This diff has been collapsed as it changes many lines, (1384 lines changed)
Show them
Hide them
|
|
@@
-13,27
+13,27
from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
|
|
13
|
|
|
13
|
|
|
14
|
|
|
14
|
|
|
15
|
class ParametersProc(ProcessingUnit):
|
|
15
|
class ParametersProc(ProcessingUnit):
|
|
16
|
|
|
16
|
|
|
17
|
nSeconds = None
|
|
17
|
nSeconds = None
|
|
18
|
|
|
18
|
|
|
19
|
def __init__(self):
|
|
19
|
def __init__(self):
|
|
20
|
ProcessingUnit.__init__(self)
|
|
20
|
ProcessingUnit.__init__(self)
|
|
21
|
|
|
21
|
|
|
22
|
# self.objectDict = {}
|
|
22
|
# self.objectDict = {}
|
|
23
|
self.buffer = None
|
|
23
|
self.buffer = None
|
|
24
|
self.firstdatatime = None
|
|
24
|
self.firstdatatime = None
|
|
25
|
self.profIndex = 0
|
|
25
|
self.profIndex = 0
|
|
26
|
self.dataOut = Parameters()
|
|
26
|
self.dataOut = Parameters()
|
|
27
|
|
|
27
|
|
|
28
|
def __updateObjFromInput(self):
|
|
28
|
def __updateObjFromInput(self):
|
|
29
|
|
|
29
|
|
|
30
|
self.dataOut.inputUnit = self.dataIn.type
|
|
30
|
self.dataOut.inputUnit = self.dataIn.type
|
|
31
|
|
|
31
|
|
|
32
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
32
|
self.dataOut.timeZone = self.dataIn.timeZone
|
|
33
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
33
|
self.dataOut.dstFlag = self.dataIn.dstFlag
|
|
34
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
34
|
self.dataOut.errorCount = self.dataIn.errorCount
|
|
35
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
35
|
self.dataOut.useLocalTime = self.dataIn.useLocalTime
|
|
36
|
|
|
36
|
|
|
37
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
37
|
self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
|
|
38
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
38
|
self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
|
|
39
|
self.dataOut.channelList = self.dataIn.channelList
|
|
39
|
self.dataOut.channelList = self.dataIn.channelList
|
|
@@
-55,25
+55,25
class ParametersProc(ProcessingUnit):
|
|
55
|
self.dataOut.ippSeconds = self.dataIn.ippSeconds
|
|
55
|
self.dataOut.ippSeconds = self.dataIn.ippSeconds
|
|
56
|
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
56
|
# self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
|
|
57
|
self.dataOut.timeInterval = self.dataIn.timeInterval
|
|
57
|
self.dataOut.timeInterval = self.dataIn.timeInterval
|
|
58
|
self.dataOut.heightList = self.dataIn.getHeiRange()
|
|
58
|
self.dataOut.heightList = self.dataIn.getHeiRange()
|
|
59
|
self.dataOut.frequency = self.dataIn.frequency
|
|
59
|
self.dataOut.frequency = self.dataIn.frequency
|
|
60
|
self.dataOut.noise = self.dataIn.noise
|
|
60
|
self.dataOut.noise = self.dataIn.noise
|
|
61
|
|
|
61
|
|
|
62
|
def run(self):
|
|
62
|
def run(self):
|
|
63
|
|
|
63
|
|
|
64
|
#---------------------- Voltage Data ---------------------------
|
|
64
|
#---------------------- Voltage Data ---------------------------
|
|
65
|
|
|
65
|
|
|
66
|
if self.dataIn.type == "Voltage":
|
|
66
|
if self.dataIn.type == "Voltage":
|
|
67
|
|
|
67
|
|
|
68
|
self.__updateObjFromInput()
|
|
68
|
self.__updateObjFromInput()
|
|
69
|
self.dataOut.data_pre = self.dataIn.data.copy()
|
|
69
|
self.dataOut.data_pre = self.dataIn.data.copy()
|
|
70
|
self.dataOut.flagNoData = False
|
|
70
|
self.dataOut.flagNoData = False
|
|
71
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
71
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
72
|
self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
|
|
72
|
self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
|
|
73
|
return
|
|
73
|
return
|
|
74
|
|
|
74
|
|
|
75
|
#---------------------- Spectra Data ---------------------------
|
|
75
|
#---------------------- Spectra Data ---------------------------
|
|
76
|
|
|
76
|
|
|
77
|
if self.dataIn.type == "Spectra":
|
|
77
|
if self.dataIn.type == "Spectra":
|
|
78
|
|
|
78
|
|
|
79
|
self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc)
|
|
79
|
self.dataOut.data_pre = (self.dataIn.data_spc,self.dataIn.data_cspc)
|
|
@@
-82,86
+82,87
class ParametersProc(ProcessingUnit):
|
|
82
|
self.dataOut.normFactor = self.dataIn.normFactor
|
|
82
|
self.dataOut.normFactor = self.dataIn.normFactor
|
|
83
|
self.dataOut.groupList = self.dataIn.pairsList
|
|
83
|
self.dataOut.groupList = self.dataIn.pairsList
|
|
84
|
self.dataOut.flagNoData = False
|
|
84
|
self.dataOut.flagNoData = False
|
|
85
|
|
|
85
|
|
|
86
|
#---------------------- Correlation Data ---------------------------
|
|
86
|
#---------------------- Correlation Data ---------------------------
|
|
87
|
|
|
87
|
|
|
88
|
if self.dataIn.type == "Correlation":
|
|
88
|
if self.dataIn.type == "Correlation":
|
|
89
|
acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
|
|
89
|
acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
|
|
90
|
|
|
90
|
|
|
91
|
self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
|
|
91
|
self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
|
|
92
|
self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
|
|
92
|
self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
|
|
93
|
self.dataOut.groupList = (acf_pairs, ccf_pairs)
|
|
93
|
self.dataOut.groupList = (acf_pairs, ccf_pairs)
|
|
94
|
|
|
94
|
|
|
95
|
self.dataOut.abscissaList = self.dataIn.lagRange
|
|
95
|
self.dataOut.abscissaList = self.dataIn.lagRange
|
|
96
|
self.dataOut.noise = self.dataIn.noise
|
|
96
|
self.dataOut.noise = self.dataIn.noise
|
|
97
|
self.dataOut.data_SNR = self.dataIn.SNR
|
|
97
|
self.dataOut.data_SNR = self.dataIn.SNR
|
|
98
|
self.dataOut.flagNoData = False
|
|
98
|
self.dataOut.flagNoData = False
|
|
99
|
self.dataOut.nAvg = self.dataIn.nAvg
|
|
99
|
self.dataOut.nAvg = self.dataIn.nAvg
|
|
100
|
|
|
100
|
|
|
101
|
#---------------------- Parameters Data ---------------------------
|
|
101
|
#---------------------- Parameters Data ---------------------------
|
|
102
|
|
|
102
|
|
|
103
|
if self.dataIn.type == "Parameters":
|
|
103
|
if self.dataIn.type == "Parameters":
|
|
104
|
self.dataOut.copy(self.dataIn)
|
|
104
|
self.dataOut.copy(self.dataIn)
|
|
105
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
105
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
106
|
self.dataOut.flagNoData = False
|
|
106
|
self.dataOut.flagNoData = False
|
|
107
|
|
|
107
|
|
|
108
|
return True
|
|
108
|
return True
|
|
109
|
|
|
109
|
|
|
110
|
self.__updateObjFromInput()
|
|
110
|
self.__updateObjFromInput()
|
|
111
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
111
|
self.dataOut.utctimeInit = self.dataIn.utctime
|
|
112
|
self.dataOut.paramInterval = self.dataIn.timeInterval
|
|
112
|
self.dataOut.paramInterval = self.dataIn.timeInterval
|
|
113
|
|
|
113
|
|
|
114
|
return
|
|
114
|
return
|
|
115
|
|
|
115
|
|
|
116
|
class SpectralMoments(Operation):
|
|
116
|
class SpectralMoments(Operation):
|
|
117
|
|
|
117
|
|
|
118
|
'''
|
|
118
|
'''
|
|
119
|
Function SpectralMoments()
|
|
119
|
Function SpectralMoments()
|
|
120
|
|
|
120
|
|
|
121
|
Calculates moments (power, mean, standard deviation) and SNR of the signal
|
|
121
|
Calculates moments (power, mean, standard deviation) and SNR of the signal
|
|
122
|
|
|
122
|
|
|
123
|
Type of dataIn: Spectra
|
|
123
|
Type of dataIn: Spectra
|
|
124
|
|
|
124
|
|
|
125
|
Configuration Parameters:
|
|
125
|
Configuration Parameters:
|
|
126
|
|
|
126
|
|
|
127
|
dirCosx : Cosine director in X axis
|
|
127
|
dirCosx : Cosine director in X axis
|
|
128
|
dirCosy : Cosine director in Y axis
|
|
128
|
dirCosy : Cosine director in Y axis
|
|
129
|
|
|
129
|
|
|
130
|
elevation :
|
|
130
|
elevation :
|
|
131
|
azimuth :
|
|
131
|
azimuth :
|
|
132
|
|
|
132
|
|
|
133
|
Input:
|
|
133
|
Input:
|
|
134
|
channelList : simple channel list to select e.g. [2,3,7]
|
|
134
|
channelList : simple channel list to select e.g. [2,3,7]
|
|
135
|
self.dataOut.data_pre : Spectral data
|
|
135
|
self.dataOut.data_pre : Spectral data
|
|
136
|
self.dataOut.abscissaList : List of frequencies
|
|
136
|
self.dataOut.abscissaList : List of frequencies
|
|
137
|
self.dataOut.noise : Noise level per channel
|
|
137
|
self.dataOut.noise : Noise level per channel
|
|
138
|
|
|
138
|
|
|
139
|
Affected:
|
|
139
|
Affected:
|
|
140
|
self.dataOut.data_param : Parameters per channel
|
|
140
|
self.dataOut.data_param : Parameters per channel
|
|
141
|
self.dataOut.data_SNR : SNR per channel
|
|
141
|
self.dataOut.data_SNR : SNR per channel
|
|
142
|
|
|
142
|
|
|
143
|
'''
|
|
143
|
'''
|
|
144
|
|
|
144
|
|
|
145
|
def run(self, dataOut):
|
|
145
|
def run(self, dataOut):
|
|
146
|
|
|
146
|
|
|
147
|
dataOut.data_pre = dataOut.data_pre[0]
|
|
147
|
dataOut.data_pre = dataOut.data_pre[0]
|
|
148
|
data = dataOut.data_pre
|
|
148
|
data = dataOut.data_pre
|
|
149
|
absc = dataOut.abscissaList[:-1]
|
|
149
|
absc = dataOut.abscissaList[:-1]
|
|
150
|
noise = dataOut.noise
|
|
150
|
noise = dataOut.noise
|
|
151
|
nChannel = data.shape[0]
|
|
151
|
nChannel = data.shape[0]
|
|
152
|
data_param = numpy.zeros((nChannel, 4, data.shape[2]))
|
|
152
|
data_param = numpy.zeros((nChannel, 4, data.shape[2]))
|
|
153
|
|
|
153
|
|
|
154
|
for ind in range(nChannel):
|
|
154
|
for ind in range(nChannel):
|
|
155
|
data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind])
|
|
155
|
data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind])
|
|
156
|
|
|
156
|
|
|
157
|
dataOut.data_param = data_param[:,1:,:]
|
|
157
|
dataOut.data_param = data_param[:,1:,:]
|
|
158
|
dataOut.data_SNR = data_param[:,0]
|
|
158
|
dataOut.data_SNR = data_param[:,0]
|
|
|
|
|
159
|
dataOut.data_DOP = data_param[:,1]
|
|
159
|
return
|
|
160
|
return
|
|
160
|
|
|
161
|
|
|
161
|
def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
|
|
162
|
def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
|
|
162
|
|
|
163
|
|
|
163
|
if (nicoh is None): nicoh = 1
|
|
164
|
if (nicoh is None): nicoh = 1
|
|
164
|
if (graph is None): graph = 0
|
|
165
|
if (graph is None): graph = 0
|
|
165
|
if (smooth is None): smooth = 0
|
|
166
|
if (smooth is None): smooth = 0
|
|
166
|
elif (self.smooth < 3): smooth = 0
|
|
167
|
elif (self.smooth < 3): smooth = 0
|
|
167
|
|
|
168
|
|
|
@@
-172,9
+173,9
class SpectralMoments(Operation):
|
|
172
|
if (aliasing is None): aliasing = 0
|
|
173
|
if (aliasing is None): aliasing = 0
|
|
173
|
if (oldfd is None): oldfd = 0
|
|
174
|
if (oldfd is None): oldfd = 0
|
|
174
|
if (wwauto is None): wwauto = 0
|
|
175
|
if (wwauto is None): wwauto = 0
|
|
175
|
|
|
176
|
|
|
176
|
if (n0 < 1.e-20): n0 = 1.e-20
|
|
177
|
if (n0 < 1.e-20): n0 = 1.e-20
|
|
177
|
|
|
178
|
|
|
178
|
freq = oldfreq
|
|
179
|
freq = oldfreq
|
|
179
|
vec_power = numpy.zeros(oldspec.shape[1])
|
|
180
|
vec_power = numpy.zeros(oldspec.shape[1])
|
|
180
|
vec_fd = numpy.zeros(oldspec.shape[1])
|
|
181
|
vec_fd = numpy.zeros(oldspec.shape[1])
|
|
@@
-182,86
+183,86
class SpectralMoments(Operation):
|
|
182
|
vec_snr = numpy.zeros(oldspec.shape[1])
|
|
183
|
vec_snr = numpy.zeros(oldspec.shape[1])
|
|
183
|
|
|
184
|
|
|
184
|
for ind in range(oldspec.shape[1]):
|
|
185
|
for ind in range(oldspec.shape[1]):
|
|
185
|
|
|
186
|
|
|
186
|
spec = oldspec[:,ind]
|
|
187
|
spec = oldspec[:,ind]
|
|
187
|
aux = spec*fwindow
|
|
188
|
aux = spec*fwindow
|
|
188
|
max_spec = aux.max()
|
|
189
|
max_spec = aux.max()
|
|
189
|
m = list(aux).index(max_spec)
|
|
190
|
m = list(aux).index(max_spec)
|
|
190
|
|
|
191
|
|
|
191
|
#Smooth
|
|
192
|
#Smooth
|
|
192
|
if (smooth == 0): spec2 = spec
|
|
193
|
if (smooth == 0): spec2 = spec
|
|
193
|
else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
|
|
194
|
else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
|
|
194
|
|
|
195
|
|
|
195
|
# Calculo de Momentos
|
|
196
|
# Calculo de Momentos
|
|
196
|
bb = spec2[range(m,spec2.size)]
|
|
197
|
bb = spec2[range(m,spec2.size)]
|
|
197
|
bb = (bb<n0).nonzero()
|
|
198
|
bb = (bb<n0).nonzero()
|
|
198
|
bb = bb[0]
|
|
199
|
bb = bb[0]
|
|
199
|
|
|
200
|
|
|
200
|
ss = spec2[range(0,m + 1)]
|
|
201
|
ss = spec2[range(0,m + 1)]
|
|
201
|
ss = (ss<n0).nonzero()
|
|
202
|
ss = (ss<n0).nonzero()
|
|
202
|
ss = ss[0]
|
|
203
|
ss = ss[0]
|
|
203
|
|
|
204
|
|
|
204
|
if (bb.size == 0):
|
|
205
|
if (bb.size == 0):
|
|
205
|
bb0 = spec.size - 1 - m
|
|
206
|
bb0 = spec.size - 1 - m
|
|
206
|
else:
|
|
207
|
else:
|
|
207
|
bb0 = bb[0] - 1
|
|
208
|
bb0 = bb[0] - 1
|
|
208
|
if (bb0 < 0):
|
|
209
|
if (bb0 < 0):
|
|
209
|
bb0 = 0
|
|
210
|
bb0 = 0
|
|
210
|
|
|
211
|
|
|
211
|
if (ss.size == 0): ss1 = 1
|
|
212
|
if (ss.size == 0): ss1 = 1
|
|
212
|
else: ss1 = max(ss) + 1
|
|
213
|
else: ss1 = max(ss) + 1
|
|
213
|
|
|
214
|
|
|
214
|
if (ss1 > m): ss1 = m
|
|
215
|
if (ss1 > m): ss1 = m
|
|
215
|
|
|
216
|
|
|
216
|
valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
|
|
217
|
valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1
|
|
217
|
power = ((spec2[valid] - n0)*fwindow[valid]).sum()
|
|
218
|
power = ((spec2[valid] - n0)*fwindow[valid]).sum()
|
|
218
|
fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
|
|
219
|
fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
|
|
219
|
w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
|
|
220
|
w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
|
|
220
|
snr = (spec2.mean()-n0)/n0
|
|
221
|
snr = (spec2.mean()-n0)/n0
|
|
221
|
|
|
222
|
|
|
222
|
if (snr < 1.e-20) :
|
|
223
|
if (snr < 1.e-20) :
|
|
223
|
snr = 1.e-20
|
|
224
|
snr = 1.e-20
|
|
224
|
|
|
225
|
|
|
225
|
vec_power[ind] = power
|
|
226
|
vec_power[ind] = power
|
|
226
|
vec_fd[ind] = fd
|
|
227
|
vec_fd[ind] = fd
|
|
227
|
vec_w[ind] = w
|
|
228
|
vec_w[ind] = w
|
|
228
|
vec_snr[ind] = snr
|
|
229
|
vec_snr[ind] = snr
|
|
229
|
|
|
230
|
|
|
230
|
moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
|
|
231
|
moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
|
|
231
|
return moments
|
|
232
|
return moments
|
|
232
|
|
|
233
|
|
|
233
|
#------------------ Get SA Parameters --------------------------
|
|
234
|
#------------------ Get SA Parameters --------------------------
|
|
234
|
|
|
235
|
|
|
235
|
def GetSAParameters(self):
|
|
236
|
def GetSAParameters(self):
|
|
236
|
#SA en frecuencia
|
|
237
|
#SA en frecuencia
|
|
237
|
pairslist = self.dataOut.groupList
|
|
238
|
pairslist = self.dataOut.groupList
|
|
238
|
num_pairs = len(pairslist)
|
|
239
|
num_pairs = len(pairslist)
|
|
239
|
|
|
240
|
|
|
240
|
vel = self.dataOut.abscissaList
|
|
241
|
vel = self.dataOut.abscissaList
|
|
241
|
spectra = self.dataOut.data_pre
|
|
242
|
spectra = self.dataOut.data_pre
|
|
242
|
cspectra = self.dataIn.data_cspc
|
|
243
|
cspectra = self.dataIn.data_cspc
|
|
243
|
delta_v = vel[1] - vel[0]
|
|
244
|
delta_v = vel[1] - vel[0]
|
|
244
|
|
|
245
|
|
|
245
|
#Calculating the power spectrum
|
|
246
|
#Calculating the power spectrum
|
|
246
|
spc_pow = numpy.sum(spectra, 3)*delta_v
|
|
247
|
spc_pow = numpy.sum(spectra, 3)*delta_v
|
|
247
|
#Normalizing Spectra
|
|
248
|
#Normalizing Spectra
|
|
248
|
norm_spectra = spectra/spc_pow
|
|
249
|
norm_spectra = spectra/spc_pow
|
|
249
|
#Calculating the norm_spectra at peak
|
|
250
|
#Calculating the norm_spectra at peak
|
|
250
|
max_spectra = numpy.max(norm_spectra, 3)
|
|
251
|
max_spectra = numpy.max(norm_spectra, 3)
|
|
251
|
|
|
252
|
|
|
252
|
#Normalizing Cross Spectra
|
|
253
|
#Normalizing Cross Spectra
|
|
253
|
norm_cspectra = numpy.zeros(cspectra.shape)
|
|
254
|
norm_cspectra = numpy.zeros(cspectra.shape)
|
|
254
|
|
|
255
|
|
|
255
|
for i in range(num_chan):
|
|
256
|
for i in range(num_chan):
|
|
256
|
norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
|
|
257
|
norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
|
|
257
|
|
|
258
|
|
|
258
|
max_cspectra = numpy.max(norm_cspectra,2)
|
|
259
|
max_cspectra = numpy.max(norm_cspectra,2)
|
|
259
|
max_cspectra_index = numpy.argmax(norm_cspectra, 2)
|
|
260
|
max_cspectra_index = numpy.argmax(norm_cspectra, 2)
|
|
260
|
|
|
261
|
|
|
261
|
for i in range(num_pairs):
|
|
262
|
for i in range(num_pairs):
|
|
262
|
cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
|
|
263
|
cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
|
|
263
|
#------------------- Get Lags ----------------------------------
|
|
264
|
#------------------- Get Lags ----------------------------------
|
|
264
|
|
|
265
|
|
|
265
|
class SALags(Operation):
|
|
266
|
class SALags(Operation):
|
|
266
|
'''
|
|
267
|
'''
|
|
267
|
Function GetMoments()
|
|
268
|
Function GetMoments()
|
|
@@
-274,19
+275,19
class SALags(Operation):
|
|
274
|
self.dataOut.data_SNR
|
|
275
|
self.dataOut.data_SNR
|
|
275
|
self.dataOut.groupList
|
|
276
|
self.dataOut.groupList
|
|
276
|
self.dataOut.nChannels
|
|
277
|
self.dataOut.nChannels
|
|
277
|
|
|
278
|
|
|
278
|
Affected:
|
|
279
|
Affected:
|
|
279
|
self.dataOut.data_param
|
|
280
|
self.dataOut.data_param
|
|
280
|
|
|
281
|
|
|
281
|
'''
|
|
282
|
'''
|
|
282
|
def run(self, dataOut):
|
|
283
|
def run(self, dataOut):
|
|
283
|
data_acf = dataOut.data_pre[0]
|
|
284
|
data_acf = dataOut.data_pre[0]
|
|
284
|
data_ccf = dataOut.data_pre[1]
|
|
285
|
data_ccf = dataOut.data_pre[1]
|
|
285
|
normFactor_acf = dataOut.normFactor[0]
|
|
286
|
normFactor_acf = dataOut.normFactor[0]
|
|
286
|
normFactor_ccf = dataOut.normFactor[1]
|
|
287
|
normFactor_ccf = dataOut.normFactor[1]
|
|
287
|
pairs_acf = dataOut.groupList[0]
|
|
288
|
pairs_acf = dataOut.groupList[0]
|
|
288
|
pairs_ccf = dataOut.groupList[1]
|
|
289
|
pairs_ccf = dataOut.groupList[1]
|
|
289
|
|
|
290
|
|
|
290
|
nHeights = dataOut.nHeights
|
|
291
|
nHeights = dataOut.nHeights
|
|
291
|
absc = dataOut.abscissaList
|
|
292
|
absc = dataOut.abscissaList
|
|
292
|
noise = dataOut.noise
|
|
293
|
noise = dataOut.noise
|
|
@@
-297,97
+298,97
class SALags(Operation):
|
|
297
|
|
|
298
|
|
|
298
|
for l in range(len(pairs_acf)):
|
|
299
|
for l in range(len(pairs_acf)):
|
|
299
|
data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
|
|
300
|
data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
|
|
300
|
|
|
301
|
|
|
301
|
for l in range(len(pairs_ccf)):
|
|
302
|
for l in range(len(pairs_ccf)):
|
|
302
|
data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
|
|
303
|
data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
|
|
303
|
|
|
304
|
|
|
304
|
dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
|
|
305
|
dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
|
|
305
|
dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
|
|
306
|
dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
|
|
306
|
dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
|
|
307
|
dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
|
|
307
|
return
|
|
308
|
return
|
|
308
|
|
|
309
|
|
|
309
|
# def __getPairsAutoCorr(self, pairsList, nChannels):
|
|
310
|
# def __getPairsAutoCorr(self, pairsList, nChannels):
|
|
310
|
#
|
|
311
|
#
|
|
311
|
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
|
|
312
|
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
|
|
312
|
#
|
|
313
|
#
|
|
313
|
# for l in range(len(pairsList)):
|
|
314
|
# for l in range(len(pairsList)):
|
|
314
|
# firstChannel = pairsList[l][0]
|
|
315
|
# firstChannel = pairsList[l][0]
|
|
315
|
# secondChannel = pairsList[l][1]
|
|
316
|
# secondChannel = pairsList[l][1]
|
|
316
|
#
|
|
317
|
#
|
|
317
|
# #Obteniendo pares de Autocorrelacion
|
|
318
|
# #Obteniendo pares de Autocorrelacion
|
|
318
|
# if firstChannel == secondChannel:
|
|
319
|
# if firstChannel == secondChannel:
|
|
319
|
# pairsAutoCorr[firstChannel] = int(l)
|
|
320
|
# pairsAutoCorr[firstChannel] = int(l)
|
|
320
|
#
|
|
321
|
#
|
|
321
|
# pairsAutoCorr = pairsAutoCorr.astype(int)
|
|
322
|
# pairsAutoCorr = pairsAutoCorr.astype(int)
|
|
322
|
#
|
|
323
|
#
|
|
323
|
# pairsCrossCorr = range(len(pairsList))
|
|
324
|
# pairsCrossCorr = range(len(pairsList))
|
|
324
|
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
|
|
325
|
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
|
|
325
|
#
|
|
326
|
#
|
|
326
|
# return pairsAutoCorr, pairsCrossCorr
|
|
327
|
# return pairsAutoCorr, pairsCrossCorr
|
|
327
|
|
|
328
|
|
|
328
|
def __calculateTaus(self, data_acf, data_ccf, lagRange):
|
|
329
|
def __calculateTaus(self, data_acf, data_ccf, lagRange):
|
|
329
|
|
|
330
|
|
|
330
|
lag0 = data_acf.shape[1]/2
|
|
331
|
lag0 = data_acf.shape[1]/2
|
|
331
|
#Funcion de Autocorrelacion
|
|
332
|
#Funcion de Autocorrelacion
|
|
332
|
mean_acf = stats.nanmean(data_acf, axis = 0)
|
|
333
|
mean_acf = stats.nanmean(data_acf, axis = 0)
|
|
333
|
|
|
334
|
|
|
334
|
#Obtencion Indice de TauCross
|
|
335
|
#Obtencion Indice de TauCross
|
|
335
|
ind_ccf = data_ccf.argmax(axis = 1)
|
|
336
|
ind_ccf = data_ccf.argmax(axis = 1)
|
|
336
|
#Obtencion Indice de TauAuto
|
|
337
|
#Obtencion Indice de TauAuto
|
|
337
|
ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
|
|
338
|
ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
|
|
338
|
ccf_lag0 = data_ccf[:,lag0,:]
|
|
339
|
ccf_lag0 = data_ccf[:,lag0,:]
|
|
339
|
|
|
340
|
|
|
340
|
for i in range(ccf_lag0.shape[0]):
|
|
341
|
for i in range(ccf_lag0.shape[0]):
|
|
341
|
ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
|
|
342
|
ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
|
|
342
|
|
|
343
|
|
|
343
|
#Obtencion de TauCross y TauAuto
|
|
344
|
#Obtencion de TauCross y TauAuto
|
|
344
|
tau_ccf = lagRange[ind_ccf]
|
|
345
|
tau_ccf = lagRange[ind_ccf]
|
|
345
|
tau_acf = lagRange[ind_acf]
|
|
346
|
tau_acf = lagRange[ind_acf]
|
|
346
|
|
|
347
|
|
|
347
|
Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
|
|
348
|
Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
|
|
348
|
|
|
349
|
|
|
349
|
tau_ccf[Nan1,Nan2] = numpy.nan
|
|
350
|
tau_ccf[Nan1,Nan2] = numpy.nan
|
|
350
|
tau_acf[Nan1,Nan2] = numpy.nan
|
|
351
|
tau_acf[Nan1,Nan2] = numpy.nan
|
|
351
|
tau = numpy.vstack((tau_ccf,tau_acf))
|
|
352
|
tau = numpy.vstack((tau_ccf,tau_acf))
|
|
352
|
|
|
353
|
|
|
353
|
return tau
|
|
354
|
return tau
|
|
354
|
|
|
355
|
|
|
355
|
def __calculateLag1Phase(self, data, lagTRange):
|
|
356
|
def __calculateLag1Phase(self, data, lagTRange):
|
|
356
|
data1 = stats.nanmean(data, axis = 0)
|
|
357
|
data1 = stats.nanmean(data, axis = 0)
|
|
357
|
lag1 = numpy.where(lagTRange == 0)[0][0] + 1
|
|
358
|
lag1 = numpy.where(lagTRange == 0)[0][0] + 1
|
|
358
|
|
|
359
|
|
|
359
|
phase = numpy.angle(data1[lag1,:])
|
|
360
|
phase = numpy.angle(data1[lag1,:])
|
|
360
|
|
|
361
|
|
|
361
|
return phase
|
|
362
|
return phase
|
|
362
|
|
|
363
|
|
|
363
|
class SpectralFitting(Operation):
|
|
364
|
class SpectralFitting(Operation):
|
|
364
|
'''
|
|
365
|
'''
|
|
365
|
Function GetMoments()
|
|
366
|
Function GetMoments()
|
|
366
|
|
|
367
|
|
|
367
|
Input:
|
|
368
|
Input:
|
|
368
|
Output:
|
|
369
|
Output:
|
|
369
|
Variables modified:
|
|
370
|
Variables modified:
|
|
370
|
'''
|
|
371
|
'''
|
|
371
|
|
|
372
|
|
|
372
|
def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
|
|
373
|
def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
|
|
373
|
|
|
374
|
|
|
374
|
|
|
375
|
|
|
375
|
if path != None:
|
|
376
|
if path != None:
|
|
376
|
sys.path.append(path)
