@@ -0,0 +1,34 | |||
|
1 | #!/usr/bin/env python | |
|
2 | ''' | |
|
3 | Created on Jul 7, 2014 | |
|
4 | ||
|
5 | @author: roj-idl71 | |
|
6 | ''' | |
|
7 | import os, sys | |
|
8 | ||
|
9 | schainpy_path = os.path.dirname(os.getcwd()) | |
|
10 | source_path = os.path.dirname(schainpy_path) | |
|
11 | sys.path.insert(0, source_path) | |
|
12 | ||
|
13 | from schainpy.controller_api import ControllerThread | |
|
14 | ||
|
15 | def main(): | |
|
16 | desc = "Segundo Test" | |
|
17 | filename = "/Users/miguel/Downloads/mst_blocks.xml" | |
|
18 | ||
|
19 | controllerObj = ControllerThread() | |
|
20 | controllerObj.readXml(filename) | |
|
21 | ||
|
22 | #Configure use of external plotter before start | |
|
23 | plotterObj = controllerObj.useExternalPlotter() | |
|
24 | ######################################## | |
|
25 | ||
|
26 | controllerObj.start() | |
|
27 | plotterObj.start() | |
|
28 | ||
|
29 | ||
|
30 | if __name__ == '__main__': | |
|
31 | import time | |
|
32 | start_time = time.time() | |
|
33 | main() | |
|
34 | print("--- %s seconds ---" % (time.time() - start_time)) No newline at end of file |
@@ -1,1123 +1,1123 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | 12 | |
|
13 | 13 | def getNumpyDtype(dataTypeCode): |
|
14 | 14 | |
|
15 | 15 | if dataTypeCode == 0: |
|
16 | 16 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
17 | 17 | elif dataTypeCode == 1: |
|
18 | 18 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
19 | 19 | elif dataTypeCode == 2: |
|
20 | 20 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
21 | 21 | elif dataTypeCode == 3: |
|
22 | 22 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
23 | 23 | elif dataTypeCode == 4: |
|
24 | 24 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
25 | 25 | elif dataTypeCode == 5: |
|
26 | 26 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
27 | 27 | else: |
|
28 | 28 | raise ValueError, 'dataTypeCode was not defined' |
|
29 | 29 | |
|
30 | 30 | return numpyDtype |
|
31 | 31 | |
|
32 | 32 | def getDataTypeCode(numpyDtype): |
|
33 | 33 | |
|
34 | 34 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
35 | 35 | datatype = 0 |
|
36 | 36 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
37 | 37 | datatype = 1 |
|
38 | 38 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
39 | 39 | datatype = 2 |
|
40 | 40 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
41 | 41 | datatype = 3 |
|
42 | 42 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
43 | 43 | datatype = 4 |
|
44 | 44 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
45 | 45 | datatype = 5 |
|
46 | 46 | else: |
|
47 | 47 | datatype = None |
|
48 | 48 | |
|
49 | 49 | return datatype |
|
50 | 50 | |
|
51 | 51 | def hildebrand_sekhon(data, navg): |
|
52 | 52 | """ |
|
53 | 53 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
54 | 54 | implementation technique is based on the fact that the standard deviation of the spectral |
|
55 | 55 | densities is equal to the mean spectral density for white Gaussian noise |
|
56 | 56 | |
|
57 | 57 | Inputs: |
|
58 | 58 | Data : heights |
|
59 | 59 | navg : numbers of averages |
|
60 | 60 | |
|
61 | 61 | Return: |
|
62 | 62 | -1 : any error |
|
63 | 63 | anoise : noise's level |
|
64 | 64 | """ |
|
65 | 65 | |
|
66 | 66 | sortdata = numpy.sort(data,axis=None) |
|
67 | 67 | lenOfData = len(sortdata) |
|
68 | 68 | nums_min = lenOfData*0.2 |
|
69 | 69 | |
|
70 | 70 | if nums_min <= 5: |
|
71 | 71 | nums_min = 5 |
|
72 | 72 | |
|
73 | 73 | sump = 0. |
|
74 | 74 | |
|
75 | 75 | sumq = 0. |
|
76 | 76 | |
|
77 | 77 | j = 0 |
|
78 | 78 | |
|
79 | 79 | cont = 1 |
|
80 | 80 | |
|
81 | 81 | while((cont==1)and(j<lenOfData)): |
|
82 | 82 | |
|
83 | 83 | sump += sortdata[j] |
|
84 | 84 | |
|
85 | 85 | sumq += sortdata[j]**2 |
|
86 | 86 | |
|
87 | 87 | if j > nums_min: |
|
88 | 88 | rtest = float(j)/(j-1) + 1.0/navg |
|
89 | 89 | if ((sumq*j) > (rtest*sump**2)): |
|
90 | 90 | j = j - 1 |
|
91 | 91 | sump = sump - sortdata[j] |
|
92 | 92 | sumq = sumq - sortdata[j]**2 |
|
93 | 93 | cont = 0 |
|
94 | 94 | |
|
95 | 95 | j += 1 |
|
96 | 96 | |
|
97 | 97 | lnoise = sump /j |
|
98 | 98 | stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) |
|
99 | 99 | return lnoise |
|
100 | 100 | |
|
101 | 101 | class Beam: |
|
102 | 102 | def __init__(self): |
|
103 | 103 | self.codeList = [] |
|
104 | 104 | self.azimuthList = [] |
|
105 | 105 | self.zenithList = [] |
|
106 | 106 | |
|
107 | 107 | class GenericData(object): |
|
108 | 108 | |
|
109 | 109 | flagNoData = True |
|
110 | 110 | |
|
111 | 111 | def __init__(self): |
|
112 | 112 | |
|
113 | 113 | raise NotImplementedError |
|
114 | 114 | |
|
115 | 115 | def copy(self, inputObj=None): |
|
116 | 116 | |
|
117 | 117 | if inputObj == None: |
|
118 | 118 | return copy.deepcopy(self) |
|
119 | 119 | |
|
120 | 120 | for key in inputObj.__dict__.keys(): |
|
121 | 121 | self.__dict__[key] = inputObj.__dict__[key] |
|
122 | 122 | |
|
123 | 123 | def deepcopy(self): |
|
124 | 124 | |
|
125 | 125 | return copy.deepcopy(self) |
|
126 | 126 | |
|
127 | 127 | def isEmpty(self): |
|
128 | 128 | |
|
129 | 129 | return self.flagNoData |
|
130 | 130 | |
|
131 | 131 | class JROData(GenericData): |
|
132 | 132 | |
|
133 | 133 | # m_BasicHeader = BasicHeader() |
|
134 | 134 | # m_ProcessingHeader = ProcessingHeader() |
|
135 | 135 | |
|
136 | 136 | systemHeaderObj = SystemHeader() |
|
137 | 137 | |
|
138 | 138 | radarControllerHeaderObj = RadarControllerHeader() |
|
139 | 139 | |
|
140 | 140 | # data = None |
|
141 | 141 | |
|
142 | 142 | type = None |
|
143 | 143 | |
|
144 | 144 | datatype = None #dtype but in string |
|
145 | 145 | |
|
146 | 146 | # dtype = None |
|
147 | 147 | |
|
148 | 148 | # nChannels = None |
|
149 | 149 | |
|
150 | 150 | # nHeights = None |
|
151 | 151 | |
|
152 | 152 | nProfiles = None |
|
153 | 153 | |
|
154 | 154 | heightList = None |
|
155 | 155 | |
|
156 | 156 | channelList = None |
|
157 | 157 | |
|
158 | 158 | flagDiscontinuousBlock = False |
|
159 | 159 | |
|
160 | 160 | useLocalTime = False |
|
161 | 161 | |
|
162 | 162 | utctime = None |
|
163 | 163 | |
|
164 | 164 | timeZone = None |
|
165 | 165 | |
|
166 | 166 | dstFlag = None |
|
167 | 167 | |
|
168 | 168 | errorCount = None |
|
169 | 169 | |
|
170 | 170 | blocksize = None |
|
171 | 171 | |
|
172 | 172 | # nCode = None |
|
173 | 173 | # |
|
174 | 174 | # nBaud = None |
|
175 | 175 | # |
|
176 | 176 | # code = None |
|
177 | 177 | |
|
178 | 178 | flagDecodeData = False #asumo q la data no esta decodificada |
|
179 | 179 | |
|
180 | 180 | flagDeflipData = False #asumo q la data no esta sin flip |
|
181 | 181 | |
|
182 | 182 | flagShiftFFT = False |
|
183 | 183 | |
|
184 | 184 | # ippSeconds = None |
|
185 | 185 | |
|
186 | 186 | # timeInterval = None |
|
187 | 187 | |
|
188 | 188 | nCohInt = None |
|
189 | 189 | |
|
190 | 190 | # noise = None |
|
191 | 191 | |
|
192 | 192 | windowOfFilter = 1 |
|
193 | 193 | |
|
194 | 194 | #Speed of ligth |
|
195 | 195 | C = 3e8 |
|
196 | 196 | |
|
197 | 197 | frequency = 49.92e6 |
|
198 | 198 | |
|
199 | 199 | realtime = False |
|
200 | 200 | |
|
201 | 201 | beacon_heiIndexList = None |
|
202 | 202 | |
|
203 | 203 | last_block = None |
|
204 | 204 | |
|
205 | 205 | blocknow = None |
|
206 | 206 | |
|
207 | 207 | azimuth = None |
|
208 | 208 | |
|
209 | 209 | zenith = None |
|
210 | 210 | |
|
211 | 211 | beam = Beam() |
|
212 | 212 | |
|
213 | 213 | profileIndex = None |
|
214 | 214 | |
|
215 | 215 | def __init__(self): |
|
216 | 216 | |
|
217 | 217 | raise NotImplementedError |
|
218 | 218 | |
|
219 | 219 | def getNoise(self): |
|
220 | 220 | |
|
221 | 221 | raise NotImplementedError |
|
222 | 222 | |
|
223 | 223 | def getNChannels(self): |
|
224 | 224 | |
|
225 | 225 | return len(self.channelList) |
|
226 | 226 | |
|
227 | 227 | def getChannelIndexList(self): |
|
228 | 228 | |
|
229 | 229 | return range(self.nChannels) |
|
230 | 230 | |
|
231 | 231 | def getNHeights(self): |
|
232 | 232 | |
|
233 | 233 | return len(self.heightList) |
|
234 | 234 | |
|
235 | 235 | def getHeiRange(self, extrapoints=0): |
|
236 | 236 | |
|
237 | 237 | heis = self.heightList |
|
238 | 238 | # deltah = self.heightList[1] - self.heightList[0] |
|
239 | 239 | # |
|
240 | 240 | # heis.append(self.heightList[-1]) |
|
241 | 241 | |
|
242 | 242 | return heis |
|
243 | 243 | |
|
244 | 244 | def getltctime(self): |
|
245 | 245 | |
|
246 | 246 | if self.useLocalTime: |
|
247 | 247 | return self.utctime - self.timeZone*60 |
|
248 | 248 | |
|
249 | 249 | return self.utctime |
|
250 | 250 | |
|
251 | 251 | def getDatatime(self): |
|
252 | 252 | |
|
253 | 253 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
254 | 254 | return datatimeValue |
|
255 | 255 | |
|
256 | 256 | def getTimeRange(self): |
|
257 | 257 | |
|
258 | 258 | datatime = [] |
|
259 | 259 | |
|
260 | 260 | datatime.append(self.ltctime) |
|
261 | 261 | datatime.append(self.ltctime + self.timeInterval+60) |
|
262 | 262 | |
|
263 | 263 | datatime = numpy.array(datatime) |
|
264 | 264 | |
|
265 | 265 | return datatime |
|
266 | 266 | |
|
267 | 267 | def getFmax(self): |
|
268 | 268 | |
|
269 | 269 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
270 | 270 | |
|
271 | 271 | fmax = PRF/2. |
|
272 | 272 | |
|
273 | 273 | return fmax |
|
274 | 274 | |
|
275 | 275 | def getVmax(self): |
|
276 | 276 | |
|
277 | 277 | _lambda = self.C/self.frequency |
|
278 | 278 | |
|
279 | 279 | vmax = self.getFmax() * _lambda |
|
280 | 280 | |
|
281 | 281 | return vmax |
|
282 | 282 | |
|
283 | 283 | def get_ippSeconds(self): |
|
284 | 284 | ''' |
|
285 | 285 | ''' |
|
286 | 286 | return self.radarControllerHeaderObj.ippSeconds |
|
287 | 287 | |
|
288 | 288 | def set_ippSeconds(self, ippSeconds): |
|
289 | 289 | ''' |
|
290 | 290 | ''' |
|
291 | 291 | |
|
292 | 292 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
293 | 293 | |
|
294 | 294 | return |
|
295 | 295 | |
|
296 | 296 | def get_dtype(self): |
|
297 | 297 | ''' |
|
298 | 298 | ''' |
|
299 | 299 | return getNumpyDtype(self.datatype) |
|
300 | 300 | |
|
301 | 301 | def set_dtype(self, numpyDtype): |
|
302 | 302 | ''' |
|
303 | 303 | ''' |
|
304 | 304 | |
|
305 | 305 | self.datatype = getDataTypeCode(numpyDtype) |
|
306 | 306 | |
|
307 | 307 | def get_code(self): |
|
308 | 308 | ''' |
|
309 | 309 | ''' |
|
310 | 310 | return self.radarControllerHeaderObj.code |
|
311 | 311 | |
|
312 | 312 | def set_code(self, code): |
|
313 | 313 | ''' |
|
314 | 314 | ''' |
|
315 | 315 | self.radarControllerHeaderObj.code = code |
|
316 | 316 | |
|
317 | 317 | return |
|
318 | 318 | |
|
319 | 319 | def get_ncode(self): |
|
320 | 320 | ''' |
|
321 | 321 | ''' |
|
322 | 322 | return self.radarControllerHeaderObj.nCode |
|
323 | 323 | |
|
324 | 324 | def set_ncode(self, nCode): |
|
325 | 325 | ''' |
|
326 | 326 | ''' |
|
327 | 327 | self.radarControllerHeaderObj.nCode = nCode |
|
328 | 328 | |
|
329 | 329 | return |
|
330 | 330 | |
|
331 | 331 | def get_nbaud(self): |
|
332 | 332 | ''' |
|
333 | 333 | ''' |
|
334 | 334 | return self.radarControllerHeaderObj.nBaud |
|
335 | 335 | |
|
336 | 336 | def set_nbaud(self, nBaud): |
|
337 | 337 | ''' |
|
338 | 338 | ''' |
|
339 | 339 | self.radarControllerHeaderObj.nBaud = nBaud |
|
340 | 340 | |
|
341 | 341 | return |
|
342 | 342 | |
|
343 | 343 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
344 | 344 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
345 | 345 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
346 | 346 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
347 | 347 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
348 | 348 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
349 | 349 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
350 | 350 | dtype = property(get_dtype, set_dtype) |
|
351 | 351 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
352 | 352 | code = property(get_code, set_code) |
|
353 | 353 | nCode = property(get_ncode, set_ncode) |
|
354 | 354 | nBaud = property(get_nbaud, set_nbaud) |
|
355 | 355 | |
|
356 | 356 | class Voltage(JROData): |
|
357 | 357 | |
|
358 | 358 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
359 | 359 | data = None |
|
360 | 360 | |
|
361 | 361 | def __init__(self): |
|
362 | 362 | ''' |
|
363 | 363 | Constructor |
|
364 | 364 | ''' |
|
365 | 365 | |
|
366 | 366 | self.useLocalTime = True |
|
367 | 367 | |
|
368 | 368 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
369 | 369 | |
|
370 | 370 | self.systemHeaderObj = SystemHeader() |
|
371 | 371 | |
|
372 | 372 | self.type = "Voltage" |
|
373 | 373 | |
|
374 | 374 | self.data = None |
|
375 | 375 | |
|
376 | 376 | # self.dtype = None |
|
377 | 377 | |
|
378 | 378 | # self.nChannels = 0 |
|
379 | 379 | |
|
380 | 380 | # self.nHeights = 0 |
|
381 | 381 | |
|
382 | 382 | self.nProfiles = None |
|
383 | 383 | |
|
384 | 384 | self.heightList = None |
|
385 | 385 | |
|
386 | 386 | self.channelList = None |
|
387 | 387 | |
|
388 | 388 | # self.channelIndexList = None |
|
389 | 389 | |
|
390 | 390 | self.flagNoData = True |
|
391 | 391 | |
|
392 | 392 | self.flagDiscontinuousBlock = False |
|
393 | 393 | |
|
394 | 394 | self.utctime = None |
|
395 | 395 | |
|
396 | 396 | self.timeZone = None |
|
397 | 397 | |
|
398 | 398 | self.dstFlag = None |
|
399 | 399 | |
|
400 | 400 | self.errorCount = None |
|
401 | 401 | |
|
402 | 402 | self.nCohInt = None |
|
403 | 403 | |
|
404 | 404 | self.blocksize = None |
|
405 | 405 | |
|
406 | 406 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
407 | 407 | |
|
408 | 408 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
409 | 409 | |
|
410 | 410 | self.flagShiftFFT = False |
|
411 | 411 | |
|
412 | 412 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
413 | 413 | |
|
414 | 414 | self.profileIndex = 0 |
|
415 | 415 | |
|
416 | 416 | def getNoisebyHildebrand(self, channel = None): |
|
417 | 417 | """ |
|
