@@ -30,7 +30,7 rti.addParameter(name='wr_period', value='5', format='int') | |||
|
30 | 30 | rti.addParameter(name='exp_code', value='22', format='int') |
|
31 | 31 | |
|
32 | 32 | |
|
33 |
|
|
|
33 | project.start() | |
|
34 | 34 | ''' |
|
35 | 35 | |
|
36 | 36 | multiprocess = '''from schainpy.controller import Project, MPProject |
@@ -15,41 +15,43 from schainpy import cSchain | |||
|
15 | 15 | def getNumpyDtype(dataTypeCode): |
|
16 | 16 | |
|
17 | 17 | if dataTypeCode == 0: |
|
18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) | |
|
18 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
|
19 | 19 | elif dataTypeCode == 1: |
|
20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) | |
|
20 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
|
21 | 21 | elif dataTypeCode == 2: |
|
22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) | |
|
22 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
|
23 | 23 | elif dataTypeCode == 3: |
|
24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
|
24 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
|
25 | 25 | elif dataTypeCode == 4: |
|
26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
|
26 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
|
27 | 27 | elif dataTypeCode == 5: |
|
28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) | |
|
28 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
|
29 | 29 | else: |
|
30 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
31 | 31 | |
|
32 | 32 | return numpyDtype |
|
33 | 33 | |
|
34 | ||
|
34 | 35 | def getDataTypeCode(numpyDtype): |
|
35 | 36 | |
|
36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): | |
|
37 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
|
37 | 38 | datatype = 0 |
|
38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): | |
|
39 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
|
39 | 40 | datatype = 1 |
|
40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): | |
|
41 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
|
41 | 42 | datatype = 2 |
|
42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): | |
|
43 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
|
43 | 44 | datatype = 3 |
|
44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): | |
|
45 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
|
45 | 46 | datatype = 4 |
|
46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): | |
|
47 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
|
47 | 48 | datatype = 5 |
|
48 | 49 | else: |
|
49 | 50 | datatype = None |
|
50 | 51 | |
|
51 | 52 | return datatype |
|
52 | 53 | |
|
54 | ||
|
53 | 55 | def hildebrand_sekhon(data, navg): |
|
54 | 56 | """ |
|
55 | 57 | This method is for the objective determination of the noise level in Doppler spectra. This |
@@ -110,6 +112,7 class Beam: | |||
|
110 | 112 | self.azimuthList = [] |
|
111 | 113 | self.zenithList = [] |
|
112 | 114 | |
|
115 | ||
|
113 | 116 | class GenericData(object): |
|
114 | 117 | |
|
115 | 118 | flagNoData = True |
@@ -123,12 +126,12 class GenericData(object): | |||
|
123 | 126 | |
|
124 | 127 | attribute = inputObj.__dict__[key] |
|
125 | 128 | |
|
126 | #If this attribute is a tuple or list | |
|
129 | # If this attribute is a tuple or list | |
|
127 | 130 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
128 | 131 | self.__dict__[key] = attribute[:] |
|
129 | 132 | continue |
|
130 | 133 | |
|
131 | #If this attribute is another object or instance | |
|
134 | # If this attribute is another object or instance | |
|
132 | 135 | if hasattr(attribute, '__dict__'): |
|
133 | 136 | self.__dict__[key] = attribute.copy() |
|
134 | 137 | continue |
@@ -143,10 +146,11 class GenericData(object): | |||
|
143 | 146 | |
|
144 | 147 | return self.flagNoData |
|
145 | 148 | |
|
149 | ||
|
146 | 150 | class JROData(GenericData): |
|
147 | 151 | |
|
148 | # m_BasicHeader = BasicHeader() | |
|
149 | # m_ProcessingHeader = ProcessingHeader() | |
|
152 | # m_BasicHeader = BasicHeader() | |
|
153 | # m_ProcessingHeader = ProcessingHeader() | |
|
150 | 154 | |
|
151 | 155 | systemHeaderObj = SystemHeader() |
|
152 | 156 | |
@@ -156,7 +160,7 class JROData(GenericData): | |||
|
156 | 160 | |
|
157 | 161 | type = None |
|
158 | 162 | |
|
159 | datatype = None #dtype but in string | |
|
163 | datatype = None # dtype but in string | |
|
160 | 164 | |
|
161 | 165 | # dtype = None |
|
162 | 166 | |
@@ -190,9 +194,9 class JROData(GenericData): | |||
|
190 | 194 | # |
|
191 | 195 | # code = None |
|
192 | 196 | |
|
193 | flagDecodeData = False #asumo q la data no esta decodificada | |
|
197 | flagDecodeData = False # asumo q la data no esta decodificada | |
|
194 | 198 | |
|
195 | flagDeflipData = False #asumo q la data no esta sin flip | |
|
199 | flagDeflipData = False # asumo q la data no esta sin flip | |
|
196 | 200 | |
|
197 | 201 | flagShiftFFT = False |
|
198 | 202 | |
@@ -206,7 +210,7 class JROData(GenericData): | |||
|
206 | 210 | |
|
207 | 211 | windowOfFilter = 1 |
|
208 | 212 | |
|
209 | #Speed of ligth | |
|
213 | # Speed of ligth | |
|
210 | 214 | C = 3e8 |
|
211 | 215 | |
|
212 | 216 | frequency = 49.92e6 |
@@ -261,7 +265,7 class JROData(GenericData): | |||
|
261 | 265 | def getltctime(self): |
|
262 | 266 | |
|
263 | 267 | if self.useLocalTime: |
|
264 | return self.utctime - self.timeZone*60 | |
|
268 | return self.utctime - self.timeZone * 60 | |
|
265 | 269 | |
|
266 | 270 | return self.utctime |
|
267 | 271 | |
@@ -275,7 +279,7 class JROData(GenericData): | |||
|
275 | 279 | datatime = [] |
|
276 | 280 | |
|
277 | 281 | datatime.append(self.ltctime) |
|
278 | datatime.append(self.ltctime + self.timeInterval+1) | |
|
282 | datatime.append(self.ltctime + self.timeInterval + 1) | |
|
279 | 283 | |
|
280 | 284 | datatime = numpy.array(datatime) |
|
281 | 285 | |
@@ -283,25 +287,25 class JROData(GenericData): | |||
|
283 | 287 | |
|
284 | 288 | def getFmaxTimeResponse(self): |
|
285 | 289 | |
|
286 | period = (10**-6)*self.getDeltaH()/(0.15) | |
|
290 | period = (10**-6) * self.getDeltaH() / (0.15) | |
|
287 | 291 | |
|
288 | PRF = 1./(period * self.nCohInt) | |
|
292 | PRF = 1. / (period * self.nCohInt) | |
|
289 | 293 | |
|
290 | 294 | fmax = PRF |
|
291 | 295 | |
|
292 | 296 | return fmax |
|
293 | 297 | |
|
294 | 298 | def getFmax(self): |
|
295 | PRF = 1./(self.ippSeconds * self.nCohInt) | |
|
299 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
|
296 | 300 | |
|
297 | 301 | fmax = PRF |
|
298 | 302 | return fmax |
|
299 | 303 | |
|
300 | 304 | def getVmax(self): |
|
301 | 305 | |
|
302 | _lambda = self.C/self.frequency | |
|
306 | _lambda = self.C / self.frequency | |
|
303 | 307 | |
|
304 | vmax = self.getFmax() * _lambda/2 | |
|
308 | vmax = self.getFmax() * _lambda / 2 | |
|
305 | 309 | |
|
306 | 310 | return vmax |
|
307 | 311 | |
@@ -366,7 +370,8 class JROData(GenericData): | |||
|
366 | 370 | return |
|
367 | 371 | |
|
368 | 372 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
369 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
|
373 | channelIndexList = property( | |
|
374 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
|
370 | 375 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
371 | 376 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
372 | 377 | datatime = property(getDatatime, "I'm the 'datatime' property") |
@@ -378,9 +383,10 class JROData(GenericData): | |||
|
378 | 383 | nCode = property(get_ncode, set_ncode) |
|
379 | 384 | nBaud = property(get_nbaud, set_nbaud) |
|
380 | 385 | |
|
386 | ||
|
381 | 387 | class Voltage(JROData): |
|
382 | 388 | |
|