|
|
377
|
sys.path.append(path)
|
|
377
|
self.dataOut.library = importlib.import_module(file)
|
|
378
|
self.dataOut.library = importlib.import_module(file)
|
|
378
|
|
|
379
|
|
|
379
|
#To be inserted as a parameter
|
|
380
|
#To be inserted as a parameter
|
|
380
|
groupArray = numpy.array(groupList)
|
|
381
|
groupArray = numpy.array(groupList)
|
|
381
|
# groupArray = numpy.array([[0,1],[2,3]])
|
|
382
|
# groupArray = numpy.array([[0,1],[2,3]])
|
|
382
|
self.dataOut.groupList = groupArray
|
|
383
|
self.dataOut.groupList = groupArray
|
|
383
|
|
|
384
|
|
|
384
|
nGroups = groupArray.shape[0]
|
|
385
|
nGroups = groupArray.shape[0]
|
|
385
|
nChannels = self.dataIn.nChannels
|
|
386
|
nChannels = self.dataIn.nChannels
|
|
386
|
nHeights=self.dataIn.heightList.size
|
|
387
|
nHeights=self.dataIn.heightList.size
|
|
387
|
|
|
388
|
|
|
388
|
#Parameters Array
|
|
389
|
#Parameters Array
|
|
389
|
self.dataOut.data_param = None
|
|
390
|
self.dataOut.data_param = None
|
|
390
|
|
|
391
|
|
|
391
|
#Set constants
|
|
392
|
#Set constants
|
|
392
|
constants = self.dataOut.library.setConstants(self.dataIn)
|
|
393
|
constants = self.dataOut.library.setConstants(self.dataIn)
|
|
393
|
self.dataOut.constants = constants
|
|
394
|
self.dataOut.constants = constants
|
|
@@
-396,24
+397,24
class SpectralFitting(Operation):
|
|
396
|
ippSeconds = self.dataIn.ippSeconds
|
|
397
|
ippSeconds = self.dataIn.ippSeconds
|
|
397
|
K = self.dataIn.nIncohInt
|
|
398
|
K = self.dataIn.nIncohInt
|
|
398
|
pairsArray = numpy.array(self.dataIn.pairsList)
|
|
399
|
pairsArray = numpy.array(self.dataIn.pairsList)
|
|
399
|
|
|
400
|
|
|
400
|
#List of possible combinations
|
|
401
|
#List of possible combinations
|
|
401
|
listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
|
|
402
|
listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
|
|
402
|
indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
|
|
403
|
indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
|
|
403
|
|
|
404
|
|
|
404
|
if getSNR:
|
|
405
|
if getSNR:
|
|
405
|
listChannels = groupArray.reshape((groupArray.size))
|
|
406
|
listChannels = groupArray.reshape((groupArray.size))
|
|
406
|
listChannels.sort()
|
|
407
|
listChannels.sort()
|
|
407
|
noise = self.dataIn.getNoise()
|
|
408
|
noise = self.dataIn.getNoise()
|
|
408
|
self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
|
|
409
|
self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
|
|
409
|
|
|
410
|
|
|
410
|
for i in range(nGroups):
|
|
411
|
for i in range(nGroups):
|
|
411
|
coord = groupArray[i,:]
|
|
412
|
coord = groupArray[i,:]
|
|
412
|
|
|
413
|
|
|
413
|
#Input data array
|
|
414
|
#Input data array
|
|
414
|
data = self.dataIn.data_spc[coord,:,:]/(M*N)
|
|
415
|
data = self.dataIn.data_spc[coord,:,:]/(M*N)
|
|
415
|
data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
|
|
416
|
data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
|
|
416
|
|
|
417
|
|
|
417
|
#Cross Spectra data array for Covariance Matrixes
|
|
418
|
#Cross Spectra data array for Covariance Matrixes
|
|
418
|
ind = 0
|
|
419
|
ind = 0
|
|
419
|
for pairs in listComb:
|
|
420
|
for pairs in listComb:
|
|
@@
-422,10
+423,10
class SpectralFitting(Operation):
|
|
422
|
ind += 1
|
|
423
|
ind += 1
|
|
423
|
dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
|
|
424
|
dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
|
|
424
|
dataCross = dataCross**2/K
|
|
425
|
dataCross = dataCross**2/K
|
|
425
|
|
|
426
|
|
|
426
|
for h in range(nHeights):
|
|
427
|
for h in range(nHeights):
|
|
427
|
# print self.dataOut.heightList[h]
|
|
428
|
# print self.dataOut.heightList[h]
|
|
428
|
|
|
429
|
|
|
429
|
#Input
|
|
430
|
#Input
|
|
430
|
d = data[:,h]
|
|
431
|
d = data[:,h]
|
|
431
|
|
|
432
|
|
|
@@
-434,7
+435,7
class SpectralFitting(Operation):
|
|
434
|
ind = 0
|
|
435
|
ind = 0
|
|
435
|
for pairs in listComb:
|
|
436
|
for pairs in listComb:
|
|
436
|
#Coordinates in Covariance Matrix
|
|
437
|
#Coordinates in Covariance Matrix
|
|
437
|
x = pairs[0]
|
|
438
|
x = pairs[0]
|
|
438
|
y = pairs[1]
|
|
439
|
y = pairs[1]
|
|
439
|
#Channel Index
|
|
440
|
#Channel Index
|
|
440
|
S12 = dataCross[ind,:,h]
|
|
441
|
S12 = dataCross[ind,:,h]
|
|
@@
-448,15
+449,15
class SpectralFitting(Operation):
|
|
448
|
LT=L.T
|
|
449
|
LT=L.T
|
|
449
|
|
|
450
|
|
|
450
|
dp = numpy.dot(LT,d)
|
|
451
|
dp = numpy.dot(LT,d)
|
|
451
|
|
|
452
|
|
|
452
|
#Initial values
|
|
453
|
#Initial values
|
|
453
|
data_spc = self.dataIn.data_spc[coord,:,h]
|
|
454
|
data_spc = self.dataIn.data_spc[coord,:,h]
|
|
454
|
|
|
455
|
|
|
455
|
if (h>0)and(error1[3]<5):
|
|
456
|
if (h>0)and(error1[3]<5):
|
|
456
|
p0 = self.dataOut.data_param[i,:,h-1]
|
|
457
|
p0 = self.dataOut.data_param[i,:,h-1]
|
|
457
|
else:
|
|
458
|
else:
|
|
458
|
p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
|
|
459
|
p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
|
|
459
|
|
|
460
|
|
|
460
|
try:
|
|
461
|
try:
|
|
461
|
#Least Squares
|
|
462
|
#Least Squares
|
|
462
|
minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
|
|
463
|
minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
|
|
@@
-469,30
+470,30
class SpectralFitting(Operation):
|
|
469
|
minp = p0*numpy.nan
|
|
470
|
minp = p0*numpy.nan
|
|
470
|
error0 = numpy.nan
|
|
471
|
error0 = numpy.nan
|
|
471
|
error1 = p0*numpy.nan
|
|
472
|
error1 = p0*numpy.nan
|
|
472
|
|
|
473
|
|
|
473
|
#Save
|
|
474
|
#Save
|
|
474
|
if self.dataOut.data_param is None:
|
|
475
|
if self.dataOut.data_param is None:
|
|
475
|
self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
|
|
476
|
self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
|
|
476
|
self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
|
|
477
|
self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
|
|
477
|
|
|
478
|
|
|
478
|
self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
|
|
479
|
self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
|
|
479
|
self.dataOut.data_param[i,:,h] = minp
|
|
480
|
self.dataOut.data_param[i,:,h] = minp
|
|
480
|
return
|
|
481
|
return
|
|
481
|
|
|
482
|
|
|
482
|
def __residFunction(self, p, dp, LT, constants):
|
|
483
|
def __residFunction(self, p, dp, LT, constants):
|
|
483
|
|
|
484
|
|
|
484
|
fm = self.dataOut.library.modelFunction(p, constants)
|
|
485
|
fm = self.dataOut.library.modelFunction(p, constants)
|
|
485
|
fmp=numpy.dot(LT,fm)
|
|
486
|
fmp=numpy.dot(LT,fm)
|
|
486
|
|
|
487
|
|
|
487
|
return dp-fmp
|
|
488
|
return dp-fmp
|
|
488
|
|
|
489
|
|
|
489
|
def __getSNR(self, z, noise):
|
|
490
|
def __getSNR(self, z, noise):
|
|
490
|
|
|
491
|
|
|
491
|
avg = numpy.average(z, axis=1)
|
|
492
|
avg = numpy.average(z, axis=1)
|
|
492
|
SNR = (avg.T-noise)/noise
|
|
493
|
SNR = (avg.T-noise)/noise
|
|
493
|
SNR = SNR.T
|
|
494
|
SNR = SNR.T
|
|
494
|
return SNR
|
|
495
|
return SNR
|
|
495
|
|
|
496
|
|
|
496
|
def __chisq(p,chindex,hindex):
|
|
497
|
def __chisq(p,chindex,hindex):
|
|
497
|
#similar to Resid but calculates CHI**2
|
|
498
|
#similar to Resid but calculates CHI**2
|
|
498
|
[LT,d,fm]=setupLTdfm(p,chindex,hindex)
|
|
499
|
[LT,d,fm]=setupLTdfm(p,chindex,hindex)
|
|
@@
-500,53
+501,53
class SpectralFitting(Operation):
|
|
500
|
fmp=numpy.dot(LT,fm)
|
|
501
|
fmp=numpy.dot(LT,fm)
|
|
501
|
chisq=numpy.dot((dp-fmp).T,(dp-fmp))
|
|
502
|
chisq=numpy.dot((dp-fmp).T,(dp-fmp))
|
|
502
|
return chisq
|
|
503
|
return chisq
|
|
503
|
|
|
504
|
|
|
504
|
class WindProfiler(Operation):
|
|
505
|
class WindProfiler(Operation):
|
|
505
|
|
|
506
|
|
|
506
|
__isConfig = False
|
|
507
|
__isConfig = False
|
|
507
|
|
|
508
|
|
|
508
|
__initime = None
|
|
509
|
__initime = None
|
|
509
|
__lastdatatime = None
|
|
510
|
__lastdatatime = None
|
|
510
|
__integrationtime = None
|
|
511
|
__integrationtime = None
|
|
511
|
|
|
512
|
|
|
512
|
__buffer = None
|
|
513
|
__buffer = None
|
|
513
|
|
|
514
|
|
|
514
|
__dataReady = False
|
|
515
|
__dataReady = False
|
|
515
|
|
|
516
|
|
|
516
|
__firstdata = None
|
|
517
|
__firstdata = None
|
|
517
|
|
|
518
|
|
|
518
|
n = None
|
|
519
|
n = None
|
|
519
|
|
|
520
|
|
|
520
|
def __init__(self):
|
|
521
|
def __init__(self):
|
|
521
|
Operation.__init__(self)
|
|
522
|
Operation.__init__(self)
|
|
522
|
|
|
523
|
|
|
523
|
def __calculateCosDir(self, elev, azim):
|
|
524
|
def __calculateCosDir(self, elev, azim):
|
|
524
|
zen = (90 - elev)*numpy.pi/180
|
|
525
|
zen = (90 - elev)*numpy.pi/180
|
|
525
|
azim = azim*numpy.pi/180
|
|
526
|
azim = azim*numpy.pi/180
|
|
526
|
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
|
|
527
|
cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
|
|
527
|
cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
|
|
528
|
cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
|
|
528
|
|
|
529
|
|
|
529
|
signX = numpy.sign(numpy.cos(azim))
|
|
530
|
signX = numpy.sign(numpy.cos(azim))
|
|
530
|
signY = numpy.sign(numpy.sin(azim))
|
|
531
|
signY = numpy.sign(numpy.sin(azim))
|
|
531
|
|
|
532
|
|
|
532
|
cosDirX = numpy.copysign(cosDirX, signX)
|
|
533
|
cosDirX = numpy.copysign(cosDirX, signX)
|
|
533
|
cosDirY = numpy.copysign(cosDirY, signY)
|
|
534
|
cosDirY = numpy.copysign(cosDirY, signY)
|
|
534
|
return cosDirX, cosDirY
|
|
535
|
return cosDirX, cosDirY
|
|
535
|
|
|
536
|
|
|
536
|
def __calculateAngles(self, theta_x, theta_y, azimuth):
|
|
537
|
def __calculateAngles(self, theta_x, theta_y, azimuth):
|
|
537
|
|
|
538
|
|
|
538
|
dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
|
|
539
|
dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
|
|
539
|
zenith_arr = numpy.arccos(dir_cosw)
|
|
540
|
zenith_arr = numpy.arccos(dir_cosw)
|
|
540
|
azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
|
|
541
|
azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
|
|
541
|
|
|
542
|
|
|
542
|
dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
|
|
543
|
dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
|
|
543
|
dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
|
|
544
|
dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
|
|
544
|
|
|
545
|
|
|
545
|
return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
|
|
546
|
return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
|
|
546
|
|
|
547
|
|
|
547
|
def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
|
|
548
|
def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
|
|
548
|
|
|
549
|
|
|
549
|
#
|
|
550
|
#
|
|
550
|
if horOnly:
|
|
551
|
if horOnly:
|
|
551
|
A = numpy.c_[dir_cosu,dir_cosv]
|
|
552
|
A = numpy.c_[dir_cosu,dir_cosv]
|
|
552
|
else:
|
|
553
|
else:
|
|
@@
-560,37
+561,37
class WindProfiler(Operation):
|
|
560
|
listPhi = phi.tolist()
|
|
561
|
listPhi = phi.tolist()
|
|
561
|
maxid = listPhi.index(max(listPhi))
|
|
562
|
maxid = listPhi.index(max(listPhi))
|
|
562
|
minid = listPhi.index(min(listPhi))
|
|
563
|
minid = listPhi.index(min(listPhi))
|
|
563
|
|
|
564
|
|
|
564
|
rango = range(len(phi))
|
|
565
|
rango = range(len(phi))
|
|
565
|
# rango = numpy.delete(rango,maxid)
|
|
566
|
# rango = numpy.delete(rango,maxid)
|
|
566
|
|
|
567
|
|
|
567
|
heiRang1 = heiRang*math.cos(phi[maxid])
|
|
568
|
heiRang1 = heiRang*math.cos(phi[maxid])
|
|
568
|
heiRangAux = heiRang*math.cos(phi[minid])
|
|
569
|
heiRangAux = heiRang*math.cos(phi[minid])
|
|
569
|
indOut = (heiRang1 < heiRangAux[0]).nonzero()
|
|
570
|
indOut = (heiRang1 < heiRangAux[0]).nonzero()
|
|
570
|
heiRang1 = numpy.delete(heiRang1,indOut)
|
|
571
|
heiRang1 = numpy.delete(heiRang1,indOut)
|
|
571
|
|
|
572
|
|
|
572
|
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
573
|
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
573
|
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
574
|
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
574
|
|
|
575
|
|
|
575
|
for i in rango:
|
|
576
|
for i in rango:
|
|
576
|
x = heiRang*math.cos(phi[i])
|
|
577
|
x = heiRang*math.cos(phi[i])
|
|
577
|
y1 = velRadial[i,:]
|
|
578
|
y1 = velRadial[i,:]
|
|
578
|
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
|
|
579
|
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
|
|
579
|
|
|
580
|
|
|
580
|
x1 = heiRang1
|
|
581
|
x1 = heiRang1
|
|
581
|
y11 = f1(x1)
|
|
582
|
y11 = f1(x1)
|
|
582
|
|
|
583
|
|
|
583
|
y2 = SNR[i,:]
|
|
584
|
y2 = SNR[i,:]
|
|
584
|
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
|
|
585
|
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
|
|
585
|
y21 = f2(x1)
|
|
586
|
y21 = f2(x1)
|
|
586
|
|
|
587
|
|
|
587
|
velRadial1[i,:] = y11
|
|
588
|
velRadial1[i,:] = y11
|
|
588
|
SNR1[i,:] = y21
|
|
589
|
SNR1[i,:] = y21
|
|
589
|
|
|
590
|
|
|
590
|
return heiRang1, velRadial1, SNR1
|
|
591
|
return heiRang1, velRadial1, SNR1
|
|
591
|
|
|
592
|
|
|
592
|
def __calculateVelUVW(self, A, velRadial):
|
|
593
|
def __calculateVelUVW(self, A, velRadial):
|
|
593
|
|
|
594
|
|
|
594
|
#Operacion Matricial
|
|
595
|
#Operacion Matricial
|
|
595
|
# velUVW = numpy.zeros((velRadial.shape[1],3))
|
|
596
|
# velUVW = numpy.zeros((velRadial.shape[1],3))
|
|
596
|
# for ind in range(velRadial.shape[1]):
|
|
597
|
# for ind in range(velRadial.shape[1]):
|
|
@@
-598,27
+599,27
class WindProfiler(Operation):
|
|
598
|
# velUVW = velUVW.transpose()
|
|
599
|
# velUVW = velUVW.transpose()
|
|
599
|
velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
|
|
600
|
velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
|
|
600
|
velUVW[:,:] = numpy.dot(A,velRadial)
|
|
601
|
velUVW[:,:] = numpy.dot(A,velRadial)
|
|
601
|
|
|
602
|
|
|
602
|
|
|
603
|
|
|
603
|
return velUVW
|
|
604
|
return velUVW
|
|
604
|
|
|
605
|
|
|
605
|
# def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
|
|
606
|
# def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
|
|
606
|
|
|
607
|
|
|
607
|
def techniqueDBS(self, kwargs):
|
|
608
|
def techniqueDBS(self, kwargs):
|
|
608
|
"""
|
|
609
|
"""
|
|
609
|
Function that implements Doppler Beam Swinging (DBS) technique.
|
|
610
|
Function that implements Doppler Beam Swinging (DBS) technique.
|
|
610
|
|
|
611
|
|
|
611
|
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
|
|
612
|
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
|
|
612
|
Direction correction (if necessary), Ranges and SNR
|
|
613
|
Direction correction (if necessary), Ranges and SNR
|
|
613
|
|
|
614
|
|
|
614
|
Output: Winds estimation (Zonal, Meridional and Vertical)
|
|
615
|
Output: Winds estimation (Zonal, Meridional and Vertical)
|
|
615
|
|
|
616
|
|
|
616
|
Parameters affected: Winds, height range, SNR
|
|
617
|
Parameters affected: Winds, height range, SNR
|
|
617
|
"""
|
|
618
|
"""
|
|
618
|
velRadial0 = kwargs['velRadial']
|
|
619
|
velRadial0 = kwargs['velRadial']
|
|
619
|
heiRang = kwargs['heightList']
|
|
620
|
heiRang = kwargs['heightList']
|
|
620
|
SNR0 = kwargs['SNR']
|
|
621
|
SNR0 = kwargs['SNR']
|
|
621
|
|
|
622
|
|
|
622
|
if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
|
|
623
|
if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'):
|
|
623
|
theta_x = numpy.array(kwargs['dirCosx'])
|
|
624
|
theta_x = numpy.array(kwargs['dirCosx'])
|
|
624
|
theta_y = numpy.array(kwargs['dirCosy'])
|
|
625
|
theta_y = numpy.array(kwargs['dirCosy'])
|
|
@@
-626,7
+627,7
class WindProfiler(Operation):
|
|
626
|
elev = numpy.array(kwargs['elevation'])
|
|
627
|
elev = numpy.array(kwargs['elevation'])
|
|
627
|
azim = numpy.array(kwargs['azimuth'])
|
|
628
|
azim = numpy.array(kwargs['azimuth'])
|
|
628
|
theta_x, theta_y = self.__calculateCosDir(elev, azim)
|
|
629
|
theta_x, theta_y = self.__calculateCosDir(elev, azim)
|
|
629
|
azimuth = kwargs['correctAzimuth']
|
|
630
|
azimuth = kwargs['correctAzimuth']
|
|
630
|
if kwargs.has_key('horizontalOnly'):
|
|
631
|
if kwargs.has_key('horizontalOnly'):
|
|
631
|
horizontalOnly = kwargs['horizontalOnly']
|
|
632
|
horizontalOnly = kwargs['horizontalOnly']
|
|
632
|
else: horizontalOnly = False
|
|
633
|
else: horizontalOnly = False
|
|
@@
-641,22
+642,22
class WindProfiler(Operation):
|
|
641
|
param = param[arrayChannel,:,:]
|
|
642
|
param = param[arrayChannel,:,:]
|
|
642
|
theta_x = theta_x[arrayChannel]
|
|
643
|
theta_x = theta_x[arrayChannel]
|
|
643
|
theta_y = theta_y[arrayChannel]
|
|
644
|
theta_y = theta_y[arrayChannel]
|
|
644
|
|
|
645
|
|
|
645
|
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
|
|
646
|
azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
|
|
646
|
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
|
|
647
|
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
|
|
647
|
A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
|
|
648
|
A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
|
|
648
|
|
|
649
|
|
|
649
|
#Calculo de Componentes de la velocidad con DBS
|
|
650
|
#Calculo de Componentes de la velocidad con DBS
|
|
650
|
winds = self.__calculateVelUVW(A,velRadial1)
|
|
651
|
winds = self.__calculateVelUVW(A,velRadial1)
|
|
651
|
|
|
652
|
|
|
652
|
return winds, heiRang1, SNR1
|
|
653
|
return winds, heiRang1, SNR1
|
|
653
|
|
|
654
|
|
|
654
|
def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
|
|
655
|
def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
|
|
655
|
|
|
656
|
|
|
656
|
nPairs = len(pairs_ccf)
|
|
657
|
nPairs = len(pairs_ccf)
|
|
657
|
posx = numpy.asarray(posx)
|
|
658
|
posx = numpy.asarray(posx)
|
|
658
|
posy = numpy.asarray(posy)
|
|
659
|
posy = numpy.asarray(posy)
|
|
659
|
|
|
660
|
|
|
660
|
#Rotacion Inversa para alinear con el azimuth
|
|
661
|
#Rotacion Inversa para alinear con el azimuth
|
|
661
|
if azimuth!= None:
|
|
662
|
if azimuth!= None:
|
|
662
|
azimuth = azimuth*math.pi/180
|
|
663
|
azimuth = azimuth*math.pi/180
|
|
@@
-665,126
+666,126
class WindProfiler(Operation):
|
|
665
|
else:
|
|
666
|
else:
|
|
666
|
posx1 = posx
|
|
667
|
posx1 = posx
|
|
667
|
posy1 = posy
|
|
668
|
posy1 = posy
|
|
668
|
|
|
669
|
|
|
669
|
#Calculo de Distancias
|
|
670
|
#Calculo de Distancias
|
|
670
|
distx = numpy.zeros(nPairs)
|
|
671
|
distx = numpy.zeros(nPairs)
|
|
671
|
disty = numpy.zeros(nPairs)
|
|
672
|
disty = numpy.zeros(nPairs)
|
|
672
|
dist = numpy.zeros(nPairs)
|
|
673
|
dist = numpy.zeros(nPairs)
|
|
673
|
ang = numpy.zeros(nPairs)
|
|
674
|
ang = numpy.zeros(nPairs)
|
|
674
|
|
|
675
|
|
|
675
|
for i in range(nPairs):
|
|
676
|
for i in range(nPairs):
|
|
676
|
distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
|
|
677
|
distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
|
|
677
|
disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
|
|
678
|
disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
|
|
678
|
dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
|
|
679
|
dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
|
|
679
|
ang[i] = numpy.arctan2(disty[i],distx[i])
|
|
680
|
ang[i] = numpy.arctan2(disty[i],distx[i])
|
|
680
|
|
|
681
|
|
|
681
|
return distx, disty, dist, ang
|
|
682
|
return distx, disty, dist, ang
|
|
682
|
#Calculo de Matrices
|
|
683
|
#Calculo de Matrices
|
|
683
|
# nPairs = len(pairs)
|
|
684
|
# nPairs = len(pairs)
|
|
684
|
# ang1 = numpy.zeros((nPairs, 2, 1))
|
|
685
|
# ang1 = numpy.zeros((nPairs, 2, 1))
|
|
685
|
# dist1 = numpy.zeros((nPairs, 2, 1))
|
|
686
|
# dist1 = numpy.zeros((nPairs, 2, 1))
|
|
686
|
#
|
|
687
|
#
|
|
687
|
# for j in range(nPairs):
|
|
688
|
# for j in range(nPairs):
|
|
688
|
# dist1[j,0,0] = dist[pairs[j][0]]
|
|
689
|
# dist1[j,0,0] = dist[pairs[j][0]]
|
|
689
|
# dist1[j,1,0] = dist[pairs[j][1]]
|
|
690
|
# dist1[j,1,0] = dist[pairs[j][1]]
|
|
690
|
# ang1[j,0,0] = ang[pairs[j][0]]
|
|
691
|
# ang1[j,0,0] = ang[pairs[j][0]]
|
|
691
|
# ang1[j,1,0] = ang[pairs[j][1]]
|
|
692
|
# ang1[j,1,0] = ang[pairs[j][1]]
|
|
692
|
#
|
|
693
|
#
|
|
693
|
# return distx,disty, dist1,ang1
|
|
694
|
# return distx,disty, dist1,ang1
|
|
694
|
|
|
695
|
|
|
695
|
|
|
696
|
|
|
696
|
def __calculateVelVer(self, phase, lagTRange, _lambda):
|
|
697
|
def __calculateVelVer(self, phase, lagTRange, _lambda):
|
|
697
|
|
|
698
|
|
|
698
|
Ts = lagTRange[1] - lagTRange[0]
|
|
699
|
Ts = lagTRange[1] - lagTRange[0]
|
|
699
|
velW = -_lambda*phase/(4*math.pi*Ts)
|
|
700
|
velW = -_lambda*phase/(4*math.pi*Ts)
|
|
700
|
|
|
701
|
|
|
701
|
return velW
|
|
702
|
return velW
|
|
702
|
|
|
703
|
|
|
703
|
def __calculateVelHorDir(self, dist, tau1, tau2, ang):
|
|
704
|
def __calculateVelHorDir(self, dist, tau1, tau2, ang):
|
|
704
|
nPairs = tau1.shape[0]
|
|
705
|
nPairs = tau1.shape[0]
|
|
705
|
nHeights = tau1.shape[1]
|
|
706
|
nHeights = tau1.shape[1]
|
|
706
|
vel = numpy.zeros((nPairs,3,nHeights))
|
|
707
|
vel = numpy.zeros((nPairs,3,nHeights))
|
|
707
|
dist1 = numpy.reshape(dist, (dist.size,1))
|
|
708
|
dist1 = numpy.reshape(dist, (dist.size,1))
|
|
708
|
|
|
709
|
|
|
709
|
angCos = numpy.cos(ang)
|
|
710
|
angCos = numpy.cos(ang)
|
|
710
|
angSin = numpy.sin(ang)
|
|
711
|
angSin = numpy.sin(ang)
|
|
711
|
|
|
712
|
|
|
712
|
vel0 = dist1*tau1/(2*tau2**2)
|
|
713
|
vel0 = dist1*tau1/(2*tau2**2)
|
|
713
|
vel[:,0,:] = (vel0*angCos).sum(axis = 1)
|
|
714
|
vel[:,0,:] = (vel0*angCos).sum(axis = 1)
|
|
714
|
vel[:,1,:] = (vel0*angSin).sum(axis = 1)
|
|
715
|
vel[:,1,:] = (vel0*angSin).sum(axis = 1)
|
|
715
|
|
|
716
|
|
|
716
|
ind = numpy.where(numpy.isinf(vel))
|
|
717
|
ind = numpy.where(numpy.isinf(vel))
|
|
717
|
vel[ind] = numpy.nan
|
|
718
|
vel[ind] = numpy.nan
|
|
718
|
|
|
719
|
|
|
719
|
return vel
|
|
720
|
return vel
|
|
720
|
|
|
721
|
|
|
721
|
# def __getPairsAutoCorr(self, pairsList, nChannels):
|
|
722
|
# def __getPairsAutoCorr(self, pairsList, nChannels):
|
|
722
|
#
|
|
723
|
#
|
|
723
|
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
|
|
724
|
# pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
|
|
724
|
#
|
|
725
|
#
|
|
725
|
# for l in range(len(pairsList)):
|
|
726
|
# for l in range(len(pairsList)):
|
|
726
|
# firstChannel = pairsList[l][0]
|
|
727
|
# firstChannel = pairsList[l][0]
|
|
727
|
# secondChannel = pairsList[l][1]
|
|
728
|
# secondChannel = pairsList[l][1]
|
|
728
|
#
|
|
729
|
#
|
|
729
|
# #Obteniendo pares de Autocorrelacion
|
|
730
|
# #Obteniendo pares de Autocorrelacion
|
|
730
|
# if firstChannel == secondChannel:
|
|
731
|
# if firstChannel == secondChannel:
|
|
731
|
# pairsAutoCorr[firstChannel] = int(l)
|
|
732
|
# pairsAutoCorr[firstChannel] = int(l)
|
|
732
|
#
|
|
733
|
#
|
|
733
|
# pairsAutoCorr = pairsAutoCorr.astype(int)
|
|
734
|
# pairsAutoCorr = pairsAutoCorr.astype(int)
|
|
734
|
#
|
|
735
|
#
|
|
735
|
# pairsCrossCorr = range(len(pairsList))
|
|
736
|
# pairsCrossCorr = range(len(pairsList))
|
|
736
|
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
|
|
737
|
# pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
|
|
737
|
#
|
|
738
|
#
|
|
738
|
# return pairsAutoCorr, pairsCrossCorr
|
|
739
|
# return pairsAutoCorr, pairsCrossCorr
|
|
739
|
|
|
740
|
|
|
740
|
# def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
|
|
741
|
# def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
|
|
741
|
def techniqueSA(self, kwargs):
|
|
742
|
def techniqueSA(self, kwargs):
|
|
742
|
|
|
743
|
|
|
743
|
"""
|
|
744
|
"""
|
|
744
|
Function that implements Spaced Antenna (SA) technique.
