The requested changes are too big and content was truncated. Show full diff
@@ -1,1220 +1,1220 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | from schainpy import cSchain |
|
13 | 13 | |
|
14 | 14 | |
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | 28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | 34 | def getDataTypeCode(numpyDtype): |
|
35 | 35 | |
|
36 | 36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
37 | 37 | datatype = 0 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
39 | 39 | datatype = 1 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
41 | 41 | datatype = 2 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
43 | 43 | datatype = 3 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
45 | 45 | datatype = 4 |
|
46 | 46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
47 | 47 | datatype = 5 |
|
48 | 48 | else: |
|
49 | 49 | datatype = None |
|
50 | 50 | |
|
51 | 51 | return datatype |
|
52 | 52 | |
|
53 | 53 | def hildebrand_sekhon(data, navg): |
|
54 | 54 | """ |
|
55 | 55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
56 | 56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
57 | 57 | densities is equal to the mean spectral density for white Gaussian noise |
|
58 | 58 | |
|
59 | 59 | Inputs: |
|
60 | 60 | Data : heights |
|
61 | 61 | navg : numbers of averages |
|
62 | 62 | |
|
63 | 63 | Return: |
|
64 | 64 | -1 : any error |
|
65 | 65 | anoise : noise's level |
|
66 | 66 | """ |
|
67 | 67 | |
|
68 | 68 | sortdata = numpy.sort(data, axis=None) |
|
69 | 69 | # lenOfData = len(sortdata) |
|
70 | 70 | # nums_min = lenOfData*0.2 |
|
71 | 71 | # |
|
72 | 72 | # if nums_min <= 5: |
|
73 | 73 | # nums_min = 5 |
|
74 | 74 | # |
|
75 | 75 | # sump = 0. |
|
76 | 76 | # |
|
77 | 77 | # sumq = 0. |
|
78 | 78 | # |
|
79 | 79 | # j = 0 |
|
80 | 80 | # |
|
81 | 81 | # cont = 1 |
|
82 | 82 | # |
|
83 | 83 | # while((cont==1)and(j<lenOfData)): |
|
84 | 84 | # |
|
85 | 85 | # sump += sortdata[j] |
|
86 | 86 | # |
|
87 | 87 | # sumq += sortdata[j]**2 |
|
88 | 88 | # |
|
89 | 89 | # if j > nums_min: |
|
90 | 90 | # rtest = float(j)/(j-1) + 1.0/navg |
|
91 | 91 | # if ((sumq*j) > (rtest*sump**2)): |
|
92 | 92 | # j = j - 1 |
|
93 | 93 | # sump = sump - sortdata[j] |
|
94 | 94 | # sumq = sumq - sortdata[j]**2 |
|
95 | 95 | # cont = 0 |
|
96 | 96 | # |
|
97 | 97 | # j += 1 |
|
98 | 98 | # |
|
99 | 99 | # lnoise = sump /j |
|
100 | 100 | # |
|
101 | 101 | # return lnoise |
|
102 | 102 | |
|
103 | 103 | return cSchain.hildebrand_sekhon(sortdata, navg) |
|
104 | 104 | |
|
105 | 105 | |
|
106 | 106 | class Beam: |
|
107 | 107 | |
|
108 | 108 | def __init__(self): |
|
109 | 109 | self.codeList = [] |
|
110 | 110 | self.azimuthList = [] |
|
111 | 111 | self.zenithList = [] |
|
112 | 112 | |
|
113 | 113 | class GenericData(object): |
|
114 | 114 | |
|
115 | 115 | flagNoData = True |
|
116 | 116 | |
|
117 | 117 | def copy(self, inputObj=None): |
|
118 | 118 | |
|
119 | 119 | if inputObj == None: |
|
120 | 120 | return copy.deepcopy(self) |
|
121 | 121 | |
|
122 | 122 | for key in inputObj.__dict__.keys(): |
|
123 | 123 | |
|
124 | 124 | attribute = inputObj.__dict__[key] |
|
125 | 125 | |
|
126 | 126 | #If this attribute is a tuple or list |
|
127 | 127 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
128 | 128 | self.__dict__[key] = attribute[:] |
|
129 | 129 | continue |
|
130 | 130 | |
|
131 | 131 | #If this attribute is another object or instance |
|
132 | 132 | if hasattr(attribute, '__dict__'): |
|
133 | 133 | self.__dict__[key] = attribute.copy() |
|
134 | 134 | continue |
|
135 | 135 | |
|
136 | 136 | self.__dict__[key] = inputObj.__dict__[key] |
|
137 | 137 | |
|
138 | 138 | def deepcopy(self): |
|
139 | 139 | |
|
140 | 140 | return copy.deepcopy(self) |
|
141 | 141 | |
|
142 | 142 | def isEmpty(self): |
|
143 | 143 | |
|
144 | 144 | return self.flagNoData |
|
145 | 145 | |
|
146 | 146 | class JROData(GenericData): |
|
147 | 147 | |
|
148 | 148 | # m_BasicHeader = BasicHeader() |
|
149 | 149 | # m_ProcessingHeader = ProcessingHeader() |
|
150 | 150 | |
|
151 | 151 | systemHeaderObj = SystemHeader() |
|
152 | 152 | |
|
153 | 153 | radarControllerHeaderObj = RadarControllerHeader() |
|
154 | 154 | |
|
155 | 155 | # data = None |
|
156 | 156 | |
|
157 | 157 | type = None |
|
158 | 158 | |
|
159 | 159 | datatype = None #dtype but in string |
|
160 | 160 | |
|
161 | 161 | # dtype = None |
|
162 | 162 | |
|
163 | 163 | # nChannels = None |
|
164 | 164 | |
|
165 | 165 | # nHeights = None |
|
166 | 166 | |
|
167 | 167 | nProfiles = None |
|
168 | 168 | |
|
169 | 169 | heightList = None |
|
170 | 170 | |
|
171 | 171 | channelList = None |
|
172 | 172 | |
|
173 | 173 | flagDiscontinuousBlock = False |
|
174 | 174 | |
|
175 | 175 | useLocalTime = False |
|
176 | 176 | |
|
177 | 177 | utctime = None |
|
178 | 178 | |
|
179 | 179 | timeZone = None |
|
180 | 180 | |
|
181 | 181 | dstFlag = None |
|
182 | 182 | |
|
183 | 183 | errorCount = None |
|
184 | 184 | |
|
185 | 185 | blocksize = None |
|
186 | 186 | |
|
187 | 187 | # nCode = None |
|
188 | 188 | # |
|
189 | 189 | # nBaud = None |
|
190 | 190 | # |
|
191 | 191 | # code = None |
|
192 | 192 | |
|
193 | 193 | flagDecodeData = False #asumo q la data no esta decodificada |
|
194 | 194 | |
|
195 | 195 | flagDeflipData = False #asumo q la data no esta sin flip |
|
196 | 196 | |
|
197 | 197 | flagShiftFFT = False |
|
198 | 198 | |
|
199 | 199 | # ippSeconds = None |
|
200 | 200 | |
|
201 | 201 | # timeInterval = None |
|
202 | 202 | |
|
203 | 203 | nCohInt = None |
|
204 | 204 | |
|
205 | 205 | # noise = None |
|
206 | 206 | |
|
207 | 207 | windowOfFilter = 1 |
|
208 | 208 | |
|
209 | 209 | #Speed of ligth |
|
210 | 210 | C = 3e8 |
|
211 | 211 | |
|
212 | 212 | frequency = 49.92e6 |
|
213 | 213 | |
|
214 | 214 | realtime = False |
|
215 | 215 | |
|
216 | 216 | beacon_heiIndexList = None |
|
217 | 217 | |
|
218 | 218 | last_block = None |
|
219 | 219 | |
|
220 | 220 | blocknow = None |
|
221 | 221 | |
|
222 | 222 | azimuth = None |
|
223 | 223 | |
|
224 | 224 | zenith = None |
|
225 | 225 | |
|
226 | 226 | beam = Beam() |
|
227 | 227 | |
|
228 | 228 | profileIndex = None |
|
229 | 229 | |
|
230 | 230 | def getNoise(self): |
|
231 | 231 | |
|
232 | 232 | raise NotImplementedError |
|
233 | 233 | |
|
234 | 234 | def getNChannels(self): |
|
235 | 235 | |
|
236 | 236 | return len(self.channelList) |
|
237 | 237 | |
|
238 | 238 | def getChannelIndexList(self): |
|
239 | 239 | |
|
240 | 240 | return range(self.nChannels) |
|
241 | 241 | |
|
242 | 242 | def getNHeights(self): |
|
243 | 243 | |
|
244 | 244 | return len(self.heightList) |
|
245 | 245 | |
|
246 | 246 | def getHeiRange(self, extrapoints=0): |
|
247 | 247 | |
|
248 | 248 | heis = self.heightList |
|
249 | 249 | # deltah = self.heightList[1] - self.heightList[0] |
|
250 | 250 | # |
|
251 | 251 | # heis.append(self.heightList[-1]) |
|
252 | 252 | |
|
253 | 253 | return heis |
|
254 | 254 | |
|
255 | 255 | def getDeltaH(self): |
|
256 | 256 | |
|
257 | 257 | delta = self.heightList[1] - self.heightList[0] |
|
258 | 258 | |
|
259 | 259 | return delta |
|
260 | 260 | |
|
261 | 261 | def getltctime(self): |
|
262 | 262 | |
|
263 | 263 | if self.useLocalTime: |
|
264 | 264 | return self.utctime - self.timeZone*60 |
|
265 | 265 | |
|
266 | 266 | return self.utctime |
|
267 | 267 | |
|
268 | 268 | def getDatatime(self): |
|
269 | 269 | |
|
270 | 270 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
271 | 271 | return datatimeValue |
|
272 | 272 | |
|
273 | 273 | def getTimeRange(self): |
|
274 | 274 | |
|
275 | 275 | datatime = [] |
|
276 | 276 | |
|
277 | 277 | datatime.append(self.ltctime) |
|
278 | 278 | datatime.append(self.ltctime + self.timeInterval+1) |
|
279 | 279 | |
|
280 | 280 | datatime = numpy.array(datatime) |
|
281 | 281 | |
|
282 | 282 | return datatime |
|
283 | 283 | |
|
284 | 284 | def getFmaxTimeResponse(self): |
|
285 | 285 | |
|
286 | 286 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
287 | 287 | |
|
288 | 288 | PRF = 1./(period * self.nCohInt) |
|
289 | 289 | |
|
290 | 290 | fmax = PRF |
|
291 | 291 | |
|
292 | 292 | return fmax |
|
293 | 293 | |
|
294 | 294 | def getFmax(self): |
|
295 | 295 | |
|
296 | 296 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
297 | 297 | |
|
298 | 298 | fmax = PRF |
|
299 | 299 | |
|
300 | 300 | return fmax |
|
301 | 301 | |
|
302 | 302 | def getVmax(self): |
|
303 | 303 | |
|
304 | 304 | _lambda = self.C/self.frequency |
|
305 | 305 | |
|
306 | 306 | vmax = self.getFmax() * _lambda/2 |
|
307 | 307 | |
|
308 | 308 | return vmax |
|
309 | 309 | |
|
310 | 310 | def get_ippSeconds(self): |
|
311 | 311 | ''' |
|
312 | 312 | ''' |
|
313 | 313 | return self.radarControllerHeaderObj.ippSeconds |
|
314 | 314 | |
|
315 | 315 | def set_ippSeconds(self, ippSeconds): |
|
316 | 316 | ''' |
|
317 | 317 | ''' |
|
318 | 318 | |
|
319 | 319 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
320 | 320 | |
|
321 | 321 | return |
|
322 | 322 | |
|
323 | 323 | def get_dtype(self): |
|
324 | 324 | ''' |
|
325 | 325 | ''' |
|
326 | 326 | return getNumpyDtype(self.datatype) |
|
327 | 327 | |
|
328 | 328 | def set_dtype(self, numpyDtype): |
|
329 | 329 | ''' |
|
330 | 330 | ''' |
|
331 | 331 | |
|
332 | 332 | self.datatype = getDataTypeCode(numpyDtype) |
|
333 | 333 | |
|
334 | 334 | def get_code(self): |
|
335 | 335 | ''' |
|
336 | 336 | ''' |
|
337 | 337 | return self.radarControllerHeaderObj.code |
|
338 | 338 | |
|
339 | 339 | def set_code(self, code): |
|
340 | 340 | ''' |
|
341 | 341 | ''' |
|
342 | 342 | self.radarControllerHeaderObj.code = code |
|
343 | 343 | |
|
344 | 344 | return |
|
345 | 345 | |
|
346 | 346 | def get_ncode(self): |
|
347 | 347 | ''' |
|
348 | 348 | ''' |
|
349 | 349 | return self.radarControllerHeaderObj.nCode |
|
350 | 350 | |
|
351 | 351 | def set_ncode(self, nCode): |
|
352 | 352 | ''' |
|
353 | 353 | ''' |
|
354 | 354 | self.radarControllerHeaderObj.nCode = nCode |
|
355 | 355 | |
|
356 | 356 | return |
|
357 | 357 | |
|
358 | 358 | def get_nbaud(self): |
|
359 | 359 | ''' |
|
360 | 360 | ''' |
|
361 | 361 | return self.radarControllerHeaderObj.nBaud |
|
362 | 362 | |
|
363 | 363 | def set_nbaud(self, nBaud): |
|
364 | 364 | ''' |
|
365 | 365 | ''' |
|
366 | 366 | self.radarControllerHeaderObj.nBaud = nBaud |
|
367 | 367 | |
|
368 | 368 | return |
|
369 | 369 | |
|
370 | 370 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
371 | 371 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
372 | 372 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
373 | 373 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
374 | 374 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
375 | 375 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
376 | 376 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
377 | 377 | dtype = property(get_dtype, set_dtype) |
|
378 | 378 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
379 | 379 | code = property(get_code, set_code) |
|
380 | 380 | nCode = property(get_ncode, set_ncode) |
|
381 | 381 | nBaud = property(get_nbaud, set_nbaud) |
|
382 | 382 | |
|
383 | 383 | class Voltage(JROData): |
|
384 | 384 | |
|
385 | 385 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
386 | 386 | data = None |
|
387 | 387 | |
|
388 | 388 | def __init__(self): |
|
389 | 389 | ''' |
|
390 | 390 | Constructor |
|
391 | 391 | ''' |
|
392 | 392 | |
|
393 | 393 | self.useLocalTime = True |
|
394 | 394 | |
|
395 | 395 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
396 | 396 | |
|
397 | 397 | self.systemHeaderObj = SystemHeader() |
|
398 | 398 | |
|
399 | 399 | self.type = "Voltage" |
|
400 | 400 | |
|
401 | 401 | self.data = None |
|
402 | 402 | |
|
403 | 403 | # self.dtype = None |
|
404 | 404 | |
|
405 | 405 | # self.nChannels = 0 |
|
406 | 406 | |
|
407 | 407 | # self.nHeights = 0 |
|
408 | 408 | |
|
409 | 409 | self.nProfiles = None |
|
410 | 410 | |
|
411 | 411 | self.heightList = None |
|
412 | 412 | |
|
413 | 413 | self.channelList = None |
|
414 | 414 | |
|
415 | 415 | # self.channelIndexList = None |
|
416 | 416 | |
|
417 | 417 | self.flagNoData = True |
|
418 | 418 | |
|
419 | 419 | self.flagDiscontinuousBlock = False |
|
420 | 420 | |
|
421 | 421 | self.utctime = None |
|
422 | 422 | |
|
423 | 423 | self.timeZone = None |
|
424 | 424 | |
|
425 | 425 | self.dstFlag = None |
|
426 | 426 | |
|
427 | 427 | self.errorCount = None |
|
428 | 428 | |
|
429 | 429 | self.nCohInt = None |
|
430 | 430 | |
|
431 | 431 | self.blocksize = None |
|
432 | 432 | |
|
433 | 433 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
434 | 434 | |
|
435 | 435 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
436 | 436 | |
|
437 | 437 | self.flagShiftFFT = False |
|
438 | 438 | |
|
439 | 439 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
440 | 440 | |
|
441 | 441 | self.profileIndex = 0 |
|
442 | 442 | |
|
443 | 443 | def getNoisebyHildebrand(self, channel = None): |
|
444 | 444 | """ |
|
445 | 445 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
446 | 446 | |
|
447 | 447 | Return: |
|
448 | 448 | noiselevel |
|
449 | 449 | """ |
|
450 | 450 | |
|
451 | 451 | if channel != None: |
|
452 | 452 | data = self.data[channel] |
|
453 | 453 | nChannels = 1 |
|
454 | 454 | else: |
|
455 | 455 | data = self.data |
|
456 | 456 | nChannels = self.nChannels |
|
457 | 457 | |
|
458 | 458 | noise = numpy.zeros(nChannels) |
|
459 | 459 | power = data * numpy.conjugate(data) |
|
460 | 460 | |
|
461 | 461 | for thisChannel in range(nChannels): |
|
462 | 462 | if nChannels == 1: |
|
463 | 463 | daux = power[:].real |
|
464 | 464 | else: |
|
465 | 465 | daux = power[thisChannel,:].real |
|
466 | 466 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
467 | 467 | |
|
468 | 468 | return noise |
|
469 | 469 | |
|
470 | 470 | def getNoise(self, type = 1, channel = None): |
|
471 | 471 | |
|
472 | 472 | if type == 1: |
|
473 | 473 | noise = self.getNoisebyHildebrand(channel) |
|
474 | 474 | |
|
475 | 475 | return noise |
|
476 | 476 | |
|
477 | 477 | def getPower(self, channel = None): |
|
478 | 478 | |
|
479 | 479 | if channel != None: |
|
480 | 480 | data = self.data[channel] |
|
481 | 481 | else: |
|
482 | 482 | data = self.data |
|
483 | 483 | |
|
484 | 484 | power = data * numpy.conjugate(data) |
|
485 | 485 | powerdB = 10*numpy.log10(power.real) |
|
486 | 486 | powerdB = numpy.squeeze(powerdB) |
|
487 | 487 | |
|
488 | 488 | return powerdB |
|
489 | 489 | |
|
490 | 490 | def getTimeInterval(self): |
|
491 | 491 | |
|
492 | 492 | timeInterval = self.ippSeconds * self.nCohInt |
|
493 | 493 | |
|
494 | 494 | return timeInterval |
|
495 | 495 | |
|
496 | 496 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
497 | 497 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
498 | 498 | |
|
499 | 499 | class Spectra(JROData): |
|
500 | 500 | |
|
501 | 501 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
502 | 502 | data_spc = None |
|
503 | 503 | |
|
504 | 504 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
505 | 505 | data_cspc = None |
|
506 | 506 | |
|
507 | 507 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
508 | 508 | data_dc = None |
|
509 | 509 | |
|
510 | 510 | #data power |
|
511 | 511 | data_pwr = None |
|
512 | 512 | |
|
513 | 513 | nFFTPoints = None |
|
514 | 514 | |
|
515 | 515 | # nPairs = None |
|
516 | 516 | |
|
517 | 517 | pairsList = None |
|
518 | 518 | |
|
519 | 519 | nIncohInt = None |
|
520 | 520 | |
|
521 | 521 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
522 | 522 | |
|
523 | 523 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
524 | 524 | |
|
525 | 525 | ippFactor = None |
|
526 | 526 | |
|
527 | 527 | profileIndex = 0 |
|
528 | 528 | |
|
529 | 529 | plotting = "spectra" |
|
530 | 530 | |
|
531 | 531 | def __init__(self): |
|
532 | 532 | ''' |
|
533 | 533 | Constructor |
|
534 | 534 | ''' |
|
535 | 535 | |
|
536 | 536 | self.useLocalTime = True |
|
537 | 537 | |
|
538 | 538 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
539 | 539 | |
|
540 | 540 | self.systemHeaderObj = SystemHeader() |
|
541 | 541 | |
|
542 | 542 | self.type = "Spectra" |
|
543 | 543 | |
|
544 | 544 | # self.data = None |
|
545 | 545 | |
|
546 | 546 | # self.dtype = None |
|
547 | 547 | |
|
548 | 548 | # self.nChannels = 0 |
|
549 | 549 | |
|
550 | 550 | # self.nHeights = 0 |
|
551 | 551 | |
|
552 | 552 | self.nProfiles = None |
|
553 | 553 | |
|
554 | 554 | self.heightList = None |
|
555 | 555 | |
|
556 | 556 | self.channelList = None |
|
557 | 557 | |
|
558 | 558 | # self.channelIndexList = None |
|
559 | 559 | |
|
560 | 560 | self.pairsList = None |
|
561 | 561 | |
|
562 | 562 | self.flagNoData = True |
|
563 | 563 | |
|
564 | 564 | self.flagDiscontinuousBlock = False |
|
565 | 565 | |
|
566 | 566 | self.utctime = None |
|
567 | 567 | |
|
568 | 568 | self.nCohInt = None |
|
569 | 569 | |
|
570 | 570 | self.nIncohInt = None |
|
571 | 571 | |
|
572 | 572 | self.blocksize = None |
|
573 | 573 | |
|
574 | 574 | self.nFFTPoints = None |
|
575 | 575 | |
|
576 | 576 | self.wavelength = None |
|
577 | 577 | |
|
578 | 578 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
579 | 579 | |
|
580 | 580 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
581 | 581 | |
|
582 | 582 | self.flagShiftFFT = False |
|
583 | 583 | |
|
584 | 584 | self.ippFactor = 1 |
|
585 | 585 | |
|
586 | 586 | #self.noise = None |
|
587 | 587 | |
|
588 | 588 | self.beacon_heiIndexList = [] |
|
589 | 589 | |
|
590 | 590 | self.noise_estimation = None |
|
591 | 591 | |
|
592 | 592 | |
|
593 | 593 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
594 | 594 | """ |
|
595 | 595 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
596 | 596 | |
|
597 | 597 | Return: |
|
598 | 598 | noiselevel |
|
599 | 599 | """ |
|
600 | 600 | |
|
601 | 601 | noise = numpy.zeros(self.nChannels) |
|
602 | 602 | |
|
603 | 603 | for channel in range(self.nChannels): |
|
604 | 604 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
605 | 605 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
606 | 606 | |
|
607 | 607 | return noise |
|
608 | 608 | |
|
609 | 609 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
610 | 610 | |
|
611 | 611 | if self.noise_estimation is not None: |
|
612 | 612 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
613 | 613 | else: |
|
614 | 614 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
615 | 615 | return noise |
|
616 | 616 | |
|
617 | 617 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
618 | 618 | |
|
619 | 619 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
620 | 620 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
621 | 621 | |
|
622 | 622 | return freqrange |
|
623 | 623 | |
|
624 | 624 | def getAcfRange(self, extrapoints=0): |
|
625 | 625 | |
|
626 | 626 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
627 | 627 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
628 | 628 | |
|
629 | 629 | return freqrange |
|
630 | 630 | |
|
631 | 631 | def getFreqRange(self, extrapoints=0): |
|
632 | 632 | |
|
633 | 633 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
634 | 634 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
635 | 635 | |
|
636 | 636 | return freqrange |
|
637 | 637 | |
|
638 | 638 | def getVelRange(self, extrapoints=0): |
|
639 | 639 | |
|
640 | 640 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
641 | 641 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