383 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
|
389 | # data es un numpy array de 2 dmensiones (canales, alturas) | |
|
384 | 390 | data = None |
|
385 | 391 | |
|
386 | 392 | def __init__(self): |
@@ -428,17 +434,17 class Voltage(JROData): | |||
|
428 | 434 | |
|
429 | 435 | self.blocksize = None |
|
430 | 436 | |
|
431 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
|
437 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
|
432 | 438 | |
|
433 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
|
439 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
|
434 | 440 | |
|
435 | 441 | self.flagShiftFFT = False |
|
436 | 442 | |
|
437 |
self.flagDataAsBlock = False |
|
|
443 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
|
438 | 444 | |
|
439 | 445 | self.profileIndex = 0 |
|
440 | 446 | |
|
441 |
def getNoisebyHildebrand(self, channel |
|
|
447 | def getNoisebyHildebrand(self, channel=None): | |
|
442 | 448 | """ |
|
443 | 449 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
444 | 450 | |
@@ -460,19 +466,19 class Voltage(JROData): | |||
|
460 | 466 | if nChannels == 1: |
|
461 | 467 | daux = power[:].real |
|
462 | 468 | else: |
|
463 | daux = power[thisChannel,:].real | |
|
469 | daux = power[thisChannel, :].real | |
|
464 | 470 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
465 | 471 | |
|
466 | 472 | return noise |
|
467 | 473 | |
|
468 |
def getNoise(self, type |
|
|
474 | def getNoise(self, type=1, channel=None): | |
|
469 | 475 | |
|
470 | 476 | if type == 1: |
|
471 | 477 | noise = self.getNoisebyHildebrand(channel) |
|
472 | 478 | |
|
473 | 479 | return noise |
|
474 | 480 | |
|
475 |
def getPower(self, channel |
|
|
481 | def getPower(self, channel=None): | |
|
476 | 482 | |
|
477 | 483 | if channel != None: |
|
478 | 484 | data = self.data[channel] |
@@ -480,7 +486,7 class Voltage(JROData): | |||
|
480 | 486 | data = self.data |
|
481 | 487 | |
|
482 | 488 | power = data * numpy.conjugate(data) |
|
483 | powerdB = 10*numpy.log10(power.real) | |
|
489 | powerdB = 10 * numpy.log10(power.real) | |
|
484 | 490 | powerdB = numpy.squeeze(powerdB) |
|
485 | 491 | |
|
486 | 492 | return powerdB |
@@ -494,18 +500,19 class Voltage(JROData): | |||
|
494 | 500 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
495 | 501 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
496 | 502 | |
|
503 | ||
|
497 | 504 | class Spectra(JROData): |
|
498 | 505 | |
|
499 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
|
506 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
|
500 | 507 | data_spc = None |
|
501 | 508 | |
|
502 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
|
509 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
|
503 | 510 | data_cspc = None |
|
504 | 511 | |
|
505 | #data dc es un numpy array de 2 dmensiones (canales, alturas) | |
|
512 | # data dc es un numpy array de 2 dmensiones (canales, alturas) | |
|
506 | 513 | data_dc = None |
|
507 | 514 | |
|
508 | #data power | |
|
515 | # data power | |
|
509 | 516 | data_pwr = None |
|
510 | 517 | |
|
511 | 518 | nFFTPoints = None |
@@ -516,9 +523,9 class Spectra(JROData): | |||
|
516 | 523 | |
|
517 | 524 | nIncohInt = None |
|
518 | 525 | |
|
519 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia | |
|
526 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia | |
|
520 | 527 | |
|
521 | nCohInt = None #se requiere para determinar el valor de timeInterval | |
|
528 | nCohInt = None # se requiere para determinar el valor de timeInterval | |
|
522 | 529 | |
|
523 | 530 | ippFactor = None |
|
524 | 531 | |
@@ -573,9 +580,9 class Spectra(JROData): | |||
|
573 | 580 | |
|
574 | 581 | self.wavelength = None |
|
575 | 582 | |
|
576 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
|
583 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
|
577 | 584 | |
|
578 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
|
585 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
|
579 | 586 | |
|
580 | 587 | self.flagShiftFFT = False |
|
581 | 588 | |
@@ -587,7 +594,6 class Spectra(JROData): | |||
|
587 | 594 | |
|
588 | 595 | self.noise_estimation = None |
|
589 | 596 | |
|
590 | ||
|
591 | 597 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
592 | 598 | """ |
|
593 | 599 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
@@ -599,7 +605,8 class Spectra(JROData): | |||
|
599 | 605 | noise = numpy.zeros(self.nChannels) |
|
600 | 606 | |
|
601 | 607 | for channel in range(self.nChannels): |
|
602 |
daux = self.data_spc[channel, |
|
|
608 | daux = self.data_spc[channel, | |
|
609 | xmin_index:xmax_index, ymin_index:ymax_index] | |
|
603 | 610 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
604 | 611 | |
|
605 | 612 | return noise |
@@ -607,36 +614,45 class Spectra(JROData): | |||
|
607 | 614 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
608 | 615 | |
|
609 | 616 | if self.noise_estimation is not None: |
|
610 |
|
|
|
617 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
|
618 | return self.noise_estimation | |
|
611 | 619 | else: |
|
612 |
noise = self.getNoisebyHildebrand( |
|
|
620 | noise = self.getNoisebyHildebrand( | |
|
621 | xmin_index, xmax_index, ymin_index, ymax_index) | |
|
613 | 622 | return noise |
|
614 | 623 | |
|
615 | 624 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
616 | 625 | |
|
617 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) | |
|
618 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
|
626 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
|
627 | freqrange = deltafreq * \ | |
|
628 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
|
629 | self.nFFTPoints / 2.) - deltafreq / 2 | |
|
619 | 630 | |
|
620 | 631 | return freqrange |
|
621 | 632 | |
|
622 | 633 | def getAcfRange(self, extrapoints=0): |
|
623 | 634 | |
|
624 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) | |
|
625 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
|
635 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
|
636 | freqrange = deltafreq * \ | |
|
637 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
|
638 | self.nFFTPoints / 2.) - deltafreq / 2 | |
|
626 | 639 | |
|
627 | 640 | return freqrange |
|
628 | 641 | |
|
629 | 642 | def getFreqRange(self, extrapoints=0): |
|
630 | 643 | |
|
631 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) | |
|
632 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
|
644 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
|
645 | freqrange = deltafreq * \ | |
|
646 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
|
647 | self.nFFTPoints / 2.) - deltafreq / 2 | |
|
633 | 648 | |
|
634 | 649 | return freqrange |
|
635 | 650 | |
|
636 | 651 | def getVelRange(self, extrapoints=0): |
|
637 | 652 | |
|
638 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) | |
|
639 |
velrange = deltav*(numpy.arange(self.nFFTPoints+ |
|
|
653 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
|
654 | velrange = deltav * (numpy.arange(self.nFFTPoints + | |
|
655 | extrapoints) - self.nFFTPoints / 2.) # - deltav/2 | |
|
640 | 656 | |
|
641 | 657 | return velrange |
|
642 | 658 | |
@@ -655,7 +671,8 class Spectra(JROData): | |||
|
655 | 671 | if self.flagDecodeData: |
|
656 | 672 | pwcode = numpy.sum(self.code[0]**2) |
|
657 | 673 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
658 |
normFactor = self.nProfiles*self.nIncohInt* |
|
|
674 | normFactor = self.nProfiles * self.nIncohInt * \ | |
|
675 | self.nCohInt * pwcode * self.windowOfFilter | |
|
659 | 676 | |
|
660 | 677 | return normFactor |
|
661 | 678 | |
@@ -682,11 +699,11 class Spectra(JROData): | |||
|
682 | 699 | def getPower(self): |
