@@ -1,1060 +1,1060 | |||
|
1 | 1 | import itertools |
|
2 | 2 | |
|
3 | 3 | import numpy |
|
4 | 4 | |
|
5 | 5 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Spectra |
|
7 | 7 | from schainpy.model.data.jrodata import hildebrand_sekhon |
|
8 | 8 | from schainpy.utils import log |
|
9 | 9 | |
|
10 | 10 | @MPDecorator |
|
11 | 11 | class SpectraProc(ProcessingUnit): |
|
12 | 12 | |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | ProcessingUnit.__init__(self) |
|
17 | 17 | |
|
18 | 18 | self.buffer = None |
|
19 | 19 | self.firstdatatime = None |
|
20 | 20 | self.profIndex = 0 |
|
21 | 21 | self.dataOut = Spectra() |
|
22 | 22 | self.id_min = None |
|
23 | 23 | self.id_max = None |
|
24 | 24 | self.setupReq = False #Agregar a todas las unidades de proc |
|
25 | 25 | |
|
26 | 26 | def __updateSpecFromVoltage(self): |
|
27 | 27 | |
|
28 | 28 | self.dataOut.timeZone = self.dataIn.timeZone |
|
29 | 29 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
30 | 30 | self.dataOut.errorCount = self.dataIn.errorCount |
|
31 | 31 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
32 | 32 | try: |
|
33 | 33 | self.dataOut.processingHeaderObj = self.dataIn.processingHeaderObj.copy() |
|
34 | 34 | except: |
|
35 | 35 | pass |
|
36 | 36 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
37 | 37 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | self.dataOut.heightList = self.dataIn.heightList |
|
40 | 40 | self.dataOut.dtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
41 | 41 | |
|
42 | 42 | self.dataOut.nBaud = self.dataIn.nBaud |
|
43 | 43 | self.dataOut.nCode = self.dataIn.nCode |
|
44 | 44 | self.dataOut.code = self.dataIn.code |
|
45 | 45 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
46 | 46 | |
|
47 | 47 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
48 | 48 | self.dataOut.utctime = self.firstdatatime |
|
49 | 49 | # asumo q la data esta decodificada |
|
50 | 50 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData |
|
51 | 51 | # asumo q la data esta sin flip |
|
52 | 52 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData |
|
53 | 53 | self.dataOut.flagShiftFFT = False |
|
54 | 54 | |
|
55 | 55 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
56 | 56 | self.dataOut.nIncohInt = 1 |
|
57 | 57 | |
|
58 | 58 | self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
59 | 59 | |
|
60 | 60 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | 61 | self.dataOut.realtime = self.dataIn.realtime |
|
62 | 62 | |
|
63 | 63 | self.dataOut.azimuth = self.dataIn.azimuth |
|
64 | 64 | self.dataOut.zenith = self.dataIn.zenith |
|
65 | 65 | |
|
66 | 66 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
67 | 67 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
68 | 68 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
69 | 69 | |
|
70 | 70 | def __getFft(self): |
|
71 | 71 | """ |
|
72 | 72 | Convierte valores de Voltaje a Spectra |
|
73 | 73 | |
|
74 | 74 | Affected: |
|
75 | 75 | self.dataOut.data_spc |
|
76 | 76 | self.dataOut.data_cspc |
|
77 | 77 | self.dataOut.data_dc |
|
78 | 78 | self.dataOut.heightList |
|
79 | 79 | self.profIndex |
|
80 | 80 | self.buffer |
|
81 | 81 | self.dataOut.flagNoData |
|
82 | 82 | """ |
|
83 | 83 | fft_volt = numpy.fft.fft( |
|
84 | 84 | self.buffer, n=self.dataOut.nFFTPoints, axis=1) |
|
85 | 85 | fft_volt = fft_volt.astype(numpy.dtype('complex')) |
|
86 | 86 | dc = fft_volt[:, 0, :] |
|
87 | 87 | |
|
88 | 88 | # calculo de self-spectra |
|
89 | 89 | fft_volt = numpy.fft.fftshift(fft_volt, axes=(1,)) |
|
90 | 90 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
91 | 91 | spc = spc.real |
|
92 | 92 | |
|
93 | 93 | blocksize = 0 |
|
94 | 94 | blocksize += dc.size |
|
95 | 95 | blocksize += spc.size |
|
96 | 96 | |
|
97 | 97 | cspc = None |
|
98 | 98 | pairIndex = 0 |
|
99 | 99 | if self.dataOut.pairsList != None: |
|
100 | 100 | # calculo de cross-spectra |
|
101 | 101 | cspc = numpy.zeros( |
|
102 | 102 | (self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
103 | 103 | for pair in self.dataOut.pairsList: |
|
104 | 104 | if pair[0] not in self.dataOut.channelList: |
|
105 | 105 | raise ValueError("Error getting CrossSpectra: pair 0 of %s is not in channelList = %s" % ( |
|
106 | 106 | str(pair), str(self.dataOut.channelList))) |
|
107 | 107 | if pair[1] not in self.dataOut.channelList: |
|
108 | 108 | raise ValueError("Error getting CrossSpectra: pair 1 of %s is not in channelList = %s" % ( |
|
109 | 109 | str(pair), str(self.dataOut.channelList))) |
|
110 | 110 | |
|
111 | 111 | cspc[pairIndex, :, :] = fft_volt[pair[0], :, :] * \ |
|
112 | 112 | numpy.conjugate(fft_volt[pair[1], :, :]) |
|
113 | 113 | pairIndex += 1 |
|
114 | 114 | blocksize += cspc.size |
|
115 | 115 | |
|
116 | 116 | self.dataOut.data_spc = spc |
|
117 | 117 | self.dataOut.data_cspc = cspc |
|
118 | 118 | self.dataOut.data_dc = dc |
|
119 | 119 | self.dataOut.blockSize = blocksize |
|
120 | 120 | self.dataOut.flagShiftFFT = True |
|
121 | 121 | |
|
122 | 122 | def run(self, nProfiles=None, nFFTPoints=None, pairsList=[], ippFactor=None, shift_fft=False): |
|
123 | 123 | |
|
124 | 124 | if self.dataIn.type == "Spectra": |
|
125 | 125 | self.dataOut.copy(self.dataIn) |
|
126 | 126 | if shift_fft: |
|
127 | 127 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