|
|
745
|
Function that implements Spaced Antenna (SA) technique.
|
|
745
|
|
|
746
|
|
|
746
|
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
|
|
747
|
Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
|
|
747
|
Direction correction (if necessary), Ranges and SNR
|
|
748
|
Direction correction (if necessary), Ranges and SNR
|
|
748
|
|
|
749
|
|
|
749
|
Output: Winds estimation (Zonal, Meridional and Vertical)
|
|
750
|
Output: Winds estimation (Zonal, Meridional and Vertical)
|
|
750
|
|
|
751
|
|
|
751
|
Parameters affected: Winds
|
|
752
|
Parameters affected: Winds
|
|
752
|
"""
|
|
753
|
"""
|
|
753
|
position_x = kwargs['positionX']
|
|
754
|
position_x = kwargs['positionX']
|
|
754
|
position_y = kwargs['positionY']
|
|
755
|
position_y = kwargs['positionY']
|
|
755
|
azimuth = kwargs['azimuth']
|
|
756
|
azimuth = kwargs['azimuth']
|
|
756
|
|
|
757
|
|
|
757
|
if kwargs.has_key('correctFactor'):
|
|
758
|
if kwargs.has_key('correctFactor'):
|
|
758
|
correctFactor = kwargs['correctFactor']
|
|
759
|
correctFactor = kwargs['correctFactor']
|
|
759
|
else:
|
|
760
|
else:
|
|
760
|
correctFactor = 1
|
|
761
|
correctFactor = 1
|
|
761
|
|
|
762
|
|
|
762
|
groupList = kwargs['groupList']
|
|
763
|
groupList = kwargs['groupList']
|
|
763
|
pairs_ccf = groupList[1]
|
|
764
|
pairs_ccf = groupList[1]
|
|
764
|
tau = kwargs['tau']
|
|
765
|
tau = kwargs['tau']
|
|
765
|
_lambda = kwargs['_lambda']
|
|
766
|
_lambda = kwargs['_lambda']
|
|
766
|
|
|
767
|
|
|
767
|
#Cross Correlation pairs obtained
|
|
768
|
#Cross Correlation pairs obtained
|
|
768
|
# pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
|
|
769
|
# pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
|
|
769
|
# pairsArray = numpy.array(pairsList)[pairsCrossCorr]
|
|
770
|
# pairsArray = numpy.array(pairsList)[pairsCrossCorr]
|
|
770
|
# pairsSelArray = numpy.array(pairsSelected)
|
|
771
|
# pairsSelArray = numpy.array(pairsSelected)
|
|
771
|
# pairs = []
|
|
772
|
# pairs = []
|
|
772
|
#
|
|
773
|
#
|
|
773
|
# #Wind estimation pairs obtained
|
|
774
|
# #Wind estimation pairs obtained
|
|
774
|
# for i in range(pairsSelArray.shape[0]/2):
|
|
775
|
# for i in range(pairsSelArray.shape[0]/2):
|
|
775
|
# ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
|
|
776
|
# ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
|
|
776
|
# ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
|
|
777
|
# ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
|
|
777
|
# pairs.append((ind1,ind2))
|
|
778
|
# pairs.append((ind1,ind2))
|
|
778
|
|
|
779
|
|
|
779
|
indtau = tau.shape[0]/2
|
|
780
|
indtau = tau.shape[0]/2
|
|
780
|
tau1 = tau[:indtau,:]
|
|
781
|
tau1 = tau[:indtau,:]
|
|
781
|
tau2 = tau[indtau:-1,:]
|
|
782
|
tau2 = tau[indtau:-1,:]
|
|
782
|
# tau1 = tau1[pairs,:]
|
|
783
|
# tau1 = tau1[pairs,:]
|
|
783
|
# tau2 = tau2[pairs,:]
|
|
784
|
# tau2 = tau2[pairs,:]
|
|
784
|
phase1 = tau[-1,:]
|
|
785
|
phase1 = tau[-1,:]
|
|
785
|
|
|
786
|
|
|
786
|
#---------------------------------------------------------------------
|
|
787
|
#---------------------------------------------------------------------
|
|
787
|
#Metodo Directo
|
|
788
|
#Metodo Directo
|
|
788
|
distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
|
|
789
|
distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
|
|
789
|
winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
|
|
790
|
winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
|
|
790
|
winds = stats.nanmean(winds, axis=0)
|
|
791
|
winds = stats.nanmean(winds, axis=0)
|
|
@@
-800,100
+801,100
class WindProfiler(Operation):
|
|
800
|
winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
|
|
801
|
winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
|
|
801
|
winds = correctFactor*winds
|
|
802
|
winds = correctFactor*winds
|
|
802
|
return winds
|
|
803
|
return winds
|
|
803
|
|
|
804
|
|
|
804
|
def __checkTime(self, currentTime, paramInterval, outputInterval):
|
|
805
|
def __checkTime(self, currentTime, paramInterval, outputInterval):
|
|
805
|
|
|
806
|
|
|
806
|
dataTime = currentTime + paramInterval
|
|
807
|
dataTime = currentTime + paramInterval
|
|
807
|
deltaTime = dataTime - self.__initime
|
|
808
|
deltaTime = dataTime - self.__initime
|
|
808
|
|
|
809
|
|
|
809
|
if deltaTime >= outputInterval or deltaTime < 0:
|
|
810
|
if deltaTime >= outputInterval or deltaTime < 0:
|
|
810
|
self.__dataReady = True
|
|
811
|
self.__dataReady = True
|
|
811
|
return
|
|
812
|
return
|
|
812
|
|
|
813
|
|
|
813
|
def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
|
|
814
|
def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax, binkm=2):
|
|
814
|
'''
|
|
815
|
'''
|
|
815
|
Function that implements winds estimation technique with detected meteors.
|
|
816
|
Function that implements winds estimation technique with detected meteors.
|
|
816
|
|
|
817
|
|
|
817
|
Input: Detected meteors, Minimum meteor quantity to wind estimation
|
|
818
|
Input: Detected meteors, Minimum meteor quantity to wind estimation
|
|
818
|
|
|
819
|
|
|
819
|
Output: Winds estimation (Zonal and Meridional)
|
|
820
|
Output: Winds estimation (Zonal and Meridional)
|
|
820
|
|
|
821
|
|
|
821
|
Parameters affected: Winds
|
|
822
|
Parameters affected: Winds
|
|
822
|
'''
|
|
823
|
'''
|
|
823
|
# print arrayMeteor.shape
|
|
824
|
# print arrayMeteor.shape
|
|
824
|
#Settings
|
|
825
|
#Settings
|
|
825
|
nInt = (heightMax - heightMin)/binkm
|
|
826
|
nInt = (heightMax - heightMin)/binkm
|
|
826
|
# print nInt
|
|
827
|
# print nInt
|
|
827
|
nInt = int(nInt)
|
|
828
|
nInt = int(nInt)
|
|
828
|
# print nInt
|
|
829
|
# print nInt
|
|
829
|
winds = numpy.zeros((2,nInt))*numpy.nan
|
|
830
|
winds = numpy.zeros((2,nInt))*numpy.nan
|
|
830
|
|
|
831
|
|
|
831
|
#Filter errors
|
|
832
|
#Filter errors
|
|
832
|
error = numpy.where(arrayMeteor[:,-1] == 0)[0]
|
|
833
|
error = numpy.where(arrayMeteor[:,-1] == 0)[0]
|
|
833
|
finalMeteor = arrayMeteor[error,:]
|
|
834
|
finalMeteor = arrayMeteor[error,:]
|
|
834
|
|
|
835
|
|
|
835
|
#Meteor Histogram
|
|
836
|
#Meteor Histogram
|
|
836
|
finalHeights = finalMeteor[:,2]
|
|
837
|
finalHeights = finalMeteor[:,2]
|
|
837
|
hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
|
|
838
|
hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
|
|
838
|
nMeteorsPerI = hist[0]
|
|
839
|
nMeteorsPerI = hist[0]
|
|
839
|
heightPerI = hist[1]
|
|
840
|
heightPerI = hist[1]
|
|
840
|
|
|
841
|
|
|
841
|
#Sort of meteors
|
|
842
|
#Sort of meteors
|
|
842
|
indSort = finalHeights.argsort()
|
|
843
|
indSort = finalHeights.argsort()
|
|
843
|
finalMeteor2 = finalMeteor[indSort,:]
|
|
844
|
finalMeteor2 = finalMeteor[indSort,:]
|
|
844
|
|
|
845
|
|
|
845
|
# Calculating winds
|
|
846
|
# Calculating winds
|
|
846
|
ind1 = 0
|
|
847
|
ind1 = 0
|
|
847
|
ind2 = 0
|
|
848
|
ind2 = 0
|
|
848
|
|
|
849
|
|
|
849
|
for i in range(nInt):
|
|
850
|
for i in range(nInt):
|
|
850
|
nMet = nMeteorsPerI[i]
|
|
851
|
nMet = nMeteorsPerI[i]
|
|
851
|
ind1 = ind2
|
|
852
|
ind1 = ind2
|
|
852
|
ind2 = ind1 + nMet
|
|
853
|
ind2 = ind1 + nMet
|
|
853
|
|
|
854
|
|
|
854
|
meteorAux = finalMeteor2[ind1:ind2,:]
|
|
855
|
meteorAux = finalMeteor2[ind1:ind2,:]
|
|
855
|
|
|
856
|
|
|
856
|
if meteorAux.shape[0] >= meteorThresh:
|
|
857
|
if meteorAux.shape[0] >= meteorThresh:
|
|
857
|
vel = meteorAux[:, 6]
|
|
858
|
vel = meteorAux[:, 6]
|
|
858
|
zen = meteorAux[:, 4]*numpy.pi/180
|
|
859
|
zen = meteorAux[:, 4]*numpy.pi/180
|
|
859
|
azim = meteorAux[:, 3]*numpy.pi/180
|
|
860
|
azim = meteorAux[:, 3]*numpy.pi/180
|
|
860
|
|
|
861
|
|
|
861
|
n = numpy.cos(zen)
|
|
862
|
n = numpy.cos(zen)
|
|
862
|
# m = (1 - n**2)/(1 - numpy.tan(azim)**2)
|
|
863
|
# m = (1 - n**2)/(1 - numpy.tan(azim)**2)
|
|
863
|
# l = m*numpy.tan(azim)
|
|
864
|
# l = m*numpy.tan(azim)
|
|
864
|
l = numpy.sin(zen)*numpy.sin(azim)
|
|
865
|
l = numpy.sin(zen)*numpy.sin(azim)
|
|
865
|
m = numpy.sin(zen)*numpy.cos(azim)
|
|
866
|
m = numpy.sin(zen)*numpy.cos(azim)
|
|
866
|
|
|
867
|
|
|
867
|
A = numpy.vstack((l, m)).transpose()
|
|
868
|
A = numpy.vstack((l, m)).transpose()
|
|
868
|
A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
|
|
869
|
A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
|
|
869
|
windsAux = numpy.dot(A1, vel)
|
|
870
|
windsAux = numpy.dot(A1, vel)
|
|
870
|
|
|
871
|
|
|
871
|
winds[0,i] = windsAux[0]
|
|
872
|
winds[0,i] = windsAux[0]
|
|
872
|
winds[1,i] = windsAux[1]
|
|
873
|
winds[1,i] = windsAux[1]
|
|
873
|
|
|
874
|
|
|
874
|
return winds, heightPerI[:-1]
|
|
875
|
return winds, heightPerI[:-1]
|
|
875
|
|
|
876
|
|
|
876
|
def techniqueNSM_SA(self, **kwargs):
|
|
877
|
def techniqueNSM_SA(self, **kwargs):
|
|
877
|
metArray = kwargs['metArray']
|
|
878
|
metArray = kwargs['metArray']
|
|
878
|
heightList = kwargs['heightList']
|
|
879
|
heightList = kwargs['heightList']
|
|
879
|
timeList = kwargs['timeList']
|
|
880
|
timeList = kwargs['timeList']
|
|
880
|
|
|
881
|
|
|
881
|
rx_location = kwargs['rx_location']
|
|
882
|
rx_location = kwargs['rx_location']
|
|
882
|
groupList = kwargs['groupList']
|
|
883
|
groupList = kwargs['groupList']
|
|
883
|
azimuth = kwargs['azimuth']
|
|
884
|
azimuth = kwargs['azimuth']
|
|
884
|
dfactor = kwargs['dfactor']
|
|
885
|
dfactor = kwargs['dfactor']
|
|
885
|
k = kwargs['k']
|
|
886
|
k = kwargs['k']
|
|
886
|
|
|
887
|
|
|
887
|
azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
|
|
888
|
azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
|
|
888
|
d = dist*dfactor
|
|
889
|
d = dist*dfactor
|
|
889
|
#Phase calculation
|
|
890
|
#Phase calculation
|
|
890
|
metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
|
|
891
|
metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
|
|
891
|
|
|
892
|
|
|
892
|
metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
|
|
893
|
metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
|
|
893
|
|
|
894
|
|
|
894
|
velEst = numpy.zeros((heightList.size,2))*numpy.nan
|
|
895
|
velEst = numpy.zeros((heightList.size,2))*numpy.nan
|
|
895
|
azimuth1 = azimuth1*numpy.pi/180
|
|
896
|
azimuth1 = azimuth1*numpy.pi/180
|
|
896
|
|
|
897
|
|
|
897
|
for i in range(heightList.size):
|
|
898
|
for i in range(heightList.size):
|
|
898
|
h = heightList[i]
|
|
899
|
h = heightList[i]
|
|
899
|
indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
|
|
900
|
indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
|
|
@@
-906,71
+907,71
class WindProfiler(Operation):
|
|
906
|
A = numpy.asmatrix(A)
|
|
907
|
A = numpy.asmatrix(A)
|
|
907
|
A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
|
|
908
|
A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
|
|
908
|
velHor = numpy.dot(A1,velAux)
|
|
909
|
velHor = numpy.dot(A1,velAux)
|
|
909
|
|
|
910
|
|
|
910
|
velEst[i,:] = numpy.squeeze(velHor)
|
|
911
|
velEst[i,:] = numpy.squeeze(velHor)
|
|
911
|
return velEst
|
|
912
|
return velEst
|
|
912
|
|
|
913
|
|
|
913
|
def __getPhaseSlope(self, metArray, heightList, timeList):
|
|
914
|
def __getPhaseSlope(self, metArray, heightList, timeList):
|
|
914
|
meteorList = []
|
|
915
|
meteorList = []
|
|
915
|
#utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
|
|
916
|
#utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
|
|
916
|
#Putting back together the meteor matrix
|
|
917
|
#Putting back together the meteor matrix
|
|
917
|
utctime = metArray[:,0]
|
|
918
|
utctime = metArray[:,0]
|
|
918
|
uniqueTime = numpy.unique(utctime)
|
|
919
|
uniqueTime = numpy.unique(utctime)
|
|
919
|
|
|
920
|
|
|
920
|
phaseDerThresh = 0.5
|
|
921
|
phaseDerThresh = 0.5
|
|
921
|
ippSeconds = timeList[1] - timeList[0]
|
|
922
|
ippSeconds = timeList[1] - timeList[0]
|
|
922
|
sec = numpy.where(timeList>1)[0][0]
|
|
923
|
sec = numpy.where(timeList>1)[0][0]
|
|
923
|
nPairs = metArray.shape[1] - 6
|
|
924
|
nPairs = metArray.shape[1] - 6
|
|
924
|
nHeights = len(heightList)
|
|
925
|
nHeights = len(heightList)
|
|
925
|
|
|
926
|
|
|
926
|
for t in uniqueTime:
|
|
927
|
for t in uniqueTime:
|
|
927
|
metArray1 = metArray[utctime==t,:]
|
|
928
|
metArray1 = metArray[utctime==t,:]
|
|
928
|
# phaseDerThresh = numpy.pi/4 #reducir Phase thresh
|
|
929
|
# phaseDerThresh = numpy.pi/4 #reducir Phase thresh
|
|
929
|
tmet = metArray1[:,1].astype(int)
|
|
930
|
tmet = metArray1[:,1].astype(int)
|
|
930
|
hmet = metArray1[:,2].astype(int)
|
|
931
|
hmet = metArray1[:,2].astype(int)
|
|
931
|
|
|
932
|
|
|
932
|
metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
|
|
933
|
metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
|
|
933
|
metPhase[:,:] = numpy.nan
|
|
934
|
metPhase[:,:] = numpy.nan
|
|
934
|
metPhase[:,hmet,tmet] = metArray1[:,6:].T
|
|
935
|
metPhase[:,hmet,tmet] = metArray1[:,6:].T
|
|
935
|
|
|
936
|
|
|
936
|
#Delete short trails
|
|
937
|
#Delete short trails
|
|
937
|
metBool = ~numpy.isnan(metPhase[0,:,:])
|
|
938
|
metBool = ~numpy.isnan(metPhase[0,:,:])
|
|
938
|
heightVect = numpy.sum(metBool, axis = 1)
|
|
939
|
heightVect = numpy.sum(metBool, axis = 1)
|
|
939
|
metBool[heightVect<sec,:] = False
|
|
940
|
metBool[heightVect<sec,:] = False
|
|
940
|
metPhase[:,heightVect<sec,:] = numpy.nan
|
|
941
|
metPhase[:,heightVect<sec,:] = numpy.nan
|
|
941
|
|
|
942
|
|
|
942
|
#Derivative
|
|
943
|
#Derivative
|
|
943
|
metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
|
|
944
|
metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
|
|
944
|
phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
|
|
945
|
phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
|
|
945
|
metPhase[phDerAux] = numpy.nan
|
|
946
|
metPhase[phDerAux] = numpy.nan
|
|
946
|
|
|
947
|
|
|
947
|
#--------------------------METEOR DETECTION -----------------------------------------
|
|
948
|
#--------------------------METEOR DETECTION -----------------------------------------
|
|
948
|
indMet = numpy.where(numpy.any(metBool,axis=1))[0]
|
|
949
|
indMet = numpy.where(numpy.any(metBool,axis=1))[0]
|
|
949
|
|
|
950
|
|
|
950
|
for p in numpy.arange(nPairs):
|
|
951
|
for p in numpy.arange(nPairs):
|
|
951
|
phase = metPhase[p,:,:]
|
|
952
|
phase = metPhase[p,:,:]
|
|
952
|
phDer = metDer[p,:,:]
|
|
953
|
phDer = metDer[p,:,:]
|
|
953
|
|
|
954
|
|
|
954
|
for h in indMet:
|
|
955
|
for h in indMet:
|
|
955
|
height = heightList[h]
|
|
956
|
height = heightList[h]
|
|
956
|
phase1 = phase[h,:] #82
|
|
957
|
phase1 = phase[h,:] #82
|
|
957
|
phDer1 = phDer[h,:]
|
|
958
|
phDer1 = phDer[h,:]
|
|
958
|
|
|
959
|
|
|
959
|
phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
|
|
960
|
phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
|
|
960
|
|
|
961
|
|
|
961
|
indValid = numpy.where(~numpy.isnan(phase1))[0]
|
|
962
|
indValid = numpy.where(~numpy.isnan(phase1))[0]
|
|
962
|
initMet = indValid[0]
|
|
963
|
initMet = indValid[0]
|
|
963
|
endMet = 0
|
|
964
|
endMet = 0
|
|
964
|
|
|
965
|
|
|
965
|
for i in range(len(indValid)-1):
|
|
966
|
for i in range(len(indValid)-1):
|
|
966
|
|
|
967
|
|
|
967
|
#Time difference
|
|
968
|
#Time difference
|
|
968
|
inow = indValid[i]
|
|
969
|
inow = indValid[i]
|
|
969
|
inext = indValid[i+1]
|
|
970
|
inext = indValid[i+1]
|
|
970
|
idiff = inext - inow
|
|
971
|
idiff = inext - inow
|
|
971
|
#Phase difference
|
|
972
|
#Phase difference
|
|
972
|
phDiff = numpy.abs(phase1[inext] - phase1[inow])
|
|
973
|
phDiff = numpy.abs(phase1[inext] - phase1[inow])
|
|
973
|
|
|
974
|
|
|
974
|
if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
|
|
975
|
if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
|
|
975
|
sizeTrail = inow - initMet + 1
|
|
976
|
sizeTrail = inow - initMet + 1
|
|
976
|
if sizeTrail>3*sec: #Too short meteors
|
|
977
|
if sizeTrail>3*sec: #Too short meteors
|
|
@@
-986,28
+987,28
class WindProfiler(Operation):
|
|
986
|
vel = slope#*height*1000/(k*d)
|
|
987
|
vel = slope#*height*1000/(k*d)
|
|
987
|
estAux = numpy.array([utctime,p,height, vel, rsq])
|
|
988
|
estAux = numpy.array([utctime,p,height, vel, rsq])
|
|
988
|
meteorList.append(estAux)
|
|
989
|
meteorList.append(estAux)
|
|
989
|
initMet = inext
|
|
990
|
initMet = inext
|
|
990
|
metArray2 = numpy.array(meteorList)
|
|
991
|
metArray2 = numpy.array(meteorList)
|
|
991
|
|
|
992
|
|
|
992
|
return metArray2
|
|
993
|
return metArray2
|
|
993
|
|
|
994
|
|
|
994
|
def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
|
|
995
|
def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
|
|
995
|
|
|
996
|
|
|
996
|
azimuth1 = numpy.zeros(len(pairslist))
|
|
997
|
azimuth1 = numpy.zeros(len(pairslist))
|
|
997
|
dist = numpy.zeros(len(pairslist))
|
|
998
|
dist = numpy.zeros(len(pairslist))
|
|
998
|
|
|
999
|
|
|
999
|
for i in range(len(rx_location)):
|
|
1000
|
for i in range(len(rx_location)):
|
|
1000
|
ch0 = pairslist[i][0]
|
|
1001
|
ch0 = pairslist[i][0]
|
|
1001
|
ch1 = pairslist[i][1]
|
|
1002
|
ch1 = pairslist[i][1]
|
|
1002
|
|
|
1003
|
|
|
1003
|
diffX = rx_location[ch0][0] - rx_location[ch1][0]
|
|
1004
|
diffX = rx_location[ch0][0] - rx_location[ch1][0]
|
|
1004
|
diffY = rx_location[ch0][1] - rx_location[ch1][1]
|
|
1005
|
diffY = rx_location[ch0][1] - rx_location[ch1][1]
|
|
1005
|
azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
|
|
1006
|
azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
|
|
1006
|
dist[i] = numpy.sqrt(diffX**2 + diffY**2)
|
|
1007
|
dist[i] = numpy.sqrt(diffX**2 + diffY**2)
|
|
1007
|
|
|
1008
|
|
|
1008
|
azimuth1 -= azimuth0
|
|
1009
|
azimuth1 -= azimuth0
|
|
1009
|
return azimuth1, dist
|
|
1010
|
return azimuth1, dist
|
|
1010
|
|
|
1011
|
|
|
1011
|
def techniqueNSM_DBS(self, **kwargs):
|
|
1012
|
def techniqueNSM_DBS(self, **kwargs):
|
|
1012
|
metArray = kwargs['metArray']
|
|
1013
|
metArray = kwargs['metArray']
|
|
1013
|
heightList = kwargs['heightList']
|
|
1014
|
heightList = kwargs['heightList']
|
|
@@
-1015,64
+1016,64
class WindProfiler(Operation):
|
|
1015
|
zenithList = kwargs['zenithList']
|
|
1016
|
zenithList = kwargs['zenithList']
|
|
1016
|
nChan = numpy.max(cmet) + 1
|
|
1017
|
nChan = numpy.max(cmet) + 1
|
|
1017
|
nHeights = len(heightList)
|
|
1018
|
nHeights = len(heightList)
|
|
1018
|
|
|
1019
|
|
|
1019
|
utctime = metArray[:,0]
|
|
1020
|
utctime = metArray[:,0]
|
|
1020
|
cmet = metArray[:,1]
|
|
1021
|
cmet = metArray[:,1]
|
|
1021
|
hmet = metArray1[:,3].astype(int)
|
|
1022
|
hmet = metArray1[:,3].astype(int)
|
|
1022
|
h1met = heightList[hmet]*zenithList[cmet]
|
|
1023
|
h1met = heightList[hmet]*zenithList[cmet]
|
|
1023
|
vmet = metArray1[:,5]
|
|
1024
|
vmet = metArray1[:,5]
|
|
1024
|
|
|
1025
|
|
|
1025
|
for i in range(nHeights - 1):
|
|
1026
|
for i in range(nHeights - 1):
|
|
1026
|
hmin = heightList[i]
|
|
1027
|
hmin = heightList[i]
|
|
1027
|
hmax = heightList[i + 1]
|
|
1028
|
hmax = heightList[i + 1]
|
|
1028
|
|
|
1029
|
|
|
1029
|
vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
|
|
1030
|
vthisH = vmet[(h1met>=hmin) & (h1met<hmax)]
|
|
1030
|
|
|
1031
|
|
|
1031
|
|
|
1032
|
|
|
1032
|
|
|
1033
|
|
|
1033
|
return data_output
|
|
1034
|
return data_output
|
|
1034
|
|
|
1035
|
|
|
1035
|
def run(self, dataOut, technique, **kwargs):
|
|
1036
|
def run(self, dataOut, technique, **kwargs):
|
|
1036
|
|
|
1037
|
|
|
1037
|
param = dataOut.data_param
|
|
1038
|
param = dataOut.data_param
|
|
1038
|
if dataOut.abscissaList != None:
|
|
1039
|
if dataOut.abscissaList != None:
|
|
1039
|
absc = dataOut.abscissaList[:-1]
|
|
1040
|
absc = dataOut.abscissaList[:-1]
|
|
1040
|
noise = dataOut.noise
|
|
1041
|
noise = dataOut.noise
|
|
1041
|
heightList = dataOut.heightList
|
|
1042
|
heightList = dataOut.heightList
|
|
1042
|
SNR = dataOut.data_SNR
|
|
1043
|
SNR = dataOut.data_SNR
|
|
1043
|
|
|
1044
|
|
|
1044
|
if technique == 'DBS':
|
|
1045
|
if technique == 'DBS':
|
|
1045
|
|
|
1046
|
|
|
1046
|
kwargs['velRadial'] = param[:,1,:] #Radial velocity
|
|
1047
|
kwargs['velRadial'] = param[:,1,:] #Radial velocity
|
|
1047
|
kwargs['heightList'] = heightList
|
|
1048
|
kwargs['heightList'] = heightList
|
|
1048
|
kwargs['SNR'] = SNR
|
|
1049
|
kwargs['SNR'] = SNR
|
|
1049
|
|
|
1050
|
|
|
1050
|
dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
|
|
1051
|
dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
|
|
1051
|
dataOut.utctimeInit = dataOut.utctime
|
|
1052
|
dataOut.utctimeInit = dataOut.utctime
|
|
1052
|
dataOut.outputInterval = dataOut.paramInterval
|
|
1053
|
dataOut.outputInterval = dataOut.paramInterval
|
|
1053
|
|
|
1054
|
|
|
1054
|
elif technique == 'SA':
|
|
1055
|
elif technique == 'SA':
|
|
1055
|
|
|
1056
|
|
|
1056
|
#Parameters
|
|
1057
|
#Parameters
|
|
1057
|
# position_x = kwargs['positionX']
|
|
1058
|
# position_x = kwargs['positionX']
|
|
1058
|
# position_y = kwargs['positionY']
|
|
1059
|
# position_y = kwargs['positionY']
|
|
1059
|
# azimuth = kwargs['azimuth']
|
|
1060
|
# azimuth = kwargs['azimuth']
|
|
1060
|
#
|
|
1061
|
#
|
|
1061
|
# if kwargs.has_key('crosspairsList'):
|
|
1062
|
# if kwargs.has_key('crosspairsList'):
|
|
1062
|
# pairs = kwargs['crosspairsList']
|
|
1063
|
# pairs = kwargs['crosspairsList']
|
|
1063
|
# else:
|
|
1064
|
# else:
|
|
1064
|
# pairs = None
|
|
1065
|
# pairs = None
|
|
1065
|
#
|
|
1066
|
#
|
|
1066
|
# if kwargs.has_key('correctFactor'):
|
|
1067
|
# if kwargs.has_key('correctFactor'):
|
|
1067
|
# correctFactor = kwargs['correctFactor']
|
|
1068
|
# correctFactor = kwargs['correctFactor']
|
|
1068
|
# else:
|
|
1069
|
# else:
|
|
1069
|
# correctFactor = 1
|
|
1070
|
# correctFactor = 1
|
|
1070
|
|
|
1071
|
|
|
1071
|
# tau = dataOut.data_param
|
|
1072
|
# tau = dataOut.data_param
|
|
1072
|
# _lambda = dataOut.C/dataOut.frequency
|
|
1073
|
# _lambda = dataOut.C/dataOut.frequency
|
|
1073
|
# pairsList = dataOut.groupList
|
|
1074
|
# pairsList = dataOut.groupList
|
|
1074
|
# nChannels = dataOut.nChannels
|
|
1075
|
# nChannels = dataOut.nChannels
|
|
1075
|
|
|
1076
|
|
|
1076
|
kwargs['groupList'] = dataOut.groupList
|
|
1077
|
kwargs['groupList'] = dataOut.groupList
|
|
1077
|
kwargs['tau'] = dataOut.data_param
|
|
1078
|
kwargs['tau'] = dataOut.data_param
|
|
1078
|
kwargs['_lambda'] = dataOut.C/dataOut.frequency
|
|
1079
|
kwargs['_lambda'] = dataOut.C/dataOut.frequency
|
|
@@
-1080,35
+1081,35
class WindProfiler(Operation):
|
|
1080
|
dataOut.data_output = self.techniqueSA(kwargs)
|
|
1081
|
dataOut.data_output = self.techniqueSA(kwargs)
|
|
1081
|
dataOut.utctimeInit = dataOut.utctime
|
|
1082
|
dataOut.utctimeInit = dataOut.utctime
|
|
1082
|
dataOut.outputInterval = dataOut.timeInterval
|
|
1083
|
dataOut.outputInterval = dataOut.timeInterval
|
|
1083
|
|
|
1084
|
|
|
1084
|
elif technique == 'Meteors':
|
|
1085
|
elif technique == 'Meteors':
|
|
1085
|
dataOut.flagNoData = True
|
|
1086
|
dataOut.flagNoData = True
|
|
1086
|
self.__dataReady = False
|
|
1087
|
self.__dataReady = False
|
|
1087
|
|
|
1088
|
|
|
1088
|
if kwargs.has_key('nHours'):
|
|
1089
|
if kwargs.has_key('nHours'):
|
|
1089
|
nHours = kwargs['nHours']
|
|
1090
|
nHours = kwargs['nHours']
|
|
1090
|
else:
|
|
1091
|
else:
|
|
1091
|
nHours = 1
|
|
1092
|
nHours = 1
|
|
1092
|
|
|
1093
|
|
|
1093
|
if kwargs.has_key('meteorsPerBin'):
|
|
1094
|
if kwargs.has_key('meteorsPerBin'):
|
|
1094
|
meteorThresh = kwargs['meteorsPerBin']
|
|
1095
|
meteorThresh = kwargs['meteorsPerBin']
|
|
1095
|
else:
|
|
1096
|
else:
|
|
1096
|
meteorThresh = 6
|
|
1097
|
meteorThresh = 6
|
|
1097
|
|
|
1098
|
|
|
1098
