |
|
665 | 664 | if hasattr(fp, 'read'): |
|
666 | 665 | self.spectraComb = numpy.fromfile( |
|
667 | 666 | fp, 'u1', 2 * self.totalSpectra) |
|
668 | 667 | else: |
|
669 | 668 | self.spectraComb = numpy.fromstring( |
|
670 | 669 | fp[self.length:], 'u1', 2 * self.totalSpectra) |
|
671 | 670 | self.length += self.spectraComb.nbytes |
|
672 | 671 | except Exception as e: |
|
673 | 672 | print("ProcessingHeader: " + str(e)) |
|
674 | 673 | return 0 |
|
675 | 674 | |
|
676 | 675 | if ((self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE) == PROCFLAG.DEFINE_PROCESS_CODE): |
|
677 | 676 | self.nCode = int(numpy.fromfile(fp, '<u4', 1)) |
|
678 | 677 | self.nBaud = int(numpy.fromfile(fp, '<u4', 1)) |
|
679 | 678 | self.code = numpy.fromfile( |
|
680 | 679 | fp, '<f4', self.nCode * self.nBaud).reshape(self.nCode, self.nBaud) |
|
681 | 680 | |
|
682 | 681 | if ((self.processFlags & PROCFLAG.EXP_NAME_ESP) == PROCFLAG.EXP_NAME_ESP): |
|
683 | 682 | exp_name_len = int(numpy.fromfile(fp, '<u4', 1)) |
|
684 | 683 | exp_name = numpy.fromfile(fp, 'u1', exp_name_len + 1) |
|
685 | 684 | |
|
686 | 685 | if ((self.processFlags & PROCFLAG.SHIFT_FFT_DATA) == PROCFLAG.SHIFT_FFT_DATA): |
|
687 | 686 | self.shif_fft = True |
|
688 | 687 | else: |
|
689 | 688 | self.shif_fft = False |
|
690 | 689 | |
|
691 | 690 | if ((self.processFlags & PROCFLAG.SAVE_CHANNELS_DC) == PROCFLAG.SAVE_CHANNELS_DC): |
|
692 | 691 | self.flag_dc = True |
|
693 | 692 | else: |
|
694 | 693 | self.flag_dc = False |
|
695 | 694 | |
|
696 | 695 | if ((self.processFlags & PROCFLAG.DECODE_DATA) == PROCFLAG.DECODE_DATA): |
|
697 | 696 | self.flag_decode = True |
|
698 | 697 | else: |
|
699 | 698 | self.flag_decode = False |
|
700 | 699 | |
|
701 | 700 | if ((self.processFlags & PROCFLAG.DEFLIP_DATA) == PROCFLAG.DEFLIP_DATA): |
|
702 | 701 | self.flag_deflip = True |
|
703 | 702 | else: |
|
704 | 703 | self.flag_deflip = False |
|
705 | 704 | |
|
706 | 705 | nChannels = 0 |
|
707 | 706 | nPairs = 0 |
|
708 | 707 | pairList = [] |
|
709 | 708 | |
|
710 | 709 | for i in range(0, self.totalSpectra * 2, 2): |
|
711 | 710 | if self.spectraComb[i] == self.spectraComb[i + 1]: |
|
712 | 711 | nChannels = nChannels + 1 # par de canales iguales |
|
713 | 712 | else: |
|
714 | 713 | nPairs = nPairs + 1 # par de canales diferentes |
|
715 | 714 | pairList.append((self.spectraComb[i], self.spectraComb[i + 1])) |
|
716 | 715 | |
|
717 | 716 | self.flag_cspc = False |
|
718 | 717 | if nPairs > 0: |
|
719 | 718 | self.flag_cspc = True |
|
720 | 719 | |
|
721 | 720 | if startFp is not None: |
|
722 | 721 | endFp = size + startFp |
|
723 | 722 | if fp.tell() > endFp: |
|
724 | 723 | sys.stderr.write( |
|
725 | 724 | "Warning: Processing header size is lower than it has to be") |
|
726 | 725 | return 0 |
|
727 | 726 | |
|
728 | 727 | if fp.tell() < endFp: |
|
729 | 728 | sys.stderr.write( |
|
730 | 729 | "Warning: Processing header size is greater than it is considered") |
|
731 | 730 | |
|
732 | 731 | return 1 |
|
733 | 732 | |
|
734 | 733 | def write(self, fp): |
|
735 | 734 | # Clear DEFINE_PROCESS_CODE |
|
736 | 735 | self.processFlags = self.processFlags & (~PROCFLAG.DEFINE_PROCESS_CODE) |
|
737 | 736 | |
|
738 | 737 | headerTuple = (self.size, |
|
739 | 738 | self.dtype, |
|
740 | 739 | self.blockSize, |
|
741 | 740 | self.profilesPerBlock, |
|
742 | 741 | self.dataBlocksPerFile, |
|
743 | 742 | self.nWindows, |
|
744 | 743 | self.processFlags, |
|
745 | 744 | self.nCohInt, |
|
746 | 745 | self.nIncohInt, |
|
747 | 746 | self.totalSpectra) |
|
748 | 747 | |
|
749 | 748 | header = numpy.array(headerTuple, PROCESSING_STRUCTURE) |
|
750 | 749 | header.tofile(fp) |
|
751 | 750 | |
|
752 | 751 | if self.nWindows != 0: |
|
753 | 752 | sampleWindowTuple = ( |
|
754 | 753 | self.firstHeight, self.deltaHeight, self.samplesWin) |
|
755 | 754 | samplingWindow = numpy.array(sampleWindowTuple, SAMPLING_STRUCTURE) |
|
756 | 755 | samplingWindow.tofile(fp) |
|
757 | 756 | |
|
758 | 757 | if self.totalSpectra != 0: |
|
759 | 758 | # spectraComb = numpy.array([],numpy.dtype('u1')) |
|
760 | 759 | spectraComb = self.spectraComb |
|
761 | 760 | spectraComb.tofile(fp) |
|
762 | 761 | |
|
763 | 762 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
764 | 763 | # nCode = numpy.array([self.nCode], numpy.dtype('u4')) #Probar con un dato que almacene codigo, hasta el momento no se hizo la prueba |
|
765 | 764 | # nCode.tofile(fp) |
|
766 | 765 | # |
|
767 | 766 | # nBaud = numpy.array([self.nBaud], numpy.dtype('u4')) |
|
768 | 767 | # nBaud.tofile(fp) |
|
769 | 768 | # |
|
770 | 769 | # code = self.code.reshape(self.nCode*self.nBaud) |
|
771 | 770 | # code = code.astype(numpy.dtype('<f4')) |
|
772 | 771 | # code.tofile(fp) |
|
773 | 772 | |
|
774 | 773 | return 1 |
|
775 | 774 | |
|
776 | 775 | def get_size(self): |
|
777 | 776 | |
|
778 | 777 | self.__size = 40 + 12 * self.nWindows + 2 * self.totalSpectra |
|
779 | 778 | |
|
780 | 779 | # if self.processFlags & PROCFLAG.DEFINE_PROCESS_CODE == PROCFLAG.DEFINE_PROCESS_CODE: |
|
781 | 780 | # self.__size += 4 + 4 + 4*self.nCode*numpy.ceil(self.nBaud/32.) |
|
782 | 781 | # self.__size += 4 + 4 + 4 * self.nCode * self.nBaud |
|
783 | 782 | |
|
784 | 783 | return self.__size |
|
785 | 784 | |
|
786 | 785 | def set_size(self, value): |
|
787 | 786 | |
|
788 | 787 | raise IOError("size is a property and it cannot be set, just read") |
|
789 | 788 | |
|
790 | 789 | return |
|
791 | 790 | |
|
792 | 791 | size = property(get_size, set_size) |
|
793 | 792 | |
|
794 | 793 | |
|
795 | 794 | class RCfunction: |
|
796 | 795 | NONE = 0 |
|
797 | 796 | FLIP = 1 |
|
798 | 797 | CODE = 2 |
|
799 | 798 | SAMPLING = 3 |
|
800 | 799 | LIN6DIV256 = 4 |
|
801 | 800 | SYNCHRO = 5 |
|
802 | 801 | |
|
803 | 802 | |
|
804 | 803 | class nCodeType: |
|
805 | 804 | NONE = 0 |
|
806 | 805 | USERDEFINE = 1 |
|
807 | 806 | BARKER2 = 2 |
|
808 | 807 | BARKER3 = 3 |
|
809 | 808 | BARKER4 = 4 |
|
810 | 809 | BARKER5 = 5 |
|
811 | 810 | BARKER7 = 6 |
|
812 | 811 | BARKER11 = 7 |
|
813 | 812 | BARKER13 = 8 |
|
814 | 813 | AC128 = 9 |
|
815 | 814 | COMPLEMENTARYCODE2 = 10 |
|
816 | 815 | COMPLEMENTARYCODE4 = 11 |
|
817 | 816 | COMPLEMENTARYCODE8 = 12 |
|
818 | 817 | COMPLEMENTARYCODE16 = 13 |
|
819 | 818 | COMPLEMENTARYCODE32 = 14 |
|
820 | 819 | COMPLEMENTARYCODE64 = 15 |
|
821 | 820 | COMPLEMENTARYCODE128 = 16 |
|
822 | 821 | CODE_BINARY28 = 17 |
|
823 | 822 | |
|
824 | 823 | |
|
825 | 824 | class PROCFLAG: |
|
826 | 825 | |
|
827 | 826 | COHERENT_INTEGRATION = numpy.uint32(0x00000001) |
|
828 | 827 | DECODE_DATA = numpy.uint32(0x00000002) |
|
829 | 828 | SPECTRA_CALC = numpy.uint32(0x00000004) |
|
830 | 829 | INCOHERENT_INTEGRATION = numpy.uint32(0x00000008) |
|
831 | 830 | POST_COHERENT_INTEGRATION = numpy.uint32(0x00000010) |
|
832 | 831 | SHIFT_FFT_DATA = numpy.uint32(0x00000020) |
|
833 | 832 | |
|
834 | 833 | DATATYPE_CHAR = numpy.uint32(0x00000040) |
|
835 | 834 | DATATYPE_SHORT = numpy.uint32(0x00000080) |
|
836 | 835 | DATATYPE_LONG = numpy.uint32(0x00000100) |
|
837 | 836 | DATATYPE_INT64 = numpy.uint32(0x00000200) |
|
838 | 837 | DATATYPE_FLOAT = numpy.uint32(0x00000400) |
|
839 | 838 | DATATYPE_DOUBLE = numpy.uint32(0x00000800) |
|
840 | 839 | |
|
841 | 840 | DATAARRANGE_CONTIGUOUS_CH = numpy.uint32(0x00001000) |
|
842 | 841 | DATAARRANGE_CONTIGUOUS_H = numpy.uint32(0x00002000) |
|
843 | 842 | DATAARRANGE_CONTIGUOUS_P = numpy.uint32(0x00004000) |
|
844 | 843 | |