128 | 128 | shift = int(self.dataOut.nFFTPoints/2) |
|
129 | 129 | self.dataOut.data_spc = numpy.roll(self.dataOut.data_spc, shift , axis=1) |
|
130 | 130 | |
|
131 | 131 | if self.dataOut.data_cspc is not None: |
|
132 | 132 | #desplaza a la derecha en el eje 2 determinadas posiciones |
|
133 | 133 | self.dataOut.data_cspc = numpy.roll(self.dataOut.data_cspc, shift, axis=1) |
|
134 | 134 | |
|
135 | 135 | return True |
|
136 | 136 | |
|
137 | 137 | if self.dataIn.type == "Voltage": |
|
138 | 138 | |
|
139 | 139 | self.dataOut.flagNoData = True |
|
140 | 140 | |
|
141 | 141 | if nFFTPoints == None: |
|
142 | 142 | raise ValueError("This SpectraProc.run() need nFFTPoints input variable") |
|
143 | 143 | |
|
144 | 144 | if nProfiles == None: |
|
145 | 145 | nProfiles = nFFTPoints |
|
146 | 146 | |
|
147 | 147 | if ippFactor == None: |
|
148 | 148 | ippFactor = 1 |
|
149 | 149 | |
|
150 | 150 | self.dataOut.ippFactor = ippFactor |
|
151 | 151 | |
|
152 | 152 | self.dataOut.nFFTPoints = nFFTPoints |
|
153 | 153 | self.dataOut.pairsList = pairsList |
|
154 | 154 | |
|
155 | 155 | if self.buffer is None: |
|
156 | 156 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
157 | 157 | nProfiles, |
|
158 | 158 | self.dataIn.nHeights), |
|
159 | 159 | dtype='complex') |
|
160 | 160 | |
|
161 | 161 | if self.dataIn.flagDataAsBlock: |
|
162 | 162 | nVoltProfiles = self.dataIn.data.shape[1] |
|
163 | 163 | |
|
164 | 164 | if nVoltProfiles == nProfiles: |
|
165 | 165 | self.buffer = self.dataIn.data.copy() |
|
166 | 166 | self.profIndex = nVoltProfiles |
|
167 | 167 | |
|
168 | 168 | elif nVoltProfiles < nProfiles: |
|
169 | 169 | |
|
170 | 170 | if self.profIndex == 0: |
|
171 | 171 | self.id_min = 0 |
|
172 | 172 | self.id_max = nVoltProfiles |
|
173 | 173 | |
|
174 | 174 | self.buffer[:, self.id_min:self.id_max, |
|
175 | 175 | :] = self.dataIn.data |
|
176 | 176 | self.profIndex += nVoltProfiles |
|
177 | 177 | self.id_min += nVoltProfiles |
|
178 | 178 | self.id_max += nVoltProfiles |
|
179 | 179 | else: |
|
180 | 180 | raise ValueError("The type object %s has %d profiles, it should just has %d profiles" % ( |
|
181 | 181 | self.dataIn.type, self.dataIn.data.shape[1], nProfiles)) |
|
182 | 182 | self.dataOut.flagNoData = True |
|
183 | 183 | return 0 |
|
184 | 184 | else: |
|
185 | 185 | self.buffer[:, self.profIndex, :] = self.dataIn.data.copy() |
|
186 | 186 | self.profIndex += 1 |
|
187 | 187 | |
|
188 | 188 | if self.firstdatatime == None: |
|
189 | 189 | self.firstdatatime = self.dataIn.utctime |
|
190 | 190 | |
|
191 | 191 | if self.profIndex == nProfiles: |
|
192 | 192 | self.__updateSpecFromVoltage() |
|
193 | 193 | self.__getFft() |
|
194 | 194 | |
|
195 | 195 | self.dataOut.flagNoData = False |
|
196 | 196 | self.firstdatatime = None |
|
197 | 197 | self.profIndex = 0 |
|
198 | 198 | |
|
199 | 199 | return True |
|
200 | 200 | |
|
201 | 201 | raise ValueError("The type of input object '%s' is not valid" % ( |
|
202 | 202 | self.dataIn.type)) |
|
203 | 203 | |
|
204 | 204 | def __selectPairs(self, pairsList): |
|
205 | 205 | |
|
206 | 206 | if not pairsList: |
|
207 | 207 | return |
|
208 | 208 | |
|
209 | 209 | pairs = [] |
|
210 | 210 | pairsIndex = [] |
|
211 | 211 | |
|
212 | 212 | for pair in pairsList: |
|
213 | 213 | if pair[0] not in self.dataOut.channelList or pair[1] not in self.dataOut.channelList: |
|
214 | 214 | continue |
|
215 | 215 | pairs.append(pair) |
|
216 | 216 | pairsIndex.append(pairs.index(pair)) |
|
217 | 217 | |
|
218 | 218 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndex] |
|
219 | 219 | self.dataOut.pairsList = pairs |
|
220 | 220 | |
|
221 | 221 | return |
|
222 | 222 | |
|
223 | 223 | def __selectPairsByChannel(self, channelList=None): |
|
224 | 224 | |
|
225 | 225 | if channelList == None: |
|
226 | 226 | return |
|
227 | 227 | |
|
228 | 228 | pairsIndexListSelected = [] |
|
229 | 229 | for pairIndex in self.dataOut.pairsIndexList: |
|
230 | 230 | # First pair |
|
231 | 231 | if self.dataOut.pairsList[pairIndex][0] not in channelList: |
|
232 | 232 | continue |
|
233 | 233 | # Second pair |
|
234 | 234 | if self.dataOut.pairsList[pairIndex][1] not in channelList: |
|
235 | 235 | continue |
|
236 | 236 | |
|
237 | 237 | pairsIndexListSelected.append(pairIndex) |
|
238 | 238 | |
|
239 | 239 | if not pairsIndexListSelected: |
|
240 | 240 | self.dataOut.data_cspc = None |
|
241 | 241 | self.dataOut.pairsList = [] |
|
242 | 242 | return |
|
243 | 243 | |
|
244 | 244 | self.dataOut.data_cspc = self.dataOut.data_cspc[pairsIndexListSelected] |
|
245 | 245 | self.dataOut.pairsList = [self.dataOut.pairsList[i] |
|
246 | 246 | for i in pairsIndexListSelected] |
|
247 | 247 | |
|
248 | 248 | return |
|
249 | 249 | |
|
250 | 250 | def selectChannels(self, channelList): |
|
251 | 251 | |
|
252 | 252 | channelIndexList = [] |
|
253 | 253 | |
|
254 | 254 | for channel in channelList: |
|
255 | 255 | if channel not in self.dataOut.channelList: |
|
256 | 256 | raise ValueError("Error selecting channels, Channel %d is not valid.\nAvailable channels = %s" % ( |
|
257 | 257 | channel, str(self.dataOut.channelList))) |
|
258 | 258 | |
|
259 | 259 | index = self.dataOut.channelList.index(channel) |
|
260 | 260 | channelIndexList.append(index) |
|
261 | 261 | |
|
262 | 262 | self.selectChannelsByIndex(channelIndexList) |