|
if kwargs.has_key('hmin'):
|
|
1099
|
if kwargs.has_key('hmin'):
|
|
1099
|
hmin = kwargs['hmin']
|
|
1100
|
hmin = kwargs['hmin']
|
|
1100
|
else: hmin = 70
|
|
1101
|
else: hmin = 70
|
|
1101
|
if kwargs.has_key('hmax'):
|
|
1102
|
if kwargs.has_key('hmax'):
|
|
1102
|
hmax = kwargs['hmax']
|
|
1103
|
hmax = kwargs['hmax']
|
|
1103
|
else: hmax = 110
|
|
1104
|
else: hmax = 110
|
|
1104
|
|
|
1105
|
|
|
1105
|
if kwargs.has_key('BinKm'):
|
|
1106
|
if kwargs.has_key('BinKm'):
|
|
1106
|
binkm = kwargs['BinKm']
|
|
1107
|
binkm = kwargs['BinKm']
|
|
1107
|
else:
|
|
1108
|
else:
|
|
1108
|
binkm = 2
|
|
1109
|
binkm = 2
|
|
1109
|
|
|
1110
|
|
|
1110
|
dataOut.outputInterval = nHours*3600
|
|
1111
|
dataOut.outputInterval = nHours*3600
|
|
1111
|
|
|
1112
|
|
|
1112
|
if self.__isConfig == False:
|
|
1113
|
if self.__isConfig == False:
|
|
1113
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
1114
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
1114
|
#Get Initial LTC time
|
|
1115
|
#Get Initial LTC time
|
|
@@
-1116,29
+1117,29
class WindProfiler(Operation):
|
|
1116
|
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
1117
|
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
1117
|
|
|
1118
|
|
|
1118
|
self.__isConfig = True
|
|
1119
|
self.__isConfig = True
|
|
1119
|
|
|
1120
|
|
|
1120
|
if self.__buffer is None:
|
|
1121
|
if self.__buffer is None:
|
|
1121
|
self.__buffer = dataOut.data_param
|
|
1122
|
self.__buffer = dataOut.data_param
|
|
1122
|
self.__firstdata = copy.copy(dataOut)
|
|
1123
|
self.__firstdata = copy.copy(dataOut)
|
|
1123
|
|
|
1124
|
|
|
1124
|
else:
|
|
1125
|
else:
|
|
1125
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
1126
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
1126
|
|
|
1127
|
|
|
1127
|
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
1128
|
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
1128
|
|
|
1129
|
|
|
1129
|
if self.__dataReady:
|
|
1130
|
if self.__dataReady:
|
|
1130
|
dataOut.utctimeInit = self.__initime
|
|
1131
|
dataOut.utctimeInit = self.__initime
|
|
1131
|
|
|
1132
|
|
|
1132
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
1133
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
1133
|
|
|
1134
|
|
|
1134
|
dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
|
|
1135
|
dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax, binkm)
|
|
1135
|
dataOut.flagNoData = False
|
|
1136
|
dataOut.flagNoData = False
|
|
1136
|
self.__buffer = None
|
|
1137
|
self.__buffer = None
|
|
1137
|
|
|
1138
|
|
|
1138
|
elif technique == 'Meteors1':
|
|
1139
|
elif technique == 'Meteors1':
|
|
1139
|
dataOut.flagNoData = True
|
|
1140
|
dataOut.flagNoData = True
|
|
1140
|
self.__dataReady = False
|
|
1141
|
self.__dataReady = False
|
|
1141
|
|
|
1142
|
|
|
1142
|
if kwargs.has_key('nMins'):
|
|
1143
|
if kwargs.has_key('nMins'):
|
|
1143
|
nMins = kwargs['nMins']
|
|
1144
|
nMins = kwargs['nMins']
|
|
1144
|
else: nMins = 20
|
|
1145
|
else: nMins = 20
|
|
@@
-1152,8
+1153,8
class WindProfiler(Operation):
|
|
1152
|
dfactor = kwargs['dfactor']
|
|
1153
|
dfactor = kwargs['dfactor']
|
|
1153
|
if kwargs.has_key('mode'):
|
|
1154
|
if kwargs.has_key('mode'):
|
|
1154
|
mode = kwargs['mode']
|
|
1155
|
mode = kwargs['mode']
|
|
1155
|
else: mode = 'SA'
|
|
1156
|
else: mode = 'SA'
|
|
1156
|
|
|
1157
|
|
|
1157
|
#Borrar luego esto
|
|
1158
|
#Borrar luego esto
|
|
1158
|
if dataOut.groupList is None:
|
|
1159
|
if dataOut.groupList is None:
|
|
1159
|
dataOut.groupList = [(0,1),(0,2),(1,2)]
|
|
1160
|
dataOut.groupList = [(0,1),(0,2),(1,2)]
|
|
@@
-1162,10
+1163,10
class WindProfiler(Operation):
|
|
1162
|
freq = 50e6
|
|
1163
|
freq = 50e6
|
|
1163
|
lamb = C/freq
|
|
1164
|
lamb = C/freq
|
|
1164
|
k = 2*numpy.pi/lamb
|
|
1165
|
k = 2*numpy.pi/lamb
|
|
1165
|
|
|
1166
|
|
|
1166
|
timeList = dataOut.abscissaList
|
|
1167
|
timeList = dataOut.abscissaList
|
|
1167
|
heightList = dataOut.heightList
|
|
1168
|
heightList = dataOut.heightList
|
|
1168
|
|
|
1169
|
|
|
1169
|
if self.__isConfig == False:
|
|
1170
|
if self.__isConfig == False:
|
|
1170
|
dataOut.outputInterval = nMins*60
|
|
1171
|
dataOut.outputInterval = nMins*60
|
|
1171
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
1172
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
@@
-1176,20
+1177,20
class WindProfiler(Operation):
|
|
1176
|
self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
1177
|
self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
1177
|
|
|
1178
|
|
|
1178
|
self.__isConfig = True
|
|
1179
|
self.__isConfig = True
|
|
1179
|
|
|
1180
|
|
|
1180
|
if self.__buffer is None:
|
|
1181
|
if self.__buffer is None:
|
|
1181
|
self.__buffer = dataOut.data_param
|
|
1182
|
self.__buffer = dataOut.data_param
|
|
1182
|
self.__firstdata = copy.copy(dataOut)
|
|
1183
|
self.__firstdata = copy.copy(dataOut)
|
|
1183
|
|
|
1184
|
|
|
1184
|
else:
|
|
1185
|
else:
|
|
1185
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
1186
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
1186
|
|
|
1187
|
|
|
1187
|
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
1188
|
self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
1188
|
|
|
1189
|
|
|
1189
|
if self.__dataReady:
|
|
1190
|
if self.__dataReady:
|
|
1190
|
dataOut.utctimeInit = self.__initime
|
|
1191
|
dataOut.utctimeInit = self.__initime
|
|
1191
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
1192
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
1192
|
|
|
1193
|
|
|
1193
|
metArray = self.__buffer
|
|
1194
|
metArray = self.__buffer
|
|
1194
|
if mode == 'SA':
|
|
1195
|
if mode == 'SA':
|
|
1195
|
dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
|
|
1196
|
dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
|
|
@@
-1200,71
+1201,71
class WindProfiler(Operation):
|
|
1200
|
self.__buffer = None
|
|
1201
|
self.__buffer = None
|
|
1201
|
|
|
1202
|
|
|
1202
|
return
|
|
1203
|
return
|
|
1203
|
|
|
1204
|
|
|
1204
|
class EWDriftsEstimation(Operation):
|
|
1205
|
class EWDriftsEstimation(Operation):
|
|
1205
|
|
|
1206
|
|
|
1206
|
def __init__(self):
|
|
1207
|
def __init__(self):
|
|
1207
|
Operation.__init__(self)
|
|
1208
|
Operation.__init__(self)
|
|
1208
|
|
|
1209
|
|
|
1209
|
def __correctValues(self, heiRang, phi, velRadial, SNR):
|
|
1210
|
def __correctValues(self, heiRang, phi, velRadial, SNR):
|
|
1210
|
listPhi = phi.tolist()
|
|
1211
|
listPhi = phi.tolist()
|
|
1211
|
maxid = listPhi.index(max(listPhi))
|
|
1212
|
maxid = listPhi.index(max(listPhi))
|
|
1212
|
minid = listPhi.index(min(listPhi))
|
|
1213
|
minid = listPhi.index(min(listPhi))
|
|
1213
|
|
|
1214
|
|
|
1214
|
rango = range(len(phi))
|
|
1215
|
rango = range(len(phi))
|
|
1215
|
# rango = numpy.delete(rango,maxid)
|
|
1216
|
# rango = numpy.delete(rango,maxid)
|
|
1216
|
|
|
1217
|
|
|
1217
|
heiRang1 = heiRang*math.cos(phi[maxid])
|
|
1218
|
heiRang1 = heiRang*math.cos(phi[maxid])
|
|
1218
|
heiRangAux = heiRang*math.cos(phi[minid])
|
|
1219
|
heiRangAux = heiRang*math.cos(phi[minid])
|
|
1219
|
indOut = (heiRang1 < heiRangAux[0]).nonzero()
|
|
1220
|
indOut = (heiRang1 < heiRangAux[0]).nonzero()
|
|
1220
|
heiRang1 = numpy.delete(heiRang1,indOut)
|
|
1221
|
heiRang1 = numpy.delete(heiRang1,indOut)
|
|
1221
|
|
|
1222
|
|
|
1222
|
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
1223
|
velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
1223
|
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
1224
|
SNR1 = numpy.zeros([len(phi),len(heiRang1)])
|
|
1224
|
|
|
1225
|
|
|
1225
|
for i in rango:
|
|
1226
|
for i in rango:
|
|
1226
|
x = heiRang*math.cos(phi[i])
|
|
1227
|
x = heiRang*math.cos(phi[i])
|
|
1227
|
y1 = velRadial[i,:]
|
|
1228
|
y1 = velRadial[i,:]
|
|
1228
|
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
|
|
1229
|
f1 = interpolate.interp1d(x,y1,kind = 'cubic')
|
|
1229
|
|
|
1230
|
|
|
1230
|
x1 = heiRang1
|
|
1231
|
x1 = heiRang1
|
|
1231
|
y11 = f1(x1)
|
|
1232
|
y11 = f1(x1)
|
|
1232
|
|
|
1233
|
|
|
1233
|
y2 = SNR[i,:]
|
|
1234
|
y2 = SNR[i,:]
|
|
1234
|
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
|
|
1235
|
f2 = interpolate.interp1d(x,y2,kind = 'cubic')
|
|
1235
|
y21 = f2(x1)
|
|
1236
|
y21 = f2(x1)
|
|
1236
|
|
|
1237
|
|
|
1237
|
velRadial1[i,:] = y11
|
|
1238
|
velRadial1[i,:] = y11
|
|
1238
|
SNR1[i,:] = y21
|
|
1239
|
SNR1[i,:] = y21
|
|
1239
|
|
|
1240
|
|
|
1240
|
return heiRang1, velRadial1, SNR1
|
|
1241
|
return heiRang1, velRadial1, SNR1
|
|
1241
|
|
|
1242
|
|
|
1242
|
def run(self, dataOut, zenith, zenithCorrection):
|
|
1243
|
def run(self, dataOut, zenith, zenithCorrection):
|
|
1243
|
heiRang = dataOut.heightList
|
|
1244
|
heiRang = dataOut.heightList
|
|
1244
|
velRadial = dataOut.data_param[:,3,:]
|
|
1245
|
velRadial = dataOut.data_param[:,3,:]
|
|
1245
|
SNR = dataOut.data_SNR
|
|
1246
|
SNR = dataOut.data_SNR
|
|
1246
|
|
|
1247
|
|
|
1247
|
zenith = numpy.array(zenith)
|
|
1248
|
zenith = numpy.array(zenith)
|
|
1248
|
zenith -= zenithCorrection
|
|
1249
|
zenith -= zenithCorrection
|
|
1249
|
zenith *= numpy.pi/180
|
|
1250
|
zenith *= numpy.pi/180
|
|
1250
|
|
|
1251
|
|
|
1251
|
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
|
|
1252
|
heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
|
|
1252
|
|
|
1253
|
|
|
1253
|
alp = zenith[0]
|
|
1254
|
alp = zenith[0]
|
|
1254
|
bet = zenith[1]
|
|
1255
|
bet = zenith[1]
|
|
1255
|
|
|
1256
|
|
|
1256
|
w_w = velRadial1[0,:]
|
|
1257
|
w_w = velRadial1[0,:]
|
|
1257
|
w_e = velRadial1[1,:]
|
|
1258
|
w_e = velRadial1[1,:]
|
|
1258
|
|
|
1259
|
|
|
1259
|
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
|
|
1260
|
w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
|
|
1260
|
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
|
|
1261
|
u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
|
|
1261
|
|
|
1262
|
|
|
1262
|
winds = numpy.vstack((u,w))
|
|
1263
|
winds = numpy.vstack((u,w))
|
|
1263
|
|
|
1264
|
|
|
1264
|
dataOut.heightList = heiRang1
|
|
1265
|
dataOut.heightList = heiRang1
|
|
1265
|
dataOut.data_output = winds
|
|
1266
|
dataOut.data_output = winds
|
|
1266
|
dataOut.data_SNR = SNR1
|
|
1267
|
dataOut.data_SNR = SNR1
|
|
1267
|
|
|
1268
|
|
|
1268
|
dataOut.utctimeInit = dataOut.utctime
|
|
1269
|
dataOut.utctimeInit = dataOut.utctime
|
|
1269
|
dataOut.outputInterval = dataOut.timeInterval
|
|
1270
|
dataOut.outputInterval = dataOut.timeInterval
|
|
1270
|
return
|
|
1271
|
return
|
|
@@
-1276,11
+1277,11
class NonSpecularMeteorDetection(Operation):
|
|
1276
|
def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
|
|
1277
|
def run(self, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
|
|
1277
|
data_acf = self.dataOut.data_pre[0]
|
|
1278
|
data_acf = self.dataOut.data_pre[0]
|
|
1278
|
data_ccf = self.dataOut.data_pre[1]
|
|
1279
|
data_ccf = self.dataOut.data_pre[1]
|
|
1279
|
|
|
1280
|
|
|
1280
|
lamb = self.dataOut.C/self.dataOut.frequency
|
|
1281
|
lamb = self.dataOut.C/self.dataOut.frequency
|
|
1281
|
tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
|
|
1282
|
tSamp = self.dataOut.ippSeconds*self.dataOut.nCohInt
|
|
1282
|
paramInterval = self.dataOut.paramInterval
|
|
1283
|
paramInterval = self.dataOut.paramInterval
|
|
1283
|
|
|
1284
|
|
|
1284
|
nChannels = data_acf.shape[0]
|
|
1285
|
nChannels = data_acf.shape[0]
|
|
1285
|
nLags = data_acf.shape[1]
|
|
1286
|
nLags = data_acf.shape[1]
|
|
1286
|
nProfiles = data_acf.shape[2]
|
|
1287
|
nProfiles = data_acf.shape[2]
|
|
@@
-1290,9
+1291,9
class NonSpecularMeteorDetection(Operation):
|
|
1290
|
heightList = self.dataOut.heightList
|
|
1291
|
heightList = self.dataOut.heightList
|
|
1291
|
ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
|
|
1292
|
ippSeconds = self.dataOut.ippSeconds*self.dataOut.nCohInt*self.dataOut.nAvg
|
|
1292
|
utctime = self.dataOut.utctime
|
|
1293
|
utctime = self.dataOut.utctime
|
|
1293
|
|
|
1294
|
|
|
1294
|
self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
|
|
1295
|
self.dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
|
|
1295
|
|
|
1296
|
|
|
1296
|
#------------------------ SNR --------------------------------------
|
|
1297
|
#------------------------ SNR --------------------------------------
|
|
1297
|
power = data_acf[:,0,:,:].real
|
|
1298
|
power = data_acf[:,0,:,:].real
|
|
1298
|
noise = numpy.zeros(nChannels)
|
|
1299
|
noise = numpy.zeros(nChannels)
|
|
@@
-1302,29
+1303,29
class NonSpecularMeteorDetection(Operation):
|
|
1302
|
SNR[i] = (power[i]-noise[i])/noise[i]
|
|
1303
|
SNR[i] = (power[i]-noise[i])/noise[i]
|
|
1303
|
SNRm = numpy.nanmean(SNR, axis = 0)
|
|
1304
|
SNRm = numpy.nanmean(SNR, axis = 0)
|
|
1304
|
SNRdB = 10*numpy.log10(SNR)
|
|
1305
|
SNRdB = 10*numpy.log10(SNR)
|
|
1305
|
|
|
1306
|
|
|
1306
|
if mode == 'SA':
|
|
1307
|
if mode == 'SA':
|
|
1307
|
nPairs = data_ccf.shape[0]
|
|
1308
|
nPairs = data_ccf.shape[0]
|
|
1308
|
#---------------------- Coherence and Phase --------------------------
|
|
1309
|
#---------------------- Coherence and Phase --------------------------
|
|
1309
|
phase = numpy.zeros(data_ccf[:,0,:,:].shape)
|
|
1310
|
phase = numpy.zeros(data_ccf[:,0,:,:].shape)
|
|
1310
|
# phase1 = numpy.copy(phase)
|
|
1311
|
# phase1 = numpy.copy(phase)
|
|
1311
|
coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
|
|
1312
|
coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
|
|
1312
|
|
|
1313
|
|
|
1313
|
for p in range(nPairs):
|
|
1314
|
for p in range(nPairs):
|
|
1314
|
ch0 = self.dataOut.groupList[p][0]
|
|
1315
|
ch0 = self.dataOut.groupList[p][0]
|
|
1315
|
ch1 = self.dataOut.groupList[p][1]
|
|
1316
|
ch1 = self.dataOut.groupList[p][1]
|
|
1316
|
ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
|
|
1317
|
ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
|
|
1317
|
phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
|
|
1318
|
phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
|
|
1318
|
# phase1[p,:,:] = numpy.angle(ccf) #median filter
|
|
1319
|
# phase1[p,:,:] = numpy.angle(ccf) #median filter
|
|
1319
|
coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
|
|
1320
|
coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
|
|
1320
|
# coh1[p,:,:] = numpy.abs(ccf) #median filter
|
|
1321
|
# coh1[p,:,:] = numpy.abs(ccf) #median filter
|
|
1321
|
coh = numpy.nanmax(coh1, axis = 0)
|
|
1322
|
coh = numpy.nanmax(coh1, axis = 0)
|
|
1322
|
# struc = numpy.ones((5,1))
|
|
1323
|
# struc = numpy.ones((5,1))
|
|
1323
|
# coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
|
|
1324
|
# coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
|
|
1324
|
#---------------------- Radial Velocity ----------------------------
|
|
1325
|
#---------------------- Radial Velocity ----------------------------
|
|
1325
|
phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
|
|
1326
|
phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
|
|
1326
|
velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
|
|
1327
|
velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
|
|
1327
|
|
|
1328
|
|
|
1328
|
if allData:
|
|
1329
|
if allData:
|
|
1329
|
boolMetFin = ~numpy.isnan(SNRm)
|
|
1330
|
boolMetFin = ~numpy.isnan(SNRm)
|
|
1330
|
# coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
|
|
1331
|
# coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
|
|
@@
-1332,31
+1333,31
class NonSpecularMeteorDetection(Operation):
|
|
1332
|
#------------------------ Meteor mask ---------------------------------
|
|
1333
|
#------------------------ Meteor mask ---------------------------------
|
|
1333
|
# #SNR mask
|
|
1334
|
# #SNR mask
|
|
1334
|
# boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
|
|
1335
|
# boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
|
|
1335
|
#
|
|
1336
|
#
|
|
1336
|
# #Erase small objects
|
|
1337
|
# #Erase small objects
|
|
1337
|
# boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
|
|
1338
|
# boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
|
|
1338
|
#
|
|
1339
|
#
|
|
1339
|
# auxEEJ = numpy.sum(boolMet1,axis=0)
|
|
1340
|
# auxEEJ = numpy.sum(boolMet1,axis=0)
|
|
1340
|
# indOver = auxEEJ>nProfiles*0.8 #Use this later
|
|
1341
|
# indOver = auxEEJ>nProfiles*0.8 #Use this later
|
|
1341
|
# indEEJ = numpy.where(indOver)[0]
|
|
1342
|
# indEEJ = numpy.where(indOver)[0]
|
|
1342
|
# indNEEJ = numpy.where(~indOver)[0]
|
|
1343
|
# indNEEJ = numpy.where(~indOver)[0]
|
|
1343
|
#
|
|
1344
|
#
|
|
1344
|
# boolMetFin = boolMet1
|
|
1345
|
# boolMetFin = boolMet1
|
|
1345
|
#
|
|
1346
|
#
|
|
1346
|
# if indEEJ.size > 0:
|
|
1347
|
# if indEEJ.size > 0:
|
|
1347
|
# boolMet1[:,indEEJ] = False #Erase heights with EEJ
|
|
1348
|
# boolMet1[:,indEEJ] = False #Erase heights with EEJ
|
|
1348
|
#
|
|
1349
|
#
|
|
1349
|
# boolMet2 = coh > cohThresh
|
|
1350
|
# boolMet2 = coh > cohThresh
|
|
1350
|
# boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
|
|
1351
|
# boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
|
|
1351
|
#
|
|
1352
|
#
|
|
1352
|
# #Final Meteor mask
|
|
1353
|
# #Final Meteor mask
|
|
1353
|
# boolMetFin = boolMet1|boolMet2
|
|
1354
|
# boolMetFin = boolMet1|boolMet2
|
|
1354
|
|
|
1355
|
|
|
1355
|
#Coherence mask
|
|
1356
|
#Coherence mask
|
|
1356
|
boolMet1 = coh > 0.75
|
|
1357
|
boolMet1 = coh > 0.75
|
|
1357
|
struc = numpy.ones((30,1))
|
|
1358
|
struc = numpy.ones((30,1))
|
|
1358
|
boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
|
|
1359
|
boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
|
|
1359
|
|
|
1360
|
|
|
1360
|
#Derivative mask
|
|
1361
|
#Derivative mask
|
|
1361
|
derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
|
|
1362
|
derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
|
|
1362
|
boolMet2 = derPhase < 0.2
|
|
1363
|
boolMet2 = derPhase < 0.2
|
|
@@
-1373,7
+1374,7
class NonSpecularMeteorDetection(Operation):
|
|
1373
|
|
|
1374
|
|
|
1374
|
tmet = coordMet[0]
|
|
1375
|
tmet = coordMet[0]
|
|
1375
|
hmet = coordMet[1]
|
|
1376
|
hmet = coordMet[1]
|
|
1376
|
|
|
1377
|
|
|
1377
|
data_param = numpy.zeros((tmet.size, 6 + nPairs))
|
|
1378
|
data_param = numpy.zeros((tmet.size, 6 + nPairs))
|
|
1378
|
data_param[:,0] = utctime
|
|
1379
|
data_param[:,0] = utctime
|
|
1379
|
data_param[:,1] = tmet
|
|
1380
|
data_param[:,1] = tmet
|
|
@@
-1382,19
+1383,19
class NonSpecularMeteorDetection(Operation):
|
|
1382
|
data_param[:,4] = velRad[tmet,hmet]
|
|
1383
|
data_param[:,4] = velRad[tmet,hmet]
|
|
1383
|
data_param[:,5] = coh[tmet,hmet]
|
|
1384
|
data_param[:,5] = coh[tmet,hmet]
|
|
1384
|
data_param[:,6:] = phase[:,tmet,hmet].T
|
|
1385
|
data_param[:,6:] = phase[:,tmet,hmet].T
|
|
1385
|
|
|
1386
|
|
|
1386
|
elif mode == 'DBS':
|
|
1387
|
elif mode == 'DBS':
|
|
1387
|
self.dataOut.groupList = numpy.arange(nChannels)
|
|
1388
|
self.dataOut.groupList = numpy.arange(nChannels)
|
|
1388
|
|
|
1389
|
|
|
1389
|
#Radial Velocities
|
|
1390
|
#Radial Velocities
|
|
1390
|
# phase = numpy.angle(data_acf[:,1,:,:])
|
|
1391
|
# phase = numpy.angle(data_acf[:,1,:,:])
|
|
1391
|
phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
|
|
1392
|
phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
|
|
1392
|
velRad = phase*lamb/(4*numpy.pi*tSamp)
|
|
1393
|
velRad = phase*lamb/(4*numpy.pi*tSamp)
|
|
1393
|
|
|
1394
|
|
|
1394
|
#Spectral width
|
|
1395
|
#Spectral width
|
|
1395
|
acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
|
|
1396
|
acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
|
|
1396
|
acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
|
|
1397
|
acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
|
|
1397
|
|
|
1398
|
|
|
1398
|
spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
|
|
1399
|
spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
|
|
1399
|
# velRad = ndimage.median_filter(velRad, size = (1,5,1))
|
|
1400
|
# velRad = ndimage.median_filter(velRad, size = (1,5,1))
|
|
1400
|
if allData:
|
|
1401
|
if allData:
|
|
@@
-1403,24
+1404,24
class NonSpecularMeteorDetection(Operation):
|
|
1403
|
#SNR
|
|
1404
|
#SNR
|
|
1404
|
boolMet1 = (SNRdB>SNRthresh) #SNR mask
|
|
1405
|
boolMet1 = (SNRdB>SNRthresh) #SNR mask
|
|
1405
|
boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
|
|
1406
|
boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
|
|
1406
|
|
|
1407
|
|
|
1407
|
#Radial velocity
|
|
1408
|
#Radial velocity
|
|
1408
|
boolMet2 = numpy.abs(velRad) < 30
|
|
1409
|
boolMet2 = numpy.abs(velRad) < 30
|
|
1409
|
boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
|
|
1410
|
boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
|
|
1410
|
|
|
1411
|
|
|
1411
|
#Spectral Width
|
|
1412
|
#Spectral Width
|
|
1412
|
boolMet3 = spcWidth < 30
|
|
1413
|
boolMet3 = spcWidth < 30
|
|
1413
|
boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
|
|
1414
|
boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
|
|
1414
|
# boolMetFin = self.__erase_small(boolMet1, 10,5)
|
|
1415
|
# boolMetFin = self.__erase_small(boolMet1, 10,5)
|
|
1415
|
boolMetFin = boolMet1&boolMet2&boolMet3
|
|
1416
|
boolMetFin = boolMet1&boolMet2&boolMet3
|
|
1416
|
|
|
1417
|
|
|
1417
|
#Creating data_param
|
|
1418
|
#Creating data_param
|
|
1418
|
coordMet = numpy.where(boolMetFin)
|
|
1419
|
coordMet = numpy.where(boolMetFin)
|
|
1419
|
|
|
1420
|
|
|
1420
|
cmet = coordMet[0]
|
|
1421
|
cmet = coordMet[0]
|
|
1421
|
tmet = coordMet[1]
|
|
1422
|
tmet = coordMet[1]
|
|
1422
|
hmet = coordMet[2]
|
|
1423
|
hmet = coordMet[2]
|
|
1423
|
|
|
1424
|
|
|
1424
|
data_param = numpy.zeros((tmet.size, 7))
|
|
1425
|
data_param = numpy.zeros((tmet.size, 7))
|
|
1425
|
data_param[:,0] = utctime
|
|
1426
|
data_param[:,0] = utctime
|
|
1426
|
data_param[:,1] = cmet
|
|
1427
|
data_param[:,1] = cmet
|
|
@@
-1429,7
+1430,7
class NonSpecularMeteorDetection(Operation):
|
|
1429
|
data_param[:,4] = SNR[cmet,tmet,hmet].T
|
|
1430
|
data_param[:,4] = SNR[cmet,tmet,hmet].T
|
|
1430
|
data_param[:,5] = velRad[cmet,tmet,hmet].T
|
|
1431
|
data_param[:,5] = velRad[cmet,tmet,hmet].T
|
|
1431
|
data_param[:,6] = spcWidth[cmet,tmet,hmet].T
|
|
1432
|
data_param[:,6] = spcWidth[cmet,tmet,hmet].T
|
|
1432
|
|
|
1433
|
|
|
1433
|
# self.dataOut.data_param = data_int
|
|
1434
|
# self.dataOut.data_param = data_int
|
|
1434
|
if len(data_param) == 0:
|
|
1435
|
if len(data_param) == 0:
|
|
1435
|
self.dataOut.flagNoData = True
|
|
1436
|
self.dataOut.flagNoData = True
|
|
@@
-1439,21
+1440,21
class NonSpecularMeteorDetection(Operation):
|
|
1439
|
def __erase_small(self, binArray, threshX, threshY):
|
|
1440
|
def __erase_small(self, binArray, threshX, threshY):
|
|
1440
|
labarray, numfeat = ndimage.measurements.label(binArray)
|
|
1441
|
labarray, numfeat = ndimage.measurements.label(binArray)
|
|
1441
|
binArray1 = numpy.copy(binArray)
|
|
1442
|
binArray1 = numpy.copy(binArray)
|
|
1442
|
|
|
1443
|
|
|
1443
|
for i in range(1,numfeat + 1):
|
|
1444
|
for i in range(1,numfeat + 1):
|
|
1444
|
auxBin = (labarray==i)
|
|
1445
|
auxBin = (labarray==i)
|
|
1445
|
auxSize = auxBin.sum()
|
|
1446
|
auxSize = auxBin.sum()
|
|
1446
|
|
|
1447
|
|
|
1447
|
x,y = numpy.where(auxBin)
|
|
1448
|
x,y = numpy.where(auxBin)
|
|
1448
|
widthX = x.max() - x.min()
|
|
1449
|
widthX = x.max() - x.min()
|
|
1449
|
widthY = y.max() - y.min()
|
|
1450
|
widthY = y.max() - y.min()
|
|
1450
|
|
|
1451
|
|
|
1451
|
#width X: 3 seg -> 12.5*3
|
|
1452
|
#width X: 3 seg -> 12.5*3
|
|
1452
|
#width Y:
|
|
1453
|
#width Y:
|
|
1453
|
|
|
1454
|
|
|
1454
|
if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
|
|
1455
|
if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
|
|
1455
|
binArray1[auxBin] = False
|
|
1456
|
binArray1[auxBin] = False
|
|
1456
|
|
|
1457
|
|
|
1457
|
return binArray1
|
|
1458
|
return binArray1
|
|
1458
|
|
|
1459
|
|
|
1459
|
#--------------- Specular Meteor ----------------
|
|
1460
|
#--------------- Specular Meteor ----------------
|
|
@@
-1463,36
+1464,36
class SMDetection(Operation):
|
|
1463
|
Function DetectMeteors()
|
|
1464
|
Function DetectMeteors()
|
|
1464
|
Project developed with paper:
|
|
1465
|
Project developed with paper:
|
|
1465
|
HOLDSWORTH ET AL. 2004
|
|
1466
|
HOLDSWORTH ET AL. 2004
|
|
1466
|
|
|
1467
|
|
|
1467
|
Input:
|
|
1468
|
Input:
|
|
1468
|
self.dataOut.data_pre
|
|
1469
|
self.dataOut.data_pre
|
|
1469
|
|
|
1470
|
|
|
1470
|
centerReceiverIndex: From the channels, which is the center receiver
|
|
1471
|
centerReceiverIndex: From the channels, which is the center receiver
|
|
1471
|
|
|
1472
|
|
|
1472
|
hei_ref: Height reference for the Beacon signal extraction
|
|
1473
|
hei_ref: Height reference for the Beacon signal extraction
|
|
1473
|
tauindex:
|
|
1474
|
tauindex:
|
|
1474
|
predefinedPhaseShifts: Predefined phase offset for the voltge signals
|
|
1475
|
predefinedPhaseShifts: Predefined phase offset for the voltge signals
|
|
1475
|
|
|
1476
|
|
|
1476
|
cohDetection: Whether to user Coherent detection or not
|
|
1477
|
cohDetection: Whether to user Coherent detection or not
|
|
1477
|
cohDet_timeStep: Coherent Detection calculation time step
|
|
1478
|
cohDet_timeStep: Coherent Detection calculation time step
|
|
1478
|
cohDet_thresh: Coherent Detection phase threshold to correct phases
|
|
1479
|
cohDet_thresh: Coherent Detection phase threshold to correct phases
|
|
1479
|
|
|
1480
|
|
|
1480
|
noise_timeStep: Noise calculation time step
|
|
1481
|
noise_timeStep: Noise calculation time step
|
|
1481
|
noise_multiple: Noise multiple to define signal threshold
|
|
1482
|
noise_multiple: Noise multiple to define signal threshold
|
|
1482
|
|
|
1483
|
|
|
1483
|
multDet_timeLimit: Multiple Detection Removal time limit in seconds
|
|
1484
|
multDet_timeLimit: Multiple Detection Removal time limit in seconds
|
|
1484
|
multDet_rangeLimit: Multiple Detection Removal range limit in km
|
|
1485
|
multDet_rangeLimit: Multiple Detection Removal range limit in km
|
|
1485
|
|
|
1486
|
|
|
1486
|
phaseThresh: Maximum phase difference between receiver to be consider a meteor
|
|
1487
|
phaseThresh: Maximum phase difference between receiver to be consider a meteor
|
|
1487
|
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
|
|
1488
|
SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
|
|
1488
|
|
|
1489
|
|
|
1489
|
hmin: Minimum Height of the meteor to use it in the further wind estimations
|
|
1490
|
hmin: Minimum Height of the meteor to use it in the further wind estimations
|
|
1490
|
hmax: Maximum Height of the meteor to use it in the further wind estimations
|
|
1491
|
hmax: Maximum Height of the meteor to use it in the further wind estimations
|
|
1491
|
azimuth: Azimuth angle correction
|
|
1492
|
azimuth: Azimuth angle correction
|
|
1492
|
|
|
1493
|
|
|
1493
|
Affected:
|
|
1494
|
Affected:
|
|
1494
|
self.dataOut.data_param
|
|
1495
|
self.dataOut.data_param
|
|
1495
|
|
|
1496
|
|
|
1496
|
Rejection Criteria (Errors):
|
|
1497
|
Rejection Criteria (Errors):
|
|
1497
|
0: No error; analysis OK
|
|
1498
|
0: No error; analysis OK
|
|
1498
|
1: SNR < SNR threshold
|
|
1499
|
1: SNR < SNR threshold
|
|
@@
-1511,9
+1512,9
class SMDetection(Operation):
|
|
1511
|
14: height ambiguous echo: more then one possible height within 70 to 110 km
|
|
1512
|
14: height ambiguous echo: more then one possible height within 70 to 110 km
|
|
1512
|
15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
|
|
1513
|
15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
|
|
1513
|
16: oscilatory echo, indicating event most likely not an underdense echo
|
|
1514
|
16: oscilatory echo, indicating event most likely not an underdense echo
|
|
1514
|
|
|
1515
|
|
|
1515
|
17: phase difference in meteor Reestimation
|
|
1516
|
17: phase difference in meteor Reestimation
|
|
1516
|
|
|
1517
|
|
|
1517
|
Data Storage:
|
|
1518
|
Data Storage:
|
|
1518
|
Meteors for Wind Estimation (8):
|
|
1519
|
Meteors for Wind Estimation (8):
|
|
1519
|
Utc Time | Range Height
|
|
1520
|
Utc Time | Range Height
|
|
@@
-1521,19
+1522,19
class SMDetection(Operation):
|
|
1521
|
VelRad errorVelRad
|
|
1522
|
VelRad errorVelRad
|
|
1522
|
Phase0 Phase1 Phase2 Phase3
|
|
1523
|
Phase0 Phase1 Phase2 Phase3
|
|
1523
|
TypeError
|
|
1524
|
TypeError
|
|
1524
|
|
|
1525
|
|
|
1525
|
'''
|
|
1526
|
'''
|
|
1526
|
|
|
1527
|
|
|
1527
|
def run(self, dataOut, hei_ref = None, tauindex = 0,
|
|
1528
|
def run(self, dataOut, hei_ref = None, tauindex = 0,
|
|
1528
|
phaseOffsets = None,
|
|
1529
|
phaseOffsets = None,
|
|
1529
|
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
|
|
1530
|
cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
|
|
1530
|
noise_timeStep = 4, noise_multiple = 4,
|
|
1531
|
noise_timeStep = 4, noise_multiple = 4,
|
|
1531
|
multDet_timeLimit = 1, multDet_rangeLimit = 3,
|
|
1532
|
multDet_timeLimit = 1, multDet_rangeLimit = 3,
|
|
1532
|
phaseThresh = 20, SNRThresh = 5,
|
|
1533
|
phaseThresh = 20, SNRThresh = 5,
|
|
1533
|
hmin = 50, hmax=150, azimuth = 0,
|
|
1534
|
hmin = 50, hmax=150, azimuth = 0,
|
|
1534
|
channelPositions = None) :
|
|
1535
|
channelPositions = None) :
|
|
1535
|
|
|
1536
|
|
|
1536
|
|
|
1537
|
|
|
1537
|
#Getting Pairslist
|
|
1538
|
#Getting Pairslist
|
|
1538
|
if channelPositions is None:
|
|
1539
|
if channelPositions is None:
|
|
1539
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
1540
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
@@
-1543,53
+1544,53
class SMDetection(Operation):
|
|
1543
|
heiRang = dataOut.getHeiRange()
|
|
1544
|
heiRang = dataOut.getHeiRange()
|
|
1544
|
#Get Beacon signal - No Beacon signal anymore
|
|
1545
|
#Get Beacon signal - No Beacon signal anymore
|
|
1545
|
# newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
|
|
1546
|
# newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
|
|
1546
|
#
|
|
1547
|
#
|
|
1547
|
# if hei_ref != None:
|
|
1548
|
# if hei_ref != None:
|
|
1548
|
# newheis = numpy.where(self.dataOut.heightList>hei_ref)
|
|
1549
|
# newheis = numpy.where(self.dataOut.heightList>hei_ref)
|
|
1549
|
#
|
|
1550
|
#
|
|
1550
|
|
|
1551
|
|
|
1551
|
|
|
1552
|
|
|
1552
|
#****************REMOVING HARDWARE PHASE DIFFERENCES***************
|
|
1553
|
#****************REMOVING HARDWARE PHASE DIFFERENCES***************
|
|
1553
|
# see if the user put in pre defined phase shifts
|
|
1554
|
# see if the user put in pre defined phase shifts
|
|
1554
|
voltsPShift = dataOut.data_pre.copy()
|
|
1555
|
voltsPShift = dataOut.data_pre.copy()
|
|
1555
|
|
|
1556
|
|
|
1556
|
# if predefinedPhaseShifts != None:
|
|
1557
|
# if predefinedPhaseShifts != None:
|
|
1557
|
# hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
|
|
1558
|
# hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
|
|
1558
|
#
|
|
1559
|
#
|
|
1559
|
# # elif beaconPhaseShifts:
|
|
1560
|
# # elif beaconPhaseShifts:
|
|
1560
|
# # #get hardware phase shifts using beacon signal
|
|
1561
|
# # #get hardware phase shifts using beacon signal
|
|
1561
|
# # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
|
|
1562
|
# # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
|
|
1562
|
# # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
|
|
1563
|
# # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
|
|
1563
|
#
|
|
1564
|
#
|
|
1564
|
# else:
|
|
1565
|
# else:
|
|
1565
|
# hardwarePhaseShifts = numpy.zeros(5)
|
|
1566
|
# hardwarePhaseShifts = numpy.zeros(5)
|
|
1566
|
#
|
|
1567
|
#
|
|
1567
|
# voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
|
|
1568
|
# voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
|
|
1568
|
# for i in range(self.dataOut.data_pre.shape[0]):
|
|
1569
|
# for i in range(self.dataOut.data_pre.shape[0]):
|
|
1569
|
# voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
|
|
1570
|
# voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
|
|
1570
|
|
|
1571
|
|
|
1571
|
#******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
|
|
1572
|
#******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
|
|
1572
|
|
|
1573
|
|
|
1573
|
#Remove DC
|
|
1574
|
#Remove DC
|
|
1574
|
voltsDC = numpy.mean(voltsPShift,1)
|
|
1575
|
voltsDC = numpy.mean(voltsPShift,1)
|
|
1575
|
voltsDC = numpy.mean(voltsDC,1)
|
|
1576
|
voltsDC = numpy.mean(voltsDC,1)
|
|
1576
|
for i in range(voltsDC.shape[0]):
|
|
1577
|
for i in range(voltsDC.shape[0]):
|
|
1577
|
voltsPShift[i] = voltsPShift[i] - voltsDC[i]
|
|
1578
|
voltsPShift[i] = voltsPShift[i] - voltsDC[i]
|
|
1578
|
|
|
1579
|
|
|
1579
|
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift
|
|
1580
|
#Don't considerate last heights, theyre used to calculate Hardware Phase Shift
|
|
1580
|
# voltsPShift = voltsPShift[:,:,:newheis[0][0]]
|
|
1581
|
# voltsPShift = voltsPShift[:,:,:newheis[0][0]]
|
|
1581
|
|
|
1582
|
|
|
1582
|
#************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
|
|
1583
|
#************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
|
|
1583
|
#Coherent Detection
|
|
1584
|
#Coherent Detection
|
|
1584
|
if cohDetection:
|
|
1585
|
if cohDetection:
|
|
1585
|
#use coherent detection to get the net power
|
|
1586
|
#use coherent detection to get the net power
|
|
1586
|
cohDet_thresh = cohDet_thresh*numpy.pi/180
|
|
1587
|
cohDet_thresh = cohDet_thresh*numpy.pi/180
|
|
1587
|
voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
|
|
1588
|
voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
|
|
1588
|
|
|
1589
|
|
|
1589
|
#Non-coherent detection!
|
|
1590
|
#Non-coherent detection!
|
|
1590
|
powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
|
|
1591
|
powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
|
|
1591
|
#********** END OF COH/NON-COH POWER CALCULATION**********************
|
|
1592
|
#********** END OF COH/NON-COH POWER CALCULATION**********************
|
|
1592
|
|
|
1593
|
|
|
1593
|
#********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
|
|
1594
|
#********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
|
|
1594
|
#Get noise
|
|
1595
|
#Get noise
|
|
1595
|
noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
|
|
1596
|
noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
|
|
@@
-1599,7
+1600,7
class SMDetection(Operation):
|
|
1599
|
#Meteor echoes detection
|
|
1600
|
#Meteor echoes detection
|
|
1600
|
listMeteors = self.__findMeteors(powerNet, signalThresh)
|
|
1601
|
listMeteors = self.__findMeteors(powerNet, signalThresh)
|
|
1601
|
#******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
|
|
1602
|
#******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
|
|
1602
|
|
|
1603
|
|
|
1603
|
#************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
|
|
1604
|
#************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
|
|
1604
|
#Parameters
|
|
1605
|
#Parameters
|
|
1605
|
heiRange = dataOut.getHeiRange()
|
|
1606
|
heiRange = dataOut.getHeiRange()
|
|
@@
-1609,7
+1610,7
class SMDetection(Operation):
|
|
1609
|
#Multiple detection removals
|
|
1610
|
#Multiple detection removals
|
|
1610
|
listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
|
|
1611
|
listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
|
|
1611
|
#************ END OF REMOVE MULTIPLE DETECTIONS **********************
|
|
1612
|
#************ END OF REMOVE MULTIPLE DETECTIONS **********************
|
|
1612
|
|
|
1613
|
|
|
1613
|
#********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
|
|
1614
|
#********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
|
|
1614
|
#Parameters
|
|
1615
|
#Parameters
|
|
1615
|
phaseThresh = phaseThresh*numpy.pi/180
|
|
1616
|
phaseThresh = phaseThresh*numpy.pi/180
|
|
@@
-1620,40
+1621,40
class SMDetection(Operation):
|
|
1620
|
#Estimation of decay times (Errors N 7, 8, 11)
|
|
1621
|
#Estimation of decay times (Errors N 7, 8, 11)
|
|
1621
|
listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
|
|
1622
|
listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
|
|
1622
|
#******************* END OF METEOR REESTIMATION *******************
|
|
1623
|
#******************* END OF METEOR REESTIMATION *******************
|
|
1623
|
|
|
1624
|
|
|
1624
|
#********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
|
|
1625
|
#********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
|
|
1625
|
#Calculating Radial Velocity (Error N 15)
|
|
1626
|
#Calculating Radial Velocity (Error N 15)
|
|
1626
|
radialStdThresh = 10
|
|
1627
|
radialStdThresh = 10
|
|
1627
|
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
|
|
1628
|
listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
|
|
1628
|
|
|
1629
|
|
|
1629
|
if len(listMeteors4) > 0:
|
|
1630
|
if len(listMeteors4) > 0:
|
|
1630
|
#Setting New Array
|
|
1631
|
#Setting New Array
|
|
1631
|
date = dataOut.utctime
|
|
1632
|
date = dataOut.utctime
|
|
1632
|
arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
|
|
1633
|
arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
|
|
1633
|
|
|
1634
|
|
|
1634
|
#Correcting phase offset
|
|
1635
|
#Correcting phase offset
|
|
1635
|
if phaseOffsets != None:
|
|
1636
|
if phaseOffsets != None:
|
|
1636
|
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
|
|
1637
|
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
|
|
1637
|
arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
|
|
1638
|
arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
|
|
1638
|
|
|
1639
|
|
|
1639
|
#Second Pairslist
|
|
1640
|
#Second Pairslist
|
|
1640
|
pairsList = []
|
|
1641
|
pairsList = []
|
|
1641
|
pairx = (0,1)
|
|
1642
|
pairx = (0,1)
|
|
1642
|
pairy = (2,3)
|
|
1643
|
pairy = (2,3)
|
|
1643
|
pairsList.append(pairx)
|
|
1644
|
pairsList.append(pairx)
|
|
1644
|
pairsList.append(pairy)
|
|
1645
|
pairsList.append(pairy)
|
|
1645
|
|
|
1646
|
|
|
1646
|
jph = numpy.array([0,0,0,0])
|
|
1647
|
jph = numpy.array([0,0,0,0])
|
|
1647
|
h = (hmin,hmax)
|
|
1648
|
h = (hmin,hmax)
|
|
1648
|
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
|
|
1649
|
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
|
|
1649
|
|
|
1650
|
|
|
1650
|
# #Calculate AOA (Error N 3, 4)
|
|
1651
|
# #Calculate AOA (Error N 3, 4)
|
|
1651
|
# #JONES ET AL. 1998
|
|
1652
|
# #JONES ET AL. 1998
|
|
1652
|
# error = arrayParameters[:,-1]
|
|
1653
|
# error = arrayParameters[:,-1]
|
|
1653
|
# AOAthresh = numpy.pi/8
|
|
1654
|
# AOAthresh = numpy.pi/8
|
|
1654
|
# phases = -arrayParameters[:,9:13]
|
|
1655
|
# phases = -arrayParameters[:,9:13]
|
|
1655
|
# arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
|
|
1656
|
# arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
|
|
1656
|
#
|
|
1657
|
#
|
|
1657
|
# #Calculate Heights (Error N 13 and 14)
|
|
1658
|
# #Calculate Heights (Error N 13 and 14)
|
|
1658
|
# error = arrayParameters[:,-1]
|
|
1659
|
# error = arrayParameters[:,-1]
|
|
1659
|
# Ranges = arrayParameters[:,2]
|
|
1660
|
# Ranges = arrayParameters[:,2]
|
|
@@
-1661,73
+1662,73
class SMDetection(Operation):
|
|
1661
|
# arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
|
|
1662
|
# arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
|
|
1662
|
# error = arrayParameters[:,-1]
|
|
1663
|
# error = arrayParameters[:,-1]
|
|
1663
|
#********************* END OF PARAMETERS CALCULATION **************************
|
|
1664
|
#********************* END OF PARAMETERS CALCULATION **************************
|
|
1664
|
|
|
1665
|
|
|
1665
|
#***************************+ PASS DATA TO NEXT STEP **********************
|
|
1666
|
#***************************+ PASS DATA TO NEXT STEP **********************
|
|
1666
|
# arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
|
|
1667
|
# arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
|
|
1667
|
dataOut.data_param = arrayParameters
|
|
1668
|
dataOut.data_param = arrayParameters
|
|
1668
|
|
|
1669
|
|
|
1669
|
if arrayParameters is None:
|
|
1670
|
if arrayParameters is None:
|
|
1670
|
dataOut.flagNoData = True
|
|
1671
|
dataOut.flagNoData = True
|
|
1671
|
else:
|
|
1672
|
else:
|
|
1672
|
dataOut.flagNoData = True
|
|
1673
|
dataOut.flagNoData = True
|
|
1673
|
|
|
1674
|
|
|
1674
|
return
|
|
1675
|
return
|
|
1675
|
|
|
1676
|
|
|
1676
|
def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
|
|
1677
|
def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
|
|
1677
|
|
|
1678
|
|
|
1678
|
minIndex = min(newheis[0])
|
|
1679
|
minIndex = min(newheis[0])
|
|
1679
|
maxIndex = max(newheis[0])
|
|
1680
|
maxIndex = max(newheis[0])
|
|
1680
|
|
|
1681
|
|
|
1681
|
voltage = voltage0[:,:,minIndex:maxIndex+1]
|
|
1682
|
voltage = voltage0[:,:,minIndex:maxIndex+1]
|
|
1682
|
nLength = voltage.shape[1]/n
|
|
1683
|
nLength = voltage.shape[1]/n
|
|
1683
|
nMin = 0
|
|
1684
|
nMin = 0
|
|
1684
|
nMax = 0
|
|
1685
|
nMax = 0
|
|
1685
|
phaseOffset = numpy.zeros((len(pairslist),n))
|
|
1686
|
phaseOffset = numpy.zeros((len(pairslist),n))
|
|
1686
|
|
|
1687
|
|
|
1687
|
for i in range(n):
|
|
1688
|
for i in range(n):
|
|
1688
|
nMax += nLength
|
|
1689
|
nMax += nLength
|
|
1689
|
phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
|
|
1690
|
phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
|
|
1690
|
phaseCCF = numpy.mean(phaseCCF, axis = 2)
|
|
1691
|
phaseCCF = numpy.mean(phaseCCF, axis = 2)
|
|
1691
|
phaseOffset[:,i] = phaseCCF.transpose()
|
|
1692
|
phaseOffset[:,i] = phaseCCF.transpose()
|
|
1692
|
nMin = nMax
|
|
1693
|
nMin = nMax
|
|
1693
|
# phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
|
|
1694
|
# phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
|
|
1694
|
|
|
1695
|
|
|
1695
|
#Remove Outliers
|
|
1696
|
#Remove Outliers
|
|
1696
|
factor = 2
|
|
1697
|
factor = 2
|
|
1697
|
wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
|
|
1698
|
wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
|
|
1698
|
dw = numpy.std(wt,axis = 1)
|
|
1699
|
dw = numpy.std(wt,axis = 1)
|
|
1699
|
dw = dw.reshape((dw.size,1))
|
|
1700
|
dw = dw.reshape((dw.size,1))
|
|
1700
|
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
|
|
1701
|
ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
|
|
1701
|
phaseOffset[ind] = numpy.nan
|
|
1702
|
phaseOffset[ind] = numpy.nan
|
|
1702
|
phaseOffset = stats.nanmean(phaseOffset, axis=1)
|
|
1703
|
phaseOffset = stats.nanmean(phaseOffset, axis=1)
|
|
1703
|
|
|
1704
|
|
|
1704
|
return phaseOffset
|
|
1705
|
return phaseOffset
|
|
1705
|
|
|
1706
|
|
|
1706
|
def __shiftPhase(self, data, phaseShift):
|
|
1707
|
def __shiftPhase(self, data, phaseShift):
|
|
1707
|
#this will shift the phase of a complex number
|
|
1708
|
#this will shift the phase of a complex number
|
|
1708
|
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
|
|
1709
|
dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
|
|
1709
|
return dataShifted
|
|
1710
|
return dataShifted
|
|
1710
|
|
|
1711
|
|
|
1711
|
def __estimatePhaseDifference(self, array, pairslist):
|
|
1712
|
def __estimatePhaseDifference(self, array, pairslist):
|
|
1712
|
nChannel = array.shape[0]
|
|
1713
|
nChannel = array.shape[0]
|
|
1713
|
nHeights = array.shape[2]
|
|
1714
|
nHeights = array.shape[2]
|
|
1714
|
numPairs = len(pairslist)
|
|
1715
|
numPairs = len(pairslist)
|
|
1715
|
# phaseCCF = numpy.zeros((nChannel, 5, nHeights))
|
|
1716
|
# phaseCCF = numpy.zeros((nChannel, 5, nHeights))
|
|
1716
|
phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
|
|
1717
|
phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
|
|
1717
|
|
|
1718
|
|
|
1718
|
#Correct phases
|
|
1719
|
#Correct phases
|
|
1719
|
derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
|
|
1720
|
derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
|
|
1720
|
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
|
|
1721
|
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
|
|
1721
|
|
|
1722
|
|
|
1722
|
if indDer[0].shape[0] > 0:
|
|
1723
|
if indDer[0].shape[0] > 0:
|
|
1723
|
for i in range(indDer[0].shape[0]):
|
|
1724
|
for i in range(indDer[0].shape[0]):
|
|
1724
|
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
|
|
1725
|
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
|
|
1725
|
phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
|
|
1726
|
phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
|
|
1726
|
|
|
1727
|
|
|
1727
|
# for j in range(numSides):
|
|
1728
|
# for j in range(numSides):
|
|
1728
|
# phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
|
|
1729
|
# phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
|
|
1729
|
# phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
|
|
1730
|
# phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
|
|
1730
|
#
|
|
1731
|
#
|
|
1731
|
#Linear
|
|
1732
|
#Linear
|
|
1732
|
phaseInt = numpy.zeros((numPairs,1))
|
|
1733
|
phaseInt = numpy.zeros((numPairs,1))
|
|
1733
|
angAllCCF = phaseCCF[:,[0,1,3,4],0]
|
|
1734
|
angAllCCF = phaseCCF[:,[0,1,3,4],0]
|
|
@@
-1737,16
+1738,16
class SMDetection(Operation):
|
|
1737
|
#Phase Differences
|
|
1738
|
#Phase Differences
|
|
1738
|
phaseDiff = phaseInt - phaseCCF[:,2,:]
|
|
1739
|
phaseDiff = phaseInt - phaseCCF[:,2,:]
|
|
1739
|
phaseArrival = phaseInt.reshape(phaseInt.size)
|
|
1740
|
phaseArrival = phaseInt.reshape(phaseInt.size)
|
|
1740
|
|
|
1741
|
|
|
1741
|
#Dealias
|
|
1742
|
#Dealias
|
|
1742
|
phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
|
|
1743
|
phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
|
|
1743
|
# indAlias = numpy.where(phaseArrival > numpy.pi)
|
|
1744
|
# indAlias = numpy.where(phaseArrival > numpy.pi)
|
|
1744
|
# phaseArrival[indAlias] -= 2*numpy.pi
|
|
1745
|
# phaseArrival[indAlias] -= 2*numpy.pi
|
|
1745
|
# indAlias = numpy.where(phaseArrival < -numpy.pi)
|
|
1746
|
# indAlias = numpy.where(phaseArrival < -numpy.pi)
|
|
1746
|
# phaseArrival[indAlias] += 2*numpy.pi
|
|
1747
|
# phaseArrival[indAlias] += 2*numpy.pi
|
|
1747
|
|
|
1748
|
|
|
1748
|
return phaseDiff, phaseArrival
|
|
1749
|
return phaseDiff, phaseArrival
|
|
1749
|
|
|
1750
|
|
|
1750
|
def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
|
|
1751
|
def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
|
|
1751
|
#this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
|
|
1752
|
#this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
|
|
1752
|
#find the phase shifts of each channel over 1 second intervals
|
|
1753
|
#find the phase shifts of each channel over 1 second intervals
|
|
@@
-1756,25
+1757,25
class SMDetection(Operation):
|
|
1756
|
numHeights = volts.shape[2]
|
|
1757
|
numHeights = volts.shape[2]
|
|
1757
|
nChannel = volts.shape[0]
|
|
1758
|
nChannel = volts.shape[0]
|
|
1758
|
voltsCohDet = volts.copy()
|
|
1759
|
voltsCohDet = volts.copy()
|
|
1759
|
|
|
1760
|
|
|
1760
|
pairsarray = numpy.array(pairslist)
|
|
1761
|
pairsarray = numpy.array(pairslist)
|
|
1761
|
indSides = pairsarray[:,1]
|
|
1762
|
indSides = pairsarray[:,1]
|
|
1762
|
# indSides = numpy.array(range(nChannel))
|
|
1763
|
# indSides = numpy.array(range(nChannel))
|
|
1763
|
