##// END OF EJS Templates
Wind and rainfall processing of CLAIRE radar with V3.0
George Yong -
r1205:45d75be01895
parent child
Show More
@@ -1,1363 +1,1353
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 5 '''
6 6
7 7 import copy
8 8 import numpy
9 9 import datetime
10 10 import json
11 11
12 12 from schainpy.utils import log
13 13 from .jroheaderIO import SystemHeader, RadarControllerHeader
14 14
15 15
16 16 def getNumpyDtype(dataTypeCode):
17 17
18 18 if dataTypeCode == 0:
19 19 numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')])
20 20 elif dataTypeCode == 1:
21 21 numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')])
22 22 elif dataTypeCode == 2:
23 23 numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')])
24 24 elif dataTypeCode == 3:
25 25 numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')])
26 26 elif dataTypeCode == 4:
27 27 numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
28 28 elif dataTypeCode == 5:
29 29 numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')])
30 30 else:
31 31 raise ValueError('dataTypeCode was not defined')
32 32
33 33 return numpyDtype
34 34
35 35
36 36 def getDataTypeCode(numpyDtype):
37 37
38 38 if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]):
39 39 datatype = 0
40 40 elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]):
41 41 datatype = 1
42 42 elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]):
43 43 datatype = 2
44 44 elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]):
45 45 datatype = 3
46 46 elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]):
47 47 datatype = 4
48 48 elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]):
49 49 datatype = 5
50 50 else:
51 51 datatype = None
52 52
53 53 return datatype
54 54
55 55
56 56 def hildebrand_sekhon(data, navg):
57 57 """
58 58 This method is for the objective determination of the noise level in Doppler spectra. This
59 59 implementation technique is based on the fact that the standard deviation of the spectral
60 60 densities is equal to the mean spectral density for white Gaussian noise
61 61
62 62 Inputs:
63 63 Data : heights
64 64 navg : numbers of averages
65 65
66 66 Return:
67 67 mean : noise's level
68 68 """
69 69
70 70 sortdata = numpy.sort(data, axis=None)
71 71 lenOfData = len(sortdata)
72 72 nums_min = lenOfData*0.2
73 73
74 74 if nums_min <= 5:
75 75
76 76 nums_min = 5
77 77
78 78 sump = 0.
79 79 sumq = 0.
80 80
81 81 j = 0
82 82 cont = 1
83 83
84 84 while((cont == 1)and(j < lenOfData)):
85 85
86 86 sump += sortdata[j]
87 87 sumq += sortdata[j]**2
88 88
89 89 if j > nums_min:
90 90 rtest = float(j)/(j-1) + 1.0/navg
91 91 if ((sumq*j) > (rtest*sump**2)):
92 92 j = j - 1
93 93 sump = sump - sortdata[j]
94 94 sumq = sumq - sortdata[j]**2
95 95 cont = 0
96 96
97 97 j += 1
98 98
99 99 lnoise = sump / j
100 100
101 101 return lnoise
102 102
103 103
104 104 class Beam:
105 105
106 106 def __init__(self):
107 107 self.codeList = []
108 108 self.azimuthList = []
109 109 self.zenithList = []
110 110
111 111
112 112 class GenericData(object):
113 113
114 114 flagNoData = True
115 115
116 116 def copy(self, inputObj=None):
117 117
118 118 if inputObj == None:
119 119 return copy.deepcopy(self)
120 120
121 121 for key in list(inputObj.__dict__.keys()):
122 122
123 123 attribute = inputObj.__dict__[key]
124 124
125 125 # If this attribute is a tuple or list
126 126 if type(inputObj.__dict__[key]) in (tuple, list):
127 127 self.__dict__[key] = attribute[:]
128 128 continue
129 129
130 130 # If this attribute is another object or instance
131 131 if hasattr(attribute, '__dict__'):
132 132 self.__dict__[key] = attribute.copy()
133 133 continue
134 134
135 135 self.__dict__[key] = inputObj.__dict__[key]
136 136
137 137 def deepcopy(self):
138 138
139 139 return copy.deepcopy(self)
140 140
141 141 def isEmpty(self):
142 142
143 143 return self.flagNoData
144 144
145 145
146 146 class JROData(GenericData):
147 147
148 148 # m_BasicHeader = BasicHeader()
149 149 # m_ProcessingHeader = ProcessingHeader()
150 150
151 151 systemHeaderObj = SystemHeader()
152 152 radarControllerHeaderObj = RadarControllerHeader()
153 153 # data = None
154 154 type = None
155 155 datatype = None # dtype but in string
156 156 # dtype = None
157 157 # nChannels = None
158 158 # nHeights = None
159 159 nProfiles = None
160 160 heightList = None
161 161 channelList = None
162 162 flagDiscontinuousBlock = False
163 163 useLocalTime = False
164 164 utctime = None
165 165 timeZone = None
166 166 dstFlag = None
167 167 errorCount = None
168 168 blocksize = None
169 169 # nCode = None
170 170 # nBaud = None
171 171 # code = None
172 172 flagDecodeData = False # asumo q la data no esta decodificada
173 173 flagDeflipData = False # asumo q la data no esta sin flip
174 174 flagShiftFFT = False
175 175 # ippSeconds = None
176 176 # timeInterval = None
177 177 nCohInt = None
178 178 # noise = None
179 179 windowOfFilter = 1
180 180 # Speed of ligth
181 181 C = 3e8
182 182 frequency = 49.92e6
183 183 realtime = False
184 184 beacon_heiIndexList = None
185 185 last_block = None
186 186 blocknow = None
187 187 azimuth = None
188 188 zenith = None
189 189 beam = Beam()
190 190 profileIndex = None
191 191 error = None
192 192 data = None
193 193 nmodes = None
194 194
195 195 def __str__(self):
196 196
197 197 return '{} - {}'.format(self.type, self.getDatatime())
198 198
199 199 def getNoise(self):
200 200
201 201 raise NotImplementedError
202 202
203 203 def getNChannels(self):
204 204
205 205 return len(self.channelList)
206 206
207 207 def getChannelIndexList(self):
208 208
209 209 return list(range(self.nChannels))
210 210
211 211 def getNHeights(self):
212 212
213 213 return len(self.heightList)
214 214
215 215 def getHeiRange(self, extrapoints=0):
216 216
217 217 heis = self.heightList
218 218 # deltah = self.heightList[1] - self.heightList[0]
219 219 #
220 220 # heis.append(self.heightList[-1])
221 221
222 222 return heis
223 223
224 224 def getDeltaH(self):
225 225
226 226 delta = self.heightList[1] - self.heightList[0]
227 227
228 228 return delta
229 229
230 230 def getltctime(self):
231 231
232 232 if self.useLocalTime:
233 233 return self.utctime - self.timeZone * 60
234 234
235 235 return self.utctime
236 236
237 237 def getDatatime(self):
238 238
239 239 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
240 240 return datatimeValue
241 241
242 242 def getTimeRange(self):
243 243
244 244 datatime = []
245 245
246 246 datatime.append(self.ltctime)
247 247 datatime.append(self.ltctime + self.timeInterval + 1)
248 248
249 249 datatime = numpy.array(datatime)
250 250
251 251 return datatime
252 252
253 253 def getFmaxTimeResponse(self):
254 254
255 255 period = (10**-6) * self.getDeltaH() / (0.15)
256 256
257 257 PRF = 1. / (period * self.nCohInt)
258 258
259 259 fmax = PRF
260 260
261 261 return fmax
262 262
263 263 def getFmax(self):
264 264 PRF = 1. / (self.ippSeconds * self.nCohInt)
265 265
266 266 fmax = PRF
267 267 return fmax
268 268
269 269 def getVmax(self):
270 270
271 271 _lambda = self.C / self.frequency
272 272
273 273 vmax = self.getFmax() * _lambda / 2
274 274
275 275 return vmax
276 276
277 277 def get_ippSeconds(self):
278 278 '''
279 279 '''
280 280 return self.radarControllerHeaderObj.ippSeconds
281 281
282 282 def set_ippSeconds(self, ippSeconds):
283 283 '''
284 284 '''
285 285
286 286 self.radarControllerHeaderObj.ippSeconds = ippSeconds
287 287
288 288 return
289 289
290 290 def get_dtype(self):
291 291 '''
292 292 '''
293 293 return getNumpyDtype(self.datatype)
294 294
295 295 def set_dtype(self, numpyDtype):
296 296 '''
297 297 '''
298 298
299 299 self.datatype = getDataTypeCode(numpyDtype)
300 300
301 301 def get_code(self):
302 302 '''
303 303 '''
304 304 return self.radarControllerHeaderObj.code
305 305
306 306 def set_code(self, code):
307 307 '''
308 308 '''
309 309 self.radarControllerHeaderObj.code = code
310 310
311 311 return
312 312
313 313 def get_ncode(self):
314 314 '''
315 315 '''
316 316 return self.radarControllerHeaderObj.nCode
317 317
318 318 def set_ncode(self, nCode):
319 319 '''
320 320 '''
321 321 self.radarControllerHeaderObj.nCode = nCode
322 322
323 323 return
324 324
325 325 def get_nbaud(self):
326 326 '''
327 327 '''
328 328 return self.radarControllerHeaderObj.nBaud
329 329
330 330 def set_nbaud(self, nBaud):
331 331 '''
332 332 '''
333 333 self.radarControllerHeaderObj.nBaud = nBaud
334 334
335 335 return
336 336
337 337 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
338 338 channelIndexList = property(
339 339 getChannelIndexList, "I'm the 'channelIndexList' property.")
340 340 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
341 341 #noise = property(getNoise, "I'm the 'nHeights' property.")
342 342 datatime = property(getDatatime, "I'm the 'datatime' property")
343 343 ltctime = property(getltctime, "I'm the 'ltctime' property")
344 344 ippSeconds = property(get_ippSeconds, set_ippSeconds)
345 345 dtype = property(get_dtype, set_dtype)
346 346 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
347 347 code = property(get_code, set_code)
348 348 nCode = property(get_ncode, set_ncode)
349 349 nBaud = property(get_nbaud, set_nbaud)
350 350
351 351
352 352 class Voltage(JROData):
353 353
354 354 # data es un numpy array de 2 dmensiones (canales, alturas)
355 355 data = None
356 356
357 357 def __init__(self):
358 358 '''
359 359 Constructor
360 360 '''
361 361
362 362 self.useLocalTime = True
363 363 self.radarControllerHeaderObj = RadarControllerHeader()
364 364 self.systemHeaderObj = SystemHeader()
365 365 self.type = "Voltage"
366 366 self.data = None
367 367 # self.dtype = None
368 368 # self.nChannels = 0
369 369 # self.nHeights = 0
370 370 self.nProfiles = None
371 371 self.heightList = None
372 372 self.channelList = None
373 373 # self.channelIndexList = None
374 374 self.flagNoData = True
375 375 self.flagDiscontinuousBlock = False
376 376 self.utctime = None
377 377 self.timeZone = None
378 378 self.dstFlag = None
379 379 self.errorCount = None
380 380 self.nCohInt = None
381 381 self.blocksize = None
382 382 self.flagDecodeData = False # asumo q la data no esta decodificada
383 383 self.flagDeflipData = False # asumo q la data no esta sin flip
384 384 self.flagShiftFFT = False
385 385 self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil
386 386 self.profileIndex = 0
387 387
388 388 def getNoisebyHildebrand(self, channel=None):
389 389 """
390 390 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
391 391
392 392 Return:
393 393 noiselevel
394 394 """
395 395
396 396 if channel != None:
397 397 data = self.data[channel]
398 398 nChannels = 1
399 399 else:
400 400 data = self.data
401 401 nChannels = self.nChannels
402 402
403 403 noise = numpy.zeros(nChannels)
404 404 power = data * numpy.conjugate(data)
405 405
406 406 for thisChannel in range(nChannels):
407 407 if nChannels == 1:
408 408 daux = power[:].real
409 409 else:
410 410 daux = power[thisChannel, :].real
411 411 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
412 412
413 413 return noise
414 414
415 415 def getNoise(self, type=1, channel=None):
416 416
417 417 if type == 1:
418 418 noise = self.getNoisebyHildebrand(channel)
419 419
420 420 return noise
421 421
422 422 def getPower(self, channel=None):
423 423
424 424 if channel != None:
425 425 data = self.data[channel]
426 426 else:
427 427 data = self.data
428 428
429 429 power = data * numpy.conjugate(data)
430 430 powerdB = 10 * numpy.log10(power.real)
431 431 powerdB = numpy.squeeze(powerdB)
432 432
433 433 return powerdB
434 434
435 435 def getTimeInterval(self):
436 436
437 437 timeInterval = self.ippSeconds * self.nCohInt
438 438
439 439 return timeInterval
440 440
441 441 noise = property(getNoise, "I'm the 'nHeights' property.")
442 442 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
443 443
444 444
445 445 class Spectra(JROData):
446 446
447 447 # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
448 448 data_spc = None
449 449 # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
450 450 data_cspc = None
451 451 # data dc es un numpy array de 2 dmensiones (canales, alturas)
452 452 data_dc = None
453 453 # data power
454 454 data_pwr = None
455 455 nFFTPoints = None
456 456 # nPairs = None
457 457 pairsList = None
458 458 nIncohInt = None
459 459 wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia
460 460 nCohInt = None # se requiere para determinar el valor de timeInterval
461 461 ippFactor = None
462 462 profileIndex = 0
463 463 plotting = "spectra"
464 464
465 465 def __init__(self):
466 466 '''
467 467 Constructor
468 468 '''
469 469
470 470 self.useLocalTime = True
471 471 self.radarControllerHeaderObj = RadarControllerHeader()
472 472 self.systemHeaderObj = SystemHeader()
473 473 self.type = "Spectra"
474 474 # self.data = None
475 475 # self.dtype = None
476 476 # self.nChannels = 0
477 477 # self.nHeights = 0
478 478 self.nProfiles = None
479 479 self.heightList = None
480 480 self.channelList = None
481 481 # self.channelIndexList = None
482 482 self.pairsList = None
483 483 self.flagNoData = True
484 484 self.flagDiscontinuousBlock = False
485 485 self.utctime = None
486 486 self.nCohInt = None
487 487 self.nIncohInt = None
488 488 self.blocksize = None
489 489 self.nFFTPoints = None
490 490 self.wavelength = None
491 491 self.flagDecodeData = False # asumo q la data no esta decodificada
492 492 self.flagDeflipData = False # asumo q la data no esta sin flip
493 493 self.flagShiftFFT = False
494 494 self.ippFactor = 1
495 495 #self.noise = None
496 496 self.beacon_heiIndexList = []
497 497 self.noise_estimation = None
498 498
499 499 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
500 500 """
501 501 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
502 502
503 503 Return:
504 504 noiselevel
505 505 """
506 506
507 507 noise = numpy.zeros(self.nChannels)
508 508
509 509 for channel in range(self.nChannels):
510 510 daux = self.data_spc[channel,
511 511 xmin_index:xmax_index, ymin_index:ymax_index]
512 512 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
513 513
514 514 return noise
515 515
516 516 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
517 517
518 518 if self.noise_estimation is not None:
519 519 # this was estimated by getNoise Operation defined in jroproc_spectra.py
520 520 return self.noise_estimation
521 521 else:
522 522 noise = self.getNoisebyHildebrand(
523 523 xmin_index, xmax_index, ymin_index, ymax_index)
524 524 return noise
525 525
526 526 def getFreqRangeTimeResponse(self, extrapoints=0):
527 527
528 528 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor)
529 freqrange = deltafreq * \
530 (numpy.arange(self.nFFTPoints + extrapoints) -
531 self.nFFTPoints / 2.) - deltafreq / 2
529 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
532 530
533 531 return freqrange
534 532
535 533 def getAcfRange(self, extrapoints=0):
536 534
537 535 deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor))
538 freqrange = deltafreq * \
539 (numpy.arange(self.nFFTPoints + extrapoints) -
540 self.nFFTPoints / 2.) - deltafreq / 2
536 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
541 537
542 538 return freqrange
543 539
544 540 def getFreqRange(self, extrapoints=0):
545 541
546 542 deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor)
547 freqrange = deltafreq * \
548 (numpy.arange(self.nFFTPoints + extrapoints) -
549 self.nFFTPoints / 2.) - deltafreq / 2
543 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
550 544
551 545 return freqrange
552 546
553 547 def getVelRange(self, extrapoints=0):
554 548
555 549 deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor)
556 velrange = deltav * (numpy.arange(self.nFFTPoints +
557 extrapoints) - self.nFFTPoints / 2.)
550 velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.)
558 551
559 552 if self.nmodes:
560 553 return velrange/self.nmodes
561 554 else:
562 555 return velrange
563 556
564 557 def getNPairs(self):
565 558
566 559 return len(self.pairsList)
567 560
568 561 def getPairsIndexList(self):
569 562
570 563 return list(range(self.nPairs))
571 564
572 565 def getNormFactor(self):
573 566
574 567 pwcode = 1
575 568
576 569 if self.flagDecodeData:
577 570 pwcode = numpy.sum(self.code[0]**2)
578 571 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
579 normFactor = self.nProfiles * self.nIncohInt * \
580 self.nCohInt * pwcode * self.windowOfFilter
572 normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter
581 573
582 574 return normFactor
583 575
584 576 def getFlagCspc(self):
585 577
586 578 if self.data_cspc is None:
587 579 return True
588 580
589 581 return False
590 582
591 583 def getFlagDc(self):
592 584
593 585 if self.data_dc is None:
594 586 return True
595 587
596 588 return False
597 589
598 590 def getTimeInterval(self):
599 591
600 timeInterval = self.ippSeconds * self.nCohInt * \
601 self.nIncohInt * self.nProfiles * self.ippFactor
592 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor
602 593
603 594 return timeInterval
604 595
605 596 def getPower(self):
606 597
607 598 factor = self.normFactor
608 599 z = self.data_spc / factor
609 600 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
610 601 avg = numpy.average(z, axis=1)
611 602
612 603 return 10 * numpy.log10(avg)
613 604
614 605 def getCoherence(self, pairsList=None, phase=False):
615 606
616 607 z = []
617 608 if pairsList is None:
618 609 pairsIndexList = self.pairsIndexList
619 610 else:
620 611 pairsIndexList = []
621 612 for pair in pairsList:
622 613 if pair not in self.pairsList:
623 614 raise ValueError("Pair %s is not in dataOut.pairsList" % (
624 615 pair))
625 616 pairsIndexList.append(self.pairsList.index(pair))
626 617 for i in range(len(pairsIndexList)):
627 618 pair = self.pairsList[pairsIndexList[i]]
628 ccf = numpy.average(
629 self.data_cspc[pairsIndexList[i], :, :], axis=0)
619 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
630 620 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
631 621 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
632 622 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
633 623 if phase:
634 624 data = numpy.arctan2(avgcoherenceComplex.imag,
635 625 avgcoherenceComplex.real) * 180 / numpy.pi
636 626 else:
637 627 data = numpy.abs(avgcoherenceComplex)
638 628
639 629 z.append(data)
640 630
641 631 return numpy.array(z)
642 632
643 633 def setValue(self, value):
644 634
645 635 print("This property should not be initialized")
646 636
647 637 return
648 638
649 639 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
650 640 pairsIndexList = property(
651 641 getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
652 642 normFactor = property(getNormFactor, setValue,
653 643 "I'm the 'getNormFactor' property.")
654 644 flag_cspc = property(getFlagCspc, setValue)
655 645 flag_dc = property(getFlagDc, setValue)
656 646 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
657 647 timeInterval = property(getTimeInterval, setValue,
658 648 "I'm the 'timeInterval' property")
659 649
660 650
661 651 class SpectraHeis(Spectra):
662 652
663 653 data_spc = None
664 654 data_cspc = None
665 655 data_dc = None
666 656 nFFTPoints = None
667 657 # nPairs = None
668 658 pairsList = None
669 659 nCohInt = None
670 660 nIncohInt = None
671 661
672 662 def __init__(self):
673 663
674 664 self.radarControllerHeaderObj = RadarControllerHeader()
675 665
676 666 self.systemHeaderObj = SystemHeader()
677 667
678 668 self.type = "SpectraHeis"
679 669
680 670 # self.dtype = None
681 671
682 672 # self.nChannels = 0
683 673
684 674 # self.nHeights = 0
685 675
686 676 self.nProfiles = None
687 677
688 678 self.heightList = None
689 679
690 680 self.channelList = None
691 681
692 682 # self.channelIndexList = None
693 683
694 684 self.flagNoData = True
695 685
696 686 self.flagDiscontinuousBlock = False
697 687
698 688 # self.nPairs = 0
699 689
700 690 self.utctime = None
701 691
702 692 self.blocksize = None
703 693
704 694 self.profileIndex = 0
705 695
706 696 self.nCohInt = 1
707 697
708 698 self.nIncohInt = 1
709 699
710 700 def getNormFactor(self):
711 701 pwcode = 1
712 702 if self.flagDecodeData:
713 703 pwcode = numpy.sum(self.code[0]**2)
714 704
715 705 normFactor = self.nIncohInt * self.nCohInt * pwcode
716 706
717 707 return normFactor
718 708
719 709 def getTimeInterval(self):
720 710
721 711 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
722 712
723 713 return timeInterval
724 714
725 715 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
726 716 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
727 717
728 718
729 719 class Fits(JROData):
730 720
731 721 heightList = None
732 722 channelList = None
733 723 flagNoData = True
734 724 flagDiscontinuousBlock = False
735 725 useLocalTime = False
736 726 utctime = None
737 727 timeZone = None
738 728 # ippSeconds = None
739 729 # timeInterval = None
740 730 nCohInt = None
741 731 nIncohInt = None
742 732 noise = None
743 733 windowOfFilter = 1
744 734 # Speed of ligth
745 735 C = 3e8
746 736 frequency = 49.92e6
747 737 realtime = False
748 738
749 739 def __init__(self):
750 740
751 741 self.type = "Fits"
752 742
753 743 self.nProfiles = None
754 744
755 745 self.heightList = None
756 746
757 747 self.channelList = None
758 748
759 749 # self.channelIndexList = None
760 750
761 751 self.flagNoData = True
762 752
763 753 self.utctime = None
764 754
765 755 self.nCohInt = 1
766 756
767 757 self.nIncohInt = 1
768 758
769 759 self.useLocalTime = True
770 760
771 761 self.profileIndex = 0
772 762
773 763 # self.utctime = None
774 764 # self.timeZone = None
775 765 # self.ltctime = None
776 766 # self.timeInterval = None
777 767 # self.header = None
778 768 # self.data_header = None
779 769 # self.data = None
780 770 # self.datatime = None
781 771 # self.flagNoData = False
782 772 # self.expName = ''
783 773 # self.nChannels = None
784 774 # self.nSamples = None
785 775 # self.dataBlocksPerFile = None
786 776 # self.comments = ''
787 777 #
788 778
789 779 def getltctime(self):
790 780
791 781 if self.useLocalTime:
792 782 return self.utctime - self.timeZone * 60
793 783
794 784 return self.utctime
795 785
796 786 def getDatatime(self):
797 787
798 788 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
799 789 return datatime
800 790
801 791 def getTimeRange(self):
802 792
803 793 datatime = []
804 794
805 795 datatime.append(self.ltctime)
806 796 datatime.append(self.ltctime + self.timeInterval)
807 797
808 798 datatime = numpy.array(datatime)
809 799
810 800 return datatime
811 801
812 802 def getHeiRange(self):
813 803
814 804 heis = self.heightList
815 805
816 806 return heis
817 807
818 808 def getNHeights(self):
819 809
820 810 return len(self.heightList)
821 811
822 812 def getNChannels(self):
823 813
824 814 return len(self.channelList)
825 815
826 816 def getChannelIndexList(self):
827 817
828 818 return list(range(self.nChannels))
829 819
830 820 def getNoise(self, type=1):
831 821
832 822 #noise = numpy.zeros(self.nChannels)
833 823
834 824 if type == 1:
835 825 noise = self.getNoisebyHildebrand()
836 826
837 827 if type == 2:
838 828 noise = self.getNoisebySort()
839 829
840 830 if type == 3:
841 831 noise = self.getNoisebyWindow()
842 832
843 833 return noise
844 834
845 835 def getTimeInterval(self):
846 836
847 837 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
848 838
849 839 return timeInterval
850 840
851 841 def get_ippSeconds(self):
852 842 '''
853 843 '''
854 844 return self.ipp_sec
855 845
856 846
857 847 datatime = property(getDatatime, "I'm the 'datatime' property")
858 848 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
859 849 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
860 850 channelIndexList = property(
861 851 getChannelIndexList, "I'm the 'channelIndexList' property.")
862 852 noise = property(getNoise, "I'm the 'nHeights' property.")
863 853
864 854 ltctime = property(getltctime, "I'm the 'ltctime' property")
865 855 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
866 856 ippSeconds = property(get_ippSeconds, '')
867 857
868 858 class Correlation(JROData):
869 859
870 860 noise = None
871 861 SNR = None
872 862 #--------------------------------------------------
873 863 mode = None
874 864 split = False
875 865 data_cf = None
876 866 lags = None
877 867 lagRange = None
878 868 pairsList = None
879 869 normFactor = None
880 870 #--------------------------------------------------
881 871 # calculateVelocity = None
882 872 nLags = None
883 873 nPairs = None
884 874 nAvg = None
885 875
886 876 def __init__(self):
887 877 '''
888 878 Constructor
889 879 '''
890 880 self.radarControllerHeaderObj = RadarControllerHeader()
891 881
892 882 self.systemHeaderObj = SystemHeader()
893 883
894 884 self.type = "Correlation"
895 885
896 886 self.data = None
897 887
898 888 self.dtype = None
899 889
900 890 self.nProfiles = None
901 891
902 892 self.heightList = None
903 893
904 894 self.channelList = None
905 895
906 896 self.flagNoData = True
907 897
908 898 self.flagDiscontinuousBlock = False
909 899
910 900 self.utctime = None
911 901
912 902 self.timeZone = None
913 903
914 904 self.dstFlag = None
915 905
916 906 self.errorCount = None
917 907
918 908 self.blocksize = None
919 909
920 910 self.flagDecodeData = False # asumo q la data no esta decodificada
921 911
922 912 self.flagDeflipData = False # asumo q la data no esta sin flip
923 913
924 914 self.pairsList = None
925 915
926 916 self.nPoints = None
927 917
928 918 def getPairsList(self):
929 919
930 920 return self.pairsList
931 921
932 922 def getNoise(self, mode=2):
933 923
934 924 indR = numpy.where(self.lagR == 0)[0][0]
935 925 indT = numpy.where(self.lagT == 0)[0][0]
936 926
937 927 jspectra0 = self.data_corr[:, :, indR, :]
938 928 jspectra = copy.copy(jspectra0)
939 929
940 930 num_chan = jspectra.shape[0]
941 931 num_hei = jspectra.shape[2]
942 932
943 933 freq_dc = jspectra.shape[1] / 2
944 934 ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
945 935
946 936 if ind_vel[0] < 0:
947 937 ind_vel[list(range(0, 1))] = ind_vel[list(
948 938 range(0, 1))] + self.num_prof
949 939
950 940 if mode == 1:
951 941 jspectra[:, freq_dc, :] = (
952 942 jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
953 943
954 944 if mode == 2:
955 945
956 946 vel = numpy.array([-2, -1, 1, 2])
957 947 xx = numpy.zeros([4, 4])
958 948
959 949 for fil in range(4):
960 950 xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
961 951
962 952 xx_inv = numpy.linalg.inv(xx)
963 953 xx_aux = xx_inv[0, :]
964 954
965 955 for ich in range(num_chan):
966 956 yy = jspectra[ich, ind_vel, :]
967 957 jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
968 958
969 959 junkid = jspectra[ich, freq_dc, :] <= 0
970 960 cjunkid = sum(junkid)
971 961
972 962 if cjunkid.any():
973 963 jspectra[ich, freq_dc, junkid.nonzero()] = (
974 964 jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
975 965
976 966 noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :]
977 967
978 968 return noise
979 969
980 970 def getTimeInterval(self):
981 971
982 972 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
983 973
984 974 return timeInterval
985 975
986 976 def splitFunctions(self):
987 977
988 978 pairsList = self.pairsList
989 979 ccf_pairs = []
990 980 acf_pairs = []
991 981 ccf_ind = []
992 982 acf_ind = []
993 983 for l in range(len(pairsList)):
994 984 chan0 = pairsList[l][0]
995 985 chan1 = pairsList[l][1]
996 986
997 987 # Obteniendo pares de Autocorrelacion
998 988 if chan0 == chan1:
999 989 acf_pairs.append(chan0)
1000 990 acf_ind.append(l)
1001 991 else:
1002 992 ccf_pairs.append(pairsList[l])
1003 993 ccf_ind.append(l)
1004 994
1005 995 data_acf = self.data_cf[acf_ind]
1006 996 data_ccf = self.data_cf[ccf_ind]
1007 997
1008 998 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1009 999
1010 1000 def getNormFactor(self):
1011 1001 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1012 1002 acf_pairs = numpy.array(acf_pairs)
1013 1003 normFactor = numpy.zeros((self.nPairs, self.nHeights))
1014 1004
1015 1005 for p in range(self.nPairs):
1016 1006 pair = self.pairsList[p]
1017 1007
1018 1008 ch0 = pair[0]
1019 1009 ch1 = pair[1]
1020 1010
1021 1011 ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1)
1022 1012 ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1)
1023 1013 normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max)
1024 1014
1025 1015 return normFactor
1026 1016
1027 1017 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1028 1018 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1029 1019
1030 1020
1031 1021 class Parameters(Spectra):
1032 1022
1033 1023 experimentInfo = None # Information about the experiment
1034 1024 # Information from previous data
1035 1025 inputUnit = None # Type of data to be processed
1036 1026 operation = None # Type of operation to parametrize
1037 1027 # normFactor = None #Normalization Factor
1038 1028 groupList = None # List of Pairs, Groups, etc
1039 1029 # Parameters
1040 1030 data_param = None # Parameters obtained
1041 1031 data_pre = None # Data Pre Parametrization
1042 1032 data_SNR = None # Signal to Noise Ratio
1043 1033 # heightRange = None #Heights
1044 1034 abscissaList = None # Abscissa, can be velocities, lags or time
1045 1035 # noise = None #Noise Potency
1046 1036 utctimeInit = None # Initial UTC time
1047 1037 paramInterval = None # Time interval to calculate Parameters in seconds
1048 1038 useLocalTime = True
1049 1039 # Fitting
1050 1040 data_error = None # Error of the estimation
1051 1041 constants = None
1052 1042 library = None
1053 1043 # Output signal
1054 1044 outputInterval = None # Time interval to calculate output signal in seconds
1055 1045 data_output = None # Out signal
1056 1046 nAvg = None
1057 1047 noise_estimation = None
1058 1048 GauSPC = None # Fit gaussian SPC
1059 1049
1060 1050 def __init__(self):
1061 1051 '''
1062 1052 Constructor
1063 1053 '''
1064 1054 self.radarControllerHeaderObj = RadarControllerHeader()
1065 1055
1066 1056 self.systemHeaderObj = SystemHeader()
1067 1057
1068 1058 self.type = "Parameters"
1069 1059
1070 1060 def getTimeRange1(self, interval):
1071 1061
1072 1062 datatime = []
1073 1063
1074 1064 if self.useLocalTime:
1075 1065 time1 = self.utctimeInit - self.timeZone * 60
1076 1066 else:
1077 1067 time1 = self.utctimeInit
1078 1068
1079 1069 datatime.append(time1)
1080 1070 datatime.append(time1 + interval)
1081 1071 datatime = numpy.array(datatime)
1082 1072
1083 1073 return datatime
1084 1074
1085 1075 def getTimeInterval(self):
1086 1076
1087 1077 if hasattr(self, 'timeInterval1'):
1088 1078 return self.timeInterval1
1089 1079 else:
1090 1080 return self.paramInterval
1091 1081
1092 1082 def setValue(self, value):
1093 1083
1094 1084 print("This property should not be initialized")
1095 1085
1096 1086 return
1097 1087
1098 1088 def getNoise(self):
1099 1089
1100 1090 return self.spc_noise
1101 1091
1102 1092 timeInterval = property(getTimeInterval)
1103 1093 noise = property(getNoise, setValue, "I'm the 'Noise' property.")