|
263 | 263 | |
|
264 | 264 | def selectChannelsByIndex(self, channelIndexList): |
|
265 | 265 | """ |
|
266 | 266 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
267 | 267 | |
|
268 | 268 | Input: |
|
269 | 269 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
270 | 270 | |
|
271 | 271 | Affected: |
|
272 | 272 | self.dataOut.data_spc |
|
273 | 273 | self.dataOut.channelIndexList |
|
274 | 274 | self.dataOut.nChannels |
|
275 | 275 | |
|
276 | 276 | Return: |
|
277 | 277 | None |
|
278 | 278 | """ |
|
279 | 279 | |
|
280 | 280 | for channelIndex in channelIndexList: |
|
281 | 281 | if channelIndex not in self.dataOut.channelIndexList: |
|
282 | 282 | raise ValueError("Error selecting channels: The value %d in channelIndexList is not valid.\nAvailable channel indexes = " % ( |
|
283 | 283 | channelIndex, self.dataOut.channelIndexList)) |
|
284 | 284 | |
|
285 | 285 | # nChannels = len(channelIndexList) |
|
286 | 286 | |
|
287 | 287 | data_spc = self.dataOut.data_spc[channelIndexList, :] |
|
288 | 288 | data_dc = self.dataOut.data_dc[channelIndexList, :] |
|
289 | 289 | |
|
290 | 290 | self.dataOut.data_spc = data_spc |
|
291 | 291 | self.dataOut.data_dc = data_dc |
|
292 | 292 | |
|
293 | 293 | self.dataOut.channelList = [ |
|
294 | 294 | self.dataOut.channelList[i] for i in channelIndexList] |
|
295 | 295 | # self.dataOut.nChannels = nChannels |
|
296 | 296 | |
|
297 | 297 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
298 | 298 | |
|
299 | 299 | return 1 |
|
300 | 300 | |
|
301 | 301 | |
|
302 | 302 | def selectFFTs(self, minFFT, maxFFT ): |
|
303 | 303 | """ |
|
304 | 304 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango |
|
305 | 305 | minFFT<= FFT <= maxFFT |
|
306 | 306 | """ |
|
307 | 307 | |
|
308 | 308 | if (minFFT > maxFFT): |
|
309 | 309 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) |
|
310 | 310 | |
|
311 | 311 | if (minFFT < self.dataOut.getFreqRange()[0]): |
|
312 | 312 | minFFT = self.dataOut.getFreqRange()[0] |
|
313 | 313 | |
|
314 | 314 | if (maxFFT > self.dataOut.getFreqRange()[-1]): |
|
315 | 315 | maxFFT = self.dataOut.getFreqRange()[-1] |
|
316 | 316 | |
|
317 | 317 | minIndex = 0 |
|
318 | 318 | maxIndex = 0 |
|
319 | 319 | FFTs = self.dataOut.getFreqRange() |
|
320 | 320 | |
|
321 | 321 | inda = numpy.where(FFTs >= minFFT) |
|
322 | 322 | indb = numpy.where(FFTs <= maxFFT) |
|
323 | 323 | |
|
324 | 324 | try: |
|
325 | 325 | minIndex = inda[0][0] |
|
326 | 326 | except: |
|
327 | 327 | minIndex = 0 |
|
328 | 328 | |
|
329 | 329 | try: |
|
330 | 330 | maxIndex = indb[0][-1] |
|
331 | 331 | except: |
|
332 | 332 | maxIndex = len(FFTs) |
|
333 | 333 | |
|
334 | 334 | self.selectFFTsByIndex(minIndex, maxIndex) |
|
335 | 335 | |
|
336 | 336 | return 1 |
|
337 | 337 | |
|
338 | 338 | |
|
339 | 339 | def setH0(self, h0, deltaHeight = None): |
|
340 | 340 | |
|
341 | 341 | if not deltaHeight: |
|
342 | 342 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
343 | 343 | |
|
344 | 344 | nHeights = self.dataOut.nHeights |
|
345 | 345 | |
|
346 | 346 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
347 | 347 | |
|
348 | 348 | self.dataOut.heightList = newHeiRange |
|
349 | 349 | |
|
350 | 350 | |
|
351 | 351 | def selectHeights(self, minHei, maxHei): |
|
352 | 352 | """ |
|
353 | 353 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
354 | 354 | minHei <= height <= maxHei |
|
355 | 355 | |
|
356 | 356 | Input: |
|
357 | 357 | minHei : valor minimo de altura a considerar |
|
358 | 358 | maxHei : valor maximo de altura a considerar |
|
359 | 359 | |
|
360 | 360 | Affected: |
|
361 | 361 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
362 | 362 | |
|
363 | 363 | Return: |
|
364 | 364 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
365 | 365 | """ |
|
366 | 366 | |
|
367 | 367 | |
|
368 | 368 | if (minHei > maxHei): |
|
369 | 369 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) |
|
370 | 370 | |
|
371 | 371 | if (minHei < self.dataOut.heightList[0]): |
|
372 | 372 | minHei = self.dataOut.heightList[0] |
|
373 | 373 | |
|
374 | 374 | if (maxHei > self.dataOut.heightList[-1]): |
|
375 | 375 | maxHei = self.dataOut.heightList[-1] |
|
376 | 376 | |
|
377 | 377 | minIndex = 0 |
|
378 | 378 | maxIndex = 0 |
|
379 | 379 | heights = self.dataOut.heightList |
|
380 | 380 | |
|
381 | 381 | inda = numpy.where(heights >= minHei) |
|
382 | 382 | indb = numpy.where(heights <= maxHei) |
|
383 | 383 | |
|
384 | 384 | try: |
|
385 | 385 | minIndex = inda[0][0] |
|
386 | 386 | except: |
|
387 | 387 | minIndex = 0 |
|
388 | 388 | |
|
389 | 389 | try: |
|
390 | 390 | maxIndex = indb[0][-1] |
|
391 | 391 | except: |
|
392 | 392 | maxIndex = len(heights) |
|
393 | 393 | |
|
394 | 394 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
395 | 395 | |
|
396 | 396 | |
|
397 | 397 | return 1 |
|
398 | 398 | |
|
399 | 399 | def getBeaconSignal(self, tauindex=0, channelindex=0, hei_ref=None): |
|
400 | 400 | newheis = numpy.where( |
|
401 | 401 | self.dataOut.heightList > self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
402 | 402 | |
|
403 | 403 | if hei_ref != None: |
|
404 | 404 | newheis = numpy.where(self.dataOut.heightList > hei_ref) |
|
405 | 405 | |
|
406 | 406 | minIndex = min(newheis[0]) |
|
407 | 407 | maxIndex = max(newheis[0]) |
|