# indSides = numpy.delete(indSides, indCenter)
|
|
1764
|
# indSides = numpy.delete(indSides, indCenter)
|
|
1764
|
#
|
|
1765
|
#
|
|
1765
|
# listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
|
|
1766
|
# listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
|
|
1766
|
listBlocks = numpy.array_split(volts, numBlocks, 1)
|
|
1767
|
listBlocks = numpy.array_split(volts, numBlocks, 1)
|
|
1767
|
|
|
1768
|
|
|
1768
|
startInd = 0
|
|
1769
|
startInd = 0
|
|
1769
|
endInd = 0
|
|
1770
|
endInd = 0
|
|
1770
|
|
|
1771
|
|
|
1771
|
for i in range(numBlocks):
|
|
1772
|
for i in range(numBlocks):
|
|
1772
|
startInd = endInd
|
|
1773
|
startInd = endInd
|
|
1773
|
endInd = endInd + listBlocks[i].shape[1]
|
|
1774
|
endInd = endInd + listBlocks[i].shape[1]
|
|
1774
|
|
|
1775
|
|
|
1775
|
arrayBlock = listBlocks[i]
|
|
1776
|
arrayBlock = listBlocks[i]
|
|
1776
|
# arrayBlockCenter = listCenter[i]
|
|
1777
|
# arrayBlockCenter = listCenter[i]
|
|
1777
|
|
|
1778
|
|
|
1778
|
#Estimate the Phase Difference
|
|
1779
|
#Estimate the Phase Difference
|
|
1779
|
phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
|
|
1780
|
phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
|
|
1780
|
#Phase Difference RMS
|
|
1781
|
#Phase Difference RMS
|
|
@@
-1786,21
+1787,21
class SMDetection(Operation):
|
|
1786
|
for j in range(indSides.size):
|
|
1787
|
for j in range(indSides.size):
|
|
1787
|
arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
|
|
1788
|
arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
|
|
1788
|
voltsCohDet[:,startInd:endInd,:] = arrayBlock
|
|
1789
|
voltsCohDet[:,startInd:endInd,:] = arrayBlock
|
|
1789
|
|
|
1790
|
|
|
1790
|
return voltsCohDet
|
|
1791
|
return voltsCohDet
|
|
1791
|
|
|
1792
|
|
|
1792
|
def __calculateCCF(self, volts, pairslist ,laglist):
|
|
1793
|
def __calculateCCF(self, volts, pairslist ,laglist):
|
|
1793
|
|
|
1794
|
|
|
1794
|
nHeights = volts.shape[2]
|
|
1795
|
nHeights = volts.shape[2]
|
|
1795
|
nPoints = volts.shape[1]
|
|
1796
|
nPoints = volts.shape[1]
|
|
1796
|
voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
|
|
1797
|
voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
|
|
1797
|
|
|
1798
|
|
|
1798
|
for i in range(len(pairslist)):
|
|
1799
|
for i in range(len(pairslist)):
|
|
1799
|
volts1 = volts[pairslist[i][0]]
|
|
1800
|
volts1 = volts[pairslist[i][0]]
|
|
1800
|
volts2 = volts[pairslist[i][1]]
|
|
1801
|
volts2 = volts[pairslist[i][1]]
|
|
1801
|
|
|
1802
|
|
|
1802
|
for t in range(len(laglist)):
|
|
1803
|
for t in range(len(laglist)):
|
|
1803
|
idxT = laglist[t]
|
|
1804
|
idxT = laglist[t]
|
|
1804
|
if idxT >= 0:
|
|
1805
|
if idxT >= 0:
|
|
1805
|
vStacked = numpy.vstack((volts2[idxT:,:],
|
|
1806
|
vStacked = numpy.vstack((volts2[idxT:,:],
|
|
1806
|
numpy.zeros((idxT, nHeights),dtype='complex')))
|
|
1807
|
numpy.zeros((idxT, nHeights),dtype='complex')))
|
|
@@
-1808,10
+1809,10
class SMDetection(Operation):
|
|
1808
|
vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
|
|
1809
|
vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
|
|
1809
|
volts2[:(nPoints + idxT),:]))
|
|
1810
|
volts2[:(nPoints + idxT),:]))
|
|
1810
|
voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
|
|
1811
|
voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
|
|
1811
|
|
|
1812
|
|
|
1812
|
vStacked = None
|
|
1813
|
vStacked = None
|
|
1813
|
return voltsCCF
|
|
1814
|
return voltsCCF
|
|
1814
|
|
|
1815
|
|
|
1815
|
def __getNoise(self, power, timeSegment, timeInterval):
|
|
1816
|
def __getNoise(self, power, timeSegment, timeInterval):
|
|
1816
|
numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
|
|
1817
|
numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
|
|
1817
|
numBlocks = int(power.shape[0]/numProfPerBlock)
|
|
1818
|
numBlocks = int(power.shape[0]/numProfPerBlock)
|
|
@@
-1820,100
+1821,100
class SMDetection(Operation):
|
|
1820
|
listPower = numpy.array_split(power, numBlocks, 0)
|
|
1821
|
listPower = numpy.array_split(power, numBlocks, 0)
|
|
1821
|
noise = numpy.zeros((power.shape[0], power.shape[1]))
|
|
1822
|
noise = numpy.zeros((power.shape[0], power.shape[1]))
|
|
1822
|
noise1 = numpy.zeros((power.shape[0], power.shape[1]))
|
|
1823
|
noise1 = numpy.zeros((power.shape[0], power.shape[1]))
|
|
1823
|
|
|
1824
|
|
|
1824
|
startInd = 0
|
|
1825
|
startInd = 0
|
|
1825
|
endInd = 0
|
|
1826
|
endInd = 0
|
|
1826
|
|
|
1827
|
|
|
1827
|
for i in range(numBlocks): #split por canal
|
|
1828
|
for i in range(numBlocks): #split por canal
|
|
1828
|
startInd = endInd
|
|
1829
|
startInd = endInd
|
|
1829
|
endInd = endInd + listPower[i].shape[0]
|
|
1830
|
endInd = endInd + listPower[i].shape[0]
|
|
1830
|
|
|
1831
|
|
|
1831
|
arrayBlock = listPower[i]
|
|
1832
|
arrayBlock = listPower[i]
|
|
1832
|
noiseAux = numpy.mean(arrayBlock, 0)
|
|
1833
|
noiseAux = numpy.mean(arrayBlock, 0)
|
|
1833
|
# noiseAux = numpy.median(noiseAux)
|
|
1834
|
# noiseAux = numpy.median(noiseAux)
|
|
1834
|
# noiseAux = numpy.mean(arrayBlock)
|
|
1835
|
# noiseAux = numpy.mean(arrayBlock)
|
|
1835
|
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
|
|
1836
|
noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
|
|
1836
|
|
|
1837
|
|
|
1837
|
noiseAux1 = numpy.mean(arrayBlock)
|
|
1838
|
noiseAux1 = numpy.mean(arrayBlock)
|
|
1838
|
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
|
|
1839
|
noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
|
|
1839
|
|
|
1840
|
|
|
1840
|
return noise, noise1
|
|
1841
|
return noise, noise1
|
|
1841
|
|
|
1842
|
|
|
1842
|
def __findMeteors(self, power, thresh):
|
|
1843
|
def __findMeteors(self, power, thresh):
|
|
1843
|
nProf = power.shape[0]
|
|
1844
|
nProf = power.shape[0]
|
|
1844
|
nHeights = power.shape[1]
|
|
1845
|
nHeights = power.shape[1]
|
|
1845
|
listMeteors = []
|
|
1846
|
listMeteors = []
|
|
1846
|
|
|
1847
|
|
|
1847
|
for i in range(nHeights):
|
|
1848
|
for i in range(nHeights):
|
|
1848
|
powerAux = power[:,i]
|
|
1849
|
powerAux = power[:,i]
|
|
1849
|
threshAux = thresh[:,i]
|
|
1850
|
threshAux = thresh[:,i]
|
|
1850
|
|
|
1851
|
|
|
1851
|
indUPthresh = numpy.where(powerAux > threshAux)[0]
|
|
1852
|
indUPthresh = numpy.where(powerAux > threshAux)[0]
|
|
1852
|
indDNthresh = numpy.where(powerAux <= threshAux)[0]
|
|
1853
|
indDNthresh = numpy.where(powerAux <= threshAux)[0]
|
|
1853
|
|
|
1854
|
|
|
1854
|
j = 0
|
|
1855
|
j = 0
|
|
1855
|
|
|
1856
|
|
|
1856
|
while (j < indUPthresh.size - 2):
|
|
1857
|
while (j < indUPthresh.size - 2):
|
|
1857
|
if (indUPthresh[j + 2] == indUPthresh[j] + 2):
|
|
1858
|
if (indUPthresh[j + 2] == indUPthresh[j] + 2):
|
|
1858
|
indDNAux = numpy.where(indDNthresh > indUPthresh[j])
|
|
1859
|
indDNAux = numpy.where(indDNthresh > indUPthresh[j])
|
|
1859
|
indDNthresh = indDNthresh[indDNAux]
|
|
1860
|
indDNthresh = indDNthresh[indDNAux]
|
|
1860
|
|
|
1861
|
|
|
1861
|
if (indDNthresh.size > 0):
|
|
1862
|
if (indDNthresh.size > 0):
|
|
1862
|
indEnd = indDNthresh[0] - 1
|
|
1863
|
indEnd = indDNthresh[0] - 1
|
|
1863
|
indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
|
|
1864
|
indInit = indUPthresh[j] if isinstance(indUPthresh[j], (int, float)) else indUPthresh[j][0] ##CHECK!!!!
|
|
1864
|
|
|
1865
|
|
|
1865
|
meteor = powerAux[indInit:indEnd + 1]
|
|
1866
|
meteor = powerAux[indInit:indEnd + 1]
|
|
1866
|
indPeak = meteor.argmax() + indInit
|
|
1867
|
indPeak = meteor.argmax() + indInit
|
|
1867
|
FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
|
|
1868
|
FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
|
|
1868
|
|
|
1869
|
|
|
1869
|
listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
|
|
1870
|
listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
|
|
1870
|
j = numpy.where(indUPthresh == indEnd)[0] + 1
|
|
1871
|
j = numpy.where(indUPthresh == indEnd)[0] + 1
|
|
1871
|
else: j+=1
|
|
1872
|
else: j+=1
|
|
1872
|
else: j+=1
|
|
1873
|
else: j+=1
|
|
1873
|
|
|
1874
|
|
|
1874
|
return listMeteors
|
|
1875
|
return listMeteors
|
|
1875
|
|
|
1876
|
|
|
1876
|
def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
|
|
1877
|
def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
|
|
1877
|
|
|
1878
|
|
|
1878
|
arrayMeteors = numpy.asarray(listMeteors)
|
|
1879
|
arrayMeteors = numpy.asarray(listMeteors)
|
|
1879
|
listMeteors1 = []
|
|
1880
|
listMeteors1 = []
|
|
1880
|
|
|
1881
|
|
|
1881
|
while arrayMeteors.shape[0] > 0:
|
|
1882
|
while arrayMeteors.shape[0] > 0:
|
|
1882
|
FLAs = arrayMeteors[:,4]
|
|
1883
|
FLAs = arrayMeteors[:,4]
|
|
1883
|
maxFLA = FLAs.argmax()
|
|
1884
|
maxFLA = FLAs.argmax()
|
|
1884
|
listMeteors1.append(arrayMeteors[maxFLA,:])
|
|
1885
|
listMeteors1.append(arrayMeteors[maxFLA,:])
|
|
1885
|
|
|
1886
|
|
|
1886
|
MeteorInitTime = arrayMeteors[maxFLA,1]
|
|
1887
|
MeteorInitTime = arrayMeteors[maxFLA,1]
|
|
1887
|
MeteorEndTime = arrayMeteors[maxFLA,3]
|
|
1888
|
MeteorEndTime = arrayMeteors[maxFLA,3]
|
|
1888
|
MeteorHeight = arrayMeteors[maxFLA,0]
|
|
1889
|
MeteorHeight = arrayMeteors[maxFLA,0]
|
|
1889
|
|
|
1890
|
|
|
1890
|
#Check neighborhood
|
|
1891
|
#Check neighborhood
|
|
1891
|
maxHeightIndex = MeteorHeight + rangeLimit
|
|
1892
|
maxHeightIndex = MeteorHeight + rangeLimit
|
|
1892
|
minHeightIndex = MeteorHeight - rangeLimit
|
|
1893
|
minHeightIndex = MeteorHeight - rangeLimit
|
|
1893
|
minTimeIndex = MeteorInitTime - timeLimit
|
|
1894
|
minTimeIndex = MeteorInitTime - timeLimit
|
|
1894
|
maxTimeIndex = MeteorEndTime + timeLimit
|
|
1895
|
maxTimeIndex = MeteorEndTime + timeLimit
|
|
1895
|
|
|
1896
|
|
|
1896
|
#Check Heights
|
|
1897
|
#Check Heights
|
|
1897
|
indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
|
|
1898
|
indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
|
|
1898
|
indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
|
|
1899
|
indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
|
|
1899
|
indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
|
|
1900
|
indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
|
|
1900
|
|
|
1901
|
|
|
1901
|
arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
|
|
1902
|
arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
|
|
1902
|
|
|
1903
|
|
|
1903
|
return listMeteors1
|
|
1904
|
return listMeteors1
|
|
1904
|
|
|
1905
|
|
|
1905
|
def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
|
|
1906
|
def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
|
|
1906
|
numHeights = volts.shape[2]
|
|
1907
|
numHeights = volts.shape[2]
|
|
1907
|
nChannel = volts.shape[0]
|
|
1908
|
nChannel = volts.shape[0]
|
|
1908
|
|
|
1909
|
|
|
1909
|
thresholdPhase = thresh[0]
|
|
1910
|
thresholdPhase = thresh[0]
|
|
1910
|
thresholdNoise = thresh[1]
|
|
1911
|
thresholdNoise = thresh[1]
|
|
1911
|
thresholdDB = float(thresh[2])
|
|
1912
|
thresholdDB = float(thresh[2])
|
|
1912
|
|
|
1913
|
|
|
1913
|
thresholdDB1 = 10**(thresholdDB/10)
|
|
1914
|
thresholdDB1 = 10**(thresholdDB/10)
|
|
1914
|
pairsarray = numpy.array(pairslist)
|
|
1915
|
pairsarray = numpy.array(pairslist)
|
|
1915
|
indSides = pairsarray[:,1]
|
|
1916
|
indSides = pairsarray[:,1]
|
|
1916
|
|
|
1917
|
|
|
1917
|
pairslist1 = list(pairslist)
|
|
1918
|
pairslist1 = list(pairslist)
|
|
1918
|
pairslist1.append((0,4))
|
|
1919
|
pairslist1.append((0,4))
|
|
1919
|
pairslist1.append((1,3))
|
|
1920
|
pairslist1.append((1,3))
|
|
@@
-1922,31
+1923,31
class SMDetection(Operation):
|
|
1922
|
listPowerSeries = []
|
|
1923
|
listPowerSeries = []
|
|
1923
|
listVoltageSeries = []
|
|
1924
|
listVoltageSeries = []
|
|
1924
|
#volts has the war data
|
|
1925
|
#volts has the war data
|
|
1925
|
|
|
1926
|
|
|
1926
|
if frequency == 30.175e6:
|
|
1927
|
if frequency == 30.175e6:
|
|
1927
|
timeLag = 45*10**-3
|
|
1928
|
timeLag = 45*10**-3
|
|
1928
|
else:
|
|
1929
|
else:
|
|
1929
|
timeLag = 15*10**-3
|
|
1930
|
timeLag = 15*10**-3
|
|
1930
|
lag = int(numpy.ceil(timeLag/timeInterval))
|
|
1931
|
lag = int(numpy.ceil(timeLag/timeInterval))
|
|
1931
|
|
|
1932
|
|
|
1932
|
for i in range(len(listMeteors)):
|
|
1933
|
for i in range(len(listMeteors)):
|
|
1933
|
|
|
1934
|
|
|
1934
|
###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
|
|
1935
|
###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
|
|
1935
|
meteorAux = numpy.zeros(16)
|
|
1936
|
meteorAux = numpy.zeros(16)
|
|
1936
|
|
|
1937
|
|
|
1937
|
#Loading meteor Data (mHeight, mStart, mPeak, mEnd)
|
|
1938
|
#Loading meteor Data (mHeight, mStart, mPeak, mEnd)
|
|
1938
|
mHeight = int(listMeteors[i][0])
|
|
1939
|
mHeight = int(listMeteors[i][0])
|
|
1939
|
mStart = int(listMeteors[i][1])
|
|
1940
|
mStart = int(listMeteors[i][1])
|
|
1940
|
mPeak = int(listMeteors[i][2])
|
|
1941
|
mPeak = int(listMeteors[i][2])
|
|
1941
|
mEnd = int(listMeteors[i][3])
|
|
1942
|
mEnd = int(listMeteors[i][3])
|
|
1942
|
|
|
1943
|
|
|
1943
|
#get the volt data between the start and end times of the meteor
|
|
1944
|
#get the volt data between the start and end times of the meteor
|
|
1944
|
meteorVolts = volts[:,mStart:mEnd+1,mHeight]
|
|
1945
|
meteorVolts = volts[:,mStart:mEnd+1,mHeight]
|
|
1945
|
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
|
|
1946
|
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
|
|
1946
|
|
|
1947
|
|
|
1947
|
#3.6. Phase Difference estimation
|
|
1948
|
#3.6. Phase Difference estimation
|
|
1948
|
phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
|
|
1949
|
phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
|
|
1949
|
|
|
1950
|
|
|
1950
|
#3.7. Phase difference removal & meteor start, peak and end times reestimated
|
|
1951
|
#3.7. Phase difference removal & meteor start, peak and end times reestimated
|
|
1951
|
#meteorVolts0.- all Channels, all Profiles
|
|
1952
|
#meteorVolts0.- all Channels, all Profiles
|
|
1952
|
meteorVolts0 = volts[:,:,mHeight]
|
|
1953
|
meteorVolts0 = volts[:,:,mHeight]
|
|
@@
-1954,15
+1955,15
class SMDetection(Operation):
|
|
1954
|
meteorNoise = noise[:,mHeight]
|
|
1955
|
meteorNoise = noise[:,mHeight]
|
|
1955
|
meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
|
|
1956
|
meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
|
|
1956
|
powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
|
|
1957
|
powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
|
|
1957
|
|
|
1958
|
|
|
1958
|
#Times reestimation
|
|
1959
|
#Times reestimation
|
|
1959
|
mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
|
|
1960
|
mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
|
|
1960
|
if mStart1.size > 0:
|
|
1961
|
if mStart1.size > 0:
|
|
1961
|
mStart1 = mStart1[-1] + 1
|
|
1962
|
mStart1 = mStart1[-1] + 1
|
|
1962
|
|
|
1963
|
|
|
1963
|
else:
|
|
1964
|
else:
|
|
1964
|
mStart1 = mPeak
|
|
1965
|
mStart1 = mPeak
|
|
1965
|
|
|
1966
|
|
|
1966
|
mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
|
|
1967
|
mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
|
|
1967
|
mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
|
|
1968
|
mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
|
|
1968
|
if mEndDecayTime1.size == 0:
|
|
1969
|
if mEndDecayTime1.size == 0:
|
|
@@
-1970,7
+1971,7
class SMDetection(Operation):
|
|
1970
|
else:
|
|
1971
|
else:
|
|
1971
|
mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
|
|
1972
|
mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
|
|
1972
|
# mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
|
|
1973
|
# mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
|
|
1973
|
|
|
1974
|
|
|
1974
|
#meteorVolts1.- all Channels, from start to end
|
|
1975
|
#meteorVolts1.- all Channels, from start to end
|
|
1975
|
meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
|
|
1976
|
meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
|
|
1976
|
meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
|
|
1977
|
meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
|
|
@@
-1979,17
+1980,17
class SMDetection(Operation):
|
|
1979
|
meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
|
|
1980
|
meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
|
|
1980
|
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
|
|
1981
|
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
|
|
1981
|
##################### END PARAMETERS REESTIMATION #########################
|
|
1982
|
##################### END PARAMETERS REESTIMATION #########################
|
|
1982
|
|
|
1983
|
|
|
1983
|
##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
|
|
1984
|
##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
|
|
1984
|
# if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
|
|
1985
|
# if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
|
|
1985
|
if meteorVolts2.shape[1] > 0:
|
|
1986
|
if meteorVolts2.shape[1] > 0:
|
|
1986
|
#Phase Difference re-estimation
|
|
1987
|
#Phase Difference re-estimation
|
|
1987
|
phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
|
|
1988
|
phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
|
|
1988
|
# phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
|
|
1989
|
# phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
|
|
1989
|
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
|
|
1990
|
meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
|
|
1990
|
phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
|
|
1991
|
phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
|
|
1991
|
meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
|
|
1992
|
meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
|
|
1992
|
|
|
1993
|
|
|
1993
|
#Phase Difference RMS
|
|
1994
|
#Phase Difference RMS
|
|
1994
|
phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
|
|
1995
|
phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
|
|
1995
|
powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
|
|
1996
|
powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
|
|
@@
-2004,27
+2005,27
class SMDetection(Operation):
|
|
2004
|
#Vectorize
|
|
2005
|
#Vectorize
|
|
2005
|
meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
|
|
2006
|
meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
|
|
2006
|
meteorAux[7:11] = phaseDiffint[0:4]
|
|
2007
|
meteorAux[7:11] = phaseDiffint[0:4]
|
|
2007
|
|
|
2008
|
|
|
2008
|
#Rejection Criterions
|
|
2009
|
#Rejection Criterions
|
|
2009
|
if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
|
|
2010
|
if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
|
|
2010
|
meteorAux[-1] = 17
|
|
2011
|
meteorAux[-1] = 17
|
|
2011
|
elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
|
|
2012
|
elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
|
|
2012
|
meteorAux[-1] = 1
|
|
2013
|
meteorAux[-1] = 1
|
|
2013
|
|
|
2014
|
|
|
2014
|
|
|
2015
|
|
|
2015
|
else:
|
|
2016
|
else:
|
|
2016
|
meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
|
|
2017
|
meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
|
|
2017
|
meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
|
|
2018
|
meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
|
|
2018
|
PowerSeries = 0
|
|
2019
|
PowerSeries = 0
|
|
2019
|
|
|
2020
|
|
|
2020
|
listMeteors1.append(meteorAux)
|
|
2021
|
listMeteors1.append(meteorAux)
|
|
2021
|
listPowerSeries.append(PowerSeries)
|
|
2022
|
listPowerSeries.append(PowerSeries)
|
|
2022
|
listVoltageSeries.append(meteorVolts1)
|
|
2023
|
listVoltageSeries.append(meteorVolts1)
|
|
2023
|
|
|
2024
|
|
|
2024
|
return listMeteors1, listPowerSeries, listVoltageSeries
|
|
2025
|
return listMeteors1, listPowerSeries, listVoltageSeries
|
|
2025
|
|
|
2026
|
|
|
2026
|
def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
|
|
2027
|
def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
|
|
2027
|
|
|
2028
|
|
|
2028
|
threshError = 10
|
|
2029
|
threshError = 10
|
|
2029
|
#Depending if it is 30 or 50 MHz
|
|
2030
|
#Depending if it is 30 or 50 MHz
|
|
2030
|
if frequency == 30.175e6:
|
|
2031
|
if frequency == 30.175e6:
|
|
@@
-2032,22
+2033,22
class SMDetection(Operation):
|
|
2032
|
else:
|
|
2033
|
else:
|
|
2033
|
timeLag = 15*10**-3
|
|
2034
|
timeLag = 15*10**-3
|
|
2034
|
lag = numpy.ceil(timeLag/timeInterval)
|
|
2035
|
lag = numpy.ceil(timeLag/timeInterval)
|
|
2035
|
|
|
2036
|
|
|
2036
|
listMeteors1 = []
|
|
2037
|
listMeteors1 = []
|
|
2037
|
|
|
2038
|
|
|
2038
|
for i in range(len(listMeteors)):
|
|
2039
|
for i in range(len(listMeteors)):
|
|
2039
|
meteorPower = listPower[i]
|
|
2040
|
meteorPower = listPower[i]
|
|
2040
|
meteorAux = listMeteors[i]
|
|
2041
|
meteorAux = listMeteors[i]
|
|
2041
|
|
|
2042
|
|
|
2042
|
if meteorAux[-1] == 0:
|
|
2043
|
if meteorAux[-1] == 0:
|
|
2043
|
|
|
2044
|
|
|
2044
|
try:
|
|
2045
|
try:
|
|
2045
|
indmax = meteorPower.argmax()
|
|
2046
|
indmax = meteorPower.argmax()
|
|
2046
|
indlag = indmax + lag
|
|
2047
|
indlag = indmax + lag
|
|
2047
|
|
|
2048
|
|
|
2048
|
y = meteorPower[indlag:]
|
|
2049
|
y = meteorPower[indlag:]
|
|
2049
|
x = numpy.arange(0, y.size)*timeLag
|
|
2050
|
x = numpy.arange(0, y.size)*timeLag
|
|
2050
|
|
|
2051
|
|
|
2051
|
#first guess
|
|
2052
|
#first guess
|
|
2052
|
a = y[0]
|
|
2053
|
a = y[0]
|
|
2053
|
tau = timeLag
|
|
2054
|
tau = timeLag
|
|
@@
-2056,26
+2057,26
class SMDetection(Operation):
|
|
2056
|
y1 = self.__exponential_function(x, *popt)
|
|
2057
|
y1 = self.__exponential_function(x, *popt)
|
|
2057
|
#error estimation
|
|
2058
|
#error estimation
|
|
2058
|
error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
|
|
2059
|
error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
|
|
2059
|
|
|
2060
|
|
|
2060
|
decayTime = popt[1]
|
|
2061
|
decayTime = popt[1]
|
|
2061
|
riseTime = indmax*timeInterval
|
|
2062
|
riseTime = indmax*timeInterval
|
|
2062
|
meteorAux[11:13] = [decayTime, error]
|
|
2063
|
meteorAux[11:13] = [decayTime, error]
|
|
2063
|
|
|
2064
|
|
|
2064
|
#Table items 7, 8 and 11
|
|
2065
|
#Table items 7, 8 and 11
|
|
2065
|
if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
|
|
2066
|
if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
|
|
2066
|
meteorAux[-1] = 7
|
|
2067
|
meteorAux[-1] = 7
|
|
2067
|
elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
|
|
2068
|
elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
|
|
2068
|
meteorAux[-1] = 8
|
|
2069
|
meteorAux[-1] = 8
|
|
2069
|
if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
|
|
2070
|
if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
|
|
2070
|
meteorAux[-1] = 11
|
|
2071
|
meteorAux[-1] = 11
|
|
2071
|
|
|
2072
|
|
|
2072
|
|
|
2073
|
|
|
2073
|
except:
|
|
2074
|
except:
|
|
2074
|
meteorAux[-1] = 11
|
|
2075
|
meteorAux[-1] = 11
|
|
2075
|
|
|
2076
|
|
|
2076
|
|
|
2077
|
|
|
2077
|
listMeteors1.append(meteorAux)
|
|
2078
|
listMeteors1.append(meteorAux)
|
|
2078
|
|
|
2079
|
|
|
2079
|
return listMeteors1
|
|
2080
|
return listMeteors1
|
|
2080
|
|
|
2081
|
|
|
2081
|
#Exponential Function
|
|
2082
|
#Exponential Function
|
|
@@
-2083,9
+2084,9
class SMDetection(Operation):
|
|
2083
|
def __exponential_function(self, x, a, tau):
|
|
2084
|
def __exponential_function(self, x, a, tau):
|
|
2084
|
y = a*numpy.exp(-x/tau)
|
|
2085
|
y = a*numpy.exp(-x/tau)
|
|
2085
|
return y
|
|
2086
|
return y
|
|
2086
|
|
|
2087
|
|
|
2087
|
def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
|
|
2088
|
def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
|
|
2088
|
|
|
2089
|
|
|
2089
|
pairslist1 = list(pairslist)
|
|
2090
|
pairslist1 = list(pairslist)
|
|
2090
|
pairslist1.append((0,4))