1104 1094
1105 1095
1106 1096 class PlotterData(object):
1107 1097 '''
1108 1098 Object to hold data to be plotted
1109 1099 '''
1110 1100
1111 1101 MAXNUMX = 100
1112 1102 MAXNUMY = 100
1113 1103
1114 1104 def __init__(self, code, throttle_value, exp_code, buffering=True):
1115 1105
1116 1106 self.throttle = throttle_value
1117 1107 self.exp_code = exp_code
1118 1108 self.buffering = buffering
1119 1109 self.ready = False
1120 1110 self.localtime = False
1121 1111 self.data = {}
1122 1112 self.meta = {}
1123 1113 self.__times = []
1124 1114 self.__heights = []
1125 1115
1126 1116 if 'snr' in code:
1127 1117 self.plottypes = ['snr']
1128 1118 elif code == 'spc':
1129 1119 self.plottypes = ['spc', 'noise', 'rti']
1130 1120 elif code == 'rti':
1131 1121 self.plottypes = ['noise', 'rti']
1132 1122 else:
1133 1123 self.plottypes = [code]
1134 1124
1135 1125 for plot in self.plottypes:
1136 1126 self.data[plot] = {}
1137 1127
1138 1128 def __str__(self):
1139 1129 dum = ['{}{}'.format(key, self.shape(key)) for key in self.data]
1140 1130 return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times))
1141 1131
1142 1132 def __len__(self):
1143 1133 return len(self.__times)
1144 1134
1145 1135 def __getitem__(self, key):
1146 1136
1147 1137 if key not in self.data:
1148 1138 raise KeyError(log.error('Missing key: {}'.format(key)))
1149 1139 if 'spc' in key or not self.buffering:
1150 1140 ret = self.data[key]
1151 1141 elif 'scope' in key:
1152 1142 ret = numpy.array(self.data[key][float(self.tm)])
1153 1143 else:
1154 1144 ret = numpy.array([self.data[key][x] for x in self.times])
1155 1145 if ret.ndim > 1:
1156 1146 ret = numpy.swapaxes(ret, 0, 1)
1157 1147 return ret
1158 1148
1159 1149 def __contains__(self, key):
1160 1150 return key in self.data
1161 1151
1162 1152 def setup(self):
1163 1153 '''
1164 1154 Configure object
1165 1155 '''
1166 1156
1167 1157 self.type = ''
1168 1158 self.ready = False
1169 1159 self.data = {}
1170 1160 self.__times = []
1171 1161 self.__heights = []
1172 1162 self.__all_heights = set()
1173 1163 for plot in self.plottypes:
1174 1164 if 'snr' in plot:
1175 1165 plot = 'snr'
1176 1166 self.data[plot] = {}
1177 1167
1178 1168 if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data:
1179 1169 self.data['noise'] = {}
1180 1170 if 'noise' not in self.plottypes:
1181 1171 self.plottypes.append('noise')
1182 1172
1183 1173 def shape(self, key):
1184 1174 '''
1185 1175 Get the shape of the one-element data for the given key
1186 1176 '''
1187 1177
1188 1178 if len(self.data[key]):
1189 1179 if 'spc' in key or not self.buffering:
1190 1180 return self.data[key].shape
1191 1181 return self.data[key][self.__times[0]].shape
1192 1182 return (0,)
1193 1183
1194 1184 def update(self, dataOut, tm):
1195 1185 '''
1196 1186 Update data object with new dataOut
1197 1187 '''
1198 1188
1199 1189 if tm in self.__times:
1200 1190 return
1201 1191 self.profileIndex = dataOut.profileIndex
1202 1192 self.tm = tm
1203 1193 self.type = dataOut.type
1204 1194 self.parameters = getattr(dataOut, 'parameters', [])
1205 1195 if hasattr(dataOut, 'pairsList'):
1206 1196 self.pairs = dataOut.pairsList
1207 1197 if hasattr(dataOut, 'meta'):
1208 1198 self.meta = dataOut.meta
1209 1199 self.channels = dataOut.channelList
1210 1200 self.interval = dataOut.getTimeInterval()
1211 1201 self.localtime = dataOut.useLocalTime
1212 1202 if 'spc' in self.plottypes or 'cspc' in self.plottypes:
1213 1203 self.xrange = (dataOut.getFreqRange(1)/1000.,
1214 1204 dataOut.getAcfRange(1), dataOut.getVelRange(1))
1215 1205 self.factor = dataOut.normFactor
1216 1206 self.__heights.append(dataOut.heightList)
1217 1207 self.__all_heights.update(dataOut.heightList)
1218 1208 self.__times.append(tm)
1219 1209
1220 1210 for plot in self.plottypes:
1221 1211 if plot == 'spc':
1222 1212 z = dataOut.data_spc/dataOut.normFactor
1223 1213 buffer = 10*numpy.log10(z)
1224 1214 if plot == 'cspc':
1225 1215 z = dataOut.data_spc/dataOut.normFactor
1226 1216 buffer = (dataOut.data_spc, dataOut.data_cspc)
1227 1217 if plot == 'noise':
1228 1218 buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
1229 1219 if plot == 'rti':
1230 1220 buffer = dataOut.getPower()
1231 1221 if plot == 'snr_db':
1232 1222 buffer = dataOut.data_SNR
1233 1223 if plot == 'snr':
1234 1224 buffer = 10*numpy.log10(dataOut.data_SNR)
1235 1225 if plot == 'dop':
1236 1226 buffer = 10*numpy.log10(dataOut.data_DOP)
1237 1227 if plot == 'mean':
1238 1228 buffer = dataOut.data_MEAN
1239 1229 if plot == 'std':
1240 1230 buffer = dataOut.data_STD
1241 1231 if plot == 'coh':
1242 1232 buffer = dataOut.getCoherence()
1243 1233 if plot == 'phase':
1244 1234 buffer = dataOut.getCoherence(phase=True)
1245 1235 if plot == 'output':
1246 1236 buffer = dataOut.data_output
1247 1237 if plot == 'param':
1248 1238 buffer = dataOut.data_param
1249 1239 if plot == 'scope':
1250 1240 buffer = dataOut.data
1251 1241 self.flagDataAsBlock = dataOut.flagDataAsBlock
1252 1242 self.nProfiles = dataOut.nProfiles
1253 1243
1254 1244 if plot == 'spc':
1255 1245 self.data[plot] = buffer
1256 1246 elif plot == 'cspc':
1257 1247 self.data['spc'] = buffer[0]
1258 1248 self.data['cspc'] = buffer[1]
1259 1249 else:
1260 1250 if self.buffering:
1261 1251 self.data[plot][tm] = buffer
1262 1252 else:
1263 1253 self.data[plot] = buffer
1264 1254
1265 1255 def normalize_heights(self):
1266 1256 '''
1267 1257 Ensure same-dimension of the data for different heighList
1268 1258 '''
1269 1259
1270 1260 H = numpy.array(list(self.__all_heights))
1271 1261 H.sort()
1272 1262 for key in self.data:
1273 1263 shape = self.shape(key)[:-1] + H.shape
1274 1264 for tm, obj in list(self.data[key].items()):
1275 1265 h = self.__heights[self.__times.index(tm)]
1276 1266 if H.size == h.size:
1277 1267 continue
1278 1268 index = numpy.where(numpy.in1d(H, h))[0]
1279 1269 dummy = numpy.zeros(shape) + numpy.nan
1280 1270 if len(shape) == 2:
1281 1271 dummy[:, index] = obj
1282 1272 else:
1283 1273 dummy[index] = obj
1284 1274 self.data[key][tm] = dummy
1285 1275
1286 1276 self.__heights = [H for tm in self.__times]
1287 1277
1288 1278 def jsonify(self, decimate=False):
1289 1279 '''
1290 1280 Convert data to json
1291 1281 '''
1292 1282
1293 1283 data = {}
1294 1284 tm = self.times[-1]
1295 1285 dy = int(self.heights.size/self.MAXNUMY) + 1
1296 1286 for key in self.data:
1297 1287 if key in ('spc', 'cspc') or not self.buffering:
1298 1288 dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1
1299 1289 data[key] = self.roundFloats(
1300 1290 self.data[key][::, ::dx, ::dy].tolist())
1301 1291 else:
1302 1292 data[key] = self.roundFloats(self.data[key][tm].tolist())
1303 1293
1304 1294 ret = {'data': data}
1305 1295 ret['exp_code'] = self.exp_code
1306 1296 ret['time'] = float(tm)
1307 1297 ret['interval'] = float(self.interval)
1308 1298 ret['localtime'] = self.localtime
1309 1299 ret['yrange'] = self.roundFloats(self.heights[::dy].tolist())
1310 1300 if 'spc' in self.data or 'cspc' in self.data:
1311 1301 ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist())
1312 1302 else:
1313 1303 ret['xrange'] = []
1314 1304 if hasattr(self, 'pairs'):
1315 1305 ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs]
1316 1306 else:
1317 1307 ret['pairs'] = []
1318 1308
1319 1309 for key, value in list(self.meta.items()):
1320 1310 ret[key] = value
1321 1311
1322 1312 return json.dumps(ret)
1323 1313
1324 1314 @property
1325 1315 def times(self):
1326 1316 '''
1327 1317 Return the list of times of the current data
1328 1318 '''
1329 1319
1330 1320 ret = numpy.array(self.__times)
1331 1321 ret.sort()
1332 1322 return ret
1333 1323
1334 1324 @property
1335 1325 def min_time(self):
1336 1326 '''
1337 1327 Return the minimun time value
1338 1328 '''
1339 1329
1340 1330 return self.times[0]
1341 1331
1342 1332 @property
1343 1333 def max_time(self):
1344 1334 '''
1345 1335 Return the maximun time value
1346 1336 '''
1347 1337
1348 1338 return self.times[-1]
1349 1339
1350 1340 @property
1351 1341 def heights(self):
1352 1342 '''
1353 1343 Return the list of heights of the current data
1354 1344 '''
1355 1345
1356 1346 return numpy.array(self.__heights[-1])
1357 1347
1358 1348 @staticmethod
1359 1349 def roundFloats(obj):
1360 1350 if isinstance(obj, list):
1361 1351 return list(map(PlotterData.roundFloats, obj))
1362 1352 elif isinstance(obj, float):
1363 1353 return round(obj, 2)
@@ -1,2389 +1,2394
1 1 import os
2 2 import datetime
3 3 import numpy
4 4 import inspect
5 5 from .figure import Figure, isRealtime, isTimeInHourRange
6 6 from .plotting_codes import *
7 7 from schainpy.model.proc.jroproc_base import MPDecorator
8 8 from schainpy.utils import log
9 9
10 10 class ParamLine_(Figure):
11 11
12 12 isConfig = None
13 13
14 14 def __init__(self):
15 15
16 16 self.isConfig = False
17 17 self.WIDTH = 300
18 18 self.HEIGHT = 200
19 19 self.counter_imagwr = 0
20 20
21 21 def getSubplots(self):
22 22
23 23 nrow = self.nplots
24 24 ncol = 3
25 25 return nrow, ncol
26 26
27 27 def setup(self, id, nplots, wintitle, show):
28 28
29 29 self.nplots = nplots
30 30
31 31 self.createFigure(id=id,
32 32 wintitle=wintitle,
33 33 show=show)
34 34
35 35 nrow,ncol = self.getSubplots()
36 36 colspan = 3
37 37 rowspan = 1
38 38
39 39 for i in range(nplots):
40 40 self.addAxes(nrow, ncol, i, 0, colspan, rowspan)
41 41
42 42 def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
43 43 yreal = y[channelIndexList,:].real
44 44 yimag = y[channelIndexList,:].imag
45 45
46 46 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
47 47 xlabel = "Range (Km)"
48 48 ylabel = "Intensity - IQ"
49 49
50 50 if not self.isConfig:
51 51 nplots = len(channelIndexList)
52 52
53 53 self.setup(id=id,
54 54 nplots=nplots,
55 55 wintitle='',
56 56 show=show)
57 57
58 58 if xmin == None: xmin = numpy.nanmin(x)
59 59 if xmax == None: xmax = numpy.nanmax(x)
60 60 if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag))
61 61 if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag))
62 62
63 63 self.isConfig = True
64 64
65 65 self.setWinTitle(title)
66 66
67 67 for i in range(len(self.axesList)):
68 68 title = "Channel %d" %(i)
69 69 axes = self.axesList[i]
70 70
71 71 axes.pline(x, yreal[i,:],
72 72 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
73 73 xlabel=xlabel, ylabel=ylabel, title=title)
74 74
75 75 axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2)
76 76
77 77 def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
78 78 y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:])
79 79 yreal = y.real
80 80
81 81 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
82 82 xlabel = "Range (Km)"
83 83 ylabel = "Intensity"
84 84
85 85 if not self.isConfig:
86 86 nplots = len(channelIndexList)
87 87
88 88 self.setup(id=id,
89 89 nplots=nplots,
90 90 wintitle='',
91 91 show=show)
92 92
93 93 if xmin == None: xmin = numpy.nanmin(x)
94 94 if xmax == None: xmax = numpy.nanmax(x)
95 95 if ymin == None: ymin = numpy.nanmin(yreal)
96 96 if ymax == None: ymax = numpy.nanmax(yreal)
97 97
98 98 self.isConfig = True
99 99
100 100 self.setWinTitle(title)
101 101
102 102 for i in range(len(self.axesList)):
103 103 title = "Channel %d" %(i)
104 104 axes = self.axesList[i]
105 105 ychannel = yreal[i,:]
106 106 axes.pline(x, ychannel,
107 107 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
108 108 xlabel=xlabel, ylabel=ylabel, title=title)
109 109
110 110
111 111 def run(self, dataOut, id, wintitle="", channelList=None,
112 112 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
113 113 figpath='./', figfile=None, show=True, wr_period=1,
114 114 ftp=False, server=None, folder=None, username=None, password=None):
115 115
116 116 """
117 117
118 118 Input:
119 119 dataOut :
120 120 id :
121 121 wintitle :
122 122 channelList :
123 123 xmin : None,
124 124 xmax : None,
125 125 ymin : None,
126 126 ymax : None,
127 127 """
128 128
129 129 if channelList == None:
130 130 channelIndexList = dataOut.channelIndexList
131 131 else:
132 132 channelIndexList = []
133 133 for channel in channelList:
134 134 if channel not in dataOut.channelList:
135 135 raise ValueError("Channel %d is not in dataOut.channelList" % channel)
136 136 channelIndexList.append(dataOut.channelList.index(channel))
137 137
138 138 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
139 139
140 140 y = dataOut.RR
141 141
142 142 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
143 143 xlabel = "Range (Km)"
144 144 ylabel = "Intensity"
145 145
146 146 if not self.isConfig:
147 147 nplots = len(channelIndexList)
148 148
149 149 self.setup(id=id,
150 150 nplots=nplots,
151 151 wintitle='',
152 152 show=show)
153 153
154 154 if xmin == None: xmin = numpy.nanmin(x)
155 155 if xmax == None: xmax = numpy.nanmax(x)
156 156 if ymin == None: ymin = numpy.nanmin(y)
157 157 if ymax == None: ymax = numpy.nanmax(y)
158 158
159 159 self.isConfig = True
160 160
161 161 self.setWinTitle(title)
162 162
163 163 for i in range(len(self.axesList)):
164 164 title = "Channel %d" %(i)
165 165 axes = self.axesList[i]
166 166 ychannel = y[i,:]
167 167 axes.pline(x, ychannel,
168 168 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
169 169 xlabel=xlabel, ylabel=ylabel, title=title)
170 170
171 171
172 172 self.draw()
173 173
174 174 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex)
175 175 figfile = self.getFilename(name = str_datetime)
176 176
177 177 self.save(figpath=figpath,
178 178 figfile=figfile,
179 179 save=save,
180 180 ftp=ftp,
181 181 wr_period=wr_period,
182 182 thisDatetime=thisDatetime)
183 183
184 184
185 185
186 186 class SpcParamPlot_(Figure):
187 187
188 188 isConfig = None
189 189 __nsubplots = None
190 190
191 191 WIDTHPROF = None
192 192 HEIGHTPROF = None
193 193 PREFIX = 'SpcParam'
194 194
195 195 def __init__(self, **kwargs):
196 196 Figure.__init__(self, **kwargs)
197 197 self.isConfig = False
198 198 self.__nsubplots = 1
199 199
200 200 self.WIDTH = 250
201 201 self.HEIGHT = 250
202 202 self.WIDTHPROF = 120
203 203 self.HEIGHTPROF = 0
204 204 self.counter_imagwr = 0
205 205
206 206 self.PLOT_CODE = SPEC_CODE
207 207
208 208 self.FTP_WEI = None
209 209 self.EXP_CODE = None
210 210 self.SUB_EXP_CODE = None
211 211 self.PLOT_POS = None
212 212
213 213 self.__xfilter_ena = False
214 214 self.__yfilter_ena = False
215 215
216 216 def getSubplots(self):
217 217
218 218 ncol = int(numpy.sqrt(self.nplots)+0.9)
219 219 nrow = int(self.nplots*1./ncol + 0.9)
220 220
221 221 return nrow, ncol
222 222
223 223 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
224 224
225 225 self.__showprofile = showprofile
226 226 self.nplots = nplots
227 227
228 228 ncolspan = 1
229 229 colspan = 1
230 230 if showprofile:
231 231 ncolspan = 3
232 232 colspan = 2
233 233 self.__nsubplots = 2
234 234
235 235 self.createFigure(id = id,
236 236 wintitle = wintitle,
237 237 widthplot = self.WIDTH + self.WIDTHPROF,
238 238 heightplot = self.HEIGHT + self.HEIGHTPROF,
239 239 show=show)
240 240
241 241 nrow, ncol = self.getSubplots()
242 242
243 243 counter = 0
244 244 for y in range(nrow):
245 245 for x in range(ncol):
246 246
247 247 if counter >= self.nplots:
248 248 break
249 249
250 250 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
251 251
252 252 if showprofile:
253 253 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
254 254
255 255 counter += 1
256 256
257 257 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
258 258 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
259 259 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
260 260 server=None, folder=None, username=None, password=None,
261 261 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
262 262 xaxis="frequency", colormap='jet', normFactor=None , Selector = 0):
263 263
264 264 """
265 265
266 266 Input:
267 267 dataOut :
268 268 id :
269 269 wintitle :
270 270 channelList :
271 271 showProfile :
272 272 xmin : None,
273 273 xmax : None,
274 274 ymin : None,
275 275 ymax : None,
276 276 zmin : None,
277 277 zmax : None
278 278 """
279 279 if realtime:
280 280 if not(isRealtime(utcdatatime = dataOut.utctime)):
281 281 print('Skipping this plot function')
282 282 return
283 283
284 284 if channelList == None:
285 285 channelIndexList = dataOut.channelIndexList
286 286 else:
287 287 channelIndexList = []
288 288 for channel in channelList:
289 289 if channel not in dataOut.channelList:
290 290 raise ValueError("Channel %d is not in dataOut.channelList" %channel)
291 291 channelIndexList.append(dataOut.channelList.index(channel))
292 292
293 293 # if normFactor is None:
294 294 # factor = dataOut.normFactor
295 295 # else:
296 296 # factor = normFactor
297 297 if xaxis == "frequency":
298 298 x = dataOut.spcparam_range[0]
299 299 xlabel = "Frequency (kHz)"
300 300
301 301 elif xaxis == "time":
302 302 x = dataOut.spcparam_range[1]
303 303 xlabel = "Time (ms)"
304 304
305 305 else:
306 306 x = dataOut.spcparam_range[2]
307 307 xlabel = "Velocity (m/s)"
308 308
309 309 ylabel = "Range (km)"
310 310
311 311 y = dataOut.getHeiRange()
312 312
313 313 z = dataOut.SPCparam[Selector] /1966080.0#/ dataOut.normFactor#GauSelector] #dataOut.data_spc/factor
314 314 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
315 315 zdB = 10*numpy.log10(z)
316 316
317 317 avg = numpy.average(z, axis=1)
318 318 avgdB = 10*numpy.log10(avg)
319 319
320 320 noise = dataOut.spc_noise
321 321 noisedB = 10*numpy.log10(noise)
322 322
323 323 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
324 324 title = wintitle + " Spectra"
325 325 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
326 326 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
327 327
328 328 if not self.isConfig:
329 329
330 330 nplots = len(channelIndexList)
331 331
332 332 self.setup(id=id,
333 333 nplots=nplots,
334 334 wintitle=wintitle,
335 335 showprofile=showprofile,
336 336 show=show)
337 337
338 338 if xmin == None: xmin = numpy.nanmin(x)
339 339 if xmax == None: xmax = numpy.nanmax(x)
340 340 if ymin == None: ymin = numpy.nanmin(y)
341 341 if ymax == None: ymax = numpy.nanmax(y)
342 342 if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3
343 343 if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3
344 344
345 345 self.FTP_WEI = ftp_wei
346 346 self.EXP_CODE = exp_code
347 347 self.SUB_EXP_CODE = sub_exp_code
348 348 self.PLOT_POS = plot_pos
349 349
350 350 self.isConfig = True
351 351
352 352 self.setWinTitle(title)
353 353
354 354 for i in range(self.nplots):
355 355 index = channelIndexList[i]
356 356 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
357 357 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime)
358 358 if len(dataOut.beam.codeList) != 0:
359 359 title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime)
360 360
361 361 axes = self.axesList[i*self.__nsubplots]
362 362 axes.pcolor(x, y, zdB[index,:,:],
363 363 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
364 364 xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap,
365 365 ticksize=9, cblabel='')
366 366
367 367 if self.__showprofile:
368 368 axes = self.axesList[i*self.__nsubplots +1]
369 369 axes.pline(avgdB[index,:], y,
370 370 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
371 371 xlabel='dB', ylabel='', title='',
372 372 ytick_visible=False,
373 373 grid='x')
374 374
375 375 noiseline = numpy.repeat(noisedB[index], len(y))
376 376 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
377 377
378 378 self.draw()
379 379
380 380 if figfile == None:
381 381 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
382 382 name = str_datetime
383 383 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
384 384 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
385 385 figfile = self.getFilename(name)
386 386
387 387 self.save(figpath=figpath,
388 388 figfile=figfile,
389 389 save=save,
390 390 ftp=ftp,
391 391 wr_period=wr_period,
392 392 thisDatetime=thisDatetime)
393 393
394 394
395 395
396 396 class MomentsPlot_(Figure):
397 397
398 398 isConfig = None
399 399 __nsubplots = None
400 400
401 401 WIDTHPROF = None
402 402 HEIGHTPROF = None
403 403 PREFIX = 'prm'
404 404 def __init__(self):
405 405 Figure.__init__(self)
406 406 self.isConfig = False
407 407 self.__nsubplots = 1
408 408
409 409 self.WIDTH = 280
410 410 self.HEIGHT = 250
411 411 self.WIDTHPROF = 120
412 412 self.HEIGHTPROF = 0
413 413 self.counter_imagwr = 0
414 414
415 415 self.PLOT_CODE = MOMENTS_CODE
416 416
417 417 self.FTP_WEI = None
418 418 self.EXP_CODE = None
419 419 self.SUB_EXP_CODE = None
420 420 self.PLOT_POS = None
421 421
422 422 def getSubplots(self):
423 423
424 424 ncol = int(numpy.sqrt(self.nplots)+0.9)
425 425 nrow = int(self.nplots*1./ncol + 0.9)
426 426
427 427 return nrow, ncol
428 428
429 429 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
430 430
431 431 self.__showprofile = showprofile
432 432 self.nplots = nplots
433 433
434 434 ncolspan = 1
435 435 colspan = 1
436 436 if showprofile:
437 437 ncolspan = 3
438 438 colspan = 2
439 439 self.__nsubplots = 2
440 440
441 441 self.createFigure(id = id,
442 442 wintitle = wintitle,
443 443 widthplot = self.WIDTH + self.WIDTHPROF,
444 444 heightplot = self.HEIGHT + self.HEIGHTPROF,
445 445 show=show)
446 446
447 447 nrow, ncol = self.getSubplots()
448 448
449 449 counter = 0
450 450 for y in range(nrow):
451 451 for x in range(ncol):
452 452
453 453 if counter >= self.nplots:
454 454 break
455 455
456 456 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
457 457
458 458 if showprofile:
459 459 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
460 460
461 461 counter += 1
462 462
463 463 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
464 464 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
465 465 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
466 466 server=None, folder=None, username=None, password=None,
467 467 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
468 468
469 469 """
470 470
471 471 Input:
472 472 dataOut :
473 473 id :
474 474 wintitle :
475 475 channelList :
476 476 showProfile :
477 477 xmin : None,
478 478 xmax : None,
479 479 ymin : None,
480 480 ymax : None,
481 481 zmin : None,
482 482 zmax : None
483 483 """
484 484
485 485 if dataOut.flagNoData:
486 486 return None
487 487
488 488 if realtime:
489 489 if not(isRealtime(utcdatatime = dataOut.utctime)):
490 490 print('Skipping this plot function')
491 491 return
492 492
493 493 if channelList == None:
494 494 channelIndexList = dataOut.channelIndexList
495 495 else:
496 496 channelIndexList = []
497 497 for channel in channelList:
498 498 if channel not in dataOut.channelList:
499 499 raise ValueError("Channel %d is not in dataOut.channelList")
500 500 channelIndexList.append(dataOut.channelList.index(channel))
501 501
502 502 factor = dataOut.normFactor
503 503 x = dataOut.abscissaList
504 504 y = dataOut.heightList
505 505
506 506 z = dataOut.data_pre[channelIndexList,:,:]/factor
507 507 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
508 508 avg = numpy.average(z, axis=1)
509 509 noise = dataOut.noise/factor
510 510
511 511 zdB = 10*numpy.log10(z)
512 512 avgdB = 10*numpy.log10(avg)
513 513 noisedB = 10*numpy.log10(noise)
514 514