418 | 418 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
419 | 419 | |
|
420 | 420 | Return: |
|
421 | 421 | noiselevel |
|
422 | 422 | """ |
|
423 | 423 | |
|
424 | 424 | if channel != None: |
|
425 | 425 | data = self.data[channel] |
|
426 | 426 | nChannels = 1 |
|
427 | 427 | else: |
|
428 | 428 | data = self.data |
|
429 | 429 | nChannels = self.nChannels |
|
430 | 430 | |
|
431 | 431 | noise = numpy.zeros(nChannels) |
|
432 | 432 | power = data * numpy.conjugate(data) |
|
433 | 433 | |
|
434 | 434 | for thisChannel in range(nChannels): |
|
435 | 435 | if nChannels == 1: |
|
436 | 436 | daux = power[:].real |
|
437 | 437 | else: |
|
438 | 438 | daux = power[thisChannel,:].real |
|
439 | 439 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
440 | 440 | |
|
441 | 441 | return noise |
|
442 | 442 | |
|
443 | 443 | def getNoise(self, type = 1, channel = None): |
|
444 | 444 | |
|
445 | 445 | if type == 1: |
|
446 | 446 | noise = self.getNoisebyHildebrand(channel) |
|
447 | 447 | |
|
448 |
return |
|
|
448 | return noise | |
|
449 | 449 | |
|
450 | 450 | def getPower(self, channel = None): |
|
451 | 451 | |
|
452 | 452 | if channel != None: |
|
453 | 453 | data = self.data[channel] |
|
454 | 454 | else: |
|
455 | 455 | data = self.data |
|
456 | 456 | |
|
457 | 457 | power = data * numpy.conjugate(data) |
|
458 | 458 | |
|
459 | 459 | return 10*numpy.log10(power.real) |
|
460 | 460 | |
|
461 | 461 | def getTimeInterval(self): |
|
462 | 462 | |
|
463 | 463 | timeInterval = self.ippSeconds * self.nCohInt |
|
464 | 464 | |
|
465 | 465 | return timeInterval |
|
466 | 466 | |
|
467 | 467 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
468 | 468 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
469 | 469 | |
|
470 | 470 | class Spectra(JROData): |
|
471 | 471 | |
|
472 | 472 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
473 | 473 | data_spc = None |
|
474 | 474 | |
|
475 | 475 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
476 | 476 | data_cspc = None |
|
477 | 477 | |
|
478 | 478 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
479 | 479 | data_dc = None |
|
480 | 480 | |
|
481 | 481 | nFFTPoints = None |
|
482 | 482 | |
|
483 | 483 | # nPairs = None |
|
484 | 484 | |
|
485 | 485 | pairsList = None |
|
486 | 486 | |
|
487 | 487 | nIncohInt = None |
|
488 | 488 | |
|
489 | 489 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
490 | 490 | |
|
491 | 491 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
492 | 492 | |
|
493 | 493 | ippFactor = None |
|
494 | 494 | |
|
495 | 495 | profileIndex = 0 |
|
496 | 496 | |
|
497 | 497 | def __init__(self): |
|
498 | 498 | ''' |
|
499 | 499 | Constructor |
|
500 | 500 | ''' |
|
501 | 501 | |
|
502 | 502 | self.useLocalTime = True |
|
503 | 503 | |
|
504 | 504 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
505 | 505 | |
|
506 | 506 | self.systemHeaderObj = SystemHeader() |
|
507 | 507 | |
|
508 | 508 | self.type = "Spectra" |
|
509 | 509 | |
|
510 | 510 | # self.data = None |
|
511 | 511 | |
|
512 | 512 | # self.dtype = None |
|
513 | 513 | |
|
514 | 514 | # self.nChannels = 0 |
|
515 | 515 | |
|
516 | 516 | # self.nHeights = 0 |
|
517 | 517 | |
|
518 | 518 | self.nProfiles = None |
|
519 | 519 | |
|
520 | 520 | self.heightList = None |
|
521 | 521 | |
|
522 | 522 | self.channelList = None |
|
523 | 523 | |
|
524 | 524 | # self.channelIndexList = None |
|
525 | 525 | |
|
526 | 526 | self.pairsList = None |
|
527 | 527 | |
|
528 | 528 | self.flagNoData = True |
|
529 | 529 | |
|
530 | 530 | self.flagDiscontinuousBlock = False |
|
531 | 531 | |
|
532 | 532 | self.utctime = None |
|
533 | 533 | |
|
534 | 534 | self.nCohInt = None |
|
535 | 535 | |
|
536 | 536 | self.nIncohInt = None |
|
537 | 537 | |
|
538 | 538 | self.blocksize = None |
|
539 | 539 | |
|
540 | 540 | self.nFFTPoints = None |
|
541 | 541 | |
|
542 | 542 | self.wavelength = None |
|
543 | 543 | |
|
544 | 544 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
545 | 545 | |
|
546 | 546 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
547 | 547 | |
|
548 | 548 | self.flagShiftFFT = False |
|
549 | 549 | |
|
550 | 550 | self.ippFactor = 1 |
|
551 | 551 | |
|
552 | 552 | #self.noise = None |
|
553 | 553 | |
|
554 | 554 | self.beacon_heiIndexList = [] |
|
555 | 555 | |
|
556 | 556 | self.noise_estimation = None |
|
557 | 557 | |
|
558 | 558 | |
|
559 | 559 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
560 | 560 | """ |
|
561 | 561 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
562 | 562 | |
|
563 | 563 | Return: |
|
564 | 564 | noiselevel |
|
565 | 565 | """ |
|
566 | 566 | |
|
567 | 567 | noise = numpy.zeros(self.nChannels) |
|
568 | 568 | |
|
569 | 569 | for channel in range(self.nChannels): |
|
570 | 570 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
571 | 571 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
572 | 572 | |
|
573 | 573 | return noise |
|
574 | 574 | |
|
575 | 575 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
576 | 576 | |
|
577 | 577 | if self.noise_estimation != None: |
|
578 | 578 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
579 | 579 | else: |
|
580 | 580 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
581 | 581 | return noise |
|
582 | 582 | |
|
583 | 583 | |
|
584 | 584 | def getFreqRange(self, extrapoints=0): |
|
585 | 585 | |
|
586 | 586 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
587 | 587 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
588 | 588 | |
|
589 | 589 | return freqrange |
|
590 | 590 | |
|
591 | 591 | def getVelRange(self, extrapoints=0): |
|
592 | 592 | |
|
593 | 593 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
594 | 594 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
595 | 595 | |
|
596 | 596 | return velrange |
|
597 | 597 | |
|
598 | 598 | def getNPairs(self): |
|
599 | 599 | |
|
600 | 600 | return len(self.pairsList) |
|
601 | 601 | |
|
602 | 602 | def getPairsIndexList(self): |
|
603 | 603 | |
|
604 | 604 | return range(self.nPairs) |
|
605 | 605 | |
|
606 | 606 | def getNormFactor(self): |
|
607 | 607 | |
|
608 | 608 | pwcode = 1 |
|
609 | 609 | |
|
610 | 610 | if self.flagDecodeData: |
|
611 | 611 | pwcode = numpy.sum(self.code[0]**2) |
|
612 | 612 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
613 | 613 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
614 | 614 | |
|
615 | 615 | return normFactor |
|
616 | 616 | |
|
617 | 617 | def getFlagCspc(self): |
|
618 | 618 | |
|
619 | 619 | if self.data_cspc is None: |
|
620 | 620 | return True |
|
621 | 621 | |
|
622 | 622 | return False |
|
623 | 623 | |
|
624 | 624 | def getFlagDc(self): |
|
625 | 625 | |
|
626 | 626 | if self.data_dc is None: |
|
627 | 627 | return True |
|
628 | 628 | |
|
629 | 629 | return False |
|
630 | 630 | |
|
631 | 631 | def getTimeInterval(self): |
|
632 | 632 | |
|
633 | 633 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
634 | 634 | |
|
635 | 635 | return timeInterval |
|
636 | 636 | |
|
637 | 637 | def setValue(self, value): |
|
638 | 638 | |
|
639 | 639 | print "This property should not be initialized" |
|
640 | 640 | |
|
641 | 641 | return |
|
642 | 642 | |
|
643 | 643 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
644 | 644 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
645 | 645 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
646 | 646 | flag_cspc = property(getFlagCspc, setValue) |
|
647 | 647 | flag_dc = property(getFlagDc, setValue) |
|
648 | 648 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
649 | 649 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
650 | 650 | |
|
651 | 651 | class SpectraHeis(Spectra): |
|
652 | 652 | |
|
653 | 653 | data_spc = None |
|
654 | 654 | |
|
655 | 655 | data_cspc = None |
|
656 | 656 | |
|
657 | 657 | data_dc = None |
|
658 | 658 | |
|
659 | 659 | nFFTPoints = None |
|
660 | 660 | |
|
661 | 661 | # nPairs = None |
|
662 | 662 | |
|
663 | 663 | pairsList = None |
|
664 | 664 | |
|
665 | 665 | nCohInt = None |
|
666 | 666 | |
|
667 | 667 | nIncohInt = None |
|
668 | 668 | |
|
669 | 669 | def __init__(self): |
|
670 | 670 | |
|
671 | 671 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
672 | 672 | |
|
673 | 673 | self.systemHeaderObj = SystemHeader() |
|
674 | 674 | |
|
675 | 675 | self.type = "SpectraHeis" |
|
676 | 676 | |
|
677 | 677 | # self.dtype = None |
|
678 | 678 | |
|
679 | 679 | # self.nChannels = 0 |
|
680 | 680 | |
|
681 | 681 | # self.nHeights = 0 |
|
682 | 682 | |
|
683 | 683 | self.nProfiles = None |
|
684 | 684 | |
|
685 | 685 | self.heightList = None |
|
686 | 686 | |
|
687 | 687 | self.channelList = None |
|
688 | 688 | |
|
689 | 689 | # self.channelIndexList = None |
|
690 | 690 | |
|
691 | 691 | self.flagNoData = True |
|
692 | 692 | |
|
693 | 693 | self.flagDiscontinuousBlock = False |
|
694 | 694 | |
|
695 | 695 | # self.nPairs = 0 |
|
696 | 696 | |
|
697 | 697 | self.utctime = None |
|
698 | 698 | |
|
699 | 699 | self.blocksize = None |
|
700 | 700 | |
|
701 | 701 | self.profileIndex = 0 |
|
702 | 702 | |
|
703 | 703 | self.nCohInt = 1 |
|
704 | 704 | |
|
705 | 705 | self.nIncohInt = 1 |
|
706 | 706 | |
|
707 | 707 | def getNormFactor(self): |
|
708 | 708 | pwcode = 1 |
|
709 | 709 | if self.flagDecodeData: |
|
710 | 710 | pwcode = numpy.sum(self.code[0]**2) |
|
711 | 711 | |
|
712 | 712 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
713 | 713 | |
|
714 | 714 | return normFactor |
|
715 | 715 | |
|
716 | 716 | def getTimeInterval(self): |
|
717 | 717 | |
|
718 | 718 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
719 | 719 | |
|
720 | 720 | return timeInterval |
|
721 | 721 | |
|
722 | 722 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
723 | 723 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
724 | 724 | |
|
725 | 725 | class Fits(JROData): |
|
726 | 726 | |
|
727 | 727 | heightList = None |
|
728 | 728 | |
|
729 | 729 | channelList = None |
|
730 | 730 | |
|
731 | 731 | flagNoData = True |
|
732 | 732 | |
|
733 | 733 | flagDiscontinuousBlock = False |
|
734 | 734 | |
|
735 | 735 | useLocalTime = False |
|
736 | 736 | |
|
737 | 737 | utctime = None |
|
738 | 738 | |
|
739 | 739 | timeZone = None |
|
740 | 740 | |
|
741 | 741 | # ippSeconds = None |
|
742 | 742 | |
|
743 | 743 | # timeInterval = None |
|
744 | 744 | |
|
745 | 745 | nCohInt = None |
|
746 | 746 | |
|
747 | 747 | nIncohInt = None |
|
748 | 748 | |
|
749 | 749 | noise = None |
|
750 | 750 | |
|
751 | 751 | windowOfFilter = 1 |
|
752 | 752 | |
|
753 | 753 | #Speed of ligth |
|
754 | 754 | C = 3e8 |
|
755 | 755 | |
|
756 | 756 | frequency = 49.92e6 |
|
757 | 757 | |
|
758 | 758 | realtime = False |
|
759 | 759 | |
|
760 | 760 | |
|
761 | 761 | def __init__(self): |
|
762 | 762 | |
|
763 | 763 | self.type = "Fits" |
|
764 | 764 | |
|
765 | 765 | self.nProfiles = None |
|
766 | 766 | |
|
767 | 767 | self.heightList = None |
|
768 | 768 | |
|
769 | 769 | self.channelList = None |
|
770 | 770 | |
|
771 | 771 | # self.channelIndexList = None |
|
772 | 772 | |
|
773 | 773 | self.flagNoData = True |
|
774 | 774 | |
|
775 | 775 | self.utctime = None |
|
776 | 776 | |
|
777 | 777 | self.nCohInt = 1 |
|
778 | 778 | |
|
779 | 779 | self.nIncohInt = 1 |
|
780 | 780 | |
|
781 | 781 | self.useLocalTime = True |
|
782 | 782 | |
|
783 | 783 | self.profileIndex = 0 |
|
784 | 784 | |
|
785 | 785 | # self.utctime = None |
|
786 | 786 | # self.timeZone = None |
|
787 | 787 | # self.ltctime = None |
|
788 | 788 | # self.timeInterval = None |
|
789 | 789 | # self.header = None |
|
790 | 790 | # self.data_header = None |
|
791 | 791 | # self.data = None |
|
792 | 792 | # self.datatime = None |
|
793 | 793 | # self.flagNoData = False |
|
794 | 794 | # self.expName = '' |
|
795 | 795 | # self.nChannels = None |
|
796 | 796 | # self.nSamples = None |
|
797 | 797 | # self.dataBlocksPerFile = None |
|
798 | 798 | # self.comments = '' |
|
799 | 799 | # |
|
800 | 800 | |
|
801 | 801 | |
|
802 | 802 | def getltctime(self): |
|
803 | 803 | |
|
804 | 804 | if self.useLocalTime: |
|
805 | 805 | return self.utctime - self.timeZone*60 |
|
806 | 806 | |
|
807 | 807 | return self.utctime |
|
808 | 808 | |
|
809 | 809 | def getDatatime(self): |
|
810 | 810 | |
|
811 | 811 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
812 | 812 | return datatime |
|
813 | 813 | |
|
814 | 814 | def getTimeRange(self): |
|
815 | 815 | |
|
816 | 816 | datatime = [] |
|
817 | 817 | |
|
818 | 818 | datatime.append(self.ltctime) |
|
819 | 819 | datatime.append(self.ltctime + self.timeInterval) |
|
820 | 820 | |
|
821 | 821 | datatime = numpy.array(datatime) |
|
822 | 822 | |
|
823 | 823 | return datatime |
|
824 | 824 | |
|
825 | 825 | def getHeiRange(self): |
|
826 | 826 | |
|
827 | 827 | heis = self.heightList |
|
828 | 828 | |
|
829 | 829 | return heis |
|
830 | 830 | |
|
831 | 831 | def getNHeights(self): |
|
832 | 832 | |
|
833 | 833 | return len(self.heightList) |
|
834 | 834 | |
|
835 | 835 | def getNChannels(self): |
|
836 | 836 | |
|
837 | 837 | return len(self.channelList) |
|
838 | 838 | |
|
839 | 839 | def getChannelIndexList(self): |
|
840 | 840 | |
|
841 | 841 | return range(self.nChannels) |
|
842 | 842 | |
|
843 | 843 | def getNoise(self, type = 1): |
|
844 | 844 | |
|
845 | 845 | #noise = numpy.zeros(self.nChannels) |
|
846 | 846 | |
|
847 | 847 | if type == 1: |
|
848 | 848 | noise = self.getNoisebyHildebrand() |
|
849 | 849 | |
|
850 | 850 | if type == 2: |
|
851 | 851 | noise = self.getNoisebySort() |
|
852 | 852 | |
|
853 | 853 | if type == 3: |
|
854 | 854 | noise = self.getNoisebyWindow() |
|
855 | 855 | |
|
856 | 856 | return noise |
|
857 | 857 | |
|
858 | 858 | def getTimeInterval(self): |
|
859 | 859 | |
|
860 | 860 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
861 | 861 | |
|
862 | 862 | return timeInterval |
|
863 | 863 | |
|
864 | 864 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