|
683 | 700 | |
|
684 | 701 | factor = self.normFactor |
|
685 | z = self.data_spc/factor | |
|
702 | z = self.data_spc / factor | |
|
686 | 703 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
687 | 704 | avg = numpy.average(z, axis=1) |
|
688 | 705 | |
|
689 | return 10*numpy.log10(avg) | |
|
706 | return 10 * numpy.log10(avg) | |
|
690 | 707 | |
|
691 | 708 | def getCoherence(self, pairsList=None, phase=False): |
|
692 | 709 | |
@@ -697,17 +714,19 class Spectra(JROData): | |||
|
697 | 714 | pairsIndexList = [] |
|
698 | 715 | for pair in pairsList: |
|
699 | 716 | if pair not in self.pairsList: |
|
700 |
raise ValueError, "Pair %s is not in dataOut.pairsList" %( |
|
|
701 | pairsIndexList.append(self.pairsList.index(pair)) | |
|
717 | raise ValueError, "Pair %s is not in dataOut.pairsList" % ( | |
|
718 | pair) | |
|
719 | pairsIndexList.append(self.pairsList.index(pair)) | |
|
702 | 720 | for i in range(len(pairsIndexList)): |
|
703 | 721 | pair = self.pairsList[pairsIndexList[i]] |
|
704 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
|
722 | ccf = numpy.average( | |
|
723 | self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
|
705 | 724 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
706 | 725 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
707 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
|
726 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
|
708 | 727 | if phase: |
|
709 | 728 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
710 | avgcoherenceComplex.real)*180/numpy.pi | |
|
729 | avgcoherenceComplex.real) * 180 / numpy.pi | |
|
711 | 730 | else: |
|
712 | 731 | data = numpy.abs(avgcoherenceComplex) |
|
713 | 732 | |
@@ -722,12 +741,16 class Spectra(JROData): | |||
|
722 | 741 | return |
|
723 | 742 | |
|
724 | 743 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
725 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") | |
|
726 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") | |
|
744 | pairsIndexList = property( | |
|
745 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") | |
|
746 | normFactor = property(getNormFactor, setValue, | |
|
747 | "I'm the 'getNormFactor' property.") | |
|
727 | 748 | flag_cspc = property(getFlagCspc, setValue) |
|
728 | 749 | flag_dc = property(getFlagDc, setValue) |
|
729 | 750 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
730 |
timeInterval = property(getTimeInterval, setValue, |
|
|
751 | timeInterval = property(getTimeInterval, setValue, | |
|
752 | "I'm the 'timeInterval' property") | |
|
753 | ||
|
731 | 754 | |
|
732 | 755 | class SpectraHeis(Spectra): |
|
733 | 756 | |
@@ -790,7 +813,7 class SpectraHeis(Spectra): | |||
|
790 | 813 | if self.flagDecodeData: |
|
791 | 814 | pwcode = numpy.sum(self.code[0]**2) |
|
792 | 815 | |
|
793 | normFactor = self.nIncohInt*self.nCohInt*pwcode | |
|
816 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
|
794 | 817 | |
|
795 | 818 | return normFactor |
|
796 | 819 | |
@@ -803,6 +826,7 class SpectraHeis(Spectra): | |||
|
803 | 826 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
804 | 827 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
805 | 828 | |
|
829 | ||
|
806 | 830 | class Fits(JROData): |
|
807 | 831 | |
|
808 | 832 | heightList = None |
@@ -831,14 +855,13 class Fits(JROData): | |||
|
831 | 855 | |
|
832 | 856 | windowOfFilter = 1 |
|
833 | 857 | |
|
834 | #Speed of ligth | |
|
858 | # Speed of ligth | |
|
835 | 859 | C = 3e8 |
|
836 | 860 | |
|
837 | 861 | frequency = 49.92e6 |
|
838 | 862 | |
|
839 | 863 | realtime = False |
|
840 | 864 | |
|
841 | ||
|
842 | 865 | def __init__(self): |
|
843 | 866 | |
|
844 | 867 | self.type = "Fits" |
@@ -879,11 +902,10 class Fits(JROData): | |||
|
879 | 902 | # self.comments = '' |
|
880 | 903 | # |
|
881 | 904 | |
|
882 | ||
|
883 | 905 | def getltctime(self): |
|
884 | 906 | |
|
885 | 907 | if self.useLocalTime: |
|
886 | return self.utctime - self.timeZone*60 | |
|
908 | return self.utctime - self.timeZone * 60 | |
|
887 | 909 | |
|
888 | 910 | return self.utctime |
|
889 | 911 | |
@@ -921,7 +943,7 class Fits(JROData): | |||
|
921 | 943 | |
|
922 | 944 | return range(self.nChannels) |
|
923 | 945 | |
|
924 |
def getNoise(self, type |
|
|
946 | def getNoise(self, type=1): | |
|
925 | 947 | |
|
926 | 948 | #noise = numpy.zeros(self.nChannels) |
|
927 | 949 | |
@@ -945,7 +967,8 class Fits(JROData): | |||
|
945 | 967 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
946 | 968 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
947 | 969 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
948 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
|
970 | channelIndexList = property( | |
|
971 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
|
949 | 972 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
950 | 973 | |
|
951 | 974 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
@@ -984,7 +1007,6 class Correlation(JROData): | |||
|
984 | 1007 | |
|
985 | 1008 | nAvg = None |
|
986 | 1009 | |
|
987 | ||
|
988 | 1010 | def __init__(self): |
|
989 | 1011 | ''' |
|
990 | 1012 | Constructor |
@@ -1019,9 +1041,9 class Correlation(JROData): | |||
|
1019 | 1041 | |
|
1020 | 1042 | self.blocksize = None |
|
1021 | 1043 | |
|
1022 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
|
1044 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
|
1023 | 1045 | |
|
1024 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
|
1046 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
|
1025 | 1047 | |
|
1026 | 1048 | self.pairsList = None |
|
1027 | 1049 | |
@@ -1031,48 +1053,50 class Correlation(JROData): | |||
|
1031 | 1053 | |
|
1032 | 1054 | return self.pairsList |
|
1033 | 1055 | |
|
1034 |
def getNoise(self, mode |
|
|
1056 | def getNoise(self, mode=2): | |
|
1035 | 1057 | |
|
1036 | 1058 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1037 | 1059 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1038 | 1060 | |
|
1039 | jspectra0 = self.data_corr[:,:,indR,:] | |
|
1061 | jspectra0 = self.data_corr[:, :, indR, :] | |
|
1040 | 1062 | jspectra = copy.copy(jspectra0) |
|
1041 | 1063 | |
|
1042 | 1064 | num_chan = jspectra.shape[0] |
|
1043 | 1065 | num_hei = jspectra.shape[2] |
|
1044 | 1066 | |
|
1045 | freq_dc = jspectra.shape[1]/2 | |
|
1046 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
|
1067 | freq_dc = jspectra.shape[1] / 2 | |
|
1068 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
|
1047 | 1069 | |
|
1048 | if ind_vel[0]<0: | |
|
1049 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
|
1070 | if ind_vel[0] < 0: | |
|
1071 | ind_vel[range(0, 1)] = ind_vel[range(0, 1)] + self.num_prof | |
|
1050 | 1072 | |
|
1051 | 1073 | if mode == 1: |
|
1052 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
|
1074 | jspectra[:, freq_dc, :] = ( | |
|
1075 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
|
1053 | 1076 | |
|
1054 | 1077 | if mode == 2: |
|
1055 | 1078 | |
|
1056 | vel = numpy.array([-2,-1,1,2]) | |
|
1057 | xx = numpy.zeros([4,4]) | |
|
1079 | vel = numpy.array([-2, -1, 1, 2]) | |
|
1080 | xx = numpy.zeros([4, 4]) | |
|
1058 | 1081 | |
|
1059 | 1082 | for fil in range(4): |
|
1060 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
|
1083 | xx[fil, :] = vel[fil]**numpy.asarray(range(4)) | |
|
1061 | 1084 | |
|
1062 | 1085 | xx_inv = numpy.linalg.inv(xx) |
|
1063 | xx_aux = xx_inv[0,:] | |
|
1086 | xx_aux = xx_inv[0, :] | |
|
1064 | 1087 | |
|
1065 | 1088 | for ich in range(num_chan): |
|
1066 | yy = jspectra[ich,ind_vel,:] | |
|
1067 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
|
1089 | yy = jspectra[ich, ind_vel, :] | |