642 | 642 | |
|
643 | 643 | return velrange |
|
644 | 644 | |
|
645 | 645 | def getNPairs(self): |
|
646 | 646 | |
|
647 | 647 | return len(self.pairsList) |
|
648 | 648 | |
|
649 | 649 | def getPairsIndexList(self): |
|
650 | 650 | |
|
651 | 651 | return range(self.nPairs) |
|
652 | 652 | |
|
653 | 653 | def getNormFactor(self): |
|
654 | 654 | |
|
655 | 655 | pwcode = 1 |
|
656 | 656 | |
|
657 | 657 | if self.flagDecodeData: |
|
658 | 658 | pwcode = numpy.sum(self.code[0]**2) |
|
659 | 659 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
660 | 660 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
661 | 661 | |
|
662 | 662 | return normFactor |
|
663 | 663 | |
|
664 | 664 | def getFlagCspc(self): |
|
665 | 665 | |
|
666 | 666 | if self.data_cspc is None: |
|
667 | 667 | return True |
|
668 | 668 | |
|
669 | 669 | return False |
|
670 | 670 | |
|
671 | 671 | def getFlagDc(self): |
|
672 | 672 | |
|
673 | 673 | if self.data_dc is None: |
|
674 | 674 | return True |
|
675 | 675 | |
|
676 | 676 | return False |
|
677 | 677 | |
|
678 | 678 | def getTimeInterval(self): |
|
679 | 679 | |
|
680 | 680 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
681 | 681 | |
|
682 | 682 | return timeInterval |
|
683 | 683 | |
|
684 | 684 | def getPower(self): |
|
685 | 685 | |
|
686 | 686 | factor = self.normFactor |
|
687 | 687 | z = self.data_spc/factor |
|
688 | 688 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
689 | 689 | avg = numpy.average(z, axis=1) |
|
690 | 690 | |
|
691 | 691 | return 10*numpy.log10(avg) |
|
692 | 692 | |
|
693 | 693 | def getCoherence(self, pairsList=None, phase=False): |
|
694 | 694 | |
|
695 | 695 | z = [] |
|
696 | 696 | if pairsList is None: |
|
697 | 697 | pairsIndexList = self.pairsIndexList |
|
698 | 698 | else: |
|
699 | 699 | pairsIndexList = [] |
|
700 | 700 | for pair in pairsList: |
|
701 | 701 | if pair not in self.pairsList: |
|
702 | 702 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
703 | pairsIndexList.append(self.pairsList.index(pair)) | |
|
703 | pairsIndexList.append(self.pairsList.index(pair)) | |
|
704 | 704 | for i in range(len(pairsIndexList)): |
|
705 | 705 | pair = self.pairsList[pairsIndexList[i]] |
|
706 | 706 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
707 | 707 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
708 | 708 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
709 | 709 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
710 | 710 | if phase: |
|
711 | 711 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
712 | 712 | avgcoherenceComplex.real)*180/numpy.pi |
|
713 | 713 | else: |
|
714 | 714 | data = numpy.abs(avgcoherenceComplex) |
|
715 | 715 | |
|
716 | 716 | z.append(data) |
|
717 | 717 | |
|
718 | 718 | return numpy.array(z) |
|
719 | 719 | |
|
720 | 720 | def setValue(self, value): |
|
721 | 721 | |
|
722 | 722 | print "This property should not be initialized" |
|
723 | 723 | |
|
724 | 724 | return |
|
725 | 725 | |
|
726 | 726 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
727 | 727 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
728 | 728 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
729 | 729 | flag_cspc = property(getFlagCspc, setValue) |
|
730 | 730 | flag_dc = property(getFlagDc, setValue) |
|
731 | 731 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
732 | 732 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
733 | 733 | |
|
734 | 734 | class SpectraHeis(Spectra): |
|
735 | 735 | |
|
736 | 736 | data_spc = None |
|
737 | 737 | |
|
738 | 738 | data_cspc = None |
|
739 | 739 | |
|
740 | 740 | data_dc = None |
|
741 | 741 | |
|
742 | 742 | nFFTPoints = None |
|
743 | 743 | |
|
744 | 744 | # nPairs = None |
|
745 | 745 | |
|
746 | 746 | pairsList = None |
|
747 | 747 | |
|
748 | 748 | nCohInt = None |
|
749 | 749 | |
|
750 | 750 | nIncohInt = None |
|
751 | 751 | |
|
752 | 752 | def __init__(self): |
|
753 | 753 | |
|
754 | 754 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
755 | 755 | |
|
756 | 756 | self.systemHeaderObj = SystemHeader() |
|
757 | 757 | |
|
758 | 758 | self.type = "SpectraHeis" |
|
759 | 759 | |
|
760 | 760 | # self.dtype = None |
|
761 | 761 | |
|
762 | 762 | # self.nChannels = 0 |
|
763 | 763 | |
|
764 | 764 | # self.nHeights = 0 |
|
765 | 765 | |
|
766 | 766 | self.nProfiles = None |
|
767 | 767 | |
|
768 | 768 | self.heightList = None |
|
769 | 769 | |
|
770 | 770 | self.channelList = None |
|
771 | 771 | |
|
772 | 772 | # self.channelIndexList = None |
|
773 | 773 | |
|
774 | 774 | self.flagNoData = True |
|
775 | 775 | |
|
776 | 776 | self.flagDiscontinuousBlock = False |
|
777 | 777 | |
|
778 | 778 | # self.nPairs = 0 |
|
779 | 779 | |
|
780 | 780 | self.utctime = None |
|
781 | 781 | |
|
782 | 782 | self.blocksize = None |
|
783 | 783 | |
|
784 | 784 | self.profileIndex = 0 |
|
785 | 785 | |
|
786 | 786 | self.nCohInt = 1 |
|
787 | 787 | |
|
788 | 788 | self.nIncohInt = 1 |
|
789 | 789 | |
|
790 | 790 | def getNormFactor(self): |
|
791 | 791 | pwcode = 1 |
|
792 | 792 | if self.flagDecodeData: |
|
793 | 793 | pwcode = numpy.sum(self.code[0]**2) |
|
794 | 794 | |
|
795 | 795 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
796 | 796 | |
|
797 | 797 | return normFactor |
|
798 | 798 | |
|
799 | 799 | def getTimeInterval(self): |
|
800 | 800 | |
|
801 | 801 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
802 | 802 | |
|
803 | 803 | return timeInterval |
|
804 | 804 | |
|
805 | 805 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
806 | 806 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
807 | 807 | |
|
808 | 808 | class Fits(JROData): |
|
809 | 809 | |
|
810 | 810 | heightList = None |
|
811 | 811 | |
|
812 | 812 | channelList = None |
|
813 | 813 | |
|
814 | 814 | flagNoData = True |
|
815 | 815 | |
|
816 | 816 | flagDiscontinuousBlock = False |
|
817 | 817 | |
|
818 | 818 | useLocalTime = False |
|
819 | 819 | |
|
820 | 820 | utctime = None |
|
821 | 821 | |
|
822 | 822 | timeZone = None |
|
823 | 823 | |
|
824 | 824 | # ippSeconds = None |
|
825 | 825 | |
|
826 | 826 | # timeInterval = None |
|
827 | 827 | |
|
828 | 828 | nCohInt = None |
|
829 | 829 | |
|
830 | 830 | nIncohInt = None |
|
831 | 831 | |
|
832 | 832 | noise = None |
|
833 | 833 | |
|
834 | 834 | windowOfFilter = 1 |
|
835 | 835 | |
|
836 | 836 | #Speed of ligth |
|
837 | 837 | C = 3e8 |
|
838 | 838 | |
|
839 | 839 | frequency = 49.92e6 |
|
840 | 840 | |
|
841 | 841 | realtime = False |
|
842 | 842 | |
|
843 | 843 | |
|
844 | 844 | def __init__(self): |
|
845 | 845 | |
|
846 | 846 | self.type = "Fits" |
|
847 | 847 | |
|
848 | 848 | self.nProfiles = None |
|
849 | 849 | |
|
850 | 850 | self.heightList = None |
|
851 | 851 | |
|
852 | 852 | self.channelList = None |
|
853 | 853 | |
|
854 | 854 | # self.channelIndexList = None |
|
855 | 855 | |
|
856 | 856 | self.flagNoData = True |
|
857 | 857 | |
|
858 | 858 | self.utctime = None |
|
859 | 859 | |
|
860 | 860 | self.nCohInt = 1 |
|
861 | 861 | |
|
862 | 862 | self.nIncohInt = 1 |
|
863 | 863 | |
|
864 | 864 | self.useLocalTime = True |
|
865 | 865 | |
|
866 | 866 | self.profileIndex = 0 |
|
867 | 867 | |
|
868 | 868 | # self.utctime = None |
|
869 | 869 | # self.timeZone = None |
|
870 | 870 | # self.ltctime = None |
|
871 | 871 | # self.timeInterval = None |
|
872 | 872 | # self.header = None |
|
873 | 873 | # self.data_header = None |
|
874 | 874 | # self.data = None |
|
875 | 875 | # self.datatime = None |
|
876 | 876 | # self.flagNoData = False |
|
877 | 877 | # self.expName = '' |
|
878 | 878 | # self.nChannels = None |
|
879 | 879 | # self.nSamples = None |
|
880 | 880 | # self.dataBlocksPerFile = None |
|
881 | 881 | # self.comments = '' |
|
882 | 882 | # |
|
883 | 883 | |
|
884 | 884 | |
|
885 | 885 | def getltctime(self): |
|
886 | 886 | |
|
887 | 887 | if self.useLocalTime: |
|
888 | 888 | return self.utctime - self.timeZone*60 |
|
889 | 889 | |
|
890 | 890 | return self.utctime |
|
891 | 891 | |
|
892 | 892 | def getDatatime(self): |
|
893 | 893 | |
|
894 | 894 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
895 | 895 | return datatime |
|
896 | 896 | |
|
897 | 897 | def getTimeRange(self): |
|
898 | 898 | |
|
899 | 899 | datatime = [] |
|
900 | 900 | |
|
901 | 901 | datatime.append(self.ltctime) |
|
902 | 902 | datatime.append(self.ltctime + self.timeInterval) |
|
903 | 903 | |
|
904 | 904 | datatime = numpy.array(datatime) |
|
905 | 905 | |
|
906 | 906 | return datatime |
|
907 | 907 | |
|
908 | 908 | def getHeiRange(self): |
|
909 | 909 | |
|
910 | 910 | heis = self.heightList |
|
911 | 911 | |
|
912 | 912 | return heis |
|
913 | 913 | |
|
914 | 914 | def getNHeights(self): |
|
915 | 915 | |
|
916 | 916 | return len(self.heightList) |
|
917 | 917 | |
|
918 | 918 | def getNChannels(self): |
|
919 | 919 | |
|
920 | 920 | return len(self.channelList) |
|
921 | 921 | |
|
922 | 922 | def getChannelIndexList(self): |
|
923 | 923 | |
|
924 | 924 | return range(self.nChannels) |
|
925 | 925 | |
|
926 | 926 | def getNoise(self, type = 1): |
|
927 | 927 | |
|
928 | 928 | #noise = numpy.zeros(self.nChannels) |
|
929 | 929 | |
|
930 | 930 | if type == 1: |
|
931 | 931 | noise = self.getNoisebyHildebrand() |
|
932 | 932 | |
|
933 | 933 | if type == 2: |
|
934 | 934 | noise = self.getNoisebySort() |
|
935 | 935 | |
|
936 | 936 | if type == 3: |
|
937 | 937 | noise = self.getNoisebyWindow() |
|
938 | 938 | |
|
939 | 939 | return noise |
|
940 | 940 | |
|
941 | 941 | def getTimeInterval(self): |
|
942 | 942 | |
|
943 | 943 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
944 | 944 | |
|
945 | 945 | return timeInterval |
|
946 | 946 | |
|
947 | 947 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
948 | 948 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
949 | 949 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
950 | 950 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
951 | 951 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
952 | 952 | |
|
953 | 953 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
954 | 954 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
955 | 955 | |
|
956 | 956 | |
|
957 | 957 | class Correlation(JROData): |
|
958 | 958 | |
|
959 | 959 | noise = None |
|
960 | 960 | |
|
961 | 961 | SNR = None |
|
962 | 962 | |
|
963 | 963 | #-------------------------------------------------- |
|
964 | 964 | |
|
965 | 965 | mode = None |
|
966 | 966 | |
|
967 | 967 | split = False |
|
968 | 968 | |
|
969 | 969 | data_cf = None |
|
970 | 970 | |
|
971 | 971 | lags = None |
|
972 | 972 | |
|
973 | 973 | lagRange = None |
|
974 | 974 | |
|
975 | 975 | pairsList = None |
|
976 | 976 | |
|
977 | 977 | normFactor = None |
|
978 | 978 | |
|
979 | 979 | #-------------------------------------------------- |
|
980 | 980 | |
|
981 | 981 | # calculateVelocity = None |
|
982 | 982 | |
|
983 | 983 | nLags = None |
|
984 | 984 | |
|
985 | 985 | nPairs = None |
|
986 | 986 | |
|
987 | 987 | nAvg = None |
|
988 | 988 | |
|
989 | 989 | |
|
990 | 990 | def __init__(self): |
|
991 | 991 | ''' |
|
992 | 992 | Constructor |
|
993 | 993 | ''' |
|
994 | 994 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
995 | 995 | |
|
996 | 996 | self.systemHeaderObj = SystemHeader() |
|
997 | 997 | |
|
998 | 998 | self.type = "Correlation" |
|
999 | 999 | |
|
1000 | 1000 | self.data = None |
|
1001 | 1001 | |
|
1002 | 1002 | self.dtype = None |
|
1003 | 1003 | |
|
1004 | 1004 | self.nProfiles = None |
|
1005 | 1005 | |
|
1006 | 1006 | self.heightList = None |
|
1007 | 1007 | |
|
1008 | 1008 | self.channelList = None |
|
1009 | 1009 | |
|
1010 | 1010 | self.flagNoData = True |
|
1011 | 1011 | |
|
1012 | 1012 | self.flagDiscontinuousBlock = False |
|
1013 | 1013 | |
|
1014 | 1014 | self.utctime = None |
|
1015 | 1015 | |
|
1016 | 1016 | self.timeZone = None |
|
1017 | 1017 | |
|
1018 | 1018 | self.dstFlag = None |
|
1019 | 1019 | |
|
1020 | 1020 | self.errorCount = None |
|
1021 | 1021 | |
|
1022 | 1022 | self.blocksize = None |
|
1023 | 1023 | |
|
1024 | 1024 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1025 | 1025 | |
|
1026 | 1026 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1027 | 1027 | |
|
1028 | 1028 | self.pairsList = None |
|
1029 | 1029 | |
|
1030 | 1030 | self.nPoints = None |
|
1031 | 1031 | |
|
1032 | 1032 | def getPairsList(self): |
|
1033 | 1033 | |
|
1034 | 1034 | return self.pairsList |
|
1035 | 1035 | |
|
1036 | 1036 | def getNoise(self, mode = 2): |
|
1037 | 1037 | |
|
1038 | 1038 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1039 | 1039 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1040 | 1040 | |
|
1041 | 1041 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1042 | 1042 | jspectra = copy.copy(jspectra0) |
|
1043 | 1043 | |
|
1044 | 1044 | num_chan = jspectra.shape[0] |
|
1045 | 1045 | num_hei = jspectra.shape[2] |
|
1046 | 1046 | |
|
1047 | 1047 | freq_dc = jspectra.shape[1]/2 |
|
1048 | 1048 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1049 | 1049 | |
|
1050 | 1050 | if ind_vel[0]<0: |
|
1051 | 1051 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1052 | 1052 | |
|
1053 | 1053 | if mode == 1: |
|
1054 | 1054 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1055 | 1055 | |
|
1056 | 1056 | if mode == 2: |
|
1057 | 1057 | |
|
1058 | 1058 | vel = numpy.array([-2,-1,1,2]) |
|
1059 | 1059 | xx = numpy.zeros([4,4]) |
|
1060 | 1060 | |
|
1061 | 1061 | for fil in range(4): |
|
1062 | 1062 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1063 | 1063 | |
|
1064 | 1064 | xx_inv = numpy.linalg.inv(xx) |
|
1065 | 1065 | xx_aux = xx_inv[0,:] |
|
1066 | 1066 | |
|
1067 | 1067 | for ich in range(num_chan): |
|
1068 | 1068 | yy = jspectra[ich,ind_vel,:] |
|
1069 | 1069 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1070 | 1070 | |
|
1071 | 1071 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1072 | 1072 | cjunkid = sum(junkid) |
|
1073 | 1073 | |
|
1074 | 1074 | if cjunkid.any(): |
|
1075 | 1075 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1076 | 1076 | |
|
1077 | 1077 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1078 | 1078 | |
|
1079 | 1079 | return noise |
|
1080 | 1080 | |
|
1081 | 1081 | def getTimeInterval(self): |
|
1082 | 1082 | |
|
1083 | 1083 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1084 | 1084 | |
|
1085 | 1085 | return timeInterval |
|
1086 | 1086 | |
|
1087 | 1087 | def splitFunctions(self): |
|
1088 | 1088 | |
|
1089 | 1089 | pairsList = self.pairsList |
|
1090 | 1090 | ccf_pairs = [] |
|
1091 | 1091 | acf_pairs = [] |
|
1092 | 1092 | ccf_ind = [] |
|
1093 | 1093 | acf_ind = [] |
|
1094 | 1094 | for l in range(len(pairsList)): |
|
1095 | 1095 | chan0 = pairsList[l][0] |
|
1096 | 1096 | chan1 = pairsList[l][1] |
|
1097 | 1097 | |
|
1098 | 1098 | #Obteniendo pares de Autocorrelacion |
|
1099 | 1099 | if chan0 == chan1: |
|
1100 | 1100 | acf_pairs.append(chan0) |
|
1101 | 1101 | acf_ind.append(l) |
|
1102 | 1102 | else: |
|
1103 | 1103 | ccf_pairs.append(pairsList[l]) |
|
1104 | 1104 | ccf_ind.append(l) |
|
1105 | 1105 | |
|
1106 | 1106 | data_acf = self.data_cf[acf_ind] |
|
1107 | 1107 | data_ccf = self.data_cf[ccf_ind] |
|
1108 | 1108 | |
|
1109 | 1109 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1110 | 1110 | |
|
1111 | 1111 | def getNormFactor(self): |
|
1112 | 1112 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1113 | 1113 | acf_pairs = numpy.array(acf_pairs) |
|
1114 | 1114 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1115 | 1115 | |
|
1116 | 1116 | for p in range(self.nPairs): |
|
1117 | 1117 | pair = self.pairsList[p] |
|
1118 | 1118 | |
|
1119 | 1119 | ch0 = pair[0] |
|
1120 | 1120 | ch1 = pair[1] |
|
1121 | 1121 | |
|
1122 | 1122 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1123 | 1123 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1124 | 1124 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1125 | 1125 | |
|
1126 | 1126 | return normFactor |
|
1127 | 1127 | |
|
1128 | 1128 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1129 | 1129 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1130 | 1130 | |
|
1131 | 1131 | class Parameters(Spectra): |
|
1132 | 1132 | |
|
1133 | 1133 | experimentInfo = None #Information about the experiment |
|
1134 | 1134 | |
|
1135 | 1135 | #Information from previous data |
|
1136 | 1136 | |
|
1137 | 1137 | inputUnit = None #Type of data to be processed |
|
1138 | 1138 | |
|
1139 | 1139 | operation = None #Type of operation to parametrize |
|
1140 | 1140 | |
|
1141 | 1141 | #normFactor = None #Normalization Factor |
|
1142 | 1142 | |
|
1143 | 1143 | groupList = None #List of Pairs, Groups, etc |
|
1144 | 1144 | |
|
1145 | 1145 | #Parameters |
|
1146 | 1146 | |
|
1147 | 1147 | data_param = None #Parameters obtained |
|
1148 | 1148 | |
|
1149 | 1149 | data_pre = None #Data Pre Parametrization |
|
1150 | 1150 | |
|
1151 | 1151 | data_SNR = None #Signal to Noise Ratio |
|
1152 | 1152 | |
|
1153 | 1153 | # heightRange = None #Heights |
|
1154 | 1154 | |
|
1155 | 1155 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1156 | 1156 | |
|
1157 | 1157 | # noise = None #Noise Potency |
|
1158 | 1158 | |
|
1159 | 1159 | utctimeInit = None #Initial UTC time |
|
1160 | 1160 | |
|
1161 | 1161 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1162 | 1162 | |
|
1163 | 1163 | useLocalTime = True |
|
1164 | 1164 | |
|
1165 | 1165 | #Fitting |
|
1166 | 1166 | |
|
1167 | 1167 | data_error = None #Error of the estimation |
|
1168 | 1168 | |
|
1169 | 1169 | constants = None |
|
1170 | 1170 | |
|
1171 | 1171 | library = None |
|
1172 | 1172 | |
|
1173 | 1173 | #Output signal |
|
1174 | 1174 | |
|
1175 | 1175 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1176 | 1176 | |
|
1177 | 1177 | data_output = None #Out signal |
|
1178 | 1178 | |
|
1179 | 1179 | nAvg = None |
|
1180 | 1180 | |
|
1181 | 1181 | noise_estimation = None |
|
1182 | 1182 | |
|
1183 | 1183 | |
|
1184 | 1184 | def __init__(self): |
|
1185 | 1185 | ''' |
|
1186 | 1186 | Constructor |
|
1187 | 1187 | ''' |
|
1188 | 1188 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1189 | 1189 | |
|
1190 | 1190 | self.systemHeaderObj = SystemHeader() |
|
1191 | 1191 | |
|
1192 | 1192 | self.type = "Parameters" |
|
1193 | 1193 | |
|
1194 | 1194 | def getTimeRange1(self, interval): |
|
1195 | 1195 | |
|
1196 | 1196 | datatime = [] |
|
1197 | 1197 | |
|
1198 | 1198 | if self.useLocalTime: |
|
1199 | 1199 | time1 = self.utctimeInit - self.timeZone*60 |
|
1200 | 1200 | else: |
|
1201 | 1201 | time1 = self.utctimeInit |
|
1202 | 1202 | |
|
1203 | 1203 | datatime.append(time1) |
|
1204 | 1204 | datatime.append(time1 + interval) |
|
1205 | 1205 | datatime = numpy.array(datatime) |
|
1206 | 1206 | |
|
1207 | 1207 | return datatime |
|
1208 | 1208 | |
|
1209 | 1209 | def getTimeInterval(self): |
|
1210 | 1210 | |
|
1211 | 1211 | if hasattr(self, 'timeInterval1'): |
|
1212 | 1212 | return self.timeInterval1 |
|
1213 | 1213 | else: |
|
1214 | 1214 | return self.paramInterval |
|
1215 | 1215 | |
|
1216 | 1216 | def getNoise(self): |
|
1217 | 1217 | |
|
1218 | 1218 | return self.spc_noise |
|
1219 | 1219 | |
|
1220 | 1220 | timeInterval = property(getTimeInterval) |
This diff has been collapsed as it changes many lines, (1208 lines changed) Show them Hide them | |||
@@ -1,964 +1,782 | |||
|
1 | 1 | |
|
2 | 2 | import os |
|
3 | import zmq | |
|
4 | 3 | import time |
|
5 |
import |
|
|