865 | 865 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
866 | 866 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
867 | 867 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
868 | 868 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
869 | 869 | |
|
870 | 870 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
871 | 871 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
872 | 872 | |
|
873 | 873 | class Correlation(JROData): |
|
874 | 874 | |
|
875 | 875 | noise = None |
|
876 | 876 | |
|
877 | 877 | SNR = None |
|
878 | 878 | |
|
879 | 879 | pairsAutoCorr = None #Pairs of Autocorrelation |
|
880 | 880 | |
|
881 | 881 | #-------------------------------------------------- |
|
882 | 882 | |
|
883 | 883 | data_corr = None |
|
884 | 884 | |
|
885 | 885 | data_volt = None |
|
886 | 886 | |
|
887 | 887 | lagT = None # each element value is a profileIndex |
|
888 | 888 | |
|
889 | 889 | lagR = None # each element value is in km |
|
890 | 890 | |
|
891 | 891 | pairsList = None |
|
892 | 892 | |
|
893 | 893 | calculateVelocity = None |
|
894 | 894 | |
|
895 | 895 | nPoints = None |
|
896 | 896 | |
|
897 | 897 | nAvg = None |
|
898 | 898 | |
|
899 | 899 | bufferSize = None |
|
900 | 900 | |
|
901 | 901 | def __init__(self): |
|
902 | 902 | ''' |
|
903 | 903 | Constructor |
|
904 | 904 | ''' |
|
905 | 905 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
906 | 906 | |
|
907 | 907 | self.systemHeaderObj = SystemHeader() |
|
908 | 908 | |
|
909 | 909 | self.type = "Correlation" |
|
910 | 910 | |
|
911 | 911 | self.data = None |
|
912 | 912 | |
|
913 | 913 | self.dtype = None |
|
914 | 914 | |
|
915 | 915 | self.nProfiles = None |
|
916 | 916 | |
|
917 | 917 | self.heightList = None |
|
918 | 918 | |
|
919 | 919 | self.channelList = None |
|
920 | 920 | |
|
921 | 921 | self.flagNoData = True |
|
922 | 922 | |
|
923 | 923 | self.flagDiscontinuousBlock = False |
|
924 | 924 | |
|
925 | 925 | self.utctime = None |
|
926 | 926 | |
|
927 | 927 | self.timeZone = None |
|
928 | 928 | |
|
929 | 929 | self.dstFlag = None |
|
930 | 930 | |
|
931 | 931 | self.errorCount = None |
|
932 | 932 | |
|
933 | 933 | self.blocksize = None |
|
934 | 934 | |
|
935 | 935 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
936 | 936 | |
|
937 | 937 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
938 | 938 | |
|
939 | 939 | self.pairsList = None |
|
940 | 940 | |
|
941 | 941 | self.nPoints = None |
|
942 | 942 | |
|
943 | 943 | def getLagTRange(self, extrapoints=0): |
|
944 | 944 | |
|
945 | 945 | lagTRange = self.lagT |
|
946 | 946 | diff = lagTRange[1] - lagTRange[0] |
|
947 | 947 | extra = numpy.arange(1,extrapoints + 1)*diff + lagTRange[-1] |
|
948 | 948 | lagTRange = numpy.hstack((lagTRange, extra)) |
|
949 | 949 | |
|
950 | 950 | return lagTRange |
|
951 | 951 | |
|
952 | 952 | def getLagRRange(self, extrapoints=0): |
|
953 | 953 | |
|
954 | 954 | return self.lagR |
|
955 | 955 | |
|
956 | 956 | def getPairsList(self): |
|
957 | 957 | |
|
958 | 958 | return self.pairsList |
|
959 | 959 | |
|
960 | 960 | def getCalculateVelocity(self): |
|
961 | 961 | |
|
962 | 962 | return self.calculateVelocity |
|
963 | 963 | |
|
964 | 964 | def getNPoints(self): |
|
965 | 965 | |
|
966 | 966 | return self.nPoints |
|
967 | 967 | |
|
968 | 968 | def getNAvg(self): |
|
969 | 969 | |
|
970 | 970 | return self.nAvg |
|
971 | 971 | |
|
972 | 972 | def getBufferSize(self): |
|
973 | 973 | |
|
974 | 974 | return self.bufferSize |
|
975 | 975 | |
|
976 | 976 | def getPairsAutoCorr(self): |
|
977 | 977 | pairsList = self.pairsList |
|
978 | 978 | pairsAutoCorr = numpy.zeros(self.nChannels, dtype = 'int')*numpy.nan |
|
979 | 979 | |
|
980 | 980 | for l in range(len(pairsList)): |
|
981 | 981 | firstChannel = pairsList[l][0] |
|
982 | 982 | secondChannel = pairsList[l][1] |
|
983 | 983 | |
|
984 | 984 | #Obteniendo pares de Autocorrelacion |
|
985 | 985 | if firstChannel == secondChannel: |
|
986 | 986 | pairsAutoCorr[firstChannel] = int(l) |
|
987 | 987 | |
|
988 | 988 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
989 | 989 | |
|
990 | 990 | return pairsAutoCorr |
|
991 | 991 | |
|
992 | 992 | def getNoise(self, mode = 2): |
|
993 | 993 | |
|
994 | 994 | indR = numpy.where(self.lagR == 0)[0][0] |
|
995 | 995 | indT = numpy.where(self.lagT == 0)[0][0] |
|
996 | 996 | |
|
997 | 997 | jspectra0 = self.data_corr[:,:,indR,:] |
|
998 | 998 | jspectra = copy.copy(jspectra0) |
|
999 | 999 | |
|
1000 | 1000 | num_chan = jspectra.shape[0] |
|
1001 | 1001 | num_hei = jspectra.shape[2] |
|
1002 | 1002 | |
|
1003 | 1003 | freq_dc = jspectra.shape[1]/2 |
|
1004 | 1004 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1005 | 1005 | |
|
1006 | 1006 | if ind_vel[0]<0: |
|
1007 | 1007 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1008 | 1008 | |
|
1009 | 1009 | if mode == 1: |
|
1010 | 1010 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1011 | 1011 | |
|
1012 | 1012 | if mode == 2: |
|
1013 | 1013 | |
|
1014 | 1014 | vel = numpy.array([-2,-1,1,2]) |
|
1015 | 1015 | xx = numpy.zeros([4,4]) |
|
1016 | 1016 | |
|
1017 | 1017 | for fil in range(4): |
|
1018 | 1018 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1019 | 1019 | |
|
1020 | 1020 | xx_inv = numpy.linalg.inv(xx) |
|
1021 | 1021 | xx_aux = xx_inv[0,:] |
|
1022 | 1022 | |
|
1023 | 1023 | for ich in range(num_chan): |
|
1024 | 1024 | yy = jspectra[ich,ind_vel,:] |
|
1025 | 1025 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1026 | 1026 | |
|
1027 | 1027 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1028 | 1028 | cjunkid = sum(junkid) |
|
1029 | 1029 | |
|
1030 | 1030 | if cjunkid.any(): |
|
1031 | 1031 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1032 | 1032 | |
|
1033 | 1033 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1034 | 1034 | |
|
1035 | 1035 | return noise |
|
1036 | 1036 | |
|
1037 | 1037 | def getTimeInterval(self): |
|
1038 | 1038 | |
|
1039 | 1039 | timeInterval = self.ippSeconds * self.nCohInt * self.nPoints |
|
1040 | 1040 | |
|
1041 | 1041 | return timeInterval |
|
1042 | 1042 | |
|
1043 | 1043 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1044 | 1044 | # pairsList = property(getPairsList, "I'm the 'pairsList' property.") |
|
1045 | 1045 | # nPoints = property(getNPoints, "I'm the 'nPoints' property.") |
|
1046 | 1046 | calculateVelocity = property(getCalculateVelocity, "I'm the 'calculateVelocity' property.") |
|
1047 | 1047 | nAvg = property(getNAvg, "I'm the 'nAvg' property.") |
|
1048 | 1048 | bufferSize = property(getBufferSize, "I'm the 'bufferSize' property.") |
|
1049 | 1049 | |
|
1050 | 1050 | |
|
1051 | 1051 | class Parameters(JROData): |
|
1052 | 1052 | |
|
1053 | 1053 | #Information from previous data |
|
1054 | 1054 | |
|
1055 | 1055 | inputUnit = None #Type of data to be processed |
|
1056 | 1056 | |
|
1057 | 1057 | operation = None #Type of operation to parametrize |
|
1058 | 1058 | |
|
1059 | 1059 | normFactor = None #Normalization Factor |
|
1060 | 1060 | |
|
1061 | 1061 | groupList = None #List of Pairs, Groups, etc |
|
1062 | 1062 | |
|
1063 | 1063 | #Parameters |
|
1064 | 1064 | |
|
1065 | 1065 | data_param = None #Parameters obtained |
|
1066 | 1066 | |
|
1067 | 1067 | data_pre = None #Data Pre Parametrization |
|
1068 | 1068 | |
|
1069 | 1069 | data_SNR = None #Signal to Noise Ratio |
|
1070 | 1070 | |
|
1071 | 1071 | # heightRange = None #Heights |
|
1072 | 1072 | |
|
1073 | 1073 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1074 | 1074 | |
|
1075 | 1075 | noise = None #Noise Potency |
|
1076 | 1076 | |
|
1077 | 1077 | utctimeInit = None #Initial UTC time |
|
1078 | 1078 | |
|
1079 | 1079 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1080 | 1080 | |
|
1081 | 1081 | #Fitting |
|
1082 | 1082 | |
|
1083 | 1083 | data_error = None #Error of the estimation |
|
1084 | 1084 | |
|
1085 | 1085 | constants = None |
|
1086 | 1086 | |
|
1087 | 1087 | library = None |
|
1088 | 1088 | |
|
1089 | 1089 | #Output signal |
|
1090 | 1090 | |
|
1091 | 1091 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1092 | 1092 | |
|
1093 | 1093 | data_output = None #Out signal |
|
1094 | 1094 | |
|
1095 | 1095 | |
|
1096 | 1096 | |
|
1097 | 1097 | def __init__(self): |
|
1098 | 1098 | ''' |
|
1099 | 1099 | Constructor |
|
1100 | 1100 | ''' |
|
1101 | 1101 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1102 | 1102 | |
|
1103 | 1103 | self.systemHeaderObj = SystemHeader() |
|
1104 | 1104 | |
|
1105 | 1105 | self.type = "Parameters" |
|
1106 | 1106 | |
|
1107 | 1107 | def getTimeRange1(self): |
|
1108 | 1108 | |
|
1109 | 1109 | datatime = [] |
|
1110 | 1110 | |
|
1111 | 1111 | if self.useLocalTime: |
|
1112 | 1112 | time1 = self.utctimeInit - self.timeZone*60 |
|
1113 | 1113 | else: |
|
1114 | 1114 | time1 = utctimeInit |
|
1115 | 1115 | |
|
1116 | 1116 | # datatime.append(self.utctimeInit) |
|
1117 | 1117 | # datatime.append(self.utctimeInit + self.outputInterval) |
|
1118 | 1118 | datatime.append(time1) |
|
1119 | 1119 | datatime.append(time1 + self.outputInterval) |
|
1120 | 1120 | |
|
1121 | 1121 | datatime = numpy.array(datatime) |
|
1122 | 1122 | |
|
1123 | 1123 | return datatime |
@@ -1,875 +1,878 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import math |
|
3 | 3 | |
|
4 | 4 | from jroproc_base import ProcessingUnit, Operation |
|
5 | 5 | from schainpy.model.data.jrodata import Spectra |
|
6 | 6 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
7 | 7 | |
|
8 | 8 | class SpectraProc(ProcessingUnit): |
|
9 | 9 | |
|
10 | 10 | def __init__(self): |
|
11 | 11 | |
|
12 | 12 | ProcessingUnit.__init__(self) |
|
13 | 13 | |
|
14 | 14 | self.buffer = None |
|
15 | 15 | self.firstdatatime = None |
|
16 | 16 | self.profIndex = 0 |
|
17 | 17 | self.dataOut = Spectra() |
|
18 | 18 | self.id_min = None |
|
19 | 19 | self.id_max = None |
|
20 | 20 | |
|
21 | 21 | def __updateSpecFromVoltage(self): |
|
22 | 22 | |
|
23 | 23 | self.dataOut.timeZone = self.dataIn.timeZone |
|
24 | 24 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
25 | 25 | self.dataOut.errorCount = self.dataIn.errorCount |
|
26 | 26 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
27 | 27 | |
|
28 | 28 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
29 | 29 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
30 | 30 | self.dataOut.channelList = self.dataIn.channelList |
|
31 | 31 | self.dataOut.heightList = self.dataIn.heightList |
|
32 | 32 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
33 | 33 | |
|
34 | 34 | self.dataOut.nBaud = self.dataIn.nBaud |
|
35 | 35 | self.dataOut.nCode = self.dataIn.nCode |
|
36 | 36 | self.dataOut.code = self.dataIn.code |
|
37 | 37 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
38 | 38 | |
|
39 | 39 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
40 | 40 | self.dataOut.utctime = self.firstdatatime |
|
41 | 41 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
42 | 42 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
43 | 43 | self.dataOut.flagShiftFFT = False |
|
44 | 44 | |
|
45 | 45 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
46 | 46 | self.dataOut.nIncohInt = 1 |
|
47 | 47 | |
|
48 | 48 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
49 | 49 | |
|
50 | 50 | self.dataOut.frequency = self.dataIn.frequency |
|
51 | 51 | self.dataOut.realtime = self.dataIn.realtime |
|
52 | 52 | |
|
53 | 53 | self.dataOut.azimuth = self.dataIn.azimuth |
|
54 | 54 | self.dataOut.zenith = self.dataIn.zenith |
|
55 | 55 | |
|
56 | 56 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
57 | 57 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
58 | 58 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
59 | 59 | |
|
60 | 60 | def __getFft(self): |
|
61 | 61 | """ |
|
62 | 62 | Convierte valores de Voltaje a Spectra |
|
63 | 63 | |
|
64 | 64 | Affected: |
|
65 | 65 | self.dataOut.data_spc |
|
66 | 66 | self.dataOut.data_cspc |
|
67 | 67 | self.dataOut.data_dc |
|
68 | 68 | self.dataOut.heightList |
|
69 | 69 | self.profIndex |
|
70 | 70 | self.buffer |
|
71 | 71 | self.dataOut.flagNoData |
|
72 | 72 | """ |
|
73 | 73 | fft_volt = numpy.fft.fft(self.buffer,n=self.dataOut.nFFTPoints,axis=1) |
|
74 | 74 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
75 | 75 | dc = fft_volt[:,0,:] |
|
76 | 76 | |
|
77 | 77 | #calculo de self-spectra |
|
78 | 78 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
79 | 79 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
80 | 80 | spc = spc.real |
|
81 | 81 | |
|
82 | 82 | blocksize = 0 |
|
83 | 83 | blocksize += dc.size |
|
84 | 84 | blocksize += spc.size |
|
85 | 85 | |
|
86 | 86 | cspc = None |
|
87 | 87 | pairIndex = 0 |
|
88 | 88 | if self.dataOut.pairsList != None: |
|
89 | 89 | #calculo de cross-spectra |
|
90 | 90 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
91 | 91 | for pair in self.dataOut.pairsList: |
|
92 | 92 | if pair[0] not in self.dataOut.channelList: |
|
93 | 93 | raise ValueError, "Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
94 | 94 | if pair[1] not in self.dataOut.channelList: |
|
95 | 95 | raise ValueError, "Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" %(str(pair), str(self.dataOut.channelList)) |
|
96 | 96 | |
|
97 | 97 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
98 | 98 | pairIndex += 1 |
|
99 | 99 | blocksize += cspc.size |
|
100 | 100 | |
|
101 | 101 | self.dataOut.data_spc = spc |
|
102 | 102 | self.dataOut.data_cspc = cspc |
|
103 | 103 | self.dataOut.data_dc = dc |
|
104 | 104 | self.dataOut.blockSize = blocksize |
|
105 | 105 | self.dataOut.flagShiftFFT = True |
|
106 | 106 | |
|
107 | 107 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None): |
|
108 | 108 | |
|
109 | 109 | self.dataOut.flagNoData = True |
|
110 | 110 | |
|
111 | 111 | if self.dataIn.type == "Spectra": |
|
112 | 112 | self.dataOut.copy(self.dataIn) |
|
113 | 113 | return True |
|