408 | 408 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
409 | 409 | heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
410 | 410 | |
|
411 | 411 | # determina indices |
|
412 | 412 | nheis = int(self.dataOut.radarControllerHeaderObj.txB / |
|
413 | 413 | (self.dataOut.heightList[1] - self.dataOut.heightList[0])) |
|
414 | 414 | avg_dB = 10 * \ |
|
415 | 415 | numpy.log10(numpy.sum(data_spc[channelindex, :, :], axis=0)) |
|
416 | 416 | beacon_dB = numpy.sort(avg_dB)[-nheis:] |
|
417 | 417 | beacon_heiIndexList = [] |
|
418 | 418 | for val in avg_dB.tolist(): |
|
419 | 419 | if val >= beacon_dB[0]: |
|
420 | 420 | beacon_heiIndexList.append(avg_dB.tolist().index(val)) |
|
421 | 421 | |
|
422 | 422 | #data_spc = data_spc[:,:,beacon_heiIndexList] |
|
423 | 423 | data_cspc = None |
|
424 | 424 | if self.dataOut.data_cspc is not None: |
|
425 | 425 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
426 | 426 | #data_cspc = data_cspc[:,:,beacon_heiIndexList] |
|
427 | 427 | |
|
428 | 428 | data_dc = None |
|
429 | 429 | if self.dataOut.data_dc is not None: |
|
430 | 430 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
431 | 431 | #data_dc = data_dc[:,beacon_heiIndexList] |
|
432 | 432 | |
|
433 | 433 | self.dataOut.data_spc = data_spc |
|
434 | 434 | self.dataOut.data_cspc = data_cspc |
|
435 | 435 | self.dataOut.data_dc = data_dc |
|
436 | 436 | self.dataOut.heightList = heightList |
|
437 | 437 | self.dataOut.beacon_heiIndexList = beacon_heiIndexList |
|
438 | 438 | |
|
439 | 439 | return 1 |
|
440 | 440 | |
|
441 | 441 | def selectFFTsByIndex(self, minIndex, maxIndex): |
|
442 | 442 | """ |
|
443 | 443 | |
|
444 | 444 | """ |
|
445 | 445 | |
|
446 | 446 | if (minIndex < 0) or (minIndex > maxIndex): |
|
447 | 447 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) |
|
448 | 448 | |
|
449 | 449 | if (maxIndex >= self.dataOut.nProfiles): |
|
450 | 450 | maxIndex = self.dataOut.nProfiles-1 |
|
451 | 451 | |
|
452 | 452 | #Spectra |
|
453 | 453 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] |
|
454 | 454 | |
|
455 | 455 | data_cspc = None |
|
456 | 456 | if self.dataOut.data_cspc is not None: |
|
457 | 457 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] |
|
458 | 458 | |
|
459 | 459 | data_dc = None |
|
460 | 460 | if self.dataOut.data_dc is not None: |
|
461 | 461 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] |
|
462 | 462 | |
|
463 | 463 | self.dataOut.data_spc = data_spc |
|
464 | 464 | self.dataOut.data_cspc = data_cspc |
|
465 | 465 | self.dataOut.data_dc = data_dc |
|
466 | 466 | |
|
467 | 467 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) |
|
468 | 468 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] |
|
469 | 469 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] |
|
470 | 470 | |
|
471 | 471 | return 1 |
|
472 | 472 | |
|
473 | 473 | |
|
474 | 474 | |
|
475 | 475 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
476 | 476 | """ |
|
477 | 477 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
478 | 478 | minIndex <= index <= maxIndex |
|
479 | 479 | |
|
480 | 480 | Input: |
|
481 | 481 | minIndex : valor de indice minimo de altura a considerar |
|
482 | 482 | maxIndex : valor de indice maximo de altura a considerar |
|
483 | 483 | |
|
484 | 484 | Affected: |
|
485 | 485 | self.dataOut.data_spc |
|
486 | 486 | self.dataOut.data_cspc |
|
487 | 487 | self.dataOut.data_dc |
|
488 | 488 | self.dataOut.heightList |
|
489 | 489 | |
|
490 | 490 | Return: |
|
491 | 491 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
492 | 492 | """ |
|
493 | 493 | |
|
494 | 494 | if (minIndex < 0) or (minIndex > maxIndex): |
|
495 | 495 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % ( |
|
496 | 496 | minIndex, maxIndex)) |
|
497 | 497 | |
|
498 | 498 | if (maxIndex >= self.dataOut.nHeights): |
|
499 | 499 | maxIndex = self.dataOut.nHeights - 1 |
|
500 | 500 | |
|
501 | 501 | # Spectra |
|
502 | 502 | data_spc = self.dataOut.data_spc[:, :, minIndex:maxIndex + 1] |
|
503 | 503 | |
|
504 | 504 | data_cspc = None |
|
505 | 505 | if self.dataOut.data_cspc is not None: |
|
506 | 506 | data_cspc = self.dataOut.data_cspc[:, :, minIndex:maxIndex + 1] |
|
507 | 507 | |
|
508 | 508 | data_dc = None |
|
509 | 509 | if self.dataOut.data_dc is not None: |
|
510 | 510 | data_dc = self.dataOut.data_dc[:, minIndex:maxIndex + 1] |
|
511 | 511 | |
|
512 | 512 | self.dataOut.data_spc = data_spc |
|
513 | 513 | self.dataOut.data_cspc = data_cspc |
|
514 | 514 | self.dataOut.data_dc = data_dc |
|
515 | 515 | |
|
516 | 516 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex + 1] |
|
517 | 517 | |
|
518 | 518 | return 1 |
|
519 | 519 | |
|
520 | 520 | def removeDC(self, mode=2): |
|
521 | 521 | jspectra = self.dataOut.data_spc |
|
522 | 522 | jcspectra = self.dataOut.data_cspc |
|
523 | 523 | |
|
524 | 524 | num_chan = jspectra.shape[0] |
|
525 | 525 | num_hei = jspectra.shape[2] |
|
526 | 526 | |
|
527 | 527 | if jcspectra is not None: |
|
528 | 528 | jcspectraExist = True |
|
529 | 529 | num_pairs = jcspectra.shape[0] |
|
530 | 530 | else: |
|
531 | 531 | jcspectraExist = False |
|
532 | 532 | |
|
533 | 533 | freq_dc = int(jspectra.shape[1] / 2) |
|
534 | 534 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
535 | 535 | ind_vel = ind_vel.astype(int) |
|
536 | 536 | |
|
537 | 537 | if ind_vel[0] < 0: |