|
1090 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
|
1068 | 1091 | |
|
1069 | junkid = jspectra[ich,freq_dc,:]<=0 | |
|
1092 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
|
1070 | 1093 | cjunkid = sum(junkid) |
|
1071 | 1094 | |
|
1072 | 1095 | if cjunkid.any(): |
|
1073 |
jspectra[ich,freq_dc,junkid.nonzero()] = ( |
|
|
1096 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
|
1097 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
|
1074 | 1098 | |
|
1075 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] | |
|
1099 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
|
1076 | 1100 | |
|
1077 | 1101 | return noise |
|
1078 | 1102 | |
@@ -1093,7 +1117,7 class Correlation(JROData): | |||
|
1093 | 1117 | chan0 = pairsList[l][0] |
|
1094 | 1118 | chan1 = pairsList[l][1] |
|
1095 | 1119 | |
|
1096 | #Obteniendo pares de Autocorrelacion | |
|
1120 | # Obteniendo pares de Autocorrelacion | |
|
1097 | 1121 | if chan0 == chan1: |
|
1098 | 1122 | acf_pairs.append(chan0) |
|
1099 | 1123 | acf_ind.append(l) |
@@ -1109,7 +1133,7 class Correlation(JROData): | |||
|
1109 | 1133 | def getNormFactor(self): |
|
1110 | 1134 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1111 | 1135 | acf_pairs = numpy.array(acf_pairs) |
|
1112 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) | |
|
1136 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
|
1113 | 1137 | |
|
1114 | 1138 | for p in range(self.nPairs): |
|
1115 | 1139 | pair = self.pairsList[p] |
@@ -1117,69 +1141,69 class Correlation(JROData): | |||
|
1117 | 1141 | ch0 = pair[0] |
|
1118 | 1142 | ch1 = pair[1] |
|
1119 | 1143 | |
|
1120 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) | |
|
1121 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) | |
|
1122 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) | |
|
1144 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
|
1145 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
|
1146 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
|
1123 | 1147 | |
|
1124 | 1148 | return normFactor |
|
1125 | 1149 | |
|
1126 | 1150 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1127 | 1151 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1128 | 1152 | |
|
1153 | ||
|
1129 | 1154 | class Parameters(Spectra): |
|
1130 | 1155 | |
|
1131 |
experimentInfo = None |
|
|
1156 | experimentInfo = None # Information about the experiment | |
|
1132 | 1157 | |
|
1133 | #Information from previous data | |
|
1158 | # Information from previous data | |
|
1134 | 1159 | |
|
1135 |
inputUnit = None |
|
|
1160 | inputUnit = None # Type of data to be processed | |
|
1136 | 1161 | |
|
1137 |
operation = None |
|
|
1162 | operation = None # Type of operation to parametrize | |
|
1138 | 1163 | |
|
1139 | #normFactor = None #Normalization Factor | |
|
1164 | # normFactor = None #Normalization Factor | |
|
1140 | 1165 | |
|
1141 |
groupList = None |
|
|
1166 | groupList = None # List of Pairs, Groups, etc | |
|
1142 | 1167 | |
|
1143 | #Parameters | |
|
1168 | # Parameters | |
|
1144 | 1169 | |
|
1145 |
data_param = None |
|
|
1170 | data_param = None # Parameters obtained | |
|
1146 | 1171 | |
|
1147 |
data_pre = None |
|
|
1172 | data_pre = None # Data Pre Parametrization | |
|
1148 | 1173 | |
|
1149 |
data_SNR = None |
|
|
1174 | data_SNR = None # Signal to Noise Ratio | |
|
1150 | 1175 | |
|
1151 | 1176 | # heightRange = None #Heights |
|
1152 | 1177 | |
|
1153 |
abscissaList = None |
|
|
1178 | abscissaList = None # Abscissa, can be velocities, lags or time | |
|
1154 | 1179 | |
|
1155 | 1180 | # noise = None #Noise Potency |
|
1156 | 1181 | |
|
1157 |
utctimeInit = None |
|
|
1182 | utctimeInit = None # Initial UTC time | |
|
1158 | 1183 | |
|
1159 |
paramInterval = None |
|
|
1184 | paramInterval = None # Time interval to calculate Parameters in seconds | |
|
1160 | 1185 | |
|
1161 | 1186 | useLocalTime = True |
|
1162 | 1187 | |
|
1163 | #Fitting | |
|
1188 | # Fitting | |
|
1164 | 1189 | |
|
1165 |
data_error = None |
|
|
1190 | data_error = None # Error of the estimation | |
|
1166 | 1191 | |
|
1167 | 1192 | constants = None |
|
1168 | 1193 | |
|
1169 | 1194 | library = None |
|
1170 | 1195 | |
|
1171 | #Output signal | |
|
1196 | # Output signal | |
|
1172 | 1197 | |
|
1173 |
outputInterval = None |
|
|
1198 | outputInterval = None # Time interval to calculate output signal in seconds | |
|
1174 | 1199 | |
|
1175 |
data_output = None |
|
|
1200 | data_output = None # Out signal | |
|
1176 | 1201 | |
|
1177 | 1202 | nAvg = None |
|
1178 | 1203 | |
|
1179 | 1204 | noise_estimation = None |
|
1180 | ||
|
1181 | GauSPC = None #Fit gaussian SPC | |
|
1182 | 1205 | |
|
1206 | GauSPC = None # Fit gaussian SPC | |
|
1183 | 1207 | |
|
1184 | 1208 | def __init__(self): |
|
1185 | 1209 | ''' |
@@ -1196,7 +1220,7 class Parameters(Spectra): | |||
|
1196 | 1220 | datatime = [] |
|
1197 | 1221 | |
|
1198 | 1222 | if self.useLocalTime: |
|
1199 | time1 = self.utctimeInit - self.timeZone*60 | |
|
1223 | time1 = self.utctimeInit - self.timeZone * 60 | |
|
1200 | 1224 | else: |
|
1201 | 1225 | time1 = self.utctimeInit |
|
1202 | 1226 |
@@ -15,7 +15,6 import os | |||
|
15 | 15 | import datetime |
|
16 | 16 | import numpy |
|
17 | 17 | import timeit |
|
18 | from profilehooks import coverage, profile | |
|
19 | 18 | from fractions import Fraction |
|
20 | 19 | |
|
21 | 20 | try: |
@@ -34,6 +33,7 try: | |||
|
34 | 33 | except: |
|
35 | 34 | print 'You should install "digital_rf" module if you want to read Digital RF data' |
|
36 | 35 | |
|
36 | ||
|
37 | 37 | class DigitalRFReader(ProcessingUnit): |
|
38 | 38 | ''' |
|
39 | 39 | classdocs |
@@ -63,7 +63,7 class DigitalRFReader(ProcessingUnit): | |||
|
63 | 63 | |
|
64 | 64 | def __getCurrentSecond(self): |
|
65 | 65 | |
|
66 | return self.__thisUnixSample/self.__sample_rate | |
|
66 | return self.__thisUnixSample / self.__sample_rate | |
|
67 | 67 | |
|
68 | 68 | thisSecond = property(__getCurrentSecond, "I'm the 'thisSecond' property.") |
|
69 | 69 | |
@@ -71,33 +71,35 class DigitalRFReader(ProcessingUnit): | |||
|
71 | 71 | ''' |
|
72 | 72 | In this method will be initialized every parameter of dataOut object (header, no data) |
|
73 | 73 | ''' |
|
74 | ippSeconds = 1.0*self.__nSamples/self.__sample_rate | |
|
74 | ippSeconds = 1.0 * self.__nSamples / self.__sample_rate | |
|
75 | ||
|
76 | nProfiles = 1.0 / ippSeconds # Number of profiles in one second | |
|
75 | 77 | |
|
76 | nProfiles = 1.0/ippSeconds # Number of profiles in one second | |
|
77 | ||
|
78 | 78 | try: |
|
79 |
self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
|
79 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( | |
|
80 | self.__radarControllerHeader) | |
|
80 | 81 | except: |
|
81 | 82 | self.dataOut.radarControllerHeaderObj = RadarControllerHeader( |
|
82 | txA=0, | |
|
83 | txB=0, | |
|
84 | nWindows=1, | |
|
85 | nHeights=self.__nSamples, | |
|
86 |
|
|
|
87 |
|
|
|
88 | codeType=self.__codeType, | |
|
89 |
|
|
|
90 | code = self.__code) | |
|
91 | ||
|
83 | txA=0, | |
|
84 | txB=0, | |
|
85 | nWindows=1, | |
|
86 | nHeights=self.__nSamples, | |
|
87 | firstHeight=self.__firstHeigth, | |
|
88 | deltaHeight=self.__deltaHeigth, | |
|
89 | codeType=self.__codeType, | |
|
90 | nCode=self.__nCode, nBaud=self.__nBaud, | |
|
91 | code=self.__code) | |
|
92 | ||
|
92 | 93 | try: |
|
93 | 94 | self.dataOut.systemHeaderObj = SystemHeader(self.__systemHeader) |
|
94 | 95 | except: |
|
95 | 96 | self.dataOut.systemHeaderObj = SystemHeader(nSamples=self.__nSamples, |
|
96 | 97 | nProfiles=nProfiles, |
|
97 |
nChannels=len( |
|
|