114 | 114 | |
|
115 | 115 | if self.dataIn.type == "Voltage": |
|
116 | 116 | |
|
117 | 117 | if nFFTPoints == None: |
|
118 | 118 | raise ValueError, "This SpectraProc.run() need nFFTPoints input variable" |
|
119 | 119 | |
|
120 | 120 | if nProfiles == None: |
|
121 | 121 | nProfiles = nFFTPoints |
|
122 | 122 | |
|
123 | 123 | if ippFactor == None: |
|
124 | 124 | ippFactor = 1 |
|
125 | 125 | |
|
126 | 126 | self.dataOut.ippFactor = ippFactor |
|
127 | 127 | |
|
128 | 128 | self.dataOut.nFFTPoints = nFFTPoints |
|
129 | 129 | self.dataOut.pairsList = pairsList |
|
130 | 130 | |
|
131 | 131 | if self.buffer is None: |
|
132 | 132 | self.buffer = numpy.zeros( (self.dataIn.nChannels, |
|
133 | 133 | nProfiles, |
|
134 | 134 | self.dataIn.nHeights), |
|
135 | 135 | dtype='complex') |
|
136 | 136 | |
|
137 | 137 | if self.dataIn.flagDataAsBlock: |
|
138 | #data dimension: [nChannels, nProfiles, nSamples] | |
|
139 | nVoltProfiles = self.dataIn.data.shape[1] | |
|
140 | nVoltProfiles = self.dataIn.nProfiles | |
|
138 | 141 | |
|
139 |
if |
|
|
142 | if nVoltProfiles == nProfiles: | |
|
140 | 143 | self.buffer = self.dataIn.data.copy() |
|
141 | self.profIndex = nProfiles | |
|
144 | self.profIndex = nVoltProfiles | |
|
142 | 145 | |
|
143 |
elif |
|
|
146 | elif nVoltProfiles < nProfiles: | |
|
144 | 147 | |
|
145 | 148 | if self.profIndex == 0: |
|
146 | 149 | self.id_min = 0 |
|
147 |
self.id_max = |
|
|
150 | self.id_max = nVoltProfiles | |
|
148 | 151 | |
|
149 | 152 | self.buffer[:,self.id_min:self.id_max,:] = self.dataIn.data |
|
150 |
self.profIndex += |
|
|
151 |
self.id_min += |
|
|
152 |
self.id_max += |
|
|
153 | self.profIndex += nVoltProfiles | |
|
154 | self.id_min += nVoltProfiles | |
|
155 | self.id_max += nVoltProfiles | |
|
153 | 156 | else: |
|
154 | 157 | raise ValueError, "The type object %s has %d profiles, it should be equal to %d profiles"%(self.dataIn.type,self.dataIn.data.shape[1],nProfiles) |
|
155 | 158 | self.dataOut.flagNoData = True |
|
156 | 159 | return 0 |
|
157 | 160 | else: |
|
158 | 161 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
159 | 162 | self.profIndex += 1 |
|
160 | 163 | |
|
161 | 164 | if self.firstdatatime == None: |
|
162 | 165 | self.firstdatatime = self.dataIn.utctime |
|
163 | 166 | |
|
164 | 167 | if self.profIndex == nProfiles: |
|
165 | 168 | self.__updateSpecFromVoltage() |
|
166 | 169 | self.__getFft() |
|
167 | 170 | |
|
168 | 171 | self.dataOut.flagNoData = False |
|
169 | 172 | self.firstdatatime = None |
|
170 | 173 | self.profIndex = 0 |
|
171 | 174 | |
|
172 | 175 | return True |
|
173 | 176 | |
|
174 | 177 | raise ValueError, "The type of input object '%s' is not valid"%(self.dataIn.type) |
|
175 | 178 | |
|
176 | 179 | def __selectPairs(self, channelList=None): |
|
177 | 180 | |
|
178 | 181 | if channelList == None: |
|
179 | 182 | return |
|
180 | 183 | |
|
181 | 184 | pairsIndexListSelected = [] |
|
182 | 185 | for pairIndex in self.dataOut.pairsIndexList: |
|
183 | 186 | #First pair |
|
184 | 187 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
185 | 188 | continue |
|
186 | 189 | #Second pair |
|
187 | 190 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
188 | 191 | continue |
|
189 | 192 | |
|
190 | 193 | pairsIndexListSelected.append(pairIndex) |
|
191 | 194 | |
|
192 | 195 | if not pairsIndexListSelected: |
|
193 | 196 | self.dataOut.data_cspc = None |
|
194 | 197 | self.dataOut.pairsList = [] |
|
195 | 198 | return |
|
196 | 199 | |
|
197 | 200 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
198 | 201 | self.dataOut.pairsList = [self.dataOut.pairsList[i] for i in pairsIndexListSelected] |
|
199 | 202 | |
|
200 | 203 | return |
|
201 | 204 | |
|
202 | 205 | def selectChannels(self, channelList): |
|
203 | 206 | |
|
204 | 207 | channelIndexList = [] |
|
205 | 208 | |
|
206 | 209 | for channel in channelList: |
|
207 | 210 | if channel not in self.dataOut.channelList: |
|
208 | 211 | raise ValueError, "Error selecting channels: The value %d in channelList is not valid.\nAvailable channels = %s" %(channel, str(self.dataOut.channelList)) |
|
209 | 212 | |
|
210 | 213 | index = self.dataOut.channelList.index(channel) |
|
211 | 214 | channelIndexList.append(index) |
|
212 | 215 | |
|
213 | 216 | self.selectChannelsByIndex(channelIndexList) |
|
214 | 217 | |
|
215 | 218 | def selectChannelsByIndex(self, channelIndexList): |
|
216 | 219 | """ |
|
217 | 220 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
218 | 221 | |
|
219 | 222 | Input: |
|
220 | 223 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
221 | 224 | |
|
222 | 225 | Affected: |
|
223 | 226 | self.dataOut.data_spc |
|
224 | 227 | self.dataOut.channelIndexList |
|
225 | 228 | self.dataOut.nChannels |
|
226 | 229 | |
|
227 | 230 | Return: |
|
228 | 231 | None |
|
229 | 232 | """ |
|
230 | 233 | |
|
231 | 234 | for channelIndex in channelIndexList: |
|
232 | 235 | if channelIndex not in self.dataOut.channelIndexList: |
|
233 | 236 | raise ValueError, "Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " %(channelIndex, self.dataOut.channelIndexList) |
|
234 | 237 | |
|
235 | 238 | # nChannels = len(channelIndexList) |
|
236 | 239 | |
|
237 | 240 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
238 | 241 | data_dc = self.dataOut.data_dc[channelIndexList,:] |
|
239 | 242 | |
|
240 | 243 | self.dataOut.data_spc = data_spc |
|
241 | 244 | self.dataOut.data_dc = data_dc |
|
242 | 245 | |
|
243 | 246 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
244 | 247 | # self.dataOut.nChannels = nChannels |
|
245 | 248 | |
|
246 | 249 | self.__selectPairs(self.dataOut.channelList) |
|
247 | 250 | |
|
248 | 251 | return 1 |
|
249 | 252 | |
|
250 | 253 | def selectHeights(self, minHei, maxHei): |
|
251 | 254 | """ |
|
252 | 255 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
253 | 256 | minHei <= height <= maxHei |
|
254 | 257 | |
|
255 | 258 | Input: |
|
256 | 259 | minHei : valor minimo de altura a considerar |
|
257 | 260 | maxHei : valor maximo de altura a considerar |
|
258 | 261 | |
|
259 | 262 | Affected: |
|
260 | 263 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
261 | 264 | |
|
262 | 265 | Return: |
|
263 | 266 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
264 | 267 | """ |
|
265 | 268 | |
|
266 | 269 | if (minHei > maxHei): |
|
267 | 270 | raise ValueError, "Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei) |
|
268 | 271 | |
|
269 | 272 | if (minHei < self.dataOut.heightList[0]): |
|
270 | 273 | minHei = self.dataOut.heightList[0] |
|
271 | 274 | |
|
272 | 275 | if (maxHei > self.dataOut.heightList[-1]): |
|
273 | 276 | maxHei = self.dataOut.heightList[-1] |
|
274 | 277 | |
|
275 | 278 | minIndex = 0 |
|
276 | 279 | maxIndex = 0 |
|
277 | 280 | heights = self.dataOut.heightList |
|
278 | 281 | |
|
279 | 282 | inda = numpy.where(heights >= minHei) |
|
280 | 283 | indb = numpy.where(heights <= maxHei) |
|
281 | 284 | |
|
282 | 285 | try: |
|
283 | 286 | minIndex = inda[0][0] |
|
284 | 287 | except: |
|
285 | 288 | minIndex = 0 |
|
286 | 289 | |
|
287 | 290 | try: |
|
288 | 291 | maxIndex = indb[0][-1] |
|
289 | 292 | except: |
|
290 | 293 | maxIndex = len(heights) |
|
291 | 294 | |
|
292 | 295 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
293 | 296 | |
|
294 | 297 | return 1 |
|
295 | 298 | |
|
296 | 299 | def getBeaconSignal(self, tauindex = 0, channelindex = 0, hei_ref=None): |
|
297 | 300 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
298 | 301 | |
|
299 | 302 | if hei_ref != None: |
|
300 | 303 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
301 | 304 | |
|
302 | 305 | minIndex = min(newheis[0]) |
|
303 | 306 | maxIndex = max(newheis[0]) |
|
304 | 307 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
305 | 308 | heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
306 | 309 | |
|
307 | 310 | # determina indices |
|
308 | 311 | nheis = int(self.dataOut.radarControllerHeaderObj.txB/(self.dataOut.heightList[1]-self.dataOut.heightList[0])) |
|
309 | 312 | avg_dB = 10*numpy.log10(numpy.sum(data_spc[channelindex,:,:],axis=0)) |
|
310 | 313 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
311 | 314 | beacon_heiIndexList = [] |
|
312 | 315 | for val in avg_dB.tolist(): |
|
313 | 316 | if val >= beacon_dB[0]: |
|
314 | 317 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
315 | 318 | |
|
316 | 319 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
317 | 320 | data_cspc = None |
|
318 | 321 | if self.dataOut.data_cspc is not None: |
|
319 | 322 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
320 | 323 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
321 | 324 | |
|
322 | 325 | data_dc = None |
|
323 | 326 | if self.dataOut.data_dc is not None: |
|
324 | 327 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
325 | 328 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
326 | 329 | |
|
327 | 330 | self.dataOut.data_spc = data_spc |
|
328 | 331 | self.dataOut.data_cspc = data_cspc |
|
329 | 332 | self.dataOut.data_dc = data_dc |
|
330 | 333 | self.dataOut.heightList = heightList |
|
331 | 334 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
332 | 335 | |
|
333 | 336 | return 1 |
|
334 | 337 | |
|
335 | 338 | |
|
336 | 339 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
337 | 340 | """ |
|
338 | 341 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
339 | 342 | minIndex <= index <= maxIndex |
|
340 | 343 | |
|
341 | 344 | Input: |
|
342 | 345 | minIndex : valor de indice minimo de altura a considerar |
|
343 | 346 | maxIndex : valor de indice maximo de altura a considerar |
|
344 | 347 | |
|
345 | 348 | Affected: |
|
346 | 349 | self.dataOut.data_spc |
|
347 | 350 | self.dataOut.data_cspc |
|
348 | 351 | self.dataOut.data_dc |
|
349 | 352 | self.dataOut.heightList |
|
350 | 353 | |
|
351 | 354 | Return: |
|
352 | 355 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
353 | 356 | """ |
|
354 | 357 | |
|
355 | 358 | if (minIndex < 0) or (minIndex > maxIndex): |
|
356 | 359 | raise ValueError, "Error selecting heights by index: Index range in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
357 | 360 | |
|
358 | 361 | if (maxIndex >= self.dataOut.nHeights): |
|
359 | 362 | maxIndex = self.dataOut.nHeights-1 |
|
360 | 363 | |
|
361 | 364 | #Spectra |
|
362 | 365 | data_spc = self.dataOut.data_spc[:,:,minIndex:maxIndex+1] |
|
363 | 366 | |
|
364 | 367 | data_cspc = None |
|
365 | 368 | if self.dataOut.data_cspc is not None: |
|
366 | 369 | data_cspc = self.dataOut.data_cspc[:,:,minIndex:maxIndex+1] |
|
367 | 370 | |
|
368 | 371 | data_dc = None |
|
369 | 372 | if self.dataOut.data_dc is not None: |
|
370 | 373 | data_dc = self.dataOut.data_dc[:,minIndex:maxIndex+1] |
|
371 | 374 | |
|
372 | 375 | self.dataOut.data_spc = data_spc |
|
373 | 376 | self.dataOut.data_cspc = data_cspc |
|
374 | 377 | self.dataOut.data_dc = data_dc |
|
375 | 378 | |
|
376 | 379 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
377 | 380 | |
|
378 | 381 | return 1 |
|
379 | 382 | |
|
380 | 383 | def removeDC(self, mode = 2): |
|
381 | 384 | jspectra = self.dataOut.data_spc |
|
382 | 385 | jcspectra = self.dataOut.data_cspc |
|
383 | 386 | |
|
384 | 387 | |
|
385 | 388 | num_chan = jspectra.shape[0] |
|
386 | 389 | num_hei = jspectra.shape[2] |
|
387 | 390 | |
|
388 | 391 | if jcspectra is not None: |
|
389 | 392 | jcspectraExist = True |
|
390 | 393 | num_pairs = jcspectra.shape[0] |
|
391 | 394 | else: jcspectraExist = False |
|
392 | 395 | |
|
393 | 396 | freq_dc = jspectra.shape[1]/2 |
|
394 | 397 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
395 | 398 | |
|
396 | 399 | if ind_vel[0]<0: |
|
397 | 400 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
398 | 401 | |
|
399 | 402 | if mode == 1: |
|
400 | 403 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
401 | 404 | |
|
402 | 405 | if jcspectraExist: |
|
403 | 406 | jcspectra[:,freq_dc,:] = (jcspectra[:,ind_vel[1],:] + jcspectra[:,ind_vel[2],:])/2 |
|
404 | 407 | |
|
405 | 408 | if mode == 2: |
|
406 | 409 | |
|
407 | 410 | vel = numpy.array([-2,-1,1,2]) |
|
408 | 411 | xx = numpy.zeros([4,4]) |
|
409 | 412 | |
|
410 | 413 | for fil in range(4): |
|
411 | 414 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
412 | 415 | |
|
413 | 416 | xx_inv = numpy.linalg.inv(xx) |
|
414 | 417 | xx_aux = xx_inv[0,:] |
|
415 | 418 | |
|
416 | 419 | for ich in range(num_chan): |
|
417 | 420 | yy = jspectra[ich,ind_vel,:] |
|
418 | 421 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
419 | 422 | |
|
420 | 423 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
421 | 424 | cjunkid = sum(junkid) |
|
422 | 425 | |
|
423 | 426 | if cjunkid.any(): |
|
424 | 427 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
425 | 428 | |
|
426 | 429 | if jcspectraExist: |
|
427 | 430 | for ip in range(num_pairs): |
|
428 | 431 | yy = jcspectra[ip,ind_vel,:] |
|
429 | 432 | jcspectra[ip,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
430 | 433 | |
|
431 | 434 | |
|
432 | 435 | self.dataOut.data_spc = jspectra |
|
433 | 436 | self.dataOut.data_cspc = jcspectra |
|
434 | 437 | |
|
435 | 438 | return 1 |
|
436 | 439 | |
|
437 | 440 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
438 | 441 | |
|
439 | 442 | jspectra = self.dataOut.data_spc |
|
440 | 443 | jcspectra = self.dataOut.data_cspc |
|
441 | 444 | jnoise = self.dataOut.getNoise() |
|
442 | 445 | num_incoh = self.dataOut.nIncohInt |
|
443 | 446 | |
|
444 | 447 | num_channel = jspectra.shape[0] |
|
445 | 448 | num_prof = jspectra.shape[1] |
|
446 | 449 | num_hei = jspectra.shape[2] |
|
447 | 450 | |
|
448 | 451 | #hei_interf |
|
449 | 452 | if hei_interf is None: |
|
450 | 453 | count_hei = num_hei/2 #Como es entero no importa |
|
451 | 454 | hei_interf = numpy.asmatrix(range(count_hei)) + num_hei - count_hei |
|
452 | 455 | hei_interf = numpy.asarray(hei_interf)[0] |
|
453 | 456 | #nhei_interf |