515 515 #thisDatetime = dataOut.datatime
516 516 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
517 517 title = wintitle + " Parameters"
518 518 xlabel = "Velocity (m/s)"
519 519 ylabel = "Range (Km)"
520 520
521 521 update_figfile = False
522 522
523 523 if not self.isConfig:
524 524
525 525 nplots = len(channelIndexList)
526 526
527 527 self.setup(id=id,
528 528 nplots=nplots,
529 529 wintitle=wintitle,
530 530 showprofile=showprofile,
531 531 show=show)
532 532
533 533 if xmin == None: xmin = numpy.nanmin(x)
534 534 if xmax == None: xmax = numpy.nanmax(x)
535 535 if ymin == None: ymin = numpy.nanmin(y)
536 536 if ymax == None: ymax = numpy.nanmax(y)
537 537 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
538 538 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
539 539
540 540 self.FTP_WEI = ftp_wei
541 541 self.EXP_CODE = exp_code
542 542 self.SUB_EXP_CODE = sub_exp_code
543 543 self.PLOT_POS = plot_pos
544 544
545 545 self.isConfig = True
546 546 update_figfile = True
547 547
548 548 self.setWinTitle(title)
549 549
550 550 for i in range(self.nplots):
551 551 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
552 552 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime)
553 553 axes = self.axesList[i*self.__nsubplots]
554 554 axes.pcolor(x, y, zdB[i,:,:],
555 555 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
556 556 xlabel=xlabel, ylabel=ylabel, title=title,
557 557 ticksize=9, cblabel='')
558 558 #Mean Line
559 559 mean = dataOut.data_param[i, 1, :]
560 560 axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1)
561 561
562 562 if self.__showprofile:
563 563 axes = self.axesList[i*self.__nsubplots +1]
564 564 axes.pline(avgdB[i], y,
565 565 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
566 566 xlabel='dB', ylabel='', title='',
567 567 ytick_visible=False,
568 568 grid='x')
569 569
570 570 noiseline = numpy.repeat(noisedB[i], len(y))
571 571 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
572 572
573 573 self.draw()
574 574
575 575 self.save(figpath=figpath,
576 576 figfile=figfile,
577 577 save=save,
578 578 ftp=ftp,
579 579 wr_period=wr_period,
580 580 thisDatetime=thisDatetime)
581 581
582 582
583 583 class SkyMapPlot_(Figure):
584 584
585 585 __isConfig = None
586 586 __nsubplots = None
587 587
588 588 WIDTHPROF = None
589 589 HEIGHTPROF = None
590 590 PREFIX = 'mmap'
591 591
592 592 def __init__(self, **kwargs):
593 593 Figure.__init__(self, **kwargs)
594 594 self.isConfig = False
595 595 self.__nsubplots = 1
596 596
597 597 # self.WIDTH = 280
598 598 # self.HEIGHT = 250
599 599 self.WIDTH = 600
600 600 self.HEIGHT = 600
601 601 self.WIDTHPROF = 120
602 602 self.HEIGHTPROF = 0
603 603 self.counter_imagwr = 0
604 604
605 605 self.PLOT_CODE = MSKYMAP_CODE
606 606
607 607 self.FTP_WEI = None
608 608 self.EXP_CODE = None
609 609 self.SUB_EXP_CODE = None
610 610 self.PLOT_POS = None
611 611
612 612 def getSubplots(self):
613 613
614 614 ncol = int(numpy.sqrt(self.nplots)+0.9)
615 615 nrow = int(self.nplots*1./ncol + 0.9)
616 616
617 617 return nrow, ncol
618 618
619 619 def setup(self, id, nplots, wintitle, showprofile=False, show=True):
620 620
621 621 self.__showprofile = showprofile
622 622 self.nplots = nplots
623 623
624 624 ncolspan = 1
625 625 colspan = 1
626 626
627 627 self.createFigure(id = id,
628 628 wintitle = wintitle,
629 629 widthplot = self.WIDTH, #+ self.WIDTHPROF,
630 630 heightplot = self.HEIGHT,# + self.HEIGHTPROF,
631 631 show=show)
632 632
633 633 nrow, ncol = 1,1
634 634 counter = 0
635 635 x = 0
636 636 y = 0
637 637 self.addAxes(1, 1, 0, 0, 1, 1, True)
638 638
639 639 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False,
640 640 tmin=0, tmax=24, timerange=None,
641 641 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
642 642 server=None, folder=None, username=None, password=None,
643 643 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
644 644
645 645 """
646 646
647 647 Input:
648 648 dataOut :
649 649 id :
650 650 wintitle :
651 651 channelList :
652 652 showProfile :
653 653 xmin : None,
654 654 xmax : None,
655 655 ymin : None,
656 656 ymax : None,
657 657 zmin : None,
658 658 zmax : None
659 659 """
660 660
661 661 arrayParameters = dataOut.data_param
662 662 error = arrayParameters[:,-1]
663 663 indValid = numpy.where(error == 0)[0]
664 664 finalMeteor = arrayParameters[indValid,:]
665 665 finalAzimuth = finalMeteor[:,3]
666 666 finalZenith = finalMeteor[:,4]
667 667
668 668 x = finalAzimuth*numpy.pi/180
669 669 y = finalZenith
670 670 x1 = [dataOut.ltctime, dataOut.ltctime]
671 671
672 672 #thisDatetime = dataOut.datatime
673 673 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
674 674 title = wintitle + " Parameters"
675 675 xlabel = "Zonal Zenith Angle (deg) "
676 676 ylabel = "Meridional Zenith Angle (deg)"
677 677 update_figfile = False
678 678
679 679 if not self.isConfig:
680 680
681 681 nplots = 1
682 682
683 683 self.setup(id=id,
684 684 nplots=nplots,
685 685 wintitle=wintitle,
686 686 showprofile=showprofile,
687 687 show=show)
688 688
689 689 if self.xmin is None and self.xmax is None:
690 690 self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange)
691 691
692 692 if timerange != None:
693 693 self.timerange = timerange
694 694 else:
695 695 self.timerange = self.xmax - self.xmin
696 696
697 697 self.FTP_WEI = ftp_wei
698 698 self.EXP_CODE = exp_code
699 699 self.SUB_EXP_CODE = sub_exp_code
700 700 self.PLOT_POS = plot_pos
701 701 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
702 702 self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
703 703 self.isConfig = True
704 704 update_figfile = True
705 705
706 706 self.setWinTitle(title)
707 707
708 708 i = 0
709 709 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
710 710
711 711 axes = self.axesList[i*self.__nsubplots]
712 712 nevents = axes.x_buffer.shape[0] + x.shape[0]
713 713 title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents)
714 714 axes.polar(x, y,
715 715 title=title, xlabel=xlabel, ylabel=ylabel,
716 716 ticksize=9, cblabel='')
717 717
718 718 self.draw()
719 719
720 720 self.save(figpath=figpath,
721 721 figfile=figfile,
722 722 save=save,
723 723 ftp=ftp,
724 724 wr_period=wr_period,
725 725 thisDatetime=thisDatetime,
726 726 update_figfile=update_figfile)
727 727
728 728 if dataOut.ltctime >= self.xmax:
729 729 self.isConfigmagwr = wr_period
730 730 self.isConfig = False
731 731 update_figfile = True
732 732 axes.__firsttime = True
733 733 self.xmin += self.timerange
734 734 self.xmax += self.timerange
735 735
736 736
737 737
738
738 @MPDecorator
739 739 class WindProfilerPlot_(Figure):
740 740
741 741 __isConfig = None
742 742 __nsubplots = None
743 743
744 744 WIDTHPROF = None
745 745 HEIGHTPROF = None
746 746 PREFIX = 'wind'
747 747
748 def __init__(self, **kwargs):
749 Figure.__init__(self, **kwargs)
748 def __init__(self):
749 Figure.__init__(self)
750 750 self.timerange = None
751 751 self.isConfig = False
752 752 self.__nsubplots = 1
753 753
754 754 self.WIDTH = 800
755 755 self.HEIGHT = 300
756 756 self.WIDTHPROF = 120
757 757 self.HEIGHTPROF = 0
758 758 self.counter_imagwr = 0
759 759
760 760 self.PLOT_CODE = WIND_CODE
761 761
762 762 self.FTP_WEI = None
763 763 self.EXP_CODE = None
764 764 self.SUB_EXP_CODE = None
765 765 self.PLOT_POS = None
766 766 self.tmin = None
767 767 self.tmax = None
768 768
769 769 self.xmin = None
770 770 self.xmax = None
771 771
772 772 self.figfile = None
773 773
774 774 def getSubplots(self):
775 775
776 776 ncol = 1
777 777 nrow = self.nplots
778 778
779 779 return nrow, ncol
780 780
781 781 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
782 782
783 783 self.__showprofile = showprofile
784 784 self.nplots = nplots
785 785
786 786 ncolspan = 1
787 787 colspan = 1
788 788
789 789 self.createFigure(id = id,
790 790 wintitle = wintitle,
791 791 widthplot = self.WIDTH + self.WIDTHPROF,
792 792 heightplot = self.HEIGHT + self.HEIGHTPROF,
793 793 show=show)
794 794
795 795 nrow, ncol = self.getSubplots()
796 796
797 797 counter = 0
798 798 for y in range(nrow):
799 799 if counter >= self.nplots:
800 800 break
801 801
802 802 self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1)
803 803 counter += 1
804 804
805 805 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False',
806 806 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
807 807 zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None,
808 808 timerange=None, SNRthresh = None,
809 809 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
810 810 server=None, folder=None, username=None, password=None,
811 811 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
812 812 """
813 813
814 814 Input:
815 815 dataOut :
816 816 id :
817 817 wintitle :
818 818 channelList :
819 819 showProfile :
820 820 xmin : None,
821 821 xmax : None,
822 822 ymin : None,
823 823 ymax : None,
824 824 zmin : None,
825 825 zmax : None
826 826 """
827 827
828 if dataOut.flagNoData:
829 return dataOut
830
828 831 # if timerange is not None:
829 832 # self.timerange = timerange
830 833 #
831 834 # tmin = None
832 835 # tmax = None
833 836
834 837 x = dataOut.getTimeRange1(dataOut.paramInterval)
835 838 y = dataOut.heightList
836 839 z = dataOut.data_output.copy()
837 840 nplots = z.shape[0] #Number of wind dimensions estimated
838 841 nplotsw = nplots
839 842
840 843
841 844 #If there is a SNR function defined
842 845 if dataOut.data_SNR is not None:
843 846 nplots += 1
844 847 SNR = dataOut.data_SNR[0]
845 848 SNRavg = SNR#numpy.average(SNR, axis=0)
846 849
847 850 SNRdB = 10*numpy.log10(SNR)
848 851 SNRavgdB = 10*numpy.log10(SNRavg)
849 852
850 853 if SNRthresh == None:
851 854 SNRthresh = -5.0
852 855 ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0]
853 856
854 857 for i in range(nplotsw):
855 858 z[i,ind] = numpy.nan
856 859
857 860 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
858 861 #thisDatetime = datetime.datetime.now()
859 862 title = wintitle + "Wind"
860 863 xlabel = ""
861 864 ylabel = "Height (km)"
862 865 update_figfile = False
863 866
864 867 if not self.isConfig:
865 868
866 869 self.setup(id=id,
867 870 nplots=nplots,
868 871 wintitle=wintitle,
869 872 showprofile=showprofile,
870 873 show=show)
871 874
872 875 if timerange is not None:
873 876 self.timerange = timerange
874 877
875 878 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
876 879
877 880 if ymin == None: ymin = numpy.nanmin(y)
878 881 if ymax == None: ymax = numpy.nanmax(y)
879 882
880 883 if zmax == None: zmax = numpy.nanmax(abs(z[list(range(2)),:]))
881 884 #if numpy.isnan(zmax): zmax = 50
882 885 if zmin == None: zmin = -zmax
883 886
884 887 if nplotsw == 3:
885 888 if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:]))
886 889 if zmin_ver == None: zmin_ver = -zmax_ver
887 890
888 891 if dataOut.data_SNR is not None:
889 892 if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB)
890 893 if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB)
891 894
892 895
893 896 self.FTP_WEI = ftp_wei
894 897 self.EXP_CODE = exp_code
895 898 self.SUB_EXP_CODE = sub_exp_code
896 899 self.PLOT_POS = plot_pos
897 900
898 901 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
899 902 self.isConfig = True
900 903 self.figfile = figfile
901 904 update_figfile = True
902 905
903 906 self.setWinTitle(title)
904 907
905 908 if ((self.xmax - x[1]) < (x[1]-x[0])):
906 909 x[1] = self.xmax
907 910
908 911 strWind = ['Zonal', 'Meridional', 'Vertical']
909 912 strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
910 913 zmaxVector = [zmax, zmax, zmax_ver]
911 914 zminVector = [zmin, zmin, zmin_ver]
912 915 windFactor = [1,1,100]
913 916
914 917 for i in range(nplotsw):
915 918
916 919 title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
917 920 axes = self.axesList[i*self.__nsubplots]
918 921
919 922 z1 = z[i,:].reshape((1,-1))*windFactor[i]
920 923
921 924 axes.pcolorbuffer(x, y, z1,
922 925 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i],
923 926 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
924 927 ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" )
925 928
926 929 if dataOut.data_SNR is not None:
927 930 i += 1
928 931 title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
929 932 axes = self.axesList[i*self.__nsubplots]
930 933 SNRavgdB = SNRavgdB.reshape((1,-1))
931 934 axes.pcolorbuffer(x, y, SNRavgdB,
932 935 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
933 936 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
934 937 ticksize=9, cblabel='', cbsize="1%", colormap="jet")
935 938
936 939 self.draw()
937 940
938 941 self.save(figpath=figpath,
939 942 figfile=figfile,
940 943 save=save,
941 944 ftp=ftp,
942 945 wr_period=wr_period,
943 946 thisDatetime=thisDatetime,
944 947 update_figfile=update_figfile)
945 948
946 949 if dataOut.ltctime + dataOut.paramInterval >= self.xmax:
947 950 self.counter_imagwr = wr_period
948 951 self.isConfig = False
949 952 update_figfile = True
950 953
954 return dataOut
955
951 956 @MPDecorator
952 957 class ParametersPlot_(Figure):
953 958
954 959 __isConfig = None
955 960 __nsubplots = None
956 961
957 962 WIDTHPROF = None
958 963 HEIGHTPROF = None
959 964 PREFIX = 'param'
960 965
961 966 nplots = None
962 967 nchan = None
963 968
964 969 def __init__(self):#, **kwargs):
965 970 Figure.__init__(self)#, **kwargs)
966 971 self.timerange = None
967 972 self.isConfig = False
968 973 self.__nsubplots = 1
969 974
970 975 self.WIDTH = 300
971 976 self.HEIGHT = 550
972 977 self.WIDTHPROF = 120
973 978 self.HEIGHTPROF = 0
974 979 self.counter_imagwr = 0
975 980
976 981 self.PLOT_CODE = RTI_CODE
977 982
978 983 self.FTP_WEI = None
979 984 self.EXP_CODE = None
980 985 self.SUB_EXP_CODE = None
981 986 self.PLOT_POS = None
982 987 self.tmin = None
983 988 self.tmax = None
984 989
985 990 self.xmin = None
986 991 self.xmax = None
987 992
988 993 self.figfile = None
989 994
990 995 def getSubplots(self):
991 996
992 997 ncol = 1
993 998 nrow = self.nplots
994 999
995 1000 return nrow, ncol
996 1001
997 1002 def setup(self, id, nplots, wintitle, show=True):
998 1003
999 1004 self.nplots = nplots
1000 1005
1001 1006 ncolspan = 1
1002 1007 colspan = 1
1003 1008
1004 1009 self.createFigure(id = id,
1005 1010 wintitle = wintitle,
1006 1011 widthplot = self.WIDTH + self.WIDTHPROF,
1007 1012 heightplot = self.HEIGHT + self.HEIGHTPROF,
1008 1013 show=show)
1009 1014
1010 1015 nrow, ncol = self.getSubplots()
1011 1016
1012 1017 counter = 0
1013 1018 for y in range(nrow):
1014 1019 for x in range(ncol):
1015 1020
1016 1021 if counter >= self.nplots:
1017 1022 break
1018 1023
1019 1024 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1020 1025
1021 1026 counter += 1
1022 1027
1023 1028 def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet",
1024 1029 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None,
1025 1030 showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None,
1026 1031 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1027 1032 server=None, folder=None, username=None, password=None,
1028 1033 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None):
1029 1034 """
1030 1035
1031 1036 Input:
1032 1037 dataOut :
1033 1038 id :
1034 1039 wintitle :
1035 1040 channelList :
1036 1041 showProfile :
1037 1042 xmin : None,
1038 1043 xmax : None,
1039 1044 ymin : None,
1040 1045 ymax : None,
1041 1046 zmin : None,
1042 1047 zmax : None
1043 1048 """
1044 1049 if dataOut.flagNoData:
1045 1050 return dataOut
1046 1051
1047 1052
1048 1053 if HEIGHT is not None:
1049 1054 self.HEIGHT = HEIGHT
1050 1055
1051 1056
1052 1057 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
1053 1058 return
1054 1059
1055 1060 if channelList == None:
1056 1061 channelIndexList = list(range(dataOut.data_param.shape[0]))
1057 1062 else:
1058 1063 channelIndexList = []
1059 1064 for channel in channelList:
1060 1065 if channel not in dataOut.channelList:
1061 1066 raise ValueError("Channel %d is not in dataOut.channelList")
1062 1067 channelIndexList.append(dataOut.channelList.index(channel))
1063 1068
1064 1069 x = dataOut.getTimeRange1(dataOut.paramInterval)
1065 1070 y = dataOut.getHeiRange()
1066 1071
1067 1072 if dataOut.data_param.ndim == 3:
1068 1073 z = dataOut.data_param[channelIndexList,paramIndex,:]
1069 1074 else:
1070 1075 z = dataOut.data_param[channelIndexList,:]
1071 1076
1072 1077 if showSNR:
1073 1078 #SNR data
1074 1079 SNRarray = dataOut.data_SNR[channelIndexList,:]
1075 1080 SNRdB = 10*numpy.log10(SNRarray)
1076 1081 ind = numpy.where(SNRdB < SNRthresh)
1077 1082 z[ind] = numpy.nan
1078 1083
1079 1084 thisDatetime = dataOut.datatime
1080 1085 # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1081 1086 title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1082 1087 xlabel = ""
1083 1088 ylabel = "Range (km)"
1084 1089
1085 1090 update_figfile = False
1086 1091
1087 1092 if not self.isConfig:
1088 1093
1089 1094 nchan = len(channelIndexList)
1090 1095 self.nchan = nchan
1091 1096 self.plotFact = 1
1092 1097 nplots = nchan
1093 1098
1094 1099 if showSNR:
1095 1100 nplots = nchan*2
1096 1101 self.plotFact = 2
1097 1102 if SNRmin == None: SNRmin = numpy.nanmin(SNRdB)
1098 1103 if SNRmax == None: SNRmax = numpy.nanmax(SNRdB)
1099 1104
1100 1105 self.setup(id=id,
1101 1106 nplots=nplots,
1102 1107 wintitle=wintitle,
1103 1108 show=show)
1104 1109
1105 1110 if timerange != None:
1106 1111 self.timerange = timerange
1107 1112
1108 1113 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1109 1114
1110 1115 if ymin == None: ymin = numpy.nanmin(y)
1111 1116 if ymax == None: ymax = numpy.nanmax(y)
1112 1117 if zmin == None: zmin = numpy.nanmin(z)
1113 1118 if zmax == None: zmax = numpy.nanmax(z)
1114 1119
1115 1120 self.FTP_WEI = ftp_wei
1116 1121 self.EXP_CODE = exp_code
1117 1122 self.SUB_EXP_CODE = sub_exp_code
1118 1123 self.PLOT_POS = plot_pos
1119 1124
1120 1125 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1121 1126 self.isConfig = True
1122 1127 self.figfile = figfile
1123 1128 update_figfile = True
1124 1129
1125 1130 self.setWinTitle(title)
1126 1131
1127 1132 # for i in range(self.nchan):
1128 1133 # index = channelIndexList[i]
1129 1134 # title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1130 1135 # axes = self.axesList[i*self.plotFact]
1131 1136 # z1 = z[i,:].reshape((1,-1))
1132 1137 # axes.pcolorbuffer(x, y, z1,
1133 1138 # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1134 1139 # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1135 1140 # ticksize=9, cblabel='', cbsize="1%",colormap=colormap)
1136 1141 #
1137 1142 # if showSNR:
1138 1143 # title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1139 1144 # axes = self.axesList[i*self.plotFact + 1]
1140 1145 # SNRdB1 = SNRdB[i,:].reshape((1,-1))
1141 1146 # axes.pcolorbuffer(x, y, SNRdB1,
1142 1147 # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1143 1148 # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1144 1149 # ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1145 1150
1146 1151 i=0
1147 1152 index = channelIndexList[i]
1148 1153 title = "Factor de reflectividad Z [dBZ]"
1149 1154 axes = self.axesList[i*self.plotFact]
1150 1155 z1 = z[i,:].reshape((1,-1))
1151 1156 axes.pcolorbuffer(x, y, z1,
1152 1157 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1153 1158 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1154 1159 ticksize=9, cblabel='', cbsize="1%",colormap=colormap)
1155 1160
1156 1161 if showSNR:
1157 1162 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1158 1163 axes = self.axesList[i*self.plotFact + 1]
1159 1164 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1160 1165 axes.pcolorbuffer(x, y, SNRdB1,
1161 1166 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1162 1167 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1163 1168 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1164 1169
1165 1170 i=1
1166 1171 index = channelIndexList[i]
1167 1172 title = "Velocidad vertical Doppler [m/s]"
1168 1173 axes = self.axesList[i*self.plotFact]
1169 1174 z1 = z[i,:].reshape((1,-1))
1170 1175 axes.pcolorbuffer(x, y, z1,
1171 1176 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=-10, zmax=10,
1172 1177 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1173 1178 ticksize=9, cblabel='', cbsize="1%",colormap='seismic_r')
1174 1179
1175 1180 if showSNR:
1176 1181 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1177 1182 axes = self.axesList[i*self.plotFact + 1]
1178 1183 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1179 1184 axes.pcolorbuffer(x, y, SNRdB1,
1180 1185 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1181 1186 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1182 1187 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1183 1188
1184 1189 i=2
1185 1190 index = channelIndexList[i]
1186 1191 title = "Intensidad de lluvia [mm/h]"
1187 1192 axes = self.axesList[i*self.plotFact]
1188 1193 z1 = z[i,:].reshape((1,-1))
1189 1194 axes.pcolorbuffer(x, y, z1,
1190 1195 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=40,
1191 1196 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1192 1197 ticksize=9, cblabel='', cbsize="1%",colormap='ocean_r')
1193 1198
1194 1199 if showSNR:
1195 1200 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1196 1201 axes = self.axesList[i*self.plotFact + 1]
1197 1202 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1198 1203 axes.pcolorbuffer(x, y, SNRdB1,
1199 1204 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1200 1205 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1201 1206 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1202 1207
1203 1208
1204 1209 self.draw()
1205 1210
1206 1211 if dataOut.ltctime >= self.xmax:
1207 1212 self.counter_imagwr = wr_period
1208 1213 self.isConfig = False
1209 1214 update_figfile = True
1210 1215
1211 1216 self.save(figpath=figpath,
1212 1217 figfile=figfile,
1213 1218 save=save,
1214 1219 ftp=ftp,
1215 1220 wr_period=wr_period,
1216 1221 thisDatetime=thisDatetime,
1217 1222 update_figfile=update_figfile)
1218 1223
1219 1224 return dataOut
1220 1225 @MPDecorator
1221 1226 class Parameters1Plot_(Figure):
1222 1227
1223 1228 __isConfig = None
1224 1229 __nsubplots = None
1225 1230
1226 1231 WIDTHPROF = None
1227 1232 HEIGHTPROF = None
1228 1233 PREFIX = 'prm'
1229 1234
1230 1235 def __init__(self):
1231 1236 Figure.__init__(self)
1232 1237 self.timerange = 2*60*60
1233 1238 self.isConfig = False
1234 1239 self.__nsubplots = 1
1235 1240
1236 1241 self.WIDTH = 800
1237 1242 self.HEIGHT = 180
1238 1243 self.WIDTHPROF = 120
1239 1244 self.HEIGHTPROF = 0
1240 1245 self.counter_imagwr = 0
1241 1246
1242 1247 self.PLOT_CODE = PARMS_CODE
1243 1248
1244 1249 self.FTP_WEI = None
1245 1250 self.EXP_CODE = None
1246 1251 self.SUB_EXP_CODE = None
1247 1252 self.PLOT_POS = None
1248 1253 self.tmin = None
1249 1254 self.tmax = None
1250 1255
1251 1256 self.xmin = None
1252 1257 self.xmax = None
1253 1258
1254 1259 self.figfile = None
1255 1260
1256 1261 def getSubplots(self):
1257 1262
1258 1263 ncol = 1
1259 1264 nrow = self.nplots
1260 1265
1261 1266 return nrow, ncol
1262 1267
1263 1268 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1264 1269