98 | nChannels=len( | |
|
99 | self.__channelList), | |
|
98 | 100 | adcResolution=14) |
|
99 | 101 | self.dataOut.type = "Voltage" |
|
100 | ||
|
102 | ||
|
101 | 103 | self.dataOut.data = None |
|
102 | 104 | |
|
103 | 105 | self.dataOut.dtype = self.dtype |
@@ -108,7 +110,9 class DigitalRFReader(ProcessingUnit): | |||
|
108 | 110 | |
|
109 | 111 | self.dataOut.nProfiles = int(nProfiles) |
|
110 | 112 | |
|
111 |
self.dataOut.heightList = self.__firstHeigth + |
|
|
113 | self.dataOut.heightList = self.__firstHeigth + \ | |
|
114 | numpy.arange(self.__nSamples, dtype=numpy.float) * \ | |
|
115 | self.__deltaHeigth | |
|
112 | 116 | |
|
113 | 117 | self.dataOut.channelList = range(self.__num_subchannels) |
|
114 | 118 | |
@@ -124,25 +128,29 class DigitalRFReader(ProcessingUnit): | |||
|
124 | 128 | |
|
125 | 129 | self.dataOut.utctime = None |
|
126 | 130 | |
|
127 |
|
|
|
131 | # timezone like jroheader, difference in minutes between UTC and localtime | |
|
132 | self.dataOut.timeZone = self.__timezone / 60 | |
|
128 | 133 | |
|
129 | 134 | self.dataOut.dstFlag = 0 |
|
130 | 135 | |
|
131 | 136 | self.dataOut.errorCount = 0 |
|
132 | 137 | |
|
133 | 138 | try: |
|
134 |
self.dataOut.nCohInt = self.fixed_metadata_dict.get( |
|
|
139 | self.dataOut.nCohInt = self.fixed_metadata_dict.get( | |
|
140 | 'nCohInt', self.nCohInt) | |
|
135 | 141 | |
|
136 | self.dataOut.flagDecodeData = self.fixed_metadata_dict['flagDecodeData'] # asumo que la data esta decodificada | |
|
142 | # asumo que la data esta decodificada | |
|
143 | self.dataOut.flagDecodeData = self.fixed_metadata_dict.get( | |
|
144 | 'flagDecodeData', self.flagDecodeData) | |
|
137 | 145 | |
|
138 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] # asumo que la data esta sin flip | |
|
146 | # asumo que la data esta sin flip | |
|
147 | self.dataOut.flagDeflipData = self.fixed_metadata_dict['flagDeflipData'] | |
|
139 | 148 | |
|
140 | 149 | self.dataOut.flagShiftFFT = self.fixed_metadata_dict['flagShiftFFT'] |
|
141 | 150 | |
|
142 | 151 | self.dataOut.useLocalTime = self.fixed_metadata_dict['useLocalTime'] |
|
143 | 152 | except: |
|
144 | 153 | pass |
|
145 | ||
|
146 | 154 | |
|
147 | 155 | self.dataOut.ippSeconds = ippSeconds |
|
148 | 156 | |
@@ -159,7 +167,8 class DigitalRFReader(ProcessingUnit): | |||
|
159 | 167 | return [] |
|
160 | 168 | |
|
161 | 169 | try: |
|
162 |
digitalReadObj = digital_rf.DigitalRFReader( |
|
|
170 | digitalReadObj = digital_rf.DigitalRFReader( | |
|
171 | path, load_all_metadata=True) | |
|
163 | 172 | except: |
|
164 | 173 | digitalReadObj = digital_rf.DigitalRFReader(path) |
|
165 | 174 | |
@@ -179,7 +188,8 class DigitalRFReader(ProcessingUnit): | |||
|
179 | 188 | except: |
|
180 | 189 | timezone = 0 |
|
181 | 190 | |
|
182 |
startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( |
|
|
191 | startUTCSecond, endUTCSecond = digitalReadObj.get_bounds( | |
|
192 | channelNameList[0]) / sample_rate - timezone | |
|
183 | 193 | |
|
184 | 194 | startDatetime = datetime.datetime.utcfromtimestamp(startUTCSecond) |
|
185 | 195 | endDatatime = datetime.datetime.utcfromtimestamp(endUTCSecond) |
@@ -194,7 +204,7 class DigitalRFReader(ProcessingUnit): | |||
|
194 | 204 | |
|
195 | 205 | thisDatetime = startDatetime |
|
196 | 206 | |
|
197 | while(thisDatetime<=endDatatime): | |
|
207 | while(thisDatetime <= endDatatime): | |
|
198 | 208 | |
|
199 | 209 | thisDate = thisDatetime.date() |
|
200 | 210 | |
@@ -209,18 +219,23 class DigitalRFReader(ProcessingUnit): | |||
|
209 | 219 | |
|
210 | 220 | return dateList |
|
211 | 221 | |
|
212 |
def setup(self, path |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
|
|
|
216 |
|
|
|
217 |
|
|
|
218 |
|
|
|
219 |
|
|
|
220 |
|
|
|
221 |
|
|
|
222 |
|
|
|
223 | **kwargs): | |
|
222 | def setup(self, path=None, | |
|
223 | startDate=None, | |
|
224 | endDate=None, | |
|
225 | startTime=datetime.time(0, 0, 0), | |
|
226 | endTime=datetime.time(23, 59, 59), | |
|
227 | channelList=None, | |
|
228 | nSamples=None, | |
|
229 | online=False, | |
|
230 | delay=60, | |
|
231 | buffer_size=1024, | |
|
232 | ippKm=None, | |
|
233 | nCohInt=1, | |
|
234 | nCode=1, | |
|
235 | nBaud=1, | |
|
236 | flagDecodeData=False, | |
|
237 | code=numpy.ones((1, 1), dtype=numpy.int), | |
|
238 | **kwargs): | |
|
224 | 239 | ''' |
|
225 | 240 | In this method we should set all initial parameters. |
|
226 | 241 | |
@@ -236,37 +251,43 class DigitalRFReader(ProcessingUnit): | |||
|
236 | 251 | online |
|
237 | 252 | delay |
|
238 | 253 | ''' |
|
254 | self.nCohInt = nCohInt | |
|
255 | self.flagDecodeData = flagDecodeData | |
|
239 | 256 | self.i = 0 |
|
240 | 257 | if not os.path.isdir(path): |
|
241 | raise ValueError, "[Reading] Directory %s does not exist" %path | |
|
258 | raise ValueError, "[Reading] Directory %s does not exist" % path | |
|
242 | 259 | |
|
243 | 260 | try: |
|
244 |
self.digitalReadObj = digital_rf.DigitalRFReader( |
|
|
261 | self.digitalReadObj = digital_rf.DigitalRFReader( | |
|
262 | path, load_all_metadata=True) | |
|
245 | 263 | except: |
|
246 | 264 | self.digitalReadObj = digital_rf.DigitalRFReader(path) |
|
247 | 265 | |
|
248 | 266 | channelNameList = self.digitalReadObj.get_channels() |
|
249 | 267 | |
|
250 | 268 | if not channelNameList: |
|
251 | raise ValueError, "[Reading] Directory %s does not have any files" %path | |
|
269 | raise ValueError, "[Reading] Directory %s does not have any files" % path | |
|
252 | 270 | |
|
253 | 271 | if not channelList: |
|
254 | 272 | channelList = range(len(channelNameList)) |
|
255 | 273 | |
|
256 | ||
|
257 | 274 | ########## Reading metadata ###################### |
|
258 | 275 | |
|
259 |
top_properties = self.digitalReadObj.get_properties( |
|
|
260 | ||
|
276 | top_properties = self.digitalReadObj.get_properties( | |
|
277 | channelNameList[channelList[0]]) | |
|
261 | 278 | |
|
262 | 279 | self.__num_subchannels = top_properties['num_subchannels'] |
|
263 | self.__sample_rate = 1.0 * top_properties['sample_rate_numerator'] / top_properties['sample_rate_denominator'] | |
|
280 | self.__sample_rate = 1.0 * \ | |
|
281 | top_properties['sample_rate_numerator'] / \ | |
|
282 | top_properties['sample_rate_denominator'] | |
|
264 | 283 | # self.__samples_per_file = top_properties['samples_per_file'][0] |
|
265 |
self.__deltaHeigth = 1e6*0.15/self.__sample_rate |
|
|
284 | self.__deltaHeigth = 1e6 * 0.15 / self.__sample_rate # why 0.15? | |
|
266 | 285 | |
|
267 |
this_metadata_file = self.digitalReadObj.get_digital_metadata( |
|
|
286 | this_metadata_file = self.digitalReadObj.get_digital_metadata( | |
|
287 | channelNameList[channelList[0]]) | |
|
268 | 288 | metadata_bounds = this_metadata_file.get_bounds() |
|
269 |
self.fixed_metadata_dict = this_metadata_file.read( |
|
|
289 | self.fixed_metadata_dict = this_metadata_file.read( | |
|
290 | metadata_bounds[0])[metadata_bounds[0]] # GET FIRST HEADER | |
|
270 | 291 | |
|
271 | 292 | try: |
|
272 | 293 | self.__processingHeader = self.fixed_metadata_dict['processingHeader'] |
@@ -275,7 +296,6 class DigitalRFReader(ProcessingUnit): | |||
|
275 | 296 | self.dtype = cPickle.loads(self.fixed_metadata_dict['dtype']) |
|
276 | 297 | except: |
|
277 | 298 | pass |
|
278 | ||
|
279 | 299 | |
|
280 | 300 | self.__frequency = None |
|
281 | 301 | |
@@ -283,12 +303,11 class DigitalRFReader(ProcessingUnit): | |||
|
283 | 303 | |
|
284 | 304 | self.__timezone = self.fixed_metadata_dict.get('timezone', 300) |
|
285 | 305 | |
|
286 | ||
|
287 | 306 | try: |
|
288 | 307 | nSamples = self.fixed_metadata_dict['nSamples'] |
|
289 | 308 | except: |
|