4 | import glob | |
|
6 | 5 | import datetime |
|
7 | import numpy as np | |
|
6 | from multiprocessing import Process | |
|
7 | ||
|
8 | import zmq | |
|
9 | import numpy | |
|
8 | 10 | import matplotlib |
|
9 | import glob | |
|
10 | matplotlib.use('TkAgg') | |
|
11 | 11 | import matplotlib.pyplot as plt |
|
12 | 12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
13 | from matplotlib.ticker import FuncFormatter, LinearLocator | |
|
14 | from multiprocessing import Process | |
|
13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
|
15 | 14 | |
|
16 | 15 | from schainpy.model.proc.jroproc_base import Operation |
|
17 | ||
|
18 | plt.ion() | |
|
16 | from schainpy.utils import log | |
|
19 | 17 | |
|
20 | 18 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) |
|
21 | fromtimestamp = lambda x, mintime : (datetime.datetime.utcfromtimestamp(mintime).replace(hour=(x + 5), minute=0) - d1970).total_seconds() | |
|
22 | 19 | |
|
20 | d1970 = datetime.datetime(1970, 1, 1) | |
|
23 | 21 | |
|
24 | d1970 = datetime.datetime(1970,1,1) | |
|
25 | 22 | |
|
26 | 23 | class PlotData(Operation, Process): |
|
24 | ''' | |
|
25 | Base class for Schain plotting operations | |
|
26 | ''' | |
|
27 | 27 | |
|
28 | 28 | CODE = 'Figure' |
|
29 | 29 | colormap = 'jro' |
|
30 | bgcolor = 'white' | |
|
30 | 31 | CONFLATE = False |
|
31 | 32 | __MAXNUMX = 80 |
|
32 | 33 | __missing = 1E30 |
|
33 | 34 | |
|
34 | 35 | def __init__(self, **kwargs): |
|
35 | 36 | |
|
36 | 37 | Operation.__init__(self, plot=True, **kwargs) |
|
37 | 38 | Process.__init__(self) |
|
38 | 39 | self.kwargs['code'] = self.CODE |
|
39 | 40 | self.mp = False |
|
40 |
self.data |
|
|
41 | self.isConfig = False | |
|
42 |
self.figure = |
|
|
41 | self.data = None | |
|
42 | self.isConfig = False | |
|
43 | self.figures = [] | |
|
43 | 44 | self.axes = [] |
|
45 | self.cb_axes = [] | |
|
44 | 46 | self.localtime = kwargs.pop('localtime', True) |
|
45 | 47 | self.show = kwargs.get('show', True) |
|
46 | 48 | self.save = kwargs.get('save', False) |
|
47 | 49 | self.colormap = kwargs.get('colormap', self.colormap) |
|
48 | 50 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
49 | 51 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
50 |
self. |
|
|
51 |
self. |
|
|
52 | self.colormaps = kwargs.get('colormaps', None) | |
|
53 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
|
54 | self.showprofile = kwargs.get('showprofile', False) | |
|
55 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
|
56 | self.cb_label = kwargs.get('cb_label', None) | |
|
57 | self.cb_labels = kwargs.get('cb_labels', None) | |
|
52 | 58 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
53 | 59 | self.zmin = kwargs.get('zmin', None) |
|
54 | 60 | self.zmax = kwargs.get('zmax', None) |
|
61 | self.zlimits = kwargs.get('zlimits', None) | |
|
55 | 62 | self.xmin = kwargs.get('xmin', None) |
|
63 | if self.xmin is not None: | |
|
64 | self.xmin += 5 | |
|
56 | 65 | self.xmax = kwargs.get('xmax', None) |
|
57 | 66 | self.xrange = kwargs.get('xrange', 24) |
|
58 | 67 | self.ymin = kwargs.get('ymin', None) |
|
59 | 68 | self.ymax = kwargs.get('ymax', None) |
|
60 |
self. |
|
|
61 | self.throttle_value = 5 | |
|
62 | self.times = [] | |
|
63 | #self.interactive = self.kwargs['parent'] | |
|
69 | self.xlabel = kwargs.get('xlabel', None) | |
|
70 | self.__MAXNUMY = kwargs.get('decimation', 100) | |
|
71 | self.showSNR = kwargs.get('showSNR', False) | |
|
72 | self.oneFigure = kwargs.get('oneFigure', True) | |
|
73 | self.width = kwargs.get('width', None) | |
|
74 | self.height = kwargs.get('height', None) | |
|
75 | self.colorbar = kwargs.get('colorbar', True) | |
|
76 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
|
77 | self.titles = ['' for __ in range(16)] | |
|
78 | ||
|
79 | def __setup(self): | |
|
80 | ''' | |
|
81 | Common setup for all figures, here figures and axes are created | |
|
82 | ''' | |
|
83 | ||
|
84 | self.setup() | |
|
85 | ||
|
86 | if self.width is None: | |
|
87 | self.width = 8 | |
|
64 | 88 | |
|
89 | self.figures = [] | |
|
90 | self.axes = [] | |
|
91 | self.cb_axes = [] | |
|
92 | self.pf_axes = [] | |
|
93 | self.cmaps = [] | |
|
94 | ||
|
95 | size = '15%' if self.ncols==1 else '30%' | |
|
96 | pad = '4%' if self.ncols==1 else '8%' | |
|
97 | ||
|
98 | if self.oneFigure: | |
|
99 | if self.height is None: | |
|
100 | self.height = 1.4*self.nrows + 1 | |
|
101 | fig = plt.figure(figsize=(self.width, self.height), | |
|
102 | edgecolor='k', | |
|
103 | facecolor='w') | |
|
104 | self.figures.append(fig) | |
|
105 | for n in range(self.nplots): | |
|
106 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) | |
|
107 | ax.tick_params(labelsize=8) | |
|
108 | ax.firsttime = True | |
|
109 | self.axes.append(ax) | |
|
110 | if self.showprofile: | |
|
111 | cax = self.__add_axes(ax, size=size, pad=pad) | |
|
112 | cax.tick_params(labelsize=8) | |
|
113 | self.pf_axes.append(cax) | |
|
114 | else: | |
|
115 | if self.height is None: | |
|
116 | self.height = 3 | |
|
117 | for n in range(self.nplots): | |
|
118 | fig = plt.figure(figsize=(self.width, self.height), | |
|
119 | edgecolor='k', | |
|
120 | facecolor='w') | |
|
121 | ax = fig.add_subplot(1, 1, 1) | |
|
122 | ax.tick_params(labelsize=8) | |
|
123 | ax.firsttime = True | |
|
124 | self.figures.append(fig) | |
|
125 | self.axes.append(ax) | |
|
126 | if self.showprofile: | |
|
127 | cax = self.__add_axes(ax, size=size, pad=pad) | |
|
128 | cax.tick_params(labelsize=8) | |
|
129 | self.pf_axes.append(cax) | |
|
130 | ||
|
131 | for n in range(self.nrows): | |
|
132 | if self.colormaps is not None: | |
|
133 | cmap = plt.get_cmap(self.colormaps[n]) | |
|
134 | else: | |
|
135 | cmap = plt.get_cmap(self.colormap) | |
|
136 | cmap.set_bad(self.bgcolor, 1.) | |
|
137 | self.cmaps.append(cmap) | |
|
138 | ||
|
139 | def __add_axes(self, ax, size='30%', pad='8%'): | |
|
65 | 140 | ''' |
|
66 | this new parameter is created to plot data from varius channels at different figures | |
|
67 | 1. crear una lista de figuras donde se puedan plotear las figuras, | |
|
68 | 2. dar las opciones de configuracion a cada figura, estas opciones son iguales para ambas figuras | |
|
69 | 3. probar? | |
|
141 | Add new axes to the given figure | |
|
70 | 142 | ''' |
|
71 | self.ind_plt_ch = kwargs.get('ind_plt_ch', False) | |
|
72 | self.figurelist = None | |
|
143 | divider = make_axes_locatable(ax) | |
|
144 | nax = divider.new_horizontal(size=size, pad=pad) | |
|
145 | ax.figure.add_axes(nax) | |
|
146 | return nax | |
|
73 | 147 | |
|
74 | 148 | |
|
75 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
|
149 | def setup(self): | |
|
150 | ''' | |
|
151 | This method should be implemented in the child class, the following | |
|
152 | attributes should be set: | |
|
153 | ||
|
154 | self.nrows: number of rows | |
|
155 | self.ncols: number of cols | |
|
156 | self.nplots: number of plots (channels or pairs) | |
|
157 | self.ylabel: label for Y axes | |
|
158 | self.titles: list of axes title | |
|
159 | ||
|
160 | ''' | |
|
161 | raise(NotImplementedError, 'Implement this method in child class') | |
|
76 | 162 | |
|
163 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
|
164 | ''' | |
|
165 | Create a masked array for missing data | |
|
166 | ''' | |
|
77 | 167 | if x_buffer.shape[0] < 2: |
|
78 | 168 | return x_buffer, y_buffer, z_buffer |
|
79 | 169 | |
|
80 | 170 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
81 | x_median = np.median(deltas) | |
|
171 | x_median = numpy.median(deltas) | |
|
82 | 172 | |
|
83 | index = np.where(deltas > 5*x_median) | |
|
173 | index = numpy.where(deltas > 5*x_median) | |
|
84 | 174 | |
|
85 | 175 | if len(index[0]) != 0: |
|
86 | 176 | z_buffer[::, index[0], ::] = self.__missing |
|
87 | z_buffer = np.ma.masked_inside(z_buffer, | |
|
177 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
|
88 | 178 | 0.99*self.__missing, |
|
89 | 179 | 1.01*self.__missing) |
|
90 | 180 | |
|
91 | 181 | return x_buffer, y_buffer, z_buffer |
|
92 | 182 | |
|
93 | 183 | def decimate(self): |
|
94 | 184 | |
|
95 | 185 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
96 | 186 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
97 | 187 | |
|
98 | 188 | # x = self.x[::dx] |
|
99 | 189 | x = self.x |
|
100 | 190 | y = self.y[::dy] |
|
101 | 191 | z = self.z[::, ::, ::dy] |
|
102 | ||
|
192 | ||
|
103 | 193 | return x, y, z |
|
104 | 194 | |
|
105 | ''' | |
|
106 | JM: | |
|
107 | elimana las otras imagenes generadas debido a que lso workers no llegan en orden y le pueden | |
|
108 | poner otro tiempo a la figura q no necesariamente es el ultimo. | |
|
109 | Solo se realiza cuando termina la imagen. | |
|
110 | Problemas: | |
|
195 | def format(self): | |
|
196 | ''' | |
|
197 | Set min and max values, labels, ticks and titles | |
|
198 | ''' | |
|
111 | 199 | |
|
112 | File "/home/ci-81/workspace/schainv2.3/schainpy/model/graphics/jroplot_data.py", line 145, in __plot | |
|
113 | for n, eachfigure in enumerate(self.figurelist): | |
|
114 | TypeError: 'NoneType' object is not iterable | |
|
200 | if self.xmin is None: | |
|
201 | xmin = self.min_time | |
|
202 | else: | |
|
203 | if self.xaxis is 'time': | |
|
204 | dt = datetime.datetime.fromtimestamp(self.min_time) | |
|
205 | xmin = (datetime.datetime.combine(dt.date(), | |
|
206 | datetime.time(int(self.xmin), 0, 0))-d1970).total_seconds() | |
|
207 | else: | |
|
208 | xmin = self.xmin | |
|
115 | 209 | |
|
116 | ''' | |
|
117 | def deleteanotherfiles(self): | |
|
118 | figurenames=[] | |
|
119 | if self.figurelist != None: | |
|
120 | for n, eachfigure in enumerate(self.figurelist): | |
|
121 | #add specific name for each channel in channelList | |
|
122 | ghostfigname = os.path.join(self.save, '{}_{}_{}'.format(self.titles[n].replace(' ',''),self.CODE, | |
|
123 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d'))) | |
|
124 | figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE, | |
|
125 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
126 | ||
|
127 | for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures | |
|
128 | if ghostfigure != figname: | |
|
129 | os.remove(ghostfigure) | |
|
130 | print 'Removing GhostFigures:' , figname | |
|
131 | else : | |
|
132 | '''Erasing ghost images for just on******************''' | |
|
133 | ghostfigname = os.path.join(self.save, '{}_{}'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d'))) | |
|
134 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
135 | for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures | |
|
136 | if ghostfigure != figname: | |
|
137 | os.remove(ghostfigure) | |
|
138 | print 'Removing GhostFigures:' , figname | |
|
210 | if self.xmax is None: | |
|
211 | xmax = xmin+self.xrange*60*60 | |
|
212 | else: | |
|
213 | if self.xaxis is 'time': | |
|
214 | dt = datetime.datetime.fromtimestamp(self.min_time) | |
|
215 | xmax = (datetime.datetime.combine(dt.date(), | |
|
216 | datetime.time(int(self.xmax), 0, 0))-d1970).total_seconds() | |
|
217 | else: | |
|
218 | xmax = self.xmax | |
|
219 | ||
|
220 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
|
221 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
|
222 | ||
|
223 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 | |
|
224 | ||
|
225 | for n, ax in enumerate(self.axes): | |
|
226 | if ax.firsttime: | |
|
227 | ax.set_facecolor(self.bgcolor) | |
|
228 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |
|
229 | if self.xaxis is 'time': | |
|
230 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
|
231 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
|
232 | if self.xlabel is not None: | |
|
233 | ax.set_xlabel(self.xlabel) | |
|
234 | ax.set_ylabel(self.ylabel) | |
|
235 | ax.firsttime = False | |
|
236 | if self.showprofile: | |
|
237 | self.pf_axes[n].set_ylim(ymin, ymax) | |
|
238 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
|
239 | self.pf_axes[n].set_xlabel('dB') | |
|
240 | self.pf_axes[n].grid(b=True, axis='x') | |
|
241 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] | |
|
242 | if self.colorbar: | |
|
243 | cb = plt.colorbar(ax.plt, ax=ax, pad=0.02) | |
|
244 | cb.ax.tick_params(labelsize=8) | |
|
245 | if self.cb_label: | |
|
246 | cb.set_label(self.cb_label, size=8) | |
|
247 | elif self.cb_labels: | |
|
248 | cb.set_label(self.cb_labels[n], size=8) | |
|
249 | ||
|
250 | ax.set_title('{} - {} UTC'.format( | |
|
251 | self.titles[n], | |
|
252 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S')), | |
|
253 | size=8) | |
|
254 | ax.set_xlim(xmin, xmax) | |
|
255 | ax.set_ylim(ymin, ymax) | |
|
256 | ||
|
139 | 257 | |
|
140 | 258 | def __plot(self): |
|
141 | ||
|
142 | print 'plotting...{}'.format(self.CODE) | |
|
143 | if self.ind_plt_ch is False : #standard | |
|
259 | ''' | |
|
260 | ''' | |
|
261 | log.success('Plotting', self.name) | |
|
262 | ||
|
263 | self.plot() | |
|
264 | self.format() | |
|
265 | ||
|
266 | for n, fig in enumerate(self.figures): | |
|
267 | if self.nrows == 0 or self.nplots == 0: | |
|
268 | log.warning('No data', self.name) | |
|
269 | continue | |
|
144 | 270 | if self.show: |
|
145 |
|
|
|
146 |
|
|
|
147 |
|
|
|
148 |
|
|
|
149 |
|
|
|
150 | else : | |
|
151 | print 'len(self.figurelist): ',len(self.figurelist) | |
|
152 | for n, eachfigure in enumerate(self.figurelist): | |
|
153 |
|
|
|
154 |
|
|
|
155 | ||
|
156 |
|
|
|
157 | eachfigure.tight_layout() # ajuste de cada subplot | |
|
158 | eachfigure.canvas.manager.set_window_title('{} {} - {}'.format(self.title[n], self.CODE.upper(), | |
|
159 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | |
|
160 | ||
|
161 | # if self.save: | |
|
162 | # if self.ind_plt_ch is False : #standard | |
|
163 | # figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, | |
|
164 | # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
165 | # print 'Saving figure: {}'.format(figname) | |
|
166 | # self.figure.savefig(figname) | |
|
167 | # else : | |
|
168 | # for n, eachfigure in enumerate(self.figurelist): | |
|
169 | # #add specific name for each channel in channelList | |
|
170 | # figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n],self.CODE, | |
|
171 | # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
172 | # | |
|
173 | # print 'Saving figure: {}'.format(figname) | |
|
174 | # eachfigure.savefig(figname) | |
|
175 | ||
|
176 | if self.ind_plt_ch is False : | |
|
177 | self.figure.canvas.draw() | |
|
178 | else : | |
|
179 | for eachfigure in self.figurelist: | |
|
180 | eachfigure.canvas.draw() | |
|
181 | ||
|
182 | if self.save: | |
|
183 | if self.ind_plt_ch is False : #standard | |
|
184 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, | |
|
185 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
271 | fig.show() | |
|
272 | ||
|
273 | fig.tight_layout() | |
|
274 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
|
275 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | |
|
276 | # fig.canvas.draw() | |
|
277 | ||
|
278 | if self.save and self.data.ended: | |
|
279 | channels = range(self.nrows) | |
|
280 | if self.oneFigure: | |
|
281 | label = '' | |
|
282 | else: | |
|
283 | label = '_{}'.format(channels[n]) | |
|
284 | figname = os.path.join( | |
|
285 | self.save, | |
|
286 | '{}{}_{}.png'.format( | |
|
287 | self.CODE, | |
|
288 | label, | |
|
289 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') | |
|
290 | ) | |
|
291 | ) | |
|
186 | 292 | print 'Saving figure: {}'.format(figname) |
|
187 |
|
|
|
188 | else : | |
|
189 | for n, eachfigure in enumerate(self.figurelist): | |
|
190 | #add specific name for each channel in channelList | |
|
191 | figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE, | |
|
192 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) | |
|
193 | ||
|
194 | print 'Saving figure: {}'.format(figname) | |
|
195 | eachfigure.savefig(figname) | |
|
196 | ||
|
293 | fig.savefig(figname) | |
|
197 | 294 | |
|
198 | 295 | def plot(self): |
|
199 | ||
|
200 | print 'plotting...{}'.format(self.CODE.upper()) | |
|
201 | return | |
|
296 | ''' | |
|
297 | ''' | |
|
298 | raise(NotImplementedError, 'Implement this method in child class') | |
|
202 | 299 | |
|
203 | 300 | def run(self): |
|
204 | 301 | |
|
205 |
|
|
|
302 | log.success('Starting', self.name) | |
|
206 | 303 | |
|
207 | 304 | context = zmq.Context() |
|
208 | 305 | receiver = context.socket(zmq.SUB) |
|
209 | 306 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
210 | 307 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
211 | 308 | |
|
212 | 309 | if 'server' in self.kwargs['parent']: |
|
213 | 310 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
214 | 311 | else: |
|
215 | receiver.connect("ipc:///tmp/zmq.plots") | |
|
216 | ||
|
217 | seconds_passed = 0 | |
|
312 | receiver.connect("ipc:///tmp/zmq.plots") | |
|
218 | 313 | |
|
219 | 314 | while True: |
|
220 | 315 | try: |
|
221 |
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
|
222 | self.started = self.data['STARTED'] | |
|
223 |
self. |
|
|
224 | ||
|
225 | if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']): | |
|
226 | continue | |
|
227 | ||
|
228 | self.times = self.data['times'] | |
|
229 | self.times.sort() | |
|
230 | self.throttle_value = self.data['throttle'] | |
|
231 | self.min_time = self.times[0] | |
|
232 | self.max_time = self.times[-1] | |
|
316 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
|
317 | ||
|
318 | self.min_time = self.data.times[0] | |
|
319 | self.max_time = self.data.times[-1] | |
|
233 | 320 | |
|
234 | 321 | if self.isConfig is False: |
|
235 |
|
|
|
236 | self.setup() | |
|
322 | self.__setup() | |
|
237 | 323 | self.isConfig = True |
|
238 | self.__plot() | |
|
239 | ||
|
240 | if self.data['ENDED'] is True: | |
|
241 | print '********GRAPHIC ENDED********' | |
|
242 | self.ended = True | |
|
243 | self.isConfig = False | |
|
244 | self.__plot() | |
|
245 | self.deleteanotherfiles() #CLPDG | |
|
246 | elif seconds_passed >= self.data['throttle']: | |
|
247 | print 'passed', seconds_passed | |
|
248 | self.__plot() | |
|
249 | seconds_passed = 0 | |
|
324 | ||
|
325 | self.__plot() | |
|
250 | 326 | |
|
251 | 327 | except zmq.Again as e: |
|
252 |
|
|
|
253 |
|
|
|
254 | seconds_passed += 2 | |
|
328 | log.log('Waiting for data...') | |
|
329 | if self.data: | |
|
330 | plt.pause(self.data.throttle) | |
|
331 | else: | |
|
332 | time.sleep(2) | |
|
255 | 333 | |
|
256 | 334 | def close(self): |
|
257 |
if self.data |
|
|
335 | if self.data: | |
|
258 | 336 | self.__plot() |
|
259 | 337 | |
|
260 | 338 | |
|
261 | 339 | class PlotSpectraData(PlotData): |
|
340 | ''' | |
|
341 | Plot for Spectra data | |
|
342 | ''' | |
|
262 | 343 | |
|
263 | 344 | CODE = 'spc' |
|
264 | colormap = 'jro' | |
|
265 | CONFLATE = False | |
|
345 | colormap = 'jro' | |
|
266 | 346 | |
|
267 | 347 | def setup(self): |
|
268 | ||
|
269 | ncolspan = 1 | |
|
270 | colspan = 1 | |
|
271 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) | |
|
272 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) | |
|
273 | self.width = 3.6*self.ncols | |
|
274 | self.height = 3.2*self.nrows | |
|
275 | if self.showprofile: | |
|
276 | ncolspan = 3 | |
|
277 | colspan = 2 | |
|
278 | self.width += 1.2*self.ncols | |
|
348 | self.nplots = len(self.data.channels) | |
|
349 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) | |
|
