@@ -0,0 +1,113 | |||||
|
1 | import h5py | |||
|
2 | import numpy | |||
|
3 | import matplotlib.pyplot as plt | |||
|
4 | import glob | |||
|
5 | import os | |||
|
6 | ||||
|
7 | #---------------------- Functions --------------------- | |||
|
8 | ||||
|
9 | def findFiles(path): | |||
|
10 | ||||
|
11 | dirList = [] | |||
|
12 | fileList = [] | |||
|
13 | ||||
|
14 | for thisPath in os.listdir(path): | |||
|
15 | dirList.append(os.path.join(path,thisPath)) | |||
|
16 | dirList.sort() | |||
|
17 | ||||
|
18 | for thisDirectory in dirList: | |||
|
19 | files = glob.glob1(thisDirectory, "*.hdf5") | |||
|
20 | files.sort() | |||
|
21 | for thisFile in files: | |||
|
22 | fileList.append(os.path.join(thisDirectory,thisFile)) | |||
|
23 | ||||
|
24 | return fileList | |||
|
25 | ||||
|
26 | def readFiles(fileList): | |||
|
27 | ||||
|
28 | meteors_array = numpy.zeros((1,4)) | |||
|
29 | ||||
|
30 | for thisFile in fileList: | |||
|
31 | ||||
|
32 | #Leer | |||
|
33 | f1 = h5py.File(thisFile,'r') | |||
|
34 | grp1 = f1['Data'] | |||
|
35 | grp2 = grp1['data_output'] | |||
|
36 | meteors1 = grp2['table0'][:] | |||
|
37 | meteors_array = numpy.vstack((meteors_array,meteors1)) | |||
|
38 | #cerrar | |||
|
39 | f1.close() | |||
|
40 | ||||
|
41 | meteors_array = numpy.delete(meteors_array, 0, axis=0) | |||
|
42 | meteors_list = [meteors_array[:,0],meteors_array[:,1],meteors_array[:,2],meteors_array[:,3]] | |||
|
43 | return meteors_list | |||
|
44 | ||||
|
45 | def estimateMean(offset_list): | |||
|
46 | ||||
|
47 | mean_off = [] | |||
|
48 | axisY_off = [] | |||
|
49 | axisX_off = [] | |||
|
50 | ||||
|
51 | for thisOffset in offset_list: | |||
|
52 | mean_aux = numpy.mean(thisOffset, axis = 0) | |||
|
53 | mean_off.append(mean_aux) | |||
|
54 | axisX_off.append(numpy.array([0,numpy.size(thisOffset)])) | |||
|
55 | axisY_off.append(numpy.array([mean_aux,mean_aux])) | |||
|
56 | ||||
|
57 | return mean_off, axisY_off, axisX_off | |||
|
58 | ||||
|
59 | def plotPhases(offset0, axisY0, axisX0, title): | |||
|
60 | f, axarr = plt.subplots(4, sharey=True) | |||
|
61 | color = ['b','g','r','c'] | |||
|
62 | # plt.grid() | |||
|
63 | for i in range(len(offset0)): | |||
|
64 | thisMeteor = offset0[i] | |||
|
65 | thisY = axisY0[i] | |||
|
66 | thisX = axisX0[i] | |||
|
67 | thisColor = color[i] | |||
|
68 | ||||
|
69 | opt = thisColor + 'o' | |||
|
70 | axarr[i].plot(thisMeteor,opt) | |||
|
71 | axarr[i].plot(thisX, thisY, thisColor) | |||
|
72 | axarr[i].set_ylabel('Offset ' + str(i)) | |||
|
73 | ||||
|
74 | plt.ylim((-180,180)) | |||
|
75 | axarr[0].set_title(title + ' Offsets') | |||
|
76 | axarr[3].set_xlabel('Number of estimations') | |||
|
77 | ||||
|
78 | return | |||
|
79 | ||||
|
80 | def filterOffsets(offsets0, stdvLimit): | |||
|
81 | offsets1 = [] | |||
|
82 | ||||
|
83 | for thisOffset in offsets0: | |||
|
84 | pstd = numpy.std(thisOffset)*stdvLimit | |||
|
85 | pmean = numpy.mean(thisOffset) | |||
|
86 | outlier1 = thisOffset > pmean - pstd | |||
|
87 | outlier2 = thisOffset < pmean + pstd | |||
|
88 | not_outlier = numpy.logical_and(outlier1,outlier2) | |||
|
89 | thisOffset1 = thisOffset[not_outlier] | |||
|
90 | offsets1.append(thisOffset1) | |||
|
91 | ||||
|
92 | return offsets1 | |||
|
93 | ||||
|
94 | #---------------------- Setup --------------------------- | |||
|
95 | ||||
|
96 | path = '/home/jespinoza/Pictures/JASMET30/201608/phase' | |||
|
97 | stdvLimit = 0.5 | |||
|
98 | ||||
|
99 | #---------------------- Script --------------------------- | |||
|
100 | ||||
|
101 | fileList = findFiles(path) | |||
|
102 | offsets0 = readFiles(fileList) | |||
|