290 | 309 | nSamples = None |
|
291 | ||
|
310 | ||
|
292 | 311 | self.__firstHeigth = 0 |
|
293 | 312 | |
|
294 | 313 | try: |
@@ -296,10 +315,6 class DigitalRFReader(ProcessingUnit): | |||
|
296 | 315 | except: |
|
297 | 316 | codeType = 0 |
|
298 | 317 | |
|
299 | nCode = 1 | |
|
300 | nBaud = 1 | |
|
301 | code = numpy.ones((nCode, nBaud), dtype=numpy.int) | |
|
302 | ||
|
303 | 318 | try: |
|
304 | 319 | if codeType: |
|
305 | 320 | nCode = self.__radarControllerHeader['nCode'] |
@@ -307,8 +322,7 class DigitalRFReader(ProcessingUnit): | |||
|
307 | 322 | code = self.__radarControllerHeader['code'] |
|
308 | 323 | except: |
|
309 | 324 | pass |
|
310 | ||
|
311 | ||
|
325 | ||
|
312 | 326 | if not ippKm: |
|
313 | 327 | try: |
|
314 | 328 | # seconds to km |
@@ -322,42 +336,46 class DigitalRFReader(ProcessingUnit): | |||
|
322 | 336 | |
|
323 | 337 | if startDate: |
|
324 | 338 | startDatetime = datetime.datetime.combine(startDate, startTime) |
|
325 | startUTCSecond = (startDatetime-datetime.datetime(1970,1,1)).total_seconds() + self.__timezone | |
|
339 | startUTCSecond = ( | |
|
340 | startDatetime - datetime.datetime(1970, 1, 1)).total_seconds() + self.__timezone | |
|
326 | 341 | |
|
327 | 342 | if endDate: |
|
328 | 343 | endDatetime = datetime.datetime.combine(endDate, endTime) |
|
329 |
endUTCSecond = (endDatetime-datetime.datetime(1970, |
|
|
344 | endUTCSecond = (endDatetime - datetime.datetime(1970, | |
|
345 | 1, 1)).total_seconds() + self.__timezone | |
|
330 | 346 | |
|
331 |
start_index, end_index = self.digitalReadObj.get_bounds( |
|
|
347 | start_index, end_index = self.digitalReadObj.get_bounds( | |
|
348 | channelNameList[channelList[0]]) | |
|
332 | 349 | |
|
333 | 350 | if not startUTCSecond: |
|
334 |
startUTCSecond = start_index/self.__sample_rate |
|
|
351 | startUTCSecond = start_index / self.__sample_rate | |
|
335 | 352 | |
|
336 | if start_index > startUTCSecond*self.__sample_rate: | |
|
337 | startUTCSecond = start_index/self.__sample_rate | |
|
353 | if start_index > startUTCSecond * self.__sample_rate: | |
|
354 | startUTCSecond = start_index / self.__sample_rate | |
|
338 | 355 | |
|
339 | 356 | if not endUTCSecond: |
|
340 | endUTCSecond = end_index/self.__sample_rate | |
|
357 | endUTCSecond = end_index / self.__sample_rate | |
|
341 | 358 | |
|
342 | if end_index < endUTCSecond*self.__sample_rate: | |
|
343 | endUTCSecond = end_index/self.__sample_rate | |
|
359 | if end_index < endUTCSecond * self.__sample_rate: | |
|
360 | endUTCSecond = end_index / self.__sample_rate | |
|
344 | 361 | if not nSamples: |
|
345 | 362 | if not ippKm: |
|
346 | 363 | raise ValueError, "[Reading] nSamples or ippKm should be defined" |
|
347 | nSamples = int(ippKm / (1e6*0.15/self.__sample_rate)) | |
|
364 | nSamples = int(ippKm / (1e6 * 0.15 / self.__sample_rate)) | |
|
348 | 365 | channelBoundList = [] |
|
349 | 366 | channelNameListFiltered = [] |
|
350 | 367 | |
|
351 | 368 | for thisIndexChannel in channelList: |
|
352 |
thisChannelName = |
|
|
353 |
start_index, end_index = self.digitalReadObj.get_bounds( |
|
|
369 | thisChannelName = channelNameList[thisIndexChannel] | |
|
370 | start_index, end_index = self.digitalReadObj.get_bounds( | |
|
371 | thisChannelName) | |
|
354 | 372 | channelBoundList.append((start_index, end_index)) |
|
355 | 373 | channelNameListFiltered.append(thisChannelName) |
|
356 | 374 | |
|
357 | 375 | self.profileIndex = 0 |
|
358 | self.i= 0 | |
|
376 | self.i = 0 | |
|
359 | 377 | self.__delay = delay |
|
360 | ||
|
378 | ||
|
361 | 379 | self.__codeType = codeType |
|
362 | 380 | self.__nCode = nCode |
|
363 | 381 | self.__nBaud = nBaud |
@@ -369,36 +387,44 class DigitalRFReader(ProcessingUnit): | |||
|
369 | 387 | self.__channelNameList = channelNameListFiltered |
|
370 | 388 | self.__channelBoundList = channelBoundList |
|
371 | 389 | self.__nSamples = nSamples |
|
372 | self.__samples_to_read = long(nSamples) # FIJO: AHORA 40 | |
|
390 | self.__samples_to_read = long(nSamples) # FIJO: AHORA 40 | |
|
373 | 391 | self.__nChannels = len(self.__channelList) |
|
374 | 392 | |
|
375 | 393 | self.__startUTCSecond = startUTCSecond |
|
376 | 394 | self.__endUTCSecond = endUTCSecond |
|
377 | 395 | |
|
378 |
self.__timeInterval = 1.0 * self.__samples_to_read/ |
|
|
396 | self.__timeInterval = 1.0 * self.__samples_to_read / \ | |
|
397 | self.__sample_rate # Time interval | |
|
379 | 398 | |
|
380 | 399 | if online: |
|
381 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) | |
|
400 | # self.__thisUnixSample = int(endUTCSecond*self.__sample_rate - 4*self.__samples_to_read) | |
|
382 | 401 | startUTCSecond = numpy.floor(endUTCSecond) |
|
383 | 402 | |
|
384 |
|
|
|
403 | # por que en el otro metodo lo primero q se hace es sumar samplestoread | |
|
404 | self.__thisUnixSample = long( | |
|
405 | startUTCSecond * self.__sample_rate) - self.__samples_to_read | |
|
385 | 406 | |
|
386 | self.__data_buffer = numpy.zeros((self.__num_subchannels, self.__samples_to_read), dtype = numpy.complex) | |
|
407 | self.__data_buffer = numpy.zeros( | |
|
408 | (self.__num_subchannels, self.__samples_to_read), dtype=numpy.complex) | |
|
387 | 409 | |
|
388 | 410 | self.__setFileHeader() |
|
389 | 411 | self.isConfig = True |
|
390 | 412 | |
|
391 | print "[Reading] Digital RF Data was found from %s to %s " %( | |
|
392 | datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), | |
|
393 | datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) | |
|
394 | ) | |
|
395 | ||
|
396 | print "[Reading] Starting process from %s to %s" %(datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), | |
|
397 | datetime.datetime.utcfromtimestamp(endUTCSecond - self.__timezone) | |
|
398 | ) | |
|
413 | print "[Reading] Digital RF Data was found from %s to %s " % ( | |
|
414 | datetime.datetime.utcfromtimestamp( | |
|
415 | self.__startUTCSecond - self.__timezone), | |
|
416 | datetime.datetime.utcfromtimestamp( | |
|
417 | self.__endUTCSecond - self.__timezone) | |
|
418 | ) | |
|
419 | ||
|
420 | print "[Reading] Starting process from %s to %s" % (datetime.datetime.utcfromtimestamp(startUTCSecond - self.__timezone), | |
|
421 | datetime.datetime.utcfromtimestamp( | |
|
422 | endUTCSecond - self.__timezone) | |
|
423 | ) | |
|
399 | 424 | self.oldAverage = None |
|
400 | 425 | self.count = 0 |
|
401 | 426 | self.executionTime = 0 |
|
427 | ||
|
402 | 428 | def __reload(self): |
|
403 | 429 | |
|
404 | 430 | # print "%s not in range [%s, %s]" %( |
@@ -413,18 +439,21 class DigitalRFReader(ProcessingUnit): | |||
|
413 | 439 | except: |
|
414 | 440 | self.digitalReadObj.reload() |
|
415 | 441 | |
|
416 |
start_index, end_index = self.digitalReadObj.get_bounds( |
|
|
442 | start_index, end_index = self.digitalReadObj.get_bounds( | |
|
443 | self.__channelNameList[self.__channelList[0]]) | |
|
417 | 444 | |
|
418 | if start_index > self.__startUTCSecond*self.__sample_rate: | |
|
419 | self.__startUTCSecond = 1.0*start_index/self.__sample_rate | |
|
445 | if start_index > self.__startUTCSecond * self.__sample_rate: | |
|
446 | self.__startUTCSecond = 1.0 * start_index / self.__sample_rate | |
|
420 | 447 | |
|
421 | if end_index > self.__endUTCSecond*self.__sample_rate: | |
|
422 | self.__endUTCSecond = 1.0*end_index/self.__sample_rate | |
|
448 | if end_index > self.__endUTCSecond * self.__sample_rate: | |
|
449 | self.__endUTCSecond = 1.0 * end_index / self.__sample_rate | |
|
423 | 450 | |
|
424 | print "[Reading] New timerange found [%s, %s] " %( | |
|
425 | datetime.datetime.utcfromtimestamp(self.__startUTCSecond - self.__timezone), | |
|
