@@ -700,7 +700,7 class Spectra(JROData): | |||||
700 | for pair in pairsList: |
|
700 | for pair in pairsList: | |
701 | if pair not in self.pairsList: |
|
701 | if pair not in self.pairsList: | |
702 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
702 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) | |
703 | pairsIndexList.append(self.pairsList.index(pair)) |
|
703 | pairsIndexList.append(self.pairsList.index(pair)) | |
704 | for i in range(len(pairsIndexList)): |
|
704 | for i in range(len(pairsIndexList)): | |
705 | pair = self.pairsList[pairsIndexList[i]] |
|
705 | pair = self.pairsList[pairsIndexList[i]] | |
706 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
706 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
This diff has been collapsed as it changes many lines, (1208 lines changed) Show them Hide them | |||||
@@ -1,32 +1,33 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import zmq |
|
|||
4 | import time |
|
3 | import time | |
5 |
import |
|
4 | import glob | |
6 | import datetime |
|
5 | import datetime | |
7 | import numpy as np |
|
6 | from multiprocessing import Process | |
|
7 | ||||
|
8 | import zmq | |||
|
9 | import numpy | |||
8 | import matplotlib |
|
10 | import matplotlib | |
9 | import glob |
|
|||
10 | matplotlib.use('TkAgg') |
|
|||
11 | import matplotlib.pyplot as plt |
|
11 | import matplotlib.pyplot as plt | |
12 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
12 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
13 | from matplotlib.ticker import FuncFormatter, LinearLocator |
|
13 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
14 | from multiprocessing import Process |
|
|||
15 |
|
14 | |||
16 | from schainpy.model.proc.jroproc_base import Operation |
|
15 | from schainpy.model.proc.jroproc_base import Operation | |
17 |
|
16 | from schainpy.utils import log | ||
18 | plt.ion() |
|
|||
19 |
|
17 | |||
20 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) |
|
18 | func = lambda x, pos: ('%s') %(datetime.datetime.fromtimestamp(x).strftime('%H:%M')) | |
21 | fromtimestamp = lambda x, mintime : (datetime.datetime.utcfromtimestamp(mintime).replace(hour=(x + 5), minute=0) - d1970).total_seconds() |
|
|||
22 |
|
19 | |||
|
20 | d1970 = datetime.datetime(1970, 1, 1) | |||
23 |
|
21 | |||
24 | d1970 = datetime.datetime(1970,1,1) |
|
|||
25 |
|
22 | |||
26 | class PlotData(Operation, Process): |
|
23 | class PlotData(Operation, Process): | |
|
24 | ''' | |||
|
25 | Base class for Schain plotting operations | |||
|
26 | ''' | |||
27 |
|
27 | |||
28 | CODE = 'Figure' |
|
28 | CODE = 'Figure' | |
29 | colormap = 'jro' |
|
29 | colormap = 'jro' | |
|
30 | bgcolor = 'white' | |||
30 | CONFLATE = False |
|
31 | CONFLATE = False | |
31 | __MAXNUMX = 80 |
|
32 | __MAXNUMX = 80 | |
32 | __missing = 1E30 |
|
33 | __missing = 1E30 | |
@@ -37,54 +38,143 class PlotData(Operation, Process): | |||||
37 | Process.__init__(self) |
|
38 | Process.__init__(self) | |
38 | self.kwargs['code'] = self.CODE |
|
39 | self.kwargs['code'] = self.CODE | |
39 | self.mp = False |
|
40 | self.mp = False | |
40 |
self.data |
|
41 | self.data = None | |
41 | self.isConfig = False |
|
42 | self.isConfig = False | |
42 |
self.figure = |
|
43 | self.figures = [] | |
43 | self.axes = [] |
|
44 | self.axes = [] | |
|
45 | self.cb_axes = [] | |||
44 | self.localtime = kwargs.pop('localtime', True) |
|
46 | self.localtime = kwargs.pop('localtime', True) | |
45 | self.show = kwargs.get('show', True) |
|
47 | self.show = kwargs.get('show', True) | |
46 | self.save = kwargs.get('save', False) |
|
48 | self.save = kwargs.get('save', False) | |
47 | self.colormap = kwargs.get('colormap', self.colormap) |
|
49 | self.colormap = kwargs.get('colormap', self.colormap) | |
48 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
50 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
49 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
51 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
50 |
self. |
|
52 | self.colormaps = kwargs.get('colormaps', None) | |
51 |
self. |
|
53 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
|
54 | self.showprofile = kwargs.get('showprofile', False) | |||
|
55 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |||
|
56 | self.cb_label = kwargs.get('cb_label', None) | |||
|
57 | self.cb_labels = kwargs.get('cb_labels', None) | |||
52 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
58 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
53 | self.zmin = kwargs.get('zmin', None) |
|
59 | self.zmin = kwargs.get('zmin', None) | |
54 | self.zmax = kwargs.get('zmax', None) |
|
60 | self.zmax = kwargs.get('zmax', None) | |
|
61 | self.zlimits = kwargs.get('zlimits', None) | |||
55 | self.xmin = kwargs.get('xmin', None) |
|
62 | self.xmin = kwargs.get('xmin', None) | |
|
63 | if self.xmin is not None: | |||
|
64 | self.xmin += 5 | |||
56 | self.xmax = kwargs.get('xmax', None) |
|
65 | self.xmax = kwargs.get('xmax', None) | |
57 | self.xrange = kwargs.get('xrange', 24) |
|
66 | self.xrange = kwargs.get('xrange', 24) | |
58 | self.ymin = kwargs.get('ymin', None) |
|
67 | self.ymin = kwargs.get('ymin', None) | |
59 | self.ymax = kwargs.get('ymax', None) |
|
68 | self.ymax = kwargs.get('ymax', None) | |
60 |
self. |
|
69 | self.xlabel = kwargs.get('xlabel', None) | |
61 | self.throttle_value = 5 |
|
70 | self.__MAXNUMY = kwargs.get('decimation', 100) | |
62 | self.times = [] |
|
71 | self.showSNR = kwargs.get('showSNR', False) | |
63 | #self.interactive = self.kwargs['parent'] |
|
72 | self.oneFigure = kwargs.get('oneFigure', True) | |
|
73 | self.width = kwargs.get('width', None) | |||
|
74 | self.height = kwargs.get('height', None) | |||
|
75 | self.colorbar = kwargs.get('colorbar', True) | |||
|
76 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |||
|
77 | self.titles = ['' for __ in range(16)] | |||
|
78 | ||||
|
79 | def __setup(self): | |||
|
80 | ''' | |||
|
81 | Common setup for all figures, here figures and axes are created | |||
|
82 | ''' | |||
|
83 | ||||
|
84 | self.setup() | |||
|
85 | ||||
|
86 | if self.width is None: | |||
|
87 | self.width = 8 | |||
64 |
|
88 | |||
|
89 | self.figures = [] | |||
|
90 | self.axes = [] | |||
|
91 | self.cb_axes = [] | |||
|
92 | self.pf_axes = [] | |||
|
93 | self.cmaps = [] | |||
|
94 | ||||
|
95 | size = '15%' if self.ncols==1 else '30%' | |||
|
96 | pad = '4%' if self.ncols==1 else '8%' | |||
|
97 | ||||
|
98 | if self.oneFigure: | |||
|
99 | if self.height is None: | |||
|
100 | self.height = 1.4*self.nrows + 1 | |||
|
101 | fig = plt.figure(figsize=(self.width, self.height), | |||
|
102 | edgecolor='k', | |||
|
103 | facecolor='w') | |||
|
104 | self.figures.append(fig) | |||
|
105 | for n in range(self.nplots): | |||
|
106 | ax = fig.add_subplot(self.nrows, self.ncols, n+1) | |||
|
107 | ax.tick_params(labelsize=8) | |||
|
108 | ax.firsttime = True | |||
|
109 | self.axes.append(ax) | |||
|
110 | if self.showprofile: | |||
|
111 | cax = self.__add_axes(ax, size=size, pad=pad) | |||
|
112 | cax.tick_params(labelsize=8) | |||
|
113 | self.pf_axes.append(cax) | |||
|
114 | else: | |||
|
115 | if self.height is None: | |||
|
116 | self.height = 3 | |||
|
117 | for n in range(self.nplots): | |||
|
118 | fig = plt.figure(figsize=(self.width, self.height), | |||
|
119 | edgecolor='k', | |||
|
120 | facecolor='w') | |||
|
121 | ax = fig.add_subplot(1, 1, 1) | |||
|
122 | ax.tick_params(labelsize=8) | |||
|
123 | ax.firsttime = True | |||
|
124 | self.figures.append(fig) | |||
|
125 | self.axes.append(ax) | |||
|
126 | if self.showprofile: | |||
|
127 | cax = self.__add_axes(ax, size=size, pad=pad) | |||
|
128 | cax.tick_params(labelsize=8) | |||
|
129 | self.pf_axes.append(cax) | |||
|
130 | ||||
|
131 | for n in range(self.nrows): | |||
|
132 | if self.colormaps is not None: | |||
|
133 | cmap = plt.get_cmap(self.colormaps[n]) | |||
|
134 | else: | |||
|
135 | cmap = plt.get_cmap(self.colormap) | |||
|
136 | cmap.set_bad(self.bgcolor, 1.) | |||
|
137 | self.cmaps.append(cmap) | |||
|
138 | ||||
|
139 | def __add_axes(self, ax, size='30%', pad='8%'): | |||
65 | ''' |
|
140 | ''' | |
66 | this new parameter is created to plot data from varius channels at different figures |
|
141 | Add new axes to the given figure | |
67 | 1. crear una lista de figuras donde se puedan plotear las figuras, |
|
|||
68 | 2. dar las opciones de configuracion a cada figura, estas opciones son iguales para ambas figuras |
|
|||
69 | 3. probar? |
|
|||
70 | ''' |
|
142 | ''' | |
71 | self.ind_plt_ch = kwargs.get('ind_plt_ch', False) |
|
143 | divider = make_axes_locatable(ax) | |
72 | self.figurelist = None |
|
144 | nax = divider.new_horizontal(size=size, pad=pad) | |
|
145 | ax.figure.add_axes(nax) | |||
|
146 | return nax | |||
73 |
|
147 | |||
74 |
|
148 | |||
75 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
149 | def setup(self): | |
|
150 | ''' | |||
|
151 | This method should be implemented in the child class, the following | |||
|
152 | attributes should be set: | |||
|
153 | ||||
|
154 | self.nrows: number of rows | |||
|
155 | self.ncols: number of cols | |||
|
156 | self.nplots: number of plots (channels or pairs) | |||
|
157 | self.ylabel: label for Y axes | |||
|
158 | self.titles: list of axes title | |||
|
159 | ||||
|
160 | ''' | |||
|
161 | raise(NotImplementedError, 'Implement this method in child class') | |||
76 |
|
162 | |||
|
163 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |||
|
164 | ''' | |||
|
165 | Create a masked array for missing data | |||
|
166 | ''' | |||
77 | if x_buffer.shape[0] < 2: |
|
167 | if x_buffer.shape[0] < 2: | |
78 | return x_buffer, y_buffer, z_buffer |
|
168 | return x_buffer, y_buffer, z_buffer | |
79 |
|
169 | |||
80 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
170 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
81 | x_median = np.median(deltas) |
|
171 | x_median = numpy.median(deltas) | |
82 |
|
172 | |||
83 | index = np.where(deltas > 5*x_median) |
|
173 | index = numpy.where(deltas > 5*x_median) | |
84 |
|
174 | |||
85 | if len(index[0]) != 0: |
|
175 | if len(index[0]) != 0: | |
86 | z_buffer[::, index[0], ::] = self.__missing |
|
176 | z_buffer[::, index[0], ::] = self.__missing | |
87 | z_buffer = np.ma.masked_inside(z_buffer, |
|
177 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
88 | 0.99*self.__missing, |
|
178 | 0.99*self.__missing, | |
89 | 1.01*self.__missing) |
|
179 | 1.01*self.__missing) | |
90 |
|
180 | |||
@@ -99,110 +189,117 class PlotData(Operation, Process): | |||||
99 | x = self.x |
|
189 | x = self.x | |
100 | y = self.y[::dy] |
|
190 | y = self.y[::dy] | |
101 | z = self.z[::, ::, ::dy] |
|
191 | z = self.z[::, ::, ::dy] | |
102 |
|
192 | |||
103 | return x, y, z |
|
193 | return x, y, z | |
104 |
|
194 | |||
105 | ''' |
|
195 | def format(self): | |
106 | JM: |
|
196 | ''' | |
107 | elimana las otras imagenes generadas debido a que lso workers no llegan en orden y le pueden |
|
197 | Set min and max values, labels, ticks and titles | |
108 | poner otro tiempo a la figura q no necesariamente es el ultimo. |
|
198 | ''' | |
109 | Solo se realiza cuando termina la imagen. |
|
|||
110 | Problemas: |
|
|||
111 |
|
199 | |||
112 | File "/home/ci-81/workspace/schainv2.3/schainpy/model/graphics/jroplot_data.py", line 145, in __plot |
|
200 | if self.xmin is None: | |
113 | for n, eachfigure in enumerate(self.figurelist): |
|
201 | xmin = self.min_time | |
114 | TypeError: 'NoneType' object is not iterable |
|
202 | else: | |
|
203 | if self.xaxis is 'time': | |||
|
204 | dt = datetime.datetime.fromtimestamp(self.min_time) | |||
|
205 | xmin = (datetime.datetime.combine(dt.date(), | |||
|
206 | datetime.time(int(self.xmin), 0, 0))-d1970).total_seconds() | |||
|
207 | else: | |||
|
208 | xmin = self.xmin | |||
115 |
|
209 | |||
116 | ''' |
|
210 | if self.xmax is None: | |
117 | def deleteanotherfiles(self): |
|
211 | xmax = xmin+self.xrange*60*60 | |
118 | figurenames=[] |
|
212 | else: | |
119 | if self.figurelist != None: |
|
213 | if self.xaxis is 'time': | |
120 | for n, eachfigure in enumerate(self.figurelist): |
|
214 | dt = datetime.datetime.fromtimestamp(self.min_time) | |
121 | #add specific name for each channel in channelList |
|
215 | xmax = (datetime.datetime.combine(dt.date(), | |
122 | ghostfigname = os.path.join(self.save, '{}_{}_{}'.format(self.titles[n].replace(' ',''),self.CODE, |
|
216 | datetime.time(int(self.xmax), 0, 0))-d1970).total_seconds() | |
123 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d'))) |
|
217 | else: | |
124 | figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE, |
|
218 | xmax = self.xmax | |
125 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
219 | ||
126 |
|
220 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | ||
127 | for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures |
|
221 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
128 | if ghostfigure != figname: |
|
222 | ||
129 | os.remove(ghostfigure) |
|
223 | ystep = 200 if ymax>= 800 else 100 if ymax>=400 else 50 if ymax>=200 else 20 | |
130 | print 'Removing GhostFigures:' , figname |
|
224 | ||
131 | else : |
|
225 | for n, ax in enumerate(self.axes): | |
132 | '''Erasing ghost images for just on******************''' |
|
226 | if ax.firsttime: | |
133 | ghostfigname = os.path.join(self.save, '{}_{}'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d'))) |
|
227 | ax.set_facecolor(self.bgcolor) | |
134 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE,datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
228 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |
135 | for ghostfigure in glob.glob(ghostfigname+'*'): #ghostfigure will adopt all posible names of figures |
|
229 | if self.xaxis is 'time': | |
136 | if ghostfigure != figname: |
|
230 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
137 | os.remove(ghostfigure) |
|
231 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
138 | print 'Removing GhostFigures:' , figname |
|
232 | if self.xlabel is not None: | |
|
233 | ax.set_xlabel(self.xlabel) | |||
|
234 | ax.set_ylabel(self.ylabel) | |||
|
235 | ax.firsttime = False | |||
|
236 | if self.showprofile: | |||
|
237 | self.pf_axes[n].set_ylim(ymin, ymax) | |||
|
238 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |||
|
239 | self.pf_axes[n].set_xlabel('dB') | |||
|
240 | self.pf_axes[n].grid(b=True, axis='x') | |||
|
241 | [tick.set_visible(False) for tick in self.pf_axes[n].get_yticklabels()] | |||
|
242 | if self.colorbar: | |||
|
243 | cb = plt.colorbar(ax.plt, ax=ax, pad=0.02) | |||
|
244 | cb.ax.tick_params(labelsize=8) | |||
|
245 | if self.cb_label: | |||
|
246 | cb.set_label(self.cb_label, size=8) | |||
|
247 | elif self.cb_labels: | |||
|
248 | cb.set_label(self.cb_labels[n], size=8) | |||
|
249 | ||||
|
250 | ax.set_title('{} - {} UTC'.format( | |||
|
251 | self.titles[n], | |||
|
252 | datetime.datetime.fromtimestamp(self.max_time).strftime('%H:%M:%S')), | |||
|
253 | size=8) | |||
|
254 | ax.set_xlim(xmin, xmax) | |||
|
255 | ax.set_ylim(ymin, ymax) | |||
|
256 | ||||
139 |
|
257 | |||
140 | def __plot(self): |
|
258 | def __plot(self): | |
141 |
|
259 | ''' | ||
142 | print 'plotting...{}'.format(self.CODE) |
|
260 | ''' | |
143 | if self.ind_plt_ch is False : #standard |
|
261 | log.success('Plotting', self.name) | |
|
262 | ||||
|
263 | self.plot() | |||
|
264 | self.format() | |||
|
265 | ||||
|
266 | for n, fig in enumerate(self.figures): | |||
|
267 | if self.nrows == 0 or self.nplots == 0: | |||
|
268 | log.warning('No data', self.name) | |||
|
269 | continue | |||
144 | if self.show: |
|
270 | if self.show: | |
145 |
|
|
271 | fig.show() | |
146 |
|
|
272 | ||
147 |
|
|
273 | fig.tight_layout() | |
148 |
|
|
274 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
149 |
|
|
275 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) | |
150 | else : |
|
276 | # fig.canvas.draw() | |
151 | print 'len(self.figurelist): ',len(self.figurelist) |
|
277 | ||
152 | for n, eachfigure in enumerate(self.figurelist): |
|
278 | if self.save and self.data.ended: | |
153 |
|
|
279 | channels = range(self.nrows) | |
154 |
|
|
280 | if self.oneFigure: | |
155 |
|
281 | label = '' | ||
156 |
|
|
282 | else: | |
157 | eachfigure.tight_layout() # ajuste de cada subplot |
|
283 | label = '_{}'.format(channels[n]) | |
158 | eachfigure.canvas.manager.set_window_title('{} {} - {}'.format(self.title[n], self.CODE.upper(), |
|
284 | figname = os.path.join( | |
159 | datetime.datetime.fromtimestamp(self.max_time).strftime('%Y/%m/%d'))) |
|
285 | self.save, | |
160 |
|
286 | '{}{}_{}.png'.format( | ||
161 | # if self.save: |
|
287 | self.CODE, | |
162 | # if self.ind_plt_ch is False : #standard |
|
288 | label, | |
163 | # figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, |
|
289 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S') | |
164 | # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
290 | ) | |
165 | # print 'Saving figure: {}'.format(figname) |
|
291 | ) | |
166 | # self.figure.savefig(figname) |
|
|||
167 | # else : |
|
|||
168 | # for n, eachfigure in enumerate(self.figurelist): |
|
|||
169 | # #add specific name for each channel in channelList |
|
|||
170 | # figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n],self.CODE, |
|
|||
171 | # datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
|||
172 | # |
|
|||
173 | # print 'Saving figure: {}'.format(figname) |
|
|||
174 | # eachfigure.savefig(figname) |
|
|||
175 |
|
||||
176 | if self.ind_plt_ch is False : |
|
|||
177 | self.figure.canvas.draw() |
|
|||
178 | else : |
|
|||
179 | for eachfigure in self.figurelist: |
|
|||
180 | eachfigure.canvas.draw() |
|
|||
181 |
|
||||
182 | if self.save: |
|
|||
183 | if self.ind_plt_ch is False : #standard |
|
|||
184 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, |
|
|||
185 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
|||
186 | print 'Saving figure: {}'.format(figname) |
|
292 | print 'Saving figure: {}'.format(figname) | |
187 |
|
|
293 | fig.savefig(figname) | |
188 | else : |
|
|||
189 | for n, eachfigure in enumerate(self.figurelist): |
|
|||
190 | #add specific name for each channel in channelList |
|
|||
191 | figname = os.path.join(self.save, '{}_{}_{}.png'.format(self.titles[n].replace(' ',''),self.CODE, |
|
|||
192 | datetime.datetime.fromtimestamp(self.saveTime).strftime('%y%m%d_%H%M%S'))) |
|
|||
193 |
|
||||
194 | print 'Saving figure: {}'.format(figname) |
|
|||
195 | eachfigure.savefig(figname) |
|
|||
196 |
|
||||
197 |
|
294 | |||
198 | def plot(self): |
|
295 | def plot(self): | |
199 |
|
296 | ''' | ||
200 | print 'plotting...{}'.format(self.CODE.upper()) |
|
297 | ''' | |
201 | return |
|
298 | raise(NotImplementedError, 'Implement this method in child class') | |
202 |
|
299 | |||
203 | def run(self): |
|
300 | def run(self): | |
204 |
|
301 | |||
205 |
|
|
302 | log.success('Starting', self.name) | |
206 |
|
303 | |||
207 | context = zmq.Context() |
|
304 | context = zmq.Context() | |
208 | receiver = context.socket(zmq.SUB) |
|
305 | receiver = context.socket(zmq.SUB) | |
@@ -212,152 +309,104 class PlotData(Operation, Process): | |||||
212 | if 'server' in self.kwargs['parent']: |
|
309 | if 'server' in self.kwargs['parent']: | |
213 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
310 | receiver.connect('ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) | |
214 | else: |
|
311 | else: | |
215 | receiver.connect("ipc:///tmp/zmq.plots") |
|
312 | receiver.connect("ipc:///tmp/zmq.plots") | |
216 |
|
||||
217 | seconds_passed = 0 |
|
|||
218 |
|
313 | |||
219 | while True: |
|
314 | while True: | |
220 | try: |
|
315 | try: | |
221 |
self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
316 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
222 | self.started = self.data['STARTED'] |
|
317 | ||
223 |
self. |
|
318 | self.min_time = self.data.times[0] | |
224 |
|
319 | self.max_time = self.data.times[-1] | ||
225 | if (len(self.times) < len(self.data['times']) and not self.started and self.data['ENDED']): |
|
|||
226 | continue |
|
|||
227 |
|
||||
228 | self.times = self.data['times'] |
|
|||
229 | self.times.sort() |
|
|||
230 | self.throttle_value = self.data['throttle'] |
|
|||
231 | self.min_time = self.times[0] |
|
|||
232 | self.max_time = self.times[-1] |
|
|||
233 |
|
320 | |||
234 | if self.isConfig is False: |
|
321 | if self.isConfig is False: | |
235 |
|
|
322 | self.__setup() | |
236 | self.setup() |
|
|||
237 | self.isConfig = True |
|
323 | self.isConfig = True | |
238 | self.__plot() |
|
324 | ||
239 |
|
325 | self.__plot() | ||
240 | if self.data['ENDED'] is True: |
|
|||
241 | print '********GRAPHIC ENDED********' |
|
|||
242 | self.ended = True |
|
|||
243 | self.isConfig = False |
|
|||
244 | self.__plot() |
|
|||
245 | self.deleteanotherfiles() #CLPDG |
|
|||
246 | elif seconds_passed >= self.data['throttle']: |
|
|||
247 | print 'passed', seconds_passed |
|
|||
248 | self.__plot() |
|
|||
249 | seconds_passed = 0 |
|
|||
250 |
|
326 | |||
251 | except zmq.Again as e: |
|
327 | except zmq.Again as e: | |
252 |
|
|
328 | log.log('Waiting for data...') | |
253 |
|
|
329 | if self.data: | |
254 | seconds_passed += 2 |
|
330 | plt.pause(self.data.throttle) | |
|
331 | else: | |||
|
332 | time.sleep(2) | |||
255 |
|
333 | |||
256 | def close(self): |
|
334 | def close(self): | |
257 |
if self.data |
|
335 | if self.data: | |
258 | self.__plot() |
|
336 | self.__plot() | |
259 |
|
337 | |||
260 |
|
338 | |||
261 | class PlotSpectraData(PlotData): |
|
339 | class PlotSpectraData(PlotData): | |
|
340 | ''' | |||
|
341 | Plot for Spectra data | |||
|
342 | ''' | |||
262 |
|
343 | |||
263 | CODE = 'spc' |
|
344 | CODE = 'spc' | |
264 | colormap = 'jro' |
|
345 | colormap = 'jro' | |
265 | CONFLATE = False |
|
|||
266 |
|
346 | |||
267 | def setup(self): |
|
347 | def setup(self): | |
268 |
|
348 | self.nplots = len(self.data.channels) | ||
269 | ncolspan = 1 |
|
349 | self.ncols = int(numpy.sqrt(self.nplots)+ 0.9) | |
270 | colspan = 1 |
|
350 | self.nrows = int((1.0*self.nplots/self.ncols) + 0.9) | |
271 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) |
|
351 | self.width = 3.4*self.ncols | |
272 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) |
|
352 | self.height = 3*self.nrows | |
273 | self.width = 3.6*self.ncols |
|
353 | self.cb_label = 'dB' | |
274 | self.height = 3.2*self.nrows |
|
354 | if self.showprofile: | |
275 | if self.showprofile: |
|
355 | self.width += 0.8*self.ncols | |
276 | ncolspan = 3 |
|
|||
277 | colspan = 2 |
|
|||
278 | self.width += 1.2*self.ncols |
|
|||
279 |
|
356 | |||
280 | self.ylabel = 'Range [Km]' |
|
357 | self.ylabel = 'Range [Km]' | |
281 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
|||
282 |
|
||||
283 | if self.figure is None: |
|
|||
284 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
285 | edgecolor='k', |
|
|||
286 | facecolor='w') |
|
|||
287 | else: |
|
|||
288 | self.figure.clf() |
|
|||
289 |
|
||||
290 | n = 0 |
|
|||
291 | for y in range(self.nrows): |
|
|||
292 | for x in range(self.ncols): |
|
|||
293 | if n >= self.dataOut.nChannels: |
|
|||
294 | break |
|
|||
295 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) |
|
|||
296 | if self.showprofile: |
|
|||
297 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) |
|
|||
298 |
|
||||
299 | ax.firsttime = True |
|
|||
300 | self.axes.append(ax) |
|
|||
301 | n += 1 |
|
|||
302 |
|
358 | |||
303 | def plot(self): |
|
359 | def plot(self): | |
304 |
|
||||
305 | if self.xaxis == "frequency": |
|
360 | if self.xaxis == "frequency": | |
306 |
x = self.data |
|
361 | x = self.data.xrange[0] | |
307 | xlabel = "Frequency (kHz)" |
|
362 | self.xlabel = "Frequency (kHz)" | |
308 | elif self.xaxis == "time": |
|
363 | elif self.xaxis == "time": | |
309 |
x = self.data |
|
364 | x = self.data.xrange[1] | |
310 | xlabel = "Time (ms)" |
|
365 | self.xlabel = "Time (ms)" | |
311 | else: |
|
366 | else: | |
312 |
x = self.data |
|
367 | x = self.data.xrange[2] | |
313 | xlabel = "Velocity (m/s)" |
|
368 | self.xlabel = "Velocity (m/s)" | |
|
369 | ||||
|
370 | if self.CODE == 'spc_mean': | |||
|
371 | x = self.data.xrange[2] | |||
|
372 | self.xlabel = "Velocity (m/s)" | |||
314 |
|
373 | |||
315 | y = self.dataOut.getHeiRange() |
|
374 | self.titles = [] | |
316 | z = self.data[self.CODE] |
|
|||
317 |
|
375 | |||
|
376 | y = self.data.heights | |||
|
377 | self.y = y | |||
|
378 | z = self.data['spc'] | |||
|
379 | ||||
318 | for n, ax in enumerate(self.axes): |
|
380 | for n, ax in enumerate(self.axes): | |
|
381 | noise = self.data['noise'][n][-1] | |||
|
382 | if self.CODE == 'spc_mean': | |||
|
383 | mean = self.data['mean'][n][-1] | |||
319 | if ax.firsttime: |
|
384 | if ax.firsttime: | |
320 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
385 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
321 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
386 | self.xmin = self.xmin if self.xmin else -self.xmax | |
322 |
self. |
|
387 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
323 |
self. |
|
388 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
324 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
389 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
325 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
390 | vmin=self.zmin, | |
326 | ax.plot = ax.pcolormesh(x, y, z[n].T, |
|
391 | vmax=self.zmax, | |
327 |
|
|
392 | cmap=plt.get_cmap(self.colormap) | |
328 |
|
|
393 | ) | |
329 | cmap=plt.get_cmap(self.colormap) |
|
|||
330 | ) |
|
|||
331 | divider = make_axes_locatable(ax) |
|
|||
332 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
|||
333 | self.figure.add_axes(cax) |
|
|||
334 | plt.colorbar(ax.plot, cax) |
|
|||
335 |
|
||||
336 | ax.set_xlim(self.xmin, self.xmax) |
|
|||
337 | ax.set_ylim(self.ymin, self.ymax) |
|
|||
338 |
|
||||
339 | ax.set_ylabel(self.ylabel) |
|
|||
340 | ax.set_xlabel(xlabel) |
|
|||
341 |
|
||||
342 | ax.firsttime = False |
|
|||
343 |
|
394 | |||
344 | if self.showprofile: |
|
395 | if self.showprofile: | |
345 |
ax.pl |
|
396 | ax.plt_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], y)[0] | |
346 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
397 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
347 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
398 | color="k", linestyle="dashed", lw=1)[0] | |
348 | ax.ax_profile.set_xlabel('dB') |
|
399 | if self.CODE == 'spc_mean': | |
349 | ax.ax_profile.grid(b=True, axis='x') |
|
400 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
350 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
|||
351 | color="k", linestyle="dashed", lw=2)[0] |
|
|||
352 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
|||
353 | else: |
|
401 | else: | |
354 |
ax.pl |
|
402 | ax.plt.set_array(z[n].T.ravel()) | |
355 | if self.showprofile: |
|
403 | if self.showprofile: | |
356 |
ax.pl |
|
404 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
357 |
ax.pl |
|
405 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
|
406 | if self.CODE == 'spc_mean': | |||
|
407 | ax.plt_mean.set_data(mean, y) | |||
358 |
|
408 | |||
359 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
409 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
360 | size=8) |
|
|||
361 | self.saveTime = self.max_time |
|
410 | self.saveTime = self.max_time | |
362 |
|
411 | |||
363 |
|
412 | |||
@@ -367,545 +416,245 class PlotCrossSpectraData(PlotData): | |||||
367 | zmin_coh = None |
|
416 | zmin_coh = None | |
368 | zmax_coh = None |
|
417 | zmax_coh = None | |
369 | zmin_phase = None |
|
418 | zmin_phase = None | |
370 | zmax_phase = None |
|
419 | zmax_phase = None | |
371 | CONFLATE = False |
|
|||
372 |
|
420 | |||
373 | def setup(self): |
|
421 | def setup(self): | |
374 |
|
422 | |||
375 |
ncols |
|
423 | self.ncols = 4 | |
376 | colspan = 1 |
|
424 | self.nrows = len(self.data.pairs) | |
377 |
self.n |
|
425 | self.nplots = self.nrows*4 | |
378 |
self. |
|
426 | self.width = 3.4*self.ncols | |
379 |
self. |
|
427 | self.height = 3*self.nrows | |
380 | self.height = 3.2*self.nrows |
|
|||
381 |
|
||||
382 | self.ylabel = 'Range [Km]' |
|
428 | self.ylabel = 'Range [Km]' | |
383 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
429 | self.showprofile = False | |
384 |
|
||||
385 | if self.figure is None: |
|
|||
386 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
387 | edgecolor='k', |
|
|||
388 | facecolor='w') |
|
|||
389 | else: |
|
|||
390 | self.figure.clf() |
|
|||
391 |
|
||||
392 | for y in range(self.nrows): |
|
|||
393 | for x in range(self.ncols): |
|
|||
394 | ax = plt.subplot2grid((self.nrows, self.ncols), (y, x), 1, 1) |
|
|||
395 | ax.firsttime = True |
|
|||
396 | self.axes.append(ax) |
|
|||
397 |
|
430 | |||
398 | def plot(self): |
|
431 | def plot(self): | |
399 |
|
432 | |||
400 | if self.xaxis == "frequency": |
|
433 | if self.xaxis == "frequency": | |
401 |
x = self.data |
|
434 | x = self.data.xrange[0] | |
402 | xlabel = "Frequency (kHz)" |
|
435 | self.xlabel = "Frequency (kHz)" | |
403 | elif self.xaxis == "time": |
|
436 | elif self.xaxis == "time": | |
404 |
x = self.data |
|
437 | x = self.data.xrange[1] | |
405 | xlabel = "Time (ms)" |
|
438 | self.xlabel = "Time (ms)" | |
406 | else: |
|
439 | else: | |
407 |
x = self.data |
|
440 | x = self.data.xrange[2] | |
408 | xlabel = "Velocity (m/s)" |
|
441 | self.xlabel = "Velocity (m/s)" | |
|
442 | ||||
|
443 | self.titles = [] | |||
409 |
|
444 | |||
410 |
y = self.data |
|
445 | y = self.data.heights | |
411 | z_coh = self.data['cspc_coh'] |
|
446 | self.y = y | |
412 |
|
|
447 | spc = self.data['spc'] | |
|
448 | cspc = self.data['cspc'] | |||
413 |
|
449 | |||
414 | for n in range(self.nrows): |
|
450 | for n in range(self.nrows): | |
415 |
|
|
451 | noise = self.data['noise'][n][-1] | |
416 |
|
|
452 | pair = self.data.pairs[n] | |
|
453 | ax = self.axes[4*n] | |||
|
454 | ax3 = self.axes[4*n+3] | |||
417 | if ax.firsttime: |
|
455 | if ax.firsttime: | |
418 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
456 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
419 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
457 | self.xmin = self.xmin if self.xmin else -self.xmax | |
420 |
self. |
|
458 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | |
421 |
self. |
|
459 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
422 | self.zmin_coh = self.zmin_coh if self.zmin_coh else 0.0 |
|
460 | ax.plt = ax.pcolormesh(x, y, spc[pair[0]].T, | |
423 | self.zmax_coh = self.zmax_coh if self.zmax_coh else 1.0 |
|
461 | vmin=self.zmin, | |
424 | self.zmin_phase = self.zmin_phase if self.zmin_phase else -180 |
|
462 | vmax=self.zmax, | |
425 | self.zmax_phase = self.zmax_phase if self.zmax_phase else 180 |
|
463 | cmap=plt.get_cmap(self.colormap) | |
426 |
|
464 | ) | ||
427 | ax.plot = ax.pcolormesh(x, y, z_coh[n].T, |
|
|||
428 | vmin=self.zmin_coh, |
|
|||
429 | vmax=self.zmax_coh, |
|
|||
430 | cmap=plt.get_cmap(self.colormap_coh) |
|
|||
431 | ) |
|
|||
432 | divider = make_axes_locatable(ax) |
|
|||
433 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
|||
434 | self.figure.add_axes(cax) |
|
|||
435 | plt.colorbar(ax.plot, cax) |
|
|||
436 |
|
||||
437 | ax.set_xlim(self.xmin, self.xmax) |
|
|||
438 | ax.set_ylim(self.ymin, self.ymax) |
|
|||
439 |
|
||||
440 | ax.set_ylabel(self.ylabel) |
|
|||
441 | ax.set_xlabel(xlabel) |
|