|
845 | 844 | SAVE_CHANNELS_DC = numpy.uint32(0x00008000) |
|
846 | 845 | DEFLIP_DATA = numpy.uint32(0x00010000) |
|
847 | 846 | DEFINE_PROCESS_CODE = numpy.uint32(0x00020000) |
|
848 | 847 | |
|
849 | 848 | ACQ_SYS_NATALIA = numpy.uint32(0x00040000) |
|
850 | 849 | ACQ_SYS_ECHOTEK = numpy.uint32(0x00080000) |
|
851 | 850 | ACQ_SYS_ADRXD = numpy.uint32(0x000C0000) |
|
852 | 851 | ACQ_SYS_JULIA = numpy.uint32(0x00100000) |
|
853 | 852 | ACQ_SYS_XXXXXX = numpy.uint32(0x00140000) |
|
854 | 853 | |
|
855 | 854 | EXP_NAME_ESP = numpy.uint32(0x00200000) |
|
856 | 855 | CHANNEL_NAMES_ESP = numpy.uint32(0x00400000) |
|
857 | 856 | |
|
858 | 857 | OPERATION_MASK = numpy.uint32(0x0000003F) |
|
859 | 858 | DATATYPE_MASK = numpy.uint32(0x00000FC0) |
|
860 | 859 | DATAARRANGE_MASK = numpy.uint32(0x00007000) |
|
861 | 860 | ACQ_SYS_MASK = numpy.uint32(0x001C0000) |
|
862 | 861 | |
|
863 | 862 | |
|
864 | 863 | dtype0 = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
865 | 864 | dtype1 = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
866 | 865 | dtype2 = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
867 | 866 | dtype3 = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
868 | 867 | dtype4 = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
869 | 868 | dtype5 = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
870 | 869 | |
|
871 | 870 | NUMPY_DTYPE_LIST = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5] |
|
872 | 871 | |
|
873 | 872 | PROCFLAG_DTYPE_LIST = [PROCFLAG.DATATYPE_CHAR, |
|
874 | 873 | PROCFLAG.DATATYPE_SHORT, |
|
875 | 874 | PROCFLAG.DATATYPE_LONG, |
|
876 | 875 | PROCFLAG.DATATYPE_INT64, |
|
877 | 876 | PROCFLAG.DATATYPE_FLOAT, |
|
878 | 877 | PROCFLAG.DATATYPE_DOUBLE] |
|
879 | 878 | |
|
880 | 879 | DTYPE_WIDTH = [1, 2, 4, 8, 4, 8] |
|
881 | 880 | |
|
882 | 881 | |
|
883 | 882 | def get_dtype_index(numpy_dtype): |
|
884 | 883 | |
|
885 | 884 | index = None |
|
886 | 885 | |
|
887 | 886 | for i in range(len(NUMPY_DTYPE_LIST)): |
|
888 | 887 | if numpy_dtype == NUMPY_DTYPE_LIST[i]: |
|
889 | 888 | index = i |
|
890 | 889 | break |
|
891 | 890 | |
|
892 | 891 | return index |
|
893 | 892 | |
|
894 | 893 | |
|
895 | 894 | def get_numpy_dtype(index): |
|
896 | 895 | |
|
897 | 896 | return NUMPY_DTYPE_LIST[index] |
|
898 | 897 | |
|
899 | 898 | |
|
900 | 899 | def get_procflag_dtype(index): |
|
901 | 900 | |
|
902 | 901 | return PROCFLAG_DTYPE_LIST[index] |
|
903 | 902 | |
|
904 | 903 | |
|
905 | 904 | def get_dtype_width(index): |
|
906 | 905 | |
|
907 | 906 | return DTYPE_WIDTH[index] No newline at end of file |
@@ -1,1320 +1,1321 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | #TODO |
|
5 | 5 | #from schainpy import cSchain |
|
6 | 6 | from .jroproc_base import ProcessingUnit, Operation |
|
7 | 7 | from schainpy.model.data.jrodata import Voltage |
|
8 | 8 | from time import time |
|
9 | from schainpy.utils import log | |
|
10 | ||
|
9 | 11 | |
|
10 | 12 | class VoltageProc(ProcessingUnit): |
|
11 | 13 | |
|
12 | 14 | |
|
13 | 15 | def __init__(self, **kwargs): |
|
14 | 16 | |
|
15 | 17 | ProcessingUnit.__init__(self, **kwargs) |
|
16 | 18 | |
|
17 | 19 | # self.objectDict = {} |
|
18 | 20 | self.dataOut = Voltage() |
|
19 | 21 | self.flip = 1 |
|
20 | 22 | |
|
21 | 23 | def run(self): |
|
22 | 24 | if self.dataIn.type == 'AMISR': |
|
23 | 25 | self.__updateObjFromAmisrInput() |
|
24 | 26 | |
|
25 | 27 | if self.dataIn.type == 'Voltage': |
|
26 | 28 | self.dataOut.copy(self.dataIn) |
|
27 | 29 | |
|
28 | 30 | # self.dataOut.copy(self.dataIn) |
|
29 | 31 | |
|
30 | 32 | def __updateObjFromAmisrInput(self): |
|
31 | 33 | |
|
32 | 34 | self.dataOut.timeZone = self.dataIn.timeZone |
|
33 | 35 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
34 | 36 | self.dataOut.errorCount = self.dataIn.errorCount |
|
35 | 37 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
36 | 38 | |
|
37 | 39 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
38 | 40 | self.dataOut.data = self.dataIn.data |
|
39 | 41 | self.dataOut.utctime = self.dataIn.utctime |
|
40 | 42 | self.dataOut.channelList = self.dataIn.channelList |
|
41 | 43 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
42 | 44 | self.dataOut.heightList = self.dataIn.heightList |
|
43 | 45 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
44 | 46 | |
|
45 | 47 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
46 | 48 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
47 | 49 | self.dataOut.frequency = self.dataIn.frequency |
|
48 | 50 | |
|
49 | 51 | self.dataOut.azimuth = self.dataIn.azimuth |
|
50 | 52 | self.dataOut.zenith = self.dataIn.zenith |
|
51 | 53 | |
|
52 | 54 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
53 | 55 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
54 | 56 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
55 | 57 | # |
|
56 | 58 | # pass# |
|
57 | 59 | # |
|
58 | 60 | # def init(self): |
|
59 | 61 | # |
|
60 | 62 | # |
|
61 | 63 | # if self.dataIn.type == 'AMISR': |
|
62 | 64 | # self.__updateObjFromAmisrInput() |
|
63 | 65 | # |
|
64 | 66 | # if self.dataIn.type == 'Voltage': |
|
65 | 67 | # self.dataOut.copy(self.dataIn) |
|
66 | 68 | # # No necesita copiar en cada init() los atributos de dataIn |
|
67 | 69 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
68 | 70 | |
|
69 | 71 | def selectChannels(self, channelList): |
|
70 | 72 | |
|
71 | 73 | channelIndexList = [] |
|
72 | 74 | |
|
73 | 75 | for channel in channelList: |
|
74 | 76 | if channel not in self.dataOut.channelList: |
|
75 | 77 | raise ValueError("Channel %d is not in %s" %(channel, str(self.dataOut.channelList))) |
|
76 | 78 | |
|
77 | 79 | index = self.dataOut.channelList.index(channel) |
|
78 | 80 | channelIndexList.append(index) |
|
79 | 81 | |
|
80 | 82 | self.selectChannelsByIndex(channelIndexList) |
|
81 | 83 | |
|
82 | 84 | def selectChannelsByIndex(self, channelIndexList): |
|
83 | 85 | """ |
|
84 | 86 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
85 | 87 | |
|
86 | 88 | Input: |
|
87 | 89 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
88 | 90 | |
|
89 | 91 | Affected: |
|
90 | 92 | self.dataOut.data |
|
91 | 93 | self.dataOut.channelIndexList |
|
92 | 94 | self.dataOut.nChannels |
|
93 | 95 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
94 | 96 | self.dataOut.systemHeaderObj.numChannels |
|
95 | 97 | self.dataOut.m_ProcessingHeader.blockSize |
|
96 | 98 | |
|
97 | 99 | Return: |
|
98 | 100 | None |
|
99 | 101 | """ |
|
100 | 102 | |
|
101 | 103 | for channelIndex in channelIndexList: |
|
102 | 104 | if channelIndex not in self.dataOut.channelIndexList: |
|
103 | 105 | print(channelIndexList) |
|
104 | 106 | raise ValueError("The value %d in channelIndexList is not valid" %channelIndex) |
|
105 | 107 | |
|
106 | 108 | if self.dataOut.flagDataAsBlock: |
|
107 | 109 | """ |
|
108 | 110 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
109 | 111 | """ |
|
110 | 112 | data = self.dataOut.data[channelIndexList,:,:] |
|
111 | 113 | else: |
|
112 | 114 | data = self.dataOut.data[channelIndexList,:] |
|
113 | 115 | |
|
114 | 116 | self.dataOut.data = data |
|
115 | 117 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
116 | 118 | # self.dataOut.nChannels = nChannels |
|
117 | 119 | |
|
118 | 120 | return 1 |
|
119 | 121 | |
|
120 | 122 | def selectHeights(self, minHei=None, maxHei=None): |
|
121 | 123 | """ |
|
122 | 124 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