103 | mean0, axisY0, axisX0 = estimateMean(offsets0) | |||
|
104 | plotPhases(offsets0, axisY0, axisX0, 'Original') | |||
|
105 | ||||
|
106 | offsets1 = filterOffsets(offsets0, stdvLimit) | |||
|
107 | mean1, axisY1, axisX1 = estimateMean(offsets1) | |||
|
108 | plotPhases(offsets1, axisY1, axisX1, 'Filtered') | |||
|
109 | ||||
|
110 | print "Original Offsets: %.2f, %.2f, %.2f, %.2f" % (mean0[0],mean0[1],mean0[2],mean0[3]) | |||
|
111 | print "Filtered Offsets: %.2f, %.2f, %.2f, %.2f" % (mean1[0],mean1[1],mean1[2],mean1[3]) | |||
|
112 | ||||
|
113 | plt.show() |
@@ -4,3 +4,10 build/ | |||||
4 | *.pyc |
|
4 | *.pyc | |
5 | *.so |
|
5 | *.so | |
6 | *.egg-info/ |
|
6 | *.egg-info/ | |
|
7 | ||||
|
8 | # eclipse | |||
|
9 | .project | |||
|
10 | .pydevproject | |||
|
11 | ||||
|
12 | # vscode | |||
|
13 | .vscode No newline at end of file |
@@ -6,12 +6,13 Signal Chain (SCh) is a radar data processing library developed using [Python](w | |||||
6 |
|
6 | |||
7 | ## Installation |
|
7 | ## Installation | |
8 |
|
8 | |||
9 |
Install system dependencies, |
|
9 | Install system dependencies, clone the latest version from [git](http://jro-dev.igp.gob.pe/rhodecode/schain/) and install it as a normal python package. | |
10 |
|
10 | |||
11 | ``` |
|
11 | ``` | |
12 | $ sudo apt-get install python-pip python-dev gfortran libpng-dev freetype* libblas-dev liblapack-dev libatlas-base-dev python-qt4 python-tk libssl-dev libhdf5-dev |
|
12 | $ sudo apt-get install python-pip python-dev gfortran libpng-dev freetype* libblas-dev liblapack-dev libatlas-base-dev python-qt4 python-tk libssl-dev libhdf5-dev | |
13 | $ tar xvzf schainpy-2.2.5.tar.gz |
|
13 | $ sudo pip install numpy | |
14 | $ cd schainpy-2.2.5 |
|
14 | $ git clone http://jro-dev.igp.gob.pe/rhodecode/schain/ | |
|
15 | $ cd schain | |||
15 | $ sudo pip install ./ |
|
16 | $ sudo pip install ./ | |
16 | ``` |
|
17 | ``` | |
17 |
|
18 | |||
@@ -21,7 +22,7 $ sudo pip install ./ | |||||
21 | $ sudo pip install virtualenv |
|
22 | $ sudo pip install virtualenv | |
22 | $ virtualenv /path/to/virtual --system-site-packages |
|
23 | $ virtualenv /path/to/virtual --system-site-packages | |
23 | $ source /path/to/virtual/bin/activate |
|
24 | $ source /path/to/virtual/bin/activate | |
24 |
(virtual) $ cd schain |
|
25 | (virtual) $ cd schain | |
25 | (virtual) $ pip install ./ |
|
26 | (virtual) $ pip install ./ | |
26 | ``` |
|
27 | ``` | |
27 |
|
28 |
@@ -3,9 +3,9 Created on Jul 16, 2014 | |||||
3 |
|
3 | |||
4 | @author: Miguel Urco |
|
4 | @author: Miguel Urco | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | import numpy | ||
7 | from schainpy import __version__ |
|
|||
8 | from setuptools import setup, Extension |
|
7 | from setuptools import setup, Extension | |
|
8 | from schainpy import __version__ | |||
9 |
|
9 | |||
10 | setup(name="schainpy", |
|
10 | setup(name="schainpy", | |
11 | version=__version__, |
|
11 | version=__version__, | |
@@ -34,7 +34,7 setup(name="schainpy", | |||||
34 | include_package_data=False, |
|
34 | include_package_data=False, | |
35 | scripts =['schainpy/gui/schainGUI', |
|
35 | scripts =['schainpy/gui/schainGUI', | |
36 | 'schainpy/scripts/schain'], |
|
36 | 'schainpy/scripts/schain'], | |
37 | ext_modules=[Extension("cSchain", ["schainpy/model/proc/extensions.c"])], |
|
37 | ext_modules=[Extension("cSchain", ["schainpy/model/proc/extensions.c"], include_dirs=[numpy.get_include()])], | |
38 | install_requires=[ |
|
38 | install_requires=[ | |
39 | "scipy >= 0.14.0", |
|
39 | "scipy >= 0.14.0", | |
40 | "h5py >= 2.2.1", |
|
40 | "h5py >= 2.2.1", |
General Comments 0
You need to be logged in to leave comments.
Login now