|||
442 | ax.firsttime = False |
|
|||
443 |
|
||||
444 | ax1.plot = ax1.pcolormesh(x, y, z_phase[n].T, |
|
|||
445 | vmin=self.zmin_phase, |
|
|||
446 | vmax=self.zmax_phase, |
|
|||
447 | cmap=plt.get_cmap(self.colormap_phase) |
|
|||
448 | ) |
|
|||
449 | divider = make_axes_locatable(ax1) |
|
|||
450 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
|||
451 | self.figure.add_axes(cax) |
|
|||
452 | plt.colorbar(ax1.plot, cax) |
|
|||
453 |
|
||||
454 | ax1.set_xlim(self.xmin, self.xmax) |
|
|||
455 | ax1.set_ylim(self.ymin, self.ymax) |
|
|||
456 |
|
||||
457 | ax1.set_ylabel(self.ylabel) |
|
|||
458 | ax1.set_xlabel(xlabel) |
|
|||
459 | ax1.firsttime = False |
|
|||
460 | else: |
|
465 | else: | |
461 |
ax.pl |
|
466 | ax.plt.set_array(spc[pair[0]].T.ravel()) | |
462 | ax1.plot.set_array(z_phase[n].T.ravel()) |
|
467 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
463 |
|
||||
464 | ax.set_title('Coherence Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) |
|
|||
465 | ax1.set_title('Phase Ch{} * Ch{}'.format(self.dataOut.pairsList[n][0], self.dataOut.pairsList[n][1]), size=8) |
|
|||
466 | self.saveTime = self.max_time |
|
|||
467 |
|
||||
468 |
|
468 | |||
469 | class PlotSpectraMeanData(PlotSpectraData): |
|
469 | ax = self.axes[4*n+1] | |
470 |
|
470 | if ax.firsttime: | ||
471 | CODE = 'spc_mean' |
|
471 | ax.plt = ax.pcolormesh(x, y, spc[pair[1]].T, | |
472 | colormap = 'jet' |
|
|||
473 |
|
||||
474 | def plot(self): |
|
|||
475 |
|
||||
476 | if self.xaxis == "frequency": |
|
|||
477 | x = self.dataOut.getFreqRange(1)/1000. |
|
|||
478 | xlabel = "Frequency (kHz)" |
|
|||
479 | elif self.xaxis == "time": |
|
|||
480 | x = self.dataOut.getAcfRange(1) |
|
|||
481 | xlabel = "Time (ms)" |
|
|||
482 | else: |
|
|||
483 | x = self.dataOut.getVelRange(1) |
|
|||
484 | xlabel = "Velocity (m/s)" |
|
|||
485 |
|
||||
486 | y = self.dataOut.getHeiRange() |
|
|||
487 | z = self.data['spc'] |
|
|||
488 | mean = self.data['mean'][self.max_time] |
|
|||
489 |
|
||||
490 | for n, ax in enumerate(self.axes): |
|
|||
491 |
|
||||
492 | if ax.firsttime: |
|
|||
493 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
|||
494 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
|||
495 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
|||
496 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
|||
497 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
|||
498 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
|||
499 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
|||
500 | vmin=self.zmin, |
|
472 | vmin=self.zmin, | |
501 | vmax=self.zmax, |
|
473 | vmax=self.zmax, | |
502 | cmap=plt.get_cmap(self.colormap) |
|
474 | cmap=plt.get_cmap(self.colormap) | |
503 | ) |
|
475 | ) | |
504 | ax.plt_dop = ax.plot(mean[n], y, |
|
|||
505 | color='k')[0] |
|
|||
506 |
|
||||
507 | divider = make_axes_locatable(ax) |
|
|||
508 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
|||
509 | self.figure.add_axes(cax) |
|
|||
510 | plt.colorbar(ax.plt, cax) |
|
|||
511 |
|
||||
512 | ax.set_xlim(self.xmin, self.xmax) |
|
|||
513 | ax.set_ylim(self.ymin, self.ymax) |
|
|||
514 |
|
||||
515 | ax.set_ylabel(self.ylabel) |
|
|||
516 | ax.set_xlabel(xlabel) |
|
|||
517 |
|
||||
518 | ax.firsttime = False |
|
|||
519 |
|
||||
520 | if self.showprofile: |
|
|||
521 | ax.plt_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] |
|
|||
522 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
|||
523 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
|||
524 | ax.ax_profile.set_xlabel('dB') |
|
|||
525 | ax.ax_profile.grid(b=True, axis='x') |
|
|||
526 | ax.plt_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
|||
527 | color="k", linestyle="dashed", lw=2)[0] |
|
|||
528 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
|||
529 | else: |
|
476 | else: | |
530 |
ax.plt.set_array( |
|
477 | ax.plt.set_array(spc[pair[1]].T.ravel()) | |
531 | ax.plt_dop.set_data(mean[n], y) |
|
478 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
532 | if self.showprofile: |
|
479 | ||
533 | ax.plt_profile.set_data(self.data['rti'][self.max_time][n], y) |
|
480 | out = cspc[n]/numpy.sqrt(spc[pair[0]]*spc[pair[1]]) | |
534 | ax.plt_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) |
|
481 | coh = numpy.abs(out) | |
|
482 | phase = numpy.arctan2(out.imag, out.real)*180/numpy.pi | |||
|
483 | ||||
|
484 | ax = self.axes[4*n+2] | |||
|
485 | if ax.firsttime: | |||
|
486 | ax.plt = ax.pcolormesh(x, y, coh.T, | |||
|
487 | vmin=0, | |||
|
488 | vmax=1, | |||
|
489 | cmap=plt.get_cmap(self.colormap_coh) | |||
|
490 | ) | |||
|
491 | else: | |||
|
492 | ax.plt.set_array(coh.T.ravel()) | |||
|
493 | self.titles.append('Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |||
535 |
|
494 | |||
536 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
495 | ax = self.axes[4*n+3] | |
537 | size=8) |
|
496 | if ax.firsttime: | |
|
497 | ax.plt = ax.pcolormesh(x, y, phase.T, | |||
|
498 | vmin=-180, | |||
|
499 | vmax=180, | |||
|
500 | cmap=plt.get_cmap(self.colormap_phase) | |||
|
501 | ) | |||
|
502 | else: | |||
|
503 | ax.plt.set_array(phase.T.ravel()) | |||
|
504 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |||
|
505 | ||||
538 | self.saveTime = self.max_time |
|
506 | self.saveTime = self.max_time | |
539 |
|
507 | |||
540 |
|
508 | |||
|
509 | class PlotSpectraMeanData(PlotSpectraData): | |||
|
510 | ''' | |||
|
511 | Plot for Spectra and Mean | |||
|
512 | ''' | |||
|
513 | CODE = 'spc_mean' | |||
|
514 | colormap = 'jro' | |||
|
515 | ||||
|
516 | ||||
541 | class PlotRTIData(PlotData): |
|
517 | class PlotRTIData(PlotData): | |
|
518 | ''' | |||
|
519 | Plot for RTI data | |||
|
520 | ''' | |||
542 |
|
521 | |||
543 | CODE = 'rti' |
|
522 | CODE = 'rti' | |
544 | colormap = 'jro' |
|
523 | colormap = 'jro' | |
545 |
|
524 | |||
546 | def setup(self): |
|
525 | def setup(self): | |
547 |
self. |
|
526 | self.xaxis = 'time' | |
548 | self.nrows = self.dataOut.nChannels |
|
527 | self.ncols = 1 | |
549 | self.width = 10 |
|
528 | self.nrows = len(self.data.channels) | |
550 | #TODO : arreglar la altura de la figura, esta hardcodeada. |
|
529 | self.nplots = len(self.data.channels) | |
551 | #Se arreglo, testear! |
|
|||
552 | if self.ind_plt_ch: |
|
|||
553 | self.height = 3.2#*self.nrows if self.nrows<6 else 12 |
|
|||
554 | else: |
|
|||
555 | self.height = 2.2*self.nrows if self.nrows<6 else 12 |
|
|||
556 |
|
||||
557 | ''' |
|
|||
558 | if self.nrows==1: |
|
|||
559 | self.height += 1 |
|
|||
560 | ''' |
|
|||
561 | self.ylabel = 'Range [Km]' |
|
530 | self.ylabel = 'Range [Km]' | |
562 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
531 | self.cb_label = 'dB' | |
563 |
|
532 | self.titles = ['{} Channel {}'.format(self.CODE.upper(), x) for x in range(self.nrows)] | ||
564 | ''' |
|
|||
565 | Logica: |
|
|||
566 | 1) Si la variable ind_plt_ch es True, va a crear mas de 1 figura |
|
|||
567 | 2) guardamos "Figures" en una lista y "axes" en otra, quizas se deberia guardar el |
|
|||
568 | axis dentro de "Figures" como un diccionario. |
|
|||
569 | ''' |
|
|||
570 | if self.ind_plt_ch is False: #standard mode |
|
|||
571 |
|
||||
572 | if self.figure is None: #solo para la priemra vez |
|
|||
573 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
574 | edgecolor='k', |
|
|||
575 | facecolor='w') |
|
|||
576 | else: |
|
|||
577 | self.figure.clf() |
|
|||
578 | self.axes = [] |
|
|||
579 |
|
||||
580 |
|
||||
581 | for n in range(self.nrows): |
|
|||
582 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
|||
583 | #ax = self.figure(n+1) |
|
|||
584 | ax.firsttime = True |
|
|||
585 | self.axes.append(ax) |
|
|||
586 |
|
||||
587 | else : #append one figure foreach channel in channelList |
|
|||
588 | if self.figurelist == None: |
|
|||
589 | self.figurelist = [] |
|
|||
590 | for n in range(self.nrows): |
|
|||
591 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
592 | edgecolor='k', |
|
|||
593 | facecolor='w') |
|
|||
594 | #add always one subplot |
|
|||
595 | self.figurelist.append(self.figure) |
|
|||
596 |
|
||||
597 | else : # cada dia nuevo limpia el axes, pero mantiene el figure |
|
|||
598 | for eachfigure in self.figurelist: |
|
|||
599 | eachfigure.clf() # eliminaria todas las figuras de la lista? |
|
|||
600 | self.axes = [] |
|
|||
601 |
|
||||
602 | for eachfigure in self.figurelist: |
|
|||
603 | ax = eachfigure.add_subplot(1,1,1) #solo 1 axis por figura |
|
|||
604 | #ax = self.figure(n+1) |
|
|||
605 | ax.firsttime = True |
|
|||
606 | #Cada figura tiene un distinto puntero |
|
|||
607 | self.axes.append(ax) |
|
|||
608 | #plt.close(eachfigure) |
|
|||
609 |
|
||||
610 |
|
533 | |||
611 | def plot(self): |
|
534 | def plot(self): | |
|
535 | self.x = self.data.times | |||
|
536 | self.y = self.data.heights | |||
|
537 | self.z = self.data[self.CODE] | |||
|
538 | self.z = numpy.ma.masked_invalid(self.z) | |||
612 |
|
539 | |||
613 | if self.ind_plt_ch is False: #standard mode |
|
540 | for n, ax in enumerate(self.axes): | |
614 | self.x = np.array(self.times) |
|
541 | x, y, z = self.fill_gaps(*self.decimate()) | |
615 | self.y = self.dataOut.getHeiRange() |
|
542 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
616 | self.z = [] |
|
543 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
617 |
|
544 | if ax.firsttime: | ||
618 | for ch in range(self.nrows): |
|
545 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
619 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) |
|
546 | vmin=self.zmin, | |
620 |
|
547 | vmax=self.zmax, | ||
621 | self.z = np.array(self.z) |
|
548 | cmap=plt.get_cmap(self.colormap) | |
622 | for n, ax in enumerate(self.axes): |
|
549 | ) | |
623 | x, y, z = self.fill_gaps(*self.decimate()) |
|
550 | if self.showprofile: | |
624 | if self.xmin is None: |
|
551 | ax.plot_profile= self.pf_axes[n].plot(self.data['rti'][n][-1], self.y)[0] | |
625 | xmin = self.min_time |
|
552 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
626 | else: |
|
553 | color="k", linestyle="dashed", lw=1)[0] | |
627 | xmin = fromtimestamp(int(self.xmin), self.min_time) |
|
554 | else: | |
628 | if self.xmax is None: |
|
555 | ax.collections.remove(ax.collections[0]) | |
629 | xmax = xmin + self.xrange*60*60 |
|
556 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
630 | else: |
|
557 | vmin=self.zmin, | |
631 | xmax = xmin + (self.xmax - self.xmin) * 60 * 60 |
|
558 | vmax=self.zmax, | |
632 | self.zmin = self.zmin if self.zmin else np.min(self.z) |
|
559 | cmap=plt.get_cmap(self.colormap) | |
633 | self.zmax = self.zmax if self.zmax else np.max(self.z) |
|
560 | ) | |
634 |
if |
|
561 | if self.showprofile: | |
635 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
562 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
636 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
563 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y) | |
637 | plot = ax.pcolormesh(x, y, z[n].T, |
|
|||
638 | vmin=self.zmin, |
|
|||
639 | vmax=self.zmax, |
|
|||
640 | cmap=plt.get_cmap(self.colormap) |
|
|||
641 | ) |
|
|||
642 | divider = make_axes_locatable(ax) |
|
|||
643 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
|||
644 | self.figure.add_axes(cax) |
|
|||
645 | plt.colorbar(plot, cax) |
|
|||
646 | ax.set_ylim(self.ymin, self.ymax) |
|
|||
647 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
|||
648 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
|||
649 | ax.set_ylabel(self.ylabel) |
|
|||
650 | # if self.xmin is None: |
|
|||
651 | # xmin = self.min_time |
|
|||
652 | # else: |
|
|||
653 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), |
|
|||
654 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() |
|
|||
655 |
|
||||
656 | ax.set_xlim(xmin, xmax) |
|
|||
657 | ax.firsttime = False |
|
|||
658 | else: |
|
|||
659 | ax.collections.remove(ax.collections[0]) |
|
|||
660 | ax.set_xlim(xmin, xmax) |
|
|||
661 | plot = ax.pcolormesh(x, y, z[n].T, |
|
|||
662 | vmin=self.zmin, |
|
|||
663 | vmax=self.zmax, |
|
|||
664 | cmap=plt.get_cmap(self.colormap) |
|
|||
665 | ) |
|
|||
666 | ax.set_title('{} {}'.format(self.titles[n], |
|
|||
667 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
|||
668 | size=8) |
|
|||
669 |
|
||||
670 | self.saveTime = self.min_time |
|
|||
671 | else : |
|
|||
672 | self.x = np.array(self.times) |
|
|||
673 | self.y = self.dataOut.getHeiRange() |
|
|||
674 | self.z = [] |
|
|||
675 |
|
||||
676 | for ch in range(self.nrows): |
|
|||
677 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) |
|
|||
678 |
|
||||
679 | self.z = np.array(self.z) |
|
|||
680 | for n, eachfigure in enumerate(self.figurelist): #estaba ax in axes |
|
|||
681 |
|
||||
682 | x, y, z = self.fill_gaps(*self.decimate()) |
|
|||
683 | xmin = self.min_time |
|
|||
684 | xmax = xmin+self.xrange*60*60 |
|
|||
685 | self.zmin = self.zmin if self.zmin else np.min(self.z) |
|
|||
686 | self.zmax = self.zmax if self.zmax else np.max(self.z) |
|
|||
687 | if self.axes[n].firsttime: |
|
|||
688 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
|||
689 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
|||
690 | plot = self.axes[n].pcolormesh(x, y, z[n].T, |
|
|||
691 | vmin=self.zmin, |
|
|||
692 | vmax=self.zmax, |
|
|||
693 | cmap=plt.get_cmap(self.colormap) |
|
|||
694 | ) |
|
|||
695 | divider = make_axes_locatable(self.axes[n]) |
|
|||
696 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
|||
697 | eachfigure.add_axes(cax) |
|
|||
698 | #self.figure2.add_axes(cax) |
|
|||
699 | plt.colorbar(plot, cax) |
|
|||
700 | self.axes[n].set_ylim(self.ymin, self.ymax) |
|
|||
701 |
|
||||
702 | self.axes[n].xaxis.set_major_formatter(FuncFormatter(func)) |
|
|||
703 | self.axes[n].xaxis.set_major_locator(LinearLocator(6)) |
|
|||
704 |
|
||||
705 | self.axes[n].set_ylabel(self.ylabel) |
|
|||
706 |
|
||||
707 | if self.xmin is None: |
|
|||
708 | xmin = self.min_time |
|
|||
709 | else: |
|
|||
710 | xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), |
|
|||
711 | datetime.time(self.xmin, 0, 0))-d1970).total_seconds() |
|
|||
712 |
|
||||
713 | self.axes[n].set_xlim(xmin, xmax) |
|
|||
714 | self.axes[n].firsttime = False |
|
|||
715 | else: |
|
|||
716 | self.axes[n].collections.remove(self.axes[n].collections[0]) |
|
|||
717 | self.axes[n].set_xlim(xmin, xmax) |
|
|||
718 | plot = self.axes[n].pcolormesh(x, y, z[n].T, |
|
|||
719 | vmin=self.zmin, |
|
|||
720 | vmax=self.zmax, |
|
|||
721 | cmap=plt.get_cmap(self.colormap) |
|
|||
722 | ) |
|
|||
723 | self.axes[n].set_title('{} {}'.format(self.titles[n], |
|
|||
724 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
|||
725 | size=8) |
|
|||
726 |
|
564 | |||
727 |
|
|
565 | self.saveTime = self.min_time | |
728 |
|
566 | |||
729 |
|
567 | |||
730 | class PlotCOHData(PlotRTIData): |
|
568 | class PlotCOHData(PlotRTIData): | |
|
569 | ''' | |||
|
570 | Plot for Coherence data | |||
|
571 | ''' | |||
731 |
|
572 | |||
732 | CODE = 'coh' |
|
573 | CODE = 'coh' | |
733 |
|
574 | |||
734 | def setup(self): |
|
575 | def setup(self): | |
735 |
|
576 | self.xaxis = 'time' | ||
736 | self.ncols = 1 |
|
577 | self.ncols = 1 | |
737 |
self.nrows = self.data |
|
578 | self.nrows = len(self.data.pairs) | |
738 | self.width = 10 |
|
579 | self.nplots = len(self.data.pairs) | |
739 | self.height = 2.2*self.nrows if self.nrows<6 else 12 |
|
580 | self.ylabel = 'Range [Km]' | |
740 | self.ind_plt_ch = False #just for coherence and phase |
|
581 | if self.CODE == 'coh': | |
741 | if self.nrows==1: |
|
582 | self.cb_label = '' | |
742 | self.height += 1 |
|
583 | self.titles = ['Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
743 | self.ylabel = 'Range [Km]' |
|
|||
744 | self.titles = ['{} Ch{} * Ch{}'.format(self.CODE.upper(), x[0], x[1]) for x in self.dataOut.pairsList] |
|
|||
745 |
|
||||
746 | if self.figure is None: |
|
|||
747 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
748 | edgecolor='k', |
|
|||
749 | facecolor='w') |
|
|||
750 | else: |
|
584 | else: | |
751 |
self. |
|
585 | self.cb_label = 'Degrees' | |
752 | self.axes = [] |
|
586 | self.titles = ['Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
753 |
|
587 | |||
754 | for n in range(self.nrows): |
|
588 | ||
755 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
589 | class PlotPHASEData(PlotCOHData): | |
756 | ax.firsttime = True |
|
590 | ''' | |
757 | self.axes.append(ax) |
|
591 | Plot for Phase map data | |
|
592 | ''' | |||
|
593 | ||||
|
594 | CODE = 'phase' | |||
|
595 | colormap = 'seismic' | |||
758 |
|
596 | |||
759 |
|
597 | |||
760 | class PlotNoiseData(PlotData): |
|
598 | class PlotNoiseData(PlotData): | |
|
599 | ''' | |||
|
600 | Plot for noise | |||
|
601 | ''' | |||
|
602 | ||||
761 | CODE = 'noise' |
|
603 | CODE = 'noise' | |
762 |
|
604 | |||
763 | def setup(self): |
|
605 | def setup(self): | |
764 |
|
606 | self.xaxis = 'time' | ||
765 | self.ncols = 1 |
|
607 | self.ncols = 1 | |
766 | self.nrows = 1 |
|
608 | self.nrows = 1 | |
767 |
self. |
|
609 | self.nplots = 1 | |
768 | self.height = 3.2 |
|
|||
769 | self.ylabel = 'Intensity [dB]' |
|
610 | self.ylabel = 'Intensity [dB]' | |
770 | self.titles = ['Noise'] |
|
611 | self.titles = ['Noise'] | |
771 |
|
612 | self.colorbar = False | ||
772 | if self.figure is None: |
|
|||
773 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
774 | edgecolor='k', |
|
|||
775 | facecolor='w') |
|
|||
776 | else: |
|
|||
777 | self.figure.clf() |
|
|||
778 | self.axes = [] |
|
|||
779 |
|
||||
780 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) |
|
|||
781 | self.ax.firsttime = True |
|
|||
782 |
|
613 | |||
783 | def plot(self): |
|
614 | def plot(self): | |
784 |
|
615 | |||
785 | x = self.times |
|
616 | x = self.data.times | |
786 | xmin = self.min_time |
|
617 | xmin = self.min_time | |
787 | xmax = xmin+self.xrange*60*60 |
|
618 | xmax = xmin+self.xrange*60*60 | |
788 | if self.ax.firsttime: |
|
619 | Y = self.data[self.CODE] | |
789 | for ch in self.dataOut.channelList: |
|
620 | ||
790 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
621 | if self.axes[0].firsttime: | |
791 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
622 | for ch in self.data.channels: | |
792 | self.ax.firsttime = False |
|
623 | y = Y[ch] | |
793 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
624 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
794 | self.ax.xaxis.set_major_locator(LinearLocator(6)) |
|
|||
795 | self.ax.set_ylabel(self.ylabel) |
|
|||
796 | plt.legend() |
|
625 | plt.legend() | |
797 | else: |
|
626 | else: | |
798 |
for ch in self.data |
|
627 | for ch in self.data.channels: | |
799 | y = [self.data[self.CODE][t][ch] for t in self.times] |
|
628 | y = Y[ch] | |
800 | self.ax.lines[ch].set_data(x, y) |
|
629 | self.axes[0].lines[ch].set_data(x, y) | |
801 |
|
630 | |||
802 | self.ax.set_xlim(xmin, xmax) |
|
631 | self.ymin = numpy.nanmin(Y) - 5 | |
803 | self.ax.set_ylim(min(y)-5, max(y)+5) |
|
632 | self.ymax = numpy.nanmax(Y) + 5 | |
804 | self.saveTime = self.min_time |
|
633 | self.saveTime = self.min_time | |
805 |
|
634 | |||
806 |
|
635 | |||
807 | class PlotWindProfilerData(PlotRTIData): |
|
|||
808 |
|
||||
809 | CODE = 'wind' |
|
|||
810 | colormap = 'seismic' |
|
|||
811 |
|
||||
812 | def setup(self): |
|
|||
813 | self.ncols = 1 |
|
|||
814 | self.nrows = self.dataOut.data_output.shape[0] |
|
|||
815 | self.width = 10 |
|
|||
816 | self.height = 2.2*self.nrows |
|
|||
817 | self.ylabel = 'Height [Km]' |
|
|||
818 | self.titles = ['Zonal Wind' ,'Meridional Wind', 'Vertical Wind'] |
|
|||
819 | self.clabels = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
|||
820 | self.windFactor = [1, 1, 100] |
|
|||
821 |
|
||||
822 | if self.figure is None: |
|
|||
823 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
|||
824 | edgecolor='k', |
|
|||
825 | facecolor='w') |
|
|||
826 | else: |
|
|||
827 | self.figure.clf() |
|
|||
828 | self.axes = [] |
|
|||
829 |
|
||||
830 | for n in range(self.nrows): |
|
|||
831 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
|||
832 | ax.firsttime = True |
|
|||
833 | self.axes.append(ax) |
|
|||
834 |
|
||||
835 | def plot(self): |
|
|||
836 |
|
||||
837 | self.x = np.array(self.times) |
|
|||
838 | self.y = self.dataOut.heightList |
|
|||
839 | self.z = [] |
|
|||
840 |
|
||||
841 | for ch in range(self.nrows): |
|
|||
842 | self.z.append([self.data['output'][t][ch] for t in self.times]) |
|
|||
843 |
|
||||
844 | self.z = np.array(self.z) |
|
|||
845 | self.z = numpy.ma.masked_invalid(self.z) |
|
|||
846 |
|
||||
847 | cmap=plt.get_cmap(self.colormap) |
|
|||
848 | cmap.set_bad('black', 1.) |
|
|||
849 |
|
||||
850 | for n, ax in enumerate(self.axes): |
|
|||
851 | x, y, z = self.fill_gaps(*self.decimate()) |
|
|||
852 | xmin = self.min_time |
|
|||
853 | xmax = xmin+self.xrange*60*60 |
|
|||
854 | if ax.firsttime: |
|
|||
855 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
|||
856 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
|||
857 | self.zmax = self.zmax if self.zmax else numpy.nanmax(abs(self.z[:-1, :])) |
|
|||
858 | self.zmin = self.zmin if self.zmin else -self.zmax |
|
|||
859 |
|
||||
860 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], |
|
|||
861 | vmin=self.zmin, |
|
|||
862 | vmax=self.zmax, |
|
|||
863 | cmap=cmap |
|
|||
864 | ) |
|
|||
865 | divider = make_axes_locatable(ax) |
|
|||
866 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
|||
867 | self.figure.add_axes(cax) |
|
|||
868 | cb = plt.colorbar(plot, cax) |
|
|||
869 | cb.set_label(self.clabels[n]) |
|
|||
870 | ax.set_ylim(self.ymin, self.ymax) |
|
|||
871 |
|
||||
872 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
|||
873 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
|||
874 |
|
||||
875 | ax.set_ylabel(self.ylabel) |
|
|||
876 |
|
||||
877 | ax.set_xlim(xmin, xmax) |
|
|||
878 | ax.firsttime = False |
|
|||
879 | else: |
|
|||
880 | ax.collections.remove(ax.collections[0]) |
|
|||
881 | ax.set_xlim(xmin, xmax) |
|
|||
882 | plot = ax.pcolormesh(x, y, z[n].T*self.windFactor[n], |
|
|||
883 | vmin=self.zmin, |
|
|||
884 | vmax=self.zmax, |
|
|||
885 | cmap=plt.get_cmap(self.colormap) |
|
|||
886 | ) |
|
|||
887 | ax.set_title('{} {}'.format(self.titles[n], |
|
|||
888 | datetime.datetime.fromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
|||
889 | size=8) |
|
|||
890 |
|
||||
891 | self.saveTime = self.min_time |
|
|||
892 |
|
||||
893 |
|
||||
894 | class PlotSNRData(PlotRTIData): |
|
636 | class PlotSNRData(PlotRTIData): | |
|
637 | ''' | |||
|
638 | Plot for SNR Data | |||
|
639 | ''' | |||
|
640 | ||||
895 | CODE = 'snr' |
|
641 | CODE = 'snr' | |
896 | colormap = 'jet' |
|
642 | colormap = 'jet' | |
897 |
|
643 | |||
|
644 | ||||
898 | class PlotDOPData(PlotRTIData): |
|
645 | class PlotDOPData(PlotRTIData): | |
|
646 | ''' | |||
|
647 | Plot for DOPPLER Data | |||
|
648 | ''' | |||
|
649 | ||||
899 | CODE = 'dop' |
|
650 | CODE = 'dop' | |
900 | colormap = 'jet' |
|
651 | colormap = 'jet' | |
901 |
|
652 | |||
902 |
|
653 | |||
903 | class PlotPHASEData(PlotCOHData): |
|
|||
904 | CODE = 'phase' |
|
|||
905 | colormap = 'seismic' |
|
|||
906 |
|
||||
907 |
|
||||
908 | class PlotSkyMapData(PlotData): |
|
654 | class PlotSkyMapData(PlotData): | |
|
655 | ''' | |||
|
656 | Plot for meteors detection data | |||
|
657 | ''' | |||
909 |
|
658 | |||
910 | CODE = 'met' |
|
659 | CODE = 'met' | |
911 |
|
660 | |||
@@ -932,7 +681,7 class PlotSkyMapData(PlotData): | |||||
932 |
|
681 | |||
933 | def plot(self): |
|
682 | def plot(self): | |
934 |
|
683 | |||
935 | arrayParameters = np.concatenate([self.data['param'][t] for t in self.times]) |
|
684 | arrayParameters = numpy.concatenate([self.data['param'][t] for t in self.data.times]) | |
936 | error = arrayParameters[:,-1] |
|
685 | error = arrayParameters[:,-1] | |
937 | indValid = numpy.where(error == 0)[0] |
|
686 | indValid = numpy.where(error == 0)[0] | |
938 | finalMeteor = arrayParameters[indValid,:] |
|
687 | finalMeteor = arrayParameters[indValid,:] | |
@@ -962,3 +711,72 class PlotSkyMapData(PlotData): | |||||
962 | self.ax.set_title(title, size=8) |
|
711 | self.ax.set_title(title, size=8) | |
963 |
|
712 | |||
964 | self.saveTime = self.max_time |
|
713 | self.saveTime = self.max_time | |
|
714 | ||||
|
715 | class PlotParamData(PlotRTIData): | |||
|
716 | ''' | |||
|
717 | Plot for data_param object | |||
|
718 | ''' | |||
|
719 | ||||
|
720 | CODE = 'param' | |||
|
721 | colormap = 'seismic' | |||
|
722 | ||||
|
723 | def setup(self): | |||
|
724 | self.xaxis = 'time' | |||
|
725 | self.ncols = 1 | |||
|
726 | self.nrows = self.data.shape(self.CODE)[0] | |||
|
727 | self.nplots = self.nrows | |||
|
728 | if self.showSNR: | |||
|
729 | self.nrows += 1 | |||
|
730 | ||||
|
731 | self.ylabel = 'Height [Km]' | |||
|
732 | self.titles = self.data.parameters \ | |||
|
733 | if self.data.parameters else ['Param {}'.format(x) for x in xrange(self.nrows)] | |||
|
734 | if self.showSNR: | |||
|
735 | self.titles.append('SNR') | |||
|
736 | ||||
|
737 | def plot(self): | |||
|
738 | self.data.normalize_heights() | |||
|
739 | self.x = self.data.times | |||
|
740 | self.y = self.data.heights | |||
|
741 | if self.showSNR: | |||
|
742 | self.z = numpy.concatenate( | |||
|
743 | (self.data[self.CODE], self.data['snr']) | |||
|
744 | ) | |||
|
745 | else: | |||
|
746 | self.z = self.data[self.CODE] | |||
|
747 | ||||
|
748 | self.z = numpy.ma.masked_invalid(self.z) | |||
|
749 | ||||
|
750 | for n, ax in enumerate(self.axes): | |||
|
751 | ||||
|
752 | x, y, z = self.fill_gaps(*self.decimate()) | |||
|
753 | ||||
|
754 | if ax.firsttime: | |||
|
755 | if self.zlimits is not None: | |||
|
756 | self.zmin, self.zmax = self.zlimits[n] | |||
|
757 | self.zmax = self.zmax if self.zmax is not None else numpy.nanmax(abs(self.z[:-1, :])) | |||
|
758 | self.zmin = self.zmin if self.zmin is not None else -self.zmax | |||
|
759 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |||
|
760 | vmin=self.zmin, | |||
|
761 | vmax=self.zmax, | |||
|
762 | cmap=self.cmaps[n] | |||
|
763 | ) | |||
|
764 | else: | |||
|
765 | if self.zlimits is not None: | |||
|
766 | self.zmin, self.zmax = self.zlimits[n] | |||
|
767 | ax.collections.remove(ax.collections[0]) | |||
|
768 | ax.plt = ax.pcolormesh(x, y, z[n, :, :].T*self.factors[n], | |||
|
769 | vmin=self.zmin, | |||
|
770 | vmax=self.zmax, | |||
|
771 | cmap=self.cmaps[n] | |||
|
772 | ) | |||
|
773 | ||||
|
774 | self.saveTime = self.min_time | |||
|
775 | ||||
|
776 | class PlotOuputData(PlotParamData): | |||
|
777 | ''' | |||
|
778 | Plot data_output object | |||
|
779 | ''' | |||
|
780 | ||||
|
781 | CODE = 'output' | |||
|
782 | colormap = 'seismic' No newline at end of file |
This diff has been collapsed as it changes many lines, (2660 lines changed) Show them Hide them | |||||
@@ -1,39 +1,79 | |||||
1 | import numpy |
|
1 | import numpy | |
2 |
|
|
2 | import math | |
3 |
|
|
3 | from scipy import optimize, interpolate, signal, stats, ndimage | |
|
4 | import scipy | |||
4 |
|
|
5 | import re | |
5 |
|
|
6 | import datetime | |
6 |
|
|
7 | import copy | |
7 |
|
|
8 | import sys | |
8 |
|
|
9 | import importlib | |
9 |
|
|
10 | import itertools | |
10 |
|
11 | from multiprocessing import Pool, TimeoutError | ||
|
12 | from multiprocessing.pool import ThreadPool | |||
|
13 | import copy_reg | |||
|
14 | import cPickle | |||
|
15 | import types | |||
|
16 | from functools import partial | |||
|
17 | import time | |||
|
18 | #from sklearn.cluster import KMeans | |||
|
19 | ||||
|
20 | import matplotlib.pyplot as plt | |||
|
21 | ||||
|
22 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |||
11 |
|
|
23 | from jroproc_base import ProcessingUnit, Operation | |
12 |
|
|
24 | from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon | |
|
25 | from scipy import asarray as ar,exp | |||
|
26 | from scipy.optimize import curve_fit | |||
13 |
|
27 | |||
|
28 | import warnings | |||
|
29 | from numpy import NaN | |||
|
30 | from scipy.optimize.optimize import OptimizeWarning | |||
|
31 | warnings.filterwarnings('ignore') | |||
14 |
|
32 | |||
15 | class ParametersProc(ProcessingUnit): |
|
|||
16 |
|
33 | |||
|
34 | SPEED_OF_LIGHT = 299792458 | |||
|
35 | ||||
|
36 | ||||
|
37 | '''solving pickling issue''' | |||
|
38 | ||||
|
39 | def _pickle_method(method): | |||
|
40 | func_name = method.im_func.__name__ | |||
|
41 | obj = method.im_self | |||
|
42 | cls = method.im_class | |||
|
43 | return _unpickle_method, (func_name, obj, cls) | |||
|
44 | ||||
|
45 | def _unpickle_method(func_name, obj, cls): | |||
|
46 | for cls in cls.mro(): | |||
|
47 | try: | |||
|
48 | func = cls.__dict__[func_name] | |||
|
49 | except KeyError: | |||
|
50 | pass | |||
|
51 | else: | |||
|
52 | break | |||
|
53 | return func.__get__(obj, cls) | |||
|
54 | ||||
|
55 | class ParametersProc(ProcessingUnit): | |||
|
56 | ||||
17 |
|
|
57 | nSeconds = None | |
18 |
|
58 | |||
19 |
|
|
59 | def __init__(self): | |
20 |
|
|
60 | ProcessingUnit.__init__(self) | |
21 |
|
61 | |||
22 |
|
|
62 | # self.objectDict = {} | |
23 |
|
|
63 | self.buffer = None | |
24 |
|
|
64 | self.firstdatatime = None | |
25 |
|
|
65 | self.profIndex = 0 | |
26 |
|
|
66 | self.dataOut = Parameters() | |
27 |
|
67 | |||
28 |
|
|
68 | def __updateObjFromInput(self): | |
29 |
|
69 | |||
30 |
|
|
70 | self.dataOut.inputUnit = self.dataIn.type | |
31 |
|
71 | |||
32 |
|
|
72 | self.dataOut.timeZone = self.dataIn.timeZone | |
33 |
|
|
73 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
34 |
|
|
74 | self.dataOut.errorCount = self.dataIn.errorCount | |
35 |
|
|
75 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
36 |
|
76 | |||
37 |
|
|
77 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
38 |
|
|
78 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
39 |
|
|
79 | self.dataOut.channelList = self.dataIn.channelList | |
@@ -55,25 +95,25 class ParametersProc(ProcessingUnit): | |||||
55 |
|
|
95 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
56 |
|
|
96 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
57 |
|
|
97 | self.dataOut.timeInterval1 = self.dataIn.timeInterval | |
58 |
|
|
98 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
59 |
|
|
99 | self.dataOut.frequency = self.dataIn.frequency | |
60 |
|
|
100 | # self.dataOut.noise = self.dataIn.noise | |
61 |
|
101 | |||
62 |
|
|
102 | def run(self): | |
63 |
|
103 | |||
64 |
|
|
104 | #---------------------- Voltage Data --------------------------- | |
65 |
|
105 | |||
66 |
|
|
106 | if self.dataIn.type == "Voltage": | |
67 |
|
107 | |||
68 |
|
|
108 | self.__updateObjFromInput() | |
69 |
|
|
109 | self.dataOut.data_pre = self.dataIn.data.copy() | |
70 |
|
|
110 | self.dataOut.flagNoData = False | |
71 |
|
|
111 | self.dataOut.utctimeInit = self.dataIn.utctime | |
72 |
|
|
112 | self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds | |
73 |
|
|
113 | return | |
74 |
|
114 | |||
75 |
|
|
115 | #---------------------- Spectra Data --------------------------- | |
76 |
|
116 | |||
77 |
|
|
117 | if self.dataIn.type == "Spectra": | |
78 |
|
118 | |||
79 |
|
|
119 | self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc) | |
@@ -83,107 +123,1307 class ParametersProc(ProcessingUnit): | |||||
83 |
|
|
123 | self.dataOut.nIncohInt = self.dataIn.nIncohInt | |
84 |
|
|
124 | self.dataOut.nFFTPoints = self.dataIn.nFFTPoints | |
85 |
|
|
125 | self.dataOut.ippFactor = self.dataIn.ippFactor | |