426 | datetime.datetime.utcfromtimestamp(self.__endUTCSecond - self.__timezone) | |
|
427 | ) | |
|
451 | print "[Reading] New timerange found [%s, %s] " % ( | |
|
452 | datetime.datetime.utcfromtimestamp( | |
|
453 | self.__startUTCSecond - self.__timezone), | |
|
454 | datetime.datetime.utcfromtimestamp( | |
|
455 | self.__endUTCSecond - self.__timezone) | |
|
456 | ) | |
|
428 | 457 | |
|
429 | 458 | return True |
|
430 | 459 | |
@@ -434,12 +463,14 class DigitalRFReader(ProcessingUnit): | |||
|
434 | 463 | t0 = time() |
|
435 | 464 | toExecute() |
|
436 | 465 | self.executionTime = time() - t0 |
|
437 |
if self.oldAverage is None: |
|
|
438 |
self.oldAverage = |
|
|
466 | if self.oldAverage is None: | |
|
467 | self.oldAverage = self.executionTime | |
|
468 | self.oldAverage = (self.executionTime + self.count * | |
|
469 | self.oldAverage) / (self.count + 1.0) | |
|
439 | 470 | self.count = self.count + 1.0 |
|
440 | 471 | return |
|
441 | 472 | |
|
442 |
def __readNextBlock(self, seconds=30, volt_scale |
|
|
473 | def __readNextBlock(self, seconds=30, volt_scale=1): | |
|
443 | 474 | ''' |
|
444 | 475 | ''' |
|
445 | 476 | |
@@ -447,21 +478,21 class DigitalRFReader(ProcessingUnit): | |||
|
447 | 478 | self.__flagDiscontinuousBlock = False |
|
448 | 479 | self.__thisUnixSample += self.__samples_to_read |
|
449 | 480 | |
|
450 | if self.__thisUnixSample + 2*self.__samples_to_read > self.__endUTCSecond*self.__sample_rate: | |
|
481 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: | |
|
451 | 482 | print "[Reading] There are no more data into selected time-range" |
|
452 | 483 | if self.__online: |
|
453 | 484 | self.__reload() |
|
454 | 485 | else: |
|
455 | 486 | return False |
|
456 | 487 | |
|
457 | if self.__thisUnixSample + 2*self.__samples_to_read > self.__endUTCSecond*self.__sample_rate: | |
|
488 | if self.__thisUnixSample + 2 * self.__samples_to_read > self.__endUTCSecond * self.__sample_rate: | |
|
458 | 489 | return False |
|
459 |
self.__thisUnixSample -= |
|
|
490 | self.__thisUnixSample -= self.__samples_to_read | |
|
460 | 491 | |
|
461 | 492 | indexChannel = 0 |
|
462 | 493 | |
|
463 | 494 | dataOk = False |
|
464 |
for thisChannelName in self.__channelNameList: |
|
|
495 | for thisChannelName in self.__channelNameList: # TODO VARIOS CHANNELS? | |
|
465 | 496 | for indexSubchannel in range(self.__num_subchannels): |
|
466 | 497 | try: |
|
467 | 498 | t0 = time() |
@@ -469,47 +500,48 class DigitalRFReader(ProcessingUnit): | |||
|
469 | 500 | self.__samples_to_read, |
|
470 | 501 | thisChannelName, sub_channel=indexSubchannel) |
|
471 | 502 | self.executionTime = time() - t0 |
|
472 |
if self.oldAverage is None: |
|
|
473 |
self.oldAverage = |
|
|
503 | if self.oldAverage is None: | |
|
504 | self.oldAverage = self.executionTime | |
|
505 | self.oldAverage = ( | |
|
506 | self.executionTime + self.count * self.oldAverage) / (self.count + 1.0) | |
|
474 | 507 | self.count = self.count + 1.0 |
|
475 | ||
|
508 | ||
|
476 | 509 | except IOError, e: |
|
477 | #read next profile | |
|
510 | # read next profile | |
|
478 | 511 | self.__flagDiscontinuousBlock = True |
|
479 | print "[Reading] %s" %datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e | |
|
512 | print "[Reading] %s" % datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), e | |
|
480 | 513 | break |
|
481 | 514 | |
|
482 | 515 | if result.shape[0] != self.__samples_to_read: |
|
483 | 516 | self.__flagDiscontinuousBlock = True |
|
484 | print "[Reading] %s: Too few samples were found, just %d/%d samples" %(datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
|
485 | result.shape[0], | |
|
486 | self.__samples_to_read) | |
|
517 | print "[Reading] %s: Too few samples were found, just %d/%d samples" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
|
518 | result.shape[0], | |
|
519 | self.__samples_to_read) | |
|
487 | 520 | break |
|
488 | 521 | |
|
489 | self.__data_buffer[indexSubchannel,:] = result*volt_scale | |
|
522 | self.__data_buffer[indexSubchannel, :] = result * volt_scale | |
|
490 | 523 | |
|
491 | 524 | indexChannel += 1 |
|
492 | 525 | |
|
493 | 526 | dataOk = True |
|
494 | ||
|
495 | self.__utctime = self.__thisUnixSample/self.__sample_rate | |
|
527 | ||
|
528 | self.__utctime = self.__thisUnixSample / self.__sample_rate | |
|
496 | 529 | |
|
497 | 530 | if not dataOk: |
|
498 | 531 | return False |
|
499 | 532 | |
|
500 | print "[Reading] %s: %d samples <> %f sec" %(datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
|
501 | self.__samples_to_read, | |
|
502 | self.__timeInterval) | |
|
533 | print "[Reading] %s: %d samples <> %f sec" % (datetime.datetime.utcfromtimestamp(self.thisSecond - self.__timezone), | |
|
534 | self.__samples_to_read, | |
|
535 | self.__timeInterval) | |
|
503 | 536 | |
|
504 | 537 | self.__bufferIndex = 0 |
|
505 | 538 | |
|
506 | 539 | return True |
|
507 | 540 | |
|
508 | 541 | def __isBufferEmpty(self): |
|
509 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples #40960 - 40 | |
|
542 | return self.__bufferIndex > self.__samples_to_read - self.__nSamples # 40960 - 40 | |
|
510 | 543 | |
|
511 | 544 | def getData(self, seconds=30, nTries=5): |
|
512 | ||
|
513 | 545 | ''' |
|
514 | 546 | This method gets the data from files and put the data into the dataOut object |
|
515 | 547 | |
@@ -535,7 +567,7 class DigitalRFReader(ProcessingUnit): | |||
|
535 | 567 | while True: |
|
536 | 568 | if self.__readNextBlock(): |
|
537 | 569 | break |
|
538 | if self.__thisUnixSample > self.__endUTCSecond*self.__sample_rate: | |
|
570 | if self.__thisUnixSample > self.__endUTCSecond * self.__sample_rate: | |
|
539 | 571 | return False |
|
540 | 572 | |
|
541 | 573 | if self.__flagDiscontinuousBlock: |
@@ -549,11 +581,13 class DigitalRFReader(ProcessingUnit): | |||
|
549 | 581 | if err_counter > nTries: |
|
550 | 582 | return False |
|
551 | 583 | |
|
552 | print '[Reading] waiting %d seconds to read a new block' %seconds | |
|
584 | print '[Reading] waiting %d seconds to read a new block' % seconds | |
|
553 | 585 | sleep(seconds) |
|
554 | 586 | |
|
555 |
self.dataOut.data = self.__data_buffer[:, |
|
|
556 | self.dataOut.utctime = (self.__thisUnixSample + self.__bufferIndex)/self.__sample_rate | |
|
587 | self.dataOut.data = self.__data_buffer[:, | |
|
588 | self.__bufferIndex:self.__bufferIndex + self.__nSamples] | |
|
589 | self.dataOut.utctime = ( | |
|
590 | self.__thisUnixSample + self.__bufferIndex) / self.__sample_rate | |
|
557 | 591 | self.dataOut.flagNoData = False |
|
558 | 592 | self.dataOut.flagDiscontinuousBlock = self.__flagDiscontinuousBlock |
|
559 | 593 | self.dataOut.profileIndex = self.profileIndex |
@@ -583,12 +617,11 class DigitalRFReader(ProcessingUnit): | |||
|
583 | 617 | return |
|
584 | 618 | # print self.profileIndex |
|
585 | 619 | |
|
586 | ||
|
587 | 620 | def run(self, **kwargs): |
|
588 | 621 | ''' |
|
589 | 622 | This method will be called many times so here you should put all your code |
|
590 | 623 | ''' |
|
591 | ||
|
624 | ||
|
592 | 625 | if not self.isConfig: |
|
593 | 626 | self.setup(**kwargs) |
|
594 | 627 | #self.i = self.i+1 |
@@ -596,6 +629,7 class DigitalRFReader(ProcessingUnit): | |||
|
596 | 629 | |
|
597 | 630 | return |
|
598 | 631 | |
|
632 | ||
|
599 | 633 | class DigitalRFWriter(Operation): |
|
600 | 634 | ''' |
|
601 | 635 | classdocs |
@@ -607,7 +641,7 class DigitalRFWriter(Operation): | |||
|
607 | 641 | ''' |
|
608 | 642 | Operation.__init__(self, **kwargs) |
|
609 | 643 | self.metadata_dict = {} |
|
610 |
self.dataOut = None |
|
|
644 | self.dataOut = None | |
|
611 | 645 | self.dtype = None |
|
612 | 646 | |