350 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) | |
|
351 | self.width = 3.4*self.ncols | |
|
352 | self.height = 3*self.nrows | |
|
353 | self.cb_label = 'dB' | |
|
354 | if self.showprofile: | |
|
355 | self.width += 0.8*self.ncols | |
|
279 | 356 | |
|
280 | 357 | self.ylabel = 'Range [Km]' |
|
281 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
|
282 | ||
|
283 | if self.figure is None: | |
|
284 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
285 | edgecolor='k', | |
|
286 | facecolor='w') | |
|
287 | else: | |
|
288 | self.figure.clf() | |
|
289 | ||
|
290 | n = 0 | |
|
291 | for y in range(self.nrows): | |
|
292 | for x in range(self.ncols): | |
|
293 | if n >= self.dataOut.nChannels: | |
|
294 | break | |
|
295 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) | |
|
296 | if self.showprofile: | |
|
297 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) | |
|
298 | ||
|
299 | ax.firsttime = True | |
|
300 | self.axes.append(ax) | |
|
301 | n += 1 | |
|
302 | 358 | |
|
303 | 359 | def plot(self): |
|
304 | ||
|
305 | 360 | if self.xaxis == "frequency": |
|
306 |
x = self.data |
|
|
307 | xlabel = "Frequency (kHz)" | |
|
361 | x = self.data.xrange[0] | |
|
362 | self.xlabel = "Frequency (kHz)" | |
|
308 | 363 | elif self.xaxis == "time": |
|
309 |
x = self.data |
|
|
310 | xlabel = "Time (ms)" | |
|
364 | x = self.data.xrange[1] | |
|
365 | self.xlabel = "Time (ms)" | |
|
311 | 366 | else: |
|
312 |
x = self.data |
|
|
313 | xlabel = "Velocity (m/s)" | |
|
367 | x = self.data.xrange[2] | |
|
368 | self.xlabel = "Velocity (m/s)" | |
|
369 | ||
|
370 | if self.CODE == 'spc_mean': | |
|
371 | x = self.data.xrange[2] | |
|
372 | self.xlabel = "Velocity (m/s)" | |
|
314 | 373 | |
|
315 | y = self.dataOut.getHeiRange() | |
|
316 | z = self.data[self.CODE] | |
|
374 | self.titles = [] | |
|
317 | 375 | |
|
376 | y = self.data.heights | |
|
377 | self.y = y | |
|
378 | z = self.data['spc'] | |
|
379 | ||
|
318 | 380 | for n, ax in enumerate(self.axes): |
|
381 | noise = self.data['noise'][n][-1] | |
|
382 | if self.CODE == 'spc_mean': | |
|
383 | mean = self.data['mean'][n][-1] | |
|
319 | 384 | if ax.firsttime: |
|
320 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |
|
385 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
|
321 | 386 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
322 |
self. |
|
|
323 |
self. |
|
|
324 | self.zmin = self.zmin if self.zmin else np.nanmin(z) | |
|
325 | self.zmax = self.zmax if self.zmax else np.nanmax(z) | |
|
326 | ax.plot = ax.pcolormesh(x, y, z[n].T, | |
|
327 |
|
|
|
328 |
|
|
|
329 | cmap=plt.get_cmap(self.colormap) | |
|
330 | ) | |
|
331 | divider = make_axes_locatable(ax) | |
|
332 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
|
333 | self.figure.add_axes(cax) | |
|
334 | plt.colorbar(ax.plot, cax) | |
|
335 | ||
|
336 | ax.set_xlim(self.xmin, self.xmax) | |
|
337 | ax.set_ylim(self.ymin, self.ymax) | |
|
338 | ||
|
339 | ax.set_ylabel(self.ylabel) | |
|
340 | ax.set_xlabel(xlabel) | |
|
341 | ||
|
342 | ax.firsttime = False | |
|
387 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
|
388 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
|
389 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
|
390 | vmin=self.zmin, | |
|
391 | vmax=self.zmax, | |
|
392 | cmap=plt.get_cmap(self.colormap) | |
|
393 | ) | |
|
343 | 394 | |
|
344 | 395 | if self.showprofile: |
|
345 |
ax.pl |
|
|
346 | ax.ax_profile.set_xlim(self.zmin, self.zmax) | |
|
347 | ax.ax_profile.set_ylim(self.ymin, self.ymax) | |
|
348 | ax.ax_profile.set_xlabel('dB') | |
|
349 | ax.ax_profile.grid(b=True, axis='x') | |
|
350 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, | |
|
351 | color="k", linestyle="dashed", lw=2)[0] | |
|
352 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] | |
|
396 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] | |
|
397 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
|
398 | color="k", linestyle="dashed", lw=1)[0] | |
|
399 | if self.CODE == 'spc_mean': | |
|
400 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
|
353 | 401 | else: |
|
354 |
ax.pl |
|
|
402 | ax.plt.set_array(z[n].T.ravel()) | |
|
355 | 403 | if self.showprofile: |
|
356 |
ax.pl |
|
|
357 |
ax.pl |
|
|
404 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
|
405 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
|
406 | if self.CODE == 'spc_mean': | |
|
407 | ax.plt_mean.set_data(mean, y) | |
|
358 | 408 | |
|
359 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), | |
|
360 | size=8) | |
|
409 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
|
361 | 410 | self.saveTime = self.max_time |
|
362 | 411 | |
|
363 | 412 | |
|
364 | 413 | class PlotCrossSpectraData(PlotData): |
|
365 | 414 | |
|
366 | 415 | CODE = 'cspc' |
|
367 | 416 | zmin_coh = None |
|
368 | 417 | zmax_coh = None |
|
369 | 418 | zmin_phase = None |
|
370 | zmax_phase = None | |
|
371 | CONFLATE = False | |
|
419 | zmax_phase = None | |
|
372 | 420 | |
|
373 | 421 | def setup(self): |
|
374 | 422 | |
|
375 |
ncols |
|
|
376 | colspan = 1 | |
|
377 |
self.n |
|
|
378 |
self. |
|
|
379 |
self. |
|
|
380 | self.height = 3.2*self.nrows | |
|
381 | ||
|
423 | self.ncols = 4 | |
|
424 | self.nrows = len(self.data.pairs) | |
|
425 | self.nplots = self.nrows*4 | |
|
426 | self.width = 3.4*self.ncols | |
|
427 | self.height = 3*self.nrows | |
|
382 | 428 | self.ylabel = 'Range [Km]' |
|
383 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
|
384 | ||
|
385 | if self.figure is None: | |
|
386 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
387 | edgecolor='k', | |
|
388 | facecolor='w') | |
|
389 | else: | |
|
390 | self.figure.clf() | |
|
391 | ||
|
392 | for y in range(self.nrows): | |
|
393 | for x in range(self.ncols): | |
|
394 | ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1) | |
|
395 | ax.firsttime = True | |
|
396 | self.axes.append(ax) | |
|
429 | self.showprofile = False | |
|
397 | 430 | |
|
398 | 431 | def plot(self): |
|
399 | 432 | |
|
400 | 433 | if self.xaxis == "frequency": |
|
401 |
x = self.data |
|
|
402 | xlabel = "Frequency (kHz)" | |
|
434 | x = self.data.xrange[0] | |
|
435 | self.xlabel = "Frequency (kHz)" | |
|
403 | 436 | elif self.xaxis == "time": |
|
404 |
x = self.data |
|
|
405 | xlabel = "Time (ms)" | |
|
437 | x = self.data.xrange[1] | |
|
438 | self.xlabel = "Time (ms)" | |
|
406 | 439 | else: |
|
407 |
x = self.data |
|
|
408 | xlabel = "Velocity (m/s)" | |
|
440 | x = self.data.xrange[2] | |
|
441 | self.xlabel = "Velocity (m/s)" | |
|
442 | ||
|
443 | self.titles = [] | |
|
409 | 444 | |
|
410 |
y = self.data |
|
|
411 | z_coh = self.data['cspc_coh'] | |
|
412 |
|
|
|
445 | y = self.data.heights | |
|
446 | self.y = y | |
|
447 | spc = self.data['spc'] | |
|
448 | cspc = self.data['cspc'] | |
|
413 | 449 | |
|
414 | 450 | for n in range(self.nrows): |
|
415 |
|
|
|
416 |
|
|
|
451 | noise = self.data['noise'][n][-1] | |
|
452 | pair = self.data.pairs[n] | |
|
453 | ax = self.axes[4*n] | |
|
454 | ax3 = self.axes[4*n+3] | |
|
417 | 455 | if ax.firsttime: |
|
418 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |
|
456 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
|
419 | 457 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
420 |
self. |
|
|
421 |
self. |
|
|
422 | self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0 | |
|
423 | self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0 | |
|
424 | self.zmin_phase = self.zmin_phase if self.zmin_phase else -180 | |
|
425 | self.zmax_phase = self.zmax_phase if self.zmax_phase else 180 | |
|
426 | ||
|
427 | ax.plot = ax.pcolormesh(x, y, z_coh[n].T, | |
|
428 | vmin=self.zmin_coh, | |
|
429 | vmax=self.zmax_coh, | |
|
430 | cmap=plt.get_cmap(self.colormap_coh) | |
|
431 | ) | |
|
432 | divider = make_axes_locatable(ax) | |
|
433 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
|
434 | self.figure.add_axes(cax) | |
|
435 | plt.colorbar(ax.plot, cax) | |
|
436 | ||
|
437 | ax.set_xlim(self.xmin, self.xmax) | |
|
438 | ax.set_ylim(self.ymin, self.ymax) | |
|
439 | ||
|
440 | ax.set_ylabel(self.ylabel) | |
|
441 | ax.set_xlabel(xlabel) | |
|
442 | ax.firsttime = False | |
|
443 | ||
|
444 | ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T, | |
|
445 | vmin=self.zmin_phase, | |
|
446 | vmax=self.zmax_phase, | |
|
447 | cmap=plt.get_cmap(self.colormap_phase) | |
|
448 | ) | |
|
449 | divider = make_axes_locatable(ax1) | |
|
450 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
|
451 | self.figure.add_axes(cax) | |
|
452 | plt.colorbar(ax1.plot, cax) | |
|
453 | ||
|
454 | ax1.set_xlim(self.xmin, self.xmax) | |
|
455 | ax1.set_ylim(self.ymin, self.ymax) | |
|
456 | ||
|
457 | ax1.set_ylabel(self.ylabel) | |
|
458 | ax1.set_xlabel(xlabel) | |
|
459 | ax1.firsttime = False | |
|
458 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | |
|
459 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
|
460 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, | |
|
461 | vmin=self.zmin, | |
|
462 | vmax=self.zmax, | |
|
463 | cmap=plt.get_cmap(self.colormap) | |
|
464 | ) | |
|
460 | 465 | else: |
|
461 |
ax.pl |
|
|
462 | ax1.plot.set_array(z_phase[n].T.ravel()) | |
|
463 | ||
|
464 | ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) | |
|
465 | ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) | |
|
466 | self.saveTime = self.max_time | |
|
467 | ||
|
466 | ax.plt.set_array(spc[pair[0]].T.ravel()) | |
|
467 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
|
468 | 468 | |
|
469 | class PlotSpectraMeanData(PlotSpectraData): | |
|
470 | ||
|
471 | CODE = 'spc_mean' | |
|
472 | colormap = 'jet' | |
|
473 | ||
|
474 | def plot(self): | |
|
475 | ||
|
476 | if self.xaxis == "frequency": | |
|
477 | x = self.dataOut.getFreqRange(1)/1000. | |
|
478 | xlabel = "Frequency (kHz)" | |
|
479 | elif self.xaxis == "time": | |
|
480 | x = self.dataOut.getAcfRange(1) | |
|
481 | xlabel = "Time (ms)" | |
|
482 | else: | |
|
483 | x = self.dataOut.getVelRange(1) | |
|
484 | xlabel = "Velocity (m/s)" | |
|
485 | ||
|
486 | y = self.dataOut.getHeiRange() | |
|
487 | z = self.data['spc'] | |
|
488 | mean = self.data['mean'][self.max_time] | |
|
489 | ||
|
490 | for n, ax in enumerate(self.axes): | |
|
491 | ||
|
492 | if ax.firsttime: | |
|
493 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |
|
494 | self.xmin = self.xmin if self.xmin else -self.xmax | |
|
495 | self.ymin = self.ymin if self.ymin else np.nanmin(y) | |
|
496 | self.ymax = self.ymax if self.ymax else np.nanmax(y) | |
|
497 | self.zmin = self.zmin if self.zmin else np.nanmin(z) | |
|
498 | self.zmax = self.zmax if self.zmax else np.nanmax(z) | |
|
499 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
|
469 | ax = self.axes[4*n+1] | |
|
470 | if ax.firsttime: | |
|
471 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, | |
|
500 | 472 | vmin=self.zmin, |
|
501 | 473 | vmax=self.zmax, |
|
502 | 474 | cmap=plt.get_cmap(self.colormap) |
|
503 | 475 | ) |
|
504 | ax.plt_dop = ax.plot(mean[n], y, | |
|
505 | color='k')[0] | |
|
506 | ||
|
507 | divider = make_axes_locatable(ax) | |
|
508 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
|
509 | self.figure.add_axes(cax) | |
|
510 | plt.colorbar(ax.plt, cax) | |
|
511 | ||
|
512 | ax.set_xlim(self.xmin, self.xmax) | |
|
513 | ax.set_ylim(self.ymin, self.ymax) | |
|
514 | ||
|
515 | ax.set_ylabel(self.ylabel) | |
|
516 | ax.set_xlabel(xlabel) | |
|
517 | ||
|
518 | ax.firsttime = False | |
|
519 | ||
|
520 | if self.showprofile: | |
|
521 | ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] | |
|
522 | ax.ax_profile.set_xlim(self.zmin, self.zmax) | |
|
523 | ax.ax_profile.set_ylim(self.ymin, self.ymax) | |
|
524 | ax.ax_profile.set_xlabel('dB') | |
|
525 | ax.ax_profile.grid(b=True, axis='x') | |
|
526 | ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, | |
|
527 | color="k", linestyle="dashed", lw=2)[0] | |
|
528 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] | |
|
529 | 476 | else: |
|
530 |
ax.plt.set_array( |
|
|
531 | ax.plt_dop.set_data(mean[n], y) | |
|
532 | if self.showprofile: | |
|
533 | ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y) | |
|
534 | ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) | |
|
477 | ax.plt.set_array(spc[pair[1]].T.ravel()) | |
|
478 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
|
479 | ||
|
480 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) | |
|
481 | coh = numpy.abs(out) | |
|
482 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi | |
|
483 | ||
|
484 | ax = self.axes[4*n+2] | |
|
485 | if ax.firsttime: | |
|
486 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
|
487 | vmin=0, | |
|
488 | vmax=1, | |
|
489 | cmap=plt.get_cmap(self.colormap_coh) | |
|
490 | ) | |
|
491 | else: | |
|
492 | ax.plt.set_array(coh.T.ravel()) | |
|
493 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
|
535 | 494 | |
|
536 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), | |
|
537 | size=8) | |
|
495 | ax = self.axes[4*n+3] | |
|
496 | if ax.firsttime: | |
|
497 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
|
498 | vmin=-180, | |
|
499 | vmax=180, | |
|
500 | cmap=plt.get_cmap(self.colormap_phase) | |
|
501 | ) | |
|
502 | else: | |
|
503 | ax.plt.set_array(phase.T.ravel()) | |
|
504 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
|
505 | ||
|
538 | 506 | self.saveTime = self.max_time |
|
539 | 507 | |
|
540 | 508 | |
|
509 | class PlotSpectraMeanData(PlotSpectraData): | |
|
510 | ''' | |
|
511 | Plot for Spectra and Mean | |
|
512 | ''' | |
|
513 | CODE = 'spc_mean' | |
|
514 | colormap = 'jro' | |
|
515 | ||
|
516 | ||
|
541 | 517 | class PlotRTIData(PlotData): |
|
518 | ''' | |
|
519 | Plot for RTI data | |
|
520 | ''' | |
|
542 | 521 | |
|
543 | 522 | CODE = 'rti' |
|
544 | 523 | colormap = 'jro' |
|
545 | 524 | |
|
546 | 525 | def setup(self): |
|
547 |
self. |
|
|
548 | self.nrows = self.dataOut.nChannels | |
|
549 | self.width = 10 | |
|
550 | #TODO : arreglar la altura de la figura, esta hardcodeada. | |
|
551 | #Se arreglo, testear! | |
|
552 | if self.ind_plt_ch: | |
|
553 | self.height = 3.2#*self.nrows if self.nrows<6 else 12 | |
|
554 | else: | |
|
555 | self.height = 2.2*self.nrows if self.nrows<6 else 12 | |
|
556 | ||
|
557 | ''' | |
|
558 | if self.nrows==1: | |
|
559 | self.height += 1 | |
|
560 | ''' | |
|
526 | self.xaxis = 'time' | |
|
527 | self.ncols = 1 | |
|
528 | self.nrows = len(self.data.channels) | |
|
529 | self.nplots = len(self.data.channels) | |
|
561 | 530 | self.ylabel = 'Range [Km]' |
|
562 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
|
563 | ||
|
564 | ''' | |
|
565 | Logica: | |
|
566 | 1) Si la variable ind_plt_ch es True, va a crear mas de 1 figura | |
|
567 | 2) guardamos "Figures" en una lista y "axes" en otra, quizas se deberia guardar el | |
|
568 | axis dentro de "Figures" como un diccionario. | |
|
569 | ''' | |
|
570 | if self.ind_plt_ch is False: #standard mode | |
|
571 | ||
|
572 | if self.figure is None: #solo para la priemra vez | |
|
573 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
574 | edgecolor='k', | |
|
575 | facecolor='w') | |
|
576 | else: | |
|
577 | self.figure.clf() | |
|
578 | self.axes = [] | |
|
579 | ||
|
580 | ||
|
581 | for n in range(self.nrows): | |
|
582 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
|
583 | #ax = self.figure(n+1) | |
|
584 | ax.firsttime = True | |
|
585 | self.axes.append(ax) | |
|
586 | ||
|
587 | else : #append one figure foreach channel in channelList | |
|
588 | if self.figurelist == None: | |
|
589 | self.figurelist = [] | |
|
590 | for n in range(self.nrows): | |
|
591 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
592 | edgecolor='k', | |
|
593 | facecolor='w') | |
|
594 | #add always one subplot | |
|
595 | self.figurelist.append(self.figure) | |
|
596 | ||
|
597 | else : # cada dia nuevo limpia el axes, pero mantiene el figure | |
|
598 | for eachfigure in self.figurelist: | |
|
599 | eachfigure.clf() # eliminaria todas las figuras de la lista? | |
|
600 | self.axes = [] | |
|
601 | ||
|
602 | for eachfigure in self.figurelist: | |
|
603 | ax = eachfigure.add_subplot(1,1,1) #solo 1 axis por figura | |
|
604 | #ax = self.figure(n+1) | |
|
605 | ax.firsttime = True | |
|
606 | #Cada figura tiene un distinto puntero | |
|
607 | self.axes.append(ax) | |
|
608 | #plt.close(eachfigure) | |
|
609 | ||
|
531 | self.cb_label = 'dB' | |
|
532 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | |
|
610 | 533 | |
|
611 | 534 | def plot(self): |
|
535 | self.x = self.data.times | |
|
536 | self.y = self.data.heights | |
|
537 | self.z = self.data[self.CODE] | |
|
538 | self.z = numpy.ma.masked_invalid(self.z) | |
|
612 | 539 | |
|
613 | if self.ind_plt_ch is False: #standard mode | |
|
614 | self.x = np.array(self.times) | |
|
615 | self.y = self.dataOut.getHeiRange() | |
|
616 | self.z = [] | |
|
617 | ||
|
618 | for ch in range(self.nrows): | |
|
619 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) | |
|
620 | ||
|
621 | self.z = np.array(self.z) | |
|
622 | for n, ax in enumerate(self.axes): | |
|
623 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
624 | if self.xmin is None: | |
|
625 | xmin = self.min_time | |
|
626 | else: | |
|
627 | xmin = fromtimestamp(int(self.xmin), self.min_time) | |
|
628 | if self.xmax is None: | |
|
629 | xmax = xmin + self.xrange*60*60 | |
|
630 | else: | |
|
631 | xmax = xmin + (self.xmax - self.xmin) * 60 * 60 | |
|
632 | self.zmin = self.zmin if self.zmin else np.min(self.z) | |
|
633 | self.zmax = self.zmax if self.zmax else np.max(self.z) | |
|
634 |
if |
|
|
635 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) | |
|
636 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) | |
|
637 | plot = ax.pcolormesh(x, y, z[n].T, | |
|
638 | vmin=self.zmin, | |
|
639 | vmax=self.zmax, | |
|
640 | cmap=plt.get_cmap(self.colormap) | |
|
641 | ) | |
|
642 | divider = make_axes_locatable(ax) | |
|
643 | cax = divider.new_horizontal(size='2%', pad=0.05) | |
|
644 | self.figure.add_axes(cax) | |
|
645 | plt.colorbar(plot, cax) | |
|
646 | ax.set_ylim(self.ymin, self.ymax) | |
|
647 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
|
648 | ax.xaxis.set_major_locator(LinearLocator(6)) | |
|
649 | ax.set_ylabel(self.ylabel) | |
|
650 | # if self.xmin is None: | |
|
651 | # xmin = self.min_time | |
|
652 | # else: | |
|
653 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), | |
|
654 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() | |
|
655 | ||
|
656 | ax.set_xlim(xmin, xmax) | |
|
657 | ax.firsttime = False | |
|
658 | else: | |
|
659 | ax.collections.remove(ax.collections[0]) | |
|
660 | ax.set_xlim(xmin, xmax) | |
|
661 | plot = ax.pcolormesh(x, y, z[n].T, | |
|
662 | vmin=self.zmin, | |
|
663 | vmax=self.zmax, | |
|
664 | cmap=plt.get_cmap(self.colormap) | |
|
665 | ) | |
|
666 | ax.set_title('{} {}'.format(self.titles[n], | |
|
667 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), | |
|
668 | size=8) | |
|
669 | ||
|
670 | self.saveTime = self.min_time | |
|
671 | else : | |
|
672 | self.x = np.array(self.times) | |
|
673 | self.y = self.dataOut.getHeiRange() | |
|
674 | self.z = [] | |
|
675 | ||
|
676 | for ch in range(self.nrows): | |
|
677 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) | |
|
678 | ||
|
679 | self.z = np.array(self.z) | |
|