86 | #self.dataOut.normFactor = self.dataIn.getNormFactor() |
|
|||
87 | self.dataOut.pairsList = self.dataIn.pairsList |
|
|||
88 | self.dataOut.groupList = self.dataIn.pairsList |
|
|||
89 |
|
|
126 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
|
127 | self.dataOut.spc_noise = self.dataIn.getNoise() | |||
|
128 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |||
|
129 | self.dataOut.pairsList = self.dataIn.pairsList | |||
|
130 | self.dataOut.groupList = self.dataIn.pairsList | |||
90 |
|
|
131 | self.dataOut.flagNoData = False | |
91 |
|
132 | |||
|
133 | if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels | |||
|
134 | self.dataOut.ChanDist = self.dataIn.ChanDist | |||
|
135 | else: self.dataOut.ChanDist = None | |||
|
136 | ||||
|
137 | if hasattr(self.dataIn, 'VelRange'): #Velocities range | |||
|
138 | self.dataOut.VelRange = self.dataIn.VelRange | |||
|
139 | else: self.dataOut.VelRange = None | |||
|
140 | ||||
|
141 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |||
|
142 | self.dataOut.RadarConst = self.dataIn.RadarConst | |||
|
143 | ||||
|
144 | if hasattr(self.dataIn, 'NPW'): #NPW | |||
|
145 | self.dataOut.NPW = self.dataIn.NPW | |||
|
146 | ||||
|
147 | if hasattr(self.dataIn, 'COFA'): #COFA | |||
|
148 | self.dataOut.COFA = self.dataIn.COFA | |||
|
149 | ||||
|
150 | ||||
|
151 | ||||
92 |
|
|
152 | #---------------------- Correlation Data --------------------------- | |
93 |
|
153 | |||
94 |
|
|
154 | if self.dataIn.type == "Correlation": | |
95 |
|
|
155 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions() | |
96 |
|
156 | |||
97 |
|
|
157 | self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:]) | |
98 |
|
|
158 | self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:]) | |
99 |
|
|
159 | self.dataOut.groupList = (acf_pairs, ccf_pairs) | |
100 |
|
160 | |||
101 |
|
|
161 | self.dataOut.abscissaList = self.dataIn.lagRange | |
102 |
|
|
162 | self.dataOut.noise = self.dataIn.noise | |
103 |
|
|
163 | self.dataOut.data_SNR = self.dataIn.SNR | |
104 |
|
|
164 | self.dataOut.flagNoData = False | |
105 |
|
|
165 | self.dataOut.nAvg = self.dataIn.nAvg | |
106 |
|
166 | |||
107 |
|
|
167 | #---------------------- Parameters Data --------------------------- | |
108 |
|
168 | |||
109 |
|
|
169 | if self.dataIn.type == "Parameters": | |
110 |
|
|
170 | self.dataOut.copy(self.dataIn) | |
111 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
|||
112 |
|
|
171 | self.dataOut.flagNoData = False | |
113 |
|
172 | |||
114 |
|
|
173 | return True | |
115 |
|
174 | |||
116 |
|
|
175 | self.__updateObjFromInput() | |
117 |
|
|
176 | self.dataOut.utctimeInit = self.dataIn.utctime | |
118 |
|
|
177 | self.dataOut.paramInterval = self.dataIn.timeInterval | |
119 |
|
178 | |||
120 |
|
|
179 | return | |
121 |
|
180 | |||
122 | class SpectralMoments(Operation): |
|
|||
123 |
|
181 | |||
|
182 | def target(tups): | |||
|
183 | ||||
|
184 | obj, args = tups | |||
|
185 | #print 'TARGETTT', obj, args | |||
|
186 | return obj.FitGau(args) | |||
|
187 | ||||
|
188 | class GaussianFit(Operation): | |||
|
189 | ||||
124 |
|
|
190 | ''' | |
125 | Function SpectralMoments() |
|
191 | Function that fit of one and two generalized gaussians (gg) based | |
|
192 | on the PSD shape across an "power band" identified from a cumsum of | |||
|
193 | the measured spectrum - noise. | |||
|
194 | ||||
|
195 | Input: | |||
|
196 | self.dataOut.data_pre : SelfSpectra | |||
|
197 | ||||
|
198 | Output: | |||
|
199 | self.dataOut.GauSPC : SPC_ch1, SPC_ch2 | |||
|
200 | ||||
|
201 | ''' | |||
|
202 | def __init__(self, **kwargs): | |||
|
203 | Operation.__init__(self, **kwargs) | |||
|
204 | self.i=0 | |||
|
205 | ||||
|
206 | ||||
|
207 | def run(self, dataOut, num_intg=7, pnoise=1., vel_arr=None, SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |||
|
208 | """This routine will find a couple of generalized Gaussians to a power spectrum | |||
|
209 | input: spc | |||
|
210 | output: | |||
|
211 | Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise | |||
|
212 | """ | |||
|
213 | ||||
|
214 | self.spc = dataOut.data_pre[0].copy() | |||
|
215 | ||||
|
216 | ||||
|
217 | print 'SelfSpectra Shape', numpy.asarray(self.spc).shape | |||
|
218 | ||||
|
219 | ||||
|
220 | #plt.figure(50) | |||
|
221 | #plt.subplot(121) | |||
|
222 | #plt.plot(self.spc,'k',label='spc(66)') | |||
|
223 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |||
|
224 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |||
|
225 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |||
|
226 | #plt.legend() | |||
|
227 | #plt.title('DATOS A ALTURA DE 7500 METROS') | |||
|
228 | #plt.show() | |||
|
229 | ||||
|
230 | self.Num_Hei = self.spc.shape[2] | |||
|
231 | #self.Num_Bin = len(self.spc) | |||
|
232 | self.Num_Bin = self.spc.shape[1] | |||
|
233 | self.Num_Chn = self.spc.shape[0] | |||
|
234 | ||||
|
235 | Vrange = dataOut.abscissaList | |||
|
236 | ||||
|
237 | #print 'self.spc2', numpy.asarray(self.spc).shape | |||
|
238 | ||||
|
239 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) | |||
|
240 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |||
|
241 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |||
|
242 | SPC_ch1[:] = numpy.NaN | |||
|
243 | SPC_ch2[:] = numpy.NaN | |||
126 |
|
244 | |||
127 | Calculates moments (power, mean, standard deviation) and SNR of the signal |
|
245 | ||
|
246 | start_time = time.time() | |||
|
247 | ||||
|
248 | noise_ = dataOut.spc_noise[0].copy() | |||
|
249 | ||||
|
250 | ||||
|
251 | ||||
|
252 | pool = Pool(processes=self.Num_Chn) | |||
|
253 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |||
|
254 | objs = [self for __ in range(self.Num_Chn)] | |||
|
255 | attrs = zip(objs, args) | |||
|
256 | gauSPC = pool.map(target, attrs) | |||
|
257 | dataOut.GauSPC = numpy.asarray(gauSPC) | |||
|
258 | # ret = [] | |||
|
259 | # for n in range(self.Num_Chn): | |||
|
260 | # self.FitGau(args[n]) | |||
|
261 | # dataOut.GauSPC = ret | |||
|
262 | ||||
|
263 | ||||
|
264 | ||||
|
265 | # for ch in range(self.Num_Chn): | |||
|
266 | # | |||
|
267 | # for ht in range(self.Num_Hei): | |||
|
268 | # #print (numpy.asarray(self.spc).shape) | |||
|
269 | # spc = numpy.asarray(self.spc)[ch,:,ht] | |||
|
270 | # | |||
|
271 | # ############################################# | |||
|
272 | # # normalizing spc and noise | |||
|
273 | # # This part differs from gg1 | |||
|
274 | # spc_norm_max = max(spc) | |||
|
275 | # spc = spc / spc_norm_max | |||
|
276 | # pnoise = pnoise / spc_norm_max | |||
|
277 | # ############################################# | |||
|
278 | # | |||
|
279 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's | |||
|
280 | # fatspectra=1.0 | |||
|
281 | # else: | |||
|
282 | # fatspectra=0.5 | |||
|
283 | # | |||
|
284 | # wnoise = noise_ / spc_norm_max | |||
|
285 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise | |||
|
286 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |||
|
287 | # #if wnoise>1.1*pnoise: # to be tested later | |||
|
288 | # # wnoise=pnoise | |||
|
289 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |||
|
290 | # spc=spc-wnoise | |||
|
291 | # | |||
|
292 | # minx=numpy.argmin(spc) | |||
|
293 | # spcs=numpy.roll(spc,-minx) | |||
|
294 | # cum=numpy.cumsum(spcs) | |||
|
295 | # tot_noise=wnoise * self.Num_Bin #64; | |||
|
296 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |||
|
297 | # #snr=tot_signal/tot_noise | |||
|
298 | # #snr=cum[-1]/tot_noise | |||
|
299 | # | |||
|
300 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |||
|
301 | # | |||
|
302 | # snr = sum(spcs)/tot_noise | |||
|
303 | # snrdB=10.*numpy.log10(snr) | |||
|
304 | # | |||
|
305 | # #if snrdB < -9 : | |||
|
306 | # # snrdB = numpy.NaN | |||
|
307 | # # continue | |||
|
308 | # | |||
|
309 | # #print 'snr',snrdB # , sum(spcs) , tot_noise | |||
|
310 | # | |||
|
311 | # | |||
|
312 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |||
|
313 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
314 | # | |||
|
315 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |||
|
316 | # cumlo=cummax*epsi; | |||
|
317 | # cumhi=cummax*(1-epsi) | |||
|
318 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |||
|
319 | # | |||
|
320 | # #if len(powerindex)==1: | |||
|
321 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
322 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
323 | # #elif len(powerindex)<4*fatspectra: | |||
|
324 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
325 | # | |||
|
326 | # if len(powerindex) < 1:# case for powerindex 0 | |||
|
327 | # continue | |||
|
328 | # powerlo=powerindex[0] | |||
|
329 | # powerhi=powerindex[-1] | |||
|
330 | # powerwidth=powerhi-powerlo | |||
|
331 | # | |||
|
332 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |||
|
333 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |||
|
334 | # midpeak=(firstpeak+secondpeak)/2. | |||
|
335 | # firstamp=spcs[int(firstpeak)] | |||
|
336 | # secondamp=spcs[int(secondpeak)] | |||
|
337 | # midamp=spcs[int(midpeak)] | |||
|
338 | # #x=numpy.spc.shape[1] | |||
|
339 | # | |||
|
340 | # #x=numpy.arange(64) | |||
|
341 | # x=numpy.arange( self.Num_Bin ) | |||
|
342 | # y_data=spc+wnoise | |||
|
343 | # | |||
|
344 | # # single gaussian | |||
|
345 | # #shift0=numpy.mod(midpeak+minx,64) | |||
|
346 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |||
|
347 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |||
|
348 | # power0=2. | |||
|
349 | # amplitude0=midamp | |||
|
350 | # state0=[shift0,width0,amplitude0,power0,wnoise] | |||
|
351 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
352 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
353 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) | |||
|
354 | # # bnds = range of fft, power width, amplitude, power, noise | |||
|
355 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |||
|
356 | # | |||
|
357 | # chiSq1=lsq1[1]; | |||
|
358 | # jack1= self.y_jacobian1(x,lsq1[0]) | |||
|
359 | # | |||
|
360 | # | |||
|
361 | # try: | |||
|
362 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |||
|
363 | # except: | |||
|
364 | # std1=32.; sigmas1=numpy.ones(5) | |||
|
365 | # else: | |||
|
366 | # std1=sigmas1[0] | |||
|
367 | # | |||
|
368 | # | |||
|
369 | # if fatspectra<1.0 and powerwidth<4: | |||
|
370 | # choice=0 | |||
|
371 | # Amplitude0=lsq1[0][2] | |||
|
372 | # shift0=lsq1[0][0] | |||
|
373 | # width0=lsq1[0][1] | |||
|
374 | # p0=lsq1[0][3] | |||
|
375 | # Amplitude1=0. | |||
|
376 | # shift1=0. | |||
|
377 | # width1=0. | |||
|
378 | # p1=0. | |||
|
379 | # noise=lsq1[0][4] | |||
|
380 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), | |||
|
381 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |||
|
382 | # | |||
|
383 | # # two gaussians | |||
|
384 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |||
|
385 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |||
|
386 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |||
|
387 | # width0=powerwidth/6.; | |||
|
388 | # width1=width0 | |||
|
389 | # power0=2.; | |||
|
390 | # power1=power0 | |||
|
391 | # amplitude0=firstamp; | |||
|
392 | # amplitude1=secondamp | |||
|
393 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |||
|
394 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
395 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
396 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |||
|
397 | # | |||
|
398 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |||
|
399 | # | |||
|
400 | # | |||
|
401 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |||
|
402 | # | |||
|
403 | # | |||
|
404 | # try: | |||
|
405 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |||
|
406 | # except: | |||
|
407 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |||
|
408 | # else: | |||
|
409 | # std2a=sigmas2[0]; std2b=sigmas2[4] | |||
|
410 | # | |||
|
411 | # | |||
|
412 | # | |||
|
413 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |||
|
414 | # | |||
|
415 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error | |||
|
416 | # if oneG: | |||
|
417 | # choice=0 | |||
|
418 | # else: | |||
|
419 | # w1=lsq2[0][1]; w2=lsq2[0][5] | |||
|
420 | # a1=lsq2[0][2]; a2=lsq2[0][6] | |||
|
421 | # p1=lsq2[0][3]; p2=lsq2[0][7] | |||
|
422 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |||
|
423 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |||
|
424 | # | |||
|
425 | # if gp1>gp2: | |||
|
426 | # if a1>0.7*a2: | |||
|
427 | # choice=1 | |||
|
428 | # else: | |||
|
429 | # choice=2 | |||
|
430 | # elif gp2>gp1: | |||
|
431 | # if a2>0.7*a1: | |||
|
432 | # choice=2 | |||
|
433 | # else: | |||
|
434 | # choice=1 | |||
|
435 | # else: | |||
|
436 | # choice=numpy.argmax([a1,a2])+1 | |||
|
437 | # #else: | |||
|
438 | # #choice=argmin([std2a,std2b])+1 | |||
|
439 | # | |||
|
440 | # else: # with low SNR go to the most energetic peak | |||
|
441 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |||
|
442 | # | |||
|
443 | # #print 'choice',choice | |||
|
444 | # | |||
|
445 | # if choice==0: # pick the single gaussian fit | |||
|
446 | # Amplitude0=lsq1[0][2] | |||
|
447 | # shift0=lsq1[0][0] | |||
|
448 | # width0=lsq1[0][1] | |||
|
449 | # p0=lsq1[0][3] | |||
|
450 | # Amplitude1=0. | |||
|
451 | # shift1=0. | |||
|
452 | # width1=0. | |||
|
453 | # p1=0. | |||
|
454 | # noise=lsq1[0][4] | |||
|
455 | # elif choice==1: # take the first one of the 2 gaussians fitted | |||
|
456 | # Amplitude0 = lsq2[0][2] | |||
|
457 | # shift0 = lsq2[0][0] | |||
|
458 | # width0 = lsq2[0][1] | |||
|
459 | # p0 = lsq2[0][3] | |||
|
460 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |||
|
461 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |||
|
462 | # width1 = lsq2[0][5] # This is 0 in gg1 | |||
|
463 | # p1 = lsq2[0][7] # This is 0 in gg1 | |||
|
464 | # noise = lsq2[0][8] | |||
|
465 | # else: # the second one | |||
|
466 | # Amplitude0 = lsq2[0][6] | |||
|
467 | # shift0 = lsq2[0][4] | |||
|
468 | # width0 = lsq2[0][5] | |||
|
469 | # p0 = lsq2[0][7] | |||
|
470 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |||
|
471 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |||
|
472 | # width1 = lsq2[0][1] # This is 0 in gg1 | |||
|
473 | # p1 = lsq2[0][3] # This is 0 in gg1 | |||
|
474 | # noise = lsq2[0][8] | |||
|
475 | # | |||
|
476 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |||
|
477 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |||
|
478 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |||
|
479 | # #print 'SPC_ch1.shape',SPC_ch1.shape | |||
|
480 | # #print 'SPC_ch2.shape',SPC_ch2.shape | |||
|
481 | # #dataOut.data_param = SPC_ch1 | |||
|
482 | # GauSPC[0] = SPC_ch1 | |||
|
483 | # GauSPC[1] = SPC_ch2 | |||
|
484 | ||||
|
485 | # #plt.gcf().clear() | |||
|
486 | # plt.figure(50+self.i) | |||
|
487 | # self.i=self.i+1 | |||
|
488 | # #plt.subplot(121) | |||
|
489 | # plt.plot(self.spc,'k')#,label='spc(66)') | |||
|
490 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') | |||
|
491 | # #plt.plot(SPC_ch2,'r')#,label='gg2') | |||
|
492 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') | |||
|
493 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') | |||
|
494 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') | |||
|
495 | # plt.legend() | |||
|
496 | # plt.title('DATOS A ALTURA DE 7500 METROS') | |||
|
497 | # plt.show() | |||
|
498 | # print 'shift0', shift0 | |||
|
499 | # print 'Amplitude0', Amplitude0 | |||
|
500 | # print 'width0', width0 | |||
|
501 | # print 'p0', p0 | |||
|
502 | # print '========================' | |||
|
503 | # print 'shift1', shift1 | |||
|
504 | # print 'Amplitude1', Amplitude1 | |||
|
505 | # print 'width1', width1 | |||
|
506 | # print 'p1', p1 | |||
|
507 | # print 'noise', noise | |||
|
508 | # print 's_noise', wnoise | |||
|
509 | ||||
|
510 | print '========================================================' | |||
|
511 | print 'total_time: ', time.time()-start_time | |||
|
512 | ||||
|
513 | # re-normalizing spc and noise | |||
|
514 | # This part differs from gg1 | |||
|
515 | ||||
|
516 | ||||
|
517 | ||||
|
518 | ''' Parameters: | |||
|
519 | 1. Amplitude | |||
|
520 | 2. Shift | |||
|
521 | 3. Width | |||
|
522 | 4. Power | |||
|
523 | ''' | |||
|
524 | ||||
|
525 | ||||
|
526 | ############################################################################### | |||
|
527 | def FitGau(self, X): | |||
|
528 | ||||
|
529 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |||
|
530 | #print 'VARSSSS', ch, pnoise, noise, num_intg | |||
|
531 | ||||
|
532 | #print 'HEIGHTS', self.Num_Hei | |||
|
533 | ||||
|
534 | GauSPC = [] | |||
|
535 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |||
|
536 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |||
|
537 | SPC_ch1[:] = 0#numpy.NaN | |||
|
538 | SPC_ch2[:] = 0#numpy.NaN | |||
|
539 | ||||
|
540 | ||||
|
541 | ||||
|
542 | for ht in range(self.Num_Hei): | |||
|
543 | #print (numpy.asarray(self.spc).shape) | |||
|
544 | ||||
|
545 | #print 'TTTTT', ch , ht | |||
|
546 | #print self.spc.shape | |||
|
547 | ||||
|
548 | ||||
|
549 | spc = numpy.asarray(self.spc)[ch,:,ht] | |||
|
550 | ||||
|
551 | ############################################# | |||
|
552 | # normalizing spc and noise | |||
|
553 | # This part differs from gg1 | |||
|
554 | spc_norm_max = max(spc) | |||
|
555 | spc = spc / spc_norm_max | |||
|
556 | pnoise = pnoise / spc_norm_max | |||
|
557 | ############################################# | |||
|
558 | ||||
|
559 | fatspectra=1.0 | |||
|
560 | ||||
|
561 | wnoise = noise_ / spc_norm_max | |||
|
562 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |||
|
563 | #if wnoise>1.1*pnoise: # to be tested later | |||
|
564 | # wnoise=pnoise | |||
|
565 | noisebl=wnoise*0.9; noisebh=wnoise*1.1 | |||
|
566 | spc=spc-wnoise | |||
|
567 | # print 'wnoise', noise_[0], spc_norm_max, wnoise | |||
|
568 | minx=numpy.argmin(spc) | |||
|
569 | spcs=numpy.roll(spc,-minx) | |||
|
570 | cum=numpy.cumsum(spcs) | |||
|
571 | tot_noise=wnoise * self.Num_Bin #64; | |||
|
572 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise | |||
|
573 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' | |||
|
574 | #snr=tot_signal/tot_noise | |||
|
575 | #snr=cum[-1]/tot_noise | |||
|
576 | snr = sum(spcs)/tot_noise | |||
|
577 | snrdB=10.*numpy.log10(snr) | |||
|
578 | ||||
|
579 | if snrdB < SNRlimit : | |||
|
580 | snr = numpy.NaN | |||
|
581 | SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
582 | SPC_ch1[:,ht] = 0#numpy.NaN | |||
|
583 | GauSPC = (SPC_ch1,SPC_ch2) | |||
|
584 | continue | |||
|
585 | #print 'snr',snrdB #, sum(spcs) , tot_noise | |||
|
586 | ||||
|
587 | ||||
|
588 | ||||
|
589 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |||
|
590 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |||
|
591 | ||||
|
592 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region | |||
|
593 | cumlo=cummax*epsi; | |||
|
594 | cumhi=cummax*(1-epsi) | |||
|
595 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |||
|
596 | ||||
|
597 | ||||
|
598 | if len(powerindex) < 1:# case for powerindex 0 | |||
|
599 | continue | |||
|
600 | powerlo=powerindex[0] | |||
|
601 | powerhi=powerindex[-1] | |||
|
602 | powerwidth=powerhi-powerlo | |||
|
603 | ||||
|
604 | firstpeak=powerlo+powerwidth/10.# first gaussian energy location | |||
|
605 | secondpeak=powerhi-powerwidth/10.#second gaussian energy location | |||
|
606 | midpeak=(firstpeak+secondpeak)/2. | |||
|
607 | firstamp=spcs[int(firstpeak)] | |||
|
608 | secondamp=spcs[int(secondpeak)] | |||
|
609 | midamp=spcs[int(midpeak)] | |||
|
610 | ||||
|
611 | x=numpy.arange( self.Num_Bin ) | |||
|
612 | y_data=spc+wnoise | |||
|
613 | ||||
|
614 | # single gaussian | |||
|
615 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |||
|
616 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |||
|
617 | power0=2. | |||
|
618 | amplitude0=midamp | |||
|
619 | state0=[shift0,width0,amplitude0,power0,wnoise] | |||
|
620 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
621 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |||
|
622 | ||||
|
623 | chiSq1=lsq1[1]; | |||
|
624 | jack1= self.y_jacobian1(x,lsq1[0]) | |||
|
625 | ||||
|
626 | ||||
|
627 | try: | |||
|
628 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) | |||
|
629 | except: | |||
|
630 | std1=32.; sigmas1=numpy.ones(5) | |||
|
631 | else: | |||
|
632 | std1=sigmas1[0] | |||
|
633 | ||||
|
634 | ||||
|
635 | if fatspectra<1.0 and powerwidth<4: | |||
|
636 | choice=0 | |||
|
637 | Amplitude0=lsq1[0][2] | |||
|
638 | shift0=lsq1[0][0] | |||
|
639 | width0=lsq1[0][1] | |||
|
640 | p0=lsq1[0][3] | |||
|
641 | Amplitude1=0. | |||
|
642 | shift1=0. | |||
|
643 | width1=0. | |||
|
644 | p1=0. | |||
|
645 | noise=lsq1[0][4] | |||
|
646 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |||
|
647 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |||
|
648 | ||||
|
649 | # two gaussians | |||
|
650 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |||
|
651 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |||
|
652 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |||
|
653 | width0=powerwidth/6.; | |||
|
654 | width1=width0 | |||
|
655 | power0=2.; | |||
|
656 | power1=power0 | |||
|
657 | amplitude0=firstamp; | |||
|
658 | amplitude1=secondamp | |||
|
659 | state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] | |||
|
660 | #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
661 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |||
|
662 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |||
|
663 | ||||
|
664 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |||
|
665 | ||||
|
666 | ||||
|
667 | chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) | |||
|
668 | ||||
|
669 | ||||
|
670 | try: | |||
|
671 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) | |||
|
672 | except: | |||
|
673 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) | |||
|
674 | else: | |||
|
675 | std2a=sigmas2[0]; std2b=sigmas2[4] | |||
|
676 | ||||
|
677 | ||||
|
678 | ||||
|
679 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |||
|
680 | ||||
|
681 | if snrdB>-6: # when SNR is strong pick the peak with least shift (LOS velocity) error | |||
|
682 | if oneG: | |||
|
683 | choice=0 | |||
|
684 | else: | |||
|
685 | w1=lsq2[0][1]; w2=lsq2[0][5] | |||
|
686 | a1=lsq2[0][2]; a2=lsq2[0][6] | |||
|
687 | p1=lsq2[0][3]; p2=lsq2[0][7] | |||
|
688 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |||
|
689 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |||
|
690 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |||
|
691 | ||||
|
692 | if gp1>gp2: | |||
|
693 | if a1>0.7*a2: | |||
|
694 | choice=1 | |||
|
695 | else: | |||
|
696 | choice=2 | |||
|
697 | elif gp2>gp1: | |||
|
698 | if a2>0.7*a1: | |||
|
699 | choice=2 | |||
|
700 | else: | |||
|
701 | choice=1 | |||
|
702 | else: | |||
|
703 | choice=numpy.argmax([a1,a2])+1 | |||
|
704 | #else: | |||
|
705 | #choice=argmin([std2a,std2b])+1 | |||
|
706 | ||||
|
707 | else: # with low SNR go to the most energetic peak | |||
|
708 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |||
|
709 | ||||
|
710 | ||||
|
711 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |||
|
712 | shift1=lsq2[0][4]; vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |||
|
713 | ||||
|
714 | max_vel = 20 | |||
|
715 | ||||
|
716 | #first peak will be 0, second peak will be 1 | |||
|
717 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range | |||
|
718 | shift0=lsq2[0][0] | |||
|
719 | width0=lsq2[0][1] | |||
|
720 | Amplitude0=lsq2[0][2] | |||
|
721 | p0=lsq2[0][3] | |||
|
722 | ||||
|
723 | shift1=lsq2[0][4] | |||
|
724 | width1=lsq2[0][5] | |||
|
725 | Amplitude1=lsq2[0][6] | |||
|
726 | p1=lsq2[0][7] | |||
|
727 | noise=lsq2[0][8] | |||
|
728 | else: | |||
|
729 | shift1=lsq2[0][0] | |||
|
730 | width1=lsq2[0][1] | |||
|
731 | Amplitude1=lsq2[0][2] | |||
|
732 | p1=lsq2[0][3] | |||
|
733 | ||||
|
734 | shift0=lsq2[0][4] | |||
|
735 | width0=lsq2[0][5] | |||
|
736 | Amplitude0=lsq2[0][6] | |||
|
737 | p0=lsq2[0][7] | |||
|
738 | noise=lsq2[0][8] | |||
|
739 | ||||
|
740 | if Amplitude0<0.1: # in case the peak is noise | |||
|
741 | shift0,width0,Amplitude0,p0 = 4*[numpy.NaN] | |||
|
742 | if Amplitude1<0.1: | |||
|
743 | shift1,width1,Amplitude1,p1 = 4*[numpy.NaN] | |||
|
744 | ||||
|
745 | ||||
|
746 | # if choice==0: # pick the single gaussian fit | |||
|
747 | # Amplitude0=lsq1[0][2] | |||
|
748 | # shift0=lsq1[0][0] | |||
|
749 | # width0=lsq1[0][1] | |||
|
750 | # p0=lsq1[0][3] | |||
|
751 | # Amplitude1=0. | |||
|
752 | # shift1=0. | |||
|
753 | # width1=0. | |||
|
754 | # p1=0. | |||
|
755 | # noise=lsq1[0][4] | |||
|
756 | # elif choice==1: # take the first one of the 2 gaussians fitted | |||
|
757 | # Amplitude0 = lsq2[0][2] | |||
|
758 | # shift0 = lsq2[0][0] | |||
|
759 | # width0 = lsq2[0][1] | |||
|
760 | # p0 = lsq2[0][3] | |||
|
761 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 | |||
|
762 | # shift1 = lsq2[0][4] # This is 0 in gg1 | |||
|
763 | # width1 = lsq2[0][5] # This is 0 in gg1 | |||
|
764 | # p1 = lsq2[0][7] # This is 0 in gg1 | |||
|
765 | # noise = lsq2[0][8] | |||
|
766 | # else: # the second one | |||
|
767 | # Amplitude0 = lsq2[0][6] | |||
|
768 | # shift0 = lsq2[0][4] | |||
|
769 | # width0 = lsq2[0][5] | |||
|
770 | # p0 = lsq2[0][7] | |||
|
771 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 | |||
|
772 | # shift1 = lsq2[0][0] # This is 0 in gg1 | |||
|
773 | # width1 = lsq2[0][1] # This is 0 in gg1 | |||
|
774 | # p1 = lsq2[0][3] # This is 0 in gg1 | |||
|
775 | # noise = lsq2[0][8] | |||
|
776 | ||||
|
777 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) | |||
|
778 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |||
|
779 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |||
|
780 | #print 'SPC_ch1.shape',SPC_ch1.shape | |||
|
781 | #print 'SPC_ch2.shape',SPC_ch2.shape | |||
|
782 | #dataOut.data_param = SPC_ch1 | |||
|
783 | GauSPC = (SPC_ch1,SPC_ch2) | |||
|
784 | #GauSPC[1] = SPC_ch2 | |||
|
785 | ||||
|
786 | # print 'shift0', shift0 | |||
|
787 | # print 'Amplitude0', Amplitude0 | |||
|
788 | # print 'width0', width0 | |||
|
789 | # print 'p0', p0 | |||
|
790 | # print '========================' | |||
|
791 | # print 'shift1', shift1 | |||
|
792 | # print 'Amplitude1', Amplitude1 | |||
|
793 | # print 'width1', width1 | |||
|
794 | # print 'p1', p1 | |||
|
795 | # print 'noise', noise | |||
|
796 | # print 's_noise', wnoise | |||
|
797 | ||||
|
798 | return GauSPC | |||
|
799 | ||||
|
800 | ||||
|
801 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. | |||
|
802 | y_model=self.y_model1(x,state) | |||
|
803 | s0,w0,a0,p0,n=state | |||
|
804 | e0=((x-s0)/w0)**2; | |||
|
805 | ||||
|
806 | e0u=((x-s0-self.Num_Bin)/w0)**2; | |||
|
807 | ||||
|
808 | e0d=((x-s0+self.Num_Bin)/w0)**2 | |||
|
809 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |||
|
810 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |||
|
811 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |||
|
812 | JA=m0+m0u+m0d | |||
|
813 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |||
|
814 | ||||
|
815 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |||
|
816 | ||||
|
817 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |||
|
818 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) | |||
|
819 | return jack1.T | |||
|
820 | ||||
|
821 | def y_jacobian2(self,x,state): | |||
|
822 | y_model=self.y_model2(x,state) | |||
|
823 | s0,w0,a0,p0,s1,w1,a1,p1,n=state | |||
|
824 | e0=((x-s0)/w0)**2; | |||
|
825 | ||||
|
826 | e0u=((x-s0- self.Num_Bin )/w0)**2; | |||
|
827 | ||||
|
828 | e0d=((x-s0+ self.Num_Bin )/w0)**2 | |||
|
829 | e1=((x-s1)/w1)**2; | |||
|
830 | ||||
|
831 | e1u=((x-s1- self.Num_Bin )/w1)**2; | |||
|
832 | ||||
|
833 | e1d=((x-s1+ self.Num_Bin )/w1)**2 | |||
|
834 | m0=numpy.exp(-0.5*e0**(p0/2.)); | |||
|
835 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); | |||
|
836 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) | |||
|
837 | m1=numpy.exp(-0.5*e1**(p1/2.)); | |||
|
838 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); | |||
|
839 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) | |||
|
840 | JA=m0+m0u+m0d | |||
|
841 | JA1=m1+m1u+m1d | |||
|
842 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) | |||
|
843 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) | |||
|
844 | ||||
|
845 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) | |||
|
846 | ||||
|
847 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) | |||
|
848 | ||||
|
849 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 | |||
|
850 | ||||
|
851 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 | |||
|
852 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) | |||
|
853 | return jack2.T | |||
|
854 | ||||
|
855 | def y_model1(self,x,state): | |||
|
856 | shift0,width0,amplitude0,power0,noise=state | |||
|
857 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |||
|
858 | ||||
|
859 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |||
|
860 | ||||
|
861 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |||
|
862 | return model0+model0u+model0d+noise | |||
|
863 | ||||
|
864 | def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist | |||
|
865 | shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state | |||
|
866 | model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0) | |||
|
867 | ||||
|
868 | model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0) | |||
|
869 | ||||
|
870 | model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0) | |||
|
871 | model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1) | |||
|
872 | ||||
|
873 | model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1) | |||
|
874 | ||||
|
875 | model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1) | |||
|
876 | return model0+model0u+model0d+model1+model1u+model1d+noise | |||
|
877 | ||||
|
878 | def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is. | |||
128 |
|
879 | |||
129 | Type of dataIn: Spectra |
|
880 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented | |
|
881 | ||||
|
882 | def misfit2(self,state,y_data,x,num_intg): | |||
|
883 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |||
|
884 | ||||
130 |
|
885 | |||
131 | Configuration Parameters: |
|
886 | class PrecipitationProc(Operation): | |
|
887 | ||||
|
888 | ''' | |||
|
889 | Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R) | |||
|
890 | ||||
|
891 | Input: | |||
|
892 | self.dataOut.data_pre : SelfSpectra | |||
|
893 | ||||
|
894 | Output: | |||
|
895 | ||||
|
896 | self.dataOut.data_output : Reflectivity factor, rainfall Rate | |||
|
897 | ||||
|
898 | ||||
|
899 | Parameters affected: | |||
|
900 | ''' | |||
|
901 | ||||
|
902 | ||||
|
903 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, | |||
|
904 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): | |||
|
905 | ||||
|
906 | self.spc = dataOut.data_pre[0].copy() | |||
|
907 | self.Num_Hei = self.spc.shape[2] | |||
|
908 | self.Num_Bin = self.spc.shape[1] | |||
|
909 | self.Num_Chn = self.spc.shape[0] | |||
|
910 | ||||
|
911 | Velrange = dataOut.abscissaList | |||
|
912 | ||||
|
913 | if radar == "MIRA35C" : | |||
|
914 | ||||
|
915 | Ze = self.dBZeMODE2(dataOut) | |||
|
916 | ||||
|
917 | else: | |||
|
918 | ||||
|
919 | self.Pt = Pt | |||
|
920 | self.Gt = Gt | |||
|
921 | self.Gr = Gr | |||
|
922 | self.Lambda = Lambda | |||
|