|
|
2091
|
pairslist1.append((0,4))
|
|
2091
|
pairslist1.append((1,3))
|
|
2092
|
pairslist1.append((1,3))
|
|
@@
-2095,33
+2096,33
class SMDetection(Operation):
|
|
2095
|
c = 3e8
|
|
2096
|
c = 3e8
|
|
2096
|
lag = numpy.ceil(timeLag/timeInterval)
|
|
2097
|
lag = numpy.ceil(timeLag/timeInterval)
|
|
2097
|
freq = 30.175e6
|
|
2098
|
freq = 30.175e6
|
|
2098
|
|
|
2099
|
|
|
2099
|
listMeteors1 = []
|
|
2100
|
listMeteors1 = []
|
|
2100
|
|
|
2101
|
|
|
2101
|
for i in range(len(listMeteors)):
|
|
2102
|
for i in range(len(listMeteors)):
|
|
2102
|
meteorAux = listMeteors[i]
|
|
2103
|
meteorAux = listMeteors[i]
|
|
2103
|
if meteorAux[-1] == 0:
|
|
2104
|
if meteorAux[-1] == 0:
|
|
2104
|
mStart = listMeteors[i][1]
|
|
2105
|
mStart = listMeteors[i][1]
|
|
2105
|
mPeak = listMeteors[i][2]
|
|
2106
|
mPeak = listMeteors[i][2]
|
|
2106
|
mLag = mPeak - mStart + lag
|
|
2107
|
mLag = mPeak - mStart + lag
|
|
2107
|
|
|
2108
|
|
|
2108
|
#get the volt data between the start and end times of the meteor
|
|
2109
|
#get the volt data between the start and end times of the meteor
|
|
2109
|
meteorVolts = listVolts[i]
|
|
2110
|
meteorVolts = listVolts[i]
|
|
2110
|
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
|
|
2111
|
meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
|
|
2111
|
|
|
2112
|
|
|
2112
|
#Get CCF
|
|
2113
|
#Get CCF
|
|
2113
|
allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
|
|
2114
|
allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
|
|
2114
|
|
|
2115
|
|
|
2115
|
#Method 2
|
|
2116
|
#Method 2
|
|
2116
|
slopes = numpy.zeros(numPairs)
|
|
2117
|
slopes = numpy.zeros(numPairs)
|
|
2117
|
time = numpy.array([-2,-1,1,2])*timeInterval
|
|
2118
|
time = numpy.array([-2,-1,1,2])*timeInterval
|
|
2118
|
angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
|
|
2119
|
angAllCCF = numpy.angle(allCCFs[:,[0,4,2,3],0])
|
|
2119
|
|
|
2120
|
|
|
2120
|
#Correct phases
|
|
2121
|
#Correct phases
|
|
2121
|
derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
|
|
2122
|
derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
|
|
2122
|
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
|
|
2123
|
indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
|
|
2123
|
|
|
2124
|
|
|
2124
|
if indDer[0].shape[0] > 0:
|
|
2125
|
if indDer[0].shape[0] > 0:
|
|
2125
|
for i in range(indDer[0].shape[0]):
|
|
2126
|
for i in range(indDer[0].shape[0]):
|
|
2126
|
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
|
|
2127
|
signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
|
|
2127
|
angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
|
|
2128
|
angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
|
|
@@
-2130,51
+2131,51
class SMDetection(Operation):
|
|
2130
|
for j in range(numPairs):
|
|
2131
|
for j in range(numPairs):
|
|
2131
|
fit = stats.linregress(time, angAllCCF[j,:])
|
|
2132
|
fit = stats.linregress(time, angAllCCF[j,:])
|
|
2132
|
slopes[j] = fit[0]
|
|
2133
|
slopes[j] = fit[0]
|
|
2133
|
|
|
2134
|
|
|
2134
|
#Remove Outlier
|
|
2135
|
#Remove Outlier
|
|
2135
|
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
|
|
2136
|
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
|
|
2136
|
# slopes = numpy.delete(slopes,indOut)
|
|
2137
|
# slopes = numpy.delete(slopes,indOut)
|
|
2137
|
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
|
|
2138
|
# indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
|
|
2138
|
# slopes = numpy.delete(slopes,indOut)
|
|
2139
|
# slopes = numpy.delete(slopes,indOut)
|
|
2139
|
|
|
2140
|
|
|
2140
|
radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
|
|
2141
|
radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
|
|
2141
|
radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
|
|
2142
|
radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
|
|
2142
|
meteorAux[-2] = radialError
|
|
2143
|
meteorAux[-2] = radialError
|
|
2143
|
meteorAux[-3] = radialVelocity
|
|
2144
|
meteorAux[-3] = radialVelocity
|
|
2144
|
|
|
2145
|
|
|
2145
|
#Setting Error
|
|
2146
|
#Setting Error
|
|
2146
|
#Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
|
|
2147
|
#Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
|
|
2147
|
if numpy.abs(radialVelocity) > 200:
|
|
2148
|
if numpy.abs(radialVelocity) > 200:
|
|
2148
|
meteorAux[-1] = 15
|
|
2149
|
meteorAux[-1] = 15
|
|
2149
|
#Number 12: Poor fit to CCF variation for estimation of radial drift velocity
|
|
2150
|
#Number 12: Poor fit to CCF variation for estimation of radial drift velocity
|
|
2150
|
elif radialError > radialStdThresh:
|
|
2151
|
elif radialError > radialStdThresh:
|
|
2151
|
meteorAux[-1] = 12
|
|
2152
|
meteorAux[-1] = 12
|
|
2152
|
|
|
2153
|
|
|
2153
|
listMeteors1.append(meteorAux)
|
|
2154
|
listMeteors1.append(meteorAux)
|
|
2154
|
return listMeteors1
|
|
2155
|
return listMeteors1
|
|
2155
|
|
|
2156
|
|
|
2156
|
def __setNewArrays(self, listMeteors, date, heiRang):
|
|
2157
|
def __setNewArrays(self, listMeteors, date, heiRang):
|
|
2157
|
|
|
2158
|
|
|
2158
|
#New arrays
|
|
2159
|
#New arrays
|
|
2159
|
arrayMeteors = numpy.array(listMeteors)
|
|
2160
|
arrayMeteors = numpy.array(listMeteors)
|
|
2160
|
arrayParameters = numpy.zeros((len(listMeteors), 13))
|
|
2161
|
arrayParameters = numpy.zeros((len(listMeteors), 13))
|
|
2161
|
|
|
2162
|
|
|
2162
|
#Date inclusion
|
|
2163
|
#Date inclusion
|
|
2163
|
# date = re.findall(r'\((.*?)\)', date)
|
|
2164
|
# date = re.findall(r'\((.*?)\)', date)
|
|
2164
|
# date = date[0].split(',')
|
|
2165
|
# date = date[0].split(',')
|
|
2165
|
# date = map(int, date)
|
|
2166
|
# date = map(int, date)
|
|
2166
|
#
|
|
2167
|
#
|
|
2167
|
# if len(date)<6:
|
|
2168
|
# if len(date)<6:
|
|
2168
|
# date.append(0)
|
|
2169
|
# date.append(0)
|
|
2169
|
#
|
|
2170
|
#
|
|
2170
|
# date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
|
|
2171
|
# date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
|
|
2171
|
# arrayDate = numpy.tile(date, (len(listMeteors), 1))
|
|
2172
|
# arrayDate = numpy.tile(date, (len(listMeteors), 1))
|
|
2172
|
arrayDate = numpy.tile(date, (len(listMeteors)))
|
|
2173
|
arrayDate = numpy.tile(date, (len(listMeteors)))
|
|
2173
|
|
|
2174
|
|
|
2174
|
#Meteor array
|
|
2175
|
#Meteor array
|
|
2175
|
# arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
|
|
2176
|
# arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
|
|
2176
|
# arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
|
|
2177
|
# arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
|
|
2177
|
|
|
2178
|
|
|
2178
|
#Parameters Array
|
|
2179
|
#Parameters Array
|
|
2179
|
arrayParameters[:,0] = arrayDate #Date
|
|
2180
|
arrayParameters[:,0] = arrayDate #Date
|
|
2180
|
arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
|
|
2181
|
arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
|
|
@@
-2182,13
+2183,13
class SMDetection(Operation):
|
|
2182
|
arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
|
|
2183
|
arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
|
|
2183
|
arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
|
|
2184
|
arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
|
|
2184
|
|
|
2185
|
|
|
2185
|
|
|
2186
|
|
|
2186
|
return arrayParameters
|
|
2187
|
return arrayParameters
|
|
2187
|
|
|
2188
|
|
|
2188
|
class CorrectSMPhases(Operation):
|
|
2189
|
class CorrectSMPhases(Operation):
|
|
2189
|
|
|
2190
|
|
|
2190
|
def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
|
|
2191
|
def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
|
|
2191
|
|
|
2192
|
|
|
2192
|
arrayParameters = dataOut.data_param
|
|
2193
|
arrayParameters = dataOut.data_param
|
|
2193
|
pairsList = []
|
|
2194
|
pairsList = []
|
|
2194
|
pairx = (0,1)
|
|
2195
|
pairx = (0,1)
|
|
@@
-2196,51
+2197,51
class CorrectSMPhases(Operation):
|
|
2196
|
pairsList.append(pairx)
|
|
2197
|
pairsList.append(pairx)
|
|
2197
|
pairsList.append(pairy)
|
|
2198
|
pairsList.append(pairy)
|
|
2198
|
jph = numpy.zeros(4)
|
|
2199
|
jph = numpy.zeros(4)
|
|
2199
|
|
|
2200
|
|
|
2200
|
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
|
|
2201
|
phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
|
|
2201
|
# arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
|
|
2202
|
# arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
|
|
2202
|
arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
|
|
2203
|
arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
|
|
2203
|
|
|
2204
|
|
|
2204
|
meteorOps = SMOperations()
|
|
2205
|
meteorOps = SMOperations()
|
|
2205
|
if channelPositions is None:
|
|
2206
|
if channelPositions is None:
|
|
2206
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
2207
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
2207
|
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
|
|
2208
|
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
|
|
2208
|
|
|
2209
|
|
|
2209
|
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
|
|
2210
|
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
|
|
2210
|
h = (hmin,hmax)
|
|
2211
|
h = (hmin,hmax)
|
|
2211
|
|
|
2212
|
|
|
2212
|
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
|
|
2213
|
arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
|
|
2213
|
|
|
2214
|
|
|
2214
|
dataOut.data_param = arrayParameters
|
|
2215
|
dataOut.data_param = arrayParameters
|
|
2215
|
return
|
|
2216
|
return
|
|
2216
|
|
|
2217
|
|
|
2217
|
class SMPhaseCalibration(Operation):
|
|
2218
|
class SMPhaseCalibration(Operation):
|
|
2218
|
|
|
2219
|
|
|
2219
|
__buffer = None
|
|
2220
|
__buffer = None
|
|
2220
|
|
|
2221
|
|
|
2221
|
__initime = None
|
|
2222
|
__initime = None
|
|
2222
|
|
|
2223
|
|
|
2223
|
__dataReady = False
|
|
2224
|
__dataReady = False
|
|
2224
|
|
|
2225
|
|
|
2225
|
__isConfig = False
|
|
2226
|
__isConfig = False
|
|
2226
|
|
|
2227
|
|
|
2227
|
def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
|
|
2228
|
def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
|
|
2228
|
|
|
2229
|
|
|
2229
|
dataTime = currentTime + paramInterval
|
|
2230
|
dataTime = currentTime + paramInterval
|
|
2230
|
deltaTime = dataTime - initTime
|
|
2231
|
deltaTime = dataTime - initTime
|
|
2231
|
|
|
2232
|
|
|
2232
|
if deltaTime >= outputInterval or deltaTime < 0:
|
|
2233
|
if deltaTime >= outputInterval or deltaTime < 0:
|
|
2233
|
return True
|
|
2234
|
return True
|
|
2234
|
|
|
2235
|
|
|
2235
|
return False
|
|
2236
|
return False
|
|
2236
|
|
|
2237
|
|
|
2237
|
def __getGammas(self, pairs, d, phases):
|
|
2238
|
def __getGammas(self, pairs, d, phases):
|
|
2238
|
gammas = numpy.zeros(2)
|
|
2239
|
gammas = numpy.zeros(2)
|
|
2239
|
|
|
2240
|
|
|
2240
|
for i in range(len(pairs)):
|
|
2241
|
for i in range(len(pairs)):
|
|
2241
|
|
|
2242
|
|
|
2242
|
pairi = pairs[i]
|
|
2243
|
pairi = pairs[i]
|
|
2243
|
|
|
2244
|
|
|
2244
|
phip3 = phases[:,pairi[1]]
|
|
2245
|
phip3 = phases[:,pairi[1]]
|
|
2245
|
d3 = d[pairi[1]]
|
|
2246
|
d3 = d[pairi[1]]
|
|
2246
|
phip2 = phases[:,pairi[0]]
|
|
2247
|
phip2 = phases[:,pairi[0]]
|
|
@@
-2252,7
+2253,7
class SMPhaseCalibration(Operation):
|
|
2252
|
jgamma = numpy.angle(numpy.exp(1j*jgamma))
|
|
2253
|
jgamma = numpy.angle(numpy.exp(1j*jgamma))
|
|
2253
|
# jgamma[jgamma>numpy.pi] -= 2*numpy.pi
|
|
2254
|
# jgamma[jgamma>numpy.pi] -= 2*numpy.pi
|
|
2254
|
# jgamma[jgamma<-numpy.pi] += 2*numpy.pi
|
|
2255
|
# jgamma[jgamma<-numpy.pi] += 2*numpy.pi
|
|
2255
|
|
|
2256
|
|
|
2256
|
#Revised distribution
|
|
2257
|
#Revised distribution
|
|
2257
|
jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
|
|
2258
|
jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
|
|
2258
|
|
|
2259
|
|
|
@@
-2261,39
+2262,39
class SMPhaseCalibration(Operation):
|
|
2261
|
rmin = -0.5*numpy.pi
|
|
2262
|
rmin = -0.5*numpy.pi
|
|
2262
|
rmax = 0.5*numpy.pi
|
|
2263
|
rmax = 0.5*numpy.pi
|
|
2263
|
phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
|
|
2264
|
phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
|
|
2264
|
|
|
2265
|
|
|
2265
|
meteorsY = phaseHisto[0]
|
|
2266
|
meteorsY = phaseHisto[0]
|
|
2266
|
phasesX = phaseHisto[1][:-1]
|
|
2267
|
phasesX = phaseHisto[1][:-1]
|
|
2267
|
width = phasesX[1] - phasesX[0]
|
|
2268
|
width = phasesX[1] - phasesX[0]
|
|
2268
|
phasesX += width/2
|
|
2269
|
phasesX += width/2
|
|
2269
|
|
|
2270
|
|
|
2270
|
#Gaussian aproximation
|
|
2271
|
#Gaussian aproximation
|
|
2271
|
bpeak = meteorsY.argmax()
|
|
2272
|
bpeak = meteorsY.argmax()
|
|
2272
|
peak = meteorsY.max()
|
|
2273
|
peak = meteorsY.max()
|
|
2273
|
jmin = bpeak - 5
|
|
2274
|
jmin = bpeak - 5
|
|
2274
|
jmax = bpeak + 5 + 1
|
|
2275
|
jmax = bpeak + 5 + 1
|
|
2275
|
|
|
2276
|
|
|
2276
|
if jmin<0:
|
|
2277
|
if jmin<0:
|
|
2277
|
jmin = 0
|
|
2278
|
jmin = 0
|
|
2278
|
jmax = 6
|
|
2279
|
jmax = 6
|
|
2279
|
elif jmax > meteorsY.size:
|
|
2280
|
elif jmax > meteorsY.size:
|
|
2280
|
jmin = meteorsY.size - 6
|
|
2281
|
jmin = meteorsY.size - 6
|
|
2281
|
jmax = meteorsY.size
|
|
2282
|
jmax = meteorsY.size
|
|
2282
|
|
|
2283
|
|
|
2283
|
x0 = numpy.array([peak,bpeak,50])
|
|
2284
|
x0 = numpy.array([peak,bpeak,50])
|
|
2284
|
coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
|
|
2285
|
coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
|
|
2285
|
|
|
2286
|
|
|
2286
|
#Gammas
|
|
2287
|
#Gammas
|
|
2287
|
gammas[i] = coeff[0][1]
|
|
2288
|
gammas[i] = coeff[0][1]
|
|
2288
|
|
|
2289
|
|
|
2289
|
return gammas
|
|
2290
|
return gammas
|
|
2290
|
|
|
2291
|
|
|
2291
|
def __residualFunction(self, coeffs, y, t):
|
|
2292
|
def __residualFunction(self, coeffs, y, t):
|
|
2292
|
|
|
2293
|
|
|
2293
|
return y - self.__gauss_function(t, coeffs)
|
|
2294
|
return y - self.__gauss_function(t, coeffs)
|
|
2294
|
|
|
2295
|
|
|
2295
|
def __gauss_function(self, t, coeffs):
|
|
2296
|
def __gauss_function(self, t, coeffs):
|
|
2296
|
|
|
2297
|
|
|
2297
|
return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
|
|
2298
|
return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
|
|
2298
|
|
|
2299
|
|
|
2299
|
def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
|
|
2300
|
def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
|
|
@@
-2305,58
+2306,58
class SMPhaseCalibration(Operation):
|
|
2305
|
center_yangle = 0
|
|
2306
|
center_yangle = 0
|
|
2306
|
range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
|
|
2307
|
range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
|
|
2307
|
ntimes = len(range_angle)
|
|
2308
|
ntimes = len(range_angle)
|
|
2308
|
|
|
2309
|
|
|
2309
|
nstepsx = 20.0
|
|
2310
|
nstepsx = 20.0
|
|
2310
|
nstepsy = 20.0
|
|
2311
|
nstepsy = 20.0
|
|
2311
|
|
|
2312
|
|
|
2312
|
for iz in range(ntimes):
|
|
2313
|
for iz in range(ntimes):
|
|
2313
|
min_xangle = -range_angle[iz]/2 + center_xangle
|
|
2314
|
min_xangle = -range_angle[iz]/2 + center_xangle
|
|
2314
|
max_xangle = range_angle[iz]/2 + center_xangle
|
|
2315
|
max_xangle = range_angle[iz]/2 + center_xangle
|
|
2315
|
min_yangle = -range_angle[iz]/2 + center_yangle
|
|
2316
|
min_yangle = -range_angle[iz]/2 + center_yangle
|
|
2316
|
max_yangle = range_angle[iz]/2 + center_yangle
|
|
2317
|
max_yangle = range_angle[iz]/2 + center_yangle
|
|
2317
|
|
|
2318
|
|
|
2318
|
inc_x = (max_xangle-min_xangle)/nstepsx
|
|
2319
|
inc_x = (max_xangle-min_xangle)/nstepsx
|
|
2319
|
inc_y = (max_yangle-min_yangle)/nstepsy
|
|
2320
|
inc_y = (max_yangle-min_yangle)/nstepsy
|
|
2320
|
|
|
2321
|
|
|
2321
|
alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
|
|
2322
|
alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
|
|
2322
|
alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
|
|
2323
|
alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
|
|
2323
|
penalty = numpy.zeros((nstepsx,nstepsy))
|
|
2324
|
penalty = numpy.zeros((nstepsx,nstepsy))
|
|
2324
|
jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
|
|
2325
|
jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
|
|
2325
|
jph = numpy.zeros(nchan)
|
|
2326
|
jph = numpy.zeros(nchan)
|
|
2326
|
|
|
2327
|
|
|
2327
|
# Iterations looking for the offset
|
|
2328
|
# Iterations looking for the offset
|
|
2328
|
for iy in range(int(nstepsy)):
|
|
2329
|
for iy in range(int(nstepsy)):
|
|
2329
|
for ix in range(int(nstepsx)):
|
|
2330
|
for ix in range(int(nstepsx)):
|
|
2330
|
jph[pairy[1]] = alpha_y[iy]
|
|
2331
|
jph[pairy[1]] = alpha_y[iy]
|
|
2331
|
jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
|
|
2332
|
jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
|
|
2332
|
|
|
2333
|
|
|
2333
|
jph[pairx[1]] = alpha_x[ix]
|
|
2334
|
jph[pairx[1]] = alpha_x[ix]
|
|
2334
|
jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
|
|
2335
|
jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
|
|
2335
|
|
|
2336
|
|
|
2336
|
jph_array[:,ix,iy] = jph
|
|
2337
|
jph_array[:,ix,iy] = jph
|
|
2337
|
|
|
2338
|
|
|
2338
|
meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
|
|
2339
|
meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
|
|
2339
|
error = meteorsArray1[:,-1]
|
|
2340
|
error = meteorsArray1[:,-1]
|
|
2340
|
ind1 = numpy.where(error==0)[0]
|
|
2341
|
ind1 = numpy.where(error==0)[0]
|
|
2341
|
penalty[ix,iy] = ind1.size
|
|
2342
|
penalty[ix,iy] = ind1.size
|
|
2342
|
|
|
2343
|
|
|
2343
|
i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
|
|
2344
|
i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
|
|
2344
|
phOffset = jph_array[:,i,j]
|
|
2345
|
phOffset = jph_array[:,i,j]
|
|
2345
|
|
|
2346
|
|
|
2346
|
center_xangle = phOffset[pairx[1]]
|
|
2347
|
center_xangle = phOffset[pairx[1]]
|
|
2347
|
center_yangle = phOffset[pairy[1]]
|
|
2348
|
center_yangle = phOffset[pairy[1]]
|
|
2348
|
|
|
2349
|
|
|
2349
|
phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
|
|
2350
|
phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
|
|
2350
|
phOffset = phOffset*180/numpy.pi
|
|
2351
|
phOffset = phOffset*180/numpy.pi
|
|
2351
|
return phOffset
|
|
2352
|
return phOffset
|
|
2352
|
|
|
2353
|
|
|
2353
|
|
|
2354
|
|
|
2354
|
def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
|
|
2355
|
def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
|
|
2355
|
|
|
2356
|
|
|
2356
|
dataOut.flagNoData = True
|
|
2357
|
dataOut.flagNoData = True
|
|
2357
|
self.__dataReady = False
|
|
2358
|
self.__dataReady = False
|
|
2358
|
dataOut.outputInterval = nHours*3600
|
|
2359
|
dataOut.outputInterval = nHours*3600
|
|
2359
|
|
|
2360
|
|
|
2360
|
if self.__isConfig == False:
|
|
2361
|
if self.__isConfig == False:
|
|
2361
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
2362
|
# self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
|
|
2362
|
#Get Initial LTC time
|
|
2363
|
#Get Initial LTC time
|
|
@@
-2364,19
+2365,19
class SMPhaseCalibration(Operation):
|
|
2364
|
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
2365
|
self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
|
|
2365
|
|
|
2366
|
|
|
2366
|
self.__isConfig = True
|
|
2367
|
self.__isConfig = True
|
|
2367
|
|
|
2368
|
|
|
2368
|
if self.__buffer is None:
|
|
2369
|
if self.__buffer is None:
|
|
2369
|
self.__buffer = dataOut.data_param.copy()
|
|
2370
|
self.__buffer = dataOut.data_param.copy()
|
|
2370
|
|
|
2371
|
|
|
2371
|
else:
|
|
2372
|
else:
|
|
2372
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
2373
|
self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
|
|
2373
|
|
|
2374
|
|
|
2374
|
self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
2375
|
self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
|
|
2375
|
|
|
2376
|
|
|
2376
|
if self.__dataReady:
|
|
2377
|
if self.__dataReady:
|
|
2377
|
dataOut.utctimeInit = self.__initime
|
|
2378
|
dataOut.utctimeInit = self.__initime
|
|
2378
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
2379
|
self.__initime += dataOut.outputInterval #to erase time offset
|
|
2379
|
|
|
2380
|
|
|
2380
|
freq = dataOut.frequency
|
|
2381
|
freq = dataOut.frequency
|
|
2381
|
c = dataOut.C #m/s
|
|
2382
|
c = dataOut.C #m/s
|
|
2382
|
lamb = c/freq
|
|
2383
|
lamb = c/freq
|
|
@@
-2384,7
+2385,7
class SMPhaseCalibration(Operation):
|
|
2384
|
azimuth = 0
|
|
2385
|
azimuth = 0
|
|
2385
|
h = (hmin, hmax)
|
|
2386
|
h = (hmin, hmax)
|
|
2386
|
pairs = ((0,1),(2,3))
|
|
2387
|
pairs = ((0,1),(2,3))
|
|
2387
|
|
|
2388
|
|
|
2388
|
if channelPositions is None:
|
|
2389
|
if channelPositions is None:
|
|
2389
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
2390
|
# channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
|
|
2390
|
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
|
|
2391
|
channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
|
|
@@
-2392,7
+2393,7
class SMPhaseCalibration(Operation):
|
|
2392
|
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
|
|
2393
|
pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
|
|
2393
|
|
|
2394
|
|
|
2394
|
# distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
|
|
2395
|
# distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
|
|
2395
|
|
|
2396
|
|
|
2396
|
meteorsArray = self.__buffer
|
|
2397
|
meteorsArray = self.__buffer
|
|
2397
|
error = meteorsArray[:,-1]
|
|
2398
|
error = meteorsArray[:,-1]
|
|
2398
|
boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
|
|
2399
|
boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
|
|
@@
-2400,7
+2401,7
class SMPhaseCalibration(Operation):
|
|
2400
|
meteorsArray = meteorsArray[ind1,:]
|
|
2401
|
meteorsArray = meteorsArray[ind1,:]
|
|
2401
|
meteorsArray[:,-1] = 0
|
|
2402
|
meteorsArray[:,-1] = 0
|
|
2402
|
phases = meteorsArray[:,8:12]
|
|
2403
|
phases = meteorsArray[:,8:12]
|
|
2403
|
|
|
2404
|
|
|
2404
|
#Calculate Gammas
|
|
2405
|
#Calculate Gammas
|
|
2405
|
gammas = self.__getGammas(pairs, distances, phases)
|
|
2406
|
gammas = self.__getGammas(pairs, distances, phases)
|
|
2406
|
# gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
|
|
2407
|
# gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
|
|
@@
-2411,22
+2412,22
class SMPhaseCalibration(Operation):
|
|
2411
|
dataOut.flagNoData = False
|
|
2412
|
dataOut.flagNoData = False
|
|
2412
|
dataOut.channelList = pairslist0
|
|
2413
|
dataOut.channelList = pairslist0
|
|
2413
|
self.__buffer = None
|
|
2414
|
self.__buffer = None
|
|
2414
|
|
|
2415
|
|
|
2415
|
|
|
2416
|
|
|
2416
|
return
|
|
2417
|
return
|
|
2417
|
|
|
2418
|
|
|
2418
|
class SMOperations():
|
|
2419
|
class SMOperations():
|
|
2419
|
|
|
2420
|
|
|
2420
|
def __init__(self):
|
|
2421
|
def __init__(self):
|
|
2421
|
|
|
2422
|
|
|
2422
|
return
|
|
2423
|
return
|
|
2423
|
|
|
2424
|
|
|
2424
|
def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
|
|
2425
|
def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
|
|
2425
|
|
|
2426
|
|
|
2426
|
arrayParameters = arrayParameters0.copy()
|
|
2427
|
arrayParameters = arrayParameters0.copy()
|
|
2427
|
hmin = h[0]
|
|
2428
|
hmin = h[0]
|
|
2428
|
hmax = h[1]
|
|
2429
|
hmax = h[1]
|
|
2429
|
|
|
2430
|
|
|
2430
|
#Calculate AOA (Error N 3, 4)
|
|
2431
|
#Calculate AOA (Error N 3, 4)
|
|
2431
|
#JONES ET AL. 1998
|
|
2432
|
#JONES ET AL. 1998
|
|
2432
|
AOAthresh = numpy.pi/8
|
|
2433
|
AOAthresh = numpy.pi/8
|
|
@@
-2434,72
+2435,72
class SMOperations():
|
|
2434
|
phases = -arrayParameters[:,8:12] + jph
|
|
2435
|
phases = -arrayParameters[:,8:12] + jph
|
|
2435
|
# phases = numpy.unwrap(phases)
|
|
2436
|
# phases = numpy.unwrap(phases)
|
|
2436
|
arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
|
|
2437
|
arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
|
|
2437
|
|
|
2438
|
|
|
2438
|
#Calculate Heights (Error N 13 and 14)
|
|
2439
|
#Calculate Heights (Error N 13 and 14)
|
|
2439
|
error = arrayParameters[:,-1]
|
|
2440
|
error = arrayParameters[:,-1]
|
|
2440
|
Ranges = arrayParameters[:,1]
|
|
2441
|
Ranges = arrayParameters[:,1]
|
|
2441
|
zenith = arrayParameters[:,4]
|
|
2442
|
zenith = arrayParameters[:,4]
|
|
2442
|
arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
|
|
2443
|
arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
|
|
2443
|
|
|
2444
|
|
|
2444
|
#----------------------- Get Final data ------------------------------------
|
|
2445
|
#----------------------- Get Final data ------------------------------------
|
|
2445
|
# error = arrayParameters[:,-1]
|
|
2446
|
# error = arrayParameters[:,-1]
|
|
2446
|
# ind1 = numpy.where(error==0)[0]
|
|
2447
|
# ind1 = numpy.where(error==0)[0]
|
|
2447
|
# arrayParameters = arrayParameters[ind1,:]
|
|
2448
|
# arrayParameters = arrayParameters[ind1,:]
|
|
2448
|
|
|
2449
|
|
|
2449
|
return arrayParameters
|
|
2450
|
return arrayParameters
|
|
2450
|
|
|
2451
|
|
|
2451
|
def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
|
|
2452
|
def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
|
|
2452
|
|
|
2453
|
|
|
2453
|
arrayAOA = numpy.zeros((phases.shape[0],3))
|
|
2454
|
arrayAOA = numpy.zeros((phases.shape[0],3))
|
|
2454
|
cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
|
|
2455
|
cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
|
|
2455
|
|
|
2456
|
|
|
2456
|
arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
|
|
2457
|
arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
|
|
2457
|
cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
|
|
2458
|
cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
|
|
2458
|
arrayAOA[:,2] = cosDirError
|
|
2459
|
arrayAOA[:,2] = cosDirError
|
|
2459
|
|
|
2460
|
|
|
2460
|
azimuthAngle = arrayAOA[:,0]
|
|
2461
|
azimuthAngle = arrayAOA[:,0]
|
|
2461
|
zenithAngle = arrayAOA[:,1]
|
|
2462
|
zenithAngle = arrayAOA[:,1]
|
|
2462
|
|
|
2463
|
|
|
2463
|
#Setting Error
|
|
2464
|
#Setting Error
|
|
2464
|
indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
|
|
2465
|
indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
|
|
2465
|
error[indError] = 0
|
|
2466
|
error[indError] = 0
|
|
2466
|
#Number 3: AOA not fesible
|
|
2467
|
#Number 3: AOA not fesible
|
|
2467
|
indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
|
|
2468
|
indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
|
|
2468
|
error[indInvalid] = 3
|
|
2469
|
error[indInvalid] = 3
|
|
2469
|
#Number 4: Large difference in AOAs obtained from different antenna baselines
|
|
2470
|
#Number 4: Large difference in AOAs obtained from different antenna baselines
|
|
2470
|
indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
|
|
2471
|
indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
|
|
2471
|
error[indInvalid] = 4
|
|
2472
|
error[indInvalid] = 4
|
|
2472
|
return arrayAOA, error
|
|
2473
|
return arrayAOA, error
|
|
2473
|
|
|
2474
|
|
|
2474
|
def __getDirectionCosines(self, arrayPhase, pairsList, distances):
|
|
2475
|
def __getDirectionCosines(self, arrayPhase, pairsList, distances):
|
|
2475
|
|
|
2476
|
|
|
2476
|
#Initializing some variables
|
|
2477
|
#Initializing some variables
|
|
2477
|
ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
|
|
2478
|
ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
|
|
2478
|
ang_aux = ang_aux.reshape(1,ang_aux.size)
|
|
2479
|
ang_aux = ang_aux.reshape(1,ang_aux.size)
|
|
2479
|
|
|
2480
|
|
|
2480
|
cosdir = numpy.zeros((arrayPhase.shape[0],2))
|
|
2481
|
cosdir = numpy.zeros((arrayPhase.shape[0],2))
|
|
2481
|
cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
|
|
2482
|
cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
|
|
2482
|
|
|
2483
|
|
|
2483
|
|
|
2484
|
|
|
2484
|
for i in range(2):
|
|
2485
|
for i in range(2):
|
|
2485
|
ph0 = arrayPhase[:,pairsList[i][0]]
|
|
2486
|
ph0 = arrayPhase[:,pairsList[i][0]]
|
|
2486
|
ph1 = arrayPhase[:,pairsList[i][1]]
|
|
2487
|
ph1 = arrayPhase[:,pairsList[i][1]]
|
|
2487
|
d0 = distances[pairsList[i][0]]
|
|
2488
|
d0 = distances[pairsList[i][0]]
|
|
2488
|
d1 = distances[pairsList[i][1]]
|
|
2489
|
d1 = distances[pairsList[i][1]]
|
|
2489
|
|
|
2490
|
|
|
2490
|
ph0_aux = ph0 + ph1
|
|
2491
|
ph0_aux = ph0 + ph1
|
|
2491
|
ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
|
|
2492
|
ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
|
|
2492
|
# ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
|
|
2493
|
# ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
|
|
2493
|
# ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
|
|
2494
|
# ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
|
|
2494
|
#First Estimation
|
|
2495
|
#First Estimation
|
|
2495
|
cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
|
|
2496
|
cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
|
|
2496
|
|
|
2497
|
|
|
2497
|
#Most-Accurate Second Estimation
|
|
2498
|
#Most-Accurate Second Estimation
|
|
2498
|
phi1_aux = ph0 - ph1
|
|
2499
|
phi1_aux = ph0 - ph1
|
|
2499
|
phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
|
|
2500
|
phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
|
|
2500
|
#Direction Cosine 1
|
|
2501
|
#Direction Cosine 1
|
|
2501
|
cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
|
|
2502
|
cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
|
|
2502
|
|
|
2503
|
|
|
2503
|
#Searching the correct Direction Cosine
|
|
2504
|
#Searching the correct Direction Cosine
|
|
2504
|
cosdir0_aux = cosdir0[:,i]
|
|
2505
|
cosdir0_aux = cosdir0[:,i]
|
|
2505
|
cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
|
|
2506
|
cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
|
|
@@
-2508,59
+2509,59
class SMOperations():
|
|
2508
|
indcos = cosDiff.argmin(axis = 1)
|
|
2509
|
indcos = cosDiff.argmin(axis = 1)
|
|
2509
|
#Saving Value obtained
|
|
2510
|
#Saving Value obtained
|
|
2510
|
cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
|
|
2511
|
cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
|
|
2511
|
|
|
2512
|
|
|
2512
|
return cosdir0, cosdir
|
|
2513
|
return cosdir0, cosdir
|
|
2513
|
|
|
2514
|
|
|
2514
|
def __calculateAOA(self, cosdir, azimuth):
|
|
2515
|
def __calculateAOA(self, cosdir, azimuth):
|
|
2515
|
cosdirX = cosdir[:,0]
|
|
2516
|
cosdirX = cosdir[:,0]
|
|
2516
|
cosdirY = cosdir[:,1]
|
|
2517
|
cosdirY = cosdir[:,1]
|
|
2517
|
|
|
2518
|
|
|
2518
|
zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
|
|
2519
|
zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
|
|
2519
|
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
|
|
2520
|
azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
|
|
2520
|
angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
|
|
2521
|
angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
|
|
2521
|
|
|
2522
|
|
|
2522
|
return angles
|
|
2523
|
return angles
|
|
2523
|
|
|
2524
|
|
|
2524
|
def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
|
|
2525
|
def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
|
|
2525
|
|
|
2526
|
|
|
2526
|
Ramb = 375 #Ramb = c/(2*PRF)
|
|
2527
|
Ramb = 375 #Ramb = c/(2*PRF)
|
|
2527
|
Re = 6371 #Earth Radius
|
|
2528
|
Re = 6371 #Earth Radius
|
|
2528
|
heights = numpy.zeros(Ranges.shape)
|
|
2529
|
heights = numpy.zeros(Ranges.shape)
|
|
2529
|
|
|
2530
|
|
|
2530
|
R_aux = numpy.array([0,1,2])*Ramb
|
|
2531
|
R_aux = numpy.array([0,1,2])*Ramb
|
|
2531
|
R_aux = R_aux.reshape(1,R_aux.size)
|
|
2532
|
R_aux = R_aux.reshape(1,R_aux.size)
|
|
2532
|
|
|
2533
|
|
|
2533
|
Ranges = Ranges.reshape(Ranges.size,1)
|
|
2534
|
Ranges = Ranges.reshape(Ranges.size,1)
|
|
2534
|
|
|
2535
|
|
|
2535
|
Ri = Ranges + R_aux
|
|
2536
|
Ri = Ranges + R_aux
|
|
2536
|
hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
|
|
2537
|
hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
|
|
2537
|
|
|
2538
|
|
|
2538
|
#Check if there is a height between 70 and 110 km
|
|
2539
|
#Check if there is a height between 70 and 110 km
|
|
2539
|
h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
|
|
2540
|
h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
|
|
2540
|
ind_h = numpy.where(h_bool == 1)[0]
|
|
2541
|
ind_h = numpy.where(h_bool == 1)[0]
|
|
2541
|
|
|
2542
|
|
|
2542
|
hCorr = hi[ind_h, :]
|
|
2543
|
hCorr = hi[ind_h, :]
|
|
2543
|
ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
|
|
2544
|
ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
|
|
2544
|
|
|
2545
|
|
|
2545
|
hCorr = hi[ind_hCorr]
|
|
2546
|
hCorr = hi[ind_hCorr]
|
|
2546
|
heights[ind_h] = hCorr
|
|
2547
|
heights[ind_h] = hCorr
|
|
2547
|
|
|
2548
|
|
|
2548
|
#Setting Error
|
|
2549
|
#Setting Error
|
|
2549
|
#Number 13: Height unresolvable echo: not valid height within 70 to 110 km
|
|
2550
|
#Number 13: Height unresolvable echo: not valid height within 70 to 110 km
|
|
2550
|
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
|
|
2551
|
#Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
|
|
2551
|
indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
|
|
2552
|
indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
|
|
2552
|
error[indError] = 0
|
|
2553
|
error[indError] = 0
|
|
2553
|
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
|
|
2554
|
indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
|
|
2554
|
error[indInvalid2] = 14
|
|
2555
|
error[indInvalid2] = 14
|
|
2555
|
indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
|
|
2556
|
indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
|
|
2556
|
error[indInvalid1] = 13
|
|
2557
|
error[indInvalid1] = 13
|
|
2557
|
|
|
2558
|
|
|
2558
|
return heights, error
|
|
2559
|
return heights, error
|
|
2559
|
|
|
2560
|
|
|
2560
|
def getPhasePairs(self, channelPositions):
|
|
2561
|
def getPhasePairs(self, channelPositions):
|
|
2561
|
chanPos = numpy.array(channelPositions)
|
|
2562
|
chanPos = numpy.array(channelPositions)
|
|
2562
|
listOper = list(itertools.combinations(range(5),2))
|
|
2563
|
listOper = list(itertools.combinations(range(5),2))
|
|
2563
|
|
|
2564
|
|
|
2564
|
distances = numpy.zeros(4)
|
|
2565
|
distances = numpy.zeros(4)
|
|
2565
|
axisX = []
|
|
2566
|
axisX = []
|
|
2566
|
axisY = []
|
|
2567
|
axisY = []
|
|
@@
-2568,15
+2569,15
class SMOperations():
|
|
2568
|
distY = numpy.zeros(3)
|
|
2569
|
distY = numpy.zeros(3)
|
|
2569
|
ix = 0
|
|
2570
|
ix = 0
|
|
2570
|
iy = 0
|
|
2571
|
iy = 0
|
|
2571
|
|
|
2572
|
|
|
2572
|
pairX = numpy.zeros((2,2))
|
|
2573
|
pairX = numpy.zeros((2,2))
|
|
2573
|
pairY = numpy.zeros((2,2))
|
|
2574
|
pairY = numpy.zeros((2,2))
|
|
2574
|
|
|
2575
|
|
|
2575
|
for i in range(len(listOper)):
|
|
2576
|
for i in range(len(listOper)):
|
|
2576
|
pairi = listOper[i]
|
|
2577
|
pairi = listOper[i]
|
|
2577
|
|
|
2578
|
|
|
2578
|
posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
|
|
2579
|
posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
|
|
2579
|
|
|
2580
|
|
|
2580
|
if posDif[0] == 0:
|
|
2581
|
if posDif[0] == 0:
|
|
2581
|
axisY.append(pairi)
|
|
2582
|
axisY.append(pairi)
|
|
2582
|
distY[iy] = posDif[1]
|
|
2583
|
distY[iy] = posDif[1]
|
|
@@
-2585,7
+2586,7
class SMOperations():
|
|
2585
|
axisX.append(pairi)
|
|
2586
|
axisX.append(pairi)
|
|
2586
|
distX[ix] = posDif[0]
|
|
2587
|
distX[ix] = posDif[0]
|
|
2587
|
ix += 1
|
|
2588
|
ix += 1
|
|
2588
|
|
|
2589
|
|
|
2589
|
for i in range(2):
|
|
2590
|
for i in range(2):
|
|
2590
|
if i==0:
|
|
2591
|
if i==0:
|
|
2591
|
dist0 = distX
|
|
2592
|
dist0 = distX
|
|
@@
-2593,7
+2594,7
class SMOperations():
|
|
2593
|
else:
|
|
2594
|
else:
|
|
2594
|
dist0 = distY
|
|
2595
|
dist0 = distY
|
|
2595
|
axis0 = axisY
|
|
2596
|
axis0 = axisY
|
|
2596
|
|
|
2597
|
|
|
2597
|
side = numpy.argsort(dist0)[:-1]
|
|
2598
|
side = numpy.argsort(dist0)[:-1]
|
|
2598
|
axis0 = numpy.array(axis0)[side,:]
|
|
2599
|
axis0 = numpy.array(axis0)[side,:]
|
|
2599
|
chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
|
|
2600
|
chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
|
|
@@
-2601,7
+2602,7
class SMOperations():
|
|
2601
|
side = axis1[axis1 != chanC]
|
|
2602
|
side = axis1[axis1 != chanC]
|
|
2602
|
diff1 = chanPos[chanC,i] - chanPos[side[0],i]
|
|
2603
|
diff1 = chanPos[chanC,i] - chanPos[side[0],i]
|
|
2603
|
diff2 = chanPos[chanC,i] - chanPos[side[1],i]
|
|
2604
|
diff2 = chanPos[chanC,i] - chanPos[side[1],i]
|
|
2604
|
if diff1<0:
|
|
2605
|
if diff1<0:
|
|
2605
|
chan2 = side[0]
|
|
2606
|
chan2 = side[0]
|
|
2606
|
d2 = numpy.abs(diff1)
|
|
2607
|
d2 = numpy.abs(diff1)
|
|
2607
|
chan1 = side[1]
|
|
2608
|
chan1 = side[1]
|
|
@@
-2611,7
+2612,7
class SMOperations():
|
|
2611
|
d2 = numpy.abs(diff2)
|
|
2612
|
d2 = numpy.abs(diff2)
|
|
2612
|
chan1 = side[0]
|
|
2613
|
chan1 = side[0]
|
|
2613
|
d1 = numpy.abs(diff1)
|
|
2614
|
d1 = numpy.abs(diff1)
|
|
2614
|
|
|
2615
|
|
|
2615
|
if i==0:
|
|
2616
|
if i==0:
|
|
2616
|
chanCX = chanC
|
|
2617
|
chanCX = chanC
|
|
2617
|
chan1X = chan1
|
|
2618
|
chan1X = chan1
|
|
@@
-2623,10
+2624,10
class SMOperations():
|
|
2623
|
chan2Y = chan2
|
|
2624
|
chan2Y = chan2
|
|
2624
|
distances[2:4] = numpy.array([d1,d2])
|
|
2625
|
distances[2:4] = numpy.array([d1,d2])
|
|
2625
|
# axisXsides = numpy.reshape(axisX[ix,:],4)
|
|
2626
|
# axisXsides = numpy.reshape(axisX[ix,:],4)
|
|
2626
|
#
|
|
2627
|
#
|
|
2627
|
# channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
|
|
2628
|
# channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
|
|
2628
|
# channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
|
|
2629
|
# channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
|
|
2629
|
#
|
|
2630
|
#
|
|
2630
|
# ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
|
|
2631
|
# ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
|
|
2631
|
# ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
|
|
2632
|
# ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
|
|
2632
|
# channel25X = int(pairX[0,ind25X])
|
|
2633
|
# channel25X = int(pairX[0,ind25X])
|
|
@@
-2635,59
+2636,59
class SMOperations():
|
|
2635
|
# ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
|
|
2636
|
# ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
|
|
2636
|
# channel25Y = int(pairY[0,ind25Y])
|
|
2637
|
# channel25Y = int(pairY[0,ind25Y])
|
|
2637
|
# channel20Y = int(pairY[1,ind20Y])
|
|
2638
|
# channel20Y = int(pairY[1,ind20Y])
|
|
2638
|
|
|
2639
|
|
|
2639
|
# pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
|
|
2640
|
# pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
|
|
2640
|
pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
|
|
2641
|
pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
|
|
2641
|
|
|
2642
|
|
|
2642
|
return pairslist, distances
|
|
2643
|
return pairslist, distances
|
|
2643
|
# def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
|
|
2644
|
# def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
|
|
2644
|
#
|
|
2645
|
#
|
|
2645
|
# arrayAOA = numpy.zeros((phases.shape[0],3))
|
|
2646
|
# arrayAOA = numpy.zeros((phases.shape[0],3))
|
|
2646
|
# cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
|
|
2647
|
# cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
|
|
2647
|
#
|
|
2648
|
#
|
|
2648
|
# arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
|
|
2649
|
# arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
|
|
2649
|
# cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
|
|
2650
|
# cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
|
|
2650
|
# arrayAOA[:,2] = cosDirError
|
|
2651
|
# arrayAOA[:,2] = cosDirError
|
|
2651
|
#
|
|
2652
|
#
|
|
2652
|
# azimuthAngle = arrayAOA[:,0]
|
|
2653
|
# azimuthAngle = arrayAOA[:,0]
|
|
2653
|
# zenithAngle = arrayAOA[:,1]
|
|
2654
|
# zenithAngle = arrayAOA[:,1]
|
|
2654
|
#
|
|
2655
|
#
|
|
2655
|
# #Setting Error
|
|
2656
|
# #Setting Error
|
|
2656
|
# #Number 3: AOA not fesible
|
|
2657
|
# #Number 3: AOA not fesible
|
|
2657
|
# indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
|
|
2658
|
# indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
|
|
2658
|
# error[indInvalid] = 3
|
|
2659
|
# error[indInvalid] = 3
|
|
2659
|
# #Number 4: Large difference in AOAs obtained from different antenna baselines
|
|
2660
|
# #Number 4: Large difference in AOAs obtained from different antenna baselines
|
|
2660
|
# indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
|
|
2661
|
# indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
|
|
2661
|
# error[indInvalid] = 4
|
|
2662
|
# error[indInvalid] = 4
|
|
2662
|
# return arrayAOA, error
|
|
2663
|
# return arrayAOA, error
|
|
2663
|
#
|
|
2664
|
#
|
|
2664
|
# def __getDirectionCosines(self, arrayPhase, pairsList):
|
|
2665
|
# def __getDirectionCosines(self, arrayPhase, pairsList):
|
|
2665
|
#
|
|
2666
|
#
|
|
2666
|
# #Initializing some variables
|
|
2667
|
# #Initializing some variables
|
|
2667
|
# ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
|
|
2668
|
# ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
|
|
2668
|
# ang_aux = ang_aux.reshape(1,ang_aux.size)
|
|
2669
|
# ang_aux = ang_aux.reshape(1,ang_aux.size)
|
|
2669
|
#
|
|
2670
|
#
|
|
2670
|
# cosdir = numpy.zeros((arrayPhase.shape[0],2))
|
|
2671
|
# cosdir = numpy.zeros((arrayPhase.shape[0],2))
|
|
2671
|
# cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
|
|
2672
|
# cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
|
|
2672
|
#
|
|
2673
|
#
|
|
2673
|
#
|
|
2674
|
#
|
|
2674
|
# for i in range(2):
|
|
2675
|
# for i in range(2):
|
|
2675
|
# #First Estimation
|
|
2676
|
# #First Estimation
|
|
2676
|
# phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
|
|
2677
|
# phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
|
|
2677
|
# #Dealias
|
|
2678
|
# #Dealias
|
|
2678
|
# indcsi = numpy.where(phi0_aux > numpy.pi)
|
|
2679
|
# indcsi = numpy.where(phi0_aux > numpy.pi)
|
|
2679
|
# phi0_aux[indcsi] -= 2*numpy.pi
|
|
2680
|
# phi0_aux[indcsi] -= 2*numpy.pi
|
|
2680
|
# indcsi = numpy.where(phi0_aux < -numpy.pi)
|
|
2681
|
# indcsi = numpy.where(phi0_aux < -numpy.pi)
|
|
2681
|
# phi0_aux[indcsi] += 2*numpy.pi
|
|
2682
|
# phi0_aux[indcsi] += 2*numpy.pi
|
|
2682
|
# #Direction Cosine 0
|
|
2683
|
# #Direction Cosine 0
|
|
2683
|
# cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
|
|
2684
|
# cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
|
|
2684
|
#
|
|
2685
|
#
|
|
2685
|
# #Most-Accurate Second Estimation
|
|
2686
|
# #Most-Accurate Second Estimation
|
|
2686
|
# phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
|
|
2687
|
# phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
|
|
2687
|
# phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
|
|
2688
|
# phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
|
|
2688
|
# #Direction Cosine 1
|
|
2689
|
# #Direction Cosine 1
|
|
2689
|
# cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
|
|
2690
|
# cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
|
|
2690
|
#
|
|
2691
|
#
|
|
2691
|
# #Searching the correct Direction Cosine
|
|
2692
|
# #Searching the correct Direction Cosine
|
|
2692
|
# cosdir0_aux = cosdir0[:,i]
|
|
2693
|
# cosdir0_aux = cosdir0[:,i]
|
|
2693
|
# cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
|
|
2694
|
# cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
|
|
@@
-2696,51
+2697,50
class SMOperations():
|
|
2696
|
# indcos = cosDiff.argmin(axis = 1)
|
|
2697
|
# indcos = cosDiff.argmin(axis = 1)
|
|
2697
|
# #Saving Value obtained
|
|
2698
|
# #Saving Value obtained
|
|
2698
|
# cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
|
|
2699
|
# cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
|
|
2699
|
#
|
|
2700
|
#
|
|
2700
|
# return cosdir0, cosdir
|
|
2701
|
# return cosdir0, cosdir
|
|
2701
|
#
|
|
2702
|
#
|
|
2702
|
# def __calculateAOA(self, cosdir, azimuth):
|
|
2703
|
# def __calculateAOA(self, cosdir, azimuth):
|
|
2703
|
# cosdirX = cosdir[:,0]
|
|
2704
|
# cosdirX = cosdir[:,0]
|
|
2704
|
# cosdirY = cosdir[:,1]
|
|
2705
|
# cosdirY = cosdir[:,1]
|
|
2705
|
#
|
|
2706
|
#
|
|
2706
|
# zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
|
|
2707
|
# zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
|
|
2707
|
# azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
|
|
2708
|
# azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
|
|
2708
|
# angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
|
|
2709
|
# angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
|
|
2709
|
#
|
|
2710
|
#
|
|
2710
|
# return angles
|
|
2711
|
# return angles
|
|
2711
|
#
|
|
2712
|
#
|
|
2712
|
# def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
|
|
2713
|
# def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
|
|
2713
|
#
|
|
2714
|
#
|
|
2714
|
# Ramb = 375 #Ramb = c/(2*PRF)
|
|
2715
|
# Ramb = 375 #Ramb = c/(2*PRF)
|
|
2715
|
# Re = 6371 #Earth Radius
|
|
2716
|
# Re = 6371 #Earth Radius
|
|
2716
|
# heights = numpy.zeros(Ranges.shape)
|
|
2717
|
# heights = numpy.zeros(Ranges.shape)
|
|
2717
|
#
|
|
2718
|
#
|
|
2718
|
# R_aux = numpy.array([0,1,2])*Ramb
|
|
2719
|
# R_aux = numpy.array([0,1,2])*Ramb
|
|
2719
|
# R_aux = R_aux.reshape(1,R_aux.size)
|
|
2720
|
# R_aux = R_aux.reshape(1,R_aux.size)
|
|
2720
|
#
|
|
2721
|
#
|
|
2721
|
# Ranges = Ranges.reshape(Ranges.size,1)
|
|
2722
|
# Ranges = Ranges.reshape(Ranges.size,1)
|
|
2722
|
#
|
|
2723
|
#
|
|
2723
|
# Ri = Ranges + R_aux
|
|
2724
|
# Ri = Ranges + R_aux
|
|
2724
|
# hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
|
|
2725
|
# hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
|
|
2725
|
#
|
|
2726
|
#
|
|
2726
|
# #Check if there is a height between 70 and 110 km
|
|
2727
|
# #Check if there is a height between 70 and 110 km
|
|
2727
|
# h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
|
|
2728
|
# h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
|
|
2728
|
# ind_h = numpy.where(h_bool == 1)[0]
|
|
2729
|
# ind_h = numpy.where(h_bool == 1)[0]
|
|
2729
|
#
|
|
2730
|
#
|
|
2730
|
# hCorr = hi[ind_h, :]
|
|
2731
|
# hCorr = hi[ind_h, :]
|
|
2731
|
# ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
|
|
2732
|
# ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
|
|
2732
|
#
|
|
2733
|
#
|
|
2733
|
# hCorr = hi[ind_hCorr]
|
|
2734
|
# hCorr = hi[ind_hCorr]
|
|
2734
|
# heights[ind_h] = hCorr
|
|
2735
|
# heights[ind_h] = hCorr
|
|
2735
|
#
|
|
2736
|
#
|
|
2736
|
# #Setting Error
|
|
2737
|
# #Setting Error
|
|
2737
|
# #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
|
|
2738
|
# #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
|
|
2738
|
# #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
|
|
2739
|
# #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
|
|
2739
|
#
|
|
2740
|
#
|
|
2740
|
# indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
|
|
2741
|
# indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
|
|
2741
|
# error[indInvalid2] = 14
|
|
2742
|
# error[indInvalid2] = 14
|
|
2742
|
# indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
|
|
2743
|
# indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
|
|
2743
|
# error[indInvalid1] = 13
|
|
2744
|
# error[indInvalid1] = 13
|
|
2744
|
#
|
|
2745
|
#
|
|
2745
|
# return heights, error
|
|
2746
|
# return heights, error
|
|
2746
|
No newline at end of file
|
|
|
|