1265 1270 self.__showprofile = showprofile
1266 1271 self.nplots = nplots
1267 1272
1268 1273 ncolspan = 1
1269 1274 colspan = 1
1270 1275
1271 1276 self.createFigure(id = id,
1272 1277 wintitle = wintitle,
1273 1278 widthplot = self.WIDTH + self.WIDTHPROF,
1274 1279 heightplot = self.HEIGHT + self.HEIGHTPROF,
1275 1280 show=show)
1276 1281
1277 1282 nrow, ncol = self.getSubplots()
1278 1283
1279 1284 counter = 0
1280 1285 for y in range(nrow):
1281 1286 for x in range(ncol):
1282 1287
1283 1288 if counter >= self.nplots:
1284 1289 break
1285 1290
1286 1291 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1287 1292
1288 1293 if showprofile:
1289 1294 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1290 1295
1291 1296 counter += 1
1292 1297
1293 1298 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False,
1294 1299 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None,
1295 1300 parameterIndex = None, onlyPositive = False,
1296 1301 SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False,
1297 1302 DOP = True,
1298 1303 zlabel = "", parameterName = "", parameterObject = "data_param",
1299 1304 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1300 1305 server=None, folder=None, username=None, password=None,
1301 1306 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1302 1307
1303 1308 """
1304 1309 Input:
1305 1310 dataOut :
1306 1311 id :
1307 1312 wintitle :
1308 1313 channelList :
1309 1314 showProfile :
1310 1315 xmin : None,
1311 1316 xmax : None,
1312 1317 ymin : None,
1313 1318 ymax : None,
1314 1319 zmin : None,
1315 1320 zmax : None
1316 1321 """
1317 1322 if dataOut.flagNoData:
1318 1323 return dataOut
1319 1324
1320 1325 data_param = getattr(dataOut, parameterObject)
1321 1326
1322 1327 if channelList == None:
1323 1328 channelIndexList = numpy.arange(data_param.shape[0])
1324 1329 else:
1325 1330 channelIndexList = numpy.array(channelList)
1326 1331
1327 1332 nchan = len(channelIndexList) #Number of channels being plotted
1328 1333
1329 1334 if nchan < 1:
1330 1335 return
1331 1336
1332 1337 nGraphsByChannel = 0
1333 1338
1334 1339 if SNR:
1335 1340 nGraphsByChannel += 1
1336 1341 if DOP:
1337 1342 nGraphsByChannel += 1
1338 1343
1339 1344 if nGraphsByChannel < 1:
1340 1345 return
1341 1346
1342 1347 nplots = nGraphsByChannel*nchan
1343 1348
1344 1349 if timerange is not None:
1345 1350 self.timerange = timerange
1346 1351
1347 1352 #tmin = None
1348 1353 #tmax = None
1349 1354 if parameterIndex == None:
1350 1355 parameterIndex = 1
1351 1356
1352 1357 x = dataOut.getTimeRange1(dataOut.paramInterval)
1353 1358 y = dataOut.heightList
1354 1359
1355 1360 if dataOut.data_param.ndim == 3:
1356 1361 z = dataOut.data_param[channelIndexList,parameterIndex,:]
1357 1362 else:
1358 1363 z = dataOut.data_param[channelIndexList,:]
1359 1364
1360 1365 if dataOut.data_SNR is not None:
1361 1366 if dataOut.data_SNR.ndim == 2:
1362 1367 SNRavg = numpy.average(dataOut.data_SNR, axis=0)
1363 1368 else:
1364 1369 SNRavg = dataOut.data_SNR
1365 1370 SNRdB = 10*numpy.log10(SNRavg)
1366 1371
1367 1372 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1368 1373 title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1369 1374 xlabel = ""
1370 1375 ylabel = "Range (Km)"
1371 1376
1372 1377 if onlyPositive:
1373 1378 colormap = "jet"
1374 1379 zmin = 0
1375 1380 else: colormap = "RdBu_r"
1376 1381
1377 1382 if not self.isConfig:
1378 1383
1379 1384 self.setup(id=id,
1380 1385 nplots=nplots,
1381 1386 wintitle=wintitle,
1382 1387 showprofile=showprofile,
1383 1388 show=show)
1384 1389
1385 1390 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1386 1391
1387 1392 if ymin == None: ymin = numpy.nanmin(y)
1388 1393 if ymax == None: ymax = numpy.nanmax(y)
1389 1394 if zmin == None: zmin = numpy.nanmin(z)
1390 1395 if zmax == None: zmax = numpy.nanmax(z)
1391 1396
1392 1397 if SNR:
1393 1398 if SNRmin == None: SNRmin = numpy.nanmin(SNRdB)
1394 1399 if SNRmax == None: SNRmax = numpy.nanmax(SNRdB)
1395 1400
1396 1401 self.FTP_WEI = ftp_wei
1397 1402 self.EXP_CODE = exp_code
1398 1403 self.SUB_EXP_CODE = sub_exp_code
1399 1404 self.PLOT_POS = plot_pos
1400 1405
1401 1406 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1402 1407 self.isConfig = True
1403 1408 self.figfile = figfile
1404 1409
1405 1410 self.setWinTitle(title)
1406 1411
1407 1412 if ((self.xmax - x[1]) < (x[1]-x[0])):
1408 1413 x[1] = self.xmax
1409 1414
1410 1415 for i in range(nchan):
1411 1416
1412 1417 if (SNR and not onlySNR): j = 2*i
1413 1418 else: j = i
1414 1419
1415 1420 j = nGraphsByChannel*i
1416 1421
1417 1422 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
1418 1423 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
1419 1424
1420 1425 if not onlySNR:
1421 1426 axes = self.axesList[j*self.__nsubplots]
1422 1427 z1 = z[i,:].reshape((1,-1))
1423 1428 axes.pcolorbuffer(x, y, z1,
1424 1429 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1425 1430 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap,
1426 1431 ticksize=9, cblabel=zlabel, cbsize="1%")
1427 1432
1428 1433 if DOP:
1429 1434 title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1430 1435
1431 1436 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
1432 1437 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
1433 1438 axes = self.axesList[j]
1434 1439 z1 = z[i,:].reshape((1,-1))
1435 1440 axes.pcolorbuffer(x, y, z1,
1436 1441 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1437 1442 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap,
1438 1443 ticksize=9, cblabel=zlabel, cbsize="1%")
1439 1444
1440 1445 if SNR:
1441 1446 title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1442 1447 axes = self.axesList[(j)*self.__nsubplots]
1443 1448 if not onlySNR:
1444 1449 axes = self.axesList[(j + 1)*self.__nsubplots]
1445 1450
1446 1451 axes = self.axesList[(j + nGraphsByChannel-1)]
1447 1452 z1 = SNRdB.reshape((1,-1))
1448 1453 axes.pcolorbuffer(x, y, z1,
1449 1454 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1450 1455 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet",
1451 1456 ticksize=9, cblabel=zlabel, cbsize="1%")
1452 1457
1453 1458
1454 1459
1455 1460 self.draw()
1456 1461
1457 1462 if x[1] >= self.axesList[0].xmax:
1458 1463 self.counter_imagwr = wr_period
1459 1464 self.isConfig = False
1460 1465 self.figfile = None
1461 1466
1462 1467 self.save(figpath=figpath,
1463 1468 figfile=figfile,
1464 1469 save=save,
1465 1470 ftp=ftp,
1466 1471 wr_period=wr_period,
1467 1472 thisDatetime=thisDatetime,
1468 1473 update_figfile=False)
1469 1474 return dataOut
1470 1475
1471 1476 class SpectralFittingPlot_(Figure):
1472 1477
1473 1478 __isConfig = None
1474 1479 __nsubplots = None
1475 1480
1476 1481 WIDTHPROF = None
1477 1482 HEIGHTPROF = None
1478 1483 PREFIX = 'prm'
1479 1484
1480 1485
1481 1486 N = None
1482 1487 ippSeconds = None
1483 1488
1484 1489 def __init__(self, **kwargs):
1485 1490 Figure.__init__(self, **kwargs)
1486 1491 self.isConfig = False
1487 1492 self.__nsubplots = 1
1488 1493
1489 1494 self.PLOT_CODE = SPECFIT_CODE
1490 1495
1491 1496 self.WIDTH = 450
1492 1497 self.HEIGHT = 250
1493 1498 self.WIDTHPROF = 0
1494 1499 self.HEIGHTPROF = 0
1495 1500
1496 1501 def getSubplots(self):
1497 1502
1498 1503 ncol = int(numpy.sqrt(self.nplots)+0.9)
1499 1504 nrow = int(self.nplots*1./ncol + 0.9)
1500 1505
1501 1506 return nrow, ncol
1502 1507
1503 1508 def setup(self, id, nplots, wintitle, showprofile=False, show=True):
1504 1509
1505 1510 showprofile = False
1506 1511 self.__showprofile = showprofile
1507 1512 self.nplots = nplots
1508 1513
1509 1514 ncolspan = 5
1510 1515 colspan = 4
1511 1516 if showprofile:
1512 1517 ncolspan = 5
1513 1518 colspan = 4
1514 1519 self.__nsubplots = 2
1515 1520
1516 1521 self.createFigure(id = id,
1517 1522 wintitle = wintitle,
1518 1523 widthplot = self.WIDTH + self.WIDTHPROF,
1519 1524 heightplot = self.HEIGHT + self.HEIGHTPROF,
1520 1525 show=show)
1521 1526
1522 1527 nrow, ncol = self.getSubplots()
1523 1528
1524 1529 counter = 0
1525 1530 for y in range(nrow):
1526 1531 for x in range(ncol):
1527 1532
1528 1533 if counter >= self.nplots:
1529 1534 break
1530 1535
1531 1536 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1532 1537
1533 1538 if showprofile:
1534 1539 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1535 1540
1536 1541 counter += 1
1537 1542
1538 1543 def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True,
1539 1544 xmin=None, xmax=None, ymin=None, ymax=None,
1540 1545 save=False, figpath='./', figfile=None, show=True):
1541 1546
1542 1547 """
1543 1548
1544 1549 Input:
1545 1550 dataOut :
1546 1551 id :
1547 1552 wintitle :
1548 1553 channelList :
1549 1554 showProfile :
1550 1555 xmin : None,
1551 1556 xmax : None,
1552 1557 zmin : None,
1553 1558 zmax : None
1554 1559 """
1555 1560
1556 1561 if cutHeight==None:
1557 1562 h=270
1558 1563 heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin()
1559 1564 cutHeight = dataOut.heightList[heightindex]
1560 1565
1561 1566 factor = dataOut.normFactor
1562 1567 x = dataOut.abscissaList[:-1]
1563 1568 #y = dataOut.getHeiRange()
1564 1569
1565 1570 z = dataOut.data_pre[:,:,heightindex]/factor
1566 1571 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
1567 1572 avg = numpy.average(z, axis=1)
1568 1573 listChannels = z.shape[0]
1569 1574
1570 1575 #Reconstruct Function
1571 1576 if fit==True:
1572 1577 groupArray = dataOut.groupList
1573 1578 listChannels = groupArray.reshape((groupArray.size))
1574 1579 listChannels.sort()
1575 1580 spcFitLine = numpy.zeros(z.shape)
1576 1581 constants = dataOut.constants
1577 1582
1578 1583 nGroups = groupArray.shape[0]
1579 1584 nChannels = groupArray.shape[1]
1580 1585 nProfiles = z.shape[1]
1581 1586
1582 1587 for f in range(nGroups):
1583 1588 groupChann = groupArray[f,:]
1584 1589 p = dataOut.data_param[f,:,heightindex]
1585 1590 # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167])
1586 1591 fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles
1587 1592 fitLineAux = fitLineAux.reshape((nChannels,nProfiles))
1588 1593 spcFitLine[groupChann,:] = fitLineAux
1589 1594 # spcFitLine = spcFitLine/factor
1590 1595
1591 1596 z = z[listChannels,:]
1592 1597 spcFitLine = spcFitLine[listChannels,:]
1593 1598 spcFitLinedB = 10*numpy.log10(spcFitLine)
1594 1599
1595 1600 zdB = 10*numpy.log10(z)
1596 1601 #thisDatetime = dataOut.datatime
1597 1602 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1598 1603 title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1599 1604 xlabel = "Velocity (m/s)"
1600 1605 ylabel = "Spectrum"
1601 1606
1602 1607 if not self.isConfig:
1603 1608
1604 1609 nplots = listChannels.size
1605 1610
1606 1611 self.setup(id=id,
1607 1612 nplots=nplots,
1608 1613 wintitle=wintitle,
1609 1614 showprofile=showprofile,
1610 1615 show=show)
1611 1616
1612 1617 if xmin == None: xmin = numpy.nanmin(x)
1613 1618 if xmax == None: xmax = numpy.nanmax(x)
1614 1619 if ymin == None: ymin = numpy.nanmin(zdB)
1615 1620 if ymax == None: ymax = numpy.nanmax(zdB)+2
1616 1621
1617 1622 self.isConfig = True
1618 1623
1619 1624 self.setWinTitle(title)
1620 1625 for i in range(self.nplots):
1621 1626 # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i])
1622 1627 title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i])
1623 1628 axes = self.axesList[i*self.__nsubplots]
1624 1629 if fit == False:
1625 1630 axes.pline(x, zdB[i,:],
1626 1631 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1627 1632 xlabel=xlabel, ylabel=ylabel, title=title
1628 1633 )
1629 1634 if fit == True:
1630 1635 fitline=spcFitLinedB[i,:]
1631 1636 y=numpy.vstack([zdB[i,:],fitline] )
1632 1637 legendlabels=['Data','Fitting']
1633 1638 axes.pmultilineyaxis(x, y,
1634 1639 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1635 1640 xlabel=xlabel, ylabel=ylabel, title=title,
1636 1641 legendlabels=legendlabels, marker=None,
1637 1642 linestyle='solid', grid='both')
1638 1643
1639 1644 self.draw()
1640 1645
1641 1646 self.save(figpath=figpath,
1642 1647 figfile=figfile,
1643 1648 save=save,
1644 1649 ftp=ftp,
1645 1650 wr_period=wr_period,
1646 1651 thisDatetime=thisDatetime)
1647 1652
1648 1653
1649 1654 class EWDriftsPlot_(Figure):
1650 1655
1651 1656 __isConfig = None
1652 1657 __nsubplots = None
1653 1658
1654 1659 WIDTHPROF = None
1655 1660 HEIGHTPROF = None
1656 1661 PREFIX = 'drift'
1657 1662
1658 1663 def __init__(self, **kwargs):
1659 1664 Figure.__init__(self, **kwargs)
1660 1665 self.timerange = 2*60*60
1661 1666 self.isConfig = False
1662 1667 self.__nsubplots = 1
1663 1668
1664 1669 self.WIDTH = 800
1665 1670 self.HEIGHT = 150
1666 1671 self.WIDTHPROF = 120
1667 1672 self.HEIGHTPROF = 0
1668 1673 self.counter_imagwr = 0
1669 1674
1670 1675 self.PLOT_CODE = EWDRIFT_CODE
1671 1676
1672 1677 self.FTP_WEI = None
1673 1678 self.EXP_CODE = None
1674 1679 self.SUB_EXP_CODE = None
1675 1680 self.PLOT_POS = None
1676 1681 self.tmin = None
1677 1682 self.tmax = None
1678 1683
1679 1684 self.xmin = None
1680 1685 self.xmax = None
1681 1686
1682 1687 self.figfile = None
1683 1688
1684 1689 def getSubplots(self):
1685 1690
1686 1691 ncol = 1
1687 1692 nrow = self.nplots
1688 1693
1689 1694 return nrow, ncol
1690 1695
1691 1696 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1692 1697
1693 1698 self.__showprofile = showprofile
1694 1699 self.nplots = nplots
1695 1700
1696 1701 ncolspan = 1
1697 1702 colspan = 1
1698 1703
1699 1704 self.createFigure(id = id,
1700 1705 wintitle = wintitle,
1701 1706 widthplot = self.WIDTH + self.WIDTHPROF,
1702 1707 heightplot = self.HEIGHT + self.HEIGHTPROF,
1703 1708 show=show)
1704 1709
1705 1710 nrow, ncol = self.getSubplots()
1706 1711
1707 1712 counter = 0
1708 1713 for y in range(nrow):
1709 1714 if counter >= self.nplots:
1710 1715 break
1711 1716
1712 1717 self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1)
1713 1718 counter += 1
1714 1719
1715 1720 def run(self, dataOut, id, wintitle="", channelList=None,
1716 1721 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
1717 1722 zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None,
1718 1723 timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False,
1719 1724 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1720 1725 server=None, folder=None, username=None, password=None,
1721 1726 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1722 1727 """
1723 1728
1724 1729 Input:
1725 1730 dataOut :
1726 1731 id :
1727 1732 wintitle :
1728 1733 channelList :
1729 1734 showProfile :
1730 1735 xmin : None,
1731 1736 xmax : None,
1732 1737 ymin : None,
1733 1738 ymax : None,
1734 1739 zmin : None,
1735 1740 zmax : None
1736 1741 """
1737 1742
1738 1743 if timerange is not None:
1739 1744 self.timerange = timerange
1740 1745
1741 1746 tmin = None
1742 1747 tmax = None
1743 1748
1744 1749 x = dataOut.getTimeRange1(dataOut.outputInterval)
1745 1750 # y = dataOut.heightList
1746 1751 y = dataOut.heightList
1747 1752
1748 1753 z = dataOut.data_output
1749 1754 nplots = z.shape[0] #Number of wind dimensions estimated
1750 1755 nplotsw = nplots
1751 1756
1752 1757 #If there is a SNR function defined
1753 1758 if dataOut.data_SNR is not None:
1754 1759 nplots += 1
1755 1760 SNR = dataOut.data_SNR
1756 1761
1757 1762 if SNR_1:
1758 1763 SNR += 1
1759 1764
1760 1765 SNRavg = numpy.average(SNR, axis=0)
1761 1766
1762 1767 SNRdB = 10*numpy.log10(SNR)
1763 1768 SNRavgdB = 10*numpy.log10(SNRavg)
1764 1769
1765 1770 ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0]
1766 1771
1767 1772 for i in range(nplotsw):
1768 1773 z[i,ind] = numpy.nan
1769 1774
1770 1775
1771 1776 showprofile = False
1772 1777 # thisDatetime = dataOut.datatime
1773 1778 thisDatetime = datetime.datetime.utcfromtimestamp(x[1])
1774 1779 title = wintitle + " EW Drifts"
1775 1780 xlabel = ""
1776 1781 ylabel = "Height (Km)"
1777 1782
1778 1783 if not self.isConfig:
1779 1784
1780 1785 self.setup(id=id,
1781 1786 nplots=nplots,
1782 1787 wintitle=wintitle,
1783 1788 showprofile=showprofile,
1784 1789 show=show)
1785 1790
1786 1791 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1787 1792
1788 1793 if ymin == None: ymin = numpy.nanmin(y)
1789 1794 if ymax == None: ymax = numpy.nanmax(y)
1790 1795
1791 1796 if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:]))
1792 1797 if zminZonal == None: zminZonal = -zmaxZonal
1793 1798 if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:]))
1794 1799 if zminVertical == None: zminVertical = -zmaxVertical
1795 1800
1796 1801 if dataOut.data_SNR is not None:
1797 1802 if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB)
1798 1803 if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB)
1799 1804
1800 1805 self.FTP_WEI = ftp_wei
1801 1806 self.EXP_CODE = exp_code
1802 1807 self.SUB_EXP_CODE = sub_exp_code
1803 1808 self.PLOT_POS = plot_pos
1804 1809
1805 1810 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1806 1811 self.isConfig = True
1807 1812
1808 1813
1809 1814 self.setWinTitle(title)
1810 1815
1811 1816 if ((self.xmax - x[1]) < (x[1]-x[0])):
1812 1817 x[1] = self.xmax
1813 1818
1814 1819 strWind = ['Zonal','Vertical']
1815 1820 strCb = 'Velocity (m/s)'
1816 1821 zmaxVector = [zmaxZonal, zmaxVertical]
1817 1822 zminVector = [zminZonal, zminVertical]
1818 1823
1819 1824 for i in range(nplotsw):
1820 1825
1821 1826 title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1822 1827 axes = self.axesList[i*self.__nsubplots]
1823 1828
1824 1829 z1 = z[i,:].reshape((1,-1))
1825 1830
1826 1831 axes.pcolorbuffer(x, y, z1,
1827 1832 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i],
1828 1833 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1829 1834 ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r")
1830 1835
1831 1836 if dataOut.data_SNR is not None:
1832 1837 i += 1
1833 1838 if SNR_1:
1834 1839 title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1835 1840 else:
1836 1841 title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1837 1842 axes = self.axesList[i*self.__nsubplots]
1838 1843 SNRavgdB = SNRavgdB.reshape((1,-1))
1839 1844
1840 1845 axes.pcolorbuffer(x, y, SNRavgdB,
1841 1846 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1842 1847 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1843 1848 ticksize=9, cblabel='', cbsize="1%", colormap="jet")
1844 1849
1845 1850 self.draw()
1846 1851
1847 1852 if x[1] >= self.axesList[0].xmax:
1848 1853 self.counter_imagwr = wr_period
1849 1854 self.isConfig = False
1850 1855 self.figfile = None
1851 1856
1852 1857
1853 1858
1854 1859
1855 1860 class PhasePlot_(Figure):
1856 1861
1857 1862 __isConfig = None
1858 1863 __nsubplots = None
1859 1864
1860 1865 PREFIX = 'mphase'
1861 1866
1862 1867
1863 1868 def __init__(self, **kwargs):
1864 1869 Figure.__init__(self, **kwargs)
1865 1870 self.timerange = 24*60*60
1866 1871 self.isConfig = False
1867 1872 self.__nsubplots = 1
1868 1873 self.counter_imagwr = 0
1869 1874 self.WIDTH = 600
1870 1875 self.HEIGHT = 300
1871 1876 self.WIDTHPROF = 120
1872 1877 self.HEIGHTPROF = 0
1873 1878 self.xdata = None
1874 1879 self.ydata = None
1875 1880
1876 1881 self.PLOT_CODE = MPHASE_CODE
1877 1882
1878 1883 self.FTP_WEI = None
1879 1884 self.EXP_CODE = None
1880 1885 self.SUB_EXP_CODE = None
1881 1886 self.PLOT_POS = None
1882 1887
1883 1888
1884 1889 self.filename_phase = None
1885 1890
1886 1891 self.figfile = None
1887 1892
1888 1893 def getSubplots(self):
1889 1894
1890 1895 ncol = 1
1891 1896 nrow = 1
1892 1897
1893 1898 return nrow, ncol
1894 1899
1895 1900 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1896 1901
1897 1902 self.__showprofile = showprofile
1898 1903 self.nplots = nplots
1899 1904
1900 1905 ncolspan = 7
1901 1906 colspan = 6
1902 1907 self.__nsubplots = 2
1903 1908
1904 1909 self.createFigure(id = id,
1905 1910 wintitle = wintitle,
1906 1911 widthplot = self.WIDTH+self.WIDTHPROF,
1907 1912 heightplot = self.HEIGHT+self.HEIGHTPROF,
1908 1913 show=show)
1909 1914
1910 1915 nrow, ncol = self.getSubplots()
1911 1916
1912 1917 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1913 1918
1914 1919
1915 1920 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
1916 1921 xmin=None, xmax=None, ymin=None, ymax=None,
1917 1922 timerange=None,
1918 1923 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
1919 1924 server=None, folder=None, username=None, password=None,
1920 1925 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1921 1926
1922 1927
1923 1928 tmin = None
1924 1929 tmax = None
1925 1930 x = dataOut.getTimeRange1(dataOut.outputInterval)
1926 1931 y = dataOut.getHeiRange()
1927 1932
1928 1933
1929 1934 #thisDatetime = dataOut.datatime
1930 1935 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
1931 1936 title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
1932 1937 xlabel = "Local Time"
1933 1938 ylabel = "Phase"
1934 1939
1935 1940
1936 1941 #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList)))
1937 1942 phase_beacon = dataOut.data_output
1938 1943 update_figfile = False
1939 1944
1940 1945 if not self.isConfig:
1941 1946
1942 1947 self.nplots = phase_beacon.size
1943 1948
1944 1949 self.setup(id=id,
1945 1950 nplots=self.nplots,
1946 1951 wintitle=wintitle,
1947 1952 showprofile=showprofile,
1948 1953 show=show)
1949 1954
1950 1955 if timerange is not None:
1951 1956 self.timerange = timerange
1952 1957
1953 1958 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1954 1959
1955 1960 if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0
1956 1961 if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0
1957 1962
1958 1963 self.FTP_WEI = ftp_wei
1959 1964 self.EXP_CODE = exp_code
1960 1965 self.SUB_EXP_CODE = sub_exp_code
1961 1966 self.PLOT_POS = plot_pos
1962 1967
1963 1968 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1964 1969 self.isConfig = True
1965 1970 self.figfile = figfile
1966 1971 self.xdata = numpy.array([])
1967 1972 self.ydata = numpy.array([])
1968 1973
1969 1974 #open file beacon phase
1970 1975 path = '%s%03d' %(self.PREFIX, self.id)
1971 1976 beacon_file = os.path.join(path,'%s.txt'%self.name)
1972 1977 self.filename_phase = os.path.join(figpath,beacon_file)
1973 1978 update_figfile = True
1974 1979
1975 1980
1976 1981 #store data beacon phase
1977 1982 #self.save_data(self.filename_phase, phase_beacon, thisDatetime)
1978 1983
1979 1984 self.setWinTitle(title)
1980 1985
1981 1986
1982 1987 title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1983 1988
1984 1989 legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)]
1985 1990
1986 1991 axes = self.axesList[0]
1987 1992
1988 1993 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1989 1994
1990 1995 if len(self.ydata)==0:
1991 1996 self.ydata = phase_beacon.reshape(-1,1)
1992 1997 else:
1993 1998 self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
1994 1999
1995 2000
1996 2001 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1997 2002 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
1998 2003 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
1999 2004 XAxisAsTime=True, grid='both'
2000 2005 )
2001 2006
2002 2007 self.draw()
2003 2008
2004 2009 self.save(figpath=figpath,
2005 2010 figfile=figfile,