923 | self.aL = aL | |||
|
924 | self.tauW = tauW | |||
|
925 | self.ThetaT = ThetaT | |||
|
926 | self.ThetaR = ThetaR | |||
|
927 | ||||
|
928 | RadarConstant = GetRadarConstant() | |||
|
929 | SPCmean = numpy.mean(self.spc,0) | |||
|
930 | ETA = numpy.zeros(self.Num_Hei) | |||
|
931 | Pr = numpy.sum(SPCmean,0) | |||
|
932 | ||||
|
933 | #for R in range(self.Num_Hei): | |||
|
934 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |||
|
935 | ||||
|
936 | D_range = numpy.zeros(self.Num_Hei) | |||
|
937 | EqSec = numpy.zeros(self.Num_Hei) | |||
|
938 | del_V = numpy.zeros(self.Num_Hei) | |||
|
939 | ||||
|
940 | for R in range(self.Num_Hei): | |||
|
941 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) | |||
|
942 | ||||
|
943 | h = R + Altitude #Range from ground to radar pulse altitude | |||
|
944 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |||
|
945 | ||||
|
946 | D_range[R] = numpy.log( (9.65 - (Velrange[R]/del_V[R])) / 10.3 ) / -0.6 #Range of Diameter of drops related to velocity | |||
|
947 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) | |||
|
948 | ||||
|
949 | N_dist[R] = ETA[R] / SIGMA[R] | |||
|
950 | ||||
|
951 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) | |||
|
952 | Z = numpy.sum( N_dist * D_range**6 ) | |||
|
953 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate | |||
|
954 | ||||
|
955 | ||||
|
956 | RR = (Ze/200)**(1/1.6) | |||
|
957 | dBRR = 10*numpy.log10(RR) | |||
|
958 | ||||
|
959 | dBZe = 10*numpy.log10(Ze) | |||
|
960 | dataOut.data_output = Ze | |||
|
961 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) | |||
|
962 | dataOut.channelList = [0,1] | |||
|
963 | print 'channelList', dataOut.channelList | |||
|
964 | dataOut.data_param[0]=dBZe | |||
|
965 | dataOut.data_param[1]=dBRR | |||
|
966 | print 'RR SHAPE', dBRR.shape | |||
|
967 | print 'Ze SHAPE', dBZe.shape | |||
|
968 | print 'dataOut.data_param SHAPE', dataOut.data_param.shape | |||
|
969 | ||||
|
970 | ||||
|
971 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |||
|
972 | ||||
|
973 | NPW = dataOut.NPW | |||
|
974 | COFA = dataOut.COFA | |||
|
975 | ||||
|
976 | SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]]) | |||
|
977 | RadarConst = dataOut.RadarConst | |||
|
978 | #frequency = 34.85*10**9 | |||
|
979 | ||||
|
980 | ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei])) | |||
|
981 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |||
|
982 | ||||
|
983 | ETA = numpy.sum(SNR,1) | |||
|
984 | print 'ETA' , ETA | |||
|
985 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |||
|
986 | ||||
|
987 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |||
|
988 | ||||
|
989 | for r in range(self.Num_Hei): | |||
|
990 | ||||
|
991 | Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2) | |||
|
992 | #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2) | |||
|
993 | ||||
|
994 | return Ze | |||
|
995 | ||||
|
996 | def GetRadarConstant(self): | |||
|
997 | ||||
|
998 | """ | |||
|
999 | Constants: | |||
|
1000 | ||||
|
1001 | Pt: Transmission Power dB | |||
|
1002 | Gt: Transmission Gain dB | |||
|
1003 | Gr: Reception Gain dB | |||
|
1004 | Lambda: Wavelenght m | |||
|
1005 | aL: Attenuation loses dB | |||
|
1006 | tauW: Width of transmission pulse s | |||
|
1007 | ThetaT: Transmission antenna bean angle rad | |||
|
1008 | ThetaR: Reception antenna beam angle rad | |||
|
1009 | ||||
|
1010 | """ | |||
|
1011 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |||
|
1012 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |||
|
1013 | RadarConstant = Numerator / Denominator | |||
|
1014 | ||||
|
1015 | return RadarConstant | |||
|
1016 | ||||
|
1017 | ||||
|
1018 | ||||
|
1019 | class FullSpectralAnalysis(Operation): | |||
|
1020 | ||||
|
1021 | """ | |||
|
1022 | Function that implements Full Spectral Analisys technique. | |||
|
1023 | ||||
|
1024 | Input: | |||
|
1025 | self.dataOut.data_pre : SelfSpectra and CrossSPectra data | |||
|
1026 | self.dataOut.groupList : Pairlist of channels | |||
|
1027 | self.dataOut.ChanDist : Physical distance between receivers | |||
|
1028 | ||||
|
1029 | ||||
|
1030 | Output: | |||
|
1031 | ||||
|
1032 | self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind | |||
|
1033 | ||||
|
1034 | ||||
|
1035 | Parameters affected: Winds, height range, SNR | |||
|
1036 | ||||
|
1037 | """ | |||
|
1038 | def run(self, dataOut, E01=None, E02=None, E12=None, N01=None, N02=None, N12=None, SNRlimit=7): | |||
|
1039 | ||||
|
1040 | spc = dataOut.data_pre[0].copy() | |||
|
1041 | cspc = dataOut.data_pre[1].copy() | |||
|
1042 | ||||
|
1043 | nChannel = spc.shape[0] | |||
|
1044 | nProfiles = spc.shape[1] | |||
|
1045 | nHeights = spc.shape[2] | |||
|
1046 | ||||
|
1047 | pairsList = dataOut.groupList | |||
|
1048 | if dataOut.ChanDist is not None : | |||
|
1049 | ChanDist = dataOut.ChanDist | |||
|
1050 | else: | |||
|
1051 | ChanDist = numpy.array([[E01, N01],[E02,N02],[E12,N12]]) | |||
|
1052 | ||||
|
1053 | #print 'ChanDist', ChanDist | |||
|
1054 | ||||
|
1055 | if dataOut.VelRange is not None: | |||
|
1056 | VelRange= dataOut.VelRange | |||
|
1057 | else: | |||
|
1058 | VelRange= dataOut.abscissaList | |||
|
1059 | ||||
|
1060 | ySamples=numpy.ones([nChannel,nProfiles]) | |||
|
1061 | phase=numpy.ones([nChannel,nProfiles]) | |||
|
1062 | CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_) | |||
|
1063 | coherence=numpy.ones([nChannel,nProfiles]) | |||
|
1064 | PhaseSlope=numpy.ones(nChannel) | |||
|
1065 | PhaseInter=numpy.ones(nChannel) | |||
|
1066 | dataSNR = dataOut.data_SNR | |||
|
1067 | ||||
|
1068 | ||||
|
1069 | ||||
|
1070 | data = dataOut.data_pre | |||
|
1071 | noise = dataOut.noise | |||
|
1072 | print 'noise',noise | |||
|
1073 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) | |||
|
1074 | ||||
|
1075 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) | |||
|
1076 | #SNRdBMean = [] | |||
132 |
|
1077 | |||
|
1078 | ||||
|
1079 | #for j in range(nHeights): | |||
|
1080 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) | |||
|
1081 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) | |||
|
1082 | ||||
|
1083 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN | |||
|
1084 | ||||
|
1085 | velocityX=[] | |||
|
1086 | velocityY=[] | |||
|
1087 | velocityV=[] | |||
|
1088 | ||||
|
1089 | dbSNR = 10*numpy.log10(dataSNR) | |||
|
1090 | dbSNR = numpy.average(dbSNR,0) | |||
|
1091 | for Height in range(nHeights): | |||
|
1092 | ||||
|
1093 | [Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR[Height], SNRlimit) | |||
|
1094 | ||||
|
1095 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |||
|
1096 | velocityX=numpy.append(velocityX, Vzon)#Vmag | |||
|
1097 | ||||
|
1098 | else: | |||
|
1099 | print 'Vzon',Vzon | |||
|
1100 | velocityX=numpy.append(velocityX, numpy.NaN) | |||
|
1101 | ||||
|
1102 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |||
|
1103 | velocityY=numpy.append(velocityY, Vmer)#Vang | |||
|
1104 | ||||
|
1105 | else: | |||
|
1106 | print 'Vmer',Vmer | |||
|
1107 | velocityY=numpy.append(velocityY, numpy.NaN) | |||
|
1108 | ||||
|
1109 | if dbSNR[Height] > SNRlimit: | |||
|
1110 | velocityV=numpy.append(velocityV, FirstMoment[Height]) | |||
|
1111 | else: | |||
|
1112 | velocityV=numpy.append(velocityV, numpy.NaN) | |||
|
1113 | #FirstMoment[Height]= numpy.NaN | |||
|
1114 | # if SNRdBMean[Height] <12: | |||
|
1115 | # FirstMoment[Height] = numpy.NaN | |||
|
1116 | # velocityX[Height] = numpy.NaN | |||
|
1117 | # velocityY[Height] = numpy.NaN | |||
|
1118 | ||||
|
1119 | ||||
|
1120 | data_output[0]=numpy.array(velocityX) | |||
|
1121 | data_output[1]=numpy.array(velocityY) | |||
|
1122 | data_output[2]=-velocityV#FirstMoment | |||
|
1123 | ||||
|
1124 | print ' ' | |||
|
1125 | #print 'FirstMoment' | |||
|
1126 | #print FirstMoment | |||
|
1127 | print 'velocityX',data_output[0] | |||
|
1128 | print ' ' | |||
|
1129 | print 'velocityY',data_output[1] | |||
|
1130 | #print numpy.array(velocityY) | |||
|
1131 | print ' ' | |||
|
1132 | #print 'SNR' | |||
|
1133 | #print 10*numpy.log10(dataOut.data_SNR) | |||
|
1134 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) | |||
|
1135 | print ' ' | |||
|
1136 | ||||
|
1137 | ||||
|
1138 | dataOut.data_output=data_output | |||
|
1139 | return | |||
|
1140 | ||||
|
1141 | ||||
|
1142 | def moving_average(self,x, N=2): | |||
|
1143 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |||
|
1144 | ||||
|
1145 | def gaus(self,xSamples,a,x0,sigma): | |||
|
1146 | return a*numpy.exp(-(xSamples-x0)**2/(2*sigma**2)) | |||
|
1147 | ||||
|
1148 | def Find(self,x,value): | |||
|
1149 | for index in range(len(x)): | |||
|
1150 | if x[index]==value: | |||
|
1151 | return index | |||
|
1152 | ||||
|
1153 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, VelRange, dbSNR, SNRlimit): | |||
|
1154 | ||||
|
1155 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |||
|
1156 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |||
|
1157 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |||
|
1158 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |||
|
1159 | PhaseSlope=numpy.ones(spc.shape[0]) | |||
|
1160 | PhaseInter=numpy.ones(spc.shape[0]) | |||
|
1161 | xFrec=VelRange | |||
|
1162 | ||||
|
1163 | '''Getting Eij and Nij''' | |||
|
1164 | ||||
|
1165 | E01=ChanDist[0][0] | |||
|
1166 | N01=ChanDist[0][1] | |||
|
1167 | ||||
|
1168 | E02=ChanDist[1][0] | |||
|
1169 | N02=ChanDist[1][1] | |||
|
1170 | ||||
|
1171 | E12=ChanDist[2][0] | |||
|
1172 | N12=ChanDist[2][1] | |||
|
1173 | ||||
|
1174 | z = spc.copy() | |||
|
1175 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |||
|
1176 | ||||
|
1177 | for i in range(spc.shape[0]): | |||
|
1178 | ||||
|
1179 | '''****** Line of Data SPC ******''' | |||
|
1180 | zline=z[i,:,Height] | |||
|
1181 | ||||
|
1182 | '''****** SPC is normalized ******''' | |||
|
1183 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) | |||
|
1184 | FactNorm= FactNorm/numpy.sum(FactNorm) | |||
|
1185 | ||||
|
1186 | SmoothSPC=self.moving_average(FactNorm,N=3) | |||
|
1187 | ||||
|
1188 | xSamples = ar(range(len(SmoothSPC))) | |||
|
1189 | ySamples[i] = SmoothSPC | |||
|
1190 | ||||
|
1191 | #dbSNR=10*numpy.log10(dataSNR) | |||
|
1192 | print ' ' | |||
|
1193 | print ' ' | |||
|
1194 | print ' ' | |||
|
1195 | ||||
|
1196 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] | |||
|
1197 | print 'SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20] | |||
|
1198 | print 'noise',noise | |||
|
1199 | print 'zline',zline.shape, zline[0:20] | |||
|
1200 | print 'FactNorm',FactNorm.shape, FactNorm[0:20] | |||
|
1201 | print 'FactNorm suma', numpy.sum(FactNorm) | |||
|
1202 | ||||
|
1203 | for i in range(spc.shape[0]): | |||
|
1204 | ||||
|
1205 | '''****** Line of Data CSPC ******''' | |||
|
1206 | cspcLine=cspc[i,:,Height].copy() | |||
|
1207 | ||||
|
1208 | '''****** CSPC is normalized ******''' | |||
|
1209 | chan_index0 = pairsList[i][0] | |||
|
1210 | chan_index1 = pairsList[i][1] | |||
|
1211 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # | |||
|
1212 | ||||
|
1213 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) | |||
|
1214 | ||||
|
1215 | CSPCSamples[i] = CSPCNorm | |||
|
1216 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |||
|
1217 | ||||
|
1218 | coherence[i]= self.moving_average(coherence[i],N=2) | |||
|
1219 | ||||
|
1220 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |||
|
1221 | ||||
|
1222 | print 'cspcLine', cspcLine.shape, cspcLine[0:20] | |||
|
1223 | print 'CSPCFactor', CSPCFactor#, CSPCFactor[0:20] | |||
|
1224 | print numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i] | |||
|
1225 | print 'CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20] | |||
|
1226 | print 'CSPCNorm suma', numpy.sum(CSPCNorm) | |||
|
1227 | print 'CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20] | |||
|
1228 | ||||
|
1229 | '''****** Getting fij width ******''' | |||
|
1230 | ||||
|
1231 | yMean=[] | |||
|
1232 | yMean2=[] | |||
|
1233 | ||||
|
1234 | for j in range(len(ySamples[1])): | |||
|
1235 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) | |||
|
1236 | ||||
|
1237 | '''******* Getting fitting Gaussian ******''' | |||
|
1238 | meanGauss=sum(xSamples*yMean) / len(xSamples) | |||
|
1239 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) | |||
|
1240 | ||||
|
1241 | print '****************************' | |||
|
1242 | print 'len(xSamples): ',len(xSamples) | |||
|
1243 | print 'yMean: ', yMean.shape, yMean[0:20] | |||
|
1244 | print 'ySamples', ySamples.shape, ySamples[0,0:20] | |||
|
1245 | print 'xSamples: ',xSamples.shape, xSamples[0:20] | |||
|
1246 | ||||
|
1247 | print 'meanGauss',meanGauss | |||
|
1248 | print 'sigma',sigma | |||
|
1249 | ||||
|
1250 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): | |||
|
1251 | if dbSNR > SNRlimit : | |||
|
1252 | try: | |||
|
1253 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) | |||
|
1254 | ||||
|
1255 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: | |||
|
1256 | FitGauss=self.gaus(xSamples,*popt) | |||
|
1257 | ||||
|
1258 | else: | |||
|
1259 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |||
|
1260 | print 'Verificador: Dentro', Height | |||
|
1261 | except :#RuntimeError: | |||
|
1262 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |||
|
1263 | ||||
|
1264 | ||||
|
1265 | else: | |||
|
1266 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |||
|
1267 | ||||
|
1268 | Maximun=numpy.amax(yMean) | |||
|
1269 | eMinus1=Maximun*numpy.exp(-1)#*0.8 | |||
|
1270 | ||||
|
1271 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) | |||
|
1272 | HalfWidth= xFrec[HWpos] | |||
|
1273 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) | |||
|
1274 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) | |||
|
1275 | ||||
|
1276 | #Vpos=FirstMoment[] | |||
|
1277 | ||||
|
1278 | '''****** Getting Fij ******''' | |||
|
1279 | ||||
|
1280 | GaussCenter=xFrec[GCpos] | |||
|
1281 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): | |||
|
1282 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 | |||
|
1283 | else: | |||
|
1284 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 | |||
|
1285 | ||||
|
1286 | '''****** Getting Frecuency range of significant data ******''' | |||
|
1287 | ||||
|
1288 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) | |||
|
1289 | ||||
|
1290 | if Rangpos<GCpos: | |||
|
1291 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) | |||
|
1292 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): | |||
|
1293 | Range=numpy.array([2*GCpos-Rangpos,Rangpos]) | |||
|
1294 | else: | |||
|
1295 | Range = numpy.array([0,0]) | |||
|
1296 | ||||
|
1297 | print ' ' | |||
|
1298 | print 'GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1) | |||
|
1299 | print 'Rangpos',Rangpos | |||
|
1300 | print 'RANGE: ', Range | |||
|
1301 | FrecRange=xFrec[Range[0]:Range[1]] | |||
|
1302 | ||||
|
1303 | '''****** Getting SCPC Slope ******''' | |||
|
1304 | ||||
|
1305 | for i in range(spc.shape[0]): | |||
|
1306 | ||||
|
1307 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.5: | |||
|
1308 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |||
|
1309 | ||||
|
1310 | print 'FrecRange', len(FrecRange) , FrecRange | |||
|
1311 | print 'PhaseRange', len(PhaseRange), PhaseRange | |||
|
1312 | print ' ' | |||
|
1313 | if len(FrecRange) == len(PhaseRange): | |||
|
1314 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) | |||
|
1315 | PhaseSlope[i]=slope | |||
|
1316 | PhaseInter[i]=intercept | |||
|
1317 | else: | |||
|
1318 | PhaseSlope[i]=0 | |||
|
1319 | PhaseInter[i]=0 | |||
|
1320 | else: | |||
|
1321 | PhaseSlope[i]=0 | |||
|
1322 | PhaseInter[i]=0 | |||
|
1323 | ||||
|
1324 | '''Getting constant C''' | |||
|
1325 | cC=(Fij*numpy.pi)**2 | |||
|
1326 | ||||
|
1327 | '''****** Getting constants F and G ******''' | |||
|
1328 | MijEijNij=numpy.array([[E02,N02], [E12,N12]]) | |||
|
1329 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |||
|
1330 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |||
|
1331 | MijResults=numpy.array([MijResult0,MijResult1]) | |||
|
1332 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |||
|
1333 | ||||
|
1334 | '''****** Getting constants A, B and H ******''' | |||
|
1335 | W01=numpy.amax(coherence[0]) | |||
|
1336 | W02=numpy.amax(coherence[1]) | |||
|
1337 | W12=numpy.amax(coherence[2]) | |||
|
1338 | ||||
|
1339 | WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |||
|
1340 | WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |||
|
1341 | WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |||
|
1342 | ||||
|
1343 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |||
|
1344 | ||||
|
1345 | WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) | |||
|
1346 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |||
|
1347 | ||||
|
1348 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |||
|
1349 | ||||
|
1350 | VxVyResults=numpy.array([-cF,-cG]) | |||
|
1351 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |||
|
1352 | ||||
|
1353 | Vzon = Vy | |||
|
1354 | Vmer = Vx | |||
|
1355 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |||
|
1356 | Vang=numpy.arctan2(Vmer,Vzon) | |||
|
1357 | Vver=xFrec[Vpos] | |||
|
1358 | print 'vzon y vmer', Vzon, Vmer | |||
|
1359 | return Vzon, Vmer, Vver, GaussCenter | |||
|
1360 | ||||
|
1361 | class SpectralMoments(Operation): | |||
|
1362 | ||||
|
1363 | ''' | |||
|
1364 | Function SpectralMoments() | |||
|
1365 | ||||
|
1366 | Calculates moments (power, mean, standard deviation) and SNR of the signal | |||
|
1367 | ||||
|
1368 | Type of dataIn: Spectra | |||
|
1369 | ||||
|
1370 | Configuration Parameters: | |||
|
1371 | ||||
133 | dirCosx : Cosine director in X axis |
|
1372 | dirCosx : Cosine director in X axis | |
134 | dirCosy : Cosine director in Y axis |
|
1373 | dirCosy : Cosine director in Y axis | |
135 |
|
1374 | |||
136 | elevation : |
|
1375 | elevation : | |
137 | azimuth : |
|
1376 | azimuth : | |
138 |
|
1377 | |||
139 | Input: |
|
1378 | Input: | |
140 | channelList : simple channel list to select e.g. [2,3,7] |
|
1379 | channelList : simple channel list to select e.g. [2,3,7] | |
141 | self.dataOut.data_pre : Spectral data |
|
1380 | self.dataOut.data_pre : Spectral data | |
142 | self.dataOut.abscissaList : List of frequencies |
|
1381 | self.dataOut.abscissaList : List of frequencies | |
143 | self.dataOut.noise : Noise level per channel |
|
1382 | self.dataOut.noise : Noise level per channel | |
144 |
|
1383 | |||
145 | Affected: |
|
1384 | Affected: | |
146 | self.dataOut.data_param : Parameters per channel |
|
1385 | self.dataOut.data_param : Parameters per channel | |
147 | self.dataOut.data_SNR : SNR per channel |
|
1386 | self.dataOut.data_SNR : SNR per channel | |
148 |
|
1387 | |||
149 | ''' |
|
1388 | ''' | |
150 |
|
1389 | |||
151 |
|
|
1390 | def run(self, dataOut): | |
152 |
|
1391 | |||
153 |
|
|
1392 | #dataOut.data_pre = dataOut.data_pre[0] | |
154 |
|
|
1393 | data = dataOut.data_pre[0] | |
155 |
|
|
1394 | absc = dataOut.abscissaList[:-1] | |
156 |
|
|
1395 | noise = dataOut.noise | |
157 |
|
|
1396 | nChannel = data.shape[0] | |
158 |
|
|
1397 | data_param = numpy.zeros((nChannel, 4, data.shape[2])) | |
159 |
|
1398 | |||
160 |
|
|
1399 | for ind in range(nChannel): | |
161 |
|
|
1400 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
162 |
|
1401 | |||
163 |
|
|
1402 | dataOut.data_param = data_param[:,1:,:] | |
164 |
|
|
1403 | dataOut.data_SNR = data_param[:,0] | |
165 |
|
|
1404 | dataOut.data_DOP = data_param[:,1] | |
166 |
|
|
1405 | dataOut.data_MEAN = data_param[:,2] | |
167 |
|
|
1406 | dataOut.data_STD = data_param[:,3] | |
168 |
|
|
1407 | return | |
169 |
|
1408 | |||
170 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
1409 | def __calculateMoments(self, oldspec, oldfreq, n0, | |
171 |
|
1410 | nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | ||
172 | if (nicoh is None): nicoh = 1 |
|
1411 | ||
173 |
|
|
1412 | if (nicoh == None): nicoh = 1 | |
174 |
|
|
1413 | if (graph == None): graph = 0 | |
|
1414 | if (smooth == None): smooth = 0 | |||
175 |
|
|
1415 | elif (self.smooth < 3): smooth = 0 | |
176 |
|
1416 | |||
177 |
|
|
1417 | if (type1 == None): type1 = 0 | |
178 |
|
|
1418 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
179 |
|
|
1419 | if (snrth == None): snrth = -3 | |
180 |
|
|
1420 | if (dc == None): dc = 0 | |
181 |
|
|
1421 | if (aliasing == None): aliasing = 0 | |
182 |
|
|
1422 | if (oldfd == None): oldfd = 0 | |
183 |
|
|
1423 | if (wwauto == None): wwauto = 0 | |
184 |
|
1424 | |||
185 |
|
|
1425 | if (n0 < 1.e-20): n0 = 1.e-20 | |
186 |
|
1426 | |||
187 |
|
|
1427 | freq = oldfreq | |
188 |
|
|
1428 | vec_power = numpy.zeros(oldspec.shape[1]) | |
189 |
|
|
1429 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
@@ -191,86 +1431,86 class SpectralMoments(Operation): | |||||
191 |
|
|
1431 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
192 |
|
1432 | |||
193 |
|
|
1433 | for ind in range(oldspec.shape[1]): | |
194 |
|
1434 | |||
195 |
|
|
1435 | spec = oldspec[:,ind] | |
196 |
|
|
1436 | aux = spec*fwindow | |
197 |
|
|
1437 | max_spec = aux.max() | |
198 |
|
|
1438 | m = list(aux).index(max_spec) | |
199 |
|
1439 | |||
200 |
|
|
1440 | #Smooth | |
201 |
|
|
1441 | if (smooth == 0): spec2 = spec | |
202 |
|
|
1442 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
203 |
|
1443 | |||
204 |
|
|
1444 | # Calculo de Momentos | |
205 |
|
|
1445 | bb = spec2[range(m,spec2.size)] | |
206 |
|
|
1446 | bb = (bb<n0).nonzero() | |
207 |
|
|
1447 | bb = bb[0] | |
208 |
|
1448 | |||
209 |
|
|
1449 | ss = spec2[range(0,m + 1)] | |
210 |
|
|
1450 | ss = (ss<n0).nonzero() | |
211 |
|
|
1451 | ss = ss[0] | |
212 |
|
1452 | |||
213 |
|
|
1453 | if (bb.size == 0): | |
214 |
|
|
1454 | bb0 = spec.size - 1 - m | |
215 |
|
|
1455 | else: | |
216 |
|
|
1456 | bb0 = bb[0] - 1 | |
217 |
|
|
1457 | if (bb0 < 0): | |
218 |
|
|
1458 | bb0 = 0 | |
219 |
|
1459 | |||
220 |
|
|
1460 | if (ss.size == 0): ss1 = 1 | |
221 |
|
|
1461 | else: ss1 = max(ss) + 1 | |
222 |
|
1462 | |||
223 |
|
|
1463 | if (ss1 > m): ss1 = m | |
224 |
|
1464 | |||
225 |
|
|
1465 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
226 |
|
|
1466 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
227 |
|
|
1467 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
228 |
|
|
1468 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
229 |
|
|
1469 | snr = (spec2.mean()-n0)/n0 | |
230 |
|
1470 | |||
231 |
|
|
1471 | if (snr < 1.e-20) : | |
232 |
|
|
1472 | snr = 1.e-20 | |
233 |
|
1473 | |||
234 |
|
|
1474 | vec_power[ind] = power | |
235 |
|
|
1475 | vec_fd[ind] = fd | |
236 |
|
|
1476 | vec_w[ind] = w | |
237 |
|
|
1477 | vec_snr[ind] = snr | |
238 |
|
1478 | |||
239 |
|
|
1479 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
240 |
|
|
1480 | return moments | |
241 |
|
1481 | |||
242 |
|
|
1482 | #------------------ Get SA Parameters -------------------------- | |
243 |
|
1483 | |||
244 |
|
|
1484 | def GetSAParameters(self): | |
245 |
|
|
1485 | #SA en frecuencia | |
246 |
|
|
1486 | pairslist = self.dataOut.groupList | |
247 |
|
|
1487 | num_pairs = len(pairslist) | |
248 |
|
1488 | |||
249 |
|
|
1489 | vel = self.dataOut.abscissaList | |
250 |
|
|
1490 | spectra = self.dataOut.data_pre | |
251 |
|
|
1491 | cspectra = self.dataIn.data_cspc | |
252 |
|
|
1492 | delta_v = vel[1] - vel[0] | |
253 |
|
1493 | |||
254 |
|
|
1494 | #Calculating the power spectrum | |
255 |
|
|
1495 | spc_pow = numpy.sum(spectra, 3)*delta_v | |
256 |
|
|
1496 | #Normalizing Spectra | |
257 |
|
|
1497 | norm_spectra = spectra/spc_pow | |
258 |
|
|
1498 | #Calculating the norm_spectra at peak | |
259 |
|
|
1499 | max_spectra = numpy.max(norm_spectra, 3) | |
260 |
|
1500 | |||
261 |
|
|
1501 | #Normalizing Cross Spectra | |
262 |
|
|
1502 | norm_cspectra = numpy.zeros(cspectra.shape) | |
263 |
|
1503 | |||
264 |
|
|
1504 | for i in range(num_chan): | |
265 |
|
|
1505 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |
266 |
|
1506 | |||
267 |
|
|
1507 | max_cspectra = numpy.max(norm_cspectra,2) | |
268 |
|
|
1508 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |
269 |
|
1509 | |||
270 |
|
|
1510 | for i in range(num_pairs): | |
271 |
|
|
1511 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |
272 |
|
|
1512 | #------------------- Get Lags ---------------------------------- | |
273 |
|
1513 | |||
274 |
|
|
1514 | class SALags(Operation): | |
275 |
|
|
1515 | ''' | |
276 | Function GetMoments() |
|
1516 | Function GetMoments() | |
@@ -283,19 +1523,19 class SALags(Operation): | |||||
283 | self.dataOut.data_SNR |
|
1523 | self.dataOut.data_SNR | |
284 | self.dataOut.groupList |
|
1524 | self.dataOut.groupList | |
285 | self.dataOut.nChannels |
|
1525 | self.dataOut.nChannels | |
286 |
|
1526 | |||
287 | Affected: |
|
1527 | Affected: | |
288 | self.dataOut.data_param |
|
1528 | self.dataOut.data_param | |
289 |
|
1529 | |||
290 | ''' |
|
1530 | ''' | |
291 |
|
|
1531 | def run(self, dataOut): | |
292 |
|
|
1532 | data_acf = dataOut.data_pre[0] | |
293 |
|
|
1533 | data_ccf = dataOut.data_pre[1] | |
294 |
|
|
1534 | normFactor_acf = dataOut.normFactor[0] | |
295 |
|
|
1535 | normFactor_ccf = dataOut.normFactor[1] | |
296 |
|
|
1536 | pairs_acf = dataOut.groupList[0] | |
297 |
|
|
1537 | pairs_ccf = dataOut.groupList[1] | |
298 |
|
1538 | |||
299 |
|
|
1539 | nHeights = dataOut.nHeights | |
300 |
|
|
1540 | absc = dataOut.abscissaList | |
301 |
|
|
1541 | noise = dataOut.noise | |
@@ -306,97 +1546,97 class SALags(Operation): | |||||
306 |
|
1546 | |||
307 |
|
|
1547 | for l in range(len(pairs_acf)): | |
308 |
|
|
1548 | data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:] | |
309 |
|
1549 | |||
310 |
|
|
1550 | for l in range(len(pairs_ccf)): | |
311 |
|
|
1551 | data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:] | |
312 |
|
1552 | |||
313 |
|
|
1553 | dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights)) | |
314 |
|
|
1554 | dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc) | |
315 |
|
|
1555 | dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc) | |
316 |
|
|
1556 | return | |
317 |
|
1557 | |||
318 |
|
|
1558 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
319 | # |
|
1559 | # | |
320 |
|
|
1560 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
321 | # |
|
1561 | # | |
322 | # for l in range(len(pairsList)): |
|
1562 | # for l in range(len(pairsList)): | |
323 |
|
|
1563 | # firstChannel = pairsList[l][0] | |
324 |
|
|
1564 | # secondChannel = pairsList[l][1] | |
325 | # |
|
1565 | # | |
326 | # #Obteniendo pares de Autocorrelacion |
|
1566 | # #Obteniendo pares de Autocorrelacion | |
327 |
|
|
1567 | # if firstChannel == secondChannel: | |
328 |
|
|
1568 | # pairsAutoCorr[firstChannel] = int(l) | |
329 | # |
|
1569 | # | |
330 |
|
|
1570 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
331 | # |
|
1571 | # | |
332 |
|
|
1572 | # pairsCrossCorr = range(len(pairsList)) | |
333 |
|
|
1573 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
334 | # |
|
1574 | # | |
335 |
|
|
1575 | # return pairsAutoCorr, pairsCrossCorr | |
336 |
|
1576 | |||
337 |
|
|
1577 | def __calculateTaus(self, data_acf, data_ccf, lagRange): | |
338 |
|
1578 | |||
339 |
|
|
1579 | lag0 = data_acf.shape[1]/2 | |
340 |
|
|
1580 | #Funcion de Autocorrelacion | |
341 |
|
|
1581 | mean_acf = stats.nanmean(data_acf, axis = 0) | |
342 |
|
1582 | |||
343 |
|
|
1583 | #Obtencion Indice de TauCross | |
344 |
|
|
1584 | ind_ccf = data_ccf.argmax(axis = 1) | |
345 |
|
|
1585 | #Obtencion Indice de TauAuto | |
346 |
|
|
1586 | ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int') | |
347 |
|
|
1587 | ccf_lag0 = data_ccf[:,lag0,:] | |
348 |
|
1588 | |||
349 |
|
|
1589 | for i in range(ccf_lag0.shape[0]): | |
350 |
|
|
1590 | ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0) | |
351 |
|
1591 | |||
352 |
|
|
1592 | #Obtencion de TauCross y TauAuto | |
353 |
|
|
1593 | tau_ccf = lagRange[ind_ccf] | |
354 |
|
|
1594 | tau_acf = lagRange[ind_acf] | |
355 |
|
1595 | |||
356 |
|
|
1596 | Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0]) | |
357 |
|
1597 | |||
358 |
|
|
1598 | tau_ccf[Nan1,Nan2] = numpy.nan | |
359 |
|
|
1599 | tau_acf[Nan1,Nan2] = numpy.nan | |
360 |
|
|
1600 | tau = numpy.vstack((tau_ccf,tau_acf)) | |
361 |
|
1601 | |||
362 |
|
|
1602 | return tau | |
363 |
|
1603 | |||
364 |
|
|
1604 | def __calculateLag1Phase(self, data, lagTRange): | |
365 |
|
|
1605 | data1 = stats.nanmean(data, axis = 0) | |
366 |
|
|
1606 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
367 |
|
1607 | |||
368 |
|
|
1608 | phase = numpy.angle(data1[lag1,:]) | |
369 |
|
1609 | |||
370 |
|
|
1610 | return phase | |
371 |
|
1611 | |||
372 |
|
|
1612 | class SpectralFitting(Operation): | |
373 |
|
|
1613 | ''' | |
374 | Function GetMoments() |
|
1614 | Function GetMoments() | |
375 |
|
1615 | |||
376 | Input: |
|
1616 | Input: | |
377 | Output: |
|
1617 | Output: | |
378 | Variables modified: |
|
1618 | Variables modified: | |
379 | ''' |
|
1619 | ''' | |
380 |
|
1620 | |||
381 |
|
|
1621 | def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None): | |
382 |
|
1622 | |||
383 |
|
1623 | |||
384 |
|
|
1624 | if path != None: | |
385 |
|
|
1625 | sys.path.append(path) | |
386 |
|
|
1626 | self.dataOut.library = importlib.import_module(file) | |
387 |
|
1627 | |||
388 |
|
|
1628 | #To be inserted as a parameter | |
389 |
|
|
1629 | groupArray = numpy.array(groupList) | |
390 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1630 | # groupArray = numpy.array([[0,1],[2,3]]) | |
391 |
|
|
1631 | self.dataOut.groupList = groupArray | |
392 |
|
1632 | |||
393 |
|
|
1633 | nGroups = groupArray.shape[0] | |
394 |
|
|
1634 | nChannels = self.dataIn.nChannels | |
395 |
|
|
1635 | nHeights=self.dataIn.heightList.size | |
396 |
|
1636 | |||
397 |
|
|
1637 | #Parameters Array | |
398 |
|
|
1638 | self.dataOut.data_param = None | |
399 |
|
1639 | |||
400 |
|
|
1640 | #Set constants | |
401 |
|
|
1641 | constants = self.dataOut.library.setConstants(self.dataIn) | |
402 |
|
|
1642 | self.dataOut.constants = constants | |
@@ -405,24 +1645,24 class SpectralFitting(Operation): | |||||
405 |
|
|
1645 | ippSeconds = self.dataIn.ippSeconds | |
406 |
|
|
1646 | K = self.dataIn.nIncohInt | |
407 |
|
|
1647 | pairsArray = numpy.array(self.dataIn.pairsList) | |
408 |
|
1648 | |||
409 |
|
|
1649 | #List of possible combinations | |
410 |
|
|
1650 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
411 |
|
|
1651 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
412 |
|
1652 | |||
413 |
|
|
1653 | if getSNR: | |
414 |
|
|
1654 | listChannels = groupArray.reshape((groupArray.size)) | |
415 |
|
|
1655 | listChannels.sort() | |
416 |
|
|
1656 | noise = self.dataIn.getNoise() | |
417 |
|
|
1657 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
418 |
|
1658 | |||
419 |
|
|
1659 | for i in range(nGroups): | |
420 |
|
|
1660 | coord = groupArray[i,:] | |
421 |
|
1661 | |||
422 |
|
|
1662 | #Input data array | |
423 |
|
|
1663 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
424 |
|
|
1664 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
425 |
|
1665 | |||
426 |
|
|
1666 | #Cross Spectra data array for Covariance Matrixes | |
427 |
|
|
1667 | ind = 0 | |
428 |
|
|
1668 | for pairs in listComb: | |
@@ -431,10 +1671,10 class SpectralFitting(Operation): | |||||
431 |
|
|
1671 | ind += 1 | |
432 |
|
|