|
454 | 457 | if (nhei_interf == None): |
|
455 | 458 | nhei_interf = 5 |
|
456 | 459 | if (nhei_interf < 1): |
|
457 | 460 | nhei_interf = 1 |
|
458 | 461 | if (nhei_interf > count_hei): |
|
459 | 462 | nhei_interf = count_hei |
|
460 | 463 | if (offhei_interf == None): |
|
461 | 464 | offhei_interf = 0 |
|
462 | 465 | |
|
463 | 466 | ind_hei = range(num_hei) |
|
464 | 467 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
465 | 468 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
466 | 469 | mask_prof = numpy.asarray(range(num_prof)) |
|
467 | 470 | num_mask_prof = mask_prof.size |
|
468 | 471 | comp_mask_prof = [0, num_prof/2] |
|
469 | 472 | |
|
470 | 473 | |
|
471 | 474 | #noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
472 | 475 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
473 | 476 | jnoise = numpy.nan |
|
474 | 477 | noise_exist = jnoise[0] < numpy.Inf |
|
475 | 478 | |
|
476 | 479 | #Subrutina de Remocion de la Interferencia |
|
477 | 480 | for ich in range(num_channel): |
|
478 | 481 | #Se ordena los espectros segun su potencia (menor a mayor) |
|
479 | 482 | power = jspectra[ich,mask_prof,:] |
|
480 | 483 | power = power[:,hei_interf] |
|
481 | 484 | power = power.sum(axis = 0) |
|
482 | 485 | psort = power.ravel().argsort() |
|
483 | 486 | |
|
484 | 487 | #Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
485 | 488 | junkspc_interf = jspectra[ich,:,hei_interf[psort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
486 | 489 | |
|
487 | 490 | if noise_exist: |
|
488 | 491 | # tmp_noise = jnoise[ich] / num_prof |
|
489 | 492 | tmp_noise = jnoise[ich] |
|
490 | 493 | junkspc_interf = junkspc_interf - tmp_noise |
|
491 | 494 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
492 | 495 | |
|
493 | 496 | jspc_interf = junkspc_interf.sum(axis = 0) / nhei_interf |
|
494 | 497 | jspc_interf = jspc_interf.transpose() |
|
495 | 498 | #Calculando el espectro de interferencia promedio |
|
496 | 499 | noiseid = numpy.where(jspc_interf <= tmp_noise/ math.sqrt(num_incoh)) |
|
497 | 500 | noiseid = noiseid[0] |
|
498 | 501 | cnoiseid = noiseid.size |
|
499 | 502 | interfid = numpy.where(jspc_interf > tmp_noise/ math.sqrt(num_incoh)) |
|
500 | 503 | interfid = interfid[0] |
|
501 | 504 | cinterfid = interfid.size |
|
502 | 505 | |
|
503 | 506 | if (cnoiseid > 0): jspc_interf[noiseid] = 0 |
|
504 | 507 | |
|
505 | 508 | #Expandiendo los perfiles a limpiar |
|
506 | 509 | if (cinterfid > 0): |
|
507 | 510 | new_interfid = (numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof)%num_prof |
|
508 | 511 | new_interfid = numpy.asarray(new_interfid) |
|
509 | 512 | new_interfid = {x for x in new_interfid} |
|
510 | 513 | new_interfid = numpy.array(list(new_interfid)) |
|
511 | 514 | new_cinterfid = new_interfid.size |
|
512 | 515 | else: new_cinterfid = 0 |
|
513 | 516 | |
|
514 | 517 | for ip in range(new_cinterfid): |
|
515 | 518 | ind = junkspc_interf[:,new_interfid[ip]].ravel().argsort() |
|
516 | 519 | jspc_interf[new_interfid[ip]] = junkspc_interf[ind[nhei_interf/2],new_interfid[ip]] |
|
517 | 520 | |
|
518 | 521 | |
|
519 | 522 | jspectra[ich,:,ind_hei] = jspectra[ich,:,ind_hei] - jspc_interf #Corregir indices |
|
520 | 523 | |
|
521 | 524 | #Removiendo la interferencia del punto de mayor interferencia |
|
522 | 525 | ListAux = jspc_interf[mask_prof].tolist() |
|
523 | 526 | maxid = ListAux.index(max(ListAux)) |
|
524 | 527 | |
|
525 | 528 | |
|
526 | 529 | if cinterfid > 0: |
|
527 | 530 | for ip in range(cinterfid*(interf == 2) - 1): |
|
528 | 531 | ind = (jspectra[ich,interfid[ip],:] < tmp_noise*(1 + 1/math.sqrt(num_incoh))).nonzero() |
|
529 | 532 | cind = len(ind) |
|
530 | 533 | |
|
531 | 534 | if (cind > 0): |
|
532 | 535 | jspectra[ich,interfid[ip],ind] = tmp_noise*(1 + (numpy.random.uniform(cind) - 0.5)/math.sqrt(num_incoh)) |
|
533 | 536 | |
|
534 | 537 | ind = numpy.array([-2,-1,1,2]) |
|
535 | 538 | xx = numpy.zeros([4,4]) |
|
536 | 539 | |
|
537 | 540 | for id1 in range(4): |
|
538 | 541 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
539 | 542 | |
|
540 | 543 | xx_inv = numpy.linalg.inv(xx) |
|
541 | 544 | xx = xx_inv[:,0] |
|
542 | 545 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
543 | 546 | yy = jspectra[ich,mask_prof[ind],:] |
|
544 | 547 | jspectra[ich,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
545 | 548 | |
|
546 | 549 | |
|
547 | 550 | indAux = (jspectra[ich,:,:] < tmp_noise*(1-1/math.sqrt(num_incoh))).nonzero() |
|
548 | 551 | jspectra[ich,indAux[0],indAux[1]] = tmp_noise * (1 - 1/math.sqrt(num_incoh)) |
|
549 | 552 | |
|
550 | 553 | #Remocion de Interferencia en el Cross Spectra |
|
551 | 554 | if jcspectra is None: return jspectra, jcspectra |
|
552 | 555 | num_pairs = jcspectra.size/(num_prof*num_hei) |
|
553 | 556 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
554 | 557 | |
|
555 | 558 | for ip in range(num_pairs): |
|
556 | 559 | |
|
557 | 560 | #------------------------------------------- |
|
558 | 561 | |
|
559 | 562 | cspower = numpy.abs(jcspectra[ip,mask_prof,:]) |
|
560 | 563 | cspower = cspower[:,hei_interf] |
|
561 | 564 | cspower = cspower.sum(axis = 0) |
|
562 | 565 | |
|
563 | 566 | cspsort = cspower.ravel().argsort() |
|
564 | 567 | junkcspc_interf = jcspectra[ip,:,hei_interf[cspsort[range(offhei_interf, nhei_interf + offhei_interf)]]] |
|
565 | 568 | junkcspc_interf = junkcspc_interf.transpose() |
|
566 | 569 | jcspc_interf = junkcspc_interf.sum(axis = 1)/nhei_interf |
|
567 | 570 | |
|
568 | 571 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
569 | 572 | |
|
570 | 573 | median_real = numpy.median(numpy.real(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
571 | 574 | median_imag = numpy.median(numpy.imag(junkcspc_interf[mask_prof[ind[range(3*num_prof/4)]],:])) |
|
572 | 575 | junkcspc_interf[comp_mask_prof,:] = numpy.complex(median_real, median_imag) |
|
573 | 576 | |
|
574 | 577 | for iprof in range(num_prof): |
|
575 | 578 | ind = numpy.abs(junkcspc_interf[iprof,:]).ravel().argsort() |
|
576 | 579 | jcspc_interf[iprof] = junkcspc_interf[iprof, ind[nhei_interf/2]] |
|
577 | 580 | |
|
578 | 581 | #Removiendo la Interferencia |
|
579 | 582 | jcspectra[ip,:,ind_hei] = jcspectra[ip,:,ind_hei] - jcspc_interf |
|
580 | 583 | |
|
581 | 584 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
582 | 585 | maxid = ListAux.index(max(ListAux)) |
|
583 | 586 | |
|
584 | 587 | ind = numpy.array([-2,-1,1,2]) |
|
585 | 588 | xx = numpy.zeros([4,4]) |
|
586 | 589 | |
|
587 | 590 | for id1 in range(4): |
|
588 | 591 | xx[:,id1] = ind[id1]**numpy.asarray(range(4)) |
|
589 | 592 | |
|
590 | 593 | xx_inv = numpy.linalg.inv(xx) |
|
591 | 594 | xx = xx_inv[:,0] |
|
592 | 595 | |
|
593 | 596 | ind = (ind + maxid + num_mask_prof)%num_mask_prof |
|
594 | 597 | yy = jcspectra[ip,mask_prof[ind],:] |
|
595 | 598 | jcspectra[ip,mask_prof[maxid],:] = numpy.dot(yy.transpose(),xx) |
|
596 | 599 | |
|
597 | 600 | #Guardar Resultados |
|
598 | 601 | self.dataOut.data_spc = jspectra |
|
599 | 602 | self.dataOut.data_cspc = jcspectra |
|
600 | 603 | |
|
601 | 604 | return 1 |
|
602 | 605 | |
|
603 | 606 | def setRadarFrequency(self, frequency=None): |
|
604 | 607 | |
|
605 | 608 | if frequency != None: |
|
606 | 609 | self.dataOut.frequency = frequency |
|
607 | 610 | |
|
608 | 611 | return 1 |
|
609 | 612 | |
|
610 | 613 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
611 | 614 | #validacion de rango |
|
612 | 615 | if minHei == None: |
|
613 | 616 | minHei = self.dataOut.heightList[0] |
|
614 | 617 | |
|
615 | 618 | if maxHei == None: |
|
616 | 619 | maxHei = self.dataOut.heightList[-1] |
|
617 | 620 | |
|
618 | 621 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
619 | 622 | print 'minHei: %.2f is out of the heights range'%(minHei) |
|
620 | 623 | print 'minHei is setting to %.2f'%(self.dataOut.heightList[0]) |
|
621 | 624 | minHei = self.dataOut.heightList[0] |
|
622 | 625 | |
|
623 | 626 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
624 | 627 | print 'maxHei: %.2f is out of the heights range'%(maxHei) |
|
625 | 628 | print 'maxHei is setting to %.2f'%(self.dataOut.heightList[-1]) |
|
626 | 629 | maxHei = self.dataOut.heightList[-1] |
|
627 | 630 | |
|
628 | 631 | # validacion de velocidades |
|
629 | 632 | velrange = self.dataOut.getVelRange(1) |
|
630 | 633 | |
|
631 | 634 | if minVel == None: |
|
632 | 635 | minVel = velrange[0] |
|
633 | 636 | |
|
634 | 637 | if maxVel == None: |
|
635 | 638 | maxVel = velrange[-1] |
|
636 | 639 | |
|
637 | 640 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
638 | 641 | print 'minVel: %.2f is out of the velocity range'%(minVel) |
|
639 | 642 | print 'minVel is setting to %.2f'%(velrange[0]) |
|
640 | 643 | minVel = velrange[0] |
|
641 | 644 | |
|
642 | 645 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
643 | 646 | print 'maxVel: %.2f is out of the velocity range'%(maxVel) |
|
644 | 647 | print 'maxVel is setting to %.2f'%(velrange[-1]) |
|
645 | 648 | maxVel = velrange[-1] |
|
646 | 649 | |
|
647 | 650 | # seleccion de indices para rango |
|
648 | 651 | minIndex = 0 |
|
649 | 652 | maxIndex = 0 |
|
650 | 653 | heights = self.dataOut.heightList |
|
651 | 654 | |
|
652 | 655 | inda = numpy.where(heights >= minHei) |
|
653 | 656 | indb = numpy.where(heights <= maxHei) |
|
654 | 657 | |
|
655 | 658 | try: |
|
656 | 659 | minIndex = inda[0][0] |
|
657 | 660 | except: |
|
658 | 661 | minIndex = 0 |
|
659 | 662 | |
|
660 | 663 | try: |
|
661 | 664 | maxIndex = indb[0][-1] |
|
662 | 665 | except: |
|
663 | 666 | maxIndex = len(heights) |
|
664 | 667 | |
|
665 | 668 | if (minIndex < 0) or (minIndex > maxIndex): |
|
666 | 669 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
667 | 670 | |
|
668 | 671 | if (maxIndex >= self.dataOut.nHeights): |
|
669 | 672 | maxIndex = self.dataOut.nHeights-1 |
|
670 | 673 | |
|
671 | 674 | # seleccion de indices para velocidades |
|
672 | 675 | indminvel = numpy.where(velrange >= minVel) |
|
673 | 676 | indmaxvel = numpy.where(velrange <= maxVel) |
|
674 | 677 | try: |
|
675 | 678 | minIndexVel = indminvel[0][0] |
|
676 | 679 | except: |
|
677 | 680 | minIndexVel = 0 |
|
678 | 681 | |
|
679 | 682 | try: |
|
680 | 683 | maxIndexVel = indmaxvel[0][-1] |
|
681 | 684 | except: |
|
682 | 685 | maxIndexVel = len(velrange) |
|
683 | 686 | |
|
684 | 687 | #seleccion del espectro |
|
685 | 688 | data_spc = self.dataOut.data_spc[:,minIndexVel:maxIndexVel+1,minIndex:maxIndex+1] |
|
686 | 689 | #estimacion de ruido |
|
687 | 690 | noise = numpy.zeros(self.dataOut.nChannels) |
|
688 | 691 | |
|
689 | 692 | for channel in range(self.dataOut.nChannels): |
|
690 | 693 | daux = data_spc[channel,:,:] |
|
691 | 694 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
692 | 695 | |
|
693 | 696 | self.dataOut.noise_estimation = noise.copy() |
|
694 | 697 | |
|
695 | 698 | return 1 |
|
696 | 699 | |
|
697 | 700 | class IncohInt(Operation): |
|
698 | 701 | |
|
699 | 702 | |
|
700 | 703 | __profIndex = 0 |
|
701 | 704 | __withOverapping = False |
|
702 | 705 | |
|
703 | 706 | __byTime = False |
|
704 | 707 | __initime = None |
|
705 | 708 | __lastdatatime = None |
|
706 | 709 | __integrationtime = None |
|
707 | 710 | |
|
708 | 711 | __buffer_spc = None |
|
709 | 712 | __buffer_cspc = None |
|
710 | 713 | __buffer_dc = None |
|
711 | 714 | |
|
712 | 715 | __dataReady = False |
|
713 | 716 | |
|
714 | 717 | __timeInterval = None |
|
715 | 718 | |
|
716 | 719 | n = None |
|
717 | 720 | |
|
718 | 721 | |
|
719 | 722 | |
|
720 | 723 | def __init__(self): |
|
721 | 724 | |
|
722 | 725 | Operation.__init__(self) |
|
723 | 726 | # self.isConfig = False |
|
724 | 727 | |
|
725 | 728 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
726 | 729 | """ |
|
727 | 730 | Set the parameters of the integration class. |
|
728 | 731 | |
|
729 | 732 | Inputs: |
|
730 | 733 | |
|
731 | 734 | n : Number of coherent integrations |
|
732 | 735 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
733 | 736 | overlapping : |
|
734 | 737 | |
|
735 | 738 | """ |
|
736 | 739 | |
|
737 | 740 | self.__initime = None |
|
738 | 741 | self.__lastdatatime = 0 |
|
739 | 742 | |
|
740 | 743 | self.__buffer_spc = 0 |
|
741 | 744 | self.__buffer_cspc = 0 |
|
742 | 745 | self.__buffer_dc = 0 |
|
743 | 746 | |
|
744 | 747 | self.__profIndex = 0 |
|
745 | 748 | self.__dataReady = False |
|
746 | 749 | self.__byTime = False |
|
747 | 750 | |
|
748 | 751 | if n is None and timeInterval is None: |
|
749 | 752 | raise ValueError, "n or timeInterval should be specified ..." |
|
750 | 753 | |
|
751 | 754 | if n is not None: |
|
752 | 755 | self.n = int(n) |
|
753 | 756 | else: |
|
754 | 757 | self.__integrationtime = int(timeInterval) #if (type(timeInterval)!=integer) -> change this line |
|
755 | 758 | self.n = None |
|
756 | 759 | self.__byTime = True |
|
757 | 760 | |
|
758 | 761 | def putData(self, data_spc, data_cspc, data_dc): |
|
759 | 762 | |
|
760 | 763 | """ |
|
761 | 764 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
762 | 765 | |
|
763 | 766 | """ |
|
764 | 767 | |
|
765 | 768 | self.__buffer_spc += data_spc |
|
766 | 769 | |
|
767 | 770 | if data_cspc is None: |
|
768 | 771 | self.__buffer_cspc = None |
|
769 | 772 | else: |
|
770 | 773 | self.__buffer_cspc += data_cspc |
|
771 | 774 | |
|
772 | 775 | if data_dc is None: |
|
773 | 776 | self.__buffer_dc = None |
|
774 | 777 | else: |
|
775 | 778 | self.__buffer_dc += data_dc |
|
776 | 779 | |
|
777 | 780 | self.__profIndex += 1 |
|
778 | 781 | |
|
779 | 782 | return |
|
780 | 783 | |
|
781 | 784 | def pushData(self): |
|
782 | 785 | """ |
|
783 | 786 | Return the sum of the last profiles and the profiles used in the sum. |
|
784 | 787 | |
|
785 | 788 | Affected: |
|
786 | 789 | |
|
787 | 790 | self.__profileIndex |
|
788 | 791 | |
|
789 | 792 | """ |
|
790 | 793 | |
|
791 | 794 | data_spc = self.__buffer_spc |
|