2006 2011 save=save,
2007 2012 ftp=ftp,
2008 2013 wr_period=wr_period,
2009 2014 thisDatetime=thisDatetime,
2010 2015 update_figfile=update_figfile)
2011 2016
2012 2017 if dataOut.ltctime + dataOut.outputInterval >= self.xmax:
2013 2018 self.counter_imagwr = wr_period
2014 2019 self.isConfig = False
2015 2020 update_figfile = True
2016 2021
2017 2022
2018 2023
2019 2024 class NSMeteorDetection1Plot_(Figure):
2020 2025
2021 2026 isConfig = None
2022 2027 __nsubplots = None
2023 2028
2024 2029 WIDTHPROF = None
2025 2030 HEIGHTPROF = None
2026 2031 PREFIX = 'nsm'
2027 2032
2028 2033 zminList = None
2029 2034 zmaxList = None
2030 2035 cmapList = None
2031 2036 titleList = None
2032 2037 nPairs = None
2033 2038 nChannels = None
2034 2039 nParam = None
2035 2040
2036 2041 def __init__(self, **kwargs):
2037 2042 Figure.__init__(self, **kwargs)
2038 2043 self.isConfig = False
2039 2044 self.__nsubplots = 1
2040 2045
2041 2046 self.WIDTH = 750
2042 2047 self.HEIGHT = 250
2043 2048 self.WIDTHPROF = 120
2044 2049 self.HEIGHTPROF = 0
2045 2050 self.counter_imagwr = 0
2046 2051
2047 2052 self.PLOT_CODE = SPEC_CODE
2048 2053
2049 2054 self.FTP_WEI = None
2050 2055 self.EXP_CODE = None
2051 2056 self.SUB_EXP_CODE = None
2052 2057 self.PLOT_POS = None
2053 2058
2054 2059 self.__xfilter_ena = False
2055 2060 self.__yfilter_ena = False
2056 2061
2057 2062 def getSubplots(self):
2058 2063
2059 2064 ncol = 3
2060 2065 nrow = int(numpy.ceil(self.nplots/3.0))
2061 2066
2062 2067 return nrow, ncol
2063 2068
2064 2069 def setup(self, id, nplots, wintitle, show=True):
2065 2070
2066 2071 self.nplots = nplots
2067 2072
2068 2073 ncolspan = 1
2069 2074 colspan = 1
2070 2075
2071 2076 self.createFigure(id = id,
2072 2077 wintitle = wintitle,
2073 2078 widthplot = self.WIDTH + self.WIDTHPROF,
2074 2079 heightplot = self.HEIGHT + self.HEIGHTPROF,
2075 2080 show=show)
2076 2081
2077 2082 nrow, ncol = self.getSubplots()
2078 2083
2079 2084 counter = 0
2080 2085 for y in range(nrow):
2081 2086 for x in range(ncol):
2082 2087
2083 2088 if counter >= self.nplots:
2084 2089 break
2085 2090
2086 2091 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
2087 2092
2088 2093 counter += 1
2089 2094
2090 2095 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
2091 2096 xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None,
2092 2097 vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA',
2093 2098 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
2094 2099 server=None, folder=None, username=None, password=None,
2095 2100 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
2096 2101 xaxis="frequency"):
2097 2102
2098 2103 """
2099 2104
2100 2105 Input:
2101 2106 dataOut :
2102 2107 id :
2103 2108 wintitle :
2104 2109 channelList :
2105 2110 showProfile :
2106 2111 xmin : None,
2107 2112 xmax : None,
2108 2113 ymin : None,
2109 2114 ymax : None,
2110 2115 zmin : None,
2111 2116 zmax : None
2112 2117 """
2113 2118 #SEPARAR EN DOS PLOTS
2114 2119 nParam = dataOut.data_param.shape[1] - 3
2115 2120
2116 2121 utctime = dataOut.data_param[0,0]
2117 2122 tmet = dataOut.data_param[:,1].astype(int)
2118 2123 hmet = dataOut.data_param[:,2].astype(int)
2119 2124
2120 2125 x = dataOut.abscissaList
2121 2126 y = dataOut.heightList
2122 2127
2123 2128 z = numpy.zeros((nParam, y.size, x.size - 1))
2124 2129 z[:,:] = numpy.nan
2125 2130 z[:,hmet,tmet] = dataOut.data_param[:,3:].T
2126 2131 z[0,:,:] = 10*numpy.log10(z[0,:,:])
2127 2132
2128 2133 xlabel = "Time (s)"
2129 2134 ylabel = "Range (km)"
2130 2135
2131 2136 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
2132 2137
2133 2138 if not self.isConfig:
2134 2139
2135 2140 nplots = nParam
2136 2141
2137 2142 self.setup(id=id,
2138 2143 nplots=nplots,
2139 2144 wintitle=wintitle,
2140 2145 show=show)
2141 2146
2142 2147 if xmin is None: xmin = numpy.nanmin(x)
2143 2148 if xmax is None: xmax = numpy.nanmax(x)
2144 2149 if ymin is None: ymin = numpy.nanmin(y)
2145 2150 if ymax is None: ymax = numpy.nanmax(y)
2146 2151 if SNRmin is None: SNRmin = numpy.nanmin(z[0,:])
2147 2152 if SNRmax is None: SNRmax = numpy.nanmax(z[0,:])
2148 2153 if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:]))
2149 2154 if vmin is None: vmin = -vmax
2150 2155 if wmin is None: wmin = 0
2151 2156 if wmax is None: wmax = 50
2152 2157
2153 2158 pairsList = dataOut.groupList
2154 2159 self.nPairs = len(dataOut.groupList)
2155 2160
2156 2161 zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs
2157 2162 zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs
2158 2163 titleList = ["SNR","Radial Velocity","Coherence"]
2159 2164 cmapList = ["jet","RdBu_r","jet"]
2160 2165
2161 2166 for i in range(self.nPairs):
2162 2167 strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1])
2163 2168 titleList = titleList + [strAux1]
2164 2169 cmapList = cmapList + ["RdBu_r"]
2165 2170
2166 2171 self.zminList = zminList
2167 2172 self.zmaxList = zmaxList
2168 2173 self.cmapList = cmapList
2169 2174 self.titleList = titleList
2170 2175
2171 2176 self.FTP_WEI = ftp_wei
2172 2177 self.EXP_CODE = exp_code
2173 2178 self.SUB_EXP_CODE = sub_exp_code
2174 2179 self.PLOT_POS = plot_pos
2175 2180
2176 2181 self.isConfig = True
2177 2182
2178 2183 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
2179 2184
2180 2185 for i in range(nParam):
2181 2186 title = self.titleList[i] + ": " +str_datetime
2182 2187 axes = self.axesList[i]
2183 2188 axes.pcolor(x, y, z[i,:].T,
2184 2189 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i],
2185 2190 xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='')
2186 2191 self.draw()
2187 2192
2188 2193 if figfile == None:
2189 2194 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
2190 2195 name = str_datetime
2191 2196 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
2192 2197 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
2193 2198 figfile = self.getFilename(name)
2194 2199
2195 2200 self.save(figpath=figpath,
2196 2201 figfile=figfile,
2197 2202 save=save,
2198 2203 ftp=ftp,
2199 2204 wr_period=wr_period,
2200 2205 thisDatetime=thisDatetime)
2201 2206
2202 2207
2203 2208 class NSMeteorDetection2Plot_(Figure):
2204 2209
2205 2210 isConfig = None
2206 2211 __nsubplots = None
2207 2212
2208 2213 WIDTHPROF = None
2209 2214 HEIGHTPROF = None
2210 2215 PREFIX = 'nsm'
2211 2216
2212 2217 zminList = None
2213 2218 zmaxList = None
2214 2219 cmapList = None
2215 2220 titleList = None
2216 2221 nPairs = None
2217 2222 nChannels = None
2218 2223 nParam = None
2219 2224
2220 2225 def __init__(self, **kwargs):
2221 2226 Figure.__init__(self, **kwargs)
2222 2227 self.isConfig = False
2223 2228 self.__nsubplots = 1
2224 2229
2225 2230 self.WIDTH = 750
2226 2231 self.HEIGHT = 250
2227 2232 self.WIDTHPROF = 120
2228 2233 self.HEIGHTPROF = 0
2229 2234 self.counter_imagwr = 0
2230 2235
2231 2236 self.PLOT_CODE = SPEC_CODE
2232 2237
2233 2238 self.FTP_WEI = None
2234 2239 self.EXP_CODE = None
2235 2240 self.SUB_EXP_CODE = None
2236 2241 self.PLOT_POS = None
2237 2242
2238 2243 self.__xfilter_ena = False
2239 2244 self.__yfilter_ena = False
2240 2245
2241 2246 def getSubplots(self):
2242 2247
2243 2248 ncol = 3
2244 2249 nrow = int(numpy.ceil(self.nplots/3.0))
2245 2250
2246 2251 return nrow, ncol
2247 2252
2248 2253 def setup(self, id, nplots, wintitle, show=True):
2249 2254
2250 2255 self.nplots = nplots
2251 2256
2252 2257 ncolspan = 1
2253 2258 colspan = 1
2254 2259
2255 2260 self.createFigure(id = id,
2256 2261 wintitle = wintitle,
2257 2262 widthplot = self.WIDTH + self.WIDTHPROF,
2258 2263 heightplot = self.HEIGHT + self.HEIGHTPROF,
2259 2264 show=show)
2260 2265
2261 2266 nrow, ncol = self.getSubplots()
2262 2267
2263 2268 counter = 0
2264 2269 for y in range(nrow):
2265 2270 for x in range(ncol):
2266 2271
2267 2272 if counter >= self.nplots:
2268 2273 break
2269 2274
2270 2275 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
2271 2276
2272 2277 counter += 1
2273 2278
2274 2279 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
2275 2280 xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None,
2276 2281 vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA',
2277 2282 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
2278 2283 server=None, folder=None, username=None, password=None,
2279 2284 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
2280 2285 xaxis="frequency"):
2281 2286
2282 2287 """
2283 2288
2284 2289 Input:
2285 2290 dataOut :
2286 2291 id :
2287 2292 wintitle :
2288 2293 channelList :
2289 2294 showProfile :
2290 2295 xmin : None,
2291 2296 xmax : None,
2292 2297 ymin : None,
2293 2298 ymax : None,
2294 2299 zmin : None,
2295 2300 zmax : None
2296 2301 """
2297 2302 #Rebuild matrix
2298 2303 utctime = dataOut.data_param[0,0]
2299 2304 cmet = dataOut.data_param[:,1].astype(int)
2300 2305 tmet = dataOut.data_param[:,2].astype(int)
2301 2306 hmet = dataOut.data_param[:,3].astype(int)
2302 2307
2303 2308 nParam = 3
2304 2309 nChan = len(dataOut.groupList)
2305 2310 x = dataOut.abscissaList
2306 2311 y = dataOut.heightList
2307 2312
2308 2313 z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan)
2309 2314 z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:]
2310 2315 z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale
2311 2316 z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1))
2312 2317
2313 2318 xlabel = "Time (s)"
2314 2319 ylabel = "Range (km)"
2315 2320
2316 2321 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
2317 2322
2318 2323 if not self.isConfig:
2319 2324
2320 2325 nplots = nParam*nChan
2321 2326
2322 2327 self.setup(id=id,
2323 2328 nplots=nplots,
2324 2329 wintitle=wintitle,
2325 2330 show=show)
2326 2331
2327 2332 if xmin is None: xmin = numpy.nanmin(x)
2328 2333 if xmax is None: xmax = numpy.nanmax(x)
2329 2334 if ymin is None: ymin = numpy.nanmin(y)
2330 2335 if ymax is None: ymax = numpy.nanmax(y)
2331 2336 if SNRmin is None: SNRmin = numpy.nanmin(z[0,:])
2332 2337 if SNRmax is None: SNRmax = numpy.nanmax(z[0,:])
2333 2338 if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:]))
2334 2339 if vmin is None: vmin = -vmax
2335 2340 if wmin is None: wmin = 0
2336 2341 if wmax is None: wmax = 50
2337 2342
2338 2343 self.nChannels = nChan
2339 2344
2340 2345 zminList = []
2341 2346 zmaxList = []
2342 2347 titleList = []
2343 2348 cmapList = []
2344 2349 for i in range(self.nChannels):
2345 2350 strAux1 = "SNR Channel "+ str(i)
2346 2351 strAux2 = "Radial Velocity Channel "+ str(i)
2347 2352 strAux3 = "Spectral Width Channel "+ str(i)
2348 2353
2349 2354 titleList = titleList + [strAux1,strAux2,strAux3]
2350 2355 cmapList = cmapList + ["jet","RdBu_r","jet"]
2351 2356 zminList = zminList + [SNRmin,vmin,wmin]
2352 2357 zmaxList = zmaxList + [SNRmax,vmax,wmax]
2353 2358
2354 2359 self.zminList = zminList
2355 2360 self.zmaxList = zmaxList
2356 2361 self.cmapList = cmapList
2357 2362 self.titleList = titleList
2358 2363
2359 2364 self.FTP_WEI = ftp_wei
2360 2365 self.EXP_CODE = exp_code
2361 2366 self.SUB_EXP_CODE = sub_exp_code
2362 2367 self.PLOT_POS = plot_pos
2363 2368
2364 2369 self.isConfig = True
2365 2370
2366 2371 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
2367 2372
2368 2373 for i in range(self.nplots):
2369 2374 title = self.titleList[i] + ": " +str_datetime
2370 2375 axes = self.axesList[i]
2371 2376 axes.pcolor(x, y, z[i,:].T,
2372 2377 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i],
2373 2378 xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='')
2374 2379 self.draw()
2375 2380
2376 2381 if figfile == None:
2377 2382 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
2378 2383 name = str_datetime
2379 2384 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
2380 2385 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
2381 2386 figfile = self.getFilename(name)
2382 2387
2383 2388 self.save(figpath=figpath,
2384 2389 figfile=figfile,
2385 2390 save=save,
2386 2391 ftp=ftp,
2387 2392 wr_period=wr_period,
2388 2393 thisDatetime=thisDatetime)
2389 2394 No newline at end of file
@@ -1,500 +1,500
1 1 import os
2 2 import sys
3 3 import datetime
4 4 import numpy
5 5 import matplotlib
6 6
7 7 if 'BACKEND' in os.environ:
8 8 matplotlib.use(os.environ['BACKEND'])
9 9 elif 'linux' in sys.platform:
10 10 matplotlib.use("TkAgg")
11 11 elif 'darwin' in sys.platform:
12 12 matplotlib.use('TkAgg')
13 13 else:
14 14 from schainpy.utils import log
15 15 log.warning('Using default Backend="Agg"', 'INFO')
16 16 matplotlib.use('Agg')
17 17 # Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX'
18 18 import matplotlib.pyplot
19 19
20 20 from mpl_toolkits.axes_grid1 import make_axes_locatable
21 21 from matplotlib.ticker import FuncFormatter, LinearLocator
22 22
23 23 ###########################################
24 24 # Actualizacion de las funciones del driver
25 25 ###########################################
26 26
27 27 # create jro colormap
28 28
29 29 jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90]
30 30 blu_values = matplotlib.pyplot.get_cmap(
31 31 "seismic_r", 20)(numpy.arange(20))[10:15]
32 32 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
33 33 "jro", numpy.vstack((blu_values, jet_values)))
34 34 matplotlib.pyplot.register_cmap(cmap=ncmap)
35 35
36 36
37 37 def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi=80):
38 38
39 39 matplotlib.pyplot.ioff()
40 40
41 41 fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=(
42 42 1.0 * width / dpi, 1.0 * height / dpi))
43 43 fig.canvas.manager.set_window_title(wintitle)
44 44 # fig.canvas.manager.resize(width, height)
45 45 matplotlib.pyplot.ion()
46 46
47 47 if show:
48 48 matplotlib.pyplot.show()
49 49
50 50 return fig
51 51
52 52
53 53 def closeFigure(show=False, fig=None):
54 54
55 55 # matplotlib.pyplot.ioff()
56 56 # matplotlib.pyplot.pause(0)
57 57
58 58 if show:
59 59 matplotlib.pyplot.show()
60 60
61 61 if fig != None:
62 62 matplotlib.pyplot.close(fig)
63 63 # matplotlib.pyplot.pause(0)
64 64 # matplotlib.pyplot.ion()
65 65
66 66 return
67 67
68 68 matplotlib.pyplot.close("all")
69 69 # matplotlib.pyplot.pause(0)
70 70 # matplotlib.pyplot.ion()
71 71
72 72 return
73 73
74 74
75 75 def saveFigure(fig, filename):
76 76
77 77 # matplotlib.pyplot.ioff()
78 78 fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi)
79 79 # matplotlib.pyplot.ion()
80 80
81 81
82 82 def clearFigure(fig):
83 83
84 84 fig.clf()
85 85
86 86
87 87 def setWinTitle(fig, title):
88 88
89 89 fig.canvas.manager.set_window_title(title)
90 90
91 91
92 92 def setTitle(fig, title):
93 93
94 94 fig.suptitle(title)
95 95
96 96
97 97 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False):
98 98
99 99 matplotlib.pyplot.ioff()
100 100 matplotlib.pyplot.figure(fig.number)
101 101 axes = matplotlib.pyplot.subplot2grid((nrow, ncol),
102 102 (xpos, ypos),
103 103 colspan=colspan,
104 104 rowspan=rowspan,
105 105 polar=polar)
106 106
107 107 matplotlib.pyplot.ion()
108 108 return axes
109 109
110 110
111 111 def setAxesText(ax, text):
112 112
113 113 ax.annotate(text,
114 114 xy=(.1, .99),
115 115 xycoords='figure fraction',
116 116 horizontalalignment='left',
117 117 verticalalignment='top',
118 118 fontsize=10)
119 119
120 120
121 121 def printLabels(ax, xlabel, ylabel, title):
122 122
123 123 ax.set_xlabel(xlabel, size=11)
124 124 ax.set_ylabel(ylabel, size=11)
125 125 ax.set_title(title, size=8)
126 126
127 127
128 128 def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='',
129 129 ticksize=9, xtick_visible=True, ytick_visible=True,
130 130 nxticks=4, nyticks=10,
131 131 grid=None, color='blue'):
132 132 """
133 133
134 134 Input:
135 135 grid : None, 'both', 'x', 'y'
136 136 """
137 137
138 138 matplotlib.pyplot.ioff()
139 139
140 140 ax.set_xlim([xmin, xmax])
141 141 ax.set_ylim([ymin, ymax])
142 142
143 143 printLabels(ax, xlabel, ylabel, title)
144 144
145 145 ######################################################
146 146 if (xmax - xmin) <= 1:
147 147 xtickspos = numpy.linspace(xmin, xmax, nxticks)
148 148 xtickspos = numpy.array([float("%.1f" % i) for i in xtickspos])
149 149 ax.set_xticks(xtickspos)
150 150 else:
151 151 xtickspos = numpy.arange(nxticks) * \
152 152 int((xmax - xmin) / (nxticks)) + int(xmin)
153 153 # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin)
154 154 ax.set_xticks(xtickspos)
155 155
156 156 for tick in ax.get_xticklabels():
157 157 tick.set_visible(xtick_visible)
158 158
159 159 for tick in ax.xaxis.get_major_ticks():
160 160 tick.label.set_fontsize(ticksize)
161 161
162 162 ######################################################
163 163 for tick in ax.get_yticklabels():
164 164 tick.set_visible(ytick_visible)
165 165
166 166 for tick in ax.yaxis.get_major_ticks():
167 167 tick.label.set_fontsize(ticksize)
168 168
169 169 ax.plot(x, y, color=color)
170 170 iplot = ax.lines[-1]
171 171
172 172 ######################################################
173 173 if '0.' in matplotlib.__version__[0:2]:
174 174 print("The matplotlib version has to be updated to 1.1 or newer")
175 175 return iplot
176 176
177 177 if '1.0.' in matplotlib.__version__[0:4]:
178 178 print("The matplotlib version has to be updated to 1.1 or newer")
179 179 return iplot
180 180
181 181 if grid != None:
182 182 ax.grid(b=True, which='major', axis=grid)
183 183
184 184 matplotlib.pyplot.tight_layout()
185 185
186 186 matplotlib.pyplot.ion()
187 187
188 188 return iplot
189 189
190 190
191 191 def set_linedata(ax, x, y, idline):
192 192
193 193 ax.lines[idline].set_data(x, y)
194 194
195 195
196 196 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
197 197
198 198 ax = iplot.axes
199 199
200 200 printLabels(ax, xlabel, ylabel, title)
201 201
202 202 set_linedata(ax, x, y, idline=0)
203 203
204 204
205 205 def addpline(ax, x, y, color, linestyle, lw):
206 206
207 207 ax.plot(x, y, color=color, linestyle=linestyle, lw=lw)
208 208
209 209
210 210 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
211 211 xlabel='', ylabel='', title='', ticksize=9,
212 212 colormap='jet', cblabel='', cbsize="5%",
213 213 XAxisAsTime=False):
214 214
215 215 matplotlib.pyplot.ioff()
216 216
217 217 divider = make_axes_locatable(ax)
218 218 ax_cb = divider.new_horizontal(size=cbsize, pad=0.05)
219 219 fig = ax.get_figure()
220 220 fig.add_axes(ax_cb)
221 221
222 222 ax.set_xlim([xmin, xmax])
223 223 ax.set_ylim([ymin, ymax])
224 224
225 225 printLabels(ax, xlabel, ylabel, title)
226 226
227 227 z = numpy.ma.masked_invalid(z)
228 228 cmap = matplotlib.pyplot.get_cmap(colormap)
229 cmap.set_bad('black', 1.)
229 cmap.set_bad('white', 1.)
230 230 imesh = ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap)
231 231 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
232 232 cb.set_label(cblabel)
233 233
234 234 # for tl in ax_cb.get_yticklabels():
235 235 # tl.set_visible(True)
236 236
237 237 for tick in ax.yaxis.get_major_ticks():
238 238 tick.label.set_fontsize(ticksize)
239 239
240 240 for tick in ax.xaxis.get_major_ticks():
241 241 tick.label.set_fontsize(ticksize)
242 242
243 243 for tick in cb.ax.get_yticklabels():
244 244 tick.set_fontsize(ticksize)
245 245
246 246 ax_cb.yaxis.tick_right()
247 247
248 248 if '0.' in matplotlib.__version__[0:2]:
249 249 print("The matplotlib version has to be updated to 1.1 or newer")
250 250 return imesh
251 251
252 252 if '1.0.' in matplotlib.__version__[0:4]:
253 253 print("The matplotlib version has to be updated to 1.1 or newer")
254 254 return imesh
255 255
256 256 matplotlib.pyplot.tight_layout()
257 257
258 258 if XAxisAsTime:
259 259
260 260 def func(x, pos): return ('%s') % (
261 261 datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
262 262 ax.xaxis.set_major_formatter(FuncFormatter(func))
263 263 ax.xaxis.set_major_locator(LinearLocator(7))
264 264
265 265 matplotlib.pyplot.ion()
266 266 return imesh
267 267
268 268
269 269 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
270 270
271 271 z = z.T
272 272 ax = imesh.axes
273 273 printLabels(ax, xlabel, ylabel, title)
274 274 imesh.set_array(z.ravel())
275 275
276 276
277 277 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
278 278
279 279 printLabels(ax, xlabel, ylabel, title)
280 280
281 281 ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax,
282 282 cmap=matplotlib.pyplot.get_cmap(colormap))
283 283
284 284
285 285 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
286 286
287 287 printLabels(ax, xlabel, ylabel, title)
288 288
289 289 ax.collections.remove(ax.collections[0])
290 290
291 291 z = numpy.ma.masked_invalid(z)
292 292
293 293 cmap = matplotlib.pyplot.get_cmap(colormap)
294 cmap.set_bad('black', 1.)
294 cmap.set_bad('white', 1.)
295 295
296 296 ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap)
297 297
298 298
299 299 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
300 300 ticksize=9, xtick_visible=True, ytick_visible=True,
301 301 nxticks=4, nyticks=10,
302 302 grid=None):
303 303 """
304 304
305 305 Input:
306 306 grid : None, 'both', 'x', 'y'
307 307 """
308 308
309 309 matplotlib.pyplot.ioff()
310 310
311 311 lines = ax.plot(x.T, y)
312 312 leg = ax.legend(lines, legendlabels, loc='upper right')
313 313 leg.get_frame().set_alpha(0.5)
314 314 ax.set_xlim([xmin, xmax])
315 315 ax.set_ylim([ymin, ymax])
316 316 printLabels(ax, xlabel, ylabel, title)
317 317
318 318 xtickspos = numpy.arange(nxticks) * \
319 319 int((xmax - xmin) / (nxticks)) + int(xmin)
320 320 ax.set_xticks(xtickspos)
321 321
322 322 for tick in ax.get_xticklabels():
323 323 tick.set_visible(xtick_visible)
324 324
325 325 for tick in ax.xaxis.get_major_ticks():
326 326 tick.label.set_fontsize(ticksize)
327 327
328 328 for tick in ax.get_yticklabels():
329 329 tick.set_visible(ytick_visible)
330 330
331 331 for tick in ax.yaxis.get_major_ticks():
332 332 tick.label.set_fontsize(ticksize)
333 333
334 334 iplot = ax.lines[-1]
335 335
336 336 if '0.' in matplotlib.__version__[0:2]:
337 337 print("The matplotlib version has to be updated to 1.1 or newer")
338 338 return iplot
339 339
340 340 if '1.0.' in matplotlib.__version__[0:4]:
341 341 print("The matplotlib version has to be updated to 1.1 or newer")
342 342 return iplot
343 343
344 344 if grid != None:
345 345 ax.grid(b=True, which='major', axis=grid)
346 346
347 347 matplotlib.pyplot.tight_layout()
348 348
349 349 matplotlib.pyplot.ion()
350 350
351 351 return iplot
352 352
353 353
354 354 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
355 355
356 356 ax = iplot.axes
357 357
358 358 printLabels(ax, xlabel, ylabel, title)
359 359
360 360 for i in range(len(ax.lines)):
361 361 line = ax.lines[i]
362 362 line.set_data(x[i, :], y)
363 363
364 364
365 365 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
366 366 ticksize=9, xtick_visible=True, ytick_visible=True,
367 367 nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None",
368 368 grid=None, XAxisAsTime=False):
369 369 """
370 370
371 371 Input:
372 372 grid : None, 'both', 'x', 'y'
373 373 """
374 374
375 375 matplotlib.pyplot.ioff()
376 376
377 377 # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle)
378 378 lines = ax.plot(x, y.T)
379 379 # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \
380 380 # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.)