1672 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
433 |
|
|
1673 | dataCross = dataCross**2/K | |
434 |
|
1674 | |||
435 |
|
|
1675 | for h in range(nHeights): | |
436 |
|
|
1676 | # print self.dataOut.heightList[h] | |
437 |
|
1677 | |||
438 |
|
|
1678 | #Input | |
439 |
|
|
1679 | d = data[:,h] | |
440 |
|
1680 | |||
@@ -443,7 +1683,7 class SpectralFitting(Operation): | |||||
443 |
|
|
1683 | ind = 0 | |
444 |
|
|
1684 | for pairs in listComb: | |
445 |
|
|
1685 | #Coordinates in Covariance Matrix | |
446 |
|
|
1686 | x = pairs[0] | |
447 |
|
|
1687 | y = pairs[1] | |
448 |
|
|
1688 | #Channel Index | |
449 |
|
|
1689 | S12 = dataCross[ind,:,h] | |
@@ -457,15 +1697,15 class SpectralFitting(Operation): | |||||
457 |
|
|
1697 | LT=L.T | |
458 |
|
1698 | |||
459 |
|
|
1699 | dp = numpy.dot(LT,d) | |
460 |
|
1700 | |||
461 |
|
|
1701 | #Initial values | |
462 |
|
|
1702 | data_spc = self.dataIn.data_spc[coord,:,h] | |
463 |
|
1703 | |||
464 |
|
|
1704 | if (h>0)and(error1[3]<5): | |
465 |
|
|
1705 | p0 = self.dataOut.data_param[i,:,h-1] | |
466 |
|
|
1706 | else: | |
467 |
|
|
1707 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
468 |
|
1708 | |||
469 |
|
|
1709 | try: | |
470 |
|
|
1710 | #Least Squares | |
471 |
|
|
1711 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
@@ -478,30 +1718,30 class SpectralFitting(Operation): | |||||
478 |
|
|
1718 | minp = p0*numpy.nan | |
479 |
|
|
1719 | error0 = numpy.nan | |
480 |
|
|
1720 | error1 = p0*numpy.nan | |
481 |
|
1721 | |||
482 |
|
|
1722 | #Save | |
483 |
|
|
1723 | if self.dataOut.data_param == None: | |
484 |
|
|
1724 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
485 |
|
|
1725 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
486 |
|
1726 | |||
487 |
|
|
1727 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
488 |
|
|
1728 | self.dataOut.data_param[i,:,h] = minp | |
489 |
|
|
1729 | return | |
490 |
|
1730 | |||
491 |
|
|
1731 | def __residFunction(self, p, dp, LT, constants): | |
492 |
|
1732 | |||
493 |
|
|
1733 | fm = self.dataOut.library.modelFunction(p, constants) | |
494 |
|
|
1734 | fmp=numpy.dot(LT,fm) | |
495 |
|
1735 | |||
496 |
|
|
1736 | return dp-fmp | |
497 |
|
1737 | |||
498 |
|
|
1738 | def __getSNR(self, z, noise): | |
499 |
|
1739 | |||
500 |
|
|
1740 | avg = numpy.average(z, axis=1) | |
501 |
|
|
1741 | SNR = (avg.T-noise)/noise | |
502 |
|
|
1742 | SNR = SNR.T | |
503 |
|
|
1743 | return SNR | |
504 |
|
1744 | |||
505 |
|
|
1745 | def __chisq(p,chindex,hindex): | |
506 |
|
|
1746 | #similar to Resid but calculates CHI**2 | |
507 |
|
|
1747 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
@@ -509,50 +1749,53 class SpectralFitting(Operation): | |||||
509 |
|
|
1749 | fmp=numpy.dot(LT,fm) | |
510 |
|
|
1750 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
511 |
|
|
1751 | return chisq | |
512 |
|
1752 | |||
513 |
|
|
1753 | class WindProfiler(Operation): | |
514 |
|
1754 | |||
515 |
|
|
1755 | __isConfig = False | |
516 |
|
1756 | |||
517 |
|
|
1757 | __initime = None | |
518 |
|
|
1758 | __lastdatatime = None | |
519 |
|
|
1759 | __integrationtime = None | |
520 |
|
1760 | |||
521 |
|
|
1761 | __buffer = None | |
522 |
|
1762 | |||
523 |
|
|
1763 | __dataReady = False | |
524 |
|
1764 | |||
525 |
|
|
1765 | __firstdata = None | |
526 |
|
1766 | |||
527 |
|
|
1767 | n = None | |
528 |
|
1768 | |||
|
1769 | def __init__(self): | |||
|
1770 | Operation.__init__(self) | |||
|
1771 | ||||
529 |
|
|
1772 | def __calculateCosDir(self, elev, azim): | |
530 |
|
|
1773 | zen = (90 - elev)*numpy.pi/180 | |
531 |
|
|
1774 | azim = azim*numpy.pi/180 | |
532 |
|
|
1775 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
533 |
|
|
1776 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
534 |
|
1777 | |||
535 |
|
|
1778 | signX = numpy.sign(numpy.cos(azim)) | |
536 |
|
|
1779 | signY = numpy.sign(numpy.sin(azim)) | |
537 |
|
1780 | |||
538 |
|
|
1781 | cosDirX = numpy.copysign(cosDirX, signX) | |
539 |
|
|
1782 | cosDirY = numpy.copysign(cosDirY, signY) | |
540 |
|
|
1783 | return cosDirX, cosDirY | |
541 |
|
1784 | |||
542 |
|
|
1785 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
543 |
|
1786 | |||
544 |
|
|
1787 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
545 |
|
|
1788 | zenith_arr = numpy.arccos(dir_cosw) | |
546 |
|
|
1789 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
547 |
|
1790 | |||
548 |
|
|
1791 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
549 |
|
|
1792 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
550 |
|
1793 | |||
551 |
|
|
1794 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
552 |
|
1795 | |||
553 |
|
|
1796 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
554 |
|
1797 | |||
555 | # |
|
1798 | # | |
556 |
|
|
1799 | if horOnly: | |
557 |
|
|
1800 | A = numpy.c_[dir_cosu,dir_cosv] | |
558 |
|
|
1801 | else: | |
@@ -566,37 +1809,37 class WindProfiler(Operation): | |||||
566 |
|
|
1809 | listPhi = phi.tolist() | |
567 |
|
|
1810 | maxid = listPhi.index(max(listPhi)) | |
568 |
|
|
1811 | minid = listPhi.index(min(listPhi)) | |
569 |
|
1812 | |||
570 |
|
|
1813 | rango = range(len(phi)) | |
571 |
|
|
1814 | # rango = numpy.delete(rango,maxid) | |
572 |
|
1815 | |||
573 |
|
|
1816 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
574 |
|
|
1817 | heiRangAux = heiRang*math.cos(phi[minid]) | |
575 |
|
|
1818 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
576 |
|
|
1819 | heiRang1 = numpy.delete(heiRang1,indOut) | |
577 |
|
1820 | |||
578 |
|
|
1821 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
579 |
|
|
1822 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
580 |
|
1823 | |||
581 |
|
|
1824 | for i in rango: | |
582 |
|
|
1825 | x = heiRang*math.cos(phi[i]) | |
583 |
|
|
1826 | y1 = velRadial[i,:] | |
584 |
|
|
1827 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
585 |
|
1828 | |||
586 |
|
|
1829 | x1 = heiRang1 | |
587 |
|
|
1830 | y11 = f1(x1) | |
588 |
|
1831 | |||
589 |
|
|
1832 | y2 = SNR[i,:] | |
590 |
|
|
1833 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
591 |
|
|
1834 | y21 = f2(x1) | |
592 |
|
1835 | |||
593 |
|
|
1836 | velRadial1[i,:] = y11 | |
594 |
|
|
1837 | SNR1[i,:] = y21 | |
595 |
|
1838 | |||
596 |
|
|
1839 | return heiRang1, velRadial1, SNR1 | |
597 |
|
1840 | |||
598 |
|
|
1841 | def __calculateVelUVW(self, A, velRadial): | |
599 |
|
1842 | |||
600 |
|
|
1843 | #Operacion Matricial | |
601 |
|
|
1844 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
602 |
|
|
1845 | # for ind in range(velRadial.shape[1]): | |
@@ -604,27 +1847,27 class WindProfiler(Operation): | |||||
604 |
|
|
1847 | # velUVW = velUVW.transpose() | |
605 |
|
|
1848 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
606 |
|
|
1849 | velUVW[:,:] = numpy.dot(A,velRadial) | |
607 |
|
1850 | |||
608 |
|
1851 | |||
609 |
|
|
1852 | return velUVW | |
610 |
|
1853 | |||
611 |
|
|
1854 | # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
612 |
|
1855 | |||
613 |
|
|
1856 | def techniqueDBS(self, kwargs): | |
614 |
|
|
1857 | """ | |
615 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1858 | Function that implements Doppler Beam Swinging (DBS) technique. | |
616 |
|
1859 | |||
617 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1860 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
618 | Direction correction (if necessary), Ranges and SNR |
|
1861 | Direction correction (if necessary), Ranges and SNR | |
619 |
|
1862 | |||
620 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1863 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
621 |
|
1864 | |||
622 | Parameters affected: Winds, height range, SNR |
|
1865 | Parameters affected: Winds, height range, SNR | |
623 | """ |
|
1866 | """ | |
624 |
|
|
1867 | velRadial0 = kwargs['velRadial'] | |
625 |
|
|
1868 | heiRang = kwargs['heightList'] | |
626 |
|
|
1869 | SNR0 = kwargs['SNR'] | |
627 |
|
1870 | |||
628 |
|
|
1871 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
629 |
|
|
1872 | theta_x = numpy.array(kwargs['dirCosx']) | |
630 |
|
|
1873 | theta_y = numpy.array(kwargs['dirCosy']) | |
@@ -632,7 +1875,7 class WindProfiler(Operation): | |||||
632 |
|
|
1875 | elev = numpy.array(kwargs['elevation']) | |
633 |
|
|
1876 | azim = numpy.array(kwargs['azimuth']) | |
634 |
|
|
1877 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
635 |
|
|
1878 | azimuth = kwargs['correctAzimuth'] | |
636 |
|
|
1879 | if kwargs.has_key('horizontalOnly'): | |
637 |
|
|
1880 | horizontalOnly = kwargs['horizontalOnly'] | |
638 |
|
|
1881 | else: horizontalOnly = False | |
@@ -647,22 +1890,22 class WindProfiler(Operation): | |||||
647 |
|
|
1890 | param = param[arrayChannel,:,:] | |
648 |
|
|
1891 | theta_x = theta_x[arrayChannel] | |
649 |
|
|
1892 | theta_y = theta_y[arrayChannel] | |
650 |
|
1893 | |||
651 |
|
|
1894 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth) | |
652 |
|
|
1895 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0) | |
653 |
|
|
1896 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
654 |
|
1897 | |||
655 |
|
|
1898 | #Calculo de Componentes de la velocidad con DBS | |
656 |
|
|
1899 | winds = self.__calculateVelUVW(A,velRadial1) | |
657 |
|
1900 | |||
658 |
|
|
1901 | return winds, heiRang1, SNR1 | |
659 |
|
1902 | |||
660 |
|
|
1903 | def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None): | |
661 |
|
1904 | |||
662 |
|
|
1905 | nPairs = len(pairs_ccf) | |
663 |
|
|
1906 | posx = numpy.asarray(posx) | |
664 |
|
|
1907 | posy = numpy.asarray(posy) | |
665 |
|
1908 | |||
666 |
|
|
1909 | #Rotacion Inversa para alinear con el azimuth | |
667 |
|
|
1910 | if azimuth!= None: | |
668 |
|
|
1911 | azimuth = azimuth*math.pi/180 | |
@@ -671,126 +1914,126 class WindProfiler(Operation): | |||||
671 |
|
|
1914 | else: | |
672 |
|
|
1915 | posx1 = posx | |
673 |
|
|
1916 | posy1 = posy | |
674 |
|
1917 | |||
675 |
|
|
1918 | #Calculo de Distancias | |
676 |
|
|
1919 | distx = numpy.zeros(nPairs) | |
677 |
|
|
1920 | disty = numpy.zeros(nPairs) | |
678 |
|
|
1921 | dist = numpy.zeros(nPairs) | |
679 |
|
|
1922 | ang = numpy.zeros(nPairs) | |
680 |
|
1923 | |||
681 |
|
|
1924 | for i in range(nPairs): | |
682 |
|
|
1925 | distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]] | |
683 |
|
|
1926 | disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]] | |
684 |
|
|
1927 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
685 |
|
|
1928 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
686 |
|
1929 | |||
687 |
|
|
1930 | return distx, disty, dist, ang | |
688 |
|
|
1931 | #Calculo de Matrices | |
689 |
|
|
1932 | # nPairs = len(pairs) | |
690 |
|
|
1933 | # ang1 = numpy.zeros((nPairs, 2, 1)) | |
691 |
|
|
1934 | # dist1 = numpy.zeros((nPairs, 2, 1)) | |
692 | # |
|
1935 | # | |
693 |
|
|
1936 | # for j in range(nPairs): | |
694 |
|
|
1937 | # dist1[j,0,0] = dist[pairs[j][0]] | |
695 |
|
|
1938 | # dist1[j,1,0] = dist[pairs[j][1]] | |
696 |
|
|
1939 | # ang1[j,0,0] = ang[pairs[j][0]] | |
697 |
|
|
1940 | # ang1[j,1,0] = ang[pairs[j][1]] | |
698 | # |
|
1941 | # | |
699 |
|
|
1942 | # return distx,disty, dist1,ang1 | |
700 |
|
1943 | |||
701 |
|
1944 | |||
702 |
|
|
1945 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
703 |
|
1946 | |||
704 |
|
|
1947 | Ts = lagTRange[1] - lagTRange[0] | |
705 |
|
|
1948 | velW = -_lambda*phase/(4*math.pi*Ts) | |
706 |
|
1949 | |||
707 |
|
|
1950 | return velW | |
708 |
|
1951 | |||
709 |
|
|
1952 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
710 |
|
|
1953 | nPairs = tau1.shape[0] | |
711 |
|
|
1954 | nHeights = tau1.shape[1] | |
712 |
|
|
1955 | vel = numpy.zeros((nPairs,3,nHeights)) | |
713 |
|
|
1956 | dist1 = numpy.reshape(dist, (dist.size,1)) | |
714 |
|
1957 | |||
715 |
|
|
1958 | angCos = numpy.cos(ang) | |
716 |
|
|
1959 | angSin = numpy.sin(ang) | |
717 |
|
1960 | |||
718 |
|
|
1961 | vel0 = dist1*tau1/(2*tau2**2) | |
719 |
|
|
1962 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
720 |
|
|
1963 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
721 |
|
1964 | |||
722 |
|
|
1965 | ind = numpy.where(numpy.isinf(vel)) | |
723 |
|
|
1966 | vel[ind] = numpy.nan | |
724 |
|
1967 | |||
725 |
|
|
1968 | return vel | |
726 |
|
1969 | |||
727 |
|
|
1970 | # def __getPairsAutoCorr(self, pairsList, nChannels): | |
728 | # |
|
1971 | # | |
729 |
|
|
1972 | # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
730 | # |
|
1973 | # | |
731 | # for l in range(len(pairsList)): |
|
1974 | # for l in range(len(pairsList)): | |
732 |
|
|
1975 | # firstChannel = pairsList[l][0] | |
733 |
|
|
1976 | # secondChannel = pairsList[l][1] | |
734 | # |
|
1977 | # | |
735 | # #Obteniendo pares de Autocorrelacion |
|
1978 | # #Obteniendo pares de Autocorrelacion | |
736 |
|
|
1979 | # if firstChannel == secondChannel: | |
737 |
|
|
1980 | # pairsAutoCorr[firstChannel] = int(l) | |
738 | # |
|
1981 | # | |
739 |
|
|
1982 | # pairsAutoCorr = pairsAutoCorr.astype(int) | |
740 | # |
|
1983 | # | |
741 |
|
|
1984 | # pairsCrossCorr = range(len(pairsList)) | |
742 |
|
|
1985 | # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
743 | # |
|
1986 | # | |
744 |
|
|
1987 | # return pairsAutoCorr, pairsCrossCorr | |
745 |
|
1988 | |||
746 |
|
|
1989 | # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
747 |
|
|
1990 | def techniqueSA(self, kwargs): | |
748 |
|
1991 | |||
749 |
|
|
1992 | """ | |
750 | Function that implements Spaced Antenna (SA) technique. |
|
1993 | Function that implements Spaced Antenna (SA) technique. | |
751 |
|
1994 | |||
752 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1995 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
753 | Direction correction (if necessary), Ranges and SNR |
|
1996 | Direction correction (if necessary), Ranges and SNR | |
754 |
|
1997 | |||
755 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1998 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
756 |
|
1999 | |||
757 | Parameters affected: Winds |
|
2000 | Parameters affected: Winds | |
758 | """ |
|
2001 | """ | |
759 |
|
|
2002 | position_x = kwargs['positionX'] | |
760 |
|
|
2003 | position_y = kwargs['positionY'] | |
761 |
|
|
2004 | azimuth = kwargs['azimuth'] | |
762 |
|
2005 | |||
763 |
|
|
2006 | if kwargs.has_key('correctFactor'): | |
764 |
|
|
2007 | correctFactor = kwargs['correctFactor'] | |
765 |
|
|
2008 | else: | |
766 |
|
|
2009 | correctFactor = 1 | |
767 |
|
2010 | |||
768 |
|
|
2011 | groupList = kwargs['groupList'] | |
769 |
|
|
2012 | pairs_ccf = groupList[1] | |
770 |
|
|
2013 | tau = kwargs['tau'] | |
771 |
|
|
2014 | _lambda = kwargs['_lambda'] | |
772 |
|
2015 | |||
773 |
|
|
2016 | #Cross Correlation pairs obtained | |
774 |
|
|
2017 | # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels) | |
775 |
|
|
2018 | # pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
776 |
|
|
2019 | # pairsSelArray = numpy.array(pairsSelected) | |
777 |
|
|
2020 | # pairs = [] | |
778 | # |
|
2021 | # | |
779 |
|
|
2022 | # #Wind estimation pairs obtained | |
780 |
|
|
2023 | # for i in range(pairsSelArray.shape[0]/2): | |
781 |
|
|
2024 | # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
782 |
|
|
2025 | # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
783 |
|
|
2026 | # pairs.append((ind1,ind2)) | |
784 |
|
2027 | |||
785 |
|
|
2028 | indtau = tau.shape[0]/2 | |
786 |
|
|
2029 | tau1 = tau[:indtau,:] | |
787 |
|
|
2030 | tau2 = tau[indtau:-1,:] | |
788 |
|
|
2031 | # tau1 = tau1[pairs,:] | |
789 |
|
|
2032 | # tau2 = tau2[pairs,:] | |
790 |
|
|
2033 | phase1 = tau[-1,:] | |
791 |
|
2034 | |||
792 |
|
|
2035 | #--------------------------------------------------------------------- | |
793 |
|
|
2036 | #Metodo Directo | |
794 |
|
|
2037 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth) | |
795 |
|
|
2038 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
796 |
|
|
2039 | winds = stats.nanmean(winds, axis=0) | |
@@ -806,100 +2049,100 class WindProfiler(Operation): | |||||
806 |
|
|
2049 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
807 |
|
|
2050 | winds = correctFactor*winds | |
808 |
|
|
2051 | return winds | |
809 |
|
2052 | |||
810 |
|
|
2053 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
811 |
|
2054 | |||
812 |
|
|
2055 | dataTime = currentTime + paramInterval | |
813 |
|
|
2056 | deltaTime = dataTime - self.__initime | |
814 |
|
2057 | |||
815 |
|
|
2058 | if deltaTime >= outputInterval or deltaTime < 0: | |
816 |
|
|
2059 | self.__dataReady = True | |
817 |
|
|
2060 | return | |
818 |
|
2061 | |||
819 |
|
|
2062 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
820 |
|
|
2063 | ''' | |
821 | Function that implements winds estimation technique with detected meteors. |
|
2064 | Function that implements winds estimation technique with detected meteors. | |
822 |
|
2065 | |||
823 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
2066 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
824 |
|
2067 | |||
825 | Output: Winds estimation (Zonal and Meridional) |
|
2068 | Output: Winds estimation (Zonal and Meridional) | |
826 |
|
2069 | |||
827 | Parameters affected: Winds |
|
2070 | Parameters affected: Winds | |
828 | ''' |
|
2071 | ''' | |
829 | # print arrayMeteor.shape |
|
2072 | # print arrayMeteor.shape | |
830 |
|
|
2073 | #Settings | |
831 |
|
|
2074 | nInt = (heightMax - heightMin)/2 | |
832 |
|
|
2075 | # print nInt | |
833 |
|
|
2076 | nInt = int(nInt) | |
834 |
|
|
2077 | # print nInt | |
835 |
|
|
2078 | winds = numpy.zeros((2,nInt))*numpy.nan | |
836 |
|
2079 | |||
837 |
|
|
2080 | #Filter errors | |
838 |
|
|
2081 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] | |
839 |
|
|
2082 | finalMeteor = arrayMeteor[error,:] | |
840 |
|
2083 | |||
841 |
|
|
2084 | #Meteor Histogram | |
842 |
|
|
2085 | finalHeights = finalMeteor[:,2] | |
843 |
|
|
2086 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
844 |
|
|
2087 | nMeteorsPerI = hist[0] | |
845 |
|
|
2088 | heightPerI = hist[1] | |
846 |
|
2089 | |||
847 |
|
|
2090 | #Sort of meteors | |
848 |
|
|
2091 | indSort = finalHeights.argsort() | |
849 |
|
|
2092 | finalMeteor2 = finalMeteor[indSort,:] | |
850 |
|
2093 | |||
851 |
|
|
2094 | # Calculating winds | |
852 |
|
|
2095 | ind1 = 0 | |
853 |
|
|
2096 | ind2 = 0 | |
854 |
|
2097 | |||
855 |
|
|
2098 | for i in range(nInt): | |
856 |
|
|
2099 | nMet = nMeteorsPerI[i] | |
857 |
|
|
2100 | ind1 = ind2 | |
858 |
|
|
2101 | ind2 = ind1 + nMet | |
859 |
|
2102 | |||
860 |
|
|
2103 | meteorAux = finalMeteor2[ind1:ind2,:] | |
861 |
|
2104 | |||
862 |
|
|
2105 | if meteorAux.shape[0] >= meteorThresh: | |
863 |
|
|
2106 | vel = meteorAux[:, 6] | |
864 |
|
|
2107 | zen = meteorAux[:, 4]*numpy.pi/180 | |
865 |
|
|
2108 | azim = meteorAux[:, 3]*numpy.pi/180 | |
866 |
|
2109 | |||
867 |
|
|
2110 | n = numpy.cos(zen) | |
868 |
|
|
2111 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
869 |
|
|
2112 | # l = m*numpy.tan(azim) | |
870 |
|
|
2113 | l = numpy.sin(zen)*numpy.sin(azim) | |
871 |
|
|
2114 | m = numpy.sin(zen)*numpy.cos(azim) | |
872 |
|
2115 | |||
873 |
|
|
2116 | A = numpy.vstack((l, m)).transpose() | |
874 |
|
|
2117 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
875 |
|
|
2118 | windsAux = numpy.dot(A1, vel) | |
876 |
|
2119 | |||
877 |
|
|
2120 | winds[0,i] = windsAux[0] | |
878 |
|
|
2121 | winds[1,i] = windsAux[1] | |
879 |
|
2122 | |||
880 |
|
|
2123 | return winds, heightPerI[:-1] | |
881 |
|
2124 | |||
882 |
|
|
2125 | def techniqueNSM_SA(self, **kwargs): | |
883 |
|
|
2126 | metArray = kwargs['metArray'] | |
884 |
|
|
2127 | heightList = kwargs['heightList'] | |
885 |
|
|
2128 | timeList = kwargs['timeList'] | |
886 |
|
2129 | |||
887 |
|
|
2130 | rx_location = kwargs['rx_location'] | |
888 |
|
|
2131 | groupList = kwargs['groupList'] | |
889 |
|
|
2132 | azimuth = kwargs['azimuth'] | |
890 |
|
|
2133 | dfactor = kwargs['dfactor'] | |
891 |
|
|
2134 | k = kwargs['k'] | |
892 |
|
2135 | |||
893 |
|
|
2136 | azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth) | |
894 |
|
|
2137 | d = dist*dfactor | |
895 |
|
|
2138 | #Phase calculation | |
896 |
|
|
2139 | metArray1 = self.__getPhaseSlope(metArray, heightList, timeList) | |
897 |
|
2140 | |||
898 |
|
|
2141 | metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities | |
899 |
|
2142 | |||
900 |
|
|
2143 | velEst = numpy.zeros((heightList.size,2))*numpy.nan | |
901 |
|
|
2144 | azimuth1 = azimuth1*numpy.pi/180 | |
902 |
|
2145 | |||
903 |
|
|
2146 | for i in range(heightList.size): | |
904 |
|
|
2147 | h = heightList[i] | |
905 |
|
|
2148 | indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0] | |
@@ -912,71 +2155,71 class WindProfiler(Operation): | |||||
912 |
|
|
2155 | A = numpy.asmatrix(A) | |
913 |
|
|
2156 | A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose() | |
914 |
|
|
2157 | velHor = numpy.dot(A1,velAux) | |
915 |
|
2158 | |||
916 |
|
|
2159 | velEst[i,:] = numpy.squeeze(velHor) | |
917 |
|
|
2160 | return velEst | |
918 |
|
2161 | |||
919 |
|
|
2162 | def __getPhaseSlope(self, metArray, heightList, timeList): | |
920 |
|
|
2163 | meteorList = [] | |
921 |
|
|
2164 | #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2 | |
922 |
|
|
2165 | #Putting back together the meteor matrix | |
923 |
|
|
2166 | utctime = metArray[:,0] | |
924 |
|
|
2167 | uniqueTime = numpy.unique(utctime) | |
925 |
|
2168 | |||
926 |
|
|
2169 | phaseDerThresh = 0.5 | |
927 |
|
|
2170 | ippSeconds = timeList[1] - timeList[0] | |
928 |
|
|
2171 | sec = numpy.where(timeList>1)[0][0] | |
929 |
|
|
2172 | nPairs = metArray.shape[1] - 6 | |
930 |
|
|
2173 | nHeights = len(heightList) | |
931 |
|
2174 | |||
932 |
|
|
2175 | for t in uniqueTime: | |
933 |
|
|
2176 | metArray1 = metArray[utctime==t,:] | |
934 |
|
|
2177 | # phaseDerThresh = numpy.pi/4 #reducir Phase thresh | |
935 |
|
|
2178 | tmet = metArray1[:,1].astype(int) | |
936 |
|
|
2179 | hmet = metArray1[:,2].astype(int) | |
937 |
|
2180 | |||
938 |
|
|
2181 | metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1)) | |
939 |
|
|
2182 | metPhase[:,:] = numpy.nan | |
940 |
|
|
2183 | metPhase[:,hmet,tmet] = metArray1[:,6:].T | |
941 |
|
2184 | |||
942 |
|
|
2185 | #Delete short trails | |
943 |
|
|
2186 | metBool = ~numpy.isnan(metPhase[0,:,:]) | |
944 |
|
|
2187 | heightVect = numpy.sum(metBool, axis = 1) | |
945 |
|
|
2188 | metBool[heightVect<sec,:] = False | |
946 |
|
|
2189 | metPhase[:,heightVect<sec,:] = numpy.nan | |
947 |
|
2190 | |||
948 |
|
|
2191 | #Derivative | |
949 |
|
|
2192 | metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1]) | |
950 |
|
|
2193 | phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh)) | |
951 |
|
|
2194 | metPhase[phDerAux] = numpy.nan | |
952 |
|
2195 | |||
953 |
|
|
2196 | #--------------------------METEOR DETECTION ----------------------------------------- | |
954 |
|
|
2197 | indMet = numpy.where(numpy.any(metBool,axis=1))[0] | |
955 |
|
2198 | |||
956 |
|
|
2199 | for p in numpy.arange(nPairs): | |
957 |
|
|
2200 | phase = metPhase[p,:,:] | |
958 |
|
|
2201 | phDer = metDer[p,:,:] | |
959 |
|
2202 | |||
960 |
|
|
2203 | for h in indMet: | |
961 |
|
|
2204 | height = heightList[h] | |
962 |
|
|
2205 | phase1 = phase[h,:] #82 | |
963 |
|
|
2206 | phDer1 = phDer[h,:] | |
964 |
|
2207 | |||
965 |
|
|
2208 | phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap | |
966 |
|
2209 | |||
967 |
|
|
2210 | indValid = numpy.where(~numpy.isnan(phase1))[0] | |
968 |
|
|
2211 | initMet = indValid[0] | |
969 |
|
|
2212 | endMet = 0 | |
970 |
|
2213 | |||
971 |
|
|
2214 | for i in range(len(indValid)-1): | |
972 |
|
2215 | |||
973 |
|
|
2216 | #Time difference | |
974 |
|
|
2217 | inow = indValid[i] | |
975 |
|
|
2218 | inext = indValid[i+1] | |
976 |
|
|
2219 | idiff = inext - inow | |
977 |
|
|
2220 | #Phase difference | |
978 |
|
|
2221 | phDiff = numpy.abs(phase1[inext] - phase1[inow]) | |
979 |
|
2222 | |||
980 |
|
|
2223 | if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor | |
981 |
|
|
2224 | sizeTrail = inow - initMet + 1 | |
982 |
|
|
2225 | if sizeTrail>3*sec: #Too short meteors | |
@@ -992,28 +2235,28 class WindProfiler(Operation): | |||||
992 |
|
|
2235 | vel = slope#*height*1000/(k*d) | |
993 |
|
|
2236 | estAux = numpy.array([utctime,p,height, vel, rsq]) | |
994 |
|
|
2237 | meteorList.append(estAux) | |
995 |
|
|
2238 | initMet = inext | |
996 |
|
|
2239 | metArray2 = numpy.array(meteorList) | |
997 |
|
2240 | |||
998 |
|
|
2241 | return metArray2 | |
999 |
|
2242 | |||
1000 |
|
|
2243 | def __calculateAzimuth1(self, rx_location, pairslist, azimuth0): | |
1001 |
|
2244 | |||
1002 |
|
|
2245 | azimuth1 = numpy.zeros(len(pairslist)) | |
1003 |
|
|
2246 | dist = numpy.zeros(len(pairslist)) | |
1004 |
|
2247 | |||
1005 |
|
|
2248 | for i in range(len(rx_location)): | |
1006 |
|
|
2249 | ch0 = pairslist[i][0] | |
1007 |
|
|
2250 | ch1 = pairslist[i][1] | |
1008 |
|
2251 | |||
1009 |
|
|
2252 | diffX = rx_location[ch0][0] - rx_location[ch1][0] | |
1010 |
|
|
2253 | diffY = rx_location[ch0][1] - rx_location[ch1][1] | |
1011 |
|
|
2254 | azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi | |
1012 |
|
|
2255 | dist[i] = numpy.sqrt(diffX**2 + diffY**2) | |
1013 |
|
2256 | |||
1014 |
|
|
2257 | azimuth1 -= azimuth0 | |
1015 |
|
|
2258 | return azimuth1, dist | |
1016 |
|
2259 | |||
1017 |
|
|
2260 | def techniqueNSM_DBS(self, **kwargs): | |
1018 |
|
|
2261 | metArray = kwargs['metArray'] | |
1019 |
|
|
2262 | heightList = kwargs['heightList'] | |
@@ -1068,39 +2311,39 class WindProfiler(Operation): | |||||
1068 |
|
|
2311 | # noise = dataOut.noise | |
1069 |
|
|
2312 | heightList = dataOut.heightList | |
1070 |
|
|
2313 | SNR = dataOut.data_SNR | |
1071 |
|
2314 | |||
1072 |
|
|
2315 | if technique == 'DBS': | |
1073 |
|
2316 | |||
1074 |
|
|
2317 | kwargs['velRadial'] = param[:,1,:] #Radial velocity | |
1075 |
|
|
2318 | kwargs['heightList'] = heightList | |
1076 |
|
|
2319 | kwargs['SNR'] = SNR | |
1077 |
|
2320 | |||
1078 |
|
|
2321 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function | |
1079 |
|
|
2322 | dataOut.utctimeInit = dataOut.utctime | |
1080 |
|
|
2323 | dataOut.outputInterval = dataOut.paramInterval | |
1081 |
|
2324 | |||
1082 |
|
|
2325 | elif technique == 'SA': | |
1083 |
|
2326 | |||
1084 |
|
|
2327 | #Parameters | |
1085 |
|
|
2328 | # position_x = kwargs['positionX'] | |
1086 |
|
|
2329 | # position_y = kwargs['positionY'] | |
1087 |
|
|
2330 | # azimuth = kwargs['azimuth'] | |
1088 | # |
|
2331 | # | |
1089 |
|
|
2332 | # if kwargs.has_key('crosspairsList'): | |
1090 |
|
|
2333 | # pairs = kwargs['crosspairsList'] | |
1091 |
|
|
2334 | # else: | |
1092 | # pairs = None |
|
2335 | # pairs = None | |
1093 | # |
|
2336 | # | |
1094 |
|
|
2337 | # if kwargs.has_key('correctFactor'): | |
1095 |
|
|
2338 | # correctFactor = kwargs['correctFactor'] | |
1096 |
|
|
2339 | # else: | |
1097 |
|
|
2340 | # correctFactor = 1 | |
1098 |
|
2341 | |||
1099 |
|
|
2342 | # tau = dataOut.data_param | |
1100 |
|
|
2343 | # _lambda = dataOut.C/dataOut.frequency | |
1101 |
|
|
2344 | # pairsList = dataOut.groupList | |
1102 |
|
|
2345 | # nChannels = dataOut.nChannels | |
1103 |
|
2346 | |||
1104 |
|
|
2347 | kwargs['groupList'] = dataOut.groupList | |
1105 |
|
|
2348 | kwargs['tau'] = dataOut.data_param | |
1106 |
|
|
2349 | kwargs['_lambda'] = dataOut.C/dataOut.frequency | |
@@ -1108,35 +2351,30 class WindProfiler(Operation): | |||||
1108 |
|
|
2351 | dataOut.data_output = self.techniqueSA(kwargs) | |
1109 |
|
|
2352 | dataOut.utctimeInit = dataOut.utctime | |
1110 |
|
|
2353 | dataOut.outputInterval = dataOut.timeInterval | |
1111 |
|
2354 | |||
1112 |
|
|
2355 | elif technique == 'Meteors': | |
1113 |
|
|
2356 | dataOut.flagNoData = True | |
1114 |
|
|
2357 | self.__dataReady = False | |
1115 |
|
2358 | |||
1116 |
|
|
2359 | if kwargs.has_key('nHours'): | |
1117 |
|
|
2360 | nHours = kwargs['nHours'] | |
1118 |
|
|
2361 | else: | |
1119 |
|
|
2362 | nHours = 1 | |
1120 |
|
2363 | |||
1121 |
|
|
2364 | if kwargs.has_key('meteorsPerBin'): | |
1122 |
|
|
2365 | meteorThresh = kwargs['meteorsPerBin'] | |
1123 |
|
|
2366 | else: | |
1124 |
|
|
2367 | meteorThresh = 6 | |
1125 |
|
2368 | |||
1126 |
|
|
2369 | if kwargs.has_key('hmin'): | |
1127 |
|
|
2370 | hmin = kwargs['hmin'] | |
1128 |
|
|
2371 | else: hmin = 70 | |
1129 |
|
|
2372 | if kwargs.has_key('hmax'): | |
1130 |
|
|
2373 | hmax = kwargs['hmax'] | |
1131 |
|
|
2374 | else: hmax = 110 | |
1132 |
|
2375 | |||
1133 | if kwargs.has_key('BinKm'): |
|
|||
1134 | binkm = kwargs['BinKm'] |
|
|||
1135 | else: |
|
|||
1136 | binkm = 2 |
|
|||
1137 |
|
||||
1138 |
|
|
2376 | dataOut.outputInterval = nHours*3600 | |
1139 |
|
2377 | |||
1140 |
|
|
2378 | if self.__isConfig == False: | |
1141 |
|
|
2379 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1142 |
|
|
2380 | #Get Initial LTC time | |
@@ -1144,29 +2382,29 class WindProfiler(Operation): | |||||
1144 |
|
|
2382 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1145 |
|
2383 | |||
1146 |
|
|
2384 | self.__isConfig = True | |
1147 |
|
2385 | |||
1148 |
|
|
2386 | if self.__buffer == None: | |
1149 |
|
|
2387 | self.__buffer = dataOut.data_param | |
1150 |
|
|
2388 | self.__firstdata = copy.copy(dataOut) | |
1151 |
|
2389 | |||
1152 |
|
|
2390 | else: | |
1153 |
|
|
2391 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
1154 |
|
2392 | |||
1155 |
|
|
2393 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1156 |
|
2394 | |||
1157 |
|
|
2395 | if self.__dataReady: | |
1158 |
|
|
2396 | dataOut.utctimeInit = self.__initime | |
1159 |
|
2397 | |||
1160 |
|
|
2398 | self.__initime += dataOut.outputInterval #to erase time offset | |
1161 |
|
2399 | |||
1162 |
|
|
2400 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
1163 |
|
|
2401 | dataOut.flagNoData = False | |
1164 |
|
|
2402 | self.__buffer = None | |
1165 |
|
2403 | |||
1166 |
|
|
2404 | elif technique == 'Meteors1': | |
1167 |
|
|
2405 | dataOut.flagNoData = True | |
1168 |
|
|
2406 | self.__dataReady = False | |
1169 |
|
2407 | |||
1170 |
|
|
2408 | if kwargs.has_key('nMins'): | |
1171 |
|
|
2409 | nMins = kwargs['nMins'] | |
1172 |
|
|
2410 | else: nMins = 20 | |
@@ -1187,17 +2425,17 class WindProfiler(Operation): | |||||
1187 |
|
|
2425 | else: mode = 'SA' | |
1188 |
|
2426 | |||
1189 |
|
|
2427 | #Borrar luego esto | |
1190 |
|
|
2428 | if dataOut.groupList == None: | |
1191 |
|
|
2429 | dataOut.groupList = [(0,1),(0,2),(1,2)] | |
1192 |
|
|
2430 | groupList = dataOut.groupList | |
1193 |
|
|
2431 | C = 3e8 | |
1194 |
|
|
2432 | freq = 50e6 | |
1195 |
|
|
2433 | lamb = C/freq | |
1196 |
|
|
2434 | k = 2*numpy.pi/lamb | |
1197 |
|
2435 | |||
1198 |
|
|
2436 | timeList = dataOut.abscissaList | |
1199 |
|
|
2437 | heightList = dataOut.heightList | |
1200 |
|
2438 | |||
1201 |
|
|
2439 | if self.__isConfig == False: | |
1202 |
|
|
2440 | dataOut.outputInterval = nMins*60 | |
1203 |
|
|
2441 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
@@ -1208,20 +2446,20 class WindProfiler(Operation): | |||||
1208 |
|
|
2446 | self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1209 |
|
2447 | |||
1210 |
|
|
2448 | self.__isConfig = True | |
1211 |
|
2449 | |||
1212 |
|
|
2450 | if self.__buffer == None: | |
1213 |
|
|
2451 | self.__buffer = dataOut.data_param | |
1214 |
|
|
2452 | self.__firstdata = copy.copy(dataOut) | |
1215 |
|
2453 | |||
1216 |
|
|
2454 | else: | |
1217 |
|
|
2455 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
1218 |
|
2456 | |||
1219 |
|
|
2457 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1220 |
|
2458 | |||