792 | 795 | data_cspc = self.__buffer_cspc |
|
793 | 796 | data_dc = self.__buffer_dc |
|
794 | 797 | n = self.__profIndex |
|
795 | 798 | |
|
796 | 799 | self.__buffer_spc = 0 |
|
797 | 800 | self.__buffer_cspc = 0 |
|
798 | 801 | self.__buffer_dc = 0 |
|
799 | 802 | self.__profIndex = 0 |
|
800 | 803 | |
|
801 | 804 | return data_spc, data_cspc, data_dc, n |
|
802 | 805 | |
|
803 | 806 | def byProfiles(self, *args): |
|
804 | 807 | |
|
805 | 808 | self.__dataReady = False |
|
806 | 809 | avgdata_spc = None |
|
807 | 810 | avgdata_cspc = None |
|
808 | 811 | avgdata_dc = None |
|
809 | 812 | |
|
810 | 813 | self.putData(*args) |
|
811 | 814 | |
|
812 | 815 | if self.__profIndex == self.n: |
|
813 | 816 | |
|
814 | 817 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
815 | 818 | self.n = n |
|
816 | 819 | self.__dataReady = True |
|
817 | 820 | |
|
818 | 821 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
819 | 822 | |
|
820 | 823 | def byTime(self, datatime, *args): |
|
821 | 824 | |
|
822 | 825 | self.__dataReady = False |
|
823 | 826 | avgdata_spc = None |
|
824 | 827 | avgdata_cspc = None |
|
825 | 828 | avgdata_dc = None |
|
826 | 829 | |
|
827 | 830 | self.putData(*args) |
|
828 | 831 | |
|
829 | 832 | if (datatime - self.__initime) >= self.__integrationtime: |
|
830 | 833 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
831 | 834 | self.n = n |
|
832 | 835 | self.__dataReady = True |
|
833 | 836 | |
|
834 | 837 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
835 | 838 | |
|
836 | 839 | def integrate(self, datatime, *args): |
|
837 | 840 | |
|
838 | 841 | if self.__profIndex == 0: |
|
839 | 842 | self.__initime = datatime |
|
840 | 843 | |
|
841 | 844 | if self.__byTime: |
|
842 | 845 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
843 | 846 | else: |
|
844 | 847 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
845 | 848 | |
|
846 | 849 | if not self.__dataReady: |
|
847 | 850 | return None, None, None, None |
|
848 | 851 | |
|
849 | 852 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
850 | 853 | |
|
851 | 854 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
852 | 855 | |
|
853 | 856 | if n==1: |
|
854 | 857 | return |
|
855 | 858 | |
|
856 | 859 | dataOut.flagNoData = True |
|
857 | 860 | |
|
858 | 861 | if not self.isConfig: |
|
859 | 862 | self.setup(n, timeInterval, overlapping) |
|
860 | 863 | self.isConfig = True |
|
861 | 864 | |
|
862 | 865 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
863 | 866 | dataOut.data_spc, |
|
864 | 867 | dataOut.data_cspc, |
|
865 | 868 | dataOut.data_dc) |
|
866 | 869 | |
|
867 | 870 | if self.__dataReady: |
|
868 | 871 | |
|
869 | 872 | dataOut.data_spc = avgdata_spc |
|
870 | 873 | dataOut.data_cspc = avgdata_cspc |
|
871 | 874 | dataOut.data_dc = avgdata_dc |
|
872 | 875 | |
|
873 | 876 | dataOut.nIncohInt *= self.n |
|
874 | 877 | dataOut.utctime = avgdatatime |
|
875 | 878 | dataOut.flagNoData = False |
@@ -1,1071 +1,1072 | |||
|
1 | 1 | import numpy |
|
2 | 2 | |
|
3 | 3 | from jroproc_base import ProcessingUnit, Operation |
|
4 | 4 | from schainpy.model.data.jrodata import Voltage |
|
5 | 5 | |
|
6 | 6 | class VoltageProc(ProcessingUnit): |
|
7 | 7 | |
|
8 | 8 | |
|
9 | 9 | def __init__(self): |
|
10 | 10 | |
|
11 | 11 | ProcessingUnit.__init__(self) |
|
12 | 12 | |
|
13 | 13 | # self.objectDict = {} |
|
14 | 14 | self.dataOut = Voltage() |
|
15 | 15 | self.flip = 1 |
|
16 | 16 | |
|
17 | 17 | def run(self): |
|
18 | 18 | if self.dataIn.type == 'AMISR': |
|
19 | 19 | self.__updateObjFromAmisrInput() |
|
20 | 20 | |
|
21 | 21 | if self.dataIn.type == 'Voltage': |
|
22 | 22 | self.dataOut.copy(self.dataIn) |
|
23 | 23 | |
|
24 | 24 | # self.dataOut.copy(self.dataIn) |
|
25 | 25 | |
|
26 | 26 | def __updateObjFromAmisrInput(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | |
|
33 | 33 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
34 | 34 | self.dataOut.data = self.dataIn.data |
|
35 | 35 | self.dataOut.utctime = self.dataIn.utctime |
|
36 | 36 | self.dataOut.channelList = self.dataIn.channelList |
|
37 | 37 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
38 | 38 | self.dataOut.heightList = self.dataIn.heightList |
|
39 | 39 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
40 | 40 | |
|
41 | 41 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
42 | 42 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
43 | 43 | self.dataOut.frequency = self.dataIn.frequency |
|
44 | 44 | |
|
45 | 45 | self.dataOut.azimuth = self.dataIn.azimuth |
|
46 | 46 | self.dataOut.zenith = self.dataIn.zenith |
|
47 | 47 | |
|
48 | 48 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
49 | 49 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
50 | 50 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
51 | 51 | # |
|
52 | 52 | # pass# |
|
53 | 53 | # |
|
54 | 54 | # def init(self): |
|
55 | 55 | # |
|
56 | 56 | # |
|
57 | 57 | # if self.dataIn.type == 'AMISR': |
|
58 | 58 | # self.__updateObjFromAmisrInput() |
|
59 | 59 | # |
|
60 | 60 | # if self.dataIn.type == 'Voltage': |
|
61 | 61 | # self.dataOut.copy(self.dataIn) |
|
62 | 62 | # # No necesita copiar en cada init() los atributos de dataIn |
|
63 | 63 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
64 | 64 | |
|
65 | 65 | def selectChannels(self, channelList): |
|
66 | 66 | |
|
67 | 67 | channelIndexList = [] |
|
68 | 68 | |
|
69 | 69 | for channel in channelList: |
|
70 | 70 | if channel not in self.dataOut.channelList: |
|
71 | 71 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) |
|
72 | 72 | |
|
73 | 73 | index = self.dataOut.channelList.index(channel) |
|
74 | 74 | channelIndexList.append(index) |
|
75 | 75 | |
|
76 | 76 | self.selectChannelsByIndex(channelIndexList) |
|
77 | 77 | |
|
78 | 78 | def selectChannelsByIndex(self, channelIndexList): |
|
79 | 79 | """ |
|
80 | 80 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
81 | 81 | |
|
82 | 82 | Input: |
|
83 | 83 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
84 | 84 | |
|
85 | 85 | Affected: |
|
86 | 86 | self.dataOut.data |
|
87 | 87 | self.dataOut.channelIndexList |
|
88 | 88 | self.dataOut.nChannels |
|
89 | 89 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
90 | 90 | self.dataOut.systemHeaderObj.numChannels |
|
91 | 91 | self.dataOut.m_ProcessingHeader.blockSize |
|
92 | 92 | |
|
93 | 93 | Return: |
|
94 | 94 | None |
|
95 | 95 | """ |
|
96 | 96 | |
|
97 | 97 | for channelIndex in channelIndexList: |
|
98 | 98 | if channelIndex not in self.dataOut.channelIndexList: |
|
99 | 99 | print channelIndexList |
|
100 | 100 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
101 | 101 | |
|
102 | 102 | if self.dataOut.flagDataAsBlock: |
|
103 | 103 | """ |
|
104 | 104 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
105 | 105 | """ |
|
106 | 106 | data = self.dataOut.data[channelIndexList,:,:] |
|
107 | 107 | else: |
|
108 | 108 | data = self.dataOut.data[channelIndexList,:] |
|
109 | 109 | |
|
110 | 110 | self.dataOut.data = data |
|
111 | 111 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
112 | 112 | # self.dataOut.nChannels = nChannels |
|
113 | 113 | |
|
114 | 114 | return 1 |
|
115 | 115 | |
|
116 | 116 | def selectHeights(self, minHei=None, maxHei=None): |
|
117 | 117 | """ |
|
118 | 118 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
119 | 119 | minHei <= height <= maxHei |
|
120 | 120 | |
|
121 | 121 | Input: |
|
122 | 122 | minHei : valor minimo de altura a considerar |
|
123 | 123 | maxHei : valor maximo de altura a considerar |
|
124 | 124 | |
|
125 | 125 | Affected: |
|
126 | 126 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
127 | 127 | |
|
128 | 128 | Return: |
|
129 | 129 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
130 | 130 | """ |
|
131 | 131 | |
|
132 | 132 | if minHei == None: |
|
133 | 133 | minHei = self.dataOut.heightList[0] |
|
134 | 134 | |
|
135 | 135 | if maxHei == None: |
|
136 | 136 | maxHei = self.dataOut.heightList[-1] |
|
137 | 137 | |
|
138 | 138 | if (minHei < self.dataOut.heightList[0]): |
|
139 | 139 | minHei = self.dataOut.heightList[0] |
|
140 | 140 | |
|
141 | 141 | if (maxHei > self.dataOut.heightList[-1]): |
|
142 | 142 | maxHei = self.dataOut.heightList[-1] |
|
143 | 143 | |
|
144 | 144 | minIndex = 0 |
|
145 | 145 | maxIndex = 0 |
|
146 | 146 | heights = self.dataOut.heightList |
|
147 | 147 | |
|
148 | 148 | inda = numpy.where(heights >= minHei) |
|
149 | 149 | indb = numpy.where(heights <= maxHei) |
|
150 | 150 | |
|
151 | 151 | try: |
|
152 | 152 | minIndex = inda[0][0] |
|
153 | 153 | except: |
|
154 | 154 | minIndex = 0 |
|
155 | 155 | |
|
156 | 156 | try: |
|
157 | 157 | maxIndex = indb[0][-1] |
|
158 | 158 | except: |
|
159 | 159 | maxIndex = len(heights) |
|
160 | 160 | |
|
161 | 161 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
162 | 162 | |
|
163 | 163 | return 1 |
|
164 | 164 | |
|
165 | 165 | |
|
166 | 166 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
167 | 167 | """ |
|
168 | 168 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
169 | 169 | minIndex <= index <= maxIndex |
|
170 | 170 | |
|
171 | 171 | Input: |
|
172 | 172 | minIndex : valor de indice minimo de altura a considerar |
|
173 | 173 | maxIndex : valor de indice maximo de altura a considerar |
|
174 | 174 | |
|
175 | 175 | Affected: |
|
176 | 176 | self.dataOut.data |
|
177 | 177 | self.dataOut.heightList |
|
178 | 178 | |
|
179 | 179 | Return: |
|
180 | 180 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
181 | 181 | """ |
|
182 | 182 | |
|
183 | 183 | if (minIndex < 0) or (minIndex > maxIndex): |
|
184 | 184 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
185 | 185 | |
|
186 | 186 | if (maxIndex >= self.dataOut.nHeights): |
|
187 | 187 | maxIndex = self.dataOut.nHeights |
|
188 | 188 | |
|
189 | 189 | #voltage |
|
190 | 190 | if self.dataOut.flagDataAsBlock: |
|
191 | 191 | """ |
|
192 | 192 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
193 | 193 | """ |
|
194 | 194 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
195 | 195 | else: |
|
196 | 196 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
197 | 197 | |
|
198 | 198 | # firstHeight = self.dataOut.heightList[minIndex] |
|
199 | 199 | |
|
200 | 200 | self.dataOut.data = data |
|
201 | 201 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
202 | 202 | |
|
203 | 203 | if self.dataOut.nHeights <= 1: |
|
204 | 204 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) |
|
205 | 205 | |
|
206 | 206 | return 1 |
|
207 | 207 | |
|
208 | 208 | |
|
209 | 209 | def filterByHeights(self, window): |
|
210 | 210 | |
|
211 | 211 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
212 | 212 | |
|
213 | 213 | if window == None: |
|
214 | 214 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
215 | 215 | |
|
216 | 216 | newdelta = deltaHeight * window |
|
217 | 217 | r = self.dataOut.nHeights % window |
|
218 | 218 | newheights = (self.dataOut.nHeights-r)/window |
|
219 | 219 | |
|
220 | 220 | if newheights <= 1: |
|
221 | 221 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) |
|
222 | 222 | |
|
223 | 223 | if self.dataOut.flagDataAsBlock: |
|
224 | 224 | """ |
|
225 | 225 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
226 | 226 | """ |
|
227 | 227 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
228 | 228 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
229 | 229 | buffer = numpy.sum(buffer,3) |
|
230 | 230 | |
|
231 | 231 | else: |
|
232 | 232 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
233 | 233 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
234 | 234 | buffer = numpy.sum(buffer,2) |
|
235 | 235 | |
|
236 | 236 | self.dataOut.data = buffer |
|
237 | 237 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
238 | 238 | self.dataOut.windowOfFilter = window |
|
239 | 239 | |
|
240 | 240 | def setH0(self, h0, deltaHeight = None): |
|
241 | 241 | |
|
242 | 242 | if not deltaHeight: |
|
243 | 243 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
244 | 244 | |
|
245 | 245 | nHeights = self.dataOut.nHeights |
|
246 | 246 | |
|
247 | 247 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
248 | 248 | |
|
249 | 249 | self.dataOut.heightList = newHeiRange |
|
250 | 250 | |
|
251 | 251 | def deFlip(self, channelList = []): |
|
252 | 252 | |
|
253 | 253 | data = self.dataOut.data.copy() |
|
254 | 254 | |
|
255 | 255 | if self.dataOut.flagDataAsBlock: |
|
256 | 256 | flip = self.flip |
|
257 | 257 | profileList = range(self.dataOut.nProfiles) |
|
258 | 258 | |
|
259 | 259 | if not channelList: |
|
260 | 260 | for thisProfile in profileList: |
|
261 | 261 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
262 | 262 | flip *= -1.0 |
|
263 | 263 | else: |
|
264 | 264 | for thisChannel in channelList: |
|
265 | 265 | if thisChannel not in self.dataOut.channelList: |
|
266 | 266 | continue |
|
267 | 267 | |
|
268 | 268 | for thisProfile in profileList: |
|
269 | 269 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
270 | 270 | flip *= -1.0 |
|
271 | 271 | |
|
272 | 272 | self.flip = flip |
|
273 | 273 | |
|
274 | 274 | else: |
|
275 | 275 | if not channelList: |
|
276 | 276 | data[:,:] = data[:,:]*self.flip |
|
277 | 277 | else: |
|
278 | 278 | for thisChannel in channelList: |
|
279 | 279 | if thisChannel not in self.dataOut.channelList: |
|
280 | 280 | continue |
|
281 | 281 | |
|
282 | 282 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
283 | 283 | |
|
284 | 284 | self.flip *= -1. |
|
285 | 285 | |
|
286 | 286 | self.dataOut.data = data |
|
287 | 287 | |
|
288 | 288 | def setRadarFrequency(self, frequency=None): |
|
289 | 289 | |
|
290 | 290 | if frequency != None: |
|
291 | 291 | self.dataOut.frequency = frequency |
|
292 | 292 | |
|
293 | 293 | return 1 |
|
294 | 294 | |
|
295 | 295 | class CohInt(Operation): |
|
296 | 296 | |
|
297 | 297 | isConfig = False |
|
298 | 298 | |
|
299 | 299 | __profIndex = 0 |