381 381
382 382 leg = ax.legend(lines, legendlabels,
383 383 loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0)
384 384
385 385 for label in leg.get_texts():
386 386 label.set_fontsize(9)
387 387
388 388 ax.set_xlim([xmin, xmax])
389 389 ax.set_ylim([ymin, ymax])
390 390 printLabels(ax, xlabel, ylabel, title)
391 391
392 392 # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
393 393 # ax.set_xticks(xtickspos)
394 394
395 395 for tick in ax.get_xticklabels():
396 396 tick.set_visible(xtick_visible)
397 397
398 398 for tick in ax.xaxis.get_major_ticks():
399 399 tick.label.set_fontsize(ticksize)
400 400
401 401 for tick in ax.get_yticklabels():
402 402 tick.set_visible(ytick_visible)
403 403
404 404 for tick in ax.yaxis.get_major_ticks():
405 405 tick.label.set_fontsize(ticksize)
406 406
407 407 iplot = ax.lines[-1]
408 408
409 409 if '0.' in matplotlib.__version__[0:2]:
410 410 print("The matplotlib version has to be updated to 1.1 or newer")
411 411 return iplot
412 412
413 413 if '1.0.' in matplotlib.__version__[0:4]:
414 414 print("The matplotlib version has to be updated to 1.1 or newer")
415 415 return iplot
416 416
417 417 if grid != None:
418 418 ax.grid(b=True, which='major', axis=grid)
419 419
420 420 matplotlib.pyplot.tight_layout()
421 421
422 422 if XAxisAsTime:
423 423
424 424 def func(x, pos): return ('%s') % (
425 425 datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
426 426 ax.xaxis.set_major_formatter(FuncFormatter(func))
427 427 ax.xaxis.set_major_locator(LinearLocator(7))
428 428
429 429 matplotlib.pyplot.ion()
430 430
431 431 return iplot
432 432
433 433
434 434 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
435 435
436 436 ax = iplot.axes
437 437 printLabels(ax, xlabel, ylabel, title)
438 438
439 439 for i in range(len(ax.lines)):
440 440 line = ax.lines[i]
441 441 line.set_data(x, y[i, :])
442 442
443 443
444 444 def createPolar(ax, x, y,
445 445 xlabel='', ylabel='', title='', ticksize=9,
446 446 colormap='jet', cblabel='', cbsize="5%",
447 447 XAxisAsTime=False):
448 448
449 449 matplotlib.pyplot.ioff()
450 450
451 451 ax.plot(x, y, 'bo', markersize=5)
452 452 # ax.set_rmax(90)
453 453 ax.set_ylim(0, 90)
454 454 ax.set_yticks(numpy.arange(0, 90, 20))
455 455 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11')
456 456 # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11')
457 457 # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical')
458 458 ax.yaxis.labelpad = 40
459 459 printLabels(ax, xlabel, ylabel, title)
460 460 iplot = ax.lines[-1]
461 461
462 462 if '0.' in matplotlib.__version__[0:2]:
463 463 print("The matplotlib version has to be updated to 1.1 or newer")
464 464 return iplot
465 465
466 466 if '1.0.' in matplotlib.__version__[0:4]:
467 467 print("The matplotlib version has to be updated to 1.1 or newer")
468 468 return iplot
469 469
470 470 # if grid != None:
471 471 # ax.grid(b=True, which='major', axis=grid)
472 472
473 473 matplotlib.pyplot.tight_layout()
474 474
475 475 matplotlib.pyplot.ion()
476 476
477 477 return iplot
478 478
479 479
480 480 def polar(iplot, x, y, xlabel='', ylabel='', title=''):
481 481
482 482 ax = iplot.axes
483 483
484 484 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11')
485 485 printLabels(ax, xlabel, ylabel, title)
486 486
487 487 set_linedata(ax, x, y, idline=0)
488 488
489 489
490 490 def draw(fig):
491 491
492 492 if type(fig) == 'int':
493 493 raise ValueError("Error drawing: Fig parameter should be a matplotlib figure object figure")
494 494
495 495 fig.canvas.draw()
496 496
497 497
498 498 def pause(interval=0.000001):
499 499
500 500 matplotlib.pyplot.pause(interval) No newline at end of file
@@ -1,642 +1,642
1 1 '''
2 2 Created on Aug 1, 2017
3 3
4 4 @author: Juan C. Espinoza
5 5 '''
6 6
7 7 import os
8 8 import sys
9 9 import time
10 10 import json
11 11 import glob
12 12 import datetime
13 13
14 14 import numpy
15 15 import h5py
16 16
17 17 from schainpy.model.io.jroIO_base import JRODataReader
18 18 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
19 19 from schainpy.model.data.jrodata import Parameters
20 20 from schainpy.utils import log
21 21
22 22 try:
23 23 import madrigal.cedar
24 24 except:
25 25 log.warning(
26 26 'You should install "madrigal library" module if you want to read/write Madrigal data'
27 27 )
28 28
29 29 DEF_CATALOG = {
30 30 'principleInvestigator': 'Marco Milla',
31 31 'expPurpose': None,
32 32 'cycleTime': None,
33 33 'correlativeExp': None,
34 34 'sciRemarks': None,
35 35 'instRemarks': None
36 36 }
37 37 DEF_HEADER = {
38 38 'kindatDesc': None,
39 39 'analyst': 'Jicamarca User',
40 40 'comments': None,
41 41 'history': None
42 42 }
43 43 MNEMONICS = {
44 44 10: 'jro',
45 45 11: 'jbr',
46 46 840: 'jul',
47 47 13: 'jas',
48 48 1000: 'pbr',
49 49 1001: 'hbr',
50 50 1002: 'obr',
51 51 }
52 52
53 53 UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone)
54 54
55 55 def load_json(obj):
56 56 '''
57 57 Parse json as string instead of unicode
58 58 '''
59 59
60 60 if isinstance(obj, str):
61 61 iterable = json.loads(obj)
62 62 else:
63 63 iterable = obj
64 64
65 65 if isinstance(iterable, dict):
66 66 return {str(k): load_json(v) if isinstance(v, dict) else str(v) if isinstance(v, str) else v
67 67 for k, v in list(iterable.items())}
68 68 elif isinstance(iterable, (list, tuple)):
69 69 return [str(v) if isinstance(v, str) else v for v in iterable]
70 70
71 71 return iterable
72 72
73 73 @MPDecorator
74 74 class MADReader(JRODataReader, ProcessingUnit):
75 75
76 76 def __init__(self):
77 77
78 78 ProcessingUnit.__init__(self)
79 79
80 80 self.dataOut = Parameters()
81 81 self.counter_records = 0
82 82 self.nrecords = None
83 83 self.flagNoMoreFiles = 0
84 84 self.isConfig = False
85 85 self.filename = None
86 86 self.intervals = set()
87 87
88 88 def setup(self,
89 89 path=None,
90 90 startDate=None,
91 91 endDate=None,
92 92 format=None,
93 93 startTime=datetime.time(0, 0, 0),
94 94 endTime=datetime.time(23, 59, 59),
95 95 **kwargs):
96 96
97 97 self.path = path
98 98 self.startDate = startDate
99 99 self.endDate = endDate
100 100 self.startTime = startTime
101 101 self.endTime = endTime
102 102 self.datatime = datetime.datetime(1900,1,1)
103 103 self.oneDDict = load_json(kwargs.get('oneDDict',
104 104 "{\"GDLATR\":\"lat\", \"GDLONR\":\"lon\"}"))
105 105 self.twoDDict = load_json(kwargs.get('twoDDict',
106 106 "{\"GDALT\": \"heightList\"}"))
107 107 self.ind2DList = load_json(kwargs.get('ind2DList',
108 108 "[\"GDALT\"]"))
109 109 if self.path is None:
110 110 raise ValueError('The path is not valid')
111 111
112 112 if format is None:
113 113 raise ValueError('The format is not valid choose simple or hdf5')
114 114 elif format.lower() in ('simple', 'txt'):
115 115 self.ext = '.txt'
116 116 elif format.lower() in ('cedar',):
117 117 self.ext = '.001'
118 118 else:
119 119 self.ext = '.hdf5'
120 120
121 121 self.search_files(self.path)
122 122 self.fileId = 0
123 123
124 124 if not self.fileList:
125 125 raise Warning('There is no files matching these date in the folder: {}. \n Check startDate and endDate'.format(path))
126 126
127 127 self.setNextFile()
128 128
129 129 def search_files(self, path):
130 130 '''
131 131 Searching for madrigal files in path
132 132 Creating a list of files to procces included in [startDate,endDate]
133 133
134 134 Input:
135 135 path - Path to find files
136 136 '''
137 137
138 138 log.log('Searching files {} in {} '.format(self.ext, path), 'MADReader')
139 139 foldercounter = 0
140 140 fileList0 = glob.glob1(path, '*{}'.format(self.ext))
141 141 fileList0.sort()
142 142
143 143 self.fileList = []
144 144 self.dateFileList = []
145 145
146 146 startDate = self.startDate - datetime.timedelta(1)
147 147 endDate = self.endDate + datetime.timedelta(1)
148 148
149 149 for thisFile in fileList0:
150 150 year = thisFile[3:7]
151 151 if not year.isdigit():
152 152 continue
153 153
154 154 month = thisFile[7:9]
155 155 if not month.isdigit():
156 156 continue
157 157
158 158 day = thisFile[9:11]
159 159 if not day.isdigit():
160 160 continue
161 161
162 162 year, month, day = int(year), int(month), int(day)
163 163 dateFile = datetime.date(year, month, day)
164 164
165 165 if (startDate > dateFile) or (endDate < dateFile):
166 166 continue
167 167
168 168 self.fileList.append(thisFile)
169 169 self.dateFileList.append(dateFile)
170 170
171 171 return
172 172
173 173 def parseHeader(self):
174 174 '''
175 175 '''
176 176
177 177 self.output = {}
178 178 self.version = '2'
179 179 s_parameters = None
180 180 if self.ext == '.txt':
181 181 self.parameters = [s.strip().lower() for s in self.fp.readline().strip().split(' ') if s]
182 182 elif self.ext == '.hdf5':
183 183 metadata = self.fp['Metadata']
184 184 data = self.fp['Data']['Array Layout']
185 185 if 'Independent Spatial Parameters' in metadata:
186 186 s_parameters = [s[0].lower() for s in metadata['Independent Spatial Parameters']]
187 187 self.version = '3'
188 188 one = [s[0].lower() for s in data['1D Parameters']['Data Parameters']]
189 189 one_d = [1 for s in one]
190 190 two = [s[0].lower() for s in data['2D Parameters']['Data Parameters']]
191 191 two_d = [2 for s in two]
192 192 self.parameters = one + two
193 193 self.parameters_d = one_d + two_d
194 194
195 log.success('Parameters found: {}'.format(','.join(self.parameters)),
195 log.success('Parameters found: {}'.format(','.join(str(self.parameters))),
196 196 'MADReader')
197 197 if s_parameters:
198 log.success('Spatial parameters: {}'.format(','.join(s_parameters)),
198 log.success('Spatial parameters: {}'.format(','.join(str(s_parameters))),
199 199 'MADReader')
200 200
201 201 for param in list(self.oneDDict.keys()):
202 202 if param.lower() not in self.parameters:
203 203 log.warning(
204 204 'Parameter {} not found will be ignored'.format(
205 205 param),
206 206 'MADReader')
207 207 self.oneDDict.pop(param, None)
208 208
209 209 for param, value in list(self.twoDDict.items()):
210 210 if param.lower() not in self.parameters:
211 211 log.warning(
212 212 'Parameter {} not found, it will be ignored'.format(
213 213 param),
214 214 'MADReader')
215 215 self.twoDDict.pop(param, None)
216 216 continue
217 217 if isinstance(value, list):
218 218 if value[0] not in self.output:
219 219 self.output[value[0]] = []
220 220 self.output[value[0]].append(None)
221 221
222 222 def parseData(self):
223 223 '''
224 224 '''
225 225
226 226 if self.ext == '.txt':
227 227 self.data = numpy.genfromtxt(self.fp, missing_values=('missing'))
228 228 self.nrecords = self.data.shape[0]
229 229 self.ranges = numpy.unique(self.data[:,self.parameters.index(self.ind2DList[0].lower())])
230 230 elif self.ext == '.hdf5':
231 231 self.data = self.fp['Data']['Array Layout']
232 232 self.nrecords = len(self.data['timestamps'].value)
233 233 self.ranges = self.data['range'].value
234 234
235 235 def setNextFile(self):
236 236 '''
237 237 '''
238 238
239 239 file_id = self.fileId
240 240
241 241 if file_id == len(self.fileList):
242 242 log.success('No more files', 'MADReader')
243 243 self.flagNoMoreFiles = 1
244 244 return 0
245 245
246 246 log.success(
247 247 'Opening: {}'.format(self.fileList[file_id]),
248 248 'MADReader'
249 249 )
250 250
251 251 filename = os.path.join(self.path, self.fileList[file_id])
252 252
253 253 if self.filename is not None:
254 254 self.fp.close()
255 255
256 256 self.filename = filename
257 257 self.filedate = self.dateFileList[file_id]
258 258
259 259 if self.ext=='.hdf5':
260 260 self.fp = h5py.File(self.filename, 'r')
261 261 else:
262 262 self.fp = open(self.filename, 'rb')
263 263
264 264 self.parseHeader()
265 265 self.parseData()
266 266 self.sizeOfFile = os.path.getsize(self.filename)
267 267 self.counter_records = 0
268 268 self.flagIsNewFile = 0
269 269 self.fileId += 1
270 270
271 271 return 1
272 272
273 273 def readNextBlock(self):
274 274
275 275 while True:
276 276 self.flagDiscontinuousBlock = 0
277 277 if self.flagIsNewFile:
278 278 if not self.setNextFile():
279 279 return 0
280 280
281 281 self.readBlock()
282 282
283 283 if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \
284 284 (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)):
285 285 log.warning(
286 286 'Reading Record No. {}/{} -> {} [Skipping]'.format(
287 287 self.counter_records,
288 288 self.nrecords,
289 289 self.datatime.ctime()),
290 290 'MADReader')
291 291 continue
292 292 break
293 293
294 294 log.log(
295 295 'Reading Record No. {}/{} -> {}'.format(
296 296 self.counter_records,
297 297 self.nrecords,
298 298 self.datatime.ctime()),
299 299 'MADReader')
300 300
301 301 return 1
302 302
303 303 def readBlock(self):
304 304 '''
305 305 '''
306 306 dum = []
307 307 if self.ext == '.txt':
308 308 dt = self.data[self.counter_records][:6].astype(int)
309 309 if datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]).date() > self.datatime.date():
310 310 self.flagDiscontinuousBlock = 1
311 311 self.datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5])
312 312 while True:
313 313 dt = self.data[self.counter_records][:6].astype(int)
314 314 datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5])
315 315 if datatime == self.datatime:
316 316 dum.append(self.data[self.counter_records])
317 317 self.counter_records += 1
318 318 if self.counter_records == self.nrecords:
319 319 self.flagIsNewFile = True
320 320 break
321 321 continue
322 322 self.intervals.add((datatime-self.datatime).seconds)
323 323 break
324 324 elif self.ext == '.hdf5':
325 325 datatime = datetime.datetime.utcfromtimestamp(
326 326 self.data['timestamps'][self.counter_records])
327 327 nHeights = len(self.ranges)
328 328 for n, param in enumerate(self.parameters):
329 329 if self.parameters_d[n] == 1:
330 330 dum.append(numpy.ones(nHeights)*self.data['1D Parameters'][param][self.counter_records])
331 331 else:
332 332 if self.version == '2':
333 333 dum.append(self.data['2D Parameters'][param][self.counter_records])
334 334 else:
335 335 tmp = self.data['2D Parameters'][param].value.T
336 336 dum.append(tmp[self.counter_records])
337 337 self.intervals.add((datatime-self.datatime).seconds)
338 338 if datatime.date()>self.datatime.date():
339 339 self.flagDiscontinuousBlock = 1
340 340 self.datatime = datatime
341 341 self.counter_records += 1
342 342 if self.counter_records == self.nrecords:
343 343 self.flagIsNewFile = True
344 344
345 345 self.buffer = numpy.array(dum)
346 346 return
347 347
348 348 def set_output(self):
349 349 '''
350 350 Storing data from buffer to dataOut object
351 351 '''
352 352
353 353 parameters = [None for __ in self.parameters]
354 354
355 355 for param, attr in list(self.oneDDict.items()):
356 356 x = self.parameters.index(param.lower())
357 357 setattr(self.dataOut, attr, self.buffer[0][x])
358 358
359 359 for param, value in list(self.twoDDict.items()):
360 360 x = self.parameters.index(param.lower())
361 361 if self.ext == '.txt':
362 362 y = self.parameters.index(self.ind2DList[0].lower())
363 363 ranges = self.buffer[:,y]
364 364 if self.ranges.size == ranges.size:
365 365 continue
366 366 index = numpy.where(numpy.in1d(self.ranges, ranges))[0]
367 367 dummy = numpy.zeros(self.ranges.shape) + numpy.nan
368 368 dummy[index] = self.buffer[:,x]
369 369 else:
370 370 dummy = self.buffer[x]
371 371
372 372 if isinstance(value, str):
373 373 if value not in self.ind2DList:
374 374 setattr(self.dataOut, value, dummy.reshape(1,-1))
375 375 elif isinstance(value, list):
376 376 self.output[value[0]][value[1]] = dummy
377 377 parameters[value[1]] = param
378 378
379 379 for key, value in list(self.output.items()):
380 380 setattr(self.dataOut, key, numpy.array(value))
381 381
382 382 self.dataOut.parameters = [s for s in parameters if s]
383 383 self.dataOut.heightList = self.ranges
384 384 self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds()
385 385 self.dataOut.utctimeInit = self.dataOut.utctime
386 386 self.dataOut.paramInterval = min(self.intervals)
387 387 self.dataOut.useLocalTime = False
388 388 self.dataOut.flagNoData = False
389 389 self.dataOut.nrecords = self.nrecords
390 390 self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock
391 391
392 392 def getData(self):
393 393 '''
394 394 Storing data from databuffer to dataOut object
395 395 '''
396 396 if self.flagNoMoreFiles:
397 397 self.dataOut.flagNoData = True
398 398 self.dataOut.error = 'No file left to process'
399 399 return 0
400 400
401 401 if not self.readNextBlock():
402 402 self.dataOut.flagNoData = True
403 403 return 0
404 404
405 405 self.set_output()
406 406
407 407 return 1
408 408
409 409
410 410 class MADWriter(Operation):
411 411
412 412 missing = -32767
413 413
414 414 def __init__(self, **kwargs):
415 415
416 416 Operation.__init__(self, **kwargs)
417 417 self.dataOut = Parameters()
418 418 self.counter = 0
419 419 self.path = None
420 420 self.fp = None
421 421
422 422 def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}',
423 423 metadata='{}', format='cedar', **kwargs):
424 424 '''
425 425 Inputs:
426 426 path - path where files will be created
427 427 oneDDict - json of one-dimensional parameters in record where keys
428 428 are Madrigal codes (integers or mnemonics) and values the corresponding
429 429 dataOut attribute e.g: {
430 430 'gdlatr': 'lat',
431 431 'gdlonr': 'lon',
432 432 'gdlat2':'lat',
433 433 'glon2':'lon'}
434 434 ind2DList - list of independent spatial two-dimensional parameters e.g:
435 435 ['heighList']
436 436 twoDDict - json of two-dimensional parameters in record where keys
437 437 are Madrigal codes (integers or mnemonics) and values the corresponding
438 438 dataOut attribute if multidimensional array specify as tupple
439 439 ('attr', pos) e.g: {
440 440 'gdalt': 'heightList',
441 441 'vn1p2': ('data_output', 0),
442 442 'vn2p2': ('data_output', 1),
443 443 'vn3': ('data_output', 2),
444 444 'snl': ('data_SNR', 'db')
445 445 }
446 446 metadata - json of madrigal metadata (kinst, kindat, catalog and header)
447 447 '''
448 448 if not self.isConfig:
449 449 self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs)
450 450 self.isConfig = True
451 451
452 452 self.dataOut = dataOut
453 453 self.putData()
454 454 return
455 455
456 456 def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs):
457 457 '''
458 458 Configure Operation
459 459 '''
460 460
461 461 self.path = path
462 462 self.blocks = kwargs.get('blocks', None)
463 463 self.counter = 0
464 464 self.oneDDict = load_json(oneDDict)
465 465 self.twoDDict = load_json(twoDDict)
466 466 self.ind2DList = load_json(ind2DList)
467 467 meta = load_json(metadata)
468 468 self.kinst = meta.get('kinst')
469 469 self.kindat = meta.get('kindat')
470 470 self.catalog = meta.get('catalog', DEF_CATALOG)
471 471 self.header = meta.get('header', DEF_HEADER)
472 472 if format == 'cedar':
473 473 self.ext = '.dat'
474 474 self.extra_args = {}
475 475 elif format == 'hdf5':
476 476 self.ext = '.hdf5'
477 477 self.extra_args = {'ind2DList': self.ind2DList}
478 478
479 479 self.keys = [k.lower() for k in self.twoDDict]
480 480 if 'range' in self.keys:
481 481 self.keys.remove('range')
482 482 if 'gdalt' in self.keys:
483 483 self.keys.remove('gdalt')
484 484
485 485 def setFile(self):
486 486 '''
487 487 Create new cedar file object
488 488 '''
489 489
490 490 self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal
491 491 date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
492 492
493 493 filename = '{}{}{}'.format(self.mnemonic,
494 494 date.strftime('%Y%m%d_%H%M%S'),
495 495 self.ext)
496 496
497 497 self.fullname = os.path.join(self.path, filename)
498 498
499 499 if os.path.isfile(self.fullname) :
500 500 log.warning(
501 501 'Destination file {} already exists, previous file deleted.'.format(
502 502 self.fullname),
503 503 'MADWriter')
504 504 os.remove(self.fullname)
505 505
506 506 try:
507 507 log.success(
508 508 'Creating file: {}'.format(self.fullname),
509 509 'MADWriter')
510 510 self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True)
511 511 except ValueError as e:
512 512 log.error(
513 513 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"',
514 514 'MADWriter')
515 515 return
516 516
517 517 return 1
518 518
519 519 def writeBlock(self):
520 520 '''
521 521 Add data records to cedar file taking data from oneDDict and twoDDict
522 522 attributes.
523 523 Allowed parameters in: parcodes.tab
524 524 '''
525 525
526 526 startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
527 527 endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
528 528 heights = self.dataOut.heightList
529 529
530 530 if self.ext == '.dat':
531 531 for key, value in list(self.twoDDict.items()):
532 532 if isinstance(value, str):
533 533 data = getattr(self.dataOut, value)
534 534 invalid = numpy.isnan(data)
535 535 data[invalid] = self.missing
536 536 elif isinstance(value, (tuple, list)):
537 537 attr, key = value
538 538 data = getattr(self.dataOut, attr)
539 539 invalid = numpy.isnan(data)
540 540 data[invalid] = self.missing
541 541
542 542 out = {}
543 543 for key, value in list(self.twoDDict.items()):
544 544 key = key.lower()
545 545 if isinstance(value, str):
546 546 if 'db' in value.lower():
547 547 tmp = getattr(self.dataOut, value.replace('_db', ''))
548 548 SNRavg = numpy.average(tmp, axis=0)
549 549 tmp = 10*numpy.log10(SNRavg)
550 550 else:
551 551 tmp = getattr(self.dataOut, value)
552 552 out[key] = tmp.flatten()
553 553 elif isinstance(value, (tuple, list)):
554 554 attr, x = value
555 555 data = getattr(self.dataOut, attr)
556 556 out[key] = data[int(x)]
557 557
558 558 a = numpy.array([out[k] for k in self.keys])
559 559 nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))])
560 560 index = numpy.where(nrows == False)[0]
561 561
562 562 rec = madrigal.cedar.MadrigalDataRecord(
563 563 self.kinst,
564 564 self.kindat,
565 565 startTime.year,
566 566 startTime.month,
567 567 startTime.day,
568 568 startTime.hour,
569 569 startTime.minute,
570 570 startTime.second,
571 571 startTime.microsecond/10000,
572 572 endTime.year,
573 573 endTime.month,
574 574 endTime.day,
575 575 endTime.hour,
576 576 endTime.minute,
577 577 endTime.second,
578 578 endTime.microsecond/10000,
579 579 list(self.oneDDict.keys()),
580 580 list(self.twoDDict.keys()),
581 581 len(index),
582 582 **self.extra_args
583 583 )
584 584
585 585 # Setting 1d values
586 586 for key in self.oneDDict:
587 587 rec.set1D(key, getattr(self.dataOut, self.oneDDict[key]))
588 588
589 589 # Setting 2d values
590 590 nrec = 0
591 591 for n in index:
592 592 for key in out:
593 593 rec.set2D(key, nrec, out[key][n])
594 594 nrec += 1
595 595
596 596 self.fp.append(rec)
597 597 if self.ext == '.hdf5' and self.counter % 500 == 0 and self.counter > 0:
598 598 self.fp.dump()
599 599 if self.counter % 100 == 0 and self.counter > 0:
600 600 log.log(
601 601 'Writing {} records'.format(
602 602 self.counter),
603 603 'MADWriter')
604 604
605 605 def setHeader(self):
606 606 '''
607 607 Create an add catalog and header to cedar file
608 608 '''
609 609
610 610 log.success('Closing file {}'.format(self.fullname), 'MADWriter')
611 611
612 612 if self.ext == '.dat':
613 613 self.fp.write()
614 614 else:
615 615 self.fp.dump()
616 616 self.fp.close()
617 617
618 618 header = madrigal.cedar.CatalogHeaderCreator(self.fullname)
619 619 header.createCatalog(**self.catalog)
620 620 header.createHeader(**self.header)
621 621 header.write()
622 622
623 623 def putData(self):
624 624
625 625 if self.dataOut.flagNoData:
626 626 return 0
627 627
628 628 if self.dataOut.flagDiscontinuousBlock or self.counter == self.blocks:
629 629 if self.counter > 0:
630 630 self.setHeader()
631 631 self.counter = 0
632 632
633 633 if self.counter == 0:
634 634 self.setFile()
635 635
636 636 self.writeBlock()
637 637 self.counter += 1
638 638
639 639 def close(self):
640 640
641 641 if self.counter > 0:
642 642 self.setHeader() No newline at end of file
@@ -1,3856 +1,3857
1 1 import numpy
2 2 import math
3 3 from scipy import optimize, interpolate, signal, stats, ndimage
4 4 import scipy
5 5 import re
6 6 import datetime
7 7 import copy
8 8 import sys
9 9 import importlib
10 10 import itertools
11 11 from multiprocessing import Pool, TimeoutError
12 12 from multiprocessing.pool import ThreadPool
13 13 import time
14 14
15 15 from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters
16 16 from .jroproc_base import ProcessingUnit, Operation, MPDecorator
17 17 from schainpy.model.data.jrodata import Parameters, hildebrand_sekhon
18 18 from scipy import asarray as ar,exp
19 19 from scipy.optimize import curve_fit
20 20 from schainpy.utils import log
21 21 import warnings
22 22 from numpy import NaN
23 23 from scipy.optimize.optimize import OptimizeWarning
24 24 warnings.filterwarnings('ignore')
25 25
26 26
27 27 SPEED_OF_LIGHT = 299792458
28 28
29 29
30 30 '''solving pickling issue'''
31 31
32 32 def _pickle_method(method):
33 33 func_name = method.__func__.__name__
34 34 obj = method.__self__
35 35 cls = method.__self__.__class__
36 36 return _unpickle_method, (func_name, obj, cls)
37 37
38 38 def _unpickle_method(func_name, obj, cls):
39 39 for cls in cls.mro():
40 40 try:
41 41 func = cls.__dict__[func_name]
42 42 except KeyError:
43 43 pass
44 44 else:
45 45 break
46 46 return func.__get__(obj, cls)
47 47
48 48 @MPDecorator
49 49 class ParametersProc(ProcessingUnit):
50 50
51 51 METHODS = {}
52 52 nSeconds = None
53 53
54 54 def __init__(self):
55 55 ProcessingUnit.__init__(self)
56 56
57 57 # self.objectDict = {}
58 58 self.buffer = None
59 59 self.firstdatatime = None
60 60 self.profIndex = 0
61 61 self.dataOut = Parameters()
62 62 self.setupReq = False #Agregar a todas las unidades de proc
63 63
64 64 def __updateObjFromInput(self):
65 65
66 66 self.dataOut.inputUnit = self.dataIn.type
67 67
68 68 self.dataOut.timeZone = self.dataIn.timeZone
69 69 self.dataOut.dstFlag = self.dataIn.dstFlag
70 70 self.dataOut.errorCount = self.dataIn.errorCount
71 71 self.dataOut.useLocalTime = self.dataIn.useLocalTime
72 72
73 73 self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy()
74 74 self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy()
75 75 self.dataOut.channelList = self.dataIn.channelList
76 76 self.dataOut.heightList = self.dataIn.heightList
77 77 self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')])
78 78 # self.dataOut.nHeights = self.dataIn.nHeights
79 79 # self.dataOut.nChannels = self.dataIn.nChannels
80 80 self.dataOut.nBaud = self.dataIn.nBaud
81 81 self.dataOut.nCode = self.dataIn.nCode
82 82 self.dataOut.code = self.dataIn.code
83 83 # self.dataOut.nProfiles = self.dataOut.nFFTPoints
84 84 self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock
85 85 # self.dataOut.utctime = self.firstdatatime
86 86 self.dataOut.utctime = self.dataIn.utctime
87 87 self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada
88 88 self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip
89 89 self.dataOut.nCohInt = self.dataIn.nCohInt
90 90 # self.dataOut.nIncohInt = 1
91 91 self.dataOut.ippSeconds = self.dataIn.ippSeconds
92 92 # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter
93 93 self.dataOut.timeInterval1 = self.dataIn.timeInterval
94 94 self.dataOut.heightList = self.dataIn.getHeiRange()
95 95 self.dataOut.frequency = self.dataIn.frequency
96 96 # self.dataOut.noise = self.dataIn.noise
97 97
98 98 def run(self):
99 99
100 100
101 101
102 102 #---------------------- Voltage Data ---------------------------
103 103
104 104 if self.dataIn.type == "Voltage":
105 105
106 106 self.__updateObjFromInput()
107 107 self.dataOut.data_pre = self.dataIn.data.copy()
108 108 self.dataOut.flagNoData = False
109 109 self.dataOut.utctimeInit = self.dataIn.utctime
110 110 self.dataOut.paramInterval = self.dataIn.nProfiles*self.dataIn.nCohInt*self.dataIn.ippSeconds
111 111 return
112 112
113 113 #---------------------- Spectra Data ---------------------------
114 114
115 115 if self.dataIn.type == "Spectra":
116 116
117 117 self.dataOut.data_pre = (self.dataIn.data_spc, self.dataIn.data_cspc)
118 118 self.dataOut.data_spc = self.dataIn.data_spc
119 119 self.dataOut.data_cspc = self.dataIn.data_cspc
120 120 self.dataOut.nProfiles = self.dataIn.nProfiles
121 121 self.dataOut.nIncohInt = self.dataIn.nIncohInt
122 122 self.dataOut.nFFTPoints = self.dataIn.nFFTPoints
123 123 self.dataOut.ippFactor = self.dataIn.ippFactor
124 124 self.dataOut.abscissaList = self.dataIn.getVelRange(1)
125 125 self.dataOut.spc_noise = self.dataIn.getNoise()
126 self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
126 self.dataOut.spc_range = (self.dataIn.getFreqRange(1) , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1))
127 127 # self.dataOut.normFactor = self.dataIn.normFactor
128 128 self.dataOut.pairsList = self.dataIn.pairsList
129 129 self.dataOut.groupList = self.dataIn.pairsList
130 130 self.dataOut.flagNoData = False
131 131
132 132 if hasattr(self.dataIn, 'ChanDist'): #Distances of receiver channels
133 133 self.dataOut.ChanDist = self.dataIn.ChanDist
134 134 else: self.dataOut.ChanDist = None
135 135
136 136 #if hasattr(self.dataIn, 'VelRange'): #Velocities range
137 137 # self.dataOut.VelRange = self.dataIn.VelRange
138 138 #else: self.dataOut.VelRange = None
139 139
140 140 if hasattr(self.dataIn, 'RadarConst'): #Radar Constant
141 141 self.dataOut.RadarConst = self.dataIn.RadarConst
142 142
143 143 if hasattr(self.dataIn, 'NPW'): #NPW
144 144 self.dataOut.NPW = self.dataIn.NPW
145 145
146 146 if hasattr(self.dataIn, 'COFA'): #COFA
147 147 self.dataOut.COFA = self.dataIn.COFA
148 148
149 149
150 150
151 151 #---------------------- Correlation Data ---------------------------
152 152
153 153 if self.dataIn.type == "Correlation":
154 154 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.dataIn.splitFunctions()
155 155
156 156 self.dataOut.data_pre = (self.dataIn.data_cf[acf_ind,:], self.dataIn.data_cf[ccf_ind,:,:])
157 157 self.dataOut.normFactor = (self.dataIn.normFactor[acf_ind,:], self.dataIn.normFactor[ccf_ind,:])
158 158 self.dataOut.groupList = (acf_pairs, ccf_pairs)
159 159
160 160 self.dataOut.abscissaList = self.dataIn.lagRange
161 161 self.dataOut.noise = self.dataIn.noise
162 162 self.dataOut.data_SNR = self.dataIn.SNR
163 163 self.dataOut.flagNoData = False
164 164 self.dataOut.nAvg = self.dataIn.nAvg
165 165
166 166 #---------------------- Parameters Data ---------------------------
167 167
168 168 if self.dataIn.type == "Parameters":
169 169 self.dataOut.copy(self.dataIn)
170 170 self.dataOut.flagNoData = False
171 171
172 172 return True
173 173
174 174 self.__updateObjFromInput()
175 175 self.dataOut.utctimeInit = self.dataIn.utctime
176 176 self.dataOut.paramInterval = self.dataIn.timeInterval
177 177
178 178 return
179 179
180 180
181 181 def target(tups):
182 182
183 183 obj, args = tups
184 184
185 185 return obj.FitGau(args)
186 186
187 187
188 188 class SpectralFilters(Operation):
189 189
190 190 '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR
191 191
192 192 LimitR : It is the limit in m/s of Rainfall
193 193 LimitW : It is the limit in m/s for Winds
194 194
195 195 Input:
196 196
197 197 self.dataOut.data_pre : SPC and CSPC
198 198 self.dataOut.spc_range : To select wind and rainfall velocities
199 199
200 200 Affected:
201 201
202 202 self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind
203 203 self.dataOut.spcparam_range : Used in SpcParamPlot
204 204 self.dataOut.SPCparam : Used in PrecipitationProc
205 205
206 206
207 207 '''
208 208
209 209 def __init__(self):
210 210 Operation.__init__(self)
211 211 self.i=0
212 212
213 213 def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5):
214 214
215 215
216 216 #Limite de vientos
217 217 LimitR = PositiveLimit
218 218 LimitN = NegativeLimit
219 219
220 220 self.spc = dataOut.data_pre[0].copy()
221 221 self.cspc = dataOut.data_pre[1].copy()
222 222
223 223 self.Num_Hei = self.spc.shape[2]
224 224 self.Num_Bin = self.spc.shape[1]
225 225 self.Num_Chn = self.spc.shape[0]
226 226
227 227 VelRange = dataOut.spc_range[2]
228 228 TimeRange = dataOut.spc_range[1]
229 229 FrecRange = dataOut.spc_range[0]
230 230
231 231 Vmax= 2*numpy.max(dataOut.spc_range[2])
232 232 Tmax= 2*numpy.max(dataOut.spc_range[1])
233 233 Fmax= 2*numpy.max(dataOut.spc_range[0])
234 234
235 235 Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()]
236 236 Breaker1R=numpy.where(VelRange == Breaker1R)
237 237
238 238 Delta = self.Num_Bin/2 - Breaker1R[0]
239 239
240 240
241 241 '''Reacomodando SPCrange'''
242 242
243 VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0)
243 VelRange=numpy.roll(VelRange,-(int(self.Num_Bin/2)) ,axis=0)
244 244
245 VelRange[-(self.Num_Bin/2):]+= Vmax
245 VelRange[-(int(self.Num_Bin/2)):]+= Vmax
246 246
247 FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0)
247 FrecRange=numpy.roll(FrecRange,-(int(self.Num_Bin/2)),axis=0)
248 248
249 FrecRange[-(self.Num_Bin/2):]+= Fmax
249 FrecRange[-(int(self.Num_Bin/2)):]+= Fmax
250 250
251 TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0)
251 TimeRange=numpy.roll(TimeRange,-(int(self.Num_Bin/2)),axis=0)
252 252
253 TimeRange[-(self.Num_Bin/2):]+= Tmax
253 TimeRange[-(int(self.Num_Bin/2)):]+= Tmax
254 254
255 255 ''' ------------------ '''
256 256
257 257 Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()]
258 258 Breaker2R=numpy.where(VelRange == Breaker2R)
259 259
260 260
261 SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1)
261 SPCroll = numpy.roll(self.spc,-(int(self.Num_Bin/2)) ,axis=1)
262 262
263 263 SPCcut = SPCroll.copy()
264 264 for i in range(self.Num_Chn):
265 265
266 266 SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i]
267 267 SPCcut[i,-int(Delta):,:] = dataOut.noise[i]
268 268
269 269 SPCcut[i]=SPCcut[i]- dataOut.noise[i]
270 270 SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20
271 271
272 272 SPCroll[i]=SPCroll[i]-dataOut.noise[i]
273 273 SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20
274 274
275 275 SPC_ch1 = SPCroll
276 276
277 277 SPC_ch2 = SPCcut
278 278
279 279 SPCparam = (SPC_ch1, SPC_ch2, self.spc)
280 280 dataOut.SPCparam = numpy.asarray(SPCparam)
281 281
282 282
283 283 dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1])
284 284
285 285 dataOut.spcparam_range[2]=VelRange
286 286 dataOut.spcparam_range[1]=TimeRange
287 287 dataOut.spcparam_range[0]=FrecRange
288
288 return dataOut
289 289
290 290 class GaussianFit(Operation):
291 291
292 292 '''
293 293 Function that fit of one and two generalized gaussians (gg) based
294 294 on the PSD shape across an "power band" identified from a cumsum of
295 295 the measured spectrum - noise.