123 | 125 | minHei <= height <= maxHei |
|
124 | 126 | |
|
125 | 127 | Input: |
|
126 | 128 | minHei : valor minimo de altura a considerar |
|
127 | 129 | maxHei : valor maximo de altura a considerar |
|
128 | 130 | |
|
129 | 131 | Affected: |
|
130 | 132 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
131 | 133 | |
|
132 | 134 | Return: |
|
133 | 135 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
134 | 136 | """ |
|
135 | 137 | |
|
136 | 138 | if minHei == None: |
|
137 | 139 | minHei = self.dataOut.heightList[0] |
|
138 | 140 | |
|
139 | 141 | if maxHei == None: |
|
140 | 142 | maxHei = self.dataOut.heightList[-1] |
|
141 | 143 | |
|
142 | 144 | if (minHei < self.dataOut.heightList[0]): |
|
143 | 145 | minHei = self.dataOut.heightList[0] |
|
144 | 146 | |
|
145 | 147 | if (maxHei > self.dataOut.heightList[-1]): |
|
146 | 148 | maxHei = self.dataOut.heightList[-1] |
|
147 | 149 | |
|
148 | 150 | minIndex = 0 |
|
149 | 151 | maxIndex = 0 |
|
150 | 152 | heights = self.dataOut.heightList |
|
151 | 153 | |
|
152 | 154 | inda = numpy.where(heights >= minHei) |
|
153 | 155 | indb = numpy.where(heights <= maxHei) |
|
154 | 156 | |
|
155 | 157 | try: |
|
156 | 158 | minIndex = inda[0][0] |
|
157 | 159 | except: |
|
158 | 160 | minIndex = 0 |
|
159 | 161 | |
|
160 | 162 | try: |
|
161 | 163 | maxIndex = indb[0][-1] |
|
162 | 164 | except: |
|
163 | 165 | maxIndex = len(heights) |
|
164 | 166 | |
|
165 | 167 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
166 | 168 | |
|
167 | 169 | return 1 |
|
168 | 170 | |
|
169 | 171 | |
|
170 | 172 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
171 | 173 | """ |
|
172 | 174 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
173 | 175 | minIndex <= index <= maxIndex |
|
174 | 176 | |
|
175 | 177 | Input: |
|
176 | 178 | minIndex : valor de indice minimo de altura a considerar |
|
177 | 179 | maxIndex : valor de indice maximo de altura a considerar |
|
178 | 180 | |
|
179 | 181 | Affected: |
|
180 | 182 | self.dataOut.data |
|
181 | 183 | self.dataOut.heightList |
|
182 | 184 | |
|
183 | 185 | Return: |
|
184 | 186 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
185 | 187 | """ |
|
186 | 188 | |
|
187 | 189 | if (minIndex < 0) or (minIndex > maxIndex): |
|
188 | 190 | raise ValueError("Height index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
189 | 191 | |
|
190 | 192 | if (maxIndex >= self.dataOut.nHeights): |
|
191 | 193 | maxIndex = self.dataOut.nHeights |
|
192 | 194 | |
|
193 | 195 | #voltage |
|
194 | 196 | if self.dataOut.flagDataAsBlock: |
|
195 | 197 | """ |
|
196 | 198 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
197 | 199 | """ |
|
198 | 200 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
199 | 201 | else: |
|
200 | 202 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
201 | 203 | |
|
202 | 204 | # firstHeight = self.dataOut.heightList[minIndex] |
|
203 | 205 | |
|
204 | 206 | self.dataOut.data = data |
|
205 | 207 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
206 | 208 | |
|
207 | 209 | if self.dataOut.nHeights <= 1: |
|
208 | 210 | raise ValueError("selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights)) |
|
209 | 211 | |
|
210 | 212 | return 1 |
|
211 | 213 | |
|
212 | 214 | |
|
213 | 215 | def filterByHeights(self, window): |
|
214 | 216 | |
|
215 | 217 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
216 | 218 | |
|
217 | 219 | if window == None: |
|
218 | 220 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
219 | 221 | |
|
220 | 222 | newdelta = deltaHeight * window |
|
221 | 223 | r = self.dataOut.nHeights % window |
|
222 | 224 | newheights = (self.dataOut.nHeights-r)/window |
|
223 | 225 | |
|
224 | 226 | if newheights <= 1: |
|
225 | 227 | raise ValueError("filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window)) |
|
226 | 228 | |
|
227 | 229 | if self.dataOut.flagDataAsBlock: |
|
228 | 230 | """ |
|
229 | 231 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
230 | 232 | """ |
|
231 | 233 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
232 | 234 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
233 | 235 | buffer = numpy.sum(buffer,3) |
|
234 | 236 | |
|
235 | 237 | else: |
|
236 | 238 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
237 | 239 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
238 | 240 | buffer = numpy.sum(buffer,2) |
|
239 | 241 | |
|
240 | 242 | self.dataOut.data = buffer |
|
241 | 243 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
242 | 244 | self.dataOut.windowOfFilter = window |
|
243 | 245 | |
|
244 | 246 | def setH0(self, h0, deltaHeight = None): |
|
245 | 247 | |
|
246 | 248 | if not deltaHeight: |
|
247 | 249 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
248 | 250 | |
|
249 | 251 | nHeights = self.dataOut.nHeights |
|
250 | 252 | |
|
251 | 253 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
252 | 254 | |
|
253 | 255 | self.dataOut.heightList = newHeiRange |
|
254 | 256 | |
|
255 | 257 | def deFlip(self, channelList = []): |
|
256 | 258 | |
|
257 | 259 | data = self.dataOut.data.copy() |
|
258 | 260 | |
|
259 | 261 | if self.dataOut.flagDataAsBlock: |
|
260 | 262 | flip = self.flip |
|
261 | 263 | profileList = list(range(self.dataOut.nProfiles)) |
|
262 | 264 | |
|
263 | 265 | if not channelList: |
|
264 | 266 | for thisProfile in profileList: |
|
265 | 267 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
266 | 268 | flip *= -1.0 |
|
267 | 269 | else: |
|
268 | 270 | for thisChannel in channelList: |
|
269 | 271 | if thisChannel not in self.dataOut.channelList: |
|
270 | 272 | continue |
|
271 | 273 | |
|
272 | 274 | for thisProfile in profileList: |
|
273 | 275 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
274 | 276 | flip *= -1.0 |
|
275 | 277 | |
|
276 | 278 | self.flip = flip |
|
277 | 279 | |
|
278 | 280 | else: |
|
279 | 281 | if not channelList: |
|
280 | 282 | data[:,:] = data[:,:]*self.flip |
|
281 | 283 | else: |
|
282 | 284 | for thisChannel in channelList: |
|
283 | 285 | if thisChannel not in self.dataOut.channelList: |
|
284 | 286 | continue |
|
285 | 287 | |
|
286 | 288 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
287 | 289 | |
|
288 | 290 | self.flip *= -1. |
|
289 | 291 | |
|
290 | 292 | self.dataOut.data = data |
|
291 | 293 | |
|
292 | 294 | def setRadarFrequency(self, frequency=None): |
|
293 | 295 | |
|
294 | 296 | if frequency != None: |
|
295 | 297 | self.dataOut.frequency = frequency |
|
296 | 298 | |
|
297 | 299 | return 1 |
|
298 | 300 | |
|
299 | 301 | def interpolateHeights(self, topLim, botLim): |
|
300 | 302 | #69 al 72 para julia |
|
301 | 303 | #82-84 para meteoros |
|
302 | 304 | if len(numpy.shape(self.dataOut.data))==2: |
|
303 | 305 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
304 | 306 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
305 | 307 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
306 | 308 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
307 | 309 | else: |
|
308 | 310 | nHeights = self.dataOut.data.shape[2] |
|
309 | 311 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
310 | 312 | y = self.dataOut.data[:,:,list(range(botLim))+list(range(topLim+1,nHeights))] |
|
311 | 313 | f = interpolate.interp1d(x, y, axis = 2) |
|
312 | 314 | xnew = numpy.arange(botLim,topLim+1) |
|
313 | 315 | ynew = f(xnew) |
|
314 | 316 | |
|
315 | 317 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