680 | for n, eachfigure in enumerate(self.figurelist): #estaba ax in axes | |
|
681 | ||
|
682 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
683 | xmin = self.min_time | |
|
684 | xmax = xmin+self.xrange*60*60 | |
|
685 | self.zmin = self.zmin if self.zmin else np.min(self.z) | |
|
686 | self.zmax = self.zmax if self.zmax else np.max(self.z) | |
|
687 | if self.axes[n].firsttime: | |
|
688 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) | |
|
689 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) | |
|
690 | plot = self.axes[n].pcolormesh(x, y, z[n].T, | |
|
691 | vmin=self.zmin, | |
|
692 | vmax=self.zmax, | |
|
693 | cmap=plt.get_cmap(self.colormap) | |
|
694 | ) | |
|
695 | divider = make_axes_locatable(self.axes[n]) | |
|
696 | cax = divider.new_horizontal(size='2%', pad=0.05) | |
|
697 | eachfigure.add_axes(cax) | |
|
698 | #self.figure2.add_axes(cax) | |
|
699 | plt.colorbar(plot, cax) | |
|
700 | self.axes[n].set_ylim(self.ymin, self.ymax) | |
|
701 | ||
|
702 | self.axes[n].xaxis.set_major_formatter(FuncFormatter(func)) | |
|
703 | self.axes[n].xaxis.set_major_locator(LinearLocator(6)) | |
|
704 | ||
|
705 | self.axes[n].set_ylabel(self.ylabel) | |
|
706 | ||
|
707 | if self.xmin is None: | |
|
708 | xmin = self.min_time | |
|
709 | else: | |
|
710 | xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), | |
|
711 | datetime.time(self.xmin, 0, 0))-d1970).total_seconds() | |
|
712 | ||
|
713 | self.axes[n].set_xlim(xmin, xmax) | |
|
714 | self.axes[n].firsttime = False | |
|
715 | else: | |
|
716 | self.axes[n].collections.remove(self.axes[n].collections[0]) | |
|
717 | self.axes[n].set_xlim(xmin, xmax) | |
|
718 | plot = self.axes[n].pcolormesh(x, y, z[n].T, | |
|
719 | vmin=self.zmin, | |
|
720 | vmax=self.zmax, | |
|
721 | cmap=plt.get_cmap(self.colormap) | |
|
722 | ) | |
|
723 | self.axes[n].set_title('{} {}'.format(self.titles[n], | |
|
724 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), | |
|
725 | size=8) | |
|
540 | for n, ax in enumerate(self.axes): | |
|
541 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
542 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
|
543 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
|
544 | if ax.firsttime: | |
|
545 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
|
546 | vmin=self.zmin, | |
|
547 | vmax=self.zmax, | |
|
548 | cmap=plt.get_cmap(self.colormap) | |
|
549 | ) | |
|
550 | if self.showprofile: | |
|
551 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] | |
|
552 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
|
553 | color="k", linestyle="dashed", lw=1)[0] | |
|
554 | else: | |
|
555 | ax.collections.remove(ax.collections[0]) | |
|
556 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
|
557 | vmin=self.zmin, | |
|
558 | vmax=self.zmax, | |
|
559 | cmap=plt.get_cmap(self.colormap) | |
|
560 | ) | |
|
561 | if self.showprofile: | |
|
562 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
|
563 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) | |
|
726 | 564 | |
|
727 |
|
|
|
565 | self.saveTime = self.min_time | |
|
728 | 566 | |
|
729 | 567 | |
|
730 | 568 | class PlotCOHData(PlotRTIData): |
|
569 | ''' | |
|
570 | Plot for Coherence data | |
|
571 | ''' | |
|
731 | 572 | |
|
732 | 573 | CODE = 'coh' |
|
733 | 574 | |
|
734 | 575 | def setup(self): |
|
735 | ||
|
576 | self.xaxis = 'time' | |
|
736 | 577 | self.ncols = 1 |
|
737 |
self.nrows = self.data |
|
|
738 | self.width = 10 | |
|
739 | self.height = 2.2*self.nrows if self.nrows<6 else 12 | |
|
740 | self.ind_plt_ch = False #just for coherence and phase | |
|
741 | if self.nrows==1: | |
|
742 | self.height += 1 | |
|
743 | self.ylabel = 'Range [Km]' | |
|
744 | self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList] | |
|
745 | ||
|
746 | if self.figure is None: | |
|
747 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
748 | edgecolor='k', | |
|
749 | facecolor='w') | |
|
578 | self.nrows = len(self.data.pairs) | |
|
579 | self.nplots = len(self.data.pairs) | |
|
580 | self.ylabel = 'Range [Km]' | |
|
581 | if self.CODE == 'coh': | |
|
582 | self.cb_label = '' | |
|
583 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
750 | 584 | else: |
|
751 |
self. |
|
|
752 | self.axes = [] | |
|
585 | self.cb_label = 'Degrees' | |
|
586 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
|
753 | 587 | |
|
754 | for n in range(self.nrows): | |
|
755 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
|
756 | ax.firsttime = True | |
|
757 | self.axes.append(ax) | |
|
588 | ||
|
589 | class PlotPHASEData(PlotCOHData): | |
|
590 | ''' | |
|
591 | Plot for Phase map data | |
|
592 | ''' | |
|
593 | ||
|
594 | CODE = 'phase' | |
|
595 | colormap = 'seismic' | |
|
758 | 596 | |
|
759 | 597 | |
|
760 | 598 | class PlotNoiseData(PlotData): |
|
599 | ''' | |
|
600 | Plot for noise | |
|
601 | ''' | |
|
602 | ||
|
761 | 603 | CODE = 'noise' |
|
762 | 604 | |
|
763 | 605 | def setup(self): |
|
764 | ||
|
606 | self.xaxis = 'time' | |
|
765 | 607 | self.ncols = 1 |
|
766 | 608 | self.nrows = 1 |
|
767 |
self. |
|
|
768 | self.height = 3.2 | |
|
609 | self.nplots = 1 | |
|
769 | 610 | self.ylabel = 'Intensity [dB]' |
|
770 | 611 | self.titles = ['Noise'] |
|
771 | ||
|
772 | if self.figure is None: | |
|
773 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
774 | edgecolor='k', | |
|
775 | facecolor='w') | |
|
776 | else: | |
|
777 | self.figure.clf() | |
|
778 | self.axes = [] | |
|
779 | ||
|
780 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) | |
|
781 | self.ax.firsttime = True | |
|
612 | self.colorbar = False | |
|
782 | 613 | |
|
783 | 614 | def plot(self): |
|
784 | 615 | |
|
785 | x = self.times | |
|
616 | x = self.data.times | |
|
786 | 617 | xmin = self.min_time |
|
787 | 618 | xmax = xmin+self.xrange*60*60 |
|
788 | if self.ax.firsttime: | |
|
789 | for ch in self.dataOut.channelList: | |
|
790 | y = [self.data[self.CODE][t][ch] for t in self.times] | |
|
791 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
|
792 | self.ax.firsttime = False | |
|
793 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
|
794 | self.ax.xaxis.set_major_locator(LinearLocator(6)) | |
|
795 | self.ax.set_ylabel(self.ylabel) | |
|
619 | Y = self.data[self.CODE] | |
|
620 | ||
|
621 | if self.axes[0].firsttime: | |
|
622 | for ch in self.data.channels: | |
|
623 | y = Y[ch] | |
|
624 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
|
796 | 625 | plt.legend() |
|
797 | 626 | else: |
|
798 |
for ch in self.data |
|
|
799 | y = [self.data[self.CODE][t][ch] for t in self.times] | |
|
800 | self.ax.lines[ch].set_data(x, y) | |
|
801 | ||
|
802 | self.ax.set_xlim(xmin, xmax) | |
|
803 | self.ax.set_ylim(min(y)-5, max(y)+5) | |
|
627 | for ch in self.data.channels: | |
|
628 | y = Y[ch] | |
|
629 | self.axes[0].lines[ch].set_data(x, y) | |
|
630 | ||
|
631 | self.ymin = numpy.nanmin(Y) - 5 | |
|
632 | self.ymax = numpy.nanmax(Y) + 5 | |
|
804 | 633 | self.saveTime = self.min_time |
|
805 | 634 | |
|
806 | 635 | |
|
807 | class PlotWindProfilerData(PlotRTIData): | |
|
808 | ||
|
809 | CODE = 'wind' | |
|
810 | colormap = 'seismic' | |
|
811 | ||
|
812 | def setup(self): | |
|
813 | self.ncols = 1 | |
|
814 | self.nrows = self.dataOut.data_output.shape[0] | |
|
815 | self.width = 10 | |
|
816 | self.height = 2.2*self.nrows | |
|
817 | self.ylabel = 'Height [Km]' | |
|
818 | self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind'] | |
|
819 | self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] | |
|
820 | self.windFactor = [1, 1, 100] | |
|
821 | ||
|
822 | if self.figure is None: | |
|
823 | self.figure = plt.figure(figsize=(self.width, self.height), | |
|
824 | edgecolor='k', | |
|
825 | facecolor='w') | |
|
826 | else: | |
|
827 | self.figure.clf() | |
|
828 | self.axes = [] | |
|
829 | ||
|
830 | for n in range(self.nrows): | |
|
831 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
|
832 | ax.firsttime = True | |
|
833 | self.axes.append(ax) | |
|
834 | ||
|
835 | def plot(self): | |
|
836 | ||
|
837 | self.x = np.array(self.times) | |
|
838 | self.y = self.dataOut.heightList | |
|
839 | self.z = [] | |
|
840 | ||
|
841 | for ch in range(self.nrows): | |
|
842 | self.z.append([self.data['output'][t][ch] for t in self.times]) | |
|
843 | ||
|
844 | self.z = np.array(self.z) | |
|
845 | self.z = numpy.ma.masked_invalid(self.z) | |
|
846 | ||
|
847 | cmap=plt.get_cmap(self.colormap) | |
|
848 | cmap.set_bad('black', 1.) | |
|
849 | ||
|
850 | for n, ax in enumerate(self.axes): | |
|
851 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
852 | xmin = self.min_time | |
|
853 | xmax = xmin+self.xrange*60*60 | |
|
854 | if ax.firsttime: | |
|
855 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) | |
|
856 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) | |
|
857 | self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :])) | |
|
858 | self.zmin = self.zmin if self.zmin else -self.zmax | |
|
859 | ||
|
860 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], | |
|
861 | vmin=self.zmin, | |
|
862 | vmax=self.zmax, | |
|
863 | cmap=cmap | |
|
864 | ) | |
|
865 | divider = make_axes_locatable(ax) | |
|
866 | cax = divider.new_horizontal(size='2%', pad=0.05) | |
|
867 | self.figure.add_axes(cax) | |
|
868 | cb = plt.colorbar(plot, cax) | |
|
869 | cb.set_label(self.clabels[n]) | |
|
870 | ax.set_ylim(self.ymin, self.ymax) | |
|
871 | ||
|
872 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
|
873 | ax.xaxis.set_major_locator(LinearLocator(6)) | |
|
874 | ||
|
875 | ax.set_ylabel(self.ylabel) | |
|
876 | ||
|
877 | ax.set_xlim(xmin, xmax) | |
|
878 | ax.firsttime = False | |
|
879 | else: | |
|
880 | ax.collections.remove(ax.collections[0]) | |
|
881 | ax.set_xlim(xmin, xmax) | |
|
882 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], | |
|
883 | vmin=self.zmin, | |
|
884 | vmax=self.zmax, | |
|
885 | cmap=plt.get_cmap(self.colormap) | |
|
886 | ) | |
|
887 | ax.set_title('{} {}'.format(self.titles[n], | |
|
888 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), | |
|
889 | size=8) | |
|
890 | ||
|
891 | self.saveTime = self.min_time | |
|
892 | ||
|
893 | ||
|
894 | 636 | class PlotSNRData(PlotRTIData): |
|
637 | ''' | |
|
638 | Plot for SNR Data | |
|
639 | ''' | |
|
640 | ||
|
895 | 641 | CODE = 'snr' |
|
896 | 642 | colormap = 'jet' |
|
897 | 643 | |
|
644 | ||
|
898 | 645 | class PlotDOPData(PlotRTIData): |
|
646 | ''' | |
|
647 | Plot for DOPPLER Data | |
|
648 | ''' | |
|
649 | ||
|
899 | 650 | CODE = 'dop' |
|
900 | 651 | colormap = 'jet' |
|
901 | 652 | |
|
902 | 653 | |
|
903 | class PlotPHASEData(PlotCOHData): | |
|
904 | CODE = 'phase' | |
|
905 | colormap = 'seismic' | |
|
906 | ||
|
907 | ||
|
908 | 654 | class PlotSkyMapData(PlotData): |
|
655 | ''' | |
|
656 | Plot for meteors detection data | |
|
657 | ''' | |
|
909 | 658 | |
|
910 | 659 | CODE = 'met' |
|
911 | 660 | |
|
912 | 661 | def setup(self): |
|
913 | 662 | |
|
914 | 663 | self.ncols = 1 |
|
915 | 664 | self.nrows = 1 |
|
916 | 665 | self.width = 7.2 |
|
917 | 666 | self.height = 7.2 |
|
918 | 667 | |
|
919 | 668 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
920 | 669 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
921 | 670 | |
|
922 | 671 | if self.figure is None: |
|
923 | 672 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
924 | 673 | edgecolor='k', |
|
925 | 674 | facecolor='w') |
|
926 | 675 | else: |
|
927 | 676 | self.figure.clf() |
|
928 | 677 | |
|
929 | 678 | self.ax = plt.subplot2grid((self.nrows, self.ncols), (0, 0), 1, 1, polar=True) |
|
930 | 679 | self.ax.firsttime = True |
|
931 | 680 | |
|
932 | 681 | |
|
933 | 682 | def plot(self): |
|
934 | 683 | |
|
935 | arrayParameters = np.concatenate([self.data['param'][t] for t in self.times]) | |
|
684 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.data.times]) | |
|
936 | 685 | error = arrayParameters[:,-1] |
|
937 | 686 | indValid = numpy.where(error == 0)[0] |
|
938 | 687 | finalMeteor = arrayParameters[indValid,:] |
|
939 | 688 | finalAzimuth = finalMeteor[:,3] |
|
940 | 689 | finalZenith = finalMeteor[:,4] |
|
941 | 690 | |
|
942 | 691 | x = finalAzimuth*numpy.pi/180 |
|
943 | 692 | y = finalZenith |
|
944 | 693 | |
|
945 | 694 | if self.ax.firsttime: |
|
946 | 695 | self.ax.plot = self.ax.plot(x, y, 'bo', markersize=5)[0] |
|
947 | 696 | self.ax.set_ylim(0,90) |
|
948 | 697 | self.ax.set_yticks(numpy.arange(0,90,20)) |
|
949 | 698 | self.ax.set_xlabel(self.xlabel) |
|
950 | 699 | self.ax.set_ylabel(self.ylabel) |
|
951 | 700 | self.ax.yaxis.labelpad = 40 |
|
952 | 701 | self.ax.firsttime = False |
|
953 | 702 | else: |
|
954 | 703 | self.ax.plot.set_data(x, y) |
|
955 | 704 | |
|
956 | 705 | |
|
957 | 706 | dt1 = datetime.datetime.fromtimestamp(self.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
958 | 707 | dt2 = datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
959 | 708 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
960 | 709 | dt2, |
|
961 | 710 | len(x)) |
|
962 | 711 | self.ax.set_title(title, size=8) |
|
963 | 712 | |
|
964 | 713 | self.saveTime = self.max_time |
|
714 | ||
|
715 | class PlotParamData(PlotRTIData): | |
|
716 | ''' | |
|
717 | Plot for data_param object | |
|
718 | ''' | |
|
719 | ||
|
720 | CODE = 'param' | |
|
721 | colormap = 'seismic' | |
|
722 | ||
|
723 | def setup(self): | |
|
724 | self.xaxis = 'time' | |
|
725 | self.ncols = 1 | |
|
726 | self.nrows = self.data.shape(self.CODE)[0] | |
|
727 | self.nplots = self.nrows | |
|
728 | if self.showSNR: | |
|
729 | self.nrows += 1 | |
|
730 | ||
|
731 | self.ylabel = 'Height [Km]' | |
|
732 | self.titles = self.data.parameters \ | |
|
733 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] | |
|
734 | if self.showSNR: | |
|
735 | self.titles.append('SNR') | |
|
736 | ||
|
737 | def plot(self): | |
|
738 | self.data.normalize_heights() | |
|
739 | self.x = self.data.times | |
|
740 | self.y = self.data.heights | |
|
741 | if self.showSNR: | |
|
742 | self.z = numpy.concatenate( | |
|
743 | (self.data[self.CODE], self.data['snr']) | |
|
744 | ) | |
|
745 | else: | |
|
746 | self.z = self.data[self.CODE] | |
|
747 | ||
|
748 | self.z = numpy.ma.masked_invalid(self.z) | |
|
749 | ||
|
750 | for n, ax in enumerate(self.axes): | |
|
751 | ||
|
752 | x, y, z = self.fill_gaps(*self.decimate()) | |
|
753 | ||
|
754 | if ax.firsttime: | |
|
755 | if self.zlimits is not None: | |
|
756 | self.zmin, self.zmax = self.zlimits[n] | |
|
757 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) | |
|
758 | self.zmin = self.zmin if self.zmin is not None else -self.zmax | |
|
759 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
|
760 | vmin=self.zmin, | |
|
761 | vmax=self.zmax, | |
|
762 | cmap=self.cmaps[n] | |
|
763 | ) | |
|
764 | else: | |
|
765 | if self.zlimits is not None: | |
|
766 | self.zmin, self.zmax = self.zlimits[n] | |
|
767 | ax.collections.remove(ax.collections[0]) | |
|
768 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |
|
769 | vmin=self.zmin, | |
|
770 | vmax=self.zmax, | |
|
771 | cmap=self.cmaps[n] | |
|
772 | ) | |
|
773 | ||
|
774 | self.saveTime = self.min_time | |
|
775 | ||
|
776 | class PlotOuputData(PlotParamData): | |
|
777 | ''' | |
|
778 | Plot data_output object | |
|
779 | ''' | |
|
780 | ||
|
781 | CODE = 'output' | |
|
782 | colormap = 'seismic' No newline at end of file |
|
1 | NO CONTENT: modified file | |
The requested commit or file is too big and content was truncated. Show full diff |
@@ -1,904 +1,903 | |||
|
1 | import itertools | |
|
2 | ||
|
1 | 3 | import numpy |
|
2 | 4 | |
|
3 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
4 | 6 | from schainpy.model.data.jrodata import Spectra |
|
5 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
6 | 8 | |
|
7 | 9 | class SpectraProc(ProcessingUnit): |
|
8 | 10 | |
|
9 | 11 | def __init__(self, **kwargs): |
|
10 | 12 | |
|
11 | 13 | ProcessingUnit.__init__(self, **kwargs) |
|
12 | 14 | |
|
13 | 15 | self.buffer = None |
|
14 | 16 | self.firstdatatime = None |
|
15 | 17 | self.profIndex = 0 |
|
16 | 18 | self.dataOut = Spectra() |
|
17 | 19 | self.id_min = None |
|
18 | 20 | self.id_max = None |
|
19 | 21 | |
|
20 | 22 | def __updateSpecFromVoltage(self): |
|
21 | 23 | |
|
22 | 24 | self.dataOut.timeZone = self.dataIn.timeZone |
|
23 | 25 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
24 | 26 | self.dataOut.errorCount = self.dataIn.errorCount |
|
25 | 27 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
26 | 28 | |
|
27 | 29 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
28 | 30 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
29 | 31 | self.dataOut.channelList = self.dataIn.channelList |
|
30 | 32 | self.dataOut.heightList = self.dataIn.heightList |
|
31 | 33 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
32 | 34 | |
|
33 | 35 | self.dataOut.nBaud = self.dataIn.nBaud |
|
34 | 36 | self.dataOut.nCode = self.dataIn.nCode |
|
35 | 37 | self.dataOut.code = self.dataIn.code |
|
36 | 38 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
37 | 39 | |
|
38 | 40 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
39 | 41 | self.dataOut.utctime = self.firstdatatime |
|
40 | 42 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
41 | 43 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
42 | 44 | self.dataOut.flagShiftFFT = False |
|
43 | 45 | |
|
44 | 46 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
45 | 47 | self.dataOut.nIncohInt = 1 |
|
46 | 48 | |
|
47 | 49 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
48 | 50 | |
|
49 | 51 | self.dataOut.frequency = self.dataIn.frequency |
|
50 | 52 | self.dataOut.realtime = self.dataIn.realtime |
|
51 | 53 | |
|
52 | 54 | self.dataOut.azimuth = self.dataIn.azimuth |
|
53 | 55 | self.dataOut.zenith = self.dataIn.zenith |
|
54 | 56 | |
|
55 | 57 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
56 | 58 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
57 | 59 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
58 | 60 | |
|
59 | 61 | def __getFft(self): |
|
60 | 62 | """ |
|
61 | 63 | Convierte valores de Voltaje a Spectra |
|
62 | 64 | |
|
63 | 65 | Affected: |
|
64 | 66 | self.dataOut.data_spc |
|
65 | 67 | self.dataOut.data_cspc |
|
66 | 68 | self.dataOut.data_dc |
|
67 | 69 | self.dataOut.heightList |
|
68 | 70 | self.profIndex |
|
69 | 71 | self.buffer |
|
70 | 72 | self.dataOut.flagNoData |
|
71 | 73 | """ |
|
72 | 74 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) |
|
73 | 75 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
74 | 76 | dc = fft_volt[:,0,:] |
|
75 | 77 | |
|
76 | 78 | #calculo de self-spectra |
|
77 | 79 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
78 | 80 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
79 | 81 | spc = spc.real |
|
80 | 82 | |
|
81 | 83 | blocksize = 0 |
|
82 | 84 | blocksize += dc.size |
|
83 | 85 | blocksize += spc.size |
|
84 | 86 | |
|
85 | 87 | cspc = None |
|
86 | 88 | pairIndex = 0 |
|
87 | 89 | if self.dataOut.pairsList != None: |
|
88 | 90 | #calculo de cross-spectra |
|
89 | 91 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
90 | 92 | for pair in self.dataOut.pairsList: |
|
91 | 93 | if pair[0] not in self.dataOut.channelList: |
|
92 | 94 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
93 | 95 | if pair[1] not in self.dataOut.channelList: |
|
94 | 96 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
95 | 97 | |
|