296 296
297 297 Input:
298 298 self.dataOut.data_pre : SelfSpectra
299 299
300 300 Output:
301 301 self.dataOut.SPCparam : SPC_ch1, SPC_ch2
302 302
303 303 '''
304 304 def __init__(self):
305 305 Operation.__init__(self)
306 306 self.i=0
307 307
308 308
309 309 def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points
310 310 """This routine will find a couple of generalized Gaussians to a power spectrum
311 311 input: spc
312 312 output:
313 313 Amplitude0,shift0,width0,p0,Amplitude1,shift1,width1,p1,noise
314 314 """
315 315
316 316 self.spc = dataOut.data_pre[0].copy()
317 317 self.Num_Hei = self.spc.shape[2]
318 318 self.Num_Bin = self.spc.shape[1]
319 319 self.Num_Chn = self.spc.shape[0]
320 320 Vrange = dataOut.abscissaList
321 321
322 322 GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei])
323 323 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
324 324 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
325 325 SPC_ch1[:] = numpy.NaN
326 326 SPC_ch2[:] = numpy.NaN
327 327
328 328
329 329 start_time = time.time()
330 330
331 331 noise_ = dataOut.spc_noise[0].copy()
332 332
333 333
334 334 pool = Pool(processes=self.Num_Chn)
335 335 args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)]
336 336 objs = [self for __ in range(self.Num_Chn)]
337 337 attrs = list(zip(objs, args))
338 338 gauSPC = pool.map(target, attrs)
339 339 dataOut.SPCparam = numpy.asarray(SPCparam)
340 340
341 341 ''' Parameters:
342 342 1. Amplitude
343 343 2. Shift
344 344 3. Width
345 345 4. Power
346 346 '''
347 347
348 348 def FitGau(self, X):
349 349
350 350 Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X
351 351
352 352 SPCparam = []
353 353 SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei])
354 354 SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei])
355 355 SPC_ch1[:] = 0#numpy.NaN
356 356 SPC_ch2[:] = 0#numpy.NaN
357 357
358 358
359 359
360 360 for ht in range(self.Num_Hei):
361 361
362 362
363 363 spc = numpy.asarray(self.spc)[ch,:,ht]
364 364
365 365 #############################################
366 366 # normalizing spc and noise
367 367 # This part differs from gg1
368 368 spc_norm_max = max(spc)
369 369 #spc = spc / spc_norm_max
370 370 pnoise = pnoise #/ spc_norm_max
371 371 #############################################
372 372
373 373 fatspectra=1.0
374 374
375 375 wnoise = noise_ #/ spc_norm_max
376 376 #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used
377 377 #if wnoise>1.1*pnoise: # to be tested later
378 378 # wnoise=pnoise
379 379 noisebl=wnoise*0.9;
380 380 noisebh=wnoise*1.1
381 381 spc=spc-wnoise
382 382
383 383 minx=numpy.argmin(spc)
384 384 #spcs=spc.copy()
385 385 spcs=numpy.roll(spc,-minx)
386 386 cum=numpy.cumsum(spcs)
387 387 tot_noise=wnoise * self.Num_Bin #64;
388 388
389 389 snr = sum(spcs)/tot_noise
390 390 snrdB=10.*numpy.log10(snr)
391 391
392 392 if snrdB < SNRlimit :
393 393 snr = numpy.NaN
394 394 SPC_ch1[:,ht] = 0#numpy.NaN
395 395 SPC_ch1[:,ht] = 0#numpy.NaN
396 396 SPCparam = (SPC_ch1,SPC_ch2)
397 397 continue
398 398
399 399
400 400 #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4:
401 401 # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None
402 402
403 403 cummax=max(cum);
404 404 epsi=0.08*fatspectra # cumsum to narrow down the energy region
405 405 cumlo=cummax*epsi;
406 406 cumhi=cummax*(1-epsi)
407 407 powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0])
408 408
409 409
410 410 if len(powerindex) < 1:# case for powerindex 0
411 411 continue
412 412 powerlo=powerindex[0]
413 413 powerhi=powerindex[-1]
414 414 powerwidth=powerhi-powerlo
415 415
416 416 firstpeak=powerlo+powerwidth/10.# first gaussian energy location
417 417 secondpeak=powerhi-powerwidth/10.#second gaussian energy location
418 418 midpeak=(firstpeak+secondpeak)/2.
419 419 firstamp=spcs[int(firstpeak)]
420 420 secondamp=spcs[int(secondpeak)]
421 421 midamp=spcs[int(midpeak)]
422 422
423 423 x=numpy.arange( self.Num_Bin )
424 424 y_data=spc+wnoise
425 425
426 426 ''' single Gaussian '''
427 427 shift0=numpy.mod(midpeak+minx, self.Num_Bin )
428 428 width0=powerwidth/4.#Initialization entire power of spectrum divided by 4
429 429 power0=2.
430 430 amplitude0=midamp
431 431 state0=[shift0,width0,amplitude0,power0,wnoise]
432 432 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh))
433 433 lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True)
434 434
435 435 chiSq1=lsq1[1];
436 436
437 437
438 438 if fatspectra<1.0 and powerwidth<4:
439 439 choice=0
440 440 Amplitude0=lsq1[0][2]
441 441 shift0=lsq1[0][0]
442 442 width0=lsq1[0][1]
443 443 p0=lsq1[0][3]
444 444 Amplitude1=0.
445 445 shift1=0.
446 446 width1=0.
447 447 p1=0.
448 448 noise=lsq1[0][4]
449 449 #return (numpy.array([shift0,width0,Amplitude0,p0]),
450 450 # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice)
451 451
452 452 ''' two gaussians '''
453 453 #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64)
454 454 shift0=numpy.mod(firstpeak+minx, self.Num_Bin );
455 455 shift1=numpy.mod(secondpeak+minx, self.Num_Bin )
456 456 width0=powerwidth/6.;
457 457 width1=width0
458 458 power0=2.;
459 459 power1=power0
460 460 amplitude0=firstamp;
461 461 amplitude1=secondamp
462 462 state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise]
463 463 #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
464 464 bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh))
465 465 #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5))
466 466
467 467 lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True )
468 468
469 469
470 470 chiSq2=lsq2[1];
471 471
472 472
473 473
474 474 oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10)
475 475
476 476 if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error
477 477 if oneG:
478 478 choice=0
479 479 else:
480 480 w1=lsq2[0][1]; w2=lsq2[0][5]
481 481 a1=lsq2[0][2]; a2=lsq2[0][6]
482 482 p1=lsq2[0][3]; p2=lsq2[0][7]
483 483 s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1;
484 484 s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2;
485 485 gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling
486 486
487 487 if gp1>gp2:
488 488 if a1>0.7*a2:
489 489 choice=1
490 490 else:
491 491 choice=2
492 492 elif gp2>gp1:
493 493 if a2>0.7*a1:
494 494 choice=2
495 495 else:
496 496 choice=1
497 497 else:
498 498 choice=numpy.argmax([a1,a2])+1
499 499 #else:
500 500 #choice=argmin([std2a,std2b])+1
501 501
502 502 else: # with low SNR go to the most energetic peak
503 503 choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]])
504 504
505 505
506 506 shift0=lsq2[0][0];
507 507 vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0])
508 508 shift1=lsq2[0][4];
509 509 vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0])
510 510
511 511 max_vel = 1.0
512 512
513 513 #first peak will be 0, second peak will be 1
514 514 if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range
515 515 shift0=lsq2[0][0]
516 516 width0=lsq2[0][1]
517 517 Amplitude0=lsq2[0][2]
518 518 p0=lsq2[0][3]
519 519
520 520 shift1=lsq2[0][4]
521 521 width1=lsq2[0][5]
522 522 Amplitude1=lsq2[0][6]
523 523 p1=lsq2[0][7]
524 524 noise=lsq2[0][8]
525 525 else:
526 526 shift1=lsq2[0][0]
527 527 width1=lsq2[0][1]
528 528 Amplitude1=lsq2[0][2]
529 529 p1=lsq2[0][3]
530 530
531 531 shift0=lsq2[0][4]
532 532 width0=lsq2[0][5]
533 533 Amplitude0=lsq2[0][6]
534 534 p0=lsq2[0][7]
535 535 noise=lsq2[0][8]
536 536
537 537 if Amplitude0<0.05: # in case the peak is noise
538 538 shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN]
539 539 if Amplitude1<0.05:
540 540 shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN]
541 541
542 542
543 543 SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0
544 544 SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1
545 545 SPCparam = (SPC_ch1,SPC_ch2)
546 546
547 547
548 548 return GauSPC
549 549
550 550 def y_model1(self,x,state):
551 551 shift0,width0,amplitude0,power0,noise=state
552 552 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
553 553
554 554 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
555 555
556 556 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
557 557 return model0+model0u+model0d+noise
558 558
559 559 def y_model2(self,x,state): #Equation for two generalized Gaussians with Nyquist
560 560 shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,noise=state
561 561 model0=amplitude0*numpy.exp(-0.5*abs((x-shift0)/width0)**power0)
562 562
563 563 model0u=amplitude0*numpy.exp(-0.5*abs((x-shift0- self.Num_Bin )/width0)**power0)
564 564
565 565 model0d=amplitude0*numpy.exp(-0.5*abs((x-shift0+ self.Num_Bin )/width0)**power0)
566 566 model1=amplitude1*numpy.exp(-0.5*abs((x-shift1)/width1)**power1)
567 567
568 568 model1u=amplitude1*numpy.exp(-0.5*abs((x-shift1- self.Num_Bin )/width1)**power1)
569 569
570 570 model1d=amplitude1*numpy.exp(-0.5*abs((x-shift1+ self.Num_Bin )/width1)**power1)
571 571 return model0+model0u+model0d+model1+model1u+model1d+noise
572 572
573 573 def misfit1(self,state,y_data,x,num_intg): # This function compares how close real data is with the model data, the close it is, the better it is.
574 574
575 575 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model1(x,state)))**2)#/(64-5.) # /(64-5.) can be commented
576 576
577 577 def misfit2(self,state,y_data,x,num_intg):
578 578 return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.)
579 579
580 580
581 581
582 582 class PrecipitationProc(Operation):
583 583
584 584 '''
585 585 Operator that estimates Reflectivity factor (Z), and estimates rainfall Rate (R)
586 586
587 587 Input:
588 588 self.dataOut.data_pre : SelfSpectra
589 589
590 590 Output:
591 591
592 592 self.dataOut.data_output : Reflectivity factor, rainfall Rate
593 593
594 594
595 595 Parameters affected:
596 596 '''
597 597
598 598 def __init__(self):
599 599 Operation.__init__(self)
600 600 self.i=0
601 601
602 602
603 603 def gaus(self,xSamples,Amp,Mu,Sigma):
604 604 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
605 605
606 606
607 607
608 608 def Moments(self, ySamples, xSamples):
609 609 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
610 610 yNorm = ySamples / Pot
611 611
612 612 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
613 613 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
614 614 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
615 615
616 616 return numpy.array([Pot, Vr, Desv])
617 617
618 618 def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118,
619 619 tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350):
620 620
621 621
622 622 Velrange = dataOut.spcparam_range[2]
623 623 FrecRange = dataOut.spcparam_range[0]
624 624
625 625 dV= Velrange[1]-Velrange[0]
626 626 dF= FrecRange[1]-FrecRange[0]
627 627
628 628 if radar == "MIRA35C" :
629 629
630 630 self.spc = dataOut.data_pre[0].copy()
631 631 self.Num_Hei = self.spc.shape[2]
632 632 self.Num_Bin = self.spc.shape[1]
633 633 self.Num_Chn = self.spc.shape[0]
634 634 Ze = self.dBZeMODE2(dataOut)
635 635
636 636 else:
637 637
638 638 self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() #
639 639
640 640 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
641 641
642 642 self.spc[:,:,0:7]= numpy.NaN
643 643
644 644 """##########################################"""
645 645
646 646 self.Num_Hei = self.spc.shape[2]
647 647 self.Num_Bin = self.spc.shape[1]
648 648 self.Num_Chn = self.spc.shape[0]
649 649
650 650 ''' Se obtiene la constante del RADAR '''
651 651
652 652 self.Pt = Pt
653 653 self.Gt = Gt
654 654 self.Gr = Gr
655 655 self.Lambda = Lambda
656 656 self.aL = aL
657 657 self.tauW = tauW
658 658 self.ThetaT = ThetaT
659 659 self.ThetaR = ThetaR
660 660
661 661 Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
662 662 Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR)
663 RadarConstant = 5e-26 * Numerator / Denominator #
663 RadarConstant = 10e-26 * Numerator / Denominator #
664 664
665 665 ''' ============================= '''
666 666
667 667 self.spc[0] = (self.spc[0]-dataOut.noise[0])
668 668 self.spc[1] = (self.spc[1]-dataOut.noise[1])
669 669 self.spc[2] = (self.spc[2]-dataOut.noise[2])
670 670
671 671 self.spc[ numpy.where(self.spc < 0)] = 0
672 672
673 673 SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise))
674 674 SPCmean[ numpy.where(SPCmean < 0)] = 0
675 675
676 676 ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei])
677 677 ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei])
678 678 ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei])
679 679
680 680 Pr = SPCmean[:,:]
681 681
682 682 VelMeteoro = numpy.mean(SPCmean,axis=0)
683 683
684 684 D_range = numpy.zeros([self.Num_Bin,self.Num_Hei])
685 685 SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei])
686 686 N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei])
687 687 V_mean = numpy.zeros(self.Num_Hei)
688 688 del_V = numpy.zeros(self.Num_Hei)
689 689 Z = numpy.zeros(self.Num_Hei)
690 690 Ze = numpy.zeros(self.Num_Hei)
691 691 RR = numpy.zeros(self.Num_Hei)
692 692
693 693 Range = dataOut.heightList*1000.
694 694
695 695 for R in range(self.Num_Hei):
696 696
697 697 h = Range[R] + Altitude #Range from ground to radar pulse altitude
698 698 del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity
699 699
700 700 D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3
701 701
702 702 '''NOTA: ETA(n) dn = ETA(f) df
703 703
704 704 dn = 1 Diferencial de muestreo
705 705 df = ETA(n) / ETA(f)
706 706
707 707 '''
708 708
709 709 ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA)
710 710
711 711 ETAv[:,R]=ETAn[:,R]/dV
712 712
713 713 ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R])
714 714
715 715 SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma)
716 716
717 717 N_dist[:,R] = ETAn[:,R] / SIGMA[:,R]
718 718
719 719 DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin])
720 720
721 721 try:
722 722 popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments)
723 723 except:
724 724 popt01=numpy.zeros(3)
725 725 popt01[1]= DMoments[1]
726 726
727 727 if popt01[1]<0 or popt01[1]>20:
728 728 popt01[1]=numpy.NaN
729 729
730 730
731 731 V_mean[R]=popt01[1]
732 732
733 733 Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18
734 734
735 735 RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate
736 736
737 737 Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km)
738 738
739 739
740 740
741 741 RR2 = (Z/200)**(1/1.6)
742 742 dBRR = 10*numpy.log10(RR)
743 743 dBRR2 = 10*numpy.log10(RR2)
744 744
745 745 dBZe = 10*numpy.log10(Ze)
746 746 dBZ = 10*numpy.log10(Z)
747 747
748 748 dataOut.data_output = RR[8]
749 749 dataOut.data_param = numpy.ones([3,self.Num_Hei])
750 750 dataOut.channelList = [0,1,2]
751 751
752 752 dataOut.data_param[0]=dBZ
753 753 dataOut.data_param[1]=V_mean
754 754 dataOut.data_param[2]=RR
755 755
756 return dataOut
756 757
757 758 def dBZeMODE2(self, dataOut): # Processing for MIRA35C
758 759
759 760 NPW = dataOut.NPW
760 761 COFA = dataOut.COFA
761 762
762 763 SNR = numpy.array([self.spc[0,:,:] / NPW[0]]) #, self.spc[1,:,:] / NPW[1]])
763 764 RadarConst = dataOut.RadarConst
764 765 #frequency = 34.85*10**9
765 766
766 767 ETA = numpy.zeros(([self.Num_Chn ,self.Num_Hei]))
767 768 data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN
768 769
769 770 ETA = numpy.sum(SNR,1)
770 771
771 772 ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN)
772 773
773 774 Ze = numpy.ones([self.Num_Chn, self.Num_Hei] )
774 775
775 776 for r in range(self.Num_Hei):
776 777
777 778 Ze[0,r] = ( ETA[0,r] ) * COFA[0,r][0] * RadarConst * ((r/5000.)**2)
778 779 #Ze[1,r] = ( ETA[1,r] ) * COFA[1,r][0] * RadarConst * ((r/5000.)**2)
779 780
780 781 return Ze
781 782
782 783 # def GetRadarConstant(self):
783 784 #
784 785 # """
785 786 # Constants:
786 787 #
787 788 # Pt: Transmission Power dB 5kW 5000
788 789 # Gt: Transmission Gain dB 24.7 dB 295.1209
789 790 # Gr: Reception Gain dB 18.5 dB 70.7945
790 791 # Lambda: Wavelenght m 0.6741 m 0.6741
791 792 # aL: Attenuation loses dB 4dB 2.5118
792 793 # tauW: Width of transmission pulse s 4us 4e-6
793 794 # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317
794 795 # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087
795 796 #
796 797 # """
797 798 #
798 799 # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) )
799 800 # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR)
800 801 # RadarConstant = Numerator / Denominator
801 802 #
802 803 # return RadarConstant
803 804
804 805
805 806
806 807 class FullSpectralAnalysis(Operation):
807 808
808 809 """
809 810 Function that implements Full Spectral Analisys technique.