|
538 | 538 | ind_vel[list(range(0, 1))] = ind_vel[list(range(0, 1))] + self.num_prof |
|
539 | 539 | |
|
540 | 540 | if mode == 1: |
|
541 | 541 | jspectra[:, freq_dc, :] = ( |
|
542 | 542 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
543 | 543 | |
|
544 | 544 | if jcspectraExist: |
|
545 | 545 | jcspectra[:, freq_dc, :] = ( |
|
546 | 546 | jcspectra[:, ind_vel[1], :] + jcspectra[:, ind_vel[2], :]) / 2 |
|
547 | 547 | |
|
548 | 548 | if mode == 2: |
|
549 | 549 | |
|
550 | 550 | vel = numpy.array([-2, -1, 1, 2]) |
|
551 | 551 | xx = numpy.zeros([4, 4]) |
|
552 | 552 | |
|
553 | 553 | for fil in range(4): |
|
554 | 554 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
555 | 555 | |
|
556 | 556 | xx_inv = numpy.linalg.inv(xx) |
|
557 | 557 | xx_aux = xx_inv[0, :] |
|
558 | 558 | |
|
559 | 559 | for ich in range(num_chan): |
|
560 | 560 | yy = jspectra[ich, ind_vel, :] |
|
561 | 561 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
562 | 562 | |
|
563 | 563 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
564 | 564 | cjunkid = sum(junkid) |
|
565 | 565 | |
|
566 | 566 | if cjunkid.any(): |
|
567 | 567 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
568 | 568 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
569 | 569 | |
|
570 | 570 | if jcspectraExist: |
|
571 | 571 | for ip in range(num_pairs): |
|
572 | 572 | yy = jcspectra[ip, ind_vel, :] |
|
573 | 573 | jcspectra[ip, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
574 | 574 | |
|
575 | 575 | self.dataOut.data_spc = jspectra |
|
576 | 576 | self.dataOut.data_cspc = jcspectra |
|
577 | 577 | |
|
578 | 578 | return 1 |
|
579 | 579 | |
|
580 | 580 | def removeInterference2(self): |
|
581 | 581 | |
|
582 | 582 | cspc = self.dataOut.data_cspc |
|
583 | 583 | spc = self.dataOut.data_spc |
|
584 | 584 | Heights = numpy.arange(cspc.shape[2]) |
|
585 | 585 | realCspc = numpy.abs(cspc) |
|
586 | 586 | |
|
587 | 587 | for i in range(cspc.shape[0]): |
|
588 | 588 | LinePower= numpy.sum(realCspc[i], axis=0) |
|
589 | 589 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] |
|
590 | 590 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] |
|
591 | 591 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) |
|
592 | 592 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] |
|
593 | 593 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] |
|
594 | 594 | |
|
595 | 595 | |
|
596 | 596 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) |
|
597 | 597 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) |
|
598 | 598 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): |
|
599 | 599 | cspc[i,InterferenceRange,:] = numpy.NaN |
|
600 | 600 | |
|
601 | 601 | |
|
602 | 602 | |
|
603 | 603 | self.dataOut.data_cspc = cspc |
|
604 | 604 | |
|
605 | 605 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): |
|
606 | 606 | |
|
607 | 607 | jspectra = self.dataOut.data_spc |
|
608 | 608 | jcspectra = self.dataOut.data_cspc |
|
609 | 609 | jnoise = self.dataOut.getNoise() |
|
610 | 610 | num_incoh = self.dataOut.nIncohInt |
|
611 | 611 | |
|
612 | 612 | num_channel = jspectra.shape[0] |
|
613 | 613 | num_prof = jspectra.shape[1] |
|
614 | 614 | num_hei = jspectra.shape[2] |
|
615 | 615 | |
|
616 | 616 | # hei_interf |
|
617 | 617 | if hei_interf is None: |
|
618 |
count_hei = num_hei / 2 |
|
|
618 | count_hei = int(num_hei / 2) | |
|
619 | 619 | hei_interf = numpy.asmatrix(list(range(count_hei))) + num_hei - count_hei |
|
620 | 620 | hei_interf = numpy.asarray(hei_interf)[0] |
|
621 | 621 | # nhei_interf |
|
622 | 622 | if (nhei_interf == None): |
|
623 | 623 | nhei_interf = 5 |
|
624 | 624 | if (nhei_interf < 1): |
|
625 | 625 | nhei_interf = 1 |
|
626 | 626 | if (nhei_interf > count_hei): |
|
627 | 627 | nhei_interf = count_hei |
|
628 | 628 | if (offhei_interf == None): |
|
629 | 629 | offhei_interf = 0 |
|
630 | 630 | |
|
631 | 631 | ind_hei = list(range(num_hei)) |
|
632 | 632 | # mask_prof = numpy.asarray(range(num_prof - 2)) + 1 |
|
633 | 633 | # mask_prof[range(num_prof/2 - 1,len(mask_prof))] += 1 |
|
634 | 634 | mask_prof = numpy.asarray(list(range(num_prof))) |
|
635 | 635 | num_mask_prof = mask_prof.size |
|
636 | 636 | comp_mask_prof = [0, num_prof / 2] |
|
637 | 637 | |
|
638 | 638 | # noise_exist: Determina si la variable jnoise ha sido definida y contiene la informacion del ruido de cada canal |
|
639 | 639 | if (jnoise.size < num_channel or numpy.isnan(jnoise).any()): |
|
640 | 640 | jnoise = numpy.nan |
|
641 | 641 | noise_exist = jnoise[0] < numpy.Inf |
|
642 | 642 | |
|
643 | 643 | # Subrutina de Remocion de la Interferencia |
|
644 | 644 | for ich in range(num_channel): |
|
645 | 645 | # Se ordena los espectros segun su potencia (menor a mayor) |
|
646 | 646 | power = jspectra[ich, mask_prof, :] |
|
647 | 647 | power = power[:, hei_interf] |
|
648 | 648 | power = power.sum(axis=0) |
|
649 | 649 | psort = power.ravel().argsort() |
|
650 | 650 | |
|
651 | 651 | # Se estima la interferencia promedio en los Espectros de Potencia empleando |
|
652 | 652 | junkspc_interf = jspectra[ich, :, hei_interf[psort[list(range( |
|
653 | 653 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
654 | 654 | |
|
655 | 655 | if noise_exist: |
|
656 | 656 | # tmp_noise = jnoise[ich] / num_prof |
|
657 | 657 | tmp_noise = jnoise[ich] |
|