96 | 98 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
97 | 99 | pairIndex += 1 |
|
98 | 100 | blocksize += cspc.size |
|
99 | 101 | |
|
100 | 102 | self.dataOut.data_spc = spc |
|
101 | 103 | self.dataOut.data_cspc = cspc |
|
102 | 104 | self.dataOut.data_dc = dc |
|
103 | 105 | self.dataOut.blockSize = blocksize |
|
104 | 106 | self.dataOut.flagShiftFFT = True |
|
105 | 107 | |
|
106 | 108 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): |
|
107 | 109 | |
|
108 | 110 | self.dataOut.flagNoData = True |
|
109 | 111 | |
|
110 | 112 | if self.dataIn.type == "Spectra": |
|
111 | 113 | self.dataOut.copy(self.dataIn) |
|
112 |
|
|
|
114 | if not pairsList: | |
|
115 | pairsList = itertools.combinations(self.dataOut.channelList, 2) | |
|
116 | if self.dataOut.data_cspc is not None: | |
|
117 | self.__selectPairs(pairsList) | |
|
113 | 118 | return True |
|
114 | 119 | |
|
115 | 120 | if self.dataIn.type == "Voltage": |
|
116 | 121 | |
|
117 | 122 | if nFFTPoints == None: |
|
118 | 123 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
119 | 124 | |
|
120 | 125 | if nProfiles == None: |
|
121 | 126 | nProfiles = nFFTPoints |
|
122 | 127 | |
|
123 | 128 | if ippFactor == None: |
|
124 | 129 | ippFactor = 1 |
|
125 | 130 | |
|
126 | 131 | self.dataOut.ippFactor = ippFactor |
|
127 | 132 | |
|
128 | 133 | self.dataOut.nFFTPoints = nFFTPoints |
|
129 | 134 | self.dataOut.pairsList = pairsList |
|
130 | 135 | |
|
131 | 136 | if self.buffer is None: |
|
132 | 137 | self.buffer = numpy.zeros( (self.dataIn.nChannels, |
|
133 | 138 | nProfiles, |
|
134 | 139 | self.dataIn.nHeights), |
|
135 | 140 | dtype='complex') |
|
136 | 141 | |
|
137 | 142 | if self.dataIn.flagDataAsBlock: |
|
138 | 143 | #data dimension: [nChannels, nProfiles, nSamples] |
|
139 | 144 | nVoltProfiles = self.dataIn.data.shape[1] |
|
140 | 145 | # nVoltProfiles = self.dataIn.nProfiles |
|
141 | 146 | |
|
142 | 147 | if nVoltProfiles == nProfiles: |
|
143 | 148 | self.buffer = self.dataIn.data.copy() |
|
144 | 149 | self.profIndex = nVoltProfiles |
|
145 | 150 | |
|
146 | 151 | elif nVoltProfiles < nProfiles: |
|
147 | 152 | |
|
148 | 153 | if self.profIndex == 0: |
|
149 | 154 | self.id_min = 0 |
|
150 | 155 | self.id_max = nVoltProfiles |
|
151 | 156 | |
|
152 | 157 | self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data |
|
153 | 158 | self.profIndex += nVoltProfiles |
|
154 | 159 | self.id_min += nVoltProfiles |
|
155 | 160 | self.id_max += nVoltProfiles |
|
156 | 161 | else: |
|
157 | 162 | raise ValueError, "The type object %s has %d profiles, it should just has %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) |
|
158 | 163 | self.dataOut.flagNoData = True |
|
159 | 164 | return 0 |
|
160 | 165 | else: |
|
161 | 166 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
162 | 167 | self.profIndex += 1 |
|
163 | 168 | |
|
164 | 169 | if self.firstdatatime == None: |
|
165 | 170 | self.firstdatatime = self.dataIn.utctime |
|
166 | 171 | |
|
167 | 172 | if self.profIndex == nProfiles: |
|
168 | 173 | self.__updateSpecFromVoltage() |
|
169 | 174 | self.__getFft() |
|
170 | 175 | |
|
171 | 176 | self.dataOut.flagNoData = False |
|
172 | 177 | self.firstdatatime = None |
|
173 | 178 | self.profIndex = 0 |
|
174 | 179 | |
|
175 | 180 | return True |
|
176 | 181 | |
|
177 | 182 | raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type) |
|
178 | 183 | |
|
179 | 184 | def __selectPairs(self, pairsList): |
|
180 | 185 | |
|
181 | if channelList == None: | |
|
186 | if not pairsList: | |
|
182 | 187 | return |
|
183 | 188 | |
|
184 |
pairs |
|
|
185 | ||
|
186 | for thisPair in pairsList: | |
|
189 | pairs = [] | |
|
190 | pairsIndex = [] | |
|
187 | 191 | |
|
188 |
|
|
|
192 | for pair in pairsList: | |
|
193 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |
|
189 | 194 | continue |
|
190 | ||
|
191 |
pairIndex |
|
|
192 | ||
|
193 | pairsIndexListSelected.append(pairIndex) | |
|
194 | ||
|
195 | if not pairsIndexListSelected: | |
|
196 | self.dataOut.data_cspc = None | |
|
197 | self.dataOut.pairsList = [] | |
|
198 | return | |
|
199 | ||
|
200 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] | |
|
201 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] | |
|
195 | pairs.append(pair) | |
|
196 | pairsIndex.append(pairs.index(pair)) | |
|
197 | ||
|
198 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
|
199 | self.dataOut.pairsList = pairs | |
|
200 | self.dataOut.pairsIndexList = pairsIndex | |
|
202 | 201 | |
|
203 | 202 | return |
|
204 | 203 | |
|
205 | 204 | def __selectPairsByChannel(self, channelList=None): |
|
206 | 205 | |
|
207 | 206 | if channelList == None: |
|
208 | 207 | return |
|
209 | 208 | |
|
210 | 209 | pairsIndexListSelected = [] |
|
211 | 210 | for pairIndex in self.dataOut.pairsIndexList: |
|
212 | 211 | #First pair |
|
213 | 212 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
214 | 213 | continue |
|
215 | 214 | #Second pair |
|
216 | 215 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
217 | 216 | continue |
|
218 | 217 | |
|
219 | 218 | pairsIndexListSelected.append(pairIndex) |
|
220 | 219 | |
|
221 | 220 | if not pairsIndexListSelected: |
|
222 | 221 | self.dataOut.data_cspc = None |
|
223 | 222 | self.dataOut.pairsList = [] |
|
224 | 223 | return |
|
225 | 224 | |
|
226 | 225 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
227 | 226 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
228 | 227 | |
|
229 | 228 | return |
|
230 | 229 | |
|
231 | 230 | def selectChannels(self, channelList): |
|
232 | 231 | |
|
233 | 232 | channelIndexList = [] |
|
234 | 233 | |
|
235 | 234 | for channel in channelList: |
|
236 | 235 | if channel not in self.dataOut.channelList: |
|
237 | 236 | raise ValueError, "Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)) |
|
238 | 237 | |
|
239 | 238 | index = self.dataOut.channelList.index(channel) |
|
240 | 239 | channelIndexList.append(index) |
|
241 | 240 | |
|
242 | 241 | self.selectChannelsByIndex(channelIndexList) |
|
243 | 242 | |
|
244 | 243 | def selectChannelsByIndex(self, channelIndexList): |
|
245 | 244 | """ |
|
246 | 245 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
247 | 246 | |
|
248 | 247 | Input: |
|
249 | 248 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
250 | 249 | |
|
251 | 250 | Affected: |
|
252 | 251 | self.dataOut.data_spc |
|
253 | 252 | self.dataOut.channelIndexList |
|
254 | 253 | self.dataOut.nChannels |
|
255 | 254 | |
|
256 | 255 | Return: |
|
257 | 256 | None |
|
258 | 257 | """ |
|
259 | 258 | |
|
260 | 259 | for channelIndex in channelIndexList: |
|
261 | 260 | if channelIndex not in self.dataOut.channelIndexList: |
|
262 | 261 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList) |
|
263 | 262 | |
|
264 | 263 | # nChannels = len(channelIndexList) |
|
265 | 264 | |
|
266 | 265 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
267 | 266 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
268 | 267 | |
|
269 | 268 | self.dataOut.data_spc = data_spc |
|
270 | 269 | self.dataOut.data_dc = data_dc |
|
271 | 270 | |
|
272 | 271 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
273 | 272 | # self.dataOut.nChannels = nChannels |
|
274 | 273 | |
|
275 | 274 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
276 | 275 | |
|
277 | 276 | return 1 |
|
278 | 277 | |
|
279 | 278 | def selectHeights(self, minHei, maxHei): |
|
280 | 279 | """ |
|
281 | 280 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
282 | 281 | minHei <= height <= maxHei |
|
283 | 282 | |
|
284 | 283 | Input: |
|
285 | 284 | minHei : valor minimo de altura a considerar |
|
286 | 285 | maxHei : valor maximo de altura a considerar |
|
287 | 286 | |
|
288 | 287 | Affected: |
|
289 | 288 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
290 | 289 | |
|
291 | 290 | Return: |
|
292 | 291 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
293 | 292 | """ |
|
294 | 293 | |
|
295 | 294 | if (minHei > maxHei): |
|
296 | 295 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei) |
|
297 | 296 | |
|
298 | 297 | if (minHei < self.dataOut.heightList[0]): |
|
299 | 298 | minHei = self.dataOut.heightList[0] |
|
300 | 299 | |
|
301 | 300 | if (maxHei > self.dataOut.heightList[-1]): |
|
302 | 301 | maxHei = self.dataOut.heightList[-1] |
|
303 | 302 | |
|
304 | 303 | minIndex = 0 |
|
305 | 304 | maxIndex = 0 |
|
306 | 305 | heights = self.dataOut.heightList |
|
307 | 306 | |
|
308 | 307 | inda = numpy.where(heights >= minHei) |
|
309 | 308 | indb = numpy.where(heights <= maxHei) |
|
310 | 309 | |
|
311 | 310 | try: |
|
312 | 311 | minIndex = inda[0][0] |
|
313 | 312 | except: |
|
314 | 313 | minIndex = 0 |
|
315 | 314 | |
|
316 | 315 | try: |
|
317 | 316 | maxIndex = indb[0][-1] |
|
318 | 317 | except: |
|
319 | 318 | maxIndex = len(heights) |
|
320 | 319 | |
|
321 | 320 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
322 | 321 | |
|
323 | 322 | return 1 |
|
324 | 323 | |
|
325 | 324 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
326 | 325 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
327 | 326 | |
|
328 | 327 | if hei_ref != None: |
|
329 | 328 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
330 | 329 | |
|
331 | 330 | minIndex = min(newheis[0]) |
|
332 | 331 | maxIndex = max(newheis[0]) |
|
333 | 332 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
334 | 333 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
335 | 334 | |
|
336 | 335 | # determina indices |
|
337 | 336 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
338 | 337 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
339 | 338 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
340 | 339 | beacon_heiIndexList = [] |
|
341 | 340 | for val in avg_dB.tolist(): |
|
342 | 341 | if val >= beacon_dB[0]: |
|
343 | 342 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
344 | 343 | |
|
345 | 344 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
346 | 345 | data_cspc = None |
|
347 | 346 | if self.dataOut.data_cspc is not None: |
|
348 | 347 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
349 | 348 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
350 | 349 | |
|
351 | 350 | data_dc = None |
|
352 | 351 | if self.dataOut.data_dc is not None: |
|
353 | 352 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
354 | 353 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
355 | 354 | |
|
356 | 355 | self.dataOut.data_spc = data_spc |
|
357 | 356 | self.dataOut.data_cspc = data_cspc |
|
358 | 357 | self.dataOut.data_dc = data_dc |
|
359 | 358 | self.dataOut.heightList = heightList |
|
360 | 359 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
361 | 360 | |
|
362 | 361 | return 1 |
|
363 | 362 | |
|
364 | 363 | |
|
365 | 364 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
366 | 365 | """ |
|
367 | 366 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
368 | 367 | minIndex <= index <= maxIndex |
|
369 | 368 | |
|
370 | 369 | Input: |
|
371 | 370 | minIndex : valor de indice minimo de altura a considerar |
|
372 | 371 | maxIndex : valor de indice maximo de altura a considerar |
|
373 | 372 | |
|
374 | 373 | Affected: |
|
375 | 374 | self.dataOut.data_spc |
|
376 | 375 | self.dataOut.data_cspc |
|
377 | 376 | self.dataOut.data_dc |
|
378 | 377 | self.dataOut.heightList |
|
379 | 378 | |
|
380 | 379 | Return: |
|
381 | 380 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
382 | 381 | """ |
|
383 | 382 | |
|
384 | 383 | if (minIndex < 0) or (minIndex > maxIndex): |
|
385 | 384 | raise ValueError, "Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
386 | 385 | |
|
387 | 386 | if (maxIndex >= self.dataOut.nHeights): |
|
388 | 387 | maxIndex = self.dataOut.nHeights-1 |
|
389 | 388 | |
|
390 | 389 | #Spectra |
|
391 | 390 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
392 | 391 | |
|
393 | 392 | data_cspc = None |
|
394 | 393 | if self.dataOut.data_cspc is not None: |
|
395 | 394 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
396 | 395 | |
|
397 | 396 | data_dc = None |
|
398 | 397 | if self.dataOut.data_dc is not None: |
|
399 | 398 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
400 | 399 | |
|
401 | 400 | self.dataOut.data_spc = data_spc |
|
402 | 401 | self.dataOut.data_cspc = data_cspc |
|
403 | 402 | self.dataOut.data_dc = data_dc |
|
404 | 403 | |
|
405 | 404 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
406 | 405 | |
|
407 | 406 | return 1 |
|
408 | 407 | |
|
409 | 408 | def removeDC(self, mode = 2): |
|
410 | 409 | jspectra = self.dataOut.data_spc |
|
411 | 410 | jcspectra = self.dataOut.data_cspc |
|
412 | 411 | |
|
413 | 412 | |
|
414 | 413 | num_chan = jspectra.shape[0] |
|
415 | 414 | num_hei = jspectra.shape[2] |
|
416 | 415 | |
|
417 | 416 | if jcspectra is not None: |
|
418 | 417 | jcspectraExist = True |
|
419 | 418 | num_pairs = jcspectra.shape[0] |
|
420 | 419 | else: jcspectraExist = False |
|
421 | 420 | |
|
422 | 421 | freq_dc = jspectra.shape[1]/2 |
|
423 | 422 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
424 | 423 | |
|
425 | 424 | if ind_vel[0]<0: |
|
426 | 425 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
427 | 426 | |
|
428 | 427 | if mode == 1: |
|
429 | 428 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
430 | 429 | |
|
431 | 430 | if jcspectraExist: |
|
432 | 431 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
433 | 432 | |
|
434 | 433 | if mode == 2: |
|
435 | 434 | |
|
436 | 435 | vel = numpy.array([-2,-1,1,2]) |
|
437 | 436 | xx = numpy.zeros([4,4]) |
|
438 | 437 | |
|
439 | 438 | for fil in range(4): |
|
440 | 439 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
441 | 440 | |
|
442 | 441 | xx_inv = numpy.linalg.inv(xx) |
|
443 | 442 | xx_aux = xx_inv[0,:] |
|
444 | 443 | |
|
445 | 444 | for ich in range(num_chan): |
|
446 | 445 | yy = jspectra[ich,ind_vel,:] |
|
447 | 446 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
448 | 447 | |
|
449 | 448 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
450 | 449 | cjunkid = sum(junkid) |
|
451 | 450 | |
|
452 | 451 | if cjunkid.any(): |
|
453 | 452 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
454 | 453 | |
|
455 | 454 | if jcspectraExist: |
|
456 | 455 | for ip in range(num_pairs): |
|
457 | 456 | yy = jcspectra[ip,ind_vel,:] |
|
458 | 457 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
459 | 458 | |
|
460 | 459 | |
|
461 | 460 | self.dataOut.data_spc = jspectra |
|
462 | 461 | self.dataOut.data_cspc = jcspectra |
|
463 | 462 | |
|
464 | 463 | return 1 |
|
465 | 464 | |
|
466 | 465 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
467 | 466 | |
|
468 | 467 | jspectra = self.dataOut.data_spc |
|
469 | 468 | jcspectra = self.dataOut.data_cspc |
|
470 | 469 | jnoise = self.dataOut.getNoise() |
|
471 | 470 | num_incoh = self.dataOut.nIncohInt |
|
472 | 471 | |
|
473 | 472 | num_channel = jspectra.shape[0] |
|
474 | 473 | num_prof = jspectra.shape[1] |
|
475 | 474 | num_hei = jspectra.shape[2] |
|
476 | 475 | |
|
477 | 476 | #hei_interf |
|
478 | 477 | if hei_interf is None: |
|
479 | 478 | count_hei = num_hei/2 #Como es entero no importa |
|
480 | 479 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
481 | 480 | hei_interf = numpy.asarray(hei_interf)[0] |
|
482 | 481 | #nhei_interf |
|
483 | 482 | if (nhei_interf == None): |
|
484 | 483 | nhei_interf = 5 |
|
485 | 484 | if (nhei_interf < 1): |
|
486 | 485 | nhei_interf = 1 |
|
487 | 486 | if (nhei_interf > count_hei): |
|
488 | 487 | nhei_interf = count_hei |
|
489 | 488 | if (offhei_interf == None): |
|
490 | 489 | offhei_interf = 0 |
|
491 | 490 | |
|
492 | 491 | ind_hei = range(num_hei) |
|
493 | 492 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
494 | 493 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
495 | 494 | mask_prof = numpy.asarray(range(num_prof)) |
|
496 | 495 | num_mask_prof = mask_prof.size |
|
497 | 496 | comp_mask_prof = [0, num_prof/2] |
|
498 | 497 | |
|
499 | 498 | |
|
500 | 499 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
501 | 500 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
502 | 501 | jnoise = numpy.nan |
|
503 | 502 | noise_exist = jnoise[0] < numpy.Inf |
|
504 | 503 | |
|
505 | 504 | #Subrutina de Remocion de la Interferencia |
|
506 | 505 | for ich in range(num_channel): |
|
507 | 506 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
508 | 507 | power = jspectra[ich,mask_prof,:] |
|
509 | 508 | power = power[:,hei_interf] |
|
510 | 509 | power = power.sum(axis = 0) |
|
511 | 510 | psort = power.ravel().argsort() |
|
512 | 511 | |
|
513 | 512 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
514 | 513 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
515 | 514 | |
|
516 | 515 | if noise_exist: |
|
517 | 516 | # tmp_noise = jnoise[ich] / num_prof |
|
518 | 517 | tmp_noise = jnoise[ich] |
|
519 | 518 | junkspc_interf = junkspc_interf - tmp_noise |
|
520 | 519 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
521 | 520 | |
|
522 | 521 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
523 | 522 | jspc_interf = jspc_interf.transpose() |
|
524 | 523 | #Calculando el espectro de interferencia promedio |
|
525 | 524 | noiseid = numpy.where(jspc_interf <= tmp_noise/ numpy.sqrt(num_incoh)) |
|
526 | 525 | noiseid = noiseid[0] |
|
527 | 526 | cnoiseid = noiseid.size |
|
528 | 527 | interfid = numpy.where(jspc_interf > tmp_noise/ numpy.sqrt(num_incoh)) |
|
529 | 528 | interfid = interfid[0] |
|
530 | 529 | cinterfid = interfid.size |
|
531 | 530 | |
|
532 | 531 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
533 | 532 | |
|
534 | 533 | #Expandiendo los perfiles a limpiar |
|
535 | 534 | if (cinterfid > 0): |
|
536 | 535 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
537 | 536 | new_interfid = numpy.asarray(new_interfid) |
|
538 | 537 | new_interfid = {x for x in new_interfid} |
|
539 | 538 | new_interfid = numpy.array(list(new_interfid)) |
|
540 | 539 | new_cinterfid = new_interfid.size |
|
541 | 540 | else: new_cinterfid = 0 |
|
542 | 541 | |
|
543 | 542 | for ip in range(new_cinterfid): |
|
544 | 543 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
545 | 544 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
546 | 545 | |
|
547 | 546 | |
|
548 | 547 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
549 | 548 | |
|
550 | 549 | #Removiendo la interferencia del punto de mayor interferencia |
|
551 | 550 | ListAux = jspc_interf[mask_prof].tolist() |
|
552 | 551 | maxid = ListAux.index(max(ListAux)) |
|
553 | 552 | |
|
554 | 553 | |
|
555 | 554 | if cinterfid > 0: |
|
556 | 555 | for ip in range(cinterfid*(interf == 2) - 1): |
|
557 | 556 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/numpy.sqrt(num_incoh))).nonzero() |
|
558 | 557 | cind = len(ind) |
|
559 | 558 | |
|
560 | 559 | if (cind > 0): |
|
561 | 560 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/numpy.sqrt(num_incoh)) |
|
562 | 561 | |
|
563 | 562 | ind = numpy.array([-2,-1,1,2]) |
|
564 | 563 | xx = numpy.zeros([4,4]) |
|
565 | 564 | |
|
566 | 565 | for id1 in range(4): |
|
567 | 566 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
568 | 567 | |
|
569 | 568 | xx_inv = numpy.linalg.inv(xx) |
|
570 | 569 | xx = xx_inv[:,0] |
|
571 | 570 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
572 | 571 | yy = jspectra[ich,mask_prof[ind],:] |
|
573 | 572 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
574 | 573 | |
|
575 | 574 | |
|