|
300 | 300 | __withOverapping = False |
|
301 | 301 | |
|
302 | 302 | __byTime = False |
|
303 | 303 | __initime = None |
|
304 | 304 | __lastdatatime = None |
|
305 | 305 | __integrationtime = None |
|
306 | 306 | |
|
307 | 307 | __buffer = None |
|
308 | 308 | |
|
309 | 309 | __dataReady = False |
|
310 | 310 | |
|
311 | 311 | n = None |
|
312 | 312 | |
|
313 | 313 | |
|
314 | 314 | def __init__(self): |
|
315 | 315 | |
|
316 | 316 | Operation.__init__(self) |
|
317 | 317 | |
|
318 | 318 | # self.isConfig = False |
|
319 | 319 | |
|
320 | 320 | def setup(self, n=None, timeInterval=None, overlapping=False, byblock=False): |
|
321 | 321 | """ |
|
322 | 322 | Set the parameters of the integration class. |
|
323 | 323 | |
|
324 | 324 | Inputs: |
|
325 | 325 | |
|
326 | 326 | n : Number of coherent integrations |
|
327 | 327 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
328 | 328 | overlapping : |
|
329 | 329 | |
|
330 | 330 | """ |
|
331 | 331 | |
|
332 | 332 | self.__initime = None |
|
333 | 333 | self.__lastdatatime = 0 |
|
334 | 334 | self.__buffer = None |
|
335 | 335 | self.__dataReady = False |
|
336 | 336 | self.byblock = byblock |
|
337 | 337 | |
|
338 | 338 | if n == None and timeInterval == None: |
|
339 | 339 | raise ValueError, "n or timeInterval should be specified ..." |
|
340 | 340 | |
|
341 | 341 | if n != None: |
|
342 | 342 | self.n = n |
|
343 | 343 | self.__byTime = False |
|
344 | 344 | else: |
|
345 | 345 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
346 | 346 | self.n = 9999 |
|
347 | 347 | self.__byTime = True |
|
348 | 348 | |
|
349 | 349 | if overlapping: |
|
350 | 350 | self.__withOverapping = True |
|
351 | 351 | self.__buffer = None |
|
352 | 352 | else: |
|
353 | 353 | self.__withOverapping = False |
|
354 | 354 | self.__buffer = 0 |
|
355 | 355 | |
|
356 | 356 | self.__profIndex = 0 |
|
357 | 357 | |
|
358 | 358 | def putData(self, data): |
|
359 | 359 | |
|
360 | 360 | """ |
|
361 | 361 | Add a profile to the __buffer and increase in one the __profileIndex |
|
362 | 362 | |
|
363 | 363 | """ |
|
364 | 364 | |
|
365 | 365 | if not self.__withOverapping: |
|
366 | 366 | self.__buffer += data.copy() |
|
367 | 367 | self.__profIndex += 1 |
|
368 | 368 | return |
|
369 | 369 | |
|
370 | 370 | #Overlapping data |
|
371 | 371 | nChannels, nHeis = data.shape |
|
372 | 372 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
373 | 373 | |
|
374 | 374 | #If the buffer is empty then it takes the data value |
|
375 | 375 | if self.__buffer is None: |
|
376 | 376 | self.__buffer = data |
|
377 | 377 | self.__profIndex += 1 |
|
378 | 378 | return |
|
379 | 379 | |
|
380 | 380 | #If the buffer length is lower than n then stakcing the data value |
|
381 | 381 | if self.__profIndex < self.n: |
|
382 | 382 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
383 | 383 | self.__profIndex += 1 |
|
384 | 384 | return |
|
385 | 385 | |
|
386 | 386 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
387 | 387 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
388 | 388 | self.__buffer[self.n-1] = data |
|
389 | 389 | self.__profIndex = self.n |
|
390 | 390 | return |
|
391 | 391 | |
|
392 | 392 | |
|
393 | 393 | def pushData(self): |
|
394 | 394 | """ |
|
395 | 395 | Return the sum of the last profiles and the profiles used in the sum. |
|
396 | 396 | |
|
397 | 397 | Affected: |
|
398 | 398 | |
|
399 | 399 | self.__profileIndex |
|
400 | 400 | |
|
401 | 401 | """ |
|
402 | 402 | |
|
403 | 403 | if not self.__withOverapping: |
|
404 | 404 | data = self.__buffer |
|
405 | 405 | n = self.__profIndex |
|
406 | 406 | |
|
407 | 407 | self.__buffer = 0 |
|
408 | 408 | self.__profIndex = 0 |
|
409 | 409 | |
|
410 | 410 | return data, n |
|
411 | 411 | |
|
412 | 412 | #Integration with Overlapping |
|
413 | 413 | data = numpy.sum(self.__buffer, axis=0) |
|
414 | 414 | n = self.__profIndex |
|
415 | 415 | |
|
416 | 416 | return data, n |
|
417 | 417 | |
|
418 | 418 | def byProfiles(self, data): |
|
419 | 419 | |
|
420 | 420 | self.__dataReady = False |
|
421 | 421 | avgdata = None |
|
422 | 422 | # n = None |
|
423 | 423 | |
|
424 | 424 | self.putData(data) |
|
425 | 425 | |
|
426 | 426 | if self.__profIndex == self.n: |
|
427 | 427 | |
|
428 | 428 | avgdata, n = self.pushData() |
|
429 | 429 | self.__dataReady = True |
|
430 | 430 | |
|
431 | 431 | return avgdata |
|
432 | 432 | |
|
433 | 433 | def byTime(self, data, datatime): |
|
434 | 434 | |
|
435 | 435 | self.__dataReady = False |
|
436 | 436 | avgdata = None |
|
437 | 437 | n = None |
|
438 | 438 | |
|
439 | 439 | self.putData(data) |
|
440 | 440 | |
|
441 | 441 | if (datatime - self.__initime) >= self.__integrationtime: |
|
442 | 442 | avgdata, n = self.pushData() |
|
443 | 443 | self.n = n |
|
444 | 444 | self.__dataReady = True |
|
445 | 445 | |
|
446 | 446 | return avgdata |
|
447 | 447 | |
|
448 | 448 | def integrate(self, data, datatime=None): |
|
449 | 449 | |
|
450 | 450 | if self.__initime == None: |
|
451 | 451 | self.__initime = datatime |
|
452 | 452 | |
|
453 | 453 | if self.__byTime: |
|
454 | 454 | avgdata = self.byTime(data, datatime) |
|
455 | 455 | else: |
|
456 | 456 | avgdata = self.byProfiles(data) |
|
457 | 457 | |
|
458 | 458 | |
|
459 | 459 | self.__lastdatatime = datatime |
|
460 | 460 | |
|
461 | 461 | if avgdata is None: |
|
462 | 462 | return None, None |
|
463 | 463 | |
|
464 | 464 | avgdatatime = self.__initime |
|
465 | 465 | |
|
466 | 466 | deltatime = datatime -self.__lastdatatime |
|
467 | 467 | |
|
468 | 468 | if not self.__withOverapping: |
|
469 | 469 | self.__initime = datatime |
|
470 | 470 | else: |
|
471 | 471 | self.__initime += deltatime |
|
472 | 472 | |
|
473 | 473 | return avgdata, avgdatatime |
|
474 | 474 | |
|
475 | 475 | def integrateByBlock(self, dataOut): |
|
476 | 476 | |
|
477 | 477 | times = int(dataOut.data.shape[1]/self.n) |
|
478 | 478 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
479 | 479 | |
|
480 | 480 | id_min = 0 |
|
481 | 481 | id_max = self.n |
|
482 | 482 | |
|
483 | 483 | for i in range(times): |
|
484 | 484 | junk = dataOut.data[:,id_min:id_max,:] |
|
485 | 485 | avgdata[:,i,:] = junk.sum(axis=1) |
|
486 | 486 | id_min += self.n |
|
487 | 487 | id_max += self.n |
|
488 | 488 | |
|
489 | 489 | timeInterval = dataOut.ippSeconds*self.n |
|
490 | 490 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
491 | 491 | self.__dataReady = True |
|
492 | 492 | return avgdata, avgdatatime |
|
493 | 493 | |
|
494 | 494 | def run(self, dataOut, **kwargs): |
|
495 | 495 | |
|
496 | 496 | if not self.isConfig: |
|
497 | 497 | self.setup(**kwargs) |
|
498 | 498 | self.isConfig = True |
|
499 | 499 | |
|
500 | 500 | if dataOut.flagDataAsBlock: |
|
501 | 501 | """ |
|
502 | 502 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
503 | 503 | """ |
|
504 | 504 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
505 | dataOut.nProfiles /= self.n | |
|
505 | 506 | else: |
|
506 | 507 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
507 | 508 | |
|
508 | 509 | # dataOut.timeInterval *= n |
|
509 | 510 | dataOut.flagNoData = True |
|
510 | 511 | |
|
511 | 512 | if self.__dataReady: |
|
512 | 513 | dataOut.data = avgdata |
|
513 | 514 | dataOut.nCohInt *= self.n |
|
514 | 515 | dataOut.utctime = avgdatatime |
|
515 | 516 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
516 | 517 | dataOut.flagNoData = False |
|
517 | 518 | |
|
518 | 519 | class Decoder(Operation): |
|
519 | 520 | |
|
520 | 521 | isConfig = False |
|
521 | 522 | __profIndex = 0 |
|
522 | 523 | |
|
523 | 524 | code = None |
|
524 | 525 | |
|
525 | 526 | nCode = None |
|
526 | 527 | nBaud = None |
|
527 | 528 | |
|
528 | 529 | |
|
529 | 530 | def __init__(self): |
|
530 | 531 | |
|
531 | 532 | Operation.__init__(self) |
|
532 | 533 | |
|
533 | 534 | self.times = None |
|
534 | 535 | self.osamp = None |
|
535 | 536 | # self.__setValues = False |
|
536 | 537 | self.isConfig = False |
|
537 | 538 | |
|
538 | 539 | def setup(self, code, osamp, dataOut): |
|
539 | 540 | |
|
540 | 541 | self.__profIndex = 0 |
|
541 | 542 | |
|
542 | 543 | self.code = code |
|
543 | 544 | |
|
544 | 545 | self.nCode = len(code) |
|
545 | 546 | self.nBaud = len(code[0]) |
|
546 | 547 | |
|
547 | 548 | if (osamp != None) and (osamp >1): |
|
548 | 549 | self.osamp = osamp |
|
549 | 550 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
550 | 551 | self.nBaud = self.nBaud*self.osamp |
|
551 | 552 | |
|
552 | 553 | self.__nChannels = dataOut.nChannels |
|
553 | 554 | self.__nProfiles = dataOut.nProfiles |
|
554 | 555 | self.__nHeis = dataOut.nHeights |
|
555 | 556 | |
|
556 | 557 | if self.__nHeis < self.nBaud: |
|
557 | 558 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) |
|
558 | 559 | |
|
559 | 560 | #Frequency |
|
560 | 561 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
561 | 562 | |
|
562 | 563 | __codeBuffer[:,0:self.nBaud] = self.code |
|
563 | 564 | |
|
564 | 565 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
565 | 566 | |
|
566 | 567 | if dataOut.flagDataAsBlock: |
|
567 | 568 | |
|
568 | 569 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
569 | 570 | |
|
570 | 571 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
571 | 572 | |
|
572 | 573 | else: |
|
573 | 574 | |
|
574 | 575 | #Time |
|
575 | 576 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
576 | 577 | |
|
577 | 578 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
578 | 579 | |
|
579 | 580 | def __convolutionInFreq(self, data): |
|
580 | 581 | |
|
581 | 582 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
582 | 583 | |
|
583 | 584 | fft_data = numpy.fft.fft(data, axis=1) |
|
584 | 585 | |
|
585 | 586 | conv = fft_data*fft_code |
|
586 | 587 | |
|
587 | 588 | data = numpy.fft.ifft(conv,axis=1) |
|
588 | 589 | |
|
589 | 590 | return data |
|
590 | 591 | |
|
591 | 592 | def __convolutionInFreqOpt(self, data): |
|
592 | 593 | |
|
593 | 594 | raise NotImplementedError |
|
594 | 595 | |
|
595 | 596 | def __convolutionInTime(self, data): |
|
596 | 597 | |
|
597 | 598 | code = self.code[self.__profIndex] |
|
598 | 599 | |
|
599 | 600 | for i in range(self.__nChannels): |
|
600 | 601 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
601 | 602 | |
|
602 | 603 | return self.datadecTime |
|
603 | 604 | |
|
604 | 605 | def __convolutionByBlockInTime(self, data): |
|
605 | 606 | |
|
606 | 607 | repetitions = self.__nProfiles / self.nCode |
|
607 | 608 | |
|
608 | 609 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
609 | 610 | junk = junk.flatten() |
|
610 | 611 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
611 | 612 | |
|
612 | 613 | for i in range(self.__nChannels): |
|
613 | 614 | for j in range(self.__nProfiles): |
|
614 | 615 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
615 | 616 | |
|
616 | 617 | return self.datadecTime |
|
617 | 618 | |
|
618 | 619 | def __convolutionByBlockInFreq(self, data): |
|
619 | 620 | |
|
620 | 621 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
621 | 622 | |
|
622 | 623 | fft_data = numpy.fft.fft(data, axis=2) |
|
623 | 624 | |
|
624 | 625 | conv = fft_data*fft_code |
|
625 | 626 | |
|
626 | 627 | data = numpy.fft.ifft(conv,axis=2) |
|
627 | 628 | |
|
628 | 629 | return data |
|
629 | 630 | |
|
630 | 631 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
631 | 632 | |
|
632 | 633 | if dataOut.flagDecodeData: |
|
633 | 634 | print "This data is already decoded, recoding again ..." |
|
634 | 635 | |
|
635 | 636 | if not self.isConfig: |
|
636 | 637 | |
|
637 | 638 | if code is None: |
|
638 | 639 | if dataOut.code is None: |
|
639 | 640 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type |
|
640 | 641 | |
|
641 | 642 | code = dataOut.code |
|
642 | 643 | else: |
|
643 | 644 | code = numpy.array(code).reshape(nCode,nBaud) |
|
644 | 645 | |
|
645 | 646 | self.setup(code, osamp, dataOut) |
|
646 | 647 | |
|
647 | 648 | self.isConfig = True |
|
648 | 649 | |
|
649 | 650 | if self.code is None: |
|
650 | 651 | print "Fail decoding: Code is not defined." |
|
651 | 652 | return |
|
652 | 653 | |
|
653 | 654 | datadec = None |
|
654 | 655 | |
|
655 | 656 | if dataOut.flagDataAsBlock: |
|
656 | 657 | """ |
|
657 | 658 | Decoding when data have been read as block, |
|
658 | 659 | """ |
|
659 | 660 | if mode == 0: |
|
660 | 661 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
661 | 662 | if mode == 1: |
|
662 | 663 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
663 | 664 | else: |
|
664 | 665 | """ |
|
665 | 666 | Decoding when data have been read profile by profile |
|
666 | 667 | """ |
|
667 | 668 | if mode == 0: |
|
668 | 669 | datadec = self.__convolutionInTime(dataOut.data) |
|
669 | 670 | |
|
670 | 671 | if mode == 1: |
|
671 | 672 | datadec = self.__convolutionInFreq(dataOut.data) |
|
672 | 673 | |
|
673 | 674 | if mode == 2: |
|
674 | 675 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
675 | 676 | |
|
676 | 677 | if datadec is None: |
|
677 | 678 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode |
|
678 | 679 | |
|
679 | 680 | dataOut.code = self.code |
|
680 | 681 | dataOut.nCode = self.nCode |
|
681 | 682 | dataOut.nBaud = self.nBaud |
|
682 | 683 | |
|
683 | 684 | dataOut.data = datadec |
|
684 | 685 | |
|
685 | 686 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
686 | 687 | |
|
687 | 688 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
688 | 689 | |
|
689 | 690 | if self.__profIndex == self.nCode-1: |
|
690 | 691 | self.__profIndex = 0 |
|
691 | 692 | return 1 |
|
692 | 693 | |
|
693 | 694 | self.__profIndex += 1 |
|
694 | 695 | |
|
695 | 696 | return 1 |
|
696 | 697 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
697 | 698 | |
|
698 | 699 | |
|
699 | 700 | class ProfileConcat(Operation): |
|
700 | 701 | |
|
701 | 702 | isConfig = False |
|
702 | 703 | buffer = None |
|
703 | 704 | |
|
704 | 705 | def __init__(self): |