658 | 658 | junkspc_interf = junkspc_interf - tmp_noise |
|
659 | 659 | #junkspc_interf[:,comp_mask_prof] = 0 |
|
660 | 660 | |
|
661 | 661 | jspc_interf = junkspc_interf.sum(axis=0) / nhei_interf |
|
662 | 662 | jspc_interf = jspc_interf.transpose() |
|
663 | 663 | # Calculando el espectro de interferencia promedio |
|
664 | 664 | noiseid = numpy.where( |
|
665 | 665 | jspc_interf <= tmp_noise / numpy.sqrt(num_incoh)) |
|
666 | 666 | noiseid = noiseid[0] |
|
667 | 667 | cnoiseid = noiseid.size |
|
668 | 668 | interfid = numpy.where( |
|
669 | 669 | jspc_interf > tmp_noise / numpy.sqrt(num_incoh)) |
|
670 | 670 | interfid = interfid[0] |
|
671 | 671 | cinterfid = interfid.size |
|
672 | 672 | |
|
673 | 673 | if (cnoiseid > 0): |
|
674 | 674 | jspc_interf[noiseid] = 0 |
|
675 | 675 | |
|
676 | 676 | # Expandiendo los perfiles a limpiar |
|
677 | 677 | if (cinterfid > 0): |
|
678 | 678 | new_interfid = ( |
|
679 | 679 | numpy.r_[interfid - 1, interfid, interfid + 1] + num_prof) % num_prof |
|
680 | 680 | new_interfid = numpy.asarray(new_interfid) |
|
681 | 681 | new_interfid = {x for x in new_interfid} |
|
682 | 682 | new_interfid = numpy.array(list(new_interfid)) |
|
683 | 683 | new_cinterfid = new_interfid.size |
|
684 | 684 | else: |
|
685 | 685 | new_cinterfid = 0 |
|
686 | 686 | |
|
687 | 687 | for ip in range(new_cinterfid): |
|
688 | 688 | ind = junkspc_interf[:, new_interfid[ip]].ravel().argsort() |
|
689 | 689 | jspc_interf[new_interfid[ip] |
|
690 | 690 | ] = junkspc_interf[ind[nhei_interf / 2], new_interfid[ip]] |
|
691 | 691 | |
|
692 | 692 | jspectra[ich, :, ind_hei] = jspectra[ich, :, |
|
693 | 693 | ind_hei] - jspc_interf # Corregir indices |
|
694 | 694 | |
|
695 | 695 | # Removiendo la interferencia del punto de mayor interferencia |
|
696 | 696 | ListAux = jspc_interf[mask_prof].tolist() |
|
697 | 697 | maxid = ListAux.index(max(ListAux)) |
|
698 | 698 | |
|
699 | 699 | if cinterfid > 0: |
|
700 | 700 | for ip in range(cinterfid * (interf == 2) - 1): |
|
701 | 701 | ind = (jspectra[ich, interfid[ip], :] < tmp_noise * |
|
702 | 702 | (1 + 1 / numpy.sqrt(num_incoh))).nonzero() |
|
703 | 703 | cind = len(ind) |
|
704 | 704 | |
|
705 | 705 | if (cind > 0): |
|
706 | 706 | jspectra[ich, interfid[ip], ind] = tmp_noise * \ |
|
707 | 707 | (1 + (numpy.random.uniform(cind) - 0.5) / |
|
708 | 708 | numpy.sqrt(num_incoh)) |
|
709 | 709 | |
|
710 | 710 | ind = numpy.array([-2, -1, 1, 2]) |
|
711 | 711 | xx = numpy.zeros([4, 4]) |
|
712 | 712 | |
|
713 | 713 | for id1 in range(4): |
|
714 | 714 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
715 | 715 | |
|
716 | 716 | xx_inv = numpy.linalg.inv(xx) |
|
717 | 717 | xx = xx_inv[:, 0] |
|
718 | 718 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
719 | 719 | yy = jspectra[ich, mask_prof[ind], :] |
|
720 | 720 | jspectra[ich, mask_prof[maxid], :] = numpy.dot( |
|
721 | 721 | yy.transpose(), xx) |
|
722 | 722 | |
|
723 | 723 | indAux = (jspectra[ich, :, :] < tmp_noise * |
|
724 | 724 | (1 - 1 / numpy.sqrt(num_incoh))).nonzero() |
|
725 | 725 | jspectra[ich, indAux[0], indAux[1]] = tmp_noise * \ |
|
726 | 726 | (1 - 1 / numpy.sqrt(num_incoh)) |
|
727 | 727 | |
|
728 | 728 | # Remocion de Interferencia en el Cross Spectra |
|
729 | 729 | if jcspectra is None: |
|
730 | 730 | return jspectra, jcspectra |
|
731 | num_pairs = jcspectra.size / (num_prof * num_hei) | |
|
731 | num_pairs = int(jcspectra.size / (num_prof * num_hei)) | |
|
732 | 732 | jcspectra = jcspectra.reshape(num_pairs, num_prof, num_hei) |
|
733 | 733 | |
|
734 | 734 | for ip in range(num_pairs): |
|
735 | 735 | |
|
736 | 736 | #------------------------------------------- |
|
737 | 737 | |
|
738 | 738 | cspower = numpy.abs(jcspectra[ip, mask_prof, :]) |
|
739 | 739 | cspower = cspower[:, hei_interf] |
|
740 | 740 | cspower = cspower.sum(axis=0) |
|
741 | 741 | |
|
742 | 742 | cspsort = cspower.ravel().argsort() |
|
743 | 743 | junkcspc_interf = jcspectra[ip, :, hei_interf[cspsort[list(range( |
|
744 | 744 | offhei_interf, nhei_interf + offhei_interf))]]] |
|
745 | 745 | junkcspc_interf = junkcspc_interf.transpose() |
|
746 | 746 | jcspc_interf = junkcspc_interf.sum(axis=1) / nhei_interf |
|
747 | 747 | |
|
748 | 748 | ind = numpy.abs(jcspc_interf[mask_prof]).ravel().argsort() |
|
749 | 749 | |
|
750 | 750 | median_real = numpy.median(numpy.real( |
|
751 | 751 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof / 4))]], :])) |
|
752 | 752 | median_imag = numpy.median(numpy.imag( |
|
753 | 753 | junkcspc_interf[mask_prof[ind[list(range(3 * num_prof / 4))]], :])) |
|
754 | 754 | junkcspc_interf[comp_mask_prof, :] = numpy.complex( |
|
755 | 755 | median_real, median_imag) |
|
756 | 756 | |
|
757 | 757 | for iprof in range(num_prof): |
|
758 | 758 | ind = numpy.abs(junkcspc_interf[iprof, :]).ravel().argsort() |
|
759 | 759 | jcspc_interf[iprof] = junkcspc_interf[iprof, |
|
760 | 760 | ind[nhei_interf / 2]] |
|
761 | 761 | |
|
762 | 762 | # Removiendo la Interferencia |
|
763 | 763 | jcspectra[ip, :, ind_hei] = jcspectra[ip, |
|
764 | 764 | :, ind_hei] - jcspc_interf |
|
765 | 765 | |
|
766 | 766 | ListAux = numpy.abs(jcspc_interf[mask_prof]).tolist() |
|
767 | 767 | maxid = ListAux.index(max(ListAux)) |
|
768 | 768 | |
|
769 | 769 | ind = numpy.array([-2, -1, 1, 2]) |
|
770 | 770 | xx = numpy.zeros([4, 4]) |