|
613 | 647 | def setHeader(self): |
@@ -624,7 +658,7 class DigitalRFWriter(Operation): | |||
|
624 | 658 | self.metadata_dict['flagDataAsBlock'] = self.dataOut.flagDataAsBlock |
|
625 | 659 | self.metadata_dict['useLocalTime'] = self.dataOut.useLocalTime |
|
626 | 660 | self.metadata_dict['nCohInt'] = self.dataOut.nCohInt |
|
627 | ||
|
661 | ||
|
628 | 662 | return |
|
629 | 663 | |
|
630 | 664 | def setup(self, dataOut, path, frequency, fileCadence, dirCadence, metadataCadence, set=0, metadataFile='metadata', ext='.h5'): |
@@ -636,7 +670,7 class DigitalRFWriter(Operation): | |||
|
636 | 670 | self.setHeader() |
|
637 | 671 | self.__ippSeconds = dataOut.ippSeconds |
|
638 | 672 | self.__deltaH = dataOut.getDeltaH() |
|
639 | self.__sample_rate = 1e6*0.15/self.__deltaH | |
|
673 | self.__sample_rate = 1e6 * 0.15 / self.__deltaH | |
|
640 | 674 | self.__dtype = dataOut.dtype |
|
641 | 675 | if len(dataOut.dtype) == 2: |
|
642 | 676 | self.__dtype = dataOut.dtype[0] |
@@ -644,16 +678,18 class DigitalRFWriter(Operation): | |||
|
644 | 678 | self.__nProfiles = dataOut.nProfiles |
|
645 | 679 | self.__blocks_per_file = dataOut.processingHeaderObj.dataBlocksPerFile |
|
646 | 680 | |
|
647 |
self.arr_data = arr_data = numpy.ones((self.__nSamples, len( |
|
|
681 | self.arr_data = arr_data = numpy.ones((self.__nSamples, len( | |
|
682 | self.dataOut.channelList)), dtype=[('r', self.__dtype), ('i', self.__dtype)]) | |
|
648 | 683 | |
|
649 | file_cadence_millisecs = long(1.0 * self.__blocks_per_file * self.__nProfiles * self.__nSamples / self.__sample_rate) * 1000 | |
|
684 | file_cadence_millisecs = long( | |
|
685 | 1.0 * self.__blocks_per_file * self.__nProfiles * self.__nSamples / self.__sample_rate) * 1000 | |
|
650 | 686 | sub_cadence_secs = file_cadence_millisecs / 500 |
|
651 | 687 | |
|
652 | 688 | sample_rate_fraction = Fraction(self.__sample_rate).limit_denominator() |
|
653 | 689 | sample_rate_numerator = long(sample_rate_fraction.numerator) |
|
654 | 690 | sample_rate_denominator = long(sample_rate_fraction.denominator) |
|
655 | 691 | start_global_index = dataOut.utctime * self.__sample_rate |
|
656 | ||
|
692 | ||
|
657 | 693 | uuid = 'prueba' |
|
658 | 694 | compression_level = 1 |
|
659 | 695 | checksum = False |
@@ -663,45 +699,47 class DigitalRFWriter(Operation): | |||
|
663 | 699 | marching_periods = False |
|
664 | 700 | |
|
665 | 701 | self.digitalWriteObj = digital_rf.DigitalRFWriter(path, self.__dtype, dirCadence, |
|
666 | fileCadence, start_global_index, | |
|
667 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, | |
|
668 | is_complex, num_subchannels, is_continuous, marching_periods) | |
|
669 | ||
|
702 | fileCadence, start_global_index, | |
|
703 | sample_rate_numerator, sample_rate_denominator, uuid, compression_level, checksum, | |
|
704 | is_complex, num_subchannels, is_continuous, marching_periods) | |
|
705 | ||
|
670 | 706 | metadata_dir = os.path.join(path, 'metadata') |
|
671 | 707 | os.system('mkdir %s' % (metadata_dir)) |
|
672 | ||
|
673 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, ##236, file_cadence_millisecs / 1000 | |
|
674 | sample_rate_numerator, sample_rate_denominator, | |
|
675 | metadataFile) | |
|
676 | 708 | |
|
709 | self.digitalMetadataWriteObj = digital_rf.DigitalMetadataWriter(metadata_dir, dirCadence, 1, # 236, file_cadence_millisecs / 1000 | |
|
710 | sample_rate_numerator, sample_rate_denominator, | |
|
711 | metadataFile) | |
|
677 | 712 | |
|
678 | 713 | self.isConfig = True |
|
679 | 714 | self.currentSample = 0 |
|
680 | 715 | self.oldAverage = 0 |
|
681 | 716 | self.count = 0 |
|
682 | 717 | return |
|
683 | ||
|
718 | ||
|
684 | 719 | def writeMetadata(self): |
|
685 | 720 | print '[Writing] - Writing metadata' |
|
686 | 721 | start_idx = self.__sample_rate * self.dataOut.utctime |
|
687 | ||
|
688 |
self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( |
|
|
689 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict() | |
|
690 |
self.metadata_dict[' |
|
|
722 | ||
|
723 | self.metadata_dict['processingHeader'] = self.dataOut.processingHeaderObj.getAsDict( | |
|
724 | ) | |
|
725 | self.metadata_dict['radarControllerHeader'] = self.dataOut.radarControllerHeaderObj.getAsDict( | |
|
726 | ) | |
|
727 | self.metadata_dict['systemHeader'] = self.dataOut.systemHeaderObj.getAsDict( | |
|
728 | ) | |
|
691 | 729 | self.digitalMetadataWriteObj.write(start_idx, self.metadata_dict) |
|
692 | 730 | return |
|
693 | 731 | |
|
694 | ||
|
695 | 732 | def timeit(self, toExecute): |
|
696 | 733 | t0 = time() |
|
697 | 734 | toExecute() |
|
698 | 735 | self.executionTime = time() - t0 |
|
699 |
if self.oldAverage is None: |
|
|
700 |
self.oldAverage = |
|
|
736 | if self.oldAverage is None: | |
|
737 | self.oldAverage = self.executionTime | |
|
738 | self.oldAverage = (self.executionTime + self.count * | |
|
739 | self.oldAverage) / (self.count + 1.0) | |
|
701 | 740 | self.count = self.count + 1.0 |
|
702 | 741 | return |
|
703 | 742 | |
|
704 | ||
|
705 | 743 | def writeData(self): |
|
706 | 744 | for i in range(self.dataOut.systemHeaderObj.nSamples): |
|
707 | 745 | for channel in self.dataOut.channelList: |
@@ -710,9 +748,9 class DigitalRFWriter(Operation): | |||
|
710 | 748 | |
|
711 | 749 | def f(): return self.digitalWriteObj.rf_write(self.arr_data) |
|
712 | 750 | self.timeit(f) |
|
713 | ||
|
751 | ||
|
714 | 752 | return |
|
715 | ||
|
753 | ||
|
716 | 754 | def run(self, dataOut, frequency=49.92e6, path=None, fileCadence=100, dirCadence=25, metadataCadence=1, **kwargs): |
|
717 | 755 | ''' |
|
718 | 756 | This method will be called many times so here you should put all your code |
@@ -722,14 +760,15 class DigitalRFWriter(Operation): | |||
|
722 | 760 | # print dataOut.__dict__ |
|
723 | 761 | self.dataOut = dataOut |
|
724 | 762 | if not self.isConfig: |
|
725 |
self.setup(dataOut, path, frequency, fileCadence, |
|
|
763 | self.setup(dataOut, path, frequency, fileCadence, | |
|
764 | dirCadence, metadataCadence, **kwargs) | |
|
726 | 765 | self.writeMetadata() |
|
727 | 766 | |
|
728 | 767 | self.writeData() |
|
729 | ||
|
768 | ||
|
730 | 769 | ## self.currentSample += 1 |
|
731 |
|
|
|
732 |
|
|
|
770 | # if self.dataOut.flagDataAsBlock or self.currentSample == 1: | |
|
771 | # self.writeMetadata() | |
|
733 | 772 | ## if self.currentSample == self.__nProfiles: self.currentSample = 0 |
|
734 | 773 | |
|
735 | 774 | def close(self): |
@@ -739,7 +778,7 class DigitalRFWriter(Operation): | |||
|
739 | 778 | self.digitalWriteObj.close() |
|
740 | 779 | except: |
|
741 | 780 | pass |
|
742 | ||
|
781 | ||
|
743 | 782 | # raise |
|
744 | 783 | if __name__ == '__main__': |
|
745 | 784 | |
@@ -748,4 +787,4 if __name__ == '__main__': | |||
|
748 | 787 | while True: |
|
749 | 788 | readObj.run(path='/home/jchavez/jicamarca/mocked_data/') |
|
750 | 789 | # readObj.printInfo() |
|
751 |
# readObj.printNumberOfBlock() |
|
|
790 | # readObj.printNumberOfBlock() |
@@ -616,7 +616,6 class Decoder(Operation): | |||
|
616 | 616 | def __convolutionInTime(self, data): |
|
617 | 617 | |
|
618 | 618 | code = self.code[self.__profIndex] |
|
619 | ||
|
620 | 619 | for i in range(self.__nChannels): |
|
621 | 620 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
622 | 621 | |
@@ -666,7 +665,6 class Decoder(Operation): | |||
|
666 | 665 | code = dataOut.code |
|
667 | 666 | else: |
|
668 | 667 | code = numpy.array(code).reshape(nCode,nBaud) |
|
669 | ||
|
670 | 668 | self.setup(code, osamp, dataOut) |
|
671 | 669 | |
|
672 | 670 | self.isConfig = True |
General Comments 0
You need to be logged in to leave comments.
Login now