316 | 318 | |
|
317 | 319 | # import collections |
|
318 | 320 | |
|
319 | 321 | class CohInt(Operation): |
|
320 | 322 | |
|
321 | 323 | isConfig = False |
|
322 | 324 | __profIndex = 0 |
|
323 | 325 | __byTime = False |
|
324 | 326 | __initime = None |
|
325 | 327 | __lastdatatime = None |
|
326 | 328 | __integrationtime = None |
|
327 | 329 | __buffer = None |
|
328 | 330 | __bufferStride = [] |
|
329 | 331 | __dataReady = False |
|
330 | 332 | __profIndexStride = 0 |
|
331 | 333 | __dataToPutStride = False |
|
332 | 334 | n = None |
|
333 | 335 | |
|
334 | 336 | def __init__(self, **kwargs): |
|
335 | 337 | |
|
336 | 338 | Operation.__init__(self, **kwargs) |
|
337 | 339 | |
|
338 | 340 | # self.isConfig = False |
|
339 | 341 | |
|
340 | 342 | def setup(self, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False): |
|
341 | 343 | """ |
|
342 | 344 | Set the parameters of the integration class. |
|
343 | 345 | |
|
344 | 346 | Inputs: |
|
345 | 347 | |
|
346 | 348 | n : Number of coherent integrations |
|
347 | 349 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
348 | 350 | overlapping : |
|
349 | 351 | """ |
|
350 | 352 | |
|
351 | 353 | self.__initime = None |
|
352 | 354 | self.__lastdatatime = 0 |
|
353 | 355 | self.__buffer = None |
|
354 | 356 | self.__dataReady = False |
|
355 | 357 | self.byblock = byblock |
|
356 | 358 | self.stride = stride |
|
357 | 359 | |
|
358 | 360 | if n == None and timeInterval == None: |
|
359 | 361 | raise ValueError("n or timeInterval should be specified ...") |
|
360 | 362 | |
|
361 | 363 | if n != None: |
|
362 | 364 | self.n = n |
|
363 | 365 | self.__byTime = False |
|
364 | 366 | else: |
|
365 | 367 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
366 | 368 | self.n = 9999 |
|
367 | 369 | self.__byTime = True |
|
368 | 370 | |
|
369 | 371 | if overlapping: |
|
370 | 372 | self.__withOverlapping = True |
|
371 | 373 | self.__buffer = None |
|
372 | 374 | else: |
|
373 | 375 | self.__withOverlapping = False |
|
374 | 376 | self.__buffer = 0 |
|
375 | 377 | |
|
376 | 378 | self.__profIndex = 0 |
|
377 | 379 | |
|
378 | 380 | def putData(self, data): |
|
379 | 381 | |
|
380 | 382 | """ |
|
381 | 383 | Add a profile to the __buffer and increase in one the __profileIndex |
|
382 | 384 | |
|
383 | 385 | """ |
|
384 | 386 | |
|
385 | 387 | if not self.__withOverlapping: |
|
386 | 388 | self.__buffer += data.copy() |
|
387 | 389 | self.__profIndex += 1 |
|
388 | 390 | return |
|
389 | 391 | |
|
390 | 392 | #Overlapping data |
|
391 | 393 | nChannels, nHeis = data.shape |
|
392 | 394 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
393 | 395 | |
|
394 | 396 | #If the buffer is empty then it takes the data value |
|
395 | 397 | if self.__buffer is None: |
|
396 | 398 | self.__buffer = data |
|
397 | 399 | self.__profIndex += 1 |
|
398 | 400 | return |
|
399 | 401 | |
|
400 | 402 | #If the buffer length is lower than n then stakcing the data value |
|
401 | 403 | if self.__profIndex < self.n: |
|
402 | 404 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
403 | 405 | self.__profIndex += 1 |
|
404 | 406 | return |
|
405 | 407 | |
|
406 | 408 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
407 | 409 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
408 | 410 | self.__buffer[self.n-1] = data |
|
409 | 411 | self.__profIndex = self.n |
|
410 | 412 | return |
|
411 | 413 | |
|
412 | 414 | |
|
413 | 415 | def pushData(self): |
|
414 | 416 | """ |
|
415 | 417 | Return the sum of the last profiles and the profiles used in the sum. |
|
416 | 418 | |
|
417 | 419 | Affected: |
|
418 | 420 | |
|
419 | 421 | self.__profileIndex |
|
420 | 422 | |
|
421 | 423 | """ |
|
422 | 424 | |
|
423 | 425 | if not self.__withOverlapping: |
|
424 | 426 | data = self.__buffer |
|
425 | 427 | n = self.__profIndex |
|
426 | 428 | |
|
427 | 429 | self.__buffer = 0 |
|
428 | 430 | self.__profIndex = 0 |
|
429 | 431 | |
|
430 | 432 | return data, n |
|
431 | 433 | |
|
432 | 434 | #Integration with Overlapping |
|
433 | 435 | data = numpy.sum(self.__buffer, axis=0) |
|
434 | 436 | # print data |
|
435 | 437 | # raise |
|
436 | 438 | n = self.__profIndex |
|
437 | 439 | |
|
438 | 440 | return data, n |
|
439 | 441 | |
|
440 | 442 | def byProfiles(self, data): |
|
441 | 443 | |
|
442 | 444 | self.__dataReady = False |
|
443 | 445 | avgdata = None |
|
444 | 446 | # n = None |
|
445 | 447 | # print data |
|
446 | 448 | # raise |
|
447 | 449 | self.putData(data) |
|
448 | 450 | |
|
449 | 451 | if self.__profIndex == self.n: |
|
450 | 452 | avgdata, n = self.pushData() |
|
451 | 453 | self.__dataReady = True |
|
452 | 454 | |
|
453 | 455 | return avgdata |
|
454 | 456 | |
|
455 | 457 | def byTime(self, data, datatime): |
|
456 | 458 | |
|
457 | 459 | self.__dataReady = False |
|
458 | 460 | avgdata = None |
|
459 | 461 | n = None |
|
460 | 462 | |
|
461 | 463 | self.putData(data) |
|
462 | 464 | |
|
463 | 465 | if (datatime - self.__initime) >= self.__integrationtime: |
|
464 | 466 | avgdata, n = self.pushData() |
|
465 | 467 | self.n = n |
|
466 | 468 | self.__dataReady = True |
|
467 | 469 | |
|
468 | 470 | return avgdata |
|
469 | 471 | |
|
470 | 472 | def integrateByStride(self, data, datatime): |
|
471 | 473 | # print data |
|
472 | 474 | if self.__profIndex == 0: |
|
473 | 475 | self.__buffer = [[data.copy(), datatime]] |
|
474 | 476 | else: |
|
475 | 477 | self.__buffer.append([data.copy(),datatime]) |
|
476 | 478 | self.__profIndex += 1 |
|
477 | 479 | self.__dataReady = False |
|
478 | 480 | |
|
479 | 481 | if self.__profIndex == self.n * self.stride : |
|
480 | 482 | self.__dataToPutStride = True |
|
481 | 483 | self.__profIndexStride = 0 |
|
482 | 484 | self.__profIndex = 0 |
|
483 | 485 | self.__bufferStride = [] |
|
484 | 486 | for i in range(self.stride): |
|
485 | 487 | current = self.__buffer[i::self.stride] |
|
486 | 488 | data = numpy.sum([t[0] for t in current], axis=0) |
|
487 | 489 | avgdatatime = numpy.average([t[1] for t in current]) |
|
488 | 490 | # print data |
|
489 | 491 | self.__bufferStride.append((data, avgdatatime)) |
|
490 | 492 | |
|
491 | 493 | if self.__dataToPutStride: |
|
492 | 494 | self.__dataReady = True |
|
493 | 495 | self.__profIndexStride += 1 |
|
494 | 496 | if self.__profIndexStride == self.stride: |
|
495 | 497 | self.__dataToPutStride = False |
|
496 | 498 | # print self.__bufferStride[self.__profIndexStride - 1] |
|
497 | 499 | # raise |
|
498 | 500 | return self.__bufferStride[self.__profIndexStride - 1] |
|
499 | 501 | |
|
500 | 502 | |
|
501 | 503 | return None, None |
|
502 | 504 | |
|
503 | 505 | def integrate(self, data, datatime=None): |
|
504 | 506 | |
|
505 | 507 | if self.__initime == None: |
|
506 | 508 | self.__initime = datatime |
|
507 | 509 | |
|
508 | 510 | if self.__byTime: |
|
509 | 511 | avgdata = self.byTime(data, datatime) |
|
510 | 512 | else: |
|
511 | 513 | avgdata = self.byProfiles(data) |
|
512 | 514 | |
|
513 | 515 | |
|
514 | 516 | self.__lastdatatime = datatime |
|
515 | 517 | |
|
516 | 518 | if avgdata is None: |
|
517 | 519 | return None, None |
|
518 | 520 | |
|
519 | 521 | avgdatatime = self.__initime |
|
520 | 522 | |
|
521 | 523 | deltatime = datatime - self.__lastdatatime |
|
522 | 524 | |
|
523 | 525 | if not self.__withOverlapping: |
|
524 | 526 | self.__initime = datatime |
|
525 | 527 | else: |
|
526 | 528 | self.__initime += deltatime |
|
527 | 529 | |
|
528 | 530 | return avgdata, avgdatatime |