1221 |
|
|
2459 | if self.__dataReady: | |
1222 |
|
|
2460 | dataOut.utctimeInit = self.__initime | |
1223 |
|
|
2461 | self.__initime += dataOut.outputInterval #to erase time offset | |
1224 |
|
2462 | |||
1225 |
|
|
2463 | metArray = self.__buffer | |
1226 |
|
|
2464 | if mode == 'SA': | |
1227 |
|
|
2465 | dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList) | |
@@ -1232,69 +2470,71 class WindProfiler(Operation): | |||||
1232 |
|
|
2470 | self.__buffer = None | |
1233 |
|
2471 | |||
1234 |
|
|
2472 | return | |
1235 |
|
2473 | |||
1236 |
|
|
2474 | class EWDriftsEstimation(Operation): | |
1237 |
|
2475 | |||
1238 |
|
2476 | def __init__(self): | ||
|
2477 | Operation.__init__(self) | |||
|
2478 | ||||
1239 |
|
|
2479 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1240 |
|
|
2480 | listPhi = phi.tolist() | |
1241 |
|
|
2481 | maxid = listPhi.index(max(listPhi)) | |
1242 |
|
|
2482 | minid = listPhi.index(min(listPhi)) | |
1243 |
|
2483 | |||
1244 |
|
|
2484 | rango = range(len(phi)) | |
1245 |
|
|
2485 | # rango = numpy.delete(rango,maxid) | |
1246 |
|
2486 | |||
1247 |
|
|
2487 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1248 |
|
|
2488 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1249 |
|
|
2489 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1250 |
|
|
2490 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1251 |
|
2491 | |||
1252 |
|
|
2492 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1253 |
|
|
2493 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1254 |
|
2494 | |||
1255 |
|
|
2495 | for i in rango: | |
1256 |
|
|
2496 | x = heiRang*math.cos(phi[i]) | |
1257 |
|
|
2497 | y1 = velRadial[i,:] | |
1258 |
|
|
2498 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1259 |
|
2499 | |||
1260 |
|
|
2500 | x1 = heiRang1 | |
1261 |
|
|
2501 | y11 = f1(x1) | |
1262 |
|
2502 | |||
1263 |
|
|
2503 | y2 = SNR[i,:] | |
1264 |
|
|
2504 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1265 |
|
|
2505 | y21 = f2(x1) | |
1266 |
|
2506 | |||
1267 |
|
|
2507 | velRadial1[i,:] = y11 | |
1268 |
|
|
2508 | SNR1[i,:] = y21 | |
1269 |
|
2509 | |||
1270 |
|
|
2510 | return heiRang1, velRadial1, SNR1 | |
1271 |
|
2511 | |||
1272 |
|
|
2512 | def run(self, dataOut, zenith, zenithCorrection): | |
1273 |
|
|
2513 | heiRang = dataOut.heightList | |
1274 |
|
|
2514 | velRadial = dataOut.data_param[:,3,:] | |
1275 |
|
|
2515 | SNR = dataOut.data_SNR | |
1276 |
|
2516 | |||
1277 |
|
|
2517 | zenith = numpy.array(zenith) | |
1278 |
|
|
2518 | zenith -= zenithCorrection | |
1279 |
|
|
2519 | zenith *= numpy.pi/180 | |
1280 |
|
2520 | |||
1281 |
|
|
2521 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
1282 |
|
2522 | |||
1283 |
|
|
2523 | alp = zenith[0] | |
1284 |
|
|
2524 | bet = zenith[1] | |
1285 |
|
2525 | |||
1286 |
|
|
2526 | w_w = velRadial1[0,:] | |
1287 |
|
|
2527 | w_e = velRadial1[1,:] | |
1288 |
|
2528 | |||
1289 |
|
|
2529 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
1290 |
|
|
2530 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
1291 |
|
2531 | |||
1292 |
|
|
2532 | winds = numpy.vstack((u,w)) | |
1293 |
|
2533 | |||
1294 |
|
|
2534 | dataOut.heightList = heiRang1 | |
1295 |
|
|
2535 | dataOut.data_output = winds | |
1296 |
|
|
2536 | dataOut.data_SNR = SNR1 | |
1297 |
|
2537 | |||
1298 |
|
|
2538 | dataOut.utctimeInit = dataOut.utctime | |
1299 |
|
|
2539 | dataOut.outputInterval = dataOut.timeInterval | |
1300 |
|
|
2540 | return | |
@@ -1333,7 +2573,7 class NonSpecularMeteorDetection(Operation): | |||||
1333 |
|
|
2573 | SNR[i] = (power[i]-noise[i])/noise[i] | |
1334 |
|
|
2574 | SNRm = numpy.nanmean(SNR, axis = 0) | |
1335 |
|
|
2575 | SNRdB = 10*numpy.log10(SNR) | |
1336 |
|
2576 | |||
1337 |
|
|
2577 | if mode == 'SA': | |
1338 |
|
|
2578 | dataOut.groupList = dataOut.groupList[1] | |
1339 |
|
|
2579 | nPairs = data_ccf.shape[0] | |
@@ -1341,22 +2581,22 class NonSpecularMeteorDetection(Operation): | |||||
1341 |
|
|
2581 | phase = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1342 |
|
|
2582 | # phase1 = numpy.copy(phase) | |
1343 |
|
|
2583 | coh1 = numpy.zeros(data_ccf[:,0,:,:].shape) | |
1344 |
|
2584 | |||
1345 |
|
|
2585 | for p in range(nPairs): | |
1346 |
|
|
2586 | ch0 = pairsList[p][0] | |
1347 |
|
|
2587 | ch1 = pairsList[p][1] | |
1348 |
|
|
2588 | ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:]) | |
1349 |
|
|
2589 | phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter | |
1350 | # phase1[p,:,:] = numpy.angle(ccf) #median filter |
|
2590 | # phase1[p,:,:] = numpy.angle(ccf) #median filter | |
1351 |
|
|
2591 | coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter | |
1352 | # coh1[p,:,:] = numpy.abs(ccf) #median filter |
|
2592 | # coh1[p,:,:] = numpy.abs(ccf) #median filter | |
1353 |
|
|
2593 | coh = numpy.nanmax(coh1, axis = 0) | |
1354 |
|
|
2594 | # struc = numpy.ones((5,1)) | |
1355 |
|
|
2595 | # coh = ndimage.morphology.grey_dilation(coh, size=(10,1)) | |
1356 |
|
|
2596 | #---------------------- Radial Velocity ---------------------------- | |
1357 |
|
|
2597 | phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0) | |
1358 |
|
|
2598 | velRad = phaseAux*lamb/(4*numpy.pi*tSamp) | |
1359 |
|
2599 | |||
1360 |
|
|
2600 | if allData: | |
1361 |
|
|
2601 | boolMetFin = ~numpy.isnan(SNRm) | |
1362 |
|
|
2602 | # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
@@ -1364,31 +2604,31 class NonSpecularMeteorDetection(Operation): | |||||
1364 |
|
|
2604 | #------------------------ Meteor mask --------------------------------- | |
1365 |
|
|
2605 | # #SNR mask | |
1366 |
|
|
2606 | # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB)) | |
1367 | # |
|
2607 | # | |
1368 |
|
|
2608 | # #Erase small objects | |
1369 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) |
|
2609 | # boolMet1 = self.__erase_small(boolMet, 2*sec, 5) | |
1370 | # |
|
2610 | # | |
1371 |
|
|
2611 | # auxEEJ = numpy.sum(boolMet1,axis=0) | |
1372 |
|
|
2612 | # indOver = auxEEJ>nProfiles*0.8 #Use this later | |
1373 |
|
|
2613 | # indEEJ = numpy.where(indOver)[0] | |
1374 |
|
|
2614 | # indNEEJ = numpy.where(~indOver)[0] | |
1375 | # |
|
2615 | # | |
1376 |
|
|
2616 | # boolMetFin = boolMet1 | |
1377 | # |
|
2617 | # | |
1378 |
|
|
2618 | # if indEEJ.size > 0: | |
1379 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ |
|
2619 | # boolMet1[:,indEEJ] = False #Erase heights with EEJ | |
1380 | # |
|
2620 | # | |
1381 |
|
|
2621 | # boolMet2 = coh > cohThresh | |
1382 |
|
|
2622 | # boolMet2 = self.__erase_small(boolMet2, 2*sec,5) | |
1383 | # |
|
2623 | # | |
1384 |
|
|
2624 | # #Final Meteor mask | |
1385 |
|
|
2625 | # boolMetFin = boolMet1|boolMet2 | |
1386 |
|
2626 | |||
1387 |
|
|
2627 | #Coherence mask | |
1388 |
|
|
2628 | boolMet1 = coh > 0.75 | |
1389 |
|
|
2629 | struc = numpy.ones((30,1)) | |
1390 |
|
|
2630 | boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc) | |
1391 |
|
2631 | |||
1392 |
|
|
2632 | #Derivative mask | |
1393 |
|
|
2633 | derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0) | |
1394 |
|
|
2634 | boolMet2 = derPhase < 0.2 | |
@@ -1405,7 +2645,7 class NonSpecularMeteorDetection(Operation): | |||||
1405 |
|
2645 | |||
1406 |
|
|
2646 | tmet = coordMet[0] | |
1407 |
|
|
2647 | hmet = coordMet[1] | |
1408 |
|
2648 | |||
1409 |
|
|
2649 | data_param = numpy.zeros((tmet.size, 6 + nPairs)) | |
1410 |
|
|
2650 | data_param[:,0] = utctime | |
1411 |
|
|
2651 | data_param[:,1] = tmet | |
@@ -1414,7 +2654,7 class NonSpecularMeteorDetection(Operation): | |||||
1414 |
|
|
2654 | data_param[:,4] = velRad[tmet,hmet] | |
1415 |
|
|
2655 | data_param[:,5] = coh[tmet,hmet] | |
1416 |
|
|
2656 | data_param[:,6:] = phase[:,tmet,hmet].T | |
1417 |
|
2657 | |||
1418 |
|
|
2658 | elif mode == 'DBS': | |
1419 |
|
|
2659 | dataOut.groupList = numpy.arange(nChannels) | |
1420 |
|
2660 | |||
@@ -1422,7 +2662,7 class NonSpecularMeteorDetection(Operation): | |||||
1422 |
|
|
2662 | phase = numpy.angle(data_acf[:,1,:,:]) | |
1423 |
|
|
2663 | # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1)) | |
1424 |
|
|
2664 | velRad = phase*lamb/(4*numpy.pi*tSamp) | |
1425 |
|
2665 | |||
1426 |
|
|
2666 | #Spectral width | |
1427 |
|
|
2667 | # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1)) | |
1428 |
|
|
2668 | # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1)) | |
@@ -1437,24 +2677,24 class NonSpecularMeteorDetection(Operation): | |||||
1437 |
|
|
2677 | #SNR | |
1438 |
|
|
2678 | boolMet1 = (SNRdB>SNRthresh) #SNR mask | |
1439 |
|
|
2679 | boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5)) | |
1440 |
|
2680 | |||
1441 |
|
|
2681 | #Radial velocity | |
1442 |
|
|
2682 | boolMet2 = numpy.abs(velRad) < 20 | |
1443 |
|
|
2683 | boolMet2 = ndimage.median_filter(boolMet2, (1,5,5)) | |
1444 |
|
2684 | |||
1445 |
|
|
2685 | #Spectral Width | |
1446 |
|
|
2686 | boolMet3 = spcWidth < 30 | |
1447 |
|
|
2687 | boolMet3 = ndimage.median_filter(boolMet3, (1,5,5)) | |
1448 |
|
|
2688 | # boolMetFin = self.__erase_small(boolMet1, 10,5) | |
1449 |
|
|
2689 | boolMetFin = boolMet1&boolMet2&boolMet3 | |
1450 |
|
2690 | |||
1451 |
|
|
2691 | #Creating data_param | |
1452 |
|
|
2692 | coordMet = numpy.where(boolMetFin) | |
1453 |
|
2693 | |||
1454 |
|
|
2694 | cmet = coordMet[0] | |
1455 |
|
|
2695 | tmet = coordMet[1] | |
1456 |
|
|
2696 | hmet = coordMet[2] | |
1457 |
|
2697 | |||
1458 |
|
|
2698 | data_param = numpy.zeros((tmet.size, 7)) | |
1459 |
|
|
2699 | data_param[:,0] = utctime | |
1460 |
|
|
2700 | data_param[:,1] = cmet | |
@@ -1463,7 +2703,7 class NonSpecularMeteorDetection(Operation): | |||||
1463 |
|
|
2703 | data_param[:,4] = SNR[cmet,tmet,hmet].T | |
1464 |
|
|
2704 | data_param[:,5] = velRad[cmet,tmet,hmet].T | |
1465 |
|
|
2705 | data_param[:,6] = spcWidth[cmet,tmet,hmet].T | |
1466 |
|
2706 | |||
1467 |
|
|
2707 | # self.dataOut.data_param = data_int | |
1468 |
|
|
2708 | if len(data_param) == 0: | |
1469 |
|
|
2709 | dataOut.flagNoData = True | |
@@ -1473,21 +2713,21 class NonSpecularMeteorDetection(Operation): | |||||
1473 |
|
|
2713 | def __erase_small(self, binArray, threshX, threshY): | |
1474 |
|
|
2714 | labarray, numfeat = ndimage.measurements.label(binArray) | |
1475 |
|
|
2715 | binArray1 = numpy.copy(binArray) | |
1476 |
|
2716 | |||
1477 |
|
|
2717 | for i in range(1,numfeat + 1): | |
1478 |
|
|
2718 | auxBin = (labarray==i) | |
1479 |
|
|
2719 | auxSize = auxBin.sum() | |
1480 |
|
2720 | |||
1481 |
|
|
2721 | x,y = numpy.where(auxBin) | |
1482 |
|
|
2722 | widthX = x.max() - x.min() | |
1483 |
|
|
2723 | widthY = y.max() - y.min() | |
1484 |
|
2724 | |||
1485 |
|
|
2725 | #width X: 3 seg -> 12.5*3 | |
1486 |
|
|
2726 | #width Y: | |
1487 |
|
2727 | |||
1488 |
|
|
2728 | if (auxSize < 50) or (widthX < threshX) or (widthY < threshY): | |
1489 |
|
|
2729 | binArray1[auxBin] = False | |
1490 |
|
2730 | |||
1491 |
|
|
2731 | return binArray1 | |
1492 |
|
2732 | |||
1493 |
|
|
2733 | #--------------- Specular Meteor ---------------- | |
@@ -1497,36 +2737,36 class SMDetection(Operation): | |||||
1497 | Function DetectMeteors() |
|
2737 | Function DetectMeteors() | |
1498 | Project developed with paper: |
|
2738 | Project developed with paper: | |
1499 | HOLDSWORTH ET AL. 2004 |
|
2739 | HOLDSWORTH ET AL. 2004 | |
1500 |
|
2740 | |||
1501 | Input: |
|
2741 | Input: | |
1502 | self.dataOut.data_pre |
|
2742 | self.dataOut.data_pre | |
1503 |
|
2743 | |||
1504 | centerReceiverIndex: From the channels, which is the center receiver |
|
2744 | centerReceiverIndex: From the channels, which is the center receiver | |
1505 |
|
2745 | |||
1506 | hei_ref: Height reference for the Beacon signal extraction |
|
2746 | hei_ref: Height reference for the Beacon signal extraction | |
1507 | tauindex: |
|
2747 | tauindex: | |
1508 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
2748 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
1509 |
|
2749 | |||
1510 | cohDetection: Whether to user Coherent detection or not |
|
2750 | cohDetection: Whether to user Coherent detection or not | |
1511 | cohDet_timeStep: Coherent Detection calculation time step |
|
2751 | cohDet_timeStep: Coherent Detection calculation time step | |
1512 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
2752 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
1513 |
|
2753 | |||
1514 | noise_timeStep: Noise calculation time step |
|
2754 | noise_timeStep: Noise calculation time step | |
1515 | noise_multiple: Noise multiple to define signal threshold |
|
2755 | noise_multiple: Noise multiple to define signal threshold | |
1516 |
|
2756 | |||
1517 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
2757 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
1518 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
2758 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
1519 |
|
2759 | |||
1520 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
2760 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
1521 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
2761 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
1522 |
|
2762 | |||
1523 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
2763 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
1524 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
2764 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
1525 | azimuth: Azimuth angle correction |
|
2765 | azimuth: Azimuth angle correction | |
1526 |
|
2766 | |||
1527 | Affected: |
|
2767 | Affected: | |
1528 | self.dataOut.data_param |
|
2768 | self.dataOut.data_param | |
1529 |
|
2769 | |||
1530 | Rejection Criteria (Errors): |
|
2770 | Rejection Criteria (Errors): | |
1531 | 0: No error; analysis OK |
|
2771 | 0: No error; analysis OK | |
1532 | 1: SNR < SNR threshold |
|
2772 | 1: SNR < SNR threshold | |
@@ -1545,9 +2785,9 class SMDetection(Operation): | |||||
1545 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
2785 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
1546 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
2786 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
1547 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
2787 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
1548 |
|
2788 | |||
1549 | 17: phase difference in meteor Reestimation |
|
2789 | 17: phase difference in meteor Reestimation | |
1550 |
|
2790 | |||
1551 | Data Storage: |
|
2791 | Data Storage: | |
1552 | Meteors for Wind Estimation (8): |
|
2792 | Meteors for Wind Estimation (8): | |
1553 | Utc Time | Range Height |
|
2793 | Utc Time | Range Height | |
@@ -1555,21 +2795,21 class SMDetection(Operation): | |||||
1555 | VelRad errorVelRad |
|
2795 | VelRad errorVelRad | |
1556 | Phase0 Phase1 Phase2 Phase3 |
|
2796 | Phase0 Phase1 Phase2 Phase3 | |
1557 | TypeError |
|
2797 | TypeError | |
1558 |
|
2798 | |||
1559 | ''' |
|
2799 | ''' | |
1560 |
|
2800 | |||
1561 |
|
|
2801 | def run(self, dataOut, hei_ref = None, tauindex = 0, | |
1562 |
|
|
2802 | phaseOffsets = None, | |
1563 |
|
|
2803 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
1564 |
|
|
2804 | noise_timeStep = 4, noise_multiple = 4, | |
1565 |
|
|
2805 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
1566 |
|
|
2806 | phaseThresh = 20, SNRThresh = 5, | |
1567 |
|
|
2807 | hmin = 50, hmax=150, azimuth = 0, | |
1568 |
|
|
2808 | channelPositions = None) : | |
1569 |
|
2809 | |||
1570 |
|
2810 | |||
1571 |
|
|
2811 | #Getting Pairslist | |
1572 |
|
|
2812 | if channelPositions == None: | |
1573 |
|
|
2813 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
1574 |
|
|
2814 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
1575 |
|
|
2815 | meteorOps = SMOperations() | |
@@ -1577,53 +2817,53 class SMDetection(Operation): | |||||
1577 |
|
|
2817 | heiRang = dataOut.getHeiRange() | |
1578 |
|
|
2818 | #Get Beacon signal - No Beacon signal anymore | |
1579 |
|
|
2819 | # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
1580 | # |
|
2820 | # | |
1581 |
|
|
2821 | # if hei_ref != None: | |
1582 |
|
|
2822 | # newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
1583 | # |
|
2823 | # | |
1584 |
|
2824 | |||
1585 |
|
2825 | |||
1586 |
|
|
2826 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
1587 |
|
|
2827 | # see if the user put in pre defined phase shifts | |
1588 |
|
|
2828 | voltsPShift = dataOut.data_pre.copy() | |
1589 |
|
2829 | |||
1590 |
|
|
2830 | # if predefinedPhaseShifts != None: | |
1591 |
|
|
2831 | # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
1592 | # |
|
2832 | # | |
1593 |
|
|
2833 | # # elif beaconPhaseShifts: | |
1594 |
|
|
2834 | # # #get hardware phase shifts using beacon signal | |
1595 |
|
|
2835 | # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
1596 |
|
|
2836 | # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
1597 | # |
|
2837 | # | |
1598 |
|
|
2838 | # else: | |
1599 | # hardwarePhaseShifts = numpy.zeros(5) |
|
2839 | # hardwarePhaseShifts = numpy.zeros(5) | |
1600 | # |
|
2840 | # | |
1601 |
|
|
2841 | # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
1602 |
|
|
2842 | # for i in range(self.dataOut.data_pre.shape[0]): | |
1603 |
|
|
2843 | # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
1604 |
|
2844 | |||
1605 |
|
|
2845 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
1606 |
|
2846 | |||
1607 |
|
|
2847 | #Remove DC | |
1608 |
|
|
2848 | voltsDC = numpy.mean(voltsPShift,1) | |
1609 |
|
|
2849 | voltsDC = numpy.mean(voltsDC,1) | |
1610 |
|
|
2850 | for i in range(voltsDC.shape[0]): | |
1611 |
|
|
2851 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
1612 |
|
2852 | |||
1613 |
|
|
2853 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
1614 |
|
|
2854 | # voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
1615 |
|
2855 | |||
1616 |
|
|
2856 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
1617 |
|
|
2857 | #Coherent Detection | |
1618 |
|
|
2858 | if cohDetection: | |
1619 |
|
|
2859 | #use coherent detection to get the net power | |
1620 |
|
|
2860 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
1621 |
|
|
2861 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh) | |
1622 |
|
2862 | |||
1623 |
|
|
2863 | #Non-coherent detection! | |
1624 |
|
|
2864 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
1625 |
|
|
2865 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
1626 |
|
2866 | |||
1627 |
|
|
2867 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
1628 |
|
|
2868 | #Get noise | |
1629 |
|
|
2869 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval) | |
@@ -1633,7 +2873,7 class SMDetection(Operation): | |||||
1633 |
|
|
2873 | #Meteor echoes detection | |
1634 |
|
|
2874 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
1635 |
|
|
2875 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
1636 |
|
2876 | |||
1637 |
|
|
2877 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
1638 |
|
|
2878 | #Parameters | |
1639 |
|
|
2879 | heiRange = dataOut.getHeiRange() | |
@@ -1643,7 +2883,7 class SMDetection(Operation): | |||||
1643 |
|
|
2883 | #Multiple detection removals | |
1644 |
|
|
2884 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
1645 |
|
|
2885 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
1646 |
|
2886 | |||
1647 |
|
|
2887 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
1648 |
|
|
2888 | #Parameters | |
1649 |
|
|
2889 | phaseThresh = phaseThresh*numpy.pi/180 | |
@@ -1654,40 +2894,40 class SMDetection(Operation): | |||||
1654 |
|
|
2894 | #Estimation of decay times (Errors N 7, 8, 11) | |
1655 |
|
|
2895 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency) | |
1656 |
|
|
2896 | #******************* END OF METEOR REESTIMATION ******************* | |
1657 |
|
2897 | |||
1658 |
|
|
2898 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
1659 |
|
|
2899 | #Calculating Radial Velocity (Error N 15) | |
1660 |
|
|
2900 | radialStdThresh = 10 | |
1661 |
|
|
2901 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval) | |
1662 |
|
2902 | |||
1663 |
|
|
2903 | if len(listMeteors4) > 0: | |
1664 |
|
|
2904 | #Setting New Array | |
1665 |
|
|
2905 | date = dataOut.utctime | |
1666 |
|
|
2906 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
1667 |
|
2907 | |||
1668 |
|
|
2908 | #Correcting phase offset | |
1669 |
|
|
2909 | if phaseOffsets != None: | |
1670 |
|
|
2910 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
1671 |
|
|
2911 | arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
1672 |
|
2912 | |||
1673 |
|
|
2913 | #Second Pairslist | |
1674 |
|
|
2914 | pairsList = [] | |
1675 |
|
|
2915 | pairx = (0,1) | |
1676 |
|
|
2916 | pairy = (2,3) | |
1677 |
|
|
2917 | pairsList.append(pairx) | |
1678 |
|
|
2918 | pairsList.append(pairy) | |
1679 |
|
2919 | |||
1680 |
|
|
2920 | jph = numpy.array([0,0,0,0]) | |
1681 |
|
|
2921 | h = (hmin,hmax) | |
1682 |
|
|
2922 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
1683 |
|
2923 | |||
1684 |
|
|
2924 | # #Calculate AOA (Error N 3, 4) | |
1685 |
|
|
2925 | # #JONES ET AL. 1998 | |
1686 |
|
|
2926 | # error = arrayParameters[:,-1] | |
1687 |
|
|
2927 | # AOAthresh = numpy.pi/8 | |
1688 |
|
|
2928 | # phases = -arrayParameters[:,9:13] | |
1689 |
|
|
2929 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |
1690 | # |
|
2930 | # | |
1691 |
|
|
2931 | # #Calculate Heights (Error N 13 and 14) | |
1692 |
|
|
2932 | # error = arrayParameters[:,-1] | |
1693 |
|
|
2933 | # Ranges = arrayParameters[:,2] | |
@@ -1695,73 +2935,73 class SMDetection(Operation): | |||||
1695 |
|
|
2935 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |
1696 |
|
|
2936 | # error = arrayParameters[:,-1] | |
1697 |
|
|
2937 | #********************* END OF PARAMETERS CALCULATION ************************** | |
1698 |
|
2938 | |||
1699 |
|
|
2939 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
1700 |
|
|
2940 | # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
1701 |
|
|
2941 | dataOut.data_param = arrayParameters | |
1702 |
|
2942 | |||
1703 |
|
|
2943 | if arrayParameters == None: | |
1704 |
|
|
2944 | dataOut.flagNoData = True | |
1705 |
|
|
2945 | else: | |
1706 |
|
|
2946 | dataOut.flagNoData = True | |
1707 |
|
2947 | |||
1708 |
|
|
2948 | return | |
1709 |
|
2949 | |||
1710 |
|
|
2950 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
1711 |
|
2951 | |||
1712 |
|
|
2952 | minIndex = min(newheis[0]) | |
1713 |
|
|
2953 | maxIndex = max(newheis[0]) | |
1714 |
|
2954 | |||
1715 |
|
|
2955 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
1716 |
|
|
2956 | nLength = voltage.shape[1]/n | |
1717 |
|
|
2957 | nMin = 0 | |
1718 |
|
|
2958 | nMax = 0 | |
1719 |
|
|
2959 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
1720 |
|
2960 | |||
1721 |
|
|
2961 | for i in range(n): | |
1722 |
|
|
2962 | nMax += nLength | |
1723 |
|
|
2963 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
1724 |
|
|
2964 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
1725 |
|
|
2965 | phaseOffset[:,i] = phaseCCF.transpose() | |
1726 |
|
|
2966 | nMin = nMax | |
1727 |
|
|
2967 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
1728 |
|
2968 | |||
1729 |
|
|
2969 | #Remove Outliers | |
1730 |
|
|
2970 | factor = 2 | |
1731 |
|
|
2971 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
1732 |
|
|
2972 | dw = numpy.std(wt,axis = 1) | |
1733 |
|
|
2973 | dw = dw.reshape((dw.size,1)) | |
1734 |
|
|
2974 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
1735 |
|
|
2975 | phaseOffset[ind] = numpy.nan | |
1736 |
|
|
2976 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
1737 |
|
2977 | |||
1738 |
|
|
2978 | return phaseOffset | |
1739 |
|
2979 | |||
1740 |
|
|
2980 | def __shiftPhase(self, data, phaseShift): | |
1741 |
|
|
2981 | #this will shift the phase of a complex number | |
1742 |
|
|
2982 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
1743 |
|
|
2983 | return dataShifted | |
1744 |
|
2984 | |||
1745 |
|
|
2985 | def __estimatePhaseDifference(self, array, pairslist): | |
1746 |
|
|
2986 | nChannel = array.shape[0] | |
1747 |
|
|
2987 | nHeights = array.shape[2] | |
1748 |
|
|
2988 | numPairs = len(pairslist) | |
1749 |
|
|
2989 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
1750 |
|
|
2990 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
1751 |
|
2991 | |||
1752 |
|
|
2992 | #Correct phases | |
1753 |
|
|
2993 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
1754 |
|
|
2994 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
1755 |
|
2995 | |||
1756 |
|
|
2996 | if indDer[0].shape[0] > 0: | |
1757 |
|
|
2997 | for i in range(indDer[0].shape[0]): | |
1758 |
|
|
2998 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
1759 |
|
|
2999 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
1760 |
|
3000 | |||
1761 |
|
|
3001 | # for j in range(numSides): | |
1762 |
|
|
3002 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
1763 |
|
|
3003 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
1764 | # |
|
3004 | # | |
1765 |
|
|
3005 | #Linear | |
1766 |
|
|
3006 | phaseInt = numpy.zeros((numPairs,1)) | |
1767 |
|
|
3007 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
@@ -1771,16 +3011,16 class SMDetection(Operation): | |||||
1771 |
|
|
3011 | #Phase Differences | |
1772 |
|
|
3012 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
1773 |
|
|
3013 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
1774 |
|
3014 | |||
1775 |
|
|
3015 | #Dealias | |
1776 |
|
|
3016 | phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival)) | |
1777 |
|
|
3017 | # indAlias = numpy.where(phaseArrival > numpy.pi) | |
1778 |
|
|
3018 | # phaseArrival[indAlias] -= 2*numpy.pi | |
1779 |
|
|
3019 | # indAlias = numpy.where(phaseArrival < -numpy.pi) | |
1780 |
|
|
3020 | # phaseArrival[indAlias] += 2*numpy.pi | |
1781 |
|
3021 | |||
1782 |
|
|
3022 | return phaseDiff, phaseArrival | |
1783 |
|
3023 | |||
1784 |
|
|
3024 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
1785 |
|
|
3025 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
1786 |
|
|
3026 | #find the phase shifts of each channel over 1 second intervals | |
@@ -1790,25 +3030,25 class SMDetection(Operation): | |||||
1790 |
|
|
3030 | numHeights = volts.shape[2] | |
1791 |
|
|
3031 | nChannel = volts.shape[0] | |
1792 |
|
|
3032 | voltsCohDet = volts.copy() | |
1793 |
|
3033 | |||
1794 |
|
|
3034 | pairsarray = numpy.array(pairslist) | |
1795 |
|
|
3035 | indSides = pairsarray[:,1] | |
1796 |
|
|
3036 | # indSides = numpy.array(range(nChannel)) | |
1797 |
|
|
3037 | # indSides = numpy.delete(indSides, indCenter) | |
1798 | # |
|
3038 | # | |
1799 |
|
|
3039 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
1800 |
|
|
3040 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
1801 |
|
3041 | |||
1802 |
|
|
3042 | startInd = 0 | |
1803 |
|
|
3043 | endInd = 0 | |
1804 |
|
3044 | |||
1805 |
|
|
3045 | for i in range(numBlocks): | |
1806 |
|
|
3046 | startInd = endInd | |
1807 |
|
|
3047 | endInd = endInd + listBlocks[i].shape[1] | |
1808 |
|
3048 | |||
1809 |
|
|
3049 | arrayBlock = listBlocks[i] | |
1810 |
|
|
3050 | # arrayBlockCenter = listCenter[i] | |
1811 |
|
3051 | |||
1812 |
|
|
3052 | #Estimate the Phase Difference | |
1813 |
|
|
3053 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
1814 |
|
|
3054 | #Phase Difference RMS | |
@@ -1820,21 +3060,21 class SMDetection(Operation): | |||||
1820 |
|
|
3060 | for j in range(indSides.size): | |
1821 |
|
|
3061 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
1822 |
|
|
3062 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
1823 |
|
3063 | |||
1824 |
|
|
3064 | return voltsCohDet | |
1825 |
|
3065 | |||
1826 |
|
|
3066 | def __calculateCCF(self, volts, pairslist ,laglist): | |
1827 |
|
3067 | |||
1828 |
|
|
3068 | nHeights = volts.shape[2] | |
1829 |
|
|
3069 | nPoints = volts.shape[1] | |
1830 |
|
|
3070 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
1831 |
|
3071 | |||
1832 |
|
|
3072 | for i in range(len(pairslist)): | |
1833 |
|
|
3073 | volts1 = volts[pairslist[i][0]] | |
1834 |
|
|
3074 | volts2 = volts[pairslist[i][1]] | |
1835 |
|
3075 | |||
1836 |
|
|
3076 | for t in range(len(laglist)): | |
1837 |
|
|
3077 | idxT = laglist[t] | |
1838 |
|
|
3078 | if idxT >= 0: | |
1839 |
|
|
3079 | vStacked = numpy.vstack((volts2[idxT:,:], | |
1840 |
|
|
3080 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
@@ -1842,10 +3082,10 class SMDetection(Operation): | |||||
1842 |
|
|
3082 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
1843 |
|
|
3083 | volts2[:(nPoints + idxT),:])) | |
1844 |
|
|
3084 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
1845 |
|
3085 | |||
1846 |
|
|
3086 | vStacked = None | |
1847 |
|
|
3087 | return voltsCCF | |
1848 |
|
3088 | |||
1849 |
|
|
3089 | def __getNoise(self, power, timeSegment, timeInterval): | |
1850 |
|
|
3090 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
1851 |
|
|
3091 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
@@ -1854,133 +3094,133 class SMDetection(Operation): | |||||
1854 |
|
|
3094 | listPower = numpy.array_split(power, numBlocks, 0) | |
1855 |
|
|
3095 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
1856 |
|
|
3096 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
1857 |
|
3097 | |||
1858 |
|
|
3098 | startInd = 0 | |
1859 |
|
|
3099 | endInd = 0 | |
1860 |
|
3100 | |||
1861 |
|
|
3101 | for i in range(numBlocks): #split por canal | |
1862 |
|
|
3102 | startInd = endInd | |
1863 |
|
|
3103 | endInd = endInd + listPower[i].shape[0] | |
1864 |
|
3104 | |||
1865 |
|
|
3105 | arrayBlock = listPower[i] | |
1866 |
|
|
3106 | noiseAux = numpy.mean(arrayBlock, 0) | |
1867 |
|
|
3107 | # noiseAux = numpy.median(noiseAux) | |
1868 |
|
|
3108 | # noiseAux = numpy.mean(arrayBlock) | |
1869 |
|
|
3109 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
1870 |
|
3110 | |||
1871 |
|
|
3111 | noiseAux1 = numpy.mean(arrayBlock) | |
1872 |
|
|
3112 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
1873 |
|
3113 | |||
1874 |
|
|
3114 | return noise, noise1 | |
1875 |
|
3115 | |||
1876 |
|
|
3116 | def __findMeteors(self, power, thresh): | |
1877 |
|
|
3117 | nProf = power.shape[0] | |
1878 |
|
|
3118 | nHeights = power.shape[1] | |
1879 |
|
|
3119 | listMeteors = [] | |
1880 |
|
3120 | |||
1881 |
|
|
3121 | for i in range(nHeights): | |
1882 |
|
|
3122 | powerAux = power[:,i] | |
1883 |
|
|
3123 | threshAux = thresh[:,i] | |
1884 |
|
3124 | |||
1885 |
|
|
3125 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
1886 |
|
|
3126 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
1887 |
|
3127 | |||
1888 |
|
|
3128 | j = 0 | |
1889 |
|
3129 | |||
1890 |
|
|
3130 | while (j < indUPthresh.size - 2): | |
1891 |
|
|
3131 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
1892 |
|
|
3132 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
1893 |
|
|
3133 | indDNthresh = indDNthresh[indDNAux] | |
1894 |
|
3134 | |||
1895 |
|
|
3135 | if (indDNthresh.size > 0): | |
1896 |
|
|
3136 | indEnd = indDNthresh[0] - 1 | |
1897 | indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!! |
|
3137 | indInit = indUPthresh[j] | |
1898 |
|
3138 | |||
1899 |
|
|
3139 | meteor = powerAux[indInit:indEnd + 1] | |
1900 |
|
|
3140 | indPeak = meteor.argmax() + indInit | |
1901 |
|
|
3141 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
1902 |
|
3142 | |||
1903 |
|
|
3143 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
1904 |
|
|
3144 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
1905 |
|
|
3145 | else: j+=1 | |
1906 |
|
|
3146 | else: j+=1 | |
1907 |
|
3147 | |||
1908 |
|
|
3148 | return listMeteors | |