|
705 | 706 | |
|
706 | 707 | Operation.__init__(self) |
|
707 | 708 | self.profileIndex = 0 |
|
708 | 709 | |
|
709 | 710 | def reset(self): |
|
710 | 711 | self.buffer = numpy.zeros_like(self.buffer) |
|
711 | 712 | self.start_index = 0 |
|
712 | 713 | self.times = 1 |
|
713 | 714 | |
|
714 | 715 | def setup(self, data, m, n=1): |
|
715 | 716 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
716 | 717 | self.nHeights = data.nHeights |
|
717 | 718 | self.start_index = 0 |
|
718 | 719 | self.times = 1 |
|
719 | 720 | |
|
720 | 721 | def concat(self, data): |
|
721 | 722 | |
|
722 | 723 | self.buffer[:,self.start_index:self.profiles*self.times] = data.copy() |
|
723 | 724 | self.start_index = self.start_index + self.nHeights |
|
724 | 725 | |
|
725 | 726 | def run(self, dataOut, m): |
|
726 | 727 | |
|
727 | 728 | dataOut.flagNoData = True |
|
728 | 729 | |
|
729 | 730 | if not self.isConfig: |
|
730 | 731 | self.setup(dataOut.data, m, 1) |
|
731 | 732 | self.isConfig = True |
|
732 | 733 | |
|
733 | 734 | if dataOut.flagDataAsBlock: |
|
734 | 735 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" |
|
735 | 736 | |
|
736 | 737 | else: |
|
737 | 738 | self.concat(dataOut.data) |
|
738 | 739 | self.times += 1 |
|
739 | 740 | if self.times > m: |
|
740 | 741 | dataOut.data = self.buffer |
|
741 | 742 | self.reset() |
|
742 | 743 | dataOut.flagNoData = False |
|
743 | 744 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
744 | 745 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
745 | 746 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
746 | 747 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
747 | 748 | dataOut.ippSeconds *= m |
|
748 | 749 | |
|
749 | 750 | class ProfileSelector(Operation): |
|
750 | 751 | |
|
751 | 752 | profileIndex = None |
|
752 | 753 | # Tamanho total de los perfiles |
|
753 | 754 | nProfiles = None |
|
754 | 755 | |
|
755 | 756 | def __init__(self): |
|
756 | 757 | |
|
757 | 758 | Operation.__init__(self) |
|
758 | 759 | self.profileIndex = 0 |
|
759 | 760 | |
|
760 | 761 | def incIndex(self): |
|
761 | 762 | |
|
762 | 763 | self.profileIndex += 1 |
|
763 | 764 | |
|
764 | 765 | if self.profileIndex >= self.nProfiles: |
|
765 | 766 | self.profileIndex = 0 |
|
766 | 767 | |
|
767 | 768 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
768 | 769 | |
|
769 | 770 | if profileIndex < minIndex: |
|
770 | 771 | return False |
|
771 | 772 | |
|
772 | 773 | if profileIndex > maxIndex: |
|
773 | 774 | return False |
|
774 | 775 | |
|
775 | 776 | return True |
|
776 | 777 | |
|
777 | 778 | def isThisProfileInList(self, profileIndex, profileList): |
|
778 | 779 | |
|
779 | 780 | if profileIndex not in profileList: |
|
780 | 781 | return False |
|
781 | 782 | |
|
782 | 783 | return True |
|
783 | 784 | |
|
784 | 785 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
785 | 786 | |
|
786 | 787 | """ |
|
787 | 788 | ProfileSelector: |
|
788 | 789 | |
|
789 | 790 | Inputs: |
|
790 | 791 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
791 | 792 | |
|
792 | 793 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
793 | 794 | |
|
794 | 795 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
795 | 796 | |
|
796 | 797 | """ |
|
797 | 798 | |
|
798 | 799 | dataOut.flagNoData = True |
|
799 | 800 | |
|
800 | 801 | if dataOut.flagDataAsBlock: |
|
801 | 802 | """ |
|
802 | 803 | data dimension = [nChannels, nProfiles, nHeis] |
|
803 | 804 | """ |
|
804 | 805 | if profileList != None: |
|
805 | 806 | dataOut.data = dataOut.data[:,profileList,:] |
|
806 | 807 | dataOut.nProfiles = len(profileList) |
|
807 | 808 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
808 | 809 | |
|
809 | 810 | if profileRangeList != None: |
|
810 | 811 | minIndex = profileRangeList[0] |
|
811 | 812 | maxIndex = profileRangeList[1] |
|
812 | 813 | |
|
813 | 814 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
814 | 815 | dataOut.nProfiles = maxIndex - minIndex + 1 |
|
815 | 816 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
816 | 817 | |
|
817 | 818 | if rangeList != None: |
|
818 | 819 | raise ValueError, "Profile Selector: Invalid argument rangeList. Not implemented for getByBlock yet" |
|
819 | 820 | |
|
820 | 821 | dataOut.flagNoData = False |
|
821 | 822 | |
|
822 | 823 | return True |
|
823 | 824 | |
|
824 | 825 | """ |
|
825 | 826 | data dimension = [nChannels, nHeis] |
|
826 | 827 | """ |
|
827 | 828 | |
|
828 | 829 | if nProfiles: |
|
829 | 830 | self.nProfiles = nProfiles |
|
830 | 831 | else: |
|
831 | 832 | self.nProfiles = dataOut.nProfiles |
|
832 | 833 | |
|
833 | 834 | if profileList != None: |
|
834 | 835 | |
|
835 | 836 | dataOut.nProfiles = len(profileList) |
|
836 | 837 | |
|
837 | 838 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
838 | 839 | dataOut.flagNoData = False |
|
839 | 840 | dataOut.profileIndex = self.profileIndex |
|
840 | 841 | |
|
841 | 842 | self.incIndex() |
|
842 | 843 | return True |
|
843 | 844 | |
|
844 | 845 | if profileRangeList != None: |
|
845 | 846 | |
|
846 | 847 | minIndex = profileRangeList[0] |
|
847 | 848 | maxIndex = profileRangeList[1] |
|
848 | 849 | |
|
849 | 850 | dataOut.nProfiles = maxIndex - minIndex + 1 |
|
850 | 851 | |
|
851 | 852 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
852 | 853 | dataOut.flagNoData = False |
|
853 | 854 | dataOut.profileIndex = self.profileIndex |
|
854 | 855 | |
|
855 | 856 | self.incIndex() |
|
856 | 857 | return True |
|
857 | 858 | |
|
858 | 859 | if rangeList != None: |
|
859 | 860 | |
|
860 | 861 | nProfiles = 0 |
|
861 | 862 | |
|
862 | 863 | for thisRange in rangeList: |
|
863 | 864 | minIndex = thisRange[0] |
|
864 | 865 | maxIndex = thisRange[1] |
|
865 | 866 | |
|
866 | 867 | nProfiles += maxIndex - minIndex + 1 |
|
867 | 868 | |
|
868 | 869 | dataOut.nProfiles = nProfiles |
|
869 | 870 | |
|
870 | 871 | for thisRange in rangeList: |
|
871 | 872 | |
|
872 | 873 | minIndex = thisRange[0] |
|
873 | 874 | maxIndex = thisRange[1] |
|
874 | 875 | |
|
875 | 876 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
876 | 877 | |
|
877 | 878 | # print "profileIndex = ", dataOut.profileIndex |
|
878 | 879 | |
|
879 | 880 | dataOut.flagNoData = False |
|
880 | 881 | dataOut.profileIndex = self.profileIndex |
|
881 | 882 | |
|
882 | 883 | self.incIndex() |
|
883 | 884 | break |
|
884 | 885 | return True |
|
885 | 886 | |
|
886 | 887 | |
|
887 | 888 | if beam != None: #beam is only for AMISR data |
|
888 | 889 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
889 | 890 | dataOut.flagNoData = False |
|
890 | 891 | dataOut.profileIndex = self.profileIndex |
|
891 | 892 | |
|
892 | 893 | self.incIndex() |
|
893 | 894 | |
|
894 | 895 | return True |
|
895 | 896 | |
|
896 | 897 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" |
|
897 | 898 | |
|
898 | 899 | return False |
|
899 | 900 | |
|
900 | 901 | |
|
901 | 902 | |
|
902 | 903 | class Reshaper(Operation): |
|
903 | 904 | |
|
904 | 905 | def __init__(self): |
|
905 | 906 | |
|
906 | 907 | Operation.__init__(self) |
|
907 | 908 | self.updateNewHeights = True |
|
908 | 909 | |
|
909 | 910 | def run(self, dataOut, shape): |
|
910 | 911 | |
|
911 | 912 | if not dataOut.flagDataAsBlock: |
|
912 | 913 | raise ValueError, "Reshaper can only be used when voltage have been read as Block, getBlock = True" |
|
913 | 914 | |
|
914 | 915 | if len(shape) != 3: |
|
915 | 916 | raise ValueError, "shape len should be equal to 3, (nChannels, nProfiles, nHeis)" |
|
916 | 917 | |
|
917 | 918 | shape_tuple = tuple(shape) |
|
918 | 919 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
919 | 920 | dataOut.flagNoData = False |
|
920 | 921 | |
|
921 | 922 | if self.updateNewHeights: |
|
922 | 923 | |
|
923 | 924 | old_nheights = dataOut.nHeights |
|
924 | 925 | new_nheights = dataOut.data.shape[2] |
|
925 | 926 | factor = 1.0*new_nheights / old_nheights |
|
926 | 927 | |
|
927 | 928 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
928 | 929 | |
|
929 | 930 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * factor |
|
930 | 931 | |
|
931 | 932 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
932 | 933 | |
|
933 | 934 | dataOut.nProfiles = dataOut.data.shape[1] |
|
934 | 935 | |
|
935 | 936 | dataOut.ippSeconds *= factor |
|
936 | 937 | # |
|
937 | 938 | # import collections |
|
938 | 939 | # from scipy.stats import mode |
|
939 | 940 | # |
|
940 | 941 | # class Synchronize(Operation): |
|
941 | 942 | # |
|
942 | 943 | # isConfig = False |
|
943 | 944 | # __profIndex = 0 |
|
944 | 945 | # |
|
945 | 946 | # def __init__(self): |
|
946 | 947 | # |
|
947 | 948 | # Operation.__init__(self) |
|
948 | 949 | # # self.isConfig = False |
|
949 | 950 | # self.__powBuffer = None |
|
950 | 951 | # self.__startIndex = 0 |
|
951 | 952 | # self.__pulseFound = False |
|
952 | 953 | # |
|
953 | 954 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
954 | 955 | # |
|
955 | 956 | # #Read data |
|
956 | 957 | # |
|
957 | 958 | # powerdB = dataOut.getPower(channel = channel) |
|
958 | 959 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
959 | 960 | # |
|
960 | 961 | # self.__powBuffer.extend(powerdB.flatten()) |
|
961 | 962 | # |
|
962 | 963 | # dataArray = numpy.array(self.__powBuffer) |
|
963 | 964 | # |
|
964 | 965 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
965 | 966 | # |
|
966 | 967 | # maxValue = numpy.nanmax(filteredPower) |
|
967 | 968 | # |
|
968 | 969 | # if maxValue < noisedB + 10: |
|
969 | 970 | # #No se encuentra ningun pulso de transmision |
|
970 | 971 | # return None |
|
971 | 972 | # |
|
972 | 973 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
973 | 974 | # |
|
974 | 975 | # if len(maxValuesIndex) < 2: |
|
975 | 976 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
976 | 977 | # return None |
|
977 | 978 | # |
|
978 | 979 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
979 | 980 | # |
|
980 | 981 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
981 | 982 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
982 | 983 | # |
|
983 | 984 | # if len(pulseIndex) < 2: |
|
984 | 985 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
985 | 986 | # return None |
|
986 | 987 | # |
|
987 | 988 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
988 | 989 | # |
|
989 | 990 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
990 | 991 | # #(No deberian existir IPP menor a 10 unidades) |
|
991 | 992 | # |
|
992 | 993 | # realIndex = numpy.where(spacing > 10 )[0] |
|
993 | 994 | # |
|
994 | 995 | # if len(realIndex) < 2: |
|
995 | 996 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
996 | 997 | # return None |
|
997 | 998 | # |
|
998 | 999 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
999 | 1000 | # realPulseIndex = pulseIndex[realIndex] |
|
1000 | 1001 | # |
|
1001 | 1002 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1002 | 1003 | # |
|
1003 | 1004 | # print "IPP = %d samples" %period |
|
1004 | 1005 | # |
|
1005 | 1006 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1006 | 1007 | # self.__startIndex = int(realPulseIndex[0]) |
|
1007 | 1008 | # |
|
1008 | 1009 | # return 1 |
|
1009 | 1010 | # |
|
1010 | 1011 | # |
|
1011 | 1012 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1012 | 1013 | # |
|
1013 | 1014 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1014 | 1015 | # maxlen = buffer_size*nSamples) |
|
1015 | 1016 | # |
|
1016 | 1017 | # bufferList = [] |
|
1017 | 1018 | # |
|
1018 | 1019 | # for i in range(nChannels): |
|
1019 | 1020 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1020 | 1021 | # maxlen = buffer_size*nSamples) |
|
1021 | 1022 | # |
|
1022 | 1023 | # bufferList.append(bufferByChannel) |
|
1023 | 1024 | # |
|
1024 | 1025 | # self.__nSamples = nSamples |
|
1025 | 1026 | # self.__nChannels = nChannels |
|
1026 | 1027 | # self.__bufferList = bufferList |
|
1027 | 1028 | # |
|
1028 | 1029 | # def run(self, dataOut, channel = 0): |
|
1029 | 1030 | # |
|
1030 | 1031 | # if not self.isConfig: |
|
1031 | 1032 | # nSamples = dataOut.nHeights |
|
1032 | 1033 | # nChannels = dataOut.nChannels |
|
1033 | 1034 | # self.setup(nSamples, nChannels) |
|
1034 | 1035 | # self.isConfig = True |
|
1035 | 1036 | # |
|
1036 | 1037 | # #Append new data to internal buffer |
|
1037 | 1038 | # for thisChannel in range(self.__nChannels): |
|
1038 | 1039 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1039 | 1040 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1040 | 1041 | # |
|
1041 | 1042 | # if self.__pulseFound: |
|
1042 | 1043 | # self.__startIndex -= self.__nSamples |
|
1043 | 1044 | # |
|
1044 | 1045 | # #Finding Tx Pulse |
|
1045 | 1046 | # if not self.__pulseFound: |
|
1046 | 1047 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1047 | 1048 | # |
|
1048 | 1049 | # if indexFound == None: |
|
1049 | 1050 | # dataOut.flagNoData = True |
|
1050 | 1051 | # return |
|
1051 | 1052 | # |
|
1052 | 1053 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1053 | 1054 | # self.__pulseFound = True |
|
1054 | 1055 | # self.__startIndex = indexFound |
|
1055 | 1056 | # |
|
1056 | 1057 | # #If pulse was found ... |
|
1057 | 1058 | # for thisChannel in range(self.__nChannels): |
|
1058 | 1059 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1059 | 1060 | # #print self.__startIndex |
|
1060 | 1061 | # x = numpy.array(bufferByChannel) |
|
1061 | 1062 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1062 | 1063 | # |
|
1063 | 1064 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1064 | 1065 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1065 | 1066 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1066 | 1067 | # |
|
1067 | 1068 | # dataOut.data = self.__arrayBuffer |
|
1068 | 1069 | # |
|
1069 | 1070 | # self.__startIndex += self.__newNSamples |
|
1070 | 1071 | # |
|
1071 | 1072 | # return No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now