|
529 | 531 | |
|
530 | 532 | def integrateByBlock(self, dataOut): |
|
531 | 533 | |
|
532 | 534 | times = int(dataOut.data.shape[1]/self.n) |
|
533 | 535 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
534 | 536 | |
|
535 | 537 | id_min = 0 |
|
536 | 538 | id_max = self.n |
|
537 | 539 | |
|
538 | 540 | for i in range(times): |
|
539 | 541 | junk = dataOut.data[:,id_min:id_max,:] |
|
540 | 542 | avgdata[:,i,:] = junk.sum(axis=1) |
|
541 | 543 | id_min += self.n |
|
542 | 544 | id_max += self.n |
|
543 | 545 | |
|
544 | 546 | timeInterval = dataOut.ippSeconds*self.n |
|
545 | 547 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
546 | 548 | self.__dataReady = True |
|
547 | 549 | return avgdata, avgdatatime |
|
548 | 550 | |
|
549 | 551 | def run(self, dataOut, n=None, timeInterval=None, stride=None, overlapping=False, byblock=False, **kwargs): |
|
550 | 552 | if not self.isConfig: |
|
551 | 553 | self.setup(n=n, stride=stride, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock, **kwargs) |
|
552 | 554 | self.isConfig = True |
|
553 | 555 | |
|
554 | 556 | if dataOut.flagDataAsBlock: |
|
555 | 557 | """ |
|
556 | 558 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
557 | 559 | """ |
|
558 | 560 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
559 | 561 | dataOut.nProfiles /= self.n |
|
560 | 562 | else: |
|
561 | 563 | if stride is None: |
|
562 | 564 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
563 | 565 | else: |
|
564 | 566 | avgdata, avgdatatime = self.integrateByStride(dataOut.data, dataOut.utctime) |
|
565 | 567 | |
|
566 | 568 | |
|
567 | 569 | # dataOut.timeInterval *= n |
|
568 | 570 | dataOut.flagNoData = True |
|
569 | 571 | |
|
570 | 572 | if self.__dataReady: |
|
571 | 573 | dataOut.data = avgdata |
|
572 | 574 | dataOut.nCohInt *= self.n |
|
573 | 575 | dataOut.utctime = avgdatatime |
|
574 | 576 | # print avgdata, avgdatatime |
|
575 | 577 | # raise |
|
576 | 578 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
577 | 579 | dataOut.flagNoData = False |
|
578 | 580 | |
|
579 | 581 | class Decoder(Operation): |
|
580 | 582 | |
|
581 | 583 | isConfig = False |
|
582 | 584 | __profIndex = 0 |
|
583 | 585 | |
|
584 | 586 | code = None |
|
585 | 587 | |
|
586 | 588 | nCode = None |
|
587 | 589 | nBaud = None |
|
588 | 590 | |
|
589 | 591 | def __init__(self, **kwargs): |
|
590 | 592 | |
|
591 | 593 | Operation.__init__(self, **kwargs) |
|
592 | 594 | |
|
593 | 595 | self.times = None |
|
594 | 596 | self.osamp = None |
|
595 | 597 | # self.__setValues = False |
|
596 | 598 | self.isConfig = False |
|
597 | 599 | |
|
598 | 600 | def setup(self, code, osamp, dataOut): |
|
599 | 601 | |
|
600 | 602 | self.__profIndex = 0 |
|
601 | 603 | |
|
602 | 604 | self.code = code |
|
603 | 605 | |
|
604 | 606 | self.nCode = len(code) |
|
605 | 607 | self.nBaud = len(code[0]) |
|
606 | 608 | |
|
607 | 609 | if (osamp != None) and (osamp >1): |
|
608 | 610 | self.osamp = osamp |
|
609 | 611 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
610 | 612 | self.nBaud = self.nBaud*self.osamp |
|
611 | 613 | |
|
612 | 614 | self.__nChannels = dataOut.nChannels |
|
613 | 615 | self.__nProfiles = dataOut.nProfiles |
|
614 | 616 | self.__nHeis = dataOut.nHeights |
|
615 | 617 | |
|
616 | 618 | if self.__nHeis < self.nBaud: |
|
617 | 619 | raise ValueError('Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud)) |
|
618 | 620 | |
|
619 | 621 | #Frequency |
|
620 | 622 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
621 | 623 | |
|
622 | 624 | __codeBuffer[:,0:self.nBaud] = self.code |
|
623 | 625 | |
|
624 | 626 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
625 | 627 | |
|
626 | 628 | if dataOut.flagDataAsBlock: |
|
627 | 629 | |
|
628 | 630 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
629 | 631 | |
|
630 | 632 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
631 | 633 | |
|
632 | 634 | else: |
|
633 | 635 | |
|
634 | 636 | #Time |
|
635 | 637 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
636 | 638 | |
|
637 | 639 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
638 | 640 | |
|
639 | 641 | def __convolutionInFreq(self, data): |
|
640 | 642 | |
|
641 | 643 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
642 | 644 | |
|
643 | 645 | fft_data = numpy.fft.fft(data, axis=1) |
|
644 | 646 | |
|
645 | 647 | conv = fft_data*fft_code |
|
646 | 648 | |
|
647 | 649 | data = numpy.fft.ifft(conv,axis=1) |
|
648 | 650 | |
|
649 | 651 | return data |
|
650 | 652 | |
|
651 | 653 | def __convolutionInFreqOpt(self, data): |
|
652 | 654 | |
|
653 | 655 | raise NotImplementedError |
|
654 | 656 | |
|
655 | 657 | def __convolutionInTime(self, data): |
|
656 | 658 | |
|
657 | 659 | code = self.code[self.__profIndex] |
|
658 | 660 | for i in range(self.__nChannels): |
|
659 | 661 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
660 | 662 | |
|
661 | 663 | return self.datadecTime |
|
662 | 664 | |
|
663 | 665 | def __convolutionByBlockInTime(self, data): |
|
664 | 666 | |
|
665 | 667 | repetitions = self.__nProfiles / self.nCode |
|
666 | 668 | |
|
667 | 669 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
668 | 670 | junk = junk.flatten() |
|
669 | 671 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
670 | 672 | profilesList = range(self.__nProfiles) |
|
671 | 673 | |
|
672 | 674 | for i in range(self.__nChannels): |
|
673 | 675 | for j in profilesList: |
|
674 | 676 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
675 | 677 | return self.datadecTime |
|
676 | 678 | |
|
677 | 679 | def __convolutionByBlockInFreq(self, data): |
|
678 | 680 | |
|
679 | 681 | raise NotImplementedError("Decoder by frequency fro Blocks not implemented") |
|
680 | 682 | |
|
681 | 683 | |
|
682 | 684 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
683 | 685 | |
|
684 | 686 | fft_data = numpy.fft.fft(data, axis=2) |
|
685 | 687 | |
|
686 | 688 | conv = fft_data*fft_code |
|
687 | 689 | |
|
688 | 690 | data = numpy.fft.ifft(conv,axis=2) |
|
689 | 691 | |
|
690 | 692 | return data |
|
691 | 693 | |
|
692 | 694 | |
|
693 | 695 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
694 | 696 | |
|
695 | 697 | if dataOut.flagDecodeData: |
|
696 | 698 | print("This data is already decoded, recoding again ...") |
|
697 | 699 | |
|
698 | 700 | if not self.isConfig: |
|
699 | 701 | |
|
700 | 702 | if code is None: |
|
701 | 703 | if dataOut.code is None: |
|
702 | 704 | raise ValueError("Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type) |
|
703 | 705 | |
|
704 | 706 | code = dataOut.code |
|
705 | 707 | else: |
|
706 | 708 | code = numpy.array(code).reshape(nCode,nBaud) |
|
707 | 709 | self.setup(code, osamp, dataOut) |
|
708 | 710 | |
|
709 | 711 | self.isConfig = True |
|
710 | 712 | |
|
711 | 713 | if mode == 3: |
|
712 | 714 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
713 | 715 | |
|
714 | 716 | if times != None: |
|
715 | 717 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
716 | 718 | |
|
717 | 719 | if self.code is None: |
|
718 | 720 | print("Fail decoding: Code is not defined.") |
|
719 | 721 | return |
|
720 | 722 | |
|
721 | 723 | self.__nProfiles = dataOut.nProfiles |
|
722 | 724 | datadec = None |
|
723 | 725 | |
|
724 | 726 | if mode == 3: |
|
725 | 727 | mode = 0 |
|
726 | 728 | |
|
727 | 729 | if dataOut.flagDataAsBlock: |
|
728 | 730 | """ |
|
729 | 731 | Decoding when data have been read as block, |
|
730 | 732 | """ |