1909 |
|
3149 | |||
1910 |
|
|
3150 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
1911 |
|
3151 | |||
1912 |
|
|
3152 | arrayMeteors = numpy.asarray(listMeteors) | |
1913 |
|
|
3153 | listMeteors1 = [] | |
1914 |
|
3154 | |||
1915 |
|
|
3155 | while arrayMeteors.shape[0] > 0: | |
1916 |
|
|
3156 | FLAs = arrayMeteors[:,4] | |
1917 |
|
|
3157 | maxFLA = FLAs.argmax() | |
1918 |
|
|
3158 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
1919 |
|
3159 | |||
1920 |
|
|
3160 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
1921 |
|
|
3161 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
1922 |
|
|
3162 | MeteorHeight = arrayMeteors[maxFLA,0] | |
1923 |
|
3163 | |||
1924 |
|
|
3164 | #Check neighborhood | |
1925 |
|
|
3165 | maxHeightIndex = MeteorHeight + rangeLimit | |
1926 |
|
|
3166 | minHeightIndex = MeteorHeight - rangeLimit | |
1927 |
|
|
3167 | minTimeIndex = MeteorInitTime - timeLimit | |
1928 |
|
|
3168 | maxTimeIndex = MeteorEndTime + timeLimit | |
1929 |
|
3169 | |||
1930 |
|
|
3170 | #Check Heights | |
1931 |
|
|
3171 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
1932 |
|
|
3172 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
1933 |
|
|
3173 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
1934 |
|
3174 | |||
1935 |
|
|
3175 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
1936 |
|
3176 | |||
1937 |
|
|
3177 | return listMeteors1 | |
1938 |
|
3178 | |||
1939 |
|
|
3179 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
1940 |
|
|
3180 | numHeights = volts.shape[2] | |
1941 |
|
|
3181 | nChannel = volts.shape[0] | |
1942 |
|
3182 | |||
1943 |
|
|
3183 | thresholdPhase = thresh[0] | |
1944 |
|
|
3184 | thresholdNoise = thresh[1] | |
1945 |
|
|
3185 | thresholdDB = float(thresh[2]) | |
1946 |
|
3186 | |||
1947 |
|
|
3187 | thresholdDB1 = 10**(thresholdDB/10) | |
1948 |
|
|
3188 | pairsarray = numpy.array(pairslist) | |
1949 |
|
|
3189 | indSides = pairsarray[:,1] | |
1950 |
|
3190 | |||
1951 |
|
|
3191 | pairslist1 = list(pairslist) | |
1952 |
|
|
3192 | pairslist1.append((0,1)) | |
1953 |
|
|
3193 | pairslist1.append((3,4)) | |
1954 |
|
3194 | |||
1955 |
|
|
3195 | listMeteors1 = [] | |
1956 |
|
|
3196 | listPowerSeries = [] | |
1957 |
|
|
3197 | listVoltageSeries = [] | |
1958 |
|
|
3198 | #volts has the war data | |
1959 |
|
3199 | |||
1960 |
|
|
3200 | if frequency == 30e6: | |
1961 |
|
|
3201 | timeLag = 45*10**-3 | |
1962 |
|
|
3202 | else: | |
1963 |
|
|
3203 | timeLag = 15*10**-3 | |
1964 |
|
|
3204 | lag = numpy.ceil(timeLag/timeInterval) | |
1965 |
|
3205 | |||
1966 |
|
|
3206 | for i in range(len(listMeteors)): | |
1967 |
|
3207 | |||
1968 |
|
|
3208 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
1969 |
|
|
3209 | meteorAux = numpy.zeros(16) | |
1970 |
|
3210 | |||
1971 |
|
|
3211 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
1972 |
|
|
3212 | mHeight = listMeteors[i][0] | |
1973 |
|
|
3213 | mStart = listMeteors[i][1] | |
1974 |
|
|
3214 | mPeak = listMeteors[i][2] | |
1975 |
|
|
3215 | mEnd = listMeteors[i][3] | |
1976 |
|
3216 | |||
1977 |
|
|
3217 | #get the volt data between the start and end times of the meteor | |
1978 |
|
|
3218 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
1979 |
|
|
3219 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
1980 |
|
3220 | |||
1981 |
|
|
3221 | #3.6. Phase Difference estimation | |
1982 |
|
|
3222 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
1983 |
|
3223 | |||
1984 |
|
|
3224 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
1985 |
|
|
3225 | #meteorVolts0.- all Channels, all Profiles | |
1986 |
|
|
3226 | meteorVolts0 = volts[:,:,mHeight] | |
@@ -1988,15 +3228,15 class SMDetection(Operation): | |||||
1988 |
|
|
3228 | meteorNoise = noise[:,mHeight] | |
1989 |
|
|
3229 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
1990 |
|
|
3230 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
1991 |
|
3231 | |||
1992 |
|
|
3232 | #Times reestimation | |
1993 |
|
|
3233 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
1994 |
|
|
3234 | if mStart1.size > 0: | |
1995 |
|
|
3235 | mStart1 = mStart1[-1] + 1 | |
1996 |
|
3236 | |||
1997 |
|
|
3237 | else: | |
1998 |
|
|
3238 | mStart1 = mPeak | |
1999 |
|
3239 | |||
2000 |
|
|
3240 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
2001 |
|
|
3241 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
2002 |
|
|
3242 | if mEndDecayTime1.size == 0: | |
@@ -2004,7 +3244,7 class SMDetection(Operation): | |||||
2004 |
|
|
3244 | else: | |
2005 |
|
|
3245 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
2006 |
|
|
3246 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
2007 |
|
3247 | |||
2008 |
|
|
3248 | #meteorVolts1.- all Channels, from start to end | |
2009 |
|
|
3249 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
2010 |
|
|
3250 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
@@ -2013,17 +3253,17 class SMDetection(Operation): | |||||
2013 |
|
|
3253 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
2014 |
|
|
3254 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
2015 |
|
|
3255 | ##################### END PARAMETERS REESTIMATION ######################### | |
2016 |
|
3256 | |||
2017 |
|
|
3257 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
2018 |
|
|
3258 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
2019 |
|
|
3259 | if meteorVolts2.shape[1] > 0: | |
2020 |
|
|
3260 | #Phase Difference re-estimation | |
2021 |
|
|
3261 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
2022 |
|
|
3262 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
2023 |
|
|
3263 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
2024 |
|
|
3264 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
2025 |
|
|
3265 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
2026 |
|
3266 | |||
2027 |
|
|
3267 | #Phase Difference RMS | |
2028 |
|
|
3268 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
2029 |
|
|
3269 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
@@ -2038,50 +3278,50 class SMDetection(Operation): | |||||
2038 |
|
|
3278 | #Vectorize | |
2039 |
|
|
3279 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
2040 |
|
|
3280 | meteorAux[7:11] = phaseDiffint[0:4] | |
2041 |
|
3281 | |||
2042 |
|
|
3282 | #Rejection Criterions | |
2043 |
|
|
3283 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
2044 |
|
|
3284 | meteorAux[-1] = 17 | |
2045 |
|
|
3285 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
2046 |
|
|
3286 | meteorAux[-1] = 1 | |
2047 |
|
3287 | |||
2048 |
|
3288 | |||
2049 |
|
|
3289 | else: | |
2050 |
|
|
3290 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
2051 |
|
|
3291 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
2052 |
|
|
3292 | PowerSeries = 0 | |
2053 |
|
3293 | |||
2054 |
|
|
3294 | listMeteors1.append(meteorAux) | |
2055 |
|
|
3295 | listPowerSeries.append(PowerSeries) | |
2056 |
|
|
3296 | listVoltageSeries.append(meteorVolts1) | |
2057 |
|
3297 | |||
2058 |
|
|
3298 | return listMeteors1, listPowerSeries, listVoltageSeries | |
2059 |
|
3299 | |||
2060 |
|
|
3300 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
2061 |
|
3301 | |||
2062 |
|
|
3302 | threshError = 10 | |
2063 |
|
|
3303 | #Depending if it is 30 or 50 MHz | |
2064 |
|
|
3304 | if frequency == 30e6: | |
2065 |
|
|
3305 | timeLag = 45*10**-3 | |
2066 |
|
|
3306 | else: | |
2067 |
|
|
3307 | timeLag = 15*10**-3 | |
2068 |
|
|
3308 | lag = numpy.ceil(timeLag/timeInterval) | |
2069 |
|
3309 | |||
2070 |
|
|
3310 | listMeteors1 = [] | |
2071 |
|
3311 | |||
2072 |
|
|
3312 | for i in range(len(listMeteors)): | |
2073 |
|
|
3313 | meteorPower = listPower[i] | |
2074 |
|
|
3314 | meteorAux = listMeteors[i] | |
2075 |
|
3315 | |||
2076 |
|
|
3316 | if meteorAux[-1] == 0: | |
2077 |
|
3317 | |||
2078 |
|
|
3318 | try: | |
2079 |
|
|
3319 | indmax = meteorPower.argmax() | |
2080 |
|
|
3320 | indlag = indmax + lag | |
2081 |
|
3321 | |||
2082 |
|
|
3322 | y = meteorPower[indlag:] | |
2083 |
|
|
3323 | x = numpy.arange(0, y.size)*timeLag | |
2084 |
|
3324 | |||
2085 |
|
|
3325 | #first guess | |
2086 |
|
|
3326 | a = y[0] | |
2087 |
|
|
3327 | tau = timeLag | |
@@ -2090,26 +3330,26 class SMDetection(Operation): | |||||
2090 |
|
|
3330 | y1 = self.__exponential_function(x, *popt) | |
2091 |
|
|
3331 | #error estimation | |
2092 |
|
|
3332 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
2093 |
|
3333 | |||
2094 |
|
|
3334 | decayTime = popt[1] | |
2095 |
|
|
3335 | riseTime = indmax*timeInterval | |
2096 |
|
|
3336 | meteorAux[11:13] = [decayTime, error] | |
2097 |
|
3337 | |||
2098 |
|
|
3338 | #Table items 7, 8 and 11 | |
2099 |
|
|
3339 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
2100 |
|
|
3340 | meteorAux[-1] = 7 | |
2101 |
|
|
3341 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
2102 |
|
|
3342 | meteorAux[-1] = 8 | |
2103 |
|
|
3343 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
2104 |
|
|
3344 | meteorAux[-1] = 11 | |
2105 |
|
3345 | |||
2106 |
|
3346 | |||
2107 |
|
|
3347 | except: | |
2108 |
|
|
3348 | meteorAux[-1] = 11 | |
2109 |
|
3349 | |||
2110 |
|
3350 | |||
2111 |
|
|
3351 | listMeteors1.append(meteorAux) | |
2112 |
|
3352 | |||
2113 |
|
|
3353 | return listMeteors1 | |
2114 |
|
3354 | |||
2115 |
|
|
3355 | #Exponential Function | |
@@ -2117,45 +3357,45 class SMDetection(Operation): | |||||
2117 |
|
|
3357 | def __exponential_function(self, x, a, tau): | |
2118 |
|
|
3358 | y = a*numpy.exp(-x/tau) | |
2119 |
|
|
3359 | return y | |
2120 |
|
3360 | |||
2121 |
|
|
3361 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
2122 |
|
3362 | |||
2123 |
|
|
3363 | pairslist1 = list(pairslist) | |
2124 |
|
|
3364 | pairslist1.append((0,1)) | |
2125 |
|
|
3365 | pairslist1.append((3,4)) | |
2126 |
|
|
3366 | numPairs = len(pairslist1) | |
2127 |
|
|
3367 | #Time Lag | |
2128 |
|
|
3368 | timeLag = 45*10**-3 | |
2129 |
|
|
3369 | c = 3e8 | |
2130 |
|
|
3370 | lag = numpy.ceil(timeLag/timeInterval) | |
2131 |
|
|
3371 | freq = 30e6 | |
2132 |
|
3372 | |||
2133 |
|
|
3373 | listMeteors1 = [] | |
2134 |
|
3374 | |||
2135 |
|
|
3375 | for i in range(len(listMeteors)): | |
2136 |
|
|
3376 | meteorAux = listMeteors[i] | |
2137 |
|
|
3377 | if meteorAux[-1] == 0: | |
2138 |
|
|
3378 | mStart = listMeteors[i][1] | |
2139 |
|
|
3379 | mPeak = listMeteors[i][2] | |
2140 |
|
|
3380 | mLag = mPeak - mStart + lag | |
2141 |
|
3381 | |||
2142 |
|
|
3382 | #get the volt data between the start and end times of the meteor | |
2143 |
|
|
3383 | meteorVolts = listVolts[i] | |
2144 |
|
|
3384 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
2145 |
|
3385 | |||
2146 |
|
|
3386 | #Get CCF | |
2147 |
|
|
3387 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
2148 |
|
3388 | |||
2149 |
|
|
3389 | #Method 2 | |
2150 |
|
|
3390 | slopes = numpy.zeros(numPairs) | |
2151 |
|
|
3391 | time = numpy.array([-2,-1,1,2])*timeInterval | |
2152 |
|
|
3392 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
2153 |
|
3393 | |||
2154 |
|
|
3394 | #Correct phases | |
2155 |
|
|
3395 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
2156 |
|
|
3396 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
2157 |
|
3397 | |||
2158 |
|
|
3398 | if indDer[0].shape[0] > 0: | |
2159 |
|
|
3399 | for i in range(indDer[0].shape[0]): | |
2160 |
|
|
3400 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
2161 |
|
|
3401 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
@@ -2164,51 +3404,51 class SMDetection(Operation): | |||||
2164 |
|
|
3404 | for j in range(numPairs): | |
2165 |
|
|
3405 | fit = stats.linregress(time, angAllCCF[j,:]) | |
2166 |
|
|
3406 | slopes[j] = fit[0] | |
2167 |
|
3407 | |||
2168 |
|
|
3408 | #Remove Outlier | |
2169 |
|
|
3409 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
2170 |
|
|
3410 | # slopes = numpy.delete(slopes,indOut) | |
2171 |
|
|
3411 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
2172 |
|
|
3412 | # slopes = numpy.delete(slopes,indOut) | |
2173 |
|
3413 | |||
2174 |
|
|
3414 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
2175 |
|
|
3415 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
2176 |
|
|
3416 | meteorAux[-2] = radialError | |
2177 |
|
|
3417 | meteorAux[-3] = radialVelocity | |
2178 |
|
3418 | |||
2179 |
|
|
3419 | #Setting Error | |
2180 |
|
|
3420 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
2181 |
|
|
3421 | if numpy.abs(radialVelocity) > 200: | |
2182 |
|
|
3422 | meteorAux[-1] = 15 | |
2183 |
|
|
3423 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
2184 |
|
|
3424 | elif radialError > radialStdThresh: | |
2185 |
|
|
3425 | meteorAux[-1] = 12 | |
2186 |
|
3426 | |||
2187 |
|
|
3427 | listMeteors1.append(meteorAux) | |
2188 |
|
|
3428 | return listMeteors1 | |
2189 |
|
3429 | |||
2190 |
|
|
3430 | def __setNewArrays(self, listMeteors, date, heiRang): | |
2191 |
|
3431 | |||
2192 |
|
|
3432 | #New arrays | |
2193 |
|
|
3433 | arrayMeteors = numpy.array(listMeteors) | |
2194 |
|
|
3434 | arrayParameters = numpy.zeros((len(listMeteors), 13)) | |
2195 |
|
3435 | |||
2196 |
|
|
3436 | #Date inclusion | |
2197 |
|
|
3437 | # date = re.findall(r'\((.*?)\)', date) | |
2198 |
|
|
3438 | # date = date[0].split(',') | |
2199 |
|
|
3439 | # date = map(int, date) | |
2200 | # |
|
3440 | # | |
2201 |
|
|
3441 | # if len(date)<6: | |
2202 |
|
|
3442 | # date.append(0) | |
2203 | # |
|
3443 | # | |
2204 |
|
|
3444 | # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
2205 |
|
|
3445 | # arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
2206 |
|
|
3446 | arrayDate = numpy.tile(date, (len(listMeteors))) | |
2207 |
|
3447 | |||
2208 |
|
|
3448 | #Meteor array | |
2209 |
|
|
3449 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
2210 |
|
|
3450 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
2211 |
|
3451 | |||
2212 |
|
|
3452 | #Parameters Array | |
2213 |
|
|
3453 | arrayParameters[:,0] = arrayDate #Date | |
2214 |
|
|
3454 | arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
@@ -2216,13 +3456,13 class SMDetection(Operation): | |||||
2216 |
|
|
3456 | arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases | |
2217 |
|
|
3457 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |
2218 |
|
3458 | |||
2219 |
|
3459 | |||
2220 |
|
|
3460 | return arrayParameters | |
2221 |
|
3461 | |||
2222 |
|
|
3462 | class CorrectSMPhases(Operation): | |
2223 |
|
3463 | |||
2224 |
|
|
3464 | def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None): | |
2225 |
|
3465 | |||
2226 |
|
|
3466 | arrayParameters = dataOut.data_param | |
2227 |
|
|
3467 | pairsList = [] | |
2228 |
|
|
3468 | pairx = (0,1) | |
@@ -2230,49 +3470,49 class CorrectSMPhases(Operation): | |||||
2230 |
|
|
3470 | pairsList.append(pairx) | |
2231 |
|
|
3471 | pairsList.append(pairy) | |
2232 |
|
|
3472 | jph = numpy.zeros(4) | |
2233 |
|
3473 | |||
2234 |
|
|
3474 | phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180 | |
2235 |
|
|
3475 | # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets) | |
2236 |
|
|
3476 | arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets))) | |
2237 |
|
3477 | |||
2238 |
|
|
3478 | meteorOps = SMOperations() | |
2239 |
|
|
3479 | if channelPositions == None: | |
2240 |
|
|
3480 | # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T | |
2241 |
|
|
3481 | channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella | |
2242 |
|
3482 | |||
2243 |
|
|
3483 | pairslist0, distances = meteorOps.getPhasePairs(channelPositions) | |
2244 |
|
|
3484 | h = (hmin,hmax) | |
2245 |
|
3485 | |||
2246 |
|
|
3486 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph) | |
2247 |
|
3487 | |||
2248 |
|
|
3488 | dataOut.data_param = arrayParameters | |
2249 |
|
|
3489 | return | |
2250 |
|
3490 | |||
2251 |
|
|
3491 | class SMPhaseCalibration(Operation): | |
2252 |
|
3492 | |||
2253 |
|
|
3493 | __buffer = None | |
2254 |
|
3494 | |||
2255 |
|
|
3495 | __initime = None | |
2256 |
|
3496 | |||
2257 |
|
|
3497 | __dataReady = False | |
2258 |
|
3498 | |||
2259 |
|
|
3499 | __isConfig = False | |
2260 |
|
3500 | |||
2261 |
|
|
3501 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |
2262 |
|
3502 | |||
2263 |
|
|
3503 | dataTime = currentTime + paramInterval | |
2264 |
|
|
3504 | deltaTime = dataTime - initTime | |
2265 |
|
3505 | |||
2266 |
|
|
3506 | if deltaTime >= outputInterval or deltaTime < 0: | |
2267 |
|
|
3507 | return True | |
2268 |
|
3508 | |||
2269 |
|
|
3509 | return False | |
2270 |
|
3510 | |||
2271 |
|
|
3511 | def __getGammas(self, pairs, d, phases): | |
2272 |
|
|
3512 | gammas = numpy.zeros(2) | |
2273 |
|
3513 | |||
2274 |
|
|
3514 | for i in range(len(pairs)): | |
2275 |
|
3515 | |||
2276 |
|
|
3516 | pairi = pairs[i] | |
2277 |
|
3517 | |||
2278 |
|
|
3518 | phip3 = phases[:,pairi[0]] | |
@@ -2286,7 +3526,7 class SMPhaseCalibration(Operation): | |||||
2286 |
|
|
3526 | jgamma = numpy.angle(numpy.exp(1j*jgamma)) | |
2287 |
|
|
3527 | # jgamma[jgamma>numpy.pi] -= 2*numpy.pi | |
2288 |
|
|
3528 | # jgamma[jgamma<-numpy.pi] += 2*numpy.pi | |
2289 |
|
3529 | |||
2290 |
|
|
3530 | #Revised distribution | |
2291 |
|
|
3531 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |
2292 |
|
3532 | |||
@@ -2295,39 +3535,39 class SMPhaseCalibration(Operation): | |||||
2295 |
|
|
3535 | rmin = -0.5*numpy.pi | |
2296 |
|
|
3536 | rmax = 0.5*numpy.pi | |
2297 |
|
|
3537 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |
2298 |
|
3538 | |||
2299 |
|
|
3539 | meteorsY = phaseHisto[0] | |
2300 |
|
|
3540 | phasesX = phaseHisto[1][:-1] | |
2301 |
|
|
3541 | width = phasesX[1] - phasesX[0] | |
2302 |
|
|
3542 | phasesX += width/2 | |
2303 |
|
3543 | |||
2304 |
|
|
3544 | #Gaussian aproximation | |
2305 |
|
|
3545 | bpeak = meteorsY.argmax() | |
2306 |
|
|
3546 | peak = meteorsY.max() | |
2307 |
|
|
3547 | jmin = bpeak - 5 | |
2308 |
|
|
3548 | jmax = bpeak + 5 + 1 | |
2309 |
|
3549 | |||
2310 |
|
|
3550 | if jmin<0: | |
2311 |
|
|
3551 | jmin = 0 | |
2312 |
|
|
3552 | jmax = 6 | |
2313 |
|
|
3553 | elif jmax > meteorsY.size: | |
2314 |
|
|
3554 | jmin = meteorsY.size - 6 | |
2315 |
|
|
3555 | jmax = meteorsY.size | |
2316 |
|
3556 | |||
2317 |
|
|
3557 | x0 = numpy.array([peak,bpeak,50]) | |
2318 |
|
|
3558 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |
2319 |
|
3559 | |||
2320 |
|
|
3560 | #Gammas | |
2321 |
|
|
3561 | gammas[i] = coeff[0][1] | |
2322 |
|
3562 | |||
2323 |
|
|
3563 | return gammas | |
2324 |
|
3564 | |||
2325 |
|
|
3565 | def __residualFunction(self, coeffs, y, t): | |
2326 |
|
3566 | |||
2327 |
|
|
3567 | return y - self.__gauss_function(t, coeffs) | |
2328 |
|
3568 | |||
2329 |
|
|
3569 | def __gauss_function(self, t, coeffs): | |
2330 |
|
3570 | |||
2331 |
|
|
3571 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |
2332 |
|
3572 | |||
2333 |
|
|
3573 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |
@@ -2348,16 +3588,16 class SMPhaseCalibration(Operation): | |||||
2348 |
|
|
3588 | max_xangle = range_angle[iz]/2 + center_xangle | |
2349 |
|
|
3589 | min_yangle = -range_angle[iz]/2 + center_yangle | |
2350 |
|
|
3590 | max_yangle = range_angle[iz]/2 + center_yangle | |
2351 |
|
3591 | |||
2352 |
|
|
3592 | inc_x = (max_xangle-min_xangle)/nstepsx | |
2353 |
|
|
3593 | inc_y = (max_yangle-min_yangle)/nstepsy | |
2354 |
|
3594 | |||
2355 |
|
|
3595 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |
2356 |
|
|
3596 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |
2357 |
|
|
3597 | penalty = numpy.zeros((nstepsx,nstepsy)) | |
2358 |
|
|
3598 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |
2359 |
|
|
3599 | jph = numpy.zeros(nchan) | |
2360 |
|
3600 | |||
2361 |
|
|
3601 | # Iterations looking for the offset | |
2362 |
|
|
3602 | for iy in range(int(nstepsy)): | |
2363 |
|
|
3603 | for ix in range(int(nstepsx)): | |
@@ -2387,24 +3627,24 class SMPhaseCalibration(Operation): | |||||
2387 |
|
|
3627 | error = meteorsArray1[:,-1] | |
2388 |
|
|
3628 | ind1 = numpy.where(error==0)[0] | |
2389 |
|
|
3629 | penalty[ix,iy] = ind1.size | |
2390 |
|
3630 | |||
2391 |
|
|
3631 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |
2392 |
|
|
3632 | phOffset = jph_array[:,i,j] | |
2393 |
|
3633 | |||
2394 |
|
|
3634 | center_xangle = phOffset[pairx[1]] | |
2395 |
|
|
3635 | center_yangle = phOffset[pairy[1]] | |
2396 |
|
3636 | |||
2397 |
|
|
3637 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |
2398 |
|
|
3638 | phOffset = phOffset*180/numpy.pi | |
2399 |
|
|
3639 | return phOffset | |
2400 |
|
3640 | |||
2401 |
|
3641 | |||
2402 |
|
|
3642 | def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1): | |
2403 |
|
3643 | |||
2404 |
|
|
3644 | dataOut.flagNoData = True | |
2405 |
|
|
3645 | self.__dataReady = False | |
2406 |
|
|
3646 | dataOut.outputInterval = nHours*3600 | |
2407 |
|
3647 | |||
2408 |
|
|
3648 | if self.__isConfig == False: | |
2409 |
|
|
3649 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
2410 |
|
|
3650 | #Get Initial LTC time | |
@@ -2412,19 +3652,19 class SMPhaseCalibration(Operation): | |||||
2412 |
|
|
3652 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
2413 |
|
3653 | |||
2414 |
|
|
3654 | self.__isConfig = True | |
2415 |
|
3655 | |||
2416 |
|
|
3656 | if self.__buffer == None: | |
2417 |
|
|
3657 | self.__buffer = dataOut.data_param.copy() | |
2418 |
|
3658 | |||
2419 |
|
|
3659 | else: | |
2420 |
|
|
3660 | self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param)) | |
2421 |
|
3661 | |||
2422 |
|
|
3662 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
2423 |
|
3663 | |||
2424 |
|
|
3664 | if self.__dataReady: | |
2425 |
|
|
3665 | dataOut.utctimeInit = self.__initime | |
2426 |
|
|
3666 | self.__initime += dataOut.outputInterval #to erase time offset | |
2427 |
|
3667 | |||
2428 |
|
|
3668 | freq = dataOut.frequency | |
2429 |
|
|
3669 | c = dataOut.C #m/s | |
2430 |
|
|
3670 | lamb = c/freq | |
@@ -2452,7 +3692,7 class SMPhaseCalibration(Operation): | |||||
2452 |
|
|
3692 | else: | |
2453 |
|
|
3693 | pairs.append((2,3)) | |
2454 |
|
|
3694 | # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb] | |
2455 |
|
3695 | |||
2456 |
|
|
3696 | meteorsArray = self.__buffer | |
2457 |
|
|
3697 | error = meteorsArray[:,-1] | |
2458 |
|
|
3698 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |
@@ -2460,7 +3700,7 class SMPhaseCalibration(Operation): | |||||
2460 |
|
|
3700 | meteorsArray = meteorsArray[ind1,:] | |
2461 |
|
|
3701 | meteorsArray[:,-1] = 0 | |
2462 |
|
|
3702 | phases = meteorsArray[:,8:12] | |
2463 |
|
3703 | |||
2464 |
|
|
3704 | #Calculate Gammas | |
2465 |
|
|
3705 | gammas = self.__getGammas(pairs, distances, phases) | |
2466 |
|
|
3706 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |
@@ -2469,24 +3709,23 class SMPhaseCalibration(Operation): | |||||
2469 |
|
|
3709 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |
2470 |
|
|
3710 | dataOut.data_output = -phasesOff | |
2471 |
|
|
3711 | dataOut.flagNoData = False | |
2472 | dataOut.channelList = pairslist0 |
|
|||
2473 |
|
|
3712 | self.__buffer = None | |
2474 |
|
3713 | |||
2475 |
|
3714 | |||
2476 |
|
|
3715 | return | |
2477 |
|
3716 | |||
2478 |
|
|
3717 | class SMOperations(): | |
2479 |
|
3718 | |||
2480 |
|
|
3719 | def __init__(self): | |
2481 |
|
3720 | |||
2482 |
|
|
3721 | return | |
2483 |
|
3722 | |||
2484 |
|
|
3723 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph): | |
2485 |
|
3724 | |||
2486 |
|
|
3725 | arrayParameters = arrayParameters0.copy() | |
2487 |
|
|
3726 | hmin = h[0] | |
2488 |
|
|
3727 | hmax = h[1] | |
2489 |
|
3728 | |||
2490 |
|
|
3729 | #Calculate AOA (Error N 3, 4) | |
2491 |
|
|
3730 | #JONES ET AL. 1998 | |
2492 |
|
|
3731 | AOAthresh = numpy.pi/8 | |
@@ -2494,72 +3733,72 class SMOperations(): | |||||
2494 |
|
|
3733 | phases = -arrayParameters[:,8:12] + jph | |
2495 |
|
|
3734 | # phases = numpy.unwrap(phases) | |
2496 |
|
|
3735 | arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth) | |
2497 |
|
3736 | |||
2498 |
|
|
3737 | #Calculate Heights (Error N 13 and 14) | |
2499 |
|
|
3738 | error = arrayParameters[:,-1] | |
2500 |
|
|
3739 | Ranges = arrayParameters[:,1] | |
2501 |
|
|
3740 | zenith = arrayParameters[:,4] | |
2502 |
|
|
3741 | arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |
2503 |
|
3742 | |||
2504 |
|
|
3743 | #----------------------- Get Final data ------------------------------------ | |
2505 |
|
|
3744 | # error = arrayParameters[:,-1] | |
2506 |
|
|
3745 | # ind1 = numpy.where(error==0)[0] | |
2507 |
|
|
3746 | # arrayParameters = arrayParameters[ind1,:] | |
2508 |
|
3747 | |||
2509 |
|
|
3748 | return arrayParameters | |
2510 |
|
3749 | |||
2511 |
|
|
3750 | def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth): | |
2512 |
|
3751 | |||
2513 |
|
|
3752 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2514 |
|
|
3753 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions) | |
2515 |
|
3754 | |||
2516 |
|
|
3755 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2517 |
|
|
3756 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2518 |
|
|
3757 | arrayAOA[:,2] = cosDirError | |
2519 |
|
3758 | |||
2520 |
|
|
3759 | azimuthAngle = arrayAOA[:,0] | |
2521 |
|
|
3760 | zenithAngle = arrayAOA[:,1] | |
2522 |
|
3761 | |||
2523 |
|
|
3762 | #Setting Error | |
2524 |
|
|
3763 | indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0] | |
2525 |
|
|
3764 | error[indError] = 0 | |
2526 |
|
|
3765 | #Number 3: AOA not fesible | |
2527 |
|
|
3766 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2528 |
|
|
3767 | error[indInvalid] = 3 | |
2529 |
|
|
3768 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2530 |
|
|
3769 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2531 |
|
|
3770 | error[indInvalid] = 4 | |
2532 |
|
|
3771 | return arrayAOA, error | |
2533 |
|
3772 | |||
2534 |
|
|
3773 | def __getDirectionCosines(self, arrayPhase, pairsList, distances): | |
2535 |
|
3774 | |||
2536 |
|
|
3775 | #Initializing some variables | |
2537 |
|
|
3776 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2538 |
|
|
3777 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2539 |
|
3778 | |||
2540 |
|
|
3779 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2541 |
|
|
3780 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2542 |
|
3781 | |||
2543 |
|
3782 | |||
2544 |
|
|
3783 | for i in range(2): | |
2545 |
|
|
3784 | ph0 = arrayPhase[:,pairsList[i][0]] | |
2546 |
|
|
3785 | ph1 = arrayPhase[:,pairsList[i][1]] | |
2547 |
|
|
3786 | d0 = distances[pairsList[i][0]] | |
2548 |
|
|
3787 | d1 = distances[pairsList[i][1]] | |
2549 |
|
3788 | |||
2550 |
|
|
3789 | ph0_aux = ph0 + ph1 | |
2551 |
|
|
3790 | ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux)) | |
2552 |
|
|
3791 | # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi | |
2553 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi |
|
3792 | # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi | |
2554 |
|
|
3793 | #First Estimation | |
2555 |
|
|
3794 | cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1)) | |
2556 |
|
3795 | |||
2557 |
|
|
3796 | #Most-Accurate Second Estimation | |
2558 |
|
|
3797 | phi1_aux = ph0 - ph1 | |
2559 |
|
|
3798 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2560 |
|
|
3799 | #Direction Cosine 1 | |
2561 |
|
|
3800 | cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1)) | |
2562 |
|
3801 | |||
2563 |
|
|
3802 | #Searching the correct Direction Cosine | |
2564 |
|
|
3803 | cosdir0_aux = cosdir0[:,i] | |
2565 |
|
|
3804 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
@@ -2568,59 +3807,59 class SMOperations(): | |||||
2568 |
|
|
3807 | indcos = cosDiff.argmin(axis = 1) | |
2569 |
|
|
3808 | #Saving Value obtained | |
2570 |
|
|
3809 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2571 |
|
3810 | |||
2572 |
|
|
3811 | return cosdir0, cosdir | |
2573 |
|
3812 | |||
2574 |
|
|
3813 | def __calculateAOA(self, cosdir, azimuth): | |
2575 |
|
|
3814 | cosdirX = cosdir[:,0] | |
2576 |
|
|
3815 | cosdirY = cosdir[:,1] | |
2577 |
|
3816 | |||
2578 |
|
|
3817 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2579 |
|
|
3818 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east | |
2580 |
|
|
3819 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2581 |
|
3820 | |||
2582 |
|
|
3821 | return angles | |
2583 |
|
3822 | |||
2584 |
|
|
3823 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2585 |
|
3824 | |||
2586 |
|
|
3825 | Ramb = 375 #Ramb = c/(2*PRF) | |
2587 |
|
|
3826 | Re = 6371 #Earth Radius | |
2588 |
|
|
3827 | heights = numpy.zeros(Ranges.shape) | |
2589 |
|
3828 | |||
2590 |
|
|
3829 | R_aux = numpy.array([0,1,2])*Ramb | |
2591 |
|
|
3830 | R_aux = R_aux.reshape(1,R_aux.size) | |
2592 |
|
3831 | |||
2593 |
|
|
3832 | Ranges = Ranges.reshape(Ranges.size,1) | |
2594 |
|
3833 | |||
2595 |
|
|
3834 | Ri = Ranges + R_aux | |
2596 |
|
|
3835 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2597 |
|
3836 | |||
2598 |
|
|
3837 | #Check if there is a height between 70 and 110 km | |
2599 |
|
|
3838 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2600 |
|
|
3839 | ind_h = numpy.where(h_bool == 1)[0] | |
2601 |
|
3840 | |||
2602 |
|
|
3841 | hCorr = hi[ind_h, :] | |
2603 |
|
|
3842 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2604 |
|
|
3843 | ||
2605 |
|
|
3844 | hCorr = hi[ind_hCorr][:len(ind_h)] | |
2606 |
|
|
3845 | heights[ind_h] = hCorr | |
2607 |
|
3846 | |||
2608 |
|
|
3847 | #Setting Error | |
2609 |
|
|
3848 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2610 |
|
|
3849 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2611 |
|
|
3850 | indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0] | |
2612 |
|
|
3851 | error[indError] = 0 | |
2613 |
|
|
3852 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2614 |
|
|
3853 | error[indInvalid2] = 14 | |
2615 |
|
|
3854 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2616 |
|
|
3855 | error[indInvalid1] = 13 | |
2617 |
|
3856 | |||
2618 |
|
|
3857 | return heights, error | |
2619 |
|
3858 | |||
2620 |
|
|
3859 | def getPhasePairs(self, channelPositions): | |
2621 |
|
|
3860 | chanPos = numpy.array(channelPositions) | |
2622 |
|
|
3861 | listOper = list(itertools.combinations(range(5),2)) | |
2623 |
|
3862 | |||
2624 |
|
|
3863 | distances = numpy.zeros(4) | |
2625 |
|
|
3864 | axisX = [] | |
2626 |
|
|
3865 | axisY = [] | |
@@ -2628,15 +3867,15 class SMOperations(): | |||||
2628 |
|
|
3867 | distY = numpy.zeros(3) | |
2629 |
|
|
3868 | ix = 0 | |
2630 |
|
|
3869 | iy = 0 | |
2631 |
|
3870 | |||
2632 |
|
|
3871 | pairX = numpy.zeros((2,2)) | |
2633 |
|
|
3872 | pairY = numpy.zeros((2,2)) | |
2634 |
|
3873 | |||
2635 |
|
|
3874 | for i in range(len(listOper)): | |
2636 |
|
|
3875 | pairi = listOper[i] | |
2637 |
|
3876 | |||
2638 |
|
|
3877 | posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:]) | |
2639 |
|
3878 | |||
2640 |
|
|
3879 | if posDif[0] == 0: | |
2641 |
|
|
3880 | axisY.append(pairi) | |
2642 |
|
|
3881 | distY[iy] = posDif[1] | |
@@ -2645,7 +3884,7 class SMOperations(): | |||||
2645 |
|
|
3884 | axisX.append(pairi) | |
2646 |
|
|
3885 | distX[ix] = posDif[0] | |
2647 |
|
|
3886 | ix += 1 | |
2648 |
|
3887 | |||
2649 |
|
|
3888 | for i in range(2): | |
2650 |
|
|
3889 | if i==0: | |
2651 |
|
|
3890 | dist0 = distX | |
@@ -2653,7 +3892,7 class SMOperations(): | |||||
2653 |
|
|
3892 | else: | |
2654 |
|
|
3893 | dist0 = distY | |
2655 |
|
|
3894 | axis0 = axisY | |
2656 |
|
3895 | |||
2657 |
|
|
3896 | side = numpy.argsort(dist0)[:-1] | |
2658 |
|
|
3897 | axis0 = numpy.array(axis0)[side,:] | |