|
771 | 771 | |
|
772 | 772 | for id1 in range(4): |
|
773 | 773 | xx[:, id1] = ind[id1]**numpy.asarray(list(range(4))) |
|
774 | 774 | |
|
775 | 775 | xx_inv = numpy.linalg.inv(xx) |
|
776 | 776 | xx = xx_inv[:, 0] |
|
777 | 777 | |
|
778 | 778 | ind = (ind + maxid + num_mask_prof) % num_mask_prof |
|
779 | 779 | yy = jcspectra[ip, mask_prof[ind], :] |
|
780 | 780 | jcspectra[ip, mask_prof[maxid], :] = numpy.dot(yy.transpose(), xx) |
|
781 | 781 | |
|
782 | 782 | # Guardar Resultados |
|
783 | 783 | self.dataOut.data_spc = jspectra |
|
784 | 784 | self.dataOut.data_cspc = jcspectra |
|
785 | 785 | |
|
786 | 786 | return 1 |
|
787 | 787 | |
|
788 | 788 | def setRadarFrequency(self, frequency=None): |
|
789 | 789 | |
|
790 | 790 | if frequency != None: |
|
791 | 791 | self.dataOut.frequency = frequency |
|
792 | 792 | |
|
793 | 793 | return 1 |
|
794 | 794 | |
|
795 | 795 | def getNoise(self, minHei=None, maxHei=None, minVel=None, maxVel=None): |
|
796 | 796 | # validacion de rango |
|
797 | 797 | if minHei == None: |
|
798 | 798 | minHei = self.dataOut.heightList[0] |
|
799 | 799 | |
|
800 | 800 | if maxHei == None: |
|
801 | 801 | maxHei = self.dataOut.heightList[-1] |
|
802 | 802 | |
|
803 | 803 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
804 | 804 | print('minHei: %.2f is out of the heights range' % (minHei)) |
|
805 | 805 | print('minHei is setting to %.2f' % (self.dataOut.heightList[0])) |
|
806 | 806 | minHei = self.dataOut.heightList[0] |
|
807 | 807 | |
|
808 | 808 | if (maxHei > self.dataOut.heightList[-1]) or (maxHei < minHei): |
|
809 | 809 | print('maxHei: %.2f is out of the heights range' % (maxHei)) |
|
810 | 810 | print('maxHei is setting to %.2f' % (self.dataOut.heightList[-1])) |
|
811 | 811 | maxHei = self.dataOut.heightList[-1] |
|
812 | 812 | |
|
813 | 813 | # validacion de velocidades |
|
814 | 814 | velrange = self.dataOut.getVelRange(1) |
|
815 | 815 | |
|
816 | 816 | if minVel == None: |
|
817 | 817 | minVel = velrange[0] |
|
818 | 818 | |
|
819 | 819 | if maxVel == None: |
|
820 | 820 | maxVel = velrange[-1] |
|
821 | 821 | |
|
822 | 822 | if (minVel < velrange[0]) or (minVel > maxVel): |
|
823 | 823 | print('minVel: %.2f is out of the velocity range' % (minVel)) |
|
824 | 824 | print('minVel is setting to %.2f' % (velrange[0])) |
|
825 | 825 | minVel = velrange[0] |
|
826 | 826 | |
|
827 | 827 | if (maxVel > velrange[-1]) or (maxVel < minVel): |
|
828 | 828 | print('maxVel: %.2f is out of the velocity range' % (maxVel)) |
|
829 | 829 | print('maxVel is setting to %.2f' % (velrange[-1])) |
|
830 | 830 | maxVel = velrange[-1] |
|
831 | 831 | |
|
832 | 832 | # seleccion de indices para rango |
|
833 | 833 | minIndex = 0 |
|
834 | 834 | maxIndex = 0 |
|
835 | 835 | heights = self.dataOut.heightList |
|
836 | 836 | |
|
837 | 837 | inda = numpy.where(heights >= minHei) |
|
838 | 838 | indb = numpy.where(heights <= maxHei) |
|
839 | 839 | |
|
840 | 840 | try: |
|
841 | 841 | minIndex = inda[0][0] |
|
842 | 842 | except: |
|
843 | 843 | minIndex = 0 |
|
844 | 844 | |
|
845 | 845 | try: |
|
846 | 846 | maxIndex = indb[0][-1] |
|
847 | 847 | except: |
|
848 | 848 | maxIndex = len(heights) |
|
849 | 849 | |
|
850 | 850 | if (minIndex < 0) or (minIndex > maxIndex): |
|
851 | 851 | raise ValueError("some value in (%d,%d) is not valid" % ( |
|
852 | 852 | minIndex, maxIndex)) |
|
853 | 853 | |
|
854 | 854 | if (maxIndex >= self.dataOut.nHeights): |
|
855 | 855 | maxIndex = self.dataOut.nHeights - 1 |
|
856 | 856 | |
|
857 | 857 | # seleccion de indices para velocidades |
|
858 | 858 | indminvel = numpy.where(velrange >= minVel) |
|
859 | 859 | indmaxvel = numpy.where(velrange <= maxVel) |
|
860 | 860 | try: |
|
861 | 861 | minIndexVel = indminvel[0][0] |
|
862 | 862 | except: |
|
863 | 863 | minIndexVel = 0 |
|
864 | 864 | |
|
865 | 865 | try: |
|
866 | 866 | maxIndexVel = indmaxvel[0][-1] |
|
867 | 867 | except: |
|
868 | 868 | maxIndexVel = len(velrange) |
|
869 | 869 | |
|
870 | 870 | # seleccion del espectro |
|
871 | 871 | data_spc = self.dataOut.data_spc[:, |
|
872 | 872 | minIndexVel:maxIndexVel + 1, minIndex:maxIndex + 1] |
|
873 | 873 | # estimacion de ruido |
|
874 | 874 | noise = numpy.zeros(self.dataOut.nChannels) |
|
875 | 875 | |
|
876 | 876 | for channel in range(self.dataOut.nChannels): |
|
877 | 877 | daux = data_spc[channel, :, :] |
|
878 | 878 | noise[channel] = hildebrand_sekhon(daux, self.dataOut.nIncohInt) |
|
879 | 879 | |
|
880 | 880 | self.dataOut.noise_estimation = noise.copy() |
|
881 | 881 | |
|
882 | 882 | return 1 |
|
883 | 883 | |
|
884 | 884 | |
|
885 | 885 | class IncohInt(Operation): |
|
886 | 886 | |
|
887 | 887 | __profIndex = 0 |
|
888 | 888 | __withOverapping = False |
|
889 | 889 | |
|
890 | 890 | __byTime = False |
|
891 | 891 | __initime = None |
|
892 | 892 | __lastdatatime = None |
|
893 | 893 | __integrationtime = None |
|
894 | 894 | |
|
895 | 895 | __buffer_spc = None |
|
896 | 896 | __buffer_cspc = None |
|
897 | 897 | __buffer_dc = None |
|
898 | 898 | |
|
899 | 899 | __dataReady = False |
|
900 | 900 | |
|
901 | 901 | __timeInterval = None |
|
902 | 902 | |
|
903 | 903 | n = None |
|
904 | 904 | |
|
905 | 905 | def __init__(self): |
|
906 | 906 | |
|
907 | 907 | Operation.__init__(self) |
|
908 | 908 | |
|
909 | 909 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