|
731 | 733 | |
|
732 | 734 | if mode == 0: |
|
733 | 735 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
734 | 736 | if mode == 1: |
|
735 | 737 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
736 | 738 | else: |
|
737 | 739 | """ |
|
738 | 740 | Decoding when data have been read profile by profile |
|
739 | 741 | """ |
|
740 | 742 | if mode == 0: |
|
741 | 743 | datadec = self.__convolutionInTime(dataOut.data) |
|
742 | 744 | |
|
743 | 745 | if mode == 1: |
|
744 | 746 | datadec = self.__convolutionInFreq(dataOut.data) |
|
745 | 747 | |
|
746 | 748 | if mode == 2: |
|
747 | 749 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
748 | 750 | |
|
749 | 751 | if datadec is None: |
|
750 | 752 | raise ValueError("Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode) |
|
751 | 753 | |
|
752 | 754 | dataOut.code = self.code |
|
753 | 755 | dataOut.nCode = self.nCode |
|
754 | 756 | dataOut.nBaud = self.nBaud |
|
755 | 757 | |
|
756 | 758 | dataOut.data = datadec |
|
757 | 759 | |
|
758 | 760 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
759 | 761 | |
|
760 | 762 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
761 | 763 | |
|
762 | 764 | if self.__profIndex == self.nCode-1: |
|
763 | 765 | self.__profIndex = 0 |
|
764 | 766 | return 1 |
|
765 | 767 | |
|
766 | 768 | self.__profIndex += 1 |
|
767 | 769 | |
|
768 | 770 | return 1 |
|
769 | 771 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
770 | 772 | |
|
771 | 773 | |
|
772 | 774 | class ProfileConcat(Operation): |
|
773 | 775 | |
|
774 | 776 | isConfig = False |
|
775 | 777 | buffer = None |
|
776 | 778 | |
|
777 | 779 | def __init__(self, **kwargs): |
|
778 | 780 | |
|
779 | 781 | Operation.__init__(self, **kwargs) |
|
780 | 782 | self.profileIndex = 0 |
|
781 | 783 | |
|
782 | 784 | def reset(self): |
|
783 | 785 | self.buffer = numpy.zeros_like(self.buffer) |
|
784 | 786 | self.start_index = 0 |
|
785 | 787 | self.times = 1 |
|
786 | 788 | |
|
787 | 789 | def setup(self, data, m, n=1): |
|
788 | 790 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
789 | 791 | self.nHeights = data.shape[1]#.nHeights |
|
790 | 792 | self.start_index = 0 |
|
791 | 793 | self.times = 1 |
|
792 | 794 | |
|
793 | 795 | def concat(self, data): |
|
794 | 796 | |
|
795 | 797 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
796 | 798 | self.start_index = self.start_index + self.nHeights |
|
797 | 799 | |
|
798 | 800 | def run(self, dataOut, m): |
|
799 | 801 | |
|
800 | 802 | dataOut.flagNoData = True |
|
801 | 803 | |
|
802 | 804 | if not self.isConfig: |
|
803 | 805 | self.setup(dataOut.data, m, 1) |
|
804 | 806 | self.isConfig = True |
|
805 | 807 | |
|
806 | 808 | if dataOut.flagDataAsBlock: |
|
807 | 809 | raise ValueError("ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False") |
|
808 | 810 | |
|
809 | 811 | else: |
|
810 | 812 | self.concat(dataOut.data) |
|
811 | 813 | self.times += 1 |
|
812 | 814 | if self.times > m: |
|
813 | 815 | dataOut.data = self.buffer |
|
814 | 816 | self.reset() |
|
815 | 817 | dataOut.flagNoData = False |
|
816 | 818 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
817 | 819 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
818 | 820 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
819 | 821 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
820 | 822 | dataOut.ippSeconds *= m |
|
821 | 823 | |
|
822 | 824 | class ProfileSelector(Operation): |
|
823 | 825 | |
|
824 | 826 | profileIndex = None |
|
825 | 827 | # Tamanho total de los perfiles |
|
826 | 828 | nProfiles = None |
|
827 | 829 | |
|
828 | 830 | def __init__(self, **kwargs): |
|
829 | 831 | |
|
830 | 832 | Operation.__init__(self, **kwargs) |
|
831 | 833 | self.profileIndex = 0 |
|
832 | 834 | |
|
833 | 835 | def incProfileIndex(self): |
|
834 | 836 | |
|
835 | 837 | self.profileIndex += 1 |
|
836 | 838 | |
|
837 | 839 | if self.profileIndex >= self.nProfiles: |
|
838 | 840 | self.profileIndex = 0 |
|
839 | 841 | |
|
840 | 842 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
841 | 843 | |
|
842 | 844 | if profileIndex < minIndex: |
|
843 | 845 | return False |
|
844 | 846 | |
|
845 | 847 | if profileIndex > maxIndex: |
|
846 | 848 | return False |
|
847 | 849 | |
|
848 | 850 | return True |
|
849 | 851 | |
|
850 | 852 | def isThisProfileInList(self, profileIndex, profileList): |
|
851 | 853 | |
|
852 | 854 | if profileIndex not in profileList: |
|
853 | 855 | return False |
|
854 | 856 | |
|
855 | 857 | return True |
|
856 | 858 | |
|
857 | 859 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
858 | 860 | |
|
859 | 861 | """ |
|
860 | 862 | ProfileSelector: |
|
861 | 863 | |
|
862 | 864 | Inputs: |
|
863 | 865 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
864 | 866 | |
|
865 | 867 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
866 | 868 | |
|
867 | 869 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
868 | 870 | |
|
869 | 871 | """ |
|
870 | 872 | |
|
871 | 873 | if rangeList is not None: |
|
872 | 874 | if type(rangeList[0]) not in (tuple, list): |
|
873 | 875 | rangeList = [rangeList] |
|
874 | 876 | |
|
875 | 877 | dataOut.flagNoData = True |
|
876 | 878 | |
|
877 | 879 | if dataOut.flagDataAsBlock: |
|
878 | 880 | """ |
|
879 | 881 | data dimension = [nChannels, nProfiles, nHeis] |
|
880 | 882 | """ |
|
881 | 883 | if profileList != None: |
|
882 | 884 | dataOut.data = dataOut.data[:,profileList,:] |
|
883 | 885 | |
|
884 | 886 | if profileRangeList != None: |
|
885 | 887 | minIndex = profileRangeList[0] |
|
886 | 888 | maxIndex = profileRangeList[1] |
|
887 | 889 | profileList = list(range(minIndex, maxIndex+1)) |
|
888 | 890 | |
|
889 | 891 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
890 | 892 | |
|
891 | 893 | if rangeList != None: |
|
892 | 894 | |
|
893 | 895 | profileList = [] |
|
894 | 896 | |
|
895 | 897 | for thisRange in rangeList: |
|
896 | 898 | minIndex = thisRange[0] |
|
897 | 899 | maxIndex = thisRange[1] |
|
898 | 900 | |
|
899 | 901 | profileList.extend(list(range(minIndex, maxIndex+1))) |
|
900 | 902 | |
|
901 | 903 | dataOut.data = dataOut.data[:,profileList,:] |
|
902 | 904 | |
|
903 | 905 | dataOut.nProfiles = len(profileList) |
|
904 | 906 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
905 | 907 | dataOut.flagNoData = False |
|
906 | 908 | |
|
907 | 909 | return True |
|
908 | 910 | |
|
909 | 911 | """ |
|
910 | 912 | data dimension = [nChannels, nHeis] |
|
911 | 913 | """ |
|
912 | 914 | |
|
913 | 915 | if profileList != None: |
|
914 | 916 | |
|
915 | 917 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
916 | 918 | |
|
917 | 919 | self.nProfiles = len(profileList) |
|
918 | 920 | dataOut.nProfiles = self.nProfiles |
|
919 | 921 | dataOut.profileIndex = self.profileIndex |
|
920 | 922 | dataOut.flagNoData = False |
|
921 | 923 | |
|
922 | 924 | self.incProfileIndex() |
|
923 | 925 | return True |
|
924 | 926 | |
|
925 | 927 | if profileRangeList != None: |
|
926 | 928 | |
|
927 | 929 | minIndex = profileRangeList[0] |
|
928 | 930 | maxIndex = profileRangeList[1] |
|
929 | 931 | |
|
930 | 932 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
931 | 933 | |
|
932 | 934 | self.nProfiles = maxIndex - minIndex + 1 |
|
933 | 935 | dataOut.nProfiles = self.nProfiles |
|
934 | 936 | dataOut.profileIndex = self.profileIndex |
|
935 | 937 | dataOut.flagNoData = False |
|
936 | 938 | |
|
937 | 939 | self.incProfileIndex() |
|
938 | 940 | return True |