576 | 575 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/numpy.sqrt(num_incoh))).nonzero() |
|
577 | 576 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/numpy.sqrt(num_incoh)) |
|
578 | 577 | |
|
579 | 578 | #Remocion de Interferencia en el Cross Spectra |
|
580 | 579 | if jcspectra is None: return jspectra, jcspectra |
|
581 | 580 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
582 | 581 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
583 | 582 | |
|
584 | 583 | for ip in range(num_pairs): |
|
585 | 584 | |
|
586 | 585 | #------------------------------------------- |
|
587 | 586 | |
|
588 | 587 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
589 | 588 | cspower = cspower[:,hei_interf] |
|
590 | 589 | cspower = cspower.sum(axis = 0) |
|
591 | 590 | |
|
592 | 591 | cspsort = cspower.ravel().argsort() |
|
593 | 592 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
594 | 593 | junkcspc_interf = junkcspc_interf.transpose() |
|
595 | 594 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
596 | 595 | |
|
597 | 596 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
598 | 597 | |
|
599 | 598 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
600 | 599 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
601 | 600 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
602 | 601 | |
|
603 | 602 | for iprof in range(num_prof): |
|
604 | 603 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
605 | 604 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
606 | 605 | |
|
607 | 606 | #Removiendo la Interferencia |
|
608 | 607 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
609 | 608 | |
|
610 | 609 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
611 | 610 | maxid = ListAux.index(max(ListAux)) |
|
612 | 611 | |
|
613 | 612 | ind = numpy.array([-2,-1,1,2]) |
|
614 | 613 | xx = numpy.zeros([4,4]) |
|
615 | 614 | |
|
616 | 615 | for id1 in range(4): |
|
617 | 616 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
618 | 617 | |
|
619 | 618 | xx_inv = numpy.linalg.inv(xx) |
|
620 | 619 | xx = xx_inv[:,0] |
|
621 | 620 | |
|
622 | 621 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
623 | 622 | yy = jcspectra[ip,mask_prof[ind],:] |
|
624 | 623 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
625 | 624 | |
|
626 | 625 | #Guardar Resultados |
|
627 | 626 | self.dataOut.data_spc = jspectra |
|
628 | 627 | self.dataOut.data_cspc = jcspectra |
|
629 | 628 | |
|
630 | 629 | return 1 |
|
631 | 630 | |
|
632 | 631 | def setRadarFrequency(self, frequency=None): |
|
633 | 632 | |
|
634 | 633 | if frequency != None: |
|
635 | 634 | self.dataOut.frequency = frequency |
|
636 | 635 | |
|
637 | 636 | return 1 |
|
638 | 637 | |
|
639 | 638 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
640 | 639 | #validacion de rango |
|
641 | 640 | if minHei == None: |
|
642 | 641 | minHei = self.dataOut.heightList[0] |
|
643 | 642 | |
|
644 | 643 | if maxHei == None: |
|
645 | 644 | maxHei = self.dataOut.heightList[-1] |
|
646 | 645 | |
|
647 | 646 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
648 | 647 | print 'minHei: %.2f is out of the heights range'%(minHei) |
|
649 | 648 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) |
|
650 | 649 | minHei = self.dataOut.heightList[0] |
|
651 | 650 | |
|
652 | 651 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
653 | 652 | print 'maxHei: %.2f is out of the heights range'%(maxHei) |
|
654 | 653 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) |
|
655 | 654 | maxHei = self.dataOut.heightList[-1] |
|
656 | 655 | |
|
657 | 656 | # validacion de velocidades |
|
658 | 657 | velrange = self.dataOut.getVelRange(1) |
|
659 | 658 | |
|
660 | 659 | if minVel == None: |
|
661 | 660 | minVel = velrange[0] |
|
662 | 661 | |
|
663 | 662 | if maxVel == None: |
|
664 | 663 | maxVel = velrange[-1] |
|
665 | 664 | |
|
666 | 665 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
667 | 666 | print 'minVel: %.2f is out of the velocity range'%(minVel) |
|
668 | 667 | print 'minVel is setting to %.2f'%(velrange[0]) |
|
669 | 668 | minVel = velrange[0] |
|
670 | 669 | |
|
671 | 670 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
672 | 671 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) |
|
673 | 672 | print 'maxVel is setting to %.2f'%(velrange[-1]) |
|
674 | 673 | maxVel = velrange[-1] |
|
675 | 674 | |
|
676 | 675 | # seleccion de indices para rango |
|
677 | 676 | minIndex = 0 |
|
678 | 677 | maxIndex = 0 |
|
679 | 678 | heights = self.dataOut.heightList |
|
680 | 679 | |
|
681 | 680 | inda = numpy.where(heights >= minHei) |
|
682 | 681 | indb = numpy.where(heights <= maxHei) |
|
683 | 682 | |
|
684 | 683 | try: |
|
685 | 684 | minIndex = inda[0][0] |
|
686 | 685 | except: |
|
687 | 686 | minIndex = 0 |
|
688 | 687 | |
|
689 | 688 | try: |
|
690 | 689 | maxIndex = indb[0][-1] |
|
691 | 690 | except: |
|
692 | 691 | maxIndex = len(heights) |
|
693 | 692 | |
|
694 | 693 | if (minIndex < 0) or (minIndex > maxIndex): |
|
695 | 694 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
696 | 695 | |
|
697 | 696 | if (maxIndex >= self.dataOut.nHeights): |
|
698 | 697 | maxIndex = self.dataOut.nHeights-1 |
|
699 | 698 | |
|
700 | 699 | # seleccion de indices para velocidades |
|
701 | 700 | indminvel = numpy.where(velrange >= minVel) |
|
702 | 701 | indmaxvel = numpy.where(velrange <= maxVel) |
|
703 | 702 | try: |
|
704 | 703 | minIndexVel = indminvel[0][0] |
|
705 | 704 | except: |
|
706 | 705 | minIndexVel = 0 |
|
707 | 706 | |
|
708 | 707 | try: |
|
709 | 708 | maxIndexVel = indmaxvel[0][-1] |
|
710 | 709 | except: |
|
711 | 710 | maxIndexVel = len(velrange) |
|
712 | 711 | |
|
713 | 712 | #seleccion del espectro |
|
714 | 713 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
715 | 714 | #estimacion de ruido |
|
716 | 715 | noise = numpy.zeros(self.dataOut.nChannels) |
|
717 | 716 | |
|
718 | 717 | for channel in range(self.dataOut.nChannels): |
|
719 | 718 | daux = data_spc[channel,:,:] |
|
720 | 719 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
721 | 720 | |
|
722 | 721 | self.dataOut.noise_estimation = noise.copy() |
|
723 | 722 | |
|
724 | 723 | return 1 |
|
725 | 724 | |
|
726 | 725 | class IncohInt(Operation): |
|
727 | 726 | |
|
728 | 727 | |
|
729 | 728 | __profIndex = 0 |
|
730 | 729 | __withOverapping = False |
|
731 | 730 | |
|
732 | 731 | __byTime = False |
|
733 | 732 | __initime = None |
|
734 | 733 | __lastdatatime = None |
|
735 | 734 | __integrationtime = None |
|
736 | 735 | |
|
737 | 736 | __buffer_spc = None |
|
738 | 737 | __buffer_cspc = None |
|
739 | 738 | __buffer_dc = None |
|
740 | 739 | |
|
741 | 740 | __dataReady = False |
|
742 | 741 | |
|
743 | 742 | __timeInterval = None |
|
744 | 743 | |
|
745 | 744 | n = None |
|
746 | 745 | |
|
747 | 746 | |
|
748 | 747 | |
|
749 | 748 | def __init__(self, **kwargs): |
|
750 | 749 | |
|
751 | 750 | Operation.__init__(self, **kwargs) |
|
752 | 751 | # self.isConfig = False |
|
753 | 752 | |
|
754 | 753 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
755 | 754 | """ |
|
756 | 755 | Set the parameters of the integration class. |
|
757 | 756 | |
|
758 | 757 | Inputs: |
|
759 | 758 | |
|
760 | 759 | n : Number of coherent integrations |
|
761 | 760 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
762 | 761 | overlapping : |
|
763 | 762 | |
|
764 | 763 | """ |
|
765 | 764 | |
|
766 | 765 | self.__initime = None |
|
767 | 766 | self.__lastdatatime = 0 |
|
768 | 767 | |
|
769 | 768 | self.__buffer_spc = 0 |
|
770 | 769 | self.__buffer_cspc = 0 |
|
771 | 770 | self.__buffer_dc = 0 |
|
772 | 771 | |
|
773 | 772 | self.__profIndex = 0 |
|
774 | 773 | self.__dataReady = False |
|
775 | 774 | self.__byTime = False |
|
776 | 775 | |
|
777 | 776 | if n is None and timeInterval is None: |
|
778 | 777 | raise ValueError, "n or timeInterval should be specified ..." |
|
779 | 778 | |
|
780 | 779 | if n is not None: |
|
781 | 780 | self.n = int(n) |
|
782 | 781 | else: |
|
783 | 782 | self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line |
|
784 | 783 | self.n = None |
|
785 | 784 | self.__byTime = True |
|
786 | 785 | |
|
787 | 786 | def putData(self, data_spc, data_cspc, data_dc): |
|
788 | 787 | |
|
789 | 788 | """ |
|
790 | 789 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
791 | 790 | |
|
792 | 791 | """ |
|
793 | 792 | |
|
794 | 793 | self.__buffer_spc += data_spc |
|
795 | 794 | |
|
796 | 795 | if data_cspc is None: |
|
797 | 796 | self.__buffer_cspc = None |
|
798 | 797 | else: |
|
799 | 798 | self.__buffer_cspc += data_cspc |
|
800 | 799 | |
|
801 | 800 | if data_dc is None: |
|
802 | 801 | self.__buffer_dc = None |
|
803 | 802 | else: |
|
804 | 803 | self.__buffer_dc += data_dc |
|
805 | 804 | |
|
806 | 805 | self.__profIndex += 1 |
|
807 | 806 | |
|
808 | 807 | return |
|
809 | 808 | |
|
810 | 809 | def pushData(self): |
|
811 | 810 | """ |
|
812 | 811 | Return the sum of the last profiles and the profiles used in the sum. |
|
813 | 812 | |
|
814 | 813 | Affected: |
|
815 | 814 | |
|
816 | 815 | self.__profileIndex |
|
817 | 816 | |
|
818 | 817 | """ |
|
819 | 818 | |
|
820 | 819 | data_spc = self.__buffer_spc |
|
821 | 820 | data_cspc = self.__buffer_cspc |
|
822 | 821 | data_dc = self.__buffer_dc |
|
823 | 822 | n = self.__profIndex |
|
824 | 823 | |
|
825 | 824 | self.__buffer_spc = 0 |
|
826 | 825 | self.__buffer_cspc = 0 |
|
827 | 826 | self.__buffer_dc = 0 |
|
828 | 827 | self.__profIndex = 0 |
|
829 | 828 | |
|
830 | 829 | return data_spc, data_cspc, data_dc, n |
|
831 | 830 | |
|
832 | 831 | def byProfiles(self, *args): |
|
833 | 832 | |
|
834 | 833 | self.__dataReady = False |
|
835 | 834 | avgdata_spc = None |
|
836 | 835 | avgdata_cspc = None |
|
837 | 836 | avgdata_dc = None |
|
838 | 837 | |
|
839 | 838 | self.putData(*args) |
|
840 | 839 | |
|
841 | 840 | if self.__profIndex == self.n: |
|
842 | 841 | |
|
843 | 842 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
844 | 843 | self.n = n |
|
845 | 844 | self.__dataReady = True |
|
846 | 845 | |
|
847 | 846 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
848 | 847 | |
|
849 | 848 | def byTime(self, datatime, *args): |
|
850 | 849 | |
|
851 | 850 | self.__dataReady = False |
|
852 | 851 | avgdata_spc = None |
|
853 | 852 | avgdata_cspc = None |
|
854 | 853 | avgdata_dc = None |
|
855 | 854 | |
|
856 | 855 | self.putData(*args) |
|
857 | 856 | |
|
858 | 857 | if (datatime - self.__initime) >= self.__integrationtime: |
|
859 | 858 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
860 | 859 | self.n = n |
|
861 | 860 | self.__dataReady = True |
|
862 | 861 | |
|
863 | 862 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
864 | 863 | |
|
865 | 864 | def integrate(self, datatime, *args): |
|
866 | 865 | |
|
867 | 866 | if self.__profIndex == 0: |
|
868 | 867 | self.__initime = datatime |
|
869 | 868 | |
|
870 | 869 | if self.__byTime: |
|
871 | 870 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
872 | 871 | else: |
|
873 | 872 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
874 | 873 | |
|
875 | 874 | if not self.__dataReady: |
|
876 | 875 | return None, None, None, None |
|
877 | 876 | |
|
878 | 877 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
879 | 878 | |
|
880 | 879 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
881 | 880 | |
|
882 | 881 | if n==1: |
|
883 | 882 | return |
|
884 | 883 | |
|
885 | 884 | dataOut.flagNoData = True |
|
886 | 885 | |
|
887 | 886 | if not self.isConfig: |
|
888 | 887 | self.setup(n, timeInterval, overlapping) |
|
889 | 888 | self.isConfig = True |
|
890 | 889 | |
|
891 | 890 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
892 | 891 | dataOut.data_spc, |
|
893 | 892 | dataOut.data_cspc, |
|
894 | 893 | dataOut.data_dc) |
|
895 | 894 | |
|
896 | 895 | if self.__dataReady: |
|
897 | 896 | |
|
898 | 897 | dataOut.data_spc = avgdata_spc |
|
899 | 898 | dataOut.data_cspc = avgdata_cspc |
|
900 | 899 | dataOut.data_dc = avgdata_dc |
|
901 | 900 | |
|
902 | 901 | dataOut.nIncohInt *= self.n |
|
903 | 902 | dataOut.utctime = avgdatatime |
|
904 | 903 | dataOut.flagNoData = False |
@@ -1,501 +1,604 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: Juan C. Espinoza |
|
3 | 3 | ''' |
|
4 | 4 | |
|
5 | 5 | import time |
|
6 | 6 | import json |
|
7 | 7 | import numpy |
|
8 | 8 | import paho.mqtt.client as mqtt |
|
9 | 9 | import zmq |
|
10 | 10 | import datetime |
|
11 | 11 | from zmq.utils.monitor import recv_monitor_message |
|
12 | 12 | from functools import wraps |
|
13 | 13 | from threading import Thread |
|
14 | 14 | from multiprocessing import Process |
|
15 | 15 | |
|
16 | 16 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit |
|
17 | 17 | from schainpy.model.data.jrodata import JROData |
|
18 | from schainpy.utils import log | |
|
18 | 19 | |
|
19 | 20 | MAXNUMX = 100 |
|
20 | 21 | MAXNUMY = 100 |
|
21 | 22 | |
|
22 | 23 | class PrettyFloat(float): |
|
23 | 24 | def __repr__(self): |
|
24 | 25 | return '%.2f' % self |
|
25 | 26 | |
|
26 | 27 | def roundFloats(obj): |
|
27 | 28 | if isinstance(obj, list): |
|
28 | 29 | return map(roundFloats, obj) |
|
29 | 30 | elif isinstance(obj, float): |
|
30 | 31 | return round(obj, 2) |
|
31 | 32 | |
|
32 | 33 | def decimate(z, MAXNUMY): |
|
33 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
|
34 | ||
|
35 | 34 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
36 | 35 | |
|
37 | 36 | return z[::, ::dy] |
|
38 | 37 | |
|
39 | 38 | class throttle(object): |
|
40 | """Decorator that prevents a function from being called more than once every | |
|
39 | ''' | |
|
40 | Decorator that prevents a function from being called more than once every | |
|
41 | 41 | time period. |
|
42 | 42 | To create a function that cannot be called more than once a minute, but |
|
43 | 43 | will sleep until it can be called: |
|
44 | 44 | @throttle(minutes=1) |
|
45 | 45 | def foo(): |
|
46 | 46 | pass |
|
47 | 47 | |
|
48 | 48 | for i in range(10): |
|
49 | 49 | foo() |
|
50 | 50 | print "This function has run %s times." % i |
|
51 | """ | |
|
51 | ''' | |
|
52 | 52 | |
|
53 | 53 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
54 | 54 | self.throttle_period = datetime.timedelta( |
|
55 | 55 | seconds=seconds, minutes=minutes, hours=hours |
|
56 | 56 | ) |
|
57 | 57 | |
|
58 | 58 | self.time_of_last_call = datetime.datetime.min |
|
59 | 59 | |
|
60 | 60 | def __call__(self, fn): |
|
61 | 61 | @wraps(fn) |
|
62 | 62 | def wrapper(*args, **kwargs): |
|
63 | 63 | now = datetime.datetime.now() |
|
64 | 64 | time_since_last_call = now - self.time_of_last_call |
|
65 | 65 | time_left = self.throttle_period - time_since_last_call |
|
66 | 66 | |
|
67 | 67 | if time_left > datetime.timedelta(seconds=0): |
|
68 | 68 | return |
|
69 | 69 | |
|
70 | 70 | self.time_of_last_call = datetime.datetime.now() |
|
71 | 71 | return fn(*args, **kwargs) |
|
72 | 72 | |
|
73 | 73 | return wrapper |
|
74 | 74 | |
|
75 | class Data(object): | |
|
76 | ''' | |
|
77 | Object to hold data to be plotted | |
|
78 | ''' | |
|
79 | ||
|
80 | def __init__(self, plottypes, throttle_value): | |
|
81 | self.plottypes = plottypes | |
|
82 | self.throttle = throttle_value | |
|
83 | self.ended = False | |
|
84 | self.__times = [] | |
|
85 | ||
|
86 | def __str__(self): | |
|
87 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
|
88 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) | |
|
89 | ||
|
90 | def __len__(self): | |
|
91 | return len(self.__times) | |
|
92 | ||
|
93 | def __getitem__(self, key): | |
|
94 | if key not in self.data: | |
|
95 | raise KeyError(log.error('Missing key: {}'.format(key))) | |
|
96 | ||
|
97 | if 'spc' in key: | |
|
98 | ret = self.data[key] | |
|
99 | else: | |
|
100 | ret = numpy.array([self.data[key][x] for x in self.times]) | |
|
101 | if ret.ndim > 1: | |
|
102 | ret = numpy.swapaxes(ret, 0, 1) | |
|
103 | return ret | |
|
104 | ||
|
105 | def setup(self): | |
|
106 | ''' | |
|
107 | Configure object | |
|
108 | ''' | |
|
109 | ||
|
110 | self.ended = False | |
|
111 | self.data = {} | |
|
112 | self.__times = [] | |
|
113 | self.__heights = [] | |
|
114 | self.__all_heights = set() | |
|
115 | for plot in self.plottypes: | |
|
116 | self.data[plot] = {} | |
|
117 | ||
|
118 | def shape(self, key): | |
|
119 | ''' | |
|
120 | Get the shape of the one-element data for the given key | |
|
121 | ''' | |
|
122 | ||
|
123 | if len(self.data[key]): | |
|
124 | if 'spc' in key: | |
|
125 | return self.data[key].shape | |
|
126 | return self.data[key][self.__times[0]].shape | |
|
127 | return (0,) | |
|
128 | ||
|
129 | def update(self, dataOut): | |
|
130 | ''' | |
|
131 | Update data object with new dataOut | |
|
132 | ''' | |
|
133 | ||
|
134 | tm = dataOut.utctime | |
|
135 | if tm in self.__times: | |
|
136 | return | |
|
137 | ||
|
138 | self.parameters = getattr(dataOut, 'parameters', []) | |
|
139 | self.pairs = dataOut.pairsList | |
|
140 | self.channels = dataOut.channelList | |
|
141 | self.xrange = (dataOut.getFreqRange(1)/1000. , dataOut.getAcfRange(1) , dataOut.getVelRange(1)) | |
|
142 | self.interval = dataOut.getTimeInterval() | |
|
143 | self.__heights.append(dataOut.heightList) | |
|
144 | self.__all_heights.update(dataOut.heightList) | |
|
145 | self.__times.append(tm) | |
|
146 | ||
|
147 | for plot in self.plottypes: | |
|
148 | if plot == 'spc': | |
|
149 | z = dataOut.data_spc/dataOut.normFactor | |
|
150 | self.data[plot] = 10*numpy.log10(z) | |
|
151 | if plot == 'cspc': | |
|
152 | self.data[plot] = dataOut.data_cspc | |
|
153 | if plot == 'noise': | |
|
154 | self.data[plot][tm] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
|
155 | if plot == 'rti': | |
|
156 | self.data[plot][tm] = dataOut.getPower() | |
|
157 | if plot == 'snr_db': | |
|
158 | self.data['snr'][tm] = dataOut.data_SNR | |
|
159 | if plot == 'snr': | |
|
160 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_SNR) | |
|
161 | if plot == 'dop': | |
|
162 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_DOP) | |
|
163 | if plot == 'mean': | |
|
164 | self.data[plot][tm] = dataOut.data_MEAN | |
|
165 | if plot == 'std': | |
|
166 | self.data[plot][tm] = dataOut.data_STD | |
|
167 | if plot == 'coh': | |
|
168 | self.data[plot][tm] = dataOut.getCoherence() | |
|
169 | if plot == 'phase': | |
|
170 | self.data[plot][tm] = dataOut.getCoherence(phase=True) | |
|
171 | if plot == 'output': | |
|
172 | self.data[plot][tm] = dataOut.data_output | |
|
173 | if plot == 'param': | |
|
174 | self.data[plot][tm] = dataOut.data_param | |
|
175 | ||
|
176 | def normalize_heights(self): | |
|
177 | ''' | |
|
178 | Ensure same-dimension of the data for different heighList | |
|
179 | ''' | |
|
180 | ||
|
181 | H = numpy.array(list(self.__all_heights)) | |
|
182 | H.sort() | |
|
183 | for key in self.data: | |
|
184 | shape = self.shape(key)[:-1] + H.shape | |
|
185 | for tm, obj in self.data[key].items(): | |
|
186 | h = self.__heights[self.__times.index(tm)] | |
|
187 | if H.size == h.size: | |
|
188 | continue | |
|
189 | index = numpy.where(numpy.in1d(H, h))[0] | |
|
190 | dummy = numpy.zeros(shape) + numpy.nan | |
|
191 | if len(shape) == 2: | |
|
192 | dummy[:, index] = obj | |
|
193 | else: | |
|
194 | dummy[index] = obj | |
|
195 | self.data[key][tm] = dummy | |
|
196 | ||
|
197 | self.__heights = [H for tm in self.__times] | |
|
198 | ||
|
199 | def jsonify(self, decimate=False): | |
|
200 | ''' | |
|