2659 |
|
|
3898 | chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0]) | |
@@ -2661,7 +3900,7 class SMOperations(): | |||||
2661 |
|
|
3900 | side = axis1[axis1 != chanC] | |
2662 |
|
|
3901 | diff1 = chanPos[chanC,i] - chanPos[side[0],i] | |
2663 |
|
|
3902 | diff2 = chanPos[chanC,i] - chanPos[side[1],i] | |
2664 |
|
|
3903 | if diff1<0: | |
2665 |
|
|
3904 | chan2 = side[0] | |
2666 |
|
|
3905 | d2 = numpy.abs(diff1) | |
2667 |
|
|
3906 | chan1 = side[1] | |
@@ -2671,7 +3910,7 class SMOperations(): | |||||
2671 |
|
|
3910 | d2 = numpy.abs(diff2) | |
2672 |
|
|
3911 | chan1 = side[0] | |
2673 |
|
|
3912 | d1 = numpy.abs(diff1) | |
2674 |
|
3913 | |||
2675 |
|
|
3914 | if i==0: | |
2676 |
|
|
3915 | chanCX = chanC | |
2677 |
|
|
3916 | chan1X = chan1 | |
@@ -2683,10 +3922,10 class SMOperations(): | |||||
2683 |
|
|
3922 | chan2Y = chan2 | |
2684 |
|
|
3923 | distances[2:4] = numpy.array([d1,d2]) | |
2685 |
|
|
3924 | # axisXsides = numpy.reshape(axisX[ix,:],4) | |
2686 | # |
|
3925 | # | |
2687 |
|
|
3926 | # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0]) | |
2688 |
|
|
3927 | # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0]) | |
2689 | # |
|
3928 | # | |
2690 |
|
|
3929 | # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0] | |
2691 |
|
|
3930 | # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0] | |
2692 |
|
|
3931 | # channel25X = int(pairX[0,ind25X]) | |
@@ -2695,59 +3934,59 class SMOperations(): | |||||
2695 |
|
|
3934 | # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0] | |
2696 |
|
|
3935 | # channel25Y = int(pairY[0,ind25Y]) | |
2697 |
|
|
3936 | # channel20Y = int(pairY[1,ind20Y]) | |
2698 |
|
3937 | |||
2699 |
|
|
3938 | # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)] | |
2700 |
|
|
3939 | pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)] | |
2701 |
|
3940 | |||
2702 |
|
|
3941 | return pairslist, distances | |
2703 |
|
|
3942 | # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
2704 | # |
|
3943 | # | |
2705 |
|
|
3944 | # arrayAOA = numpy.zeros((phases.shape[0],3)) | |
2706 |
|
|
3945 | # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
2707 | # |
|
3946 | # | |
2708 |
|
|
3947 | # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
2709 |
|
|
3948 | # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
2710 |
|
|
3949 | # arrayAOA[:,2] = cosDirError | |
2711 | # |
|
3950 | # | |
2712 |
|
|
3951 | # azimuthAngle = arrayAOA[:,0] | |
2713 |
|
|
3952 | # zenithAngle = arrayAOA[:,1] | |
2714 | # |
|
3953 | # | |
2715 |
|
|
3954 | # #Setting Error | |
2716 |
|
|
3955 | # #Number 3: AOA not fesible | |
2717 |
|
|
3956 | # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
2718 | # error[indInvalid] = 3 |
|
3957 | # error[indInvalid] = 3 | |
2719 |
|
|
3958 | # #Number 4: Large difference in AOAs obtained from different antenna baselines | |
2720 |
|
|
3959 | # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
2721 | # error[indInvalid] = 4 |
|
3960 | # error[indInvalid] = 4 | |
2722 |
|
|
3961 | # return arrayAOA, error | |
2723 | # |
|
3962 | # | |
2724 |
|
|
3963 | # def __getDirectionCosines(self, arrayPhase, pairsList): | |
2725 | # |
|
3964 | # | |
2726 |
|
|
3965 | # #Initializing some variables | |
2727 |
|
|
3966 | # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
2728 |
|
|
3967 | # ang_aux = ang_aux.reshape(1,ang_aux.size) | |
2729 | # |
|
3968 | # | |
2730 |
|
|
3969 | # cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
2731 |
|
|
3970 | # cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
2732 | # |
|
3971 | # | |
2733 | # |
|
3972 | # | |
2734 |
|
|
3973 | # for i in range(2): | |
2735 |
|
|
3974 | # #First Estimation | |
2736 |
|
|
3975 | # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
2737 |
|
|
3976 | # #Dealias | |
2738 |
|
|
3977 | # indcsi = numpy.where(phi0_aux > numpy.pi) | |
2739 | # phi0_aux[indcsi] -= 2*numpy.pi |
|
3978 | # phi0_aux[indcsi] -= 2*numpy.pi | |
2740 |
|
|
3979 | # indcsi = numpy.where(phi0_aux < -numpy.pi) | |
2741 | # phi0_aux[indcsi] += 2*numpy.pi |
|
3980 | # phi0_aux[indcsi] += 2*numpy.pi | |
2742 |
|
|
3981 | # #Direction Cosine 0 | |
2743 |
|
|
3982 | # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
2744 | # |
|
3983 | # | |
2745 |
|
|
3984 | # #Most-Accurate Second Estimation | |
2746 |
|
|
3985 | # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
2747 |
|
|
3986 | # phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
2748 |
|
|
3987 | # #Direction Cosine 1 | |
2749 |
|
|
3988 | # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
2750 | # |
|
3989 | # | |
2751 |
|
|
3990 | # #Searching the correct Direction Cosine | |
2752 |
|
|
3991 | # cosdir0_aux = cosdir0[:,i] | |
2753 |
|
|
3992 | # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
@@ -2756,50 +3995,51 class SMOperations(): | |||||
2756 |
|
|
3995 | # indcos = cosDiff.argmin(axis = 1) | |
2757 |
|
|
3996 | # #Saving Value obtained | |
2758 |
|
|
3997 | # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
2759 | # |
|
3998 | # | |
2760 |
|
|
3999 | # return cosdir0, cosdir | |
2761 | # |
|
4000 | # | |
2762 |
|
|
4001 | # def __calculateAOA(self, cosdir, azimuth): | |
2763 |
|
|
4002 | # cosdirX = cosdir[:,0] | |
2764 |
|
|
4003 | # cosdirY = cosdir[:,1] | |
2765 | # |
|
4004 | # | |
2766 |
|
|
4005 | # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
2767 |
|
|
4006 | # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
2768 |
|
|
4007 | # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
2769 | # |
|
4008 | # | |
2770 |
|
|
4009 | # return angles | |
2771 | # |
|
4010 | # | |
2772 |
|
|
4011 | # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
2773 | # |
|
4012 | # | |
2774 |
|
|
4013 | # Ramb = 375 #Ramb = c/(2*PRF) | |
2775 |
|
|
4014 | # Re = 6371 #Earth Radius | |
2776 |
|
|
4015 | # heights = numpy.zeros(Ranges.shape) | |
2777 | # |
|
4016 | # | |
2778 |
|
|
4017 | # R_aux = numpy.array([0,1,2])*Ramb | |
2779 |
|
|
4018 | # R_aux = R_aux.reshape(1,R_aux.size) | |
2780 | # |
|
4019 | # | |
2781 |
|
|
4020 | # Ranges = Ranges.reshape(Ranges.size,1) | |
2782 | # |
|
4021 | # | |
2783 |
|
|
4022 | # Ri = Ranges + R_aux | |
2784 |
|
|
4023 | # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
2785 | # |
|
4024 | # | |
2786 |
|
|
4025 | # #Check if there is a height between 70 and 110 km | |
2787 |
|
|
4026 | # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
2788 |
|
|
4027 | # ind_h = numpy.where(h_bool == 1)[0] | |
2789 | # |
|
4028 | # | |
2790 |
|
|
4029 | # hCorr = hi[ind_h, :] | |
2791 |
|
|
4030 | # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
2792 | # |
|
4031 | # | |
2793 | # hCorr = hi[ind_hCorr] |
|
4032 | # hCorr = hi[ind_hCorr] | |
2794 |
|
|
4033 | # heights[ind_h] = hCorr | |
2795 | # |
|
4034 | # | |
2796 |
|
|
4035 | # #Setting Error | |
2797 |
|
|
4036 | # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
2798 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
4037 | # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
2799 | # |
|
4038 | # | |
2800 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
4039 | # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
2801 |
|
|
4040 | # error[indInvalid2] = 14 | |
2802 |
|
|
4041 | # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
2803 | # error[indInvalid1] = 13 |
|
4042 | # error[indInvalid1] = 13 | |
2804 | # |
|
4043 | # | |
2805 | # return heights, error |
|
4044 | # return heights, error | |
|
4045 | No newline at end of file |
@@ -1,3 +1,5 | |||||
|
1 | import itertools | |||
|
2 | ||||
1 | import numpy |
|
3 | import numpy | |
2 |
|
4 | |||
3 | from jroproc_base import ProcessingUnit, Operation |
|
5 | from jroproc_base import ProcessingUnit, Operation | |
@@ -109,7 +111,10 class SpectraProc(ProcessingUnit): | |||||
109 |
|
111 | |||
110 | if self.dataIn.type == "Spectra": |
|
112 | if self.dataIn.type == "Spectra": | |
111 | self.dataOut.copy(self.dataIn) |
|
113 | self.dataOut.copy(self.dataIn) | |
112 |
|
|
114 | if not pairsList: | |
|
115 | pairsList = itertools.combinations(self.dataOut.channelList, 2) | |||
|
116 | if self.dataOut.data_cspc is not None: | |||
|
117 | self.__selectPairs(pairsList) | |||
113 | return True |
|
118 | return True | |
114 |
|
119 | |||
115 | if self.dataIn.type == "Voltage": |
|
120 | if self.dataIn.type == "Voltage": | |
@@ -178,27 +183,21 class SpectraProc(ProcessingUnit): | |||||
178 |
|
183 | |||
179 | def __selectPairs(self, pairsList): |
|
184 | def __selectPairs(self, pairsList): | |
180 |
|
185 | |||
181 | if channelList == None: |
|
186 | if not pairsList: | |
182 | return |
|
187 | return | |
183 |
|
188 | |||
184 |
pairs |
|
189 | pairs = [] | |
185 |
|
190 | pairsIndex = [] | ||
186 | for thisPair in pairsList: |
|
|||
187 |
|
191 | |||
188 |
|
|
192 | for pair in pairsList: | |
|
193 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: | |||
189 | continue |
|
194 | continue | |
190 |
|
195 | pairs.append(pair) | ||
191 |
pairIndex |
|
196 | pairsIndex.append(pairs.index(pair)) | |
192 |
|
197 | |||
193 | pairsIndexListSelected.append(pairIndex) |
|
198 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] | |
194 |
|
199 | self.dataOut.pairsList = pairs | ||
195 | if not pairsIndexListSelected: |
|
200 | self.dataOut.pairsIndexList = pairsIndex | |
196 | self.dataOut.data_cspc = None |
|
|||
197 | self.dataOut.pairsList = [] |
|
|||
198 | return |
|
|||
199 |
|
||||
200 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
|||
201 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
|||
202 |
|
201 | |||
203 | return |
|
202 | return | |
204 |
|
203 |
@@ -15,6 +15,7 from multiprocessing import Process | |||||
15 |
|
15 | |||
16 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit |
|
16 | from schainpy.model.proc.jroproc_base import Operation, ProcessingUnit | |
17 | from schainpy.model.data.jrodata import JROData |
|
17 | from schainpy.model.data.jrodata import JROData | |
|
18 | from schainpy.utils import log | |||
18 |
|
19 | |||
19 | MAXNUMX = 100 |
|
20 | MAXNUMX = 100 | |
20 | MAXNUMY = 100 |
|
21 | MAXNUMY = 100 | |
@@ -30,14 +31,13 def roundFloats(obj): | |||||
30 | return round(obj, 2) |
|
31 | return round(obj, 2) | |
31 |
|
32 | |||
32 | def decimate(z, MAXNUMY): |
|
33 | def decimate(z, MAXNUMY): | |
33 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
|||
34 |
|
||||
35 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
34 | dy = int(len(z[0])/MAXNUMY) + 1 | |
36 |
|
35 | |||
37 | return z[::, ::dy] |
|
36 | return z[::, ::dy] | |
38 |
|
37 | |||
39 | class throttle(object): |
|
38 | class throttle(object): | |
40 | """Decorator that prevents a function from being called more than once every |
|
39 | ''' | |
|
40 | Decorator that prevents a function from being called more than once every | |||
41 | time period. |
|
41 | time period. | |
42 | To create a function that cannot be called more than once a minute, but |
|
42 | To create a function that cannot be called more than once a minute, but | |
43 | will sleep until it can be called: |
|
43 | will sleep until it can be called: | |
@@ -48,7 +48,7 class throttle(object): | |||||
48 | for i in range(10): |
|
48 | for i in range(10): | |
49 | foo() |
|
49 | foo() | |
50 | print "This function has run %s times." % i |
|
50 | print "This function has run %s times." % i | |
51 | """ |
|
51 | ''' | |
52 |
|
52 | |||
53 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
53 | def __init__(self, seconds=0, minutes=0, hours=0): | |
54 | self.throttle_period = datetime.timedelta( |
|
54 | self.throttle_period = datetime.timedelta( | |
@@ -72,9 +72,169 class throttle(object): | |||||
72 |
|
72 | |||
73 | return wrapper |
|
73 | return wrapper | |
74 |
|
74 | |||
|
75 | class Data(object): | |||
|
76 | ''' | |||
|
77 | Object to hold data to be plotted | |||
|
78 | ''' | |||
|
79 | ||||
|
80 | def __init__(self, plottypes, throttle_value): | |||
|
81 | self.plottypes = plottypes | |||
|
82 | self.throttle = throttle_value | |||
|
83 | self.ended = False | |||
|
84 | self.__times = [] | |||
|
85 | ||||
|
86 | def __str__(self): | |||
|
87 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |||
|
88 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) | |||
|
89 | ||||
|
90 | def __len__(self): | |||
|
91 | return len(self.__times) | |||
|
92 | ||||
|
93 | def __getitem__(self, key): | |||
|
94 | if key not in self.data: | |||
|
95 | raise KeyError(log.error('Missing key: {}'.format(key))) | |||
|
96 | ||||
|
97 | if 'spc' in key: | |||
|
98 | ret = self.data[key] | |||
|
99 | else: | |||
|
100 | ret = numpy.array([self.data[key][x] for x in self.times]) | |||
|
101 | if ret.ndim > 1: | |||
|
102 | ret = numpy.swapaxes(ret, 0, 1) | |||
|
103 | return ret | |||
|
104 | ||||
|
105 | def setup(self): | |||
|
106 | ''' | |||
|
107 | Configure object | |||
|
108 | ''' | |||
|
109 | ||||
|
110 | self.ended = False | |||
|
111 | self.data = {} | |||
|
112 | self.__times = [] | |||
|
113 | self.__heights = [] | |||
|
114 | self.__all_heights = set() | |||
|
115 | for plot in self.plottypes: | |||
|
116 | self.data[plot] = {} | |||
|
117 | ||||
|
118 | def shape(self, key): | |||
|
119 | ''' | |||
|
120 | Get the shape of the one-element data for the given key | |||
|
121 | ''' | |||
|
122 | ||||
|
123 | if len(self.data[key]): | |||
|
124 | if 'spc' in key: | |||
|
125 | return self.data[key].shape | |||
|
126 | return self.data[key][self.__times[0]].shape | |||
|
127 | return (0,) | |||
|
128 | ||||
|
129 | def update(self, dataOut): | |||
|
130 | ''' | |||
|
131 | Update data object with new dataOut | |||
|
132 | ''' | |||
|
133 | ||||
|
134 | tm = dataOut.utctime | |||
|
135 | if tm in self.__times: | |||
|
136 | return | |||
|
137 | ||||
|
138 | self.parameters = getattr(dataOut, 'parameters', []) | |||
|
139 | self.pairs = dataOut.pairsList | |||
|
140 | self.channels = dataOut.channelList | |||
|
141 | self.xrange = (dataOut.getFreqRange(1)/1000. , dataOut.getAcfRange(1) , dataOut.getVelRange(1)) | |||
|
142 | self.interval = dataOut.getTimeInterval() | |||
|
143 | self.__heights.append(dataOut.heightList) | |||
|
144 | self.__all_heights.update(dataOut.heightList) | |||
|
145 | self.__times.append(tm) | |||
|
146 | ||||
|
147 | for plot in self.plottypes: | |||
|
148 | if plot == 'spc': | |||
|
149 | z = dataOut.data_spc/dataOut.normFactor | |||
|
150 | self.data[plot] = 10*numpy.log10(z) | |||
|
151 | if plot == 'cspc': | |||
|
152 | self.data[plot] = dataOut.data_cspc | |||
|
153 | if plot == 'noise': | |||
|
154 | self.data[plot][tm] = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
155 | if plot == 'rti': | |||
|
156 | self.data[plot][tm] = dataOut.getPower() | |||
|
157 | if plot == 'snr_db': | |||
|
158 | self.data['snr'][tm] = dataOut.data_SNR | |||
|
159 | if plot == 'snr': | |||
|
160 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_SNR) | |||
|
161 | if plot == 'dop': | |||
|
162 | self.data[plot][tm] = 10*numpy.log10(dataOut.data_DOP) | |||
|
163 | if plot == 'mean': | |||
|
164 | self.data[plot][tm] = dataOut.data_MEAN | |||
|
165 | if plot == 'std': | |||
|
166 | self.data[plot][tm] = dataOut.data_STD | |||
|
167 | if plot == 'coh': | |||
|
168 | self.data[plot][tm] = dataOut.getCoherence() | |||
|
169 | if plot == 'phase': | |||
|
170 | self.data[plot][tm] = dataOut.getCoherence(phase=True) | |||
|
171 | if plot == 'output': | |||
|
172 | self.data[plot][tm] = dataOut.data_output | |||
|
173 | if plot == 'param': | |||
|
174 | self.data[plot][tm] = dataOut.data_param | |||
|
175 | ||||
|
176 | def normalize_heights(self): | |||
|
177 | ''' | |||
|
178 | Ensure same-dimension of the data for different heighList | |||
|
179 | ''' | |||
|
180 | ||||
|
181 | H = numpy.array(list(self.__all_heights)) | |||
|
182 | H.sort() | |||
|
183 | for key in self.data: | |||
|
184 | shape = self.shape(key)[:-1] + H.shape | |||
|
185 | for tm, obj in self.data[key].items(): | |||
|
186 | h = self.__heights[self.__times.index(tm)] | |||
|
187 | if H.size == h.size: | |||
|
188 | continue | |||
|
189 | index = numpy.where(numpy.in1d(H, h))[0] | |||
|
190 | dummy = numpy.zeros(shape) + numpy.nan | |||
|
191 | if len(shape) == 2: | |||
|
192 | dummy[:, index] = obj | |||
|
193 | else: | |||
|
194 | dummy[index] = obj | |||
|
195 | self.data[key][tm] = dummy | |||
|
196 | ||||
|
197 | self.__heights = [H for tm in self.__times] | |||
|
198 | ||||
|
199 | def jsonify(self, decimate=False): | |||
|
200 | ''' | |||
|
201 | Convert data to json | |||
|
202 | ''' | |||
|
203 | ||||
|
204 | ret = {} | |||
|
205 | tm = self.times[-1] | |||
|
206 | ||||
|
207 | for key, value in self.data: | |||
|
208 | if key in ('spc', 'cspc'): | |||
|
209 | ret[key] = roundFloats(self.data[key].to_list()) | |||
|
210 | else: | |||
|
211 | ret[key] = roundFloats(self.data[key][tm].to_list()) | |||
|
212 | ||||
|
213 | ret['timestamp'] = tm | |||
|
214 | ret['interval'] = self.interval | |||
|
215 | ||||
|
216 | @property | |||
|
217 | def times(self): | |||
|
218 | ''' | |||
|
219 | Return the list of times of the current data | |||
|
220 | ''' | |||
|
221 | ||||
|
222 | ret = numpy.array(self.__times) | |||
|
223 | ret.sort() | |||
|
224 | return ret | |||
|
225 | ||||
|
226 | @property | |||
|
227 | def heights(self): | |||
|
228 | ''' | |||
|
229 | Return the list of heights of the current data | |||
|
230 | ''' | |||
|
231 | ||||
|
232 | return numpy.array(self.__heights[-1]) | |||
75 |
|
233 | |||
76 | class PublishData(Operation): |
|
234 | class PublishData(Operation): | |
77 | """Clase publish.""" |
|
235 | ''' | |
|
236 | Operation to send data over zmq. | |||
|
237 | ''' | |||
78 |
|
238 | |||
79 | def __init__(self, **kwargs): |
|
239 | def __init__(self, **kwargs): | |
80 | """Inicio.""" |
|
240 | """Inicio.""" | |
@@ -86,11 +246,11 class PublishData(Operation): | |||||
86 |
|
246 | |||
87 | def on_disconnect(self, client, userdata, rc): |
|
247 | def on_disconnect(self, client, userdata, rc): | |
88 | if rc != 0: |
|
248 | if rc != 0: | |
89 |
|
|
249 | log.warning('Unexpected disconnection.') | |
90 | self.connect() |
|
250 | self.connect() | |
91 |
|
251 | |||
92 | def connect(self): |
|
252 | def connect(self): | |
93 |
|
|
253 | log.warning('trying to connect') | |
94 | try: |
|
254 | try: | |
95 | self.client.connect( |
|
255 | self.client.connect( | |
96 | host=self.host, |
|
256 | host=self.host, | |
@@ -104,7 +264,7 class PublishData(Operation): | |||||
104 | # retain=True |
|
264 | # retain=True | |
105 | # ) |
|
265 | # ) | |
106 | except: |
|
266 | except: | |
107 |
|
|
267 | log.error('MQTT Conection error.') | |
108 | self.client = False |
|
268 | self.client = False | |
109 |
|
269 | |||
110 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs): |
|
270 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs): | |
@@ -119,8 +279,7 class PublishData(Operation): | |||||
119 | self.zeromq = zeromq |
|
279 | self.zeromq = zeromq | |
120 | self.mqtt = kwargs.get('plottype', 0) |
|
280 | self.mqtt = kwargs.get('plottype', 0) | |
121 | self.client = None |
|
281 | self.client = None | |
122 | self.verbose = verbose |
|
282 | self.verbose = verbose | |
123 | self.dataOut.firstdata = True |
|
|||
124 | setup = [] |
|
283 | setup = [] | |
125 | if mqtt is 1: |
|
284 | if mqtt is 1: | |
126 | self.client = mqtt.Client( |
|
285 | self.client = mqtt.Client( | |
@@ -175,7 +334,6 class PublishData(Operation): | |||||
175 | 'type': self.plottype, |
|
334 | 'type': self.plottype, | |
176 | 'yData': yData |
|
335 | 'yData': yData | |
177 | } |
|
336 | } | |
178 | # print payload |
|
|||
179 |
|
337 | |||
180 | elif self.plottype in ('rti', 'power'): |
|
338 | elif self.plottype in ('rti', 'power'): | |
181 | data = getattr(self.dataOut, 'data_spc') |
|
339 | data = getattr(self.dataOut, 'data_spc') | |
@@ -229,15 +387,16 class PublishData(Operation): | |||||
229 | 'timestamp': 'None', |
|
387 | 'timestamp': 'None', | |
230 | 'type': None |
|
388 | 'type': None | |
231 | } |
|
389 | } | |
232 | # print 'Publishing data to {}'.format(self.host) |
|
390 | ||
233 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
391 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) | |
234 |
|
392 | |||
235 | if self.zeromq is 1: |
|
393 | if self.zeromq is 1: | |
236 | if self.verbose: |
|
394 | if self.verbose: | |
237 | print '[Sending] {} - {}'.format(self.dataOut.type, self.dataOut.datatime) |
|
395 | log.log( | |
|
396 | '{} - {}'.format(self.dataOut.type, self.dataOut.datatime), | |||
|
397 | 'Sending' | |||
|
398 | ) | |||
238 | self.zmq_socket.send_pyobj(self.dataOut) |
|
399 | self.zmq_socket.send_pyobj(self.dataOut) | |
239 | self.dataOut.firstdata = False |
|
|||
240 |
|
||||
241 |
|
400 | |||
242 | def run(self, dataOut, **kwargs): |
|
401 | def run(self, dataOut, **kwargs): | |
243 | self.dataOut = dataOut |
|
402 | self.dataOut = dataOut | |
@@ -252,6 +411,7 class PublishData(Operation): | |||||
252 | if self.zeromq is 1: |
|
411 | if self.zeromq is 1: | |
253 | self.dataOut.finished = True |
|
412 | self.dataOut.finished = True | |
254 | self.zmq_socket.send_pyobj(self.dataOut) |
|
413 | self.zmq_socket.send_pyobj(self.dataOut) | |
|
414 | time.sleep(0.1) | |||
255 | self.zmq_socket.close() |
|
415 | self.zmq_socket.close() | |
256 | if self.client: |
|
416 | if self.client: | |
257 | self.client.loop_stop() |
|
417 | self.client.loop_stop() | |
@@ -280,7 +440,7 class ReceiverData(ProcessingUnit): | |||||
280 | self.receiver = self.context.socket(zmq.PULL) |
|
440 | self.receiver = self.context.socket(zmq.PULL) | |
281 | self.receiver.bind(self.address) |
|
441 | self.receiver.bind(self.address) | |
282 | time.sleep(0.5) |
|
442 | time.sleep(0.5) | |
283 |
|
|
443 | log.success('ReceiverData from {}'.format(self.address)) | |
284 |
|
444 | |||
285 |
|
445 | |||
286 | def run(self): |
|
446 | def run(self): | |
@@ -290,8 +450,9 class ReceiverData(ProcessingUnit): | |||||
290 | self.isConfig = True |
|
450 | self.isConfig = True | |
291 |
|
451 | |||
292 | self.dataOut = self.receiver.recv_pyobj() |
|
452 | self.dataOut = self.receiver.recv_pyobj() | |
293 |
|
|
453 | log.log('{} - {}'.format(self.dataOut.type, | |
294 |
|
|
454 | self.dataOut.datatime.ctime(),), | |
|
455 | 'Receiving') | |||
295 |
|
456 | |||
296 |
|
457 | |||
297 | class PlotterReceiver(ProcessingUnit, Process): |
|
458 | class PlotterReceiver(ProcessingUnit, Process): | |
@@ -305,7 +466,6 class PlotterReceiver(ProcessingUnit, Process): | |||||
305 | self.mp = False |
|
466 | self.mp = False | |
306 | self.isConfig = False |
|
467 | self.isConfig = False | |
307 | self.isWebConfig = False |
|
468 | self.isWebConfig = False | |
308 | self.plottypes = [] |
|
|||
309 | self.connections = 0 |
|
469 | self.connections = 0 | |
310 | server = kwargs.get('server', 'zmq.pipe') |
|
470 | server = kwargs.get('server', 'zmq.pipe') | |
311 | plot_server = kwargs.get('plot_server', 'zmq.web') |
|
471 | plot_server = kwargs.get('plot_server', 'zmq.web') | |
@@ -325,19 +485,13 class PlotterReceiver(ProcessingUnit, Process): | |||||
325 | self.realtime = kwargs.get('realtime', False) |
|
485 | self.realtime = kwargs.get('realtime', False) | |
326 | self.throttle_value = kwargs.get('throttle', 5) |
|
486 | self.throttle_value = kwargs.get('throttle', 5) | |
327 | self.sendData = self.initThrottle(self.throttle_value) |
|
487 | self.sendData = self.initThrottle(self.throttle_value) | |
|
488 | self.dates = [] | |||
328 | self.setup() |
|
489 | self.setup() | |
329 |
|
490 | |||
330 | def setup(self): |
|
491 | def setup(self): | |
331 |
|
492 | |||
332 | self.data = {} |
|
493 | self.data = Data(self.plottypes, self.throttle_value) | |
333 | self.data['times'] = [] |
|
494 | self.isConfig = True | |
334 | for plottype in self.plottypes: |
|
|||
335 | self.data[plottype] = {} |
|
|||
336 | self.data['noise'] = {} |
|
|||
337 | self.data['throttle'] = self.throttle_value |
|
|||
338 | self.data['ENDED'] = False |
|
|||
339 | self.isConfig = True |
|
|||
340 | self.data_web = {} |
|
|||
341 |
|
495 | |||
342 | def event_monitor(self, monitor): |
|
496 | def event_monitor(self, monitor): | |
343 |
|
497 | |||
@@ -354,15 +508,13 class PlotterReceiver(ProcessingUnit, Process): | |||||
354 | self.connections += 1 |
|
508 | self.connections += 1 | |
355 | if evt['event'] == 512: |
|
509 | if evt['event'] == 512: | |
356 | pass |
|
510 | pass | |
357 | if self.connections == 0 and self.started is True: |
|
|||
358 | self.ended = True |
|
|||
359 |
|
511 | |||
360 | evt.update({'description': events[evt['event']]}) |
|
512 | evt.update({'description': events[evt['event']]}) | |
361 |
|
513 | |||
362 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
514 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: | |
363 | break |
|
515 | break | |
364 | monitor.close() |
|
516 | monitor.close() | |
365 |
print( |
|
517 | print('event monitor thread done!') | |
366 |
|
518 | |||
367 | def initThrottle(self, throttle_value): |
|
519 | def initThrottle(self, throttle_value): | |
368 |
|
520 | |||
@@ -372,65 +524,16 class PlotterReceiver(ProcessingUnit, Process): | |||||
372 |
|
524 | |||
373 | return sendDataThrottled |
|
525 | return sendDataThrottled | |
374 |
|
526 | |||
375 |
|
||||
376 | def send(self, data): |
|
527 | def send(self, data): | |
377 | # print '[sending] data=%s size=%s' % (data.keys(), len(data['times'])) |
|
528 | log.success('Sending {}'.format(data), self.name) | |
378 | self.sender.send_pyobj(data) |
|
529 | self.sender.send_pyobj(data) | |
379 |
|
530 | |||
380 |
|
||||
381 | def update(self): |
|
|||
382 | t = self.dataOut.utctime |
|
|||
383 |
|
||||
384 | if t in self.data['times']: |
|
|||
385 | return |
|
|||
386 |
|
||||
387 | self.data['times'].append(t) |
|
|||
388 | self.data['dataOut'] = self.dataOut |
|
|||
389 |
|
||||
390 | for plottype in self.plottypes: |
|
|||
391 | if plottype == 'spc': |
|
|||
392 | z = self.dataOut.data_spc/self.dataOut.normFactor |
|
|||
393 | self.data[plottype] = 10*numpy.log10(z) |
|
|||
394 | self.data['noise'][t] = 10*numpy.log10(self.dataOut.getNoise()/self.dataOut.normFactor) |
|
|||
395 | if plottype == 'cspc': |
|
|||
396 | jcoherence = self.dataOut.data_cspc/numpy.sqrt(self.dataOut.data_spc*self.dataOut.data_spc) |
|
|||
397 | self.data['cspc_coh'] = numpy.abs(jcoherence) |
|
|||
398 | self.data['cspc_phase'] = numpy.arctan2(jcoherence.imag, jcoherence.real)*180/numpy.pi |
|
|||
399 | if plottype == 'rti': |
|
|||
400 | self.data[plottype][t] = self.dataOut.getPower() |
|
|||
401 | if plottype == 'snr': |
|
|||
402 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_SNR) |
|
|||
403 | if plottype == 'dop': |
|
|||
404 | self.data[plottype][t] = 10*numpy.log10(self.dataOut.data_DOP) |
|
|||
405 | if plottype == 'mean': |
|
|||
406 | self.data[plottype][t] = self.dataOut.data_MEAN |
|
|||
407 | if plottype == 'std': |
|
|||
408 | self.data[plottype][t] = self.dataOut.data_STD |
|
|||
409 | if plottype == 'coh': |
|
|||
410 | self.data[plottype][t] = self.dataOut.getCoherence() |
|
|||
411 | if plottype == 'phase': |
|
|||
412 | self.data[plottype][t] = self.dataOut.getCoherence(phase=True) |
|
|||
413 | if plottype == 'output': |
|
|||
414 | self.data[plottype][t] = self.dataOut.data_output |
|
|||
415 | if plottype == 'param': |
|
|||
416 | self.data[plottype][t] = self.dataOut.data_param |
|
|||
417 | if self.realtime: |
|
|||
418 | self.data_web['timestamp'] = t |
|
|||
419 | if plottype == 'spc': |
|
|||
420 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype]).tolist()) |
|
|||
421 | elif plottype == 'cspc': |
|
|||
422 | self.data_web['cspc_coh'] = roundFloats(decimate(self.data['cspc_coh']).tolist()) |
|
|||
423 | self.data_web['cspc_phase'] = roundFloats(decimate(self.data['cspc_phase']).tolist()) |
|
|||
424 | elif plottype == 'noise': |
|
|||
425 | self.data_web['noise'] = roundFloats(self.data['noise'][t].tolist()) |
|
|||
426 | else: |
|
|||
427 | self.data_web[plottype] = roundFloats(decimate(self.data[plottype][t]).tolist()) |
|
|||
428 | self.data_web['interval'] = self.dataOut.getTimeInterval() |
|
|||
429 | self.data_web['type'] = plottype |
|
|||
430 |
|
||||
431 | def run(self): |
|
531 | def run(self): | |
432 |
|
532 | |||
433 | print '[Starting] {} from {}'.format(self.name, self.address) |
|
533 | log.success( | |
|
534 | 'Starting from {}'.format(self.address), | |||
|
535 | self.name | |||
|
536 | ) | |||
434 |
|
537 | |||
435 | self.context = zmq.Context() |
|
538 | self.context = zmq.Context() | |
436 | self.receiver = self.context.socket(zmq.PULL) |
|
539 | self.receiver = self.context.socket(zmq.PULL) | |
@@ -447,39 +550,39 class PlotterReceiver(ProcessingUnit, Process): | |||||
447 | else: |
|
550 | else: | |
448 | self.sender.bind("ipc:///tmp/zmq.plots") |
|
551 | self.sender.bind("ipc:///tmp/zmq.plots") | |
449 |
|
552 | |||
450 |
time.sleep( |
|
553 | time.sleep(2) | |
451 |
|
554 | |||
452 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
555 | t = Thread(target=self.event_monitor, args=(monitor,)) | |
453 | t.start() |
|
556 | t.start() | |
454 |
|
557 | |||
455 | while True: |
|
558 | while True: | |
456 |
|
|
559 | dataOut = self.receiver.recv_pyobj() | |
457 | # print '[Receiving] {} - {}'.format(self.dataOut.type, |
|
560 | dt = datetime.datetime.fromtimestamp(dataOut.utctime).date() | |
458 | # self.dataOut.datatime.ctime()) |
|
561 | sended = False | |
459 |
|
562 | if dt not in self.dates: | ||
460 |
self. |
|
563 | if self.data: | |
|
564 | self.data.ended = True | |||
|
565 | self.send(self.data) | |||
|
566 | sended = True | |||
|
567 | self.data.setup() | |||
|
568 | self.dates.append(dt) | |||
461 |
|
569 | |||
462 |
|
|
570 | self.data.update(dataOut) | |
463 | self.data['STARTED'] = True |
|
|||
464 |
|
571 | |||
465 |
if |
|
572 | if dataOut.finished is True: | |
466 | self.send(self.data) |
|
|||
467 | self.connections -= 1 |
|
573 | self.connections -= 1 | |
468 |
if self.connections == 0 and self. |
|
574 | if self.connections == 0 and dt in self.dates: | |
469 | self.ended = True |
|
575 | self.data.ended = True | |
470 | self.data['ENDED'] = True |
|
|||
471 | self.send(self.data) |
|
576 | self.send(self.data) | |
472 | self.setup() |
|
577 | self.data.setup() | |
473 | self.started = False |
|
|||
474 | else: |
|
578 | else: | |
475 | if self.realtime: |
|
579 | if self.realtime: | |
476 | self.send(self.data) |
|
580 | self.send(self.data) | |
477 |
self.sender_web.send_string( |
|
581 | # self.sender_web.send_string(self.data.jsonify()) | |
478 | else: |
|
582 | else: | |
479 |
|
|
583 | if not sended: | |
480 | self.started = True |
|
584 | self.sendData(self.send, self.data) | |
481 |
|
585 | |||
482 | self.data['STARTED'] = False |
|
|||
483 | return |
|
586 | return | |
484 |
|
587 | |||
485 | def sendToWeb(self): |
|
588 | def sendToWeb(self): | |
@@ -496,6 +599,6 class PlotterReceiver(ProcessingUnit, Process): | |||||
496 | time.sleep(1) |
|
599 | time.sleep(1) | |
497 | for kwargs in self.operationKwargs.values(): |
|
600 | for kwargs in self.operationKwargs.values(): | |
498 | if 'plot' in kwargs: |
|
601 | if 'plot' in kwargs: | |
499 |
|
|
602 | log.success('[Sending] Config data to web for {}'.format(kwargs['code'].upper())) | |
500 | sender_web_config.send_string(json.dumps(kwargs)) |
|
603 | sender_web_config.send_string(json.dumps(kwargs)) | |
501 |
self.isWebConfig = True |
|
604 | self.isWebConfig = True No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now