|
939 | 941 | |
|
940 | 942 | if rangeList != None: |
|
941 | 943 | |
|
942 | 944 | nProfiles = 0 |
|
943 | 945 | |
|
944 | 946 | for thisRange in rangeList: |
|
945 | 947 | minIndex = thisRange[0] |
|
946 | 948 | maxIndex = thisRange[1] |
|
947 | 949 | |
|
948 | 950 | nProfiles += maxIndex - minIndex + 1 |
|
949 | 951 | |
|
950 | 952 | for thisRange in rangeList: |
|
951 | 953 | |
|
952 | 954 | minIndex = thisRange[0] |
|
953 | 955 | maxIndex = thisRange[1] |
|
954 | 956 | |
|
955 | 957 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
956 | 958 | |
|
957 | 959 | self.nProfiles = nProfiles |
|
958 | 960 | dataOut.nProfiles = self.nProfiles |
|
959 | 961 | dataOut.profileIndex = self.profileIndex |
|
960 | 962 | dataOut.flagNoData = False |
|
961 | 963 | |
|
962 | 964 | self.incProfileIndex() |
|
963 | 965 | |
|
964 | 966 | break |
|
965 | 967 | |
|
966 | 968 | return True |
|
967 | 969 | |
|
968 | 970 | |
|
969 | 971 | if beam != None: #beam is only for AMISR data |
|
970 | 972 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
971 | 973 | dataOut.flagNoData = False |
|
972 | 974 | dataOut.profileIndex = self.profileIndex |
|
973 | 975 | |
|
974 | 976 | self.incProfileIndex() |
|
975 | 977 | |
|
976 | 978 | return True |
|
977 | 979 | |
|
978 | 980 | raise ValueError("ProfileSelector needs profileList, profileRangeList or rangeList parameter") |
|
979 | 981 | |
|
980 | 982 | return False |
|
981 | 983 | |
|
982 | 984 | class Reshaper(Operation): |
|
983 | 985 | |
|
984 | 986 | def __init__(self, **kwargs): |
|
985 | 987 | |
|
986 | 988 | Operation.__init__(self, **kwargs) |
|
987 | 989 | |
|
988 | 990 | self.__buffer = None |
|
989 | 991 | self.__nitems = 0 |
|
990 | 992 | |
|
991 | 993 | def __appendProfile(self, dataOut, nTxs): |
|
992 | 994 | |
|
993 | 995 | if self.__buffer is None: |
|
994 | 996 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
995 | 997 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
996 | 998 | |
|
997 | 999 | ini = dataOut.nHeights * self.__nitems |
|
998 | 1000 | end = ini + dataOut.nHeights |
|
999 | 1001 | |
|
1000 | 1002 | self.__buffer[:, ini:end] = dataOut.data |
|
1001 | 1003 | |
|
1002 | 1004 | self.__nitems += 1 |
|
1003 | 1005 | |
|
1004 | 1006 | return int(self.__nitems*nTxs) |
|
1005 | 1007 | |
|
1006 | 1008 | def __getBuffer(self): |
|
1007 | 1009 | |
|
1008 | 1010 | if self.__nitems == int(1./self.__nTxs): |
|
1009 | 1011 | |
|
1010 | 1012 | self.__nitems = 0 |
|
1011 | 1013 | |
|
1012 | 1014 | return self.__buffer.copy() |
|
1013 | 1015 | |
|
1014 | 1016 | return None |
|
1015 | 1017 | |
|
1016 | 1018 | def __checkInputs(self, dataOut, shape, nTxs): |
|
1017 | 1019 | |
|
1018 | 1020 | if shape is None and nTxs is None: |
|
1019 | 1021 | raise ValueError("Reshaper: shape of factor should be defined") |
|
1020 | 1022 | |
|
1021 | 1023 | if nTxs: |
|
1022 | 1024 | if nTxs < 0: |
|
1023 | 1025 | raise ValueError("nTxs should be greater than 0") |
|
1024 | 1026 | |
|
1025 | 1027 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
1026 | 1028 | raise ValueError("nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs))) |
|
1027 | 1029 | |
|
1028 | 1030 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
1029 | 1031 | |
|
1030 | 1032 | return shape, nTxs |
|
1031 | 1033 | |
|
1032 | 1034 | if len(shape) != 2 and len(shape) != 3: |
|
1033 | 1035 | raise ValueError("shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights)) |
|
1034 | 1036 | |
|
1035 | 1037 | if len(shape) == 2: |
|
1036 | 1038 | shape_tuple = [dataOut.nChannels] |
|
1037 | 1039 | shape_tuple.extend(shape) |
|
1038 | 1040 | else: |
|
1039 | 1041 | shape_tuple = list(shape) |
|
1040 | 1042 | |
|
1041 | 1043 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1042 | 1044 | |
|
1043 | 1045 | return shape_tuple, nTxs |
|
1044 | 1046 | |
|
1045 | 1047 | def run(self, dataOut, shape=None, nTxs=None): |
|
1046 | 1048 | |
|
1047 | 1049 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1048 | 1050 | |
|
1049 | 1051 | dataOut.flagNoData = True |
|
1050 | 1052 | profileIndex = None |
|
1051 | 1053 | |
|
1052 | 1054 | if dataOut.flagDataAsBlock: |
|
1053 | 1055 | |
|
1054 | 1056 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1055 | 1057 | dataOut.flagNoData = False |
|
1056 | 1058 | |
|
1057 | 1059 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1058 | 1060 | |
|
1059 | 1061 | else: |
|
1060 | 1062 | |
|
1061 | 1063 | if self.__nTxs < 1: |
|
1062 | 1064 | |
|
1063 | 1065 | self.__appendProfile(dataOut, self.__nTxs) |
|
1064 | 1066 | new_data = self.__getBuffer() |
|
1065 | 1067 | |
|
1066 | 1068 | if new_data is not None: |
|
1067 | 1069 | dataOut.data = new_data |
|
1068 | 1070 | dataOut.flagNoData = False |
|
1069 | 1071 | |
|
1070 | 1072 | profileIndex = dataOut.profileIndex*nTxs |
|
1071 | 1073 | |
|
1072 | 1074 | else: |
|
1073 | 1075 | raise ValueError("nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)") |
|
1074 | 1076 | |
|
1075 | 1077 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1076 | 1078 | |
|
1077 | 1079 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1078 | 1080 | |
|
1079 | 1081 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1080 | 1082 | |
|
1081 | 1083 | dataOut.profileIndex = profileIndex |
|
1082 | 1084 | |
|
1083 | 1085 | dataOut.ippSeconds /= self.__nTxs |
|
1084 | 1086 | |
|
1085 | 1087 | class SplitProfiles(Operation): |
|
1086 | 1088 | |
|
1087 | 1089 | def __init__(self, **kwargs): |
|
1088 | 1090 | |
|
1089 | 1091 | Operation.__init__(self, **kwargs) |
|
1090 | 1092 | |
|
1091 | 1093 | def run(self, dataOut, n): |
|
1092 | 1094 | |
|
1093 | 1095 | dataOut.flagNoData = True |
|
1094 | 1096 | profileIndex = None |
|
1095 | 1097 | |
|
1096 | 1098 | if dataOut.flagDataAsBlock: |
|
1097 | 1099 | |
|
1098 | 1100 | #nchannels, nprofiles, nsamples |
|
1099 | 1101 | shape = dataOut.data.shape |
|
1100 | 1102 | |
|
1101 | 1103 | if shape[2] % n != 0: |
|
1102 | 1104 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[2])) |
|
1103 | 1105 | |
|
1104 | new_shape = shape[0], shape[1]*n, shape[2]/n | |
|
1105 | ||
|
1106 | new_shape = shape[0], shape[1]*n, int(shape[2]/n) | |
|
1106 | 1107 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1107 | 1108 | dataOut.flagNoData = False |
|
1108 | 1109 | |
|
1109 | 1110 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1110 | 1111 | |
|
1111 | 1112 | else: |
|
1112 | 1113 | |
|
1113 | 1114 | raise ValueError("Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)") |
|
1114 | 1115 | |
|
1115 | 1116 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1116 | 1117 | |
|
1117 | 1118 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1118 | 1119 | |
|
1119 | 1120 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1120 | 1121 | |
|
1121 | 1122 | dataOut.profileIndex = profileIndex |
|
1122 | 1123 | |
|
1123 | 1124 | dataOut.ippSeconds /= n |
|
1124 | 1125 | |
|
1125 | 1126 | class CombineProfiles(Operation): |
|
1126 | 1127 | def __init__(self, **kwargs): |
|
1127 | 1128 | |
|
1128 | 1129 | Operation.__init__(self, **kwargs) |
|
1129 | 1130 | |
|
1130 | 1131 | self.__remData = None |
|
1131 | 1132 | self.__profileIndex = 0 |
|
1132 | 1133 | |
|
1133 | 1134 | def run(self, dataOut, n): |
|
1134 | 1135 | |
|
1135 | 1136 | dataOut.flagNoData = True |
|
1136 | 1137 | profileIndex = None |
|
1137 | 1138 | |
|
1138 | 1139 | if dataOut.flagDataAsBlock: |
|
1139 | 1140 | |
|