201 | Convert data to json | |
|
202 | ''' | |
|
203 | ||
|
204 | ret = {} | |
|
205 | tm = self.times[-1] | |
|
206 | ||
|
207 | for key, value in self.data: | |
|
208 | if key in ('spc', 'cspc'): | |
|
209 | ret[key] = roundFloats(self.data[key].to_list()) | |
|
210 | else: | |
|
211 | ret[key] = roundFloats(self.data[key][tm].to_list()) | |
|
212 | ||
|
213 | ret['timestamp'] = tm | |
|
214 | ret['interval'] = self.interval | |
|
215 | ||
|
216 | @property | |
|
217 | def times(self): | |
|
218 | ''' | |
|
219 | Return the list of times of the current data | |
|
220 | ''' | |
|
221 | ||
|
222 | ret = numpy.array(self.__times) | |
|
223 | ret.sort() | |
|
224 | return ret | |
|
225 | ||
|
226 | @property | |
|
227 | def heights(self): | |
|
228 | ''' | |
|
229 | Return the list of heights of the current data | |
|
230 | ''' | |
|
231 | ||
|
232 | return numpy.array(self.__heights[-1]) | |
|
75 | 233 | |
|
76 | 234 | class PublishData(Operation): |
|
77 | """Clase publish.""" | |
|
235 | ''' | |
|
236 | Operation to send data over zmq. | |
|
237 | ''' | |
|
78 | 238 | |
|
79 | 239 | def __init__(self, **kwargs): |
|
80 | 240 | """Inicio.""" |
|
81 | 241 | Operation.__init__(self, **kwargs) |
|
82 | 242 | self.isConfig = False |
|
83 | 243 | self.client = None |
|
84 | 244 | self.zeromq = None |
|
85 | 245 | self.mqtt = None |
|
86 | 246 | |
|
87 | 247 | def on_disconnect(self, client, userdata, rc): |
|
88 | 248 | if rc != 0: |
|
89 |
|
|
|
249 | log.warning('Unexpected disconnection.') | |
|
90 | 250 | self.connect() |
|
91 | 251 | |
|
92 | 252 | def connect(self): |
|
93 |
|
|
|
253 | log.warning('trying to connect') | |
|
94 | 254 | try: |
|
95 | 255 | self.client.connect( |
|
96 | 256 | host=self.host, |
|
97 | 257 | port=self.port, |
|
98 | 258 | keepalive=60*10, |
|
99 | 259 | bind_address='') |
|
100 | 260 | self.client.loop_start() |
|
101 | 261 | # self.client.publish( |
|
102 | 262 | # self.topic + 'SETUP', |
|
103 | 263 | # json.dumps(setup), |
|
104 | 264 | # retain=True |
|
105 | 265 | # ) |
|
106 | 266 | except: |
|
107 |
|
|
|
267 | log.error('MQTT Conection error.') | |
|
108 | 268 | self.client = False |
|
109 | 269 | |
|
110 | 270 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs): |
|
111 | 271 | self.counter = 0 |
|
112 | 272 | self.topic = kwargs.get('topic', 'schain') |
|
113 | 273 | self.delay = kwargs.get('delay', 0) |
|
114 | 274 | self.plottype = kwargs.get('plottype', 'spectra') |
|
115 | 275 | self.host = kwargs.get('host', "10.10.10.82") |
|
116 | 276 | self.port = kwargs.get('port', 3000) |
|
117 | 277 | self.clientId = clientId |
|
118 | 278 | self.cnt = 0 |
|
119 | 279 | self.zeromq = zeromq |
|
120 | 280 | self.mqtt = kwargs.get('plottype', 0) |
|
121 | 281 | self.client = None |
|
122 | self.verbose = verbose | |
|
123 | self.dataOut.firstdata = True | |
|
282 | self.verbose = verbose | |
|
124 | 283 | setup = [] |
|
125 | 284 | if mqtt is 1: |
|
126 | 285 | self.client = mqtt.Client( |
|
127 | 286 | client_id=self.clientId + self.topic + 'SCHAIN', |
|
128 | 287 | clean_session=True) |
|
129 | 288 | self.client.on_disconnect = self.on_disconnect |
|
130 | 289 | self.connect() |
|
131 | 290 | for plot in self.plottype: |
|
132 | 291 | setup.append({ |
|
133 | 292 | 'plot': plot, |
|
134 | 293 | 'topic': self.topic + plot, |
|
135 | 294 | 'title': getattr(self, plot + '_' + 'title', False), |
|
136 | 295 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), |
|
137 | 296 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), |
|
138 | 297 | 'xrange': getattr(self, plot + '_' + 'xrange', False), |
|
139 | 298 | 'yrange': getattr(self, plot + '_' + 'yrange', False), |
|
140 | 299 | 'zrange': getattr(self, plot + '_' + 'zrange', False), |
|
141 | 300 | }) |
|
142 | 301 | if zeromq is 1: |
|
143 | 302 | context = zmq.Context() |
|
144 | 303 | self.zmq_socket = context.socket(zmq.PUSH) |
|
145 | 304 | server = kwargs.get('server', 'zmq.pipe') |
|
146 | 305 | |
|
147 | 306 | if 'tcp://' in server: |
|
148 | 307 | address = server |
|
149 | 308 | else: |
|
150 | 309 | address = 'ipc:///tmp/%s' % server |
|
151 | 310 | |
|
152 | 311 | self.zmq_socket.connect(address) |
|
153 | 312 | time.sleep(1) |
|
154 | 313 | |
|
155 | 314 | |
|
156 | 315 | def publish_data(self): |
|
157 | 316 | self.dataOut.finished = False |
|
158 | 317 | if self.mqtt is 1: |
|
159 | 318 | yData = self.dataOut.heightList[:2].tolist() |
|
160 | 319 | if self.plottype == 'spectra': |
|
161 | 320 | data = getattr(self.dataOut, 'data_spc') |
|
162 | 321 | z = data/self.dataOut.normFactor |
|
163 | 322 | zdB = 10*numpy.log10(z) |
|
164 | 323 | xlen, ylen = zdB[0].shape |
|
165 | 324 | dx = int(xlen/MAXNUMX) + 1 |
|
166 | 325 | dy = int(ylen/MAXNUMY) + 1 |
|
167 | 326 | Z = [0 for i in self.dataOut.channelList] |
|
168 | 327 | for i in self.dataOut.channelList: |
|
169 | 328 | Z[i] = zdB[i][::dx, ::dy].tolist() |
|
170 | 329 | payload = { |
|
171 | 330 | 'timestamp': self.dataOut.utctime, |
|
172 | 331 | 'data': roundFloats(Z), |
|
173 | 332 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
174 | 333 | 'interval': self.dataOut.getTimeInterval(), |
|
175 | 334 | 'type': self.plottype, |
|
176 | 335 | 'yData': yData |
|
177 | 336 | } |
|
178 | # print payload | |
|
179 | 337 | |
|
180 | 338 | elif self.plottype in ('rti', 'power'): |
|
181 | 339 | data = getattr(self.dataOut, 'data_spc') |
|
182 | 340 | z = data/self.dataOut.normFactor |
|
183 | 341 | avg = numpy.average(z, axis=1) |
|
184 | 342 | avgdB = 10*numpy.log10(avg) |
|
185 | 343 | xlen, ylen = z[0].shape |
|
186 | 344 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
187 | 345 | AVG = [0 for i in self.dataOut.channelList] |
|
188 | 346 | for i in self.dataOut.channelList: |
|
189 | 347 | AVG[i] = avgdB[i][::dy].tolist() |
|
190 | 348 | payload = { |
|
191 | 349 | 'timestamp': self.dataOut.utctime, |
|
192 | 350 | 'data': roundFloats(AVG), |
|
193 | 351 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
194 | 352 | 'interval': self.dataOut.getTimeInterval(), |
|
195 | 353 | 'type': self.plottype, |
|
196 | 354 | 'yData': yData |
|
197 | 355 | } |
|
198 | 356 | elif self.plottype == 'noise': |
|
199 | 357 | noise = self.dataOut.getNoise()/self.dataOut.normFactor |
|
200 | 358 | noisedB = 10*numpy.log10(noise) |
|
201 | 359 | payload = { |
|
202 | 360 | 'timestamp': self.dataOut.utctime, |
|
203 | 361 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), |
|
204 | 362 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
205 | 363 | 'interval': self.dataOut.getTimeInterval(), |
|
206 | 364 | 'type': self.plottype, |
|
207 | 365 | 'yData': yData |
|
208 | 366 | } |
|
209 | 367 | elif self.plottype == 'snr': |
|
210 | 368 | data = getattr(self.dataOut, 'data_SNR') |
|
211 | 369 | avgdB = 10*numpy.log10(data) |
|
212 | 370 | |
|
213 | 371 | ylen = data[0].size |
|
214 | 372 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
215 | 373 | AVG = [0 for i in self.dataOut.channelList] |
|
216 | 374 | for i in self.dataOut.channelList: |
|
217 | 375 | AVG[i] = avgdB[i][::dy].tolist() |
|
218 | 376 | payload = { |
|
219 | 377 | 'timestamp': self.dataOut.utctime, |
|
220 | 378 | 'data': roundFloats(AVG), |
|
221 | 379 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
222 | 380 | 'type': self.plottype, |
|
223 | 381 | 'yData': yData |
|
224 | 382 | } |
|
225 | 383 | else: |
|
226 | 384 | print "Tipo de grafico invalido" |
|
227 | 385 | payload = { |
|
228 | 386 | 'data': 'None', |
|
229 | 387 | 'timestamp': 'None', |
|
230 | 388 | 'type': None |
|
231 | 389 | } |
|
232 | # print 'Publishing data to {}'.format(self.host) | |
|
390 | ||
|
233 | 391 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
234 | 392 | |
|
235 | 393 | if self.zeromq is 1: |
|
236 | 394 | if self.verbose: |
|
237 | print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime) | |
|
395 | log.log( | |
|
396 | '{} - {}'.format(self.dataOut.type, self.dataOut.datatime), | |
|
397 | 'Sending' | |
|
398 | ) | |
|
238 | 399 | self.zmq_socket.send_pyobj(self.dataOut) |
|
239 | self.dataOut.firstdata = False | |
|
240 | ||
|
241 | 400 | |
|
242 | 401 | def run(self, dataOut, **kwargs): |
|
243 | 402 | self.dataOut = dataOut |
|
244 | 403 | if not self.isConfig: |
|
245 | 404 | self.setup(**kwargs) |
|
246 | 405 | self.isConfig = True |
|
247 | 406 | |
|
248 | 407 | self.publish_data() |
|
249 | 408 | time.sleep(self.delay) |
|
250 | 409 | |
|
251 | 410 | def close(self): |
|
252 | 411 | if self.zeromq is 1: |
|
253 | 412 | self.dataOut.finished = True |
|
254 | 413 | self.zmq_socket.send_pyobj(self.dataOut) |
|
414 | time.sleep(0.1) | |
|
255 | 415 | self.zmq_socket.close() |
|
256 | 416 | if self.client: |
|
257 | 417 | self.client.loop_stop() |
|
258 | 418 | self.client.disconnect() |
|
259 | 419 | |
|
260 | 420 | |
|
261 | 421 | class ReceiverData(ProcessingUnit): |
|
262 | 422 | |
|
263 | 423 | def __init__(self, **kwargs): |
|
264 | 424 | |
|
265 | 425 | ProcessingUnit.__init__(self, **kwargs) |
|
266 | 426 | |
|
267 | 427 | self.isConfig = False |
|
268 | 428 | server = kwargs.get('server', 'zmq.pipe') |
|
269 | 429 | if 'tcp://' in server: |
|
270 | 430 | address = server |
|
271 | 431 | else: |
|
272 | 432 | address = 'ipc:///tmp/%s' % server |
|
273 | 433 | |
|
274 | 434 | self.address = address |
|
275 | 435 | self.dataOut = JROData() |
|
276 | 436 | |
|
277 | 437 | def setup(self): |
|
278 | 438 | |
|
279 | 439 | self.context = zmq.Context() |
|
280 | 440 | self.receiver = self.context.socket(zmq.PULL) |
|
281 | 441 | self.receiver.bind(self.address) |
|
282 | 442 | time.sleep(0.5) |
|
283 |
|
|
|
443 | log.success('ReceiverData from {}'.format(self.address)) | |
|
284 | 444 | |
|
285 | 445 | |
|
286 | 446 | def run(self): |
|
287 | 447 | |
|
288 | 448 | if not self.isConfig: |
|
289 | 449 | self.setup() |
|
290 | 450 | self.isConfig = True |
|
291 | 451 | |
|
292 | 452 | self.dataOut = self.receiver.recv_pyobj() |
|
293 |
|
|
|
294 |
|
|
|
453 | log.log('{} - {}'.format(self.dataOut.type, | |
|
454 | self.dataOut.datatime.ctime(),), | |
|
455 | 'Receiving') | |
|
295 | 456 | |
|
296 | 457 | |
|
297 | 458 | class PlotterReceiver(ProcessingUnit, Process): |
|
298 | 459 | |
|
299 | 460 | throttle_value = 5 |
|
300 | 461 | |
|
301 | 462 | def __init__(self, **kwargs): |
|
302 | 463 | |
|
303 | 464 | ProcessingUnit.__init__(self, **kwargs) |
|
304 | 465 | Process.__init__(self) |
|
305 | 466 | self.mp = False |
|
306 | 467 | self.isConfig = False |
|
307 | 468 | self.isWebConfig = False |
|
308 | self.plottypes = [] | |
|
309 | 469 | self.connections = 0 |
|
310 | 470 | server = kwargs.get('server', 'zmq.pipe') |
|
311 | 471 | plot_server = kwargs.get('plot_server', 'zmq.web') |
|
312 | 472 | if 'tcp://' in server: |
|
313 | 473 | address = server |
|
314 | 474 | else: |
|
315 | 475 | address = 'ipc:///tmp/%s' % server |
|
316 | 476 | |
|
317 | 477 | if 'tcp://' in plot_server: |
|
318 | 478 | plot_address = plot_server |
|
319 | 479 | else: |
|
320 | 480 | plot_address = 'ipc:///tmp/%s' % plot_server |
|
321 | 481 | |
|
322 | 482 | self.address = address |
|
323 | 483 | self.plot_address = plot_address |
|
324 | 484 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] |
|
325 | 485 | self.realtime = kwargs.get('realtime', False) |
|
326 | 486 | self.throttle_value = kwargs.get('throttle', 5) |
|
327 | 487 | self.sendData = self.initThrottle(self.throttle_value) |
|
488 | self.dates = [] | |
|
328 | 489 | self.setup() |
|
329 | 490 | |
|
330 | 491 | def setup(self): |
|
331 | 492 | |
|
332 | self.data = {} | |
|
333 | self.data['times'] = [] | |
|
334 | for plottype in self.plottypes: | |
|
335 | self.data[plottype] = {} | |
|
336 | self.data['noise'] = {} | |
|
337 | self.data['throttle'] = self.throttle_value | |
|
338 | self.data['ENDED'] = False | |
|
339 | self.isConfig = True | |
|
340 | self.data_web = {} | |
|
493 | self.data = Data(self.plottypes, self.throttle_value) | |
|
494 | self.isConfig = True | |
|
341 | 495 | |
|
342 | 496 | def event_monitor(self, monitor): |
|
343 | 497 | |
|
344 | 498 | events = {} |
|
345 | 499 | |
|
346 | 500 | for name in dir(zmq): |
|
347 | 501 | if name.startswith('EVENT_'): |
|
348 | 502 | value = getattr(zmq, name) |
|
349 | 503 | events[value] = name |
|
350 | 504 | |
|
351 | 505 | while monitor.poll(): |
|
352 | 506 | evt = recv_monitor_message(monitor) |
|
353 | 507 | if evt['event'] == 32: |
|
354 | 508 | self.connections += 1 |
|
355 | 509 | if evt['event'] == 512: |
|
356 | 510 | pass |
|
357 | if self.connections == 0 and self.started is True: | |
|
358 | self.ended = True | |
|
359 | 511 | |
|
360 | 512 | evt.update({'description': events[evt['event']]}) |
|
361 | 513 | |
|
362 | 514 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
363 | 515 | break |
|
364 | 516 | monitor.close() |
|
365 |
print( |
|
|
517 | print('event monitor thread done!') | |
|
366 | 518 | |
|
367 | 519 | def initThrottle(self, throttle_value): |
|
368 | 520 | |
|
369 | 521 | @throttle(seconds=throttle_value) |
|
370 | 522 | def sendDataThrottled(fn_sender, data): |
|
371 | 523 | fn_sender(data) |
|
372 | 524 | |
|
373 | 525 | return sendDataThrottled |
|
374 | 526 | |
|
375 | ||
|
376 | 527 | def send(self, data): |
|
377 | # print '[sending] data=%s size=%s' % (data.keys(), len(data['times'])) | |
|
528 | log.success('Sending {}'.format(data), self.name) | |
|
378 | 529 | self.sender.send_pyobj(data) |
|
379 | 530 | |
|
380 | ||
|
381 | def update(self): | |
|
382 | t = self.dataOut.utctime | |
|
383 | ||
|
384 | if t in self.data['times']: | |
|
385 | return | |
|
386 | ||
|
387 | self.data['times'].append(t) | |
|
388 | self.data['dataOut'] = self.dataOut | |
|
389 | ||
|
390 | for plottype in self.plottypes: | |
|
391 | if plottype == 'spc': | |
|
392 | z = self.dataOut.data_spc/self.dataOut.normFactor | |
|
393 | self.data[plottype] = 10*numpy.log10(z) | |
|
394 | self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor) | |
|
395 | if plottype == 'cspc': | |
|
396 | jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc) | |
|
397 | self.data['cspc_coh'] = numpy.abs(jcoherence) | |
|
398 | self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi | |
|
399 | if plottype == 'rti': | |
|
400 | self.data[plottype][t] = self.dataOut.getPower() | |
|
401 | if plottype == 'snr': | |
|
402 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR) | |
|
403 | if plottype == 'dop': | |
|
404 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP) | |
|
405 | if plottype == 'mean': | |
|
406 | self.data[plottype][t] = self.dataOut.data_MEAN | |
|
407 | if plottype == 'std': | |
|
408 | self.data[plottype][t] = self.dataOut.data_STD | |
|
409 | if plottype == 'coh': | |
|
410 | self.data[plottype][t] = self.dataOut.getCoherence() | |
|
411 | if plottype == 'phase': | |
|
412 | self.data[plottype][t] = self.dataOut.getCoherence(phase=True) | |
|
413 | if plottype == 'output': | |
|
414 | self.data[plottype][t] = self.dataOut.data_output | |
|
415 | if plottype == 'param': | |
|
416 | self.data[plottype][t] = self.dataOut.data_param | |
|
417 | if self.realtime: | |
|
418 | self.data_web['timestamp'] = t | |
|
419 | if plottype == 'spc': | |
|
420 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist()) | |
|
421 | elif plottype == 'cspc': | |
|
422 | self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist()) | |
|
423 | self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist()) | |
|
424 | elif plottype == 'noise': | |
|
425 | self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist()) | |
|
426 | else: | |
|
427 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) | |
|
428 | self.data_web['interval'] = self.dataOut.getTimeInterval() | |
|
429 | self.data_web['type'] = plottype | |
|
430 | ||
|
431 | 531 | def run(self): |
|
432 | 532 | |
|
433 | print '[Starting] {} from {}'.format(self.name, self.address) | |
|
533 | log.success( | |
|
534 | 'Starting from {}'.format(self.address), | |
|
535 | self.name | |
|
536 | ) | |
|
434 | 537 | |
|
435 | 538 | self.context = zmq.Context() |
|
436 | 539 | self.receiver = self.context.socket(zmq.PULL) |
|
437 | 540 | self.receiver.bind(self.address) |
|
438 | 541 | monitor = self.receiver.get_monitor_socket() |
|
439 | 542 | self.sender = self.context.socket(zmq.PUB) |
|
440 | 543 | if self.realtime: |
|
441 | 544 | self.sender_web = self.context.socket(zmq.PUB) |
|
442 | 545 | self.sender_web.connect(self.plot_address) |
|
443 | 546 | time.sleep(1) |
|
444 | 547 | |
|
445 | 548 | if 'server' in self.kwargs: |
|
446 | 549 | self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server'])) |
|
447 | 550 | else: |
|
448 | 551 | self.sender.bind("ipc:///tmp/zmq.plots") |
|
449 | 552 | |
|
450 |
time.sleep( |
|
|
553 | time.sleep(2) | |
|
451 | 554 | |
|
452 | 555 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
453 | 556 | t.start() |
|
454 | 557 | |
|
455 | 558 | while True: |
|
456 |
|
|
|
457 | # print '[Receiving] {} - {}'.format(self.dataOut.type, | |
|
458 | # self.dataOut.datatime.ctime()) | |
|
459 | ||
|
460 |
self. |
|
|
559 | dataOut = self.receiver.recv_pyobj() | |
|
560 | dt = datetime.datetime.fromtimestamp(dataOut.utctime).date() | |
|
561 | sended = False | |
|
562 | if dt not in self.dates: | |
|
563 | if self.data: | |
|
564 | self.data.ended = True | |
|
565 | self.send(self.data) | |
|
566 | sended = True | |
|
567 | self.data.setup() | |
|
568 | self.dates.append(dt) | |
|
461 | 569 | |
|
462 |
|
|
|
463 | self.data['STARTED'] = True | |
|
570 | self.data.update(dataOut) | |
|
464 | 571 | |
|
465 |
if |
|
|
466 | self.send(self.data) | |
|
572 | if dataOut.finished is True: | |
|
467 | 573 | self.connections -= 1 |
|
468 |
if self.connections == 0 and self. |
|
|
469 | self.ended = True | |
|
470 | self.data['ENDED'] = True | |
|
574 | if self.connections == 0 and dt in self.dates: | |
|
575 | self.data.ended = True | |
|
471 | 576 | self.send(self.data) |
|
472 | self.setup() | |
|
473 | self.started = False | |
|
577 | self.data.setup() | |
|
474 | 578 | else: |
|
475 | 579 | if self.realtime: |
|
476 | 580 | self.send(self.data) |
|
477 |
self.sender_web.send_string( |
|
|
581 | # self.sender_web.send_string(self.data.jsonify()) | |
|
478 | 582 | else: |
|
479 |
|
|
|
480 | self.started = True | |
|
583 | if not sended: | |
|
584 | self.sendData(self.send, self.data) | |
|
481 | 585 | |
|
482 | self.data['STARTED'] = False | |
|
483 | 586 | return |
|
484 | 587 | |
|
485 | 588 | def sendToWeb(self): |
|
486 | 589 | |
|
487 | 590 | if not self.isWebConfig: |
|
488 | 591 | context = zmq.Context() |
|
489 | 592 | sender_web_config = context.socket(zmq.PUB) |
|
490 | 593 | if 'tcp://' in self.plot_address: |
|
491 | 594 | dum, address, port = self.plot_address.split(':') |
|
492 | 595 | conf_address = '{}:{}:{}'.format(dum, address, int(port)+1) |
|
493 | 596 | else: |
|
494 | 597 | conf_address = self.plot_address + '.config' |
|
495 | 598 | sender_web_config.bind(conf_address) |
|
496 | 599 | time.sleep(1) |
|
497 | 600 | for kwargs in self.operationKwargs.values(): |
|
498 | 601 | if 'plot' in kwargs: |
|
499 |
|
|
|
602 | log.success('[Sending] Config data to web for {}'.format(kwargs['code'].upper())) | |
|
500 | 603 | sender_web_config.send_string(json.dumps(kwargs)) |
|
501 |
self.isWebConfig = True |
|
|
604 | self.isWebConfig = True No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now