910 | 910 | """ |
|
911 | 911 | Set the parameters of the integration class. |
|
912 | 912 | |
|
913 | 913 | Inputs: |
|
914 | 914 | |
|
915 | 915 | n : Number of coherent integrations |
|
916 | 916 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
917 | 917 | overlapping : |
|
918 | 918 | |
|
919 | 919 | """ |
|
920 | 920 | |
|
921 | 921 | self.__initime = None |
|
922 | 922 | self.__lastdatatime = 0 |
|
923 | 923 | |
|
924 | 924 | self.__buffer_spc = 0 |
|
925 | 925 | self.__buffer_cspc = 0 |
|
926 | 926 | self.__buffer_dc = 0 |
|
927 | 927 | |
|
928 | 928 | self.__profIndex = 0 |
|
929 | 929 | self.__dataReady = False |
|
930 | 930 | self.__byTime = False |
|
931 | 931 | |
|
932 | 932 | if n is None and timeInterval is None: |
|
933 | 933 | raise ValueError("n or timeInterval should be specified ...") |
|
934 | 934 | |
|
935 | 935 | if n is not None: |
|
936 | 936 | self.n = int(n) |
|
937 | 937 | else: |
|
938 | 938 | |
|
939 | 939 | self.__integrationtime = int(timeInterval) |
|
940 | 940 | self.n = None |
|
941 | 941 | self.__byTime = True |
|
942 | 942 | |
|
943 | 943 | def putData(self, data_spc, data_cspc, data_dc): |
|
944 | 944 | """ |
|
945 | 945 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
946 | 946 | |
|
947 | 947 | """ |
|
948 | 948 | |
|
949 | 949 | self.__buffer_spc += data_spc |
|
950 | 950 | |
|
951 | 951 | if data_cspc is None: |
|
952 | 952 | self.__buffer_cspc = None |
|
953 | 953 | else: |
|
954 | 954 | self.__buffer_cspc += data_cspc |
|
955 | 955 | |
|
956 | 956 | if data_dc is None: |
|
957 | 957 | self.__buffer_dc = None |
|
958 | 958 | else: |
|
959 | 959 | self.__buffer_dc += data_dc |
|
960 | 960 | |
|
961 | 961 | self.__profIndex += 1 |
|
962 | 962 | |
|
963 | 963 | return |
|
964 | 964 | |
|
965 | 965 | def pushData(self): |
|
966 | 966 | """ |
|
967 | 967 | Return the sum of the last profiles and the profiles used in the sum. |
|
968 | 968 | |
|
969 | 969 | Affected: |
|
970 | 970 | |
|
971 | 971 | self.__profileIndex |
|
972 | 972 | |
|
973 | 973 | """ |
|
974 | 974 | |
|
975 | 975 | data_spc = self.__buffer_spc |
|
976 | 976 | data_cspc = self.__buffer_cspc |
|
977 | 977 | data_dc = self.__buffer_dc |
|
978 | 978 | n = self.__profIndex |
|
979 | 979 | |
|
980 | 980 | self.__buffer_spc = 0 |
|
981 | 981 | self.__buffer_cspc = 0 |
|
982 | 982 | self.__buffer_dc = 0 |
|
983 | 983 | self.__profIndex = 0 |
|
984 | 984 | |
|
985 | 985 | return data_spc, data_cspc, data_dc, n |
|
986 | 986 | |
|
987 | 987 | def byProfiles(self, *args): |
|
988 | 988 | |
|
989 | 989 | self.__dataReady = False |
|
990 | 990 | avgdata_spc = None |
|
991 | 991 | avgdata_cspc = None |
|
992 | 992 | avgdata_dc = None |
|
993 | 993 | |
|
994 | 994 | self.putData(*args) |
|
995 | 995 | |
|
996 | 996 | if self.__profIndex == self.n: |
|
997 | 997 | |
|
998 | 998 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
999 | 999 | self.n = n |
|
1000 | 1000 | self.__dataReady = True |
|
1001 | 1001 | |
|
1002 | 1002 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1003 | 1003 | |
|
1004 | 1004 | def byTime(self, datatime, *args): |
|
1005 | 1005 | |
|
1006 | 1006 | self.__dataReady = False |
|
1007 | 1007 | avgdata_spc = None |
|
1008 | 1008 | avgdata_cspc = None |
|
1009 | 1009 | avgdata_dc = None |
|
1010 | 1010 | |
|
1011 | 1011 | self.putData(*args) |
|
1012 | 1012 | |
|
1013 | 1013 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1014 | 1014 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1015 | 1015 | self.n = n |
|
1016 | 1016 | self.__dataReady = True |
|
1017 | 1017 | |
|
1018 | 1018 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1019 | 1019 | |
|
1020 | 1020 | def integrate(self, datatime, *args): |
|
1021 | 1021 | |
|
1022 | 1022 | if self.__profIndex == 0: |
|
1023 | 1023 | self.__initime = datatime |
|
1024 | 1024 | |
|
1025 | 1025 | if self.__byTime: |
|
1026 | 1026 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime( |
|
1027 | 1027 | datatime, *args) |
|
1028 | 1028 | else: |
|
1029 | 1029 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1030 | 1030 | |
|
1031 | 1031 | if not self.__dataReady: |
|
1032 | 1032 | return None, None, None, None |
|
1033 | 1033 | |
|
1034 | 1034 | return self.__initime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1035 | 1035 | |
|
1036 | 1036 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1037 | 1037 | if n == 1: |
|
1038 | 1038 | return |
|
1039 | 1039 | |
|
1040 | 1040 | dataOut.flagNoData = True |
|
1041 | 1041 | |
|
1042 | 1042 | if not self.isConfig: |
|
1043 | 1043 | self.setup(n, timeInterval, overlapping) |
|
1044 | 1044 | self.isConfig = True |
|
1045 | 1045 | |
|
1046 | 1046 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1047 | 1047 | dataOut.data_spc, |
|
1048 | 1048 | dataOut.data_cspc, |
|
1049 | 1049 | dataOut.data_dc) |
|
1050 | 1050 | |
|
1051 | 1051 | if self.__dataReady: |
|
1052 | 1052 | |
|
1053 | 1053 | dataOut.data_spc = avgdata_spc |
|
1054 | 1054 | dataOut.data_cspc = avgdata_cspc |
|
1055 | 1055 | dataOut.data_dc = avgdata_dc |
|
1056 | 1056 | dataOut.nIncohInt *= self.n |
|
1057 | 1057 | dataOut.utctime = avgdatatime |
|
1058 | 1058 | dataOut.flagNoData = False |
|
1059 | 1059 | |
|
1060 | 1060 | return dataOut No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now