1140 | 1141 | #nchannels, nprofiles, nsamples |
|
1141 | 1142 | shape = dataOut.data.shape |
|
1142 | 1143 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1143 | 1144 | |
|
1144 | 1145 | if shape[1] % n != 0: |
|
1145 | 1146 | raise ValueError("Could not split the data, n=%d has to be multiple of %d" %(n, shape[1])) |
|
1146 | 1147 | |
|
1147 | 1148 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1148 | 1149 | dataOut.flagNoData = False |
|
1149 | 1150 | |
|
1150 | 1151 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1151 | 1152 | |
|
1152 | 1153 | else: |
|
1153 | 1154 | |
|
1154 | 1155 | #nchannels, nsamples |
|
1155 | 1156 | if self.__remData is None: |
|
1156 | 1157 | newData = dataOut.data |
|
1157 | 1158 | else: |
|
1158 | 1159 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1159 | 1160 | |
|
1160 | 1161 | self.__profileIndex += 1 |
|
1161 | 1162 | |
|
1162 | 1163 | if self.__profileIndex < n: |
|
1163 | 1164 | self.__remData = newData |
|
1164 | 1165 | #continue |
|
1165 | 1166 | return |
|
1166 | 1167 | |
|
1167 | 1168 | self.__profileIndex = 0 |
|
1168 | 1169 | self.__remData = None |
|
1169 | 1170 | |
|
1170 | 1171 | dataOut.data = newData |
|
1171 | 1172 | dataOut.flagNoData = False |
|
1172 | 1173 | |
|
1173 | 1174 | profileIndex = dataOut.profileIndex/n |
|
1174 | 1175 | |
|
1175 | 1176 | |
|
1176 | 1177 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1177 | 1178 | |
|
1178 | 1179 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1179 | 1180 | |
|
1180 | 1181 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1181 | 1182 | |
|
1182 | 1183 | dataOut.profileIndex = profileIndex |
|
1183 | 1184 | |
|
1184 | 1185 | dataOut.ippSeconds *= n |
|
1185 | 1186 | |
|
1186 | 1187 | # import collections |
|
1187 | 1188 | # from scipy.stats import mode |
|
1188 | 1189 | # |
|
1189 | 1190 | # class Synchronize(Operation): |
|
1190 | 1191 | # |
|
1191 | 1192 | # isConfig = False |
|
1192 | 1193 | # __profIndex = 0 |
|
1193 | 1194 | # |
|
1194 | 1195 | # def __init__(self, **kwargs): |
|
1195 | 1196 | # |
|
1196 | 1197 | # Operation.__init__(self, **kwargs) |
|
1197 | 1198 | # # self.isConfig = False |
|
1198 | 1199 | # self.__powBuffer = None |
|
1199 | 1200 | # self.__startIndex = 0 |
|
1200 | 1201 | # self.__pulseFound = False |
|
1201 | 1202 | # |
|
1202 | 1203 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1203 | 1204 | # |
|
1204 | 1205 | # #Read data |
|
1205 | 1206 | # |
|
1206 | 1207 | # powerdB = dataOut.getPower(channel = channel) |
|
1207 | 1208 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1208 | 1209 | # |
|
1209 | 1210 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1210 | 1211 | # |
|
1211 | 1212 | # dataArray = numpy.array(self.__powBuffer) |
|
1212 | 1213 | # |
|
1213 | 1214 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1214 | 1215 | # |
|
1215 | 1216 | # maxValue = numpy.nanmax(filteredPower) |
|
1216 | 1217 | # |
|
1217 | 1218 | # if maxValue < noisedB + 10: |
|
1218 | 1219 | # #No se encuentra ningun pulso de transmision |
|
1219 | 1220 | # return None |
|
1220 | 1221 | # |
|
1221 | 1222 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1222 | 1223 | # |
|
1223 | 1224 | # if len(maxValuesIndex) < 2: |
|
1224 | 1225 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1225 | 1226 | # return None |
|
1226 | 1227 | # |
|
1227 | 1228 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1228 | 1229 | # |
|
1229 | 1230 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1230 | 1231 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1231 | 1232 | # |
|
1232 | 1233 | # if len(pulseIndex) < 2: |
|
1233 | 1234 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1234 | 1235 | # return None |
|
1235 | 1236 | # |
|
1236 | 1237 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1237 | 1238 | # |
|
1238 | 1239 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1239 | 1240 | # #(No deberian existir IPP menor a 10 unidades) |
|
1240 | 1241 | # |
|
1241 | 1242 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1242 | 1243 | # |
|
1243 | 1244 | # if len(realIndex) < 2: |
|
1244 | 1245 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1245 | 1246 | # return None |
|
1246 | 1247 | # |
|
1247 | 1248 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1248 | 1249 | # realPulseIndex = pulseIndex[realIndex] |
|
1249 | 1250 | # |
|
1250 | 1251 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1251 | 1252 | # |
|
1252 | 1253 | # print "IPP = %d samples" %period |
|
1253 | 1254 | # |
|
1254 | 1255 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1255 | 1256 | # self.__startIndex = int(realPulseIndex[0]) |
|
1256 | 1257 | # |
|
1257 | 1258 | # return 1 |
|
1258 | 1259 | # |
|
1259 | 1260 | # |
|
1260 | 1261 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1261 | 1262 | # |
|
1262 | 1263 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1263 | 1264 | # maxlen = buffer_size*nSamples) |
|
1264 | 1265 | # |
|
1265 | 1266 | # bufferList = [] |
|
1266 | 1267 | # |
|
1267 | 1268 | # for i in range(nChannels): |
|
1268 | 1269 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1269 | 1270 | # maxlen = buffer_size*nSamples) |
|
1270 | 1271 | # |
|
1271 | 1272 | # bufferList.append(bufferByChannel) |
|
1272 | 1273 | # |
|
1273 | 1274 | # self.__nSamples = nSamples |
|
1274 | 1275 | # self.__nChannels = nChannels |
|
1275 | 1276 | # self.__bufferList = bufferList |
|
1276 | 1277 | # |
|
1277 | 1278 | # def run(self, dataOut, channel = 0): |
|
1278 | 1279 | # |
|
1279 | 1280 | # if not self.isConfig: |
|
1280 | 1281 | # nSamples = dataOut.nHeights |
|
1281 | 1282 | # nChannels = dataOut.nChannels |
|
1282 | 1283 | # self.setup(nSamples, nChannels) |
|
1283 | 1284 | # self.isConfig = True |
|
1284 | 1285 | # |
|
1285 | 1286 | # #Append new data to internal buffer |
|
1286 | 1287 | # for thisChannel in range(self.__nChannels): |
|
1287 | 1288 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1288 | 1289 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1289 | 1290 | # |
|
1290 | 1291 | # if self.__pulseFound: |
|
1291 | 1292 | # self.__startIndex -= self.__nSamples |
|
1292 | 1293 | # |
|
1293 | 1294 | # #Finding Tx Pulse |
|
1294 | 1295 | # if not self.__pulseFound: |
|
1295 | 1296 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1296 | 1297 | # |
|
1297 | 1298 | # if indexFound == None: |
|
1298 | 1299 | # dataOut.flagNoData = True |
|
1299 | 1300 | # return |
|
1300 | 1301 | # |
|
1301 | 1302 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1302 | 1303 | # self.__pulseFound = True |
|
1303 | 1304 | # self.__startIndex = indexFound |
|
1304 | 1305 | # |
|
1305 | 1306 | # #If pulse was found ... |
|
1306 | 1307 | # for thisChannel in range(self.__nChannels): |
|
1307 | 1308 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1308 | 1309 | # #print self.__startIndex |
|
1309 | 1310 | # x = numpy.array(bufferByChannel) |
|
1310 | 1311 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1311 | 1312 | # |
|
1312 | 1313 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1313 | 1314 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1314 | 1315 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1315 | 1316 | # |
|
1316 | 1317 | # dataOut.data = self.__arrayBuffer |
|
1317 | 1318 | # |
|
1318 | 1319 | # self.__startIndex += self.__newNSamples |
|
1319 | 1320 | # |
|
1320 | 1321 | # return No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now