810 811
811 812 Input:
812 813 self.dataOut.data_pre : SelfSpectra and CrossSPectra data
813 814 self.dataOut.groupList : Pairlist of channels
814 815 self.dataOut.ChanDist : Physical distance between receivers
815 816
816 817
817 818 Output:
818 819
819 820 self.dataOut.data_output : Zonal wind, Meridional wind and Vertical wind
820 821
821 822
822 823 Parameters affected: Winds, height range, SNR
823 824
824 825 """
825 826 def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7):
826 827
827 828 self.indice=int(numpy.random.rand()*1000)
828 829
829 830 spc = dataOut.data_pre[0].copy()
830 831 cspc = dataOut.data_pre[1]
831 832
832 833 """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX"""
833 834
834 835 SNRspc = spc.copy()
835 836 SNRspc[:,:,0:7]= numpy.NaN
836 837
837 838 """##########################################"""
838 839
839 840
840 841 nChannel = spc.shape[0]
841 842 nProfiles = spc.shape[1]
842 843 nHeights = spc.shape[2]
843 844
844 845 pairsList = dataOut.groupList
845 846 if dataOut.ChanDist is not None :
846 847 ChanDist = dataOut.ChanDist
847 848 else:
848 849 ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]])
849 850
850 851 FrecRange = dataOut.spc_range[0]
851 852
852 853 ySamples=numpy.ones([nChannel,nProfiles])
853 854 phase=numpy.ones([nChannel,nProfiles])
854 855 CSPCSamples=numpy.ones([nChannel,nProfiles],dtype=numpy.complex_)
855 856 coherence=numpy.ones([nChannel,nProfiles])
856 857 PhaseSlope=numpy.ones(nChannel)
857 858 PhaseInter=numpy.ones(nChannel)
858 859 data_SNR=numpy.zeros([nProfiles])
859 860
860 861 data = dataOut.data_pre
861 862 noise = dataOut.noise
862 863
863 864 dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0]
864 865
865 866 dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20
866 867
867 868
868 869 data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN
869 870
870 871 velocityX=[]
871 872 velocityY=[]
872 873 velocityV=[]
873 874 PhaseLine=[]
874 875
875 876 dbSNR = 10*numpy.log10(dataOut.data_SNR)
876 877 dbSNR = numpy.average(dbSNR,0)
877 878
878 879 for Height in range(nHeights):
879 880
880 [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit)
881 [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range, dbSNR[Height], SNRlimit)
881 882 PhaseLine = numpy.append(PhaseLine, PhaseSlope)
882 883
883 884 if abs(Vzon)<100. and abs(Vzon)> 0.:
884 885 velocityX=numpy.append(velocityX, Vzon)#Vmag
885 886
886 887 else:
887 888 velocityX=numpy.append(velocityX, numpy.NaN)
888 889
889 890 if abs(Vmer)<100. and abs(Vmer) > 0.:
890 891 velocityY=numpy.append(velocityY, -Vmer)#Vang
891 892
892 893 else:
893 894 velocityY=numpy.append(velocityY, numpy.NaN)
894 895
895 896 if dbSNR[Height] > SNRlimit:
896 897 velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height])
897 898 else:
898 899 velocityV=numpy.append(velocityV, numpy.NaN)
899 900
900 901
901 902
902 903 '''Nota: Cambiar el signo de numpy.array(velocityX) cuando se intente procesar datos de BLTR'''
903 904 data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1)
904 905 data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1)
905 906 data_output[2] = velocityV#FirstMoment
906 907
907 908 xFrec=FrecRange[0:spc.shape[1]]
908 909
909 910 dataOut.data_output=data_output
910 911
911 return
912 return dataOut
912 913
913 914
914 915 def moving_average(self,x, N=2):
915 916 return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):]
916 917
917 918 def gaus(self,xSamples,Amp,Mu,Sigma):
918 919 return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) ))
919 920
920 921
921 922
922 923 def Moments(self, ySamples, xSamples):
923 924 Pot = numpy.nansum( ySamples ) # Potencia, momento 0
924 925 yNorm = ySamples / Pot
925 926 Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento
926 927 Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento
927 928 Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral
928 929
929 930 return numpy.array([Pot, Vr, Desv])
930 931
931 932 def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit):
932 933
933 934
934 935
935 936 ySamples=numpy.ones([spc.shape[0],spc.shape[1]])
936 937 phase=numpy.ones([spc.shape[0],spc.shape[1]])
937 938 CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_)
938 939 coherence=numpy.ones([spc.shape[0],spc.shape[1]])
939 940 PhaseSlope=numpy.zeros(spc.shape[0])
940 941 PhaseInter=numpy.ones(spc.shape[0])
941 942 xFrec=AbbsisaRange[0][0:spc.shape[1]]
942 943 xVel =AbbsisaRange[2][0:spc.shape[1]]
943 944 Vv=numpy.empty(spc.shape[2])*0
944 945 SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]#
945 946
946 947 SPCmoments = self.Moments(SPCav[:,Height], xVel )
947 948 CSPCmoments = []
948 949 cspcNoise = numpy.empty(3)
949 950
950 951 '''Getting Eij and Nij'''
951 952
952 953 Xi01=ChanDist[0][0]
953 954 Eta01=ChanDist[0][1]
954 955
955 956 Xi02=ChanDist[1][0]
956 957 Eta02=ChanDist[1][1]
957 958
958 959 Xi12=ChanDist[2][0]
959 960 Eta12=ChanDist[2][1]
960 961
961 962 z = spc.copy()
962 963 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
963 964
964 965 for i in range(spc.shape[0]):
965 966
966 967 '''****** Line of Data SPC ******'''
967 968 zline=z[i,:,Height].copy() - noise[i] # Se resta ruido
968 969
969 970 '''****** SPC is normalized ******'''
970 971 SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido
971 972 FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado
972 973
973 974 xSamples = xFrec # Se toma el rango de frecuncias
974 975 ySamples[i] = FactNorm # Se toman los valores de SPC normalizado
975 976
976 977 for i in range(spc.shape[0]):
977 978
978 979 '''****** Line of Data CSPC ******'''
979 980 cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido
980 981 SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido
981 982 cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado
982 983
983 984 '''****** CSPC is normalized with respect to Briggs and Vincent ******'''
984 985 chan_index0 = pairsList[i][0]
985 986 chan_index1 = pairsList[i][1]
986 987
987 988 CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2
988 989 CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor)
989 990
990 991 CSPCSamples[i] = CSPCNorm
991 992
992 993 coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor)
993 994
994 995 #coherence[i]= self.moving_average(coherence[i],N=1)
995 996
996 997 phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi
997 998
998 999 CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples),
999 1000 self.Moments(numpy.abs(CSPCSamples[1]), xSamples),
1000 1001 self.Moments(numpy.abs(CSPCSamples[2]), xSamples)])
1001 1002
1002 1003
1003 1004 popt=[1e-10,0,1e-10]
1004 1005 popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10]
1005 1006 FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0
1006 1007
1007 1008 CSPCMask01 = numpy.abs(CSPCSamples[0])
1008 1009 CSPCMask02 = numpy.abs(CSPCSamples[1])
1009 1010 CSPCMask12 = numpy.abs(CSPCSamples[2])
1010 1011
1011 1012 mask01 = ~numpy.isnan(CSPCMask01)
1012 1013 mask02 = ~numpy.isnan(CSPCMask02)
1013 1014 mask12 = ~numpy.isnan(CSPCMask12)
1014 1015
1015 1016 #mask = ~numpy.isnan(CSPCMask01)
1016 1017 CSPCMask01 = CSPCMask01[mask01]
1017 1018 CSPCMask02 = CSPCMask02[mask02]
1018 1019 CSPCMask12 = CSPCMask12[mask12]
1019 1020 #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01)
1020 1021
1021 1022
1022 1023
1023 1024 '''***Fit Gauss CSPC01***'''
1024 1025 if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 :
1025 1026 try:
1026 1027 popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0])
1027 1028 popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1])
1028 1029 popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2])
1029 1030 FitGauss01 = self.gaus(xSamples,*popt01)
1030 1031 FitGauss02 = self.gaus(xSamples,*popt02)
1031 1032 FitGauss12 = self.gaus(xSamples,*popt12)
1032 1033 except:
1033 1034 FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0]))
1034 1035 FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1]))
1035 1036 FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2]))
1036 1037
1037 1038
1038 1039 CSPCopt = numpy.vstack([popt01,popt02,popt12])
1039 1040
1040 1041 '''****** Getting fij width ******'''
1041 1042
1042 1043 yMean = numpy.average(ySamples, axis=0) # ySamples[0]
1043 1044
1044 1045 '''******* Getting fitting Gaussian *******'''
1045 1046 meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia)
1046 1047 sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia)
1047 1048
1048 1049 yMoments = self.Moments(yMean, xSamples)
1049 1050
1050 1051 if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001:
1051 1052 try:
1052 1053 popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments)
1053 1054 FitGauss=self.gaus(xSamples,*popt)
1054 1055
1055 1056 except :#RuntimeError:
1056 1057 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1057 1058
1058 1059
1059 1060 else:
1060 1061 FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean)
1061 1062
1062 1063
1063 1064
1064 1065 '''****** Getting Fij ******'''
1065 1066 Fijcspc = CSPCopt[:,2]/2*3
1066 1067
1067 1068
1068 1069 GaussCenter = popt[1] #xFrec[GCpos]
1069 1070 #Punto en Eje X de la Gaussiana donde se encuentra el centro
1070 1071 ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()]
1071 1072 PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0]
1072 1073
1073 1074 #Punto e^-1 hubicado en la Gaussiana
1074 1075 PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1)
1075 1076 FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss"
1076 1077 PointFij = numpy.where(FitGauss==FijClosest)[0][0]
1077 1078
1078 1079 if xSamples[PointFij] > xSamples[PointGauCenter]:
1079 1080 Fij = xSamples[PointFij] - xSamples[PointGauCenter]
1080 1081
1081 1082 else:
1082 1083 Fij = xSamples[PointGauCenter] - xSamples[PointFij]
1083 1084
1084 1085
1085 1086 '''****** Taking frequency ranges from SPCs ******'''
1086 1087
1087 1088
1088 1089 #GaussCenter = popt[1] #Primer momento 01
1089 1090 GauWidth = popt[2] *3/2 #Ancho de banda de Gau01
1090 1091 Range = numpy.empty(2)
1091 1092 Range[0] = GaussCenter - GauWidth
1092 1093 Range[1] = GaussCenter + GauWidth
1093 1094 #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max)
1094 1095 ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()]
1095 1096 ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()]
1096 1097
1097 1098 PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0]
1098 1099 PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0]
1099 1100
1100 1101 Range=numpy.array([ PointRangeMin, PointRangeMax ])
1101 1102
1102 1103 FrecRange = xFrec[ Range[0] : Range[1] ]
1103 1104 VelRange = xVel[ Range[0] : Range[1] ]
1104 1105
1105 1106
1106 1107 '''****** Getting SCPC Slope ******'''
1107 1108
1108 1109 for i in range(spc.shape[0]):
1109 1110
1110 1111 if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3:
1111 1112 PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3)
1112 1113
1113 1114 '''***********************VelRange******************'''
1114 1115
1115 1116 mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange)
1116 1117
1117 1118 if len(FrecRange) == len(PhaseRange):
1118 1119 try:
1119 1120 slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask])
1120 1121 PhaseSlope[i]=slope
1121 1122 PhaseInter[i]=intercept
1122 1123 except:
1123 1124 PhaseSlope[i]=0
1124 1125 PhaseInter[i]=0
1125 1126 else:
1126 1127 PhaseSlope[i]=0
1127 1128 PhaseInter[i]=0
1128 1129 else:
1129 1130 PhaseSlope[i]=0
1130 1131 PhaseInter[i]=0
1131 1132
1132 1133
1133 1134 '''Getting constant C'''
1134 1135 cC=(Fij*numpy.pi)**2
1135 1136
1136 1137 '''****** Getting constants F and G ******'''
1137 1138 MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]])
1138 1139 MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi)
1139 1140 MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi)
1140 1141 MijResults=numpy.array([MijResult0,MijResult1])
1141 1142 (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults)
1142 1143
1143 1144 '''****** Getting constants A, B and H ******'''
1144 1145 W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0]))
1145 1146 W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1]))
1146 1147 W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2]))
1147 1148
1148 1149 WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC))
1149 1150 WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC))
1150 1151 WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC))
1151 1152
1152 1153 WijResults=numpy.array([WijResult0, WijResult1, WijResult2])
1153 1154
1154 1155 WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ])
1155 1156 (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults)
1156 1157
1157 1158 VxVy=numpy.array([[cA,cH],[cH,cB]])
1158 1159 VxVyResults=numpy.array([-cF,-cG])
1159 1160 (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults)
1160 1161
1161 1162 Vzon = Vy
1162 1163 Vmer = Vx
1163 1164 Vmag=numpy.sqrt(Vzon**2+Vmer**2)
1164 1165 Vang=numpy.arctan2(Vmer,Vzon)
1165 1166 if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4:
1166 1167 Vver=popt[1]
1167 1168 else:
1168 1169 Vver=numpy.NaN
1169 1170 FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12])
1170 1171
1171 1172
1172 1173 return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC
1173 1174
1174 1175 class SpectralMoments(Operation):
1175 1176
1176 1177 '''
1177 1178 Function SpectralMoments()
1178 1179
1179 1180 Calculates moments (power, mean, standard deviation) and SNR of the signal
1180 1181
1181 1182 Type of dataIn: Spectra
1182 1183
1183 1184 Configuration Parameters:
1184 1185
1185 1186 dirCosx : Cosine director in X axis
1186 1187 dirCosy : Cosine director in Y axis
1187 1188
1188 1189 elevation :
1189 1190 azimuth :
1190 1191
1191 1192 Input:
1192 1193 channelList : simple channel list to select e.g. [2,3,7]
1193 1194 self.dataOut.data_pre : Spectral data
1194 1195 self.dataOut.abscissaList : List of frequencies
1195 1196 self.dataOut.noise : Noise level per channel
1196 1197
1197 1198 Affected:
1198 1199 self.dataOut.moments : Parameters per channel
1199 1200 self.dataOut.data_SNR : SNR per channel
1200 1201
1201 1202 '''
1202 1203
1203 1204 def run(self, dataOut):
1204 1205
1205 1206 #dataOut.data_pre = dataOut.data_pre[0]
1206 1207 data = dataOut.data_pre[0]
1207 1208 absc = dataOut.abscissaList[:-1]
1208 1209 noise = dataOut.noise
1209 1210 nChannel = data.shape[0]
1210 1211 data_param = numpy.zeros((nChannel, 4, data.shape[2]))
1211 1212
1212 1213 for ind in range(nChannel):
1213 1214 data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] )
1214 1215
1215 1216 dataOut.moments = data_param[:,1:,:]
1216 1217 dataOut.data_SNR = data_param[:,0]
1217 1218 dataOut.data_DOP = data_param[:,1]
1218 1219 dataOut.data_MEAN = data_param[:,2]
1219 1220 dataOut.data_STD = data_param[:,3]
1220 1221 return dataOut
1221 1222
1222 1223 def __calculateMoments(self, oldspec, oldfreq, n0,
1223 1224 nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None):
1224 1225
1225 1226 if (nicoh is None): nicoh = 1
1226 1227 if (graph is None): graph = 0
1227 1228 if (smooth is None): smooth = 0
1228 1229 elif (self.smooth < 3): smooth = 0
1229 1230
1230 1231 if (type1 is None): type1 = 0
1231 1232 if (fwindow is None): fwindow = numpy.zeros(oldfreq.size) + 1
1232 1233 if (snrth is None): snrth = -3
1233 1234 if (dc is None): dc = 0
1234 1235 if (aliasing is None): aliasing = 0
1235 1236 if (oldfd is None): oldfd = 0
1236 1237 if (wwauto is None): wwauto = 0
1237 1238
1238 1239 if (n0 < 1.e-20): n0 = 1.e-20
1239 1240
1240 1241 freq = oldfreq
1241 1242 vec_power = numpy.zeros(oldspec.shape[1])
1242 1243 vec_fd = numpy.zeros(oldspec.shape[1])
1243 1244 vec_w = numpy.zeros(oldspec.shape[1])
1244 1245 vec_snr = numpy.zeros(oldspec.shape[1])
1245 1246
1246 1247 oldspec = numpy.ma.masked_invalid(oldspec)
1247 1248
1248 1249 for ind in range(oldspec.shape[1]):
1249 1250
1250 1251 spec = oldspec[:,ind]
1251 1252 aux = spec*fwindow
1252 1253 max_spec = aux.max()
1253 1254 m = list(aux).index(max_spec)
1254 1255
1255 1256 #Smooth
1256 1257 if (smooth == 0): spec2 = spec
1257 1258 else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth)
1258 1259
1259 1260 # Calculo de Momentos
1260 1261 bb = spec2[list(range(m,spec2.size))]
1261 1262 bb = (bb<n0).nonzero()
1262 1263 bb = bb[0]
1263 1264
1264 1265 ss = spec2[list(range(0,m + 1))]
1265 1266 ss = (ss<n0).nonzero()
1266 1267 ss = ss[0]
1267 1268
1268 1269 if (bb.size == 0):
1269 1270 bb0 = spec.size - 1 - m
1270 1271 else:
1271 1272 bb0 = bb[0] - 1
1272 1273 if (bb0 < 0):
1273 1274 bb0 = 0
1274 1275
1275 1276 if (ss.size == 0): ss1 = 1
1276 1277 else: ss1 = max(ss) + 1
1277 1278
1278 1279 if (ss1 > m): ss1 = m
1279 1280
1280 1281 valid = numpy.asarray(list(range(int(m + bb0 - ss1 + 1)))) + ss1
1281 1282 power = ((spec2[valid] - n0)*fwindow[valid]).sum()
1282 1283 fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power
1283 1284 w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power)
1284 1285 snr = (spec2.mean()-n0)/n0
1285 1286
1286 1287 if (snr < 1.e-20) :
1287 1288 snr = 1.e-20
1288 1289
1289 1290 vec_power[ind] = power
1290 1291 vec_fd[ind] = fd
1291 1292 vec_w[ind] = w
1292 1293 vec_snr[ind] = snr
1293 1294
1294 1295 moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w))
1295 1296 return moments
1296 1297
1297 1298 #------------------ Get SA Parameters --------------------------
1298 1299
1299 1300 def GetSAParameters(self):
1300 1301 #SA en frecuencia
1301 1302 pairslist = self.dataOut.groupList
1302 1303 num_pairs = len(pairslist)
1303 1304
1304 1305 vel = self.dataOut.abscissaList
1305 1306 spectra = self.dataOut.data_pre
1306 1307 cspectra = self.dataIn.data_cspc
1307 1308 delta_v = vel[1] - vel[0]
1308 1309
1309 1310 #Calculating the power spectrum
1310 1311 spc_pow = numpy.sum(spectra, 3)*delta_v
1311 1312 #Normalizing Spectra
1312 1313 norm_spectra = spectra/spc_pow
1313 1314 #Calculating the norm_spectra at peak
1314 1315 max_spectra = numpy.max(norm_spectra, 3)
1315 1316
1316 1317 #Normalizing Cross Spectra
1317 1318 norm_cspectra = numpy.zeros(cspectra.shape)
1318 1319
1319 1320 for i in range(num_chan):
1320 1321 norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:])
1321 1322
1322 1323 max_cspectra = numpy.max(norm_cspectra,2)
1323 1324 max_cspectra_index = numpy.argmax(norm_cspectra, 2)
1324 1325
1325 1326 for i in range(num_pairs):
1326 1327 cspc_par[i,:,:] = __calculateMoments(norm_cspectra)
1327 1328 #------------------- Get Lags ----------------------------------
1328 1329
1329 1330 class SALags(Operation):
1330 1331 '''
1331 1332 Function GetMoments()
1332 1333
1333 1334 Input:
1334 1335 self.dataOut.data_pre
1335 1336 self.dataOut.abscissaList
1336 1337 self.dataOut.noise
1337 1338 self.dataOut.normFactor
1338 1339 self.dataOut.data_SNR
1339 1340 self.dataOut.groupList
1340 1341 self.dataOut.nChannels
1341 1342
1342 1343 Affected:
1343 1344 self.dataOut.data_param
1344 1345
1345 1346 '''
1346 1347 def run(self, dataOut):
1347 1348 data_acf = dataOut.data_pre[0]
1348 1349 data_ccf = dataOut.data_pre[1]
1349 1350 normFactor_acf = dataOut.normFactor[0]
1350 1351 normFactor_ccf = dataOut.normFactor[1]
1351 1352 pairs_acf = dataOut.groupList[0]
1352 1353 pairs_ccf = dataOut.groupList[1]
1353 1354
1354 1355 nHeights = dataOut.nHeights
1355 1356 absc = dataOut.abscissaList
1356 1357 noise = dataOut.noise
1357 1358 SNR = dataOut.data_SNR
1358 1359 nChannels = dataOut.nChannels
1359 1360 # pairsList = dataOut.groupList
1360 1361 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels)
1361 1362
1362 1363 for l in range(len(pairs_acf)):
1363 1364 data_acf[l,:,:] = data_acf[l,:,:]/normFactor_acf[l,:]
1364 1365
1365 1366 for l in range(len(pairs_ccf)):
1366 1367 data_ccf[l,:,:] = data_ccf[l,:,:]/normFactor_ccf[l,:]
1367 1368
1368 1369 dataOut.data_param = numpy.zeros((len(pairs_ccf)*2 + 1, nHeights))
1369 1370 dataOut.data_param[:-1,:] = self.__calculateTaus(data_acf, data_ccf, absc)
1370 1371 dataOut.data_param[-1,:] = self.__calculateLag1Phase(data_acf, absc)
1371 1372 return
1372 1373
1373 1374 # def __getPairsAutoCorr(self, pairsList, nChannels):
1374 1375 #
1375 1376 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1376 1377 #
1377 1378 # for l in range(len(pairsList)):
1378 1379 # firstChannel = pairsList[l][0]
1379 1380 # secondChannel = pairsList[l][1]
1380 1381 #
1381 1382 # #Obteniendo pares de Autocorrelacion
1382 1383 # if firstChannel == secondChannel:
1383 1384 # pairsAutoCorr[firstChannel] = int(l)
1384 1385 #
1385 1386 # pairsAutoCorr = pairsAutoCorr.astype(int)
1386 1387 #
1387 1388 # pairsCrossCorr = range(len(pairsList))
1388 1389 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1389 1390 #
1390 1391 # return pairsAutoCorr, pairsCrossCorr
1391 1392
1392 1393 def __calculateTaus(self, data_acf, data_ccf, lagRange):
1393 1394
1394 1395 lag0 = data_acf.shape[1]/2
1395 1396 #Funcion de Autocorrelacion
1396 1397 mean_acf = stats.nanmean(data_acf, axis = 0)
1397 1398
1398 1399 #Obtencion Indice de TauCross
1399 1400 ind_ccf = data_ccf.argmax(axis = 1)
1400 1401 #Obtencion Indice de TauAuto
1401 1402 ind_acf = numpy.zeros(ind_ccf.shape,dtype = 'int')
1402 1403 ccf_lag0 = data_ccf[:,lag0,:]
1403 1404
1404 1405 for i in range(ccf_lag0.shape[0]):
1405 1406 ind_acf[i,:] = numpy.abs(mean_acf - ccf_lag0[i,:]).argmin(axis = 0)
1406 1407
1407 1408 #Obtencion de TauCross y TauAuto
1408 1409 tau_ccf = lagRange[ind_ccf]
1409 1410 tau_acf = lagRange[ind_acf]
1410 1411
1411 1412 Nan1, Nan2 = numpy.where(tau_ccf == lagRange[0])
1412 1413
1413 1414 tau_ccf[Nan1,Nan2] = numpy.nan
1414 1415 tau_acf[Nan1,Nan2] = numpy.nan
1415 1416 tau = numpy.vstack((tau_ccf,tau_acf))
1416 1417
1417 1418 return tau
1418 1419
1419 1420 def __calculateLag1Phase(self, data, lagTRange):
1420 1421 data1 = stats.nanmean(data, axis = 0)
1421 1422 lag1 = numpy.where(lagTRange == 0)[0][0] + 1
1422 1423
1423 1424 phase = numpy.angle(data1[lag1,:])
1424 1425
1425 1426 return phase
1426 1427
1427 1428 class SpectralFitting(Operation):
1428 1429 '''
1429 1430 Function GetMoments()
1430 1431
1431 1432 Input:
1432 1433 Output:
1433 1434 Variables modified:
1434 1435 '''
1435 1436
1436 1437 def run(self, dataOut, getSNR = True, path=None, file=None, groupList=None):
1437 1438
1438 1439
1439 1440 if path != None:
1440 1441 sys.path.append(path)
1441 1442 self.dataOut.library = importlib.import_module(file)
1442 1443
1443 1444 #To be inserted as a parameter
1444 1445 groupArray = numpy.array(groupList)
1445 1446 # groupArray = numpy.array([[0,1],[2,3]])
1446 1447 self.dataOut.groupList = groupArray
1447 1448
1448 1449 nGroups = groupArray.shape[0]
1449 1450 nChannels = self.dataIn.nChannels
1450 1451 nHeights=self.dataIn.heightList.size
1451 1452
1452 1453 #Parameters Array
1453 1454 self.dataOut.data_param = None
1454 1455
1455 1456 #Set constants
1456 1457 constants = self.dataOut.library.setConstants(self.dataIn)
1457 1458 self.dataOut.constants = constants
1458 1459 M = self.dataIn.normFactor
1459 1460 N = self.dataIn.nFFTPoints
1460 1461 ippSeconds = self.dataIn.ippSeconds
1461 1462 K = self.dataIn.nIncohInt
1462 1463 pairsArray = numpy.array(self.dataIn.pairsList)
1463 1464
1464 1465 #List of possible combinations
1465 1466 listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2)
1466 1467 indCross = numpy.zeros(len(list(listComb)), dtype = 'int')
1467 1468
1468 1469 if getSNR:
1469 1470 listChannels = groupArray.reshape((groupArray.size))
1470 1471 listChannels.sort()
1471 1472 noise = self.dataIn.getNoise()
1472 1473 self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels])
1473 1474
1474 1475 for i in range(nGroups):
1475 1476 coord = groupArray[i,:]
1476 1477
1477 1478 #Input data array
1478 1479 data = self.dataIn.data_spc[coord,:,:]/(M*N)
1479 1480 data = data.reshape((data.shape[0]*data.shape[1],data.shape[2]))
1480 1481
1481 1482 #Cross Spectra data array for Covariance Matrixes
1482 1483 ind = 0
1483 1484 for pairs in listComb:
1484 1485 pairsSel = numpy.array([coord[x],coord[y]])
1485 1486 indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0])
1486 1487 ind += 1
1487 1488 dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N)
1488 1489 dataCross = dataCross**2/K
1489 1490
1490 1491 for h in range(nHeights):
1491 1492
1492 1493 #Input
1493 1494 d = data[:,h]
1494 1495
1495 1496 #Covariance Matrix
1496 1497 D = numpy.diag(d**2/K)
1497 1498 ind = 0
1498 1499 for pairs in listComb:
1499 1500 #Coordinates in Covariance Matrix
1500 1501 x = pairs[0]
1501 1502 y = pairs[1]
1502 1503 #Channel Index
1503 1504 S12 = dataCross[ind,:,h]
1504 1505 D12 = numpy.diag(S12)
1505 1506 #Completing Covariance Matrix with Cross Spectras
1506 1507 D[x*N:(x+1)*N,y*N:(y+1)*N] = D12
1507 1508 D[y*N:(y+1)*N,x*N:(x+1)*N] = D12
1508 1509 ind += 1
1509 1510 Dinv=numpy.linalg.inv(D)
1510 1511 L=numpy.linalg.cholesky(Dinv)
1511 1512 LT=L.T
1512 1513
1513 1514 dp = numpy.dot(LT,d)
1514 1515
1515 1516 #Initial values
1516 1517 data_spc = self.dataIn.data_spc[coord,:,h]
1517 1518
1518 1519 if (h>0)and(error1[3]<5):
1519 1520 p0 = self.dataOut.data_param[i,:,h-1]
1520 1521 else:
1521 1522 p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i))
1522 1523
1523 1524 try:
1524 1525 #Least Squares
1525 1526 minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True)
1526 1527 # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants))
1527 1528 #Chi square error
1528 1529 error0 = numpy.sum(infodict['fvec']**2)/(2*N)
1529 1530 #Error with Jacobian
1530 1531 error1 = self.dataOut.library.errorFunction(minp,constants,LT)
1531 1532 except:
1532 1533 minp = p0*numpy.nan
1533 1534 error0 = numpy.nan
1534 1535 error1 = p0*numpy.nan
1535 1536
1536 1537 #Save
1537 1538 if self.dataOut.data_param is None:
1538 1539 self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan
1539 1540 self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan
1540 1541
1541 1542 self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1))
1542 1543 self.dataOut.data_param[i,:,h] = minp
1543 1544 return
1544 1545
1545 1546 def __residFunction(self, p, dp, LT, constants):
1546 1547
1547 1548 fm = self.dataOut.library.modelFunction(p, constants)
1548 1549 fmp=numpy.dot(LT,fm)
1549 1550
1550 1551 return dp-fmp
1551 1552
1552 1553 def __getSNR(self, z, noise):
1553 1554
1554 1555 avg = numpy.average(z, axis=1)
1555 1556 SNR = (avg.T-noise)/noise
1556 1557 SNR = SNR.T
1557 1558 return SNR
1558 1559
1559 1560 def __chisq(p,chindex,hindex):
1560 1561 #similar to Resid but calculates CHI**2
1561 1562 [LT,d,fm]=setupLTdfm(p,chindex,hindex)
1562 1563 dp=numpy.dot(LT,d)
1563 1564 fmp=numpy.dot(LT,fm)
1564 1565 chisq=numpy.dot((dp-fmp).T,(dp-fmp))
1565 1566 return chisq
1566 1567
1567 1568 class WindProfiler(Operation):
1568 1569
1569 1570 __isConfig = False
1570 1571
1571 1572 __initime = None
1572 1573 __lastdatatime = None
1573 1574 __integrationtime = None
1574 1575
1575 1576 __buffer = None
1576 1577
1577 1578 __dataReady = False
1578 1579
1579 1580 __firstdata = None
1580 1581
1581 1582 n = None
1582 1583
1583 1584 def __init__(self):
1584 1585 Operation.__init__(self)
1585 1586
1586 1587 def __calculateCosDir(self, elev, azim):
1587 1588 zen = (90 - elev)*numpy.pi/180
1588 1589 azim = azim*numpy.pi/180
1589 1590 cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2)))
1590 1591 cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2)
1591 1592
1592 1593 signX = numpy.sign(numpy.cos(azim))
1593 1594 signY = numpy.sign(numpy.sin(azim))
1594 1595
1595 1596 cosDirX = numpy.copysign(cosDirX, signX)
1596 1597 cosDirY = numpy.copysign(cosDirY, signY)
1597 1598 return cosDirX, cosDirY
1598 1599
1599 1600 def __calculateAngles(self, theta_x, theta_y, azimuth):
1600 1601
1601 1602 dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2)
1602 1603 zenith_arr = numpy.arccos(dir_cosw)
1603 1604 azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180
1604 1605
1605 1606 dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr)
1606 1607 dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr)
1607 1608
1608 1609 return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw
1609 1610
1610 1611 def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly):
1611 1612
1612 1613 #
1613 1614 if horOnly:
1614 1615 A = numpy.c_[dir_cosu,dir_cosv]
1615 1616 else:
1616 1617 A = numpy.c_[dir_cosu,dir_cosv,dir_cosw]
1617 1618 A = numpy.asmatrix(A)
1618 1619 A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose()
1619 1620
1620 1621 return A1
1621 1622
1622 1623 def __correctValues(self, heiRang, phi, velRadial, SNR):
1623 1624 listPhi = phi.tolist()
1624 1625 maxid = listPhi.index(max(listPhi))
1625 1626 minid = listPhi.index(min(listPhi))
1626 1627
1627 1628 rango = list(range(len(phi)))
1628 1629 # rango = numpy.delete(rango,maxid)
1629 1630
1630 1631 heiRang1 = heiRang*math.cos(phi[maxid])
1631 1632 heiRangAux = heiRang*math.cos(phi[minid])
1632 1633 indOut = (heiRang1 < heiRangAux[0]).nonzero()
1633 1634 heiRang1 = numpy.delete(heiRang1,indOut)
1634 1635
1635 1636 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
1636 1637 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
1637 1638
1638 1639 for i in rango:
1639 1640 x = heiRang*math.cos(phi[i])
1640 1641 y1 = velRadial[i,:]
1641 1642 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
1642 1643
1643 1644 x1 = heiRang1
1644 1645 y11 = f1(x1)
1645 1646
1646 1647 y2 = SNR[i,:]
1647 1648 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
1648 1649 y21 = f2(x1)
1649 1650
1650 1651 velRadial1[i,:] = y11
1651 1652 SNR1[i,:] = y21
1652 1653
1653 1654 return heiRang1, velRadial1, SNR1
1654 1655
1655 1656 def __calculateVelUVW(self, A, velRadial):
1656 1657
1657 1658 #Operacion Matricial
1658 1659 # velUVW = numpy.zeros((velRadial.shape[1],3))
1659 1660 # for ind in range(velRadial.shape[1]):
1660 1661 # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind])
1661 1662 # velUVW = velUVW.transpose()
1662 1663 velUVW = numpy.zeros((A.shape[0],velRadial.shape[1]))
1663 1664 velUVW[:,:] = numpy.dot(A,velRadial)
1664 1665
1665 1666
1666 1667 return velUVW
1667 1668
1668 1669 # def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0):
1669 1670
1670 1671 def techniqueDBS(self, kwargs):
1671 1672 """
1672 1673 Function that implements Doppler Beam Swinging (DBS) technique.
1673 1674
1674 1675 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1675 1676 Direction correction (if necessary), Ranges and SNR
1676 1677
1677 1678 Output: Winds estimation (Zonal, Meridional and Vertical)
1678 1679
1679 1680 Parameters affected: Winds, height range, SNR
1680 1681 """
1681 1682 velRadial0 = kwargs['velRadial']
1682 1683 heiRang = kwargs['heightList']
1683 1684 SNR0 = kwargs['SNR']
1684 1685
1685 1686 if 'dirCosx' in kwargs and 'dirCosy' in kwargs:
1686 1687 theta_x = numpy.array(kwargs['dirCosx'])
1687 1688 theta_y = numpy.array(kwargs['dirCosy'])
1688 1689 else:
1689 1690 elev = numpy.array(kwargs['elevation'])
1690 1691 azim = numpy.array(kwargs['azimuth'])
1691 1692 theta_x, theta_y = self.__calculateCosDir(elev, azim)
1692 1693 azimuth = kwargs['correctAzimuth']
1693 1694 if 'horizontalOnly' in kwargs:
1694 1695 horizontalOnly = kwargs['horizontalOnly']
1695 1696 else: horizontalOnly = False
1696 1697 if 'correctFactor' in kwargs:
1697 1698 correctFactor = kwargs['correctFactor']
1698 1699 else: correctFactor = 1
1699 1700 if 'channelList' in kwargs:
1700 1701 channelList = kwargs['channelList']
1701 1702 if len(channelList) == 2:
1702 1703 horizontalOnly = True
1703 1704 arrayChannel = numpy.array(channelList)
1704 1705 param = param[arrayChannel,:,:]
1705 1706 theta_x = theta_x[arrayChannel]
1706 1707 theta_y = theta_y[arrayChannel]
1707 1708
1708 1709 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
1709 1710 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correctFactor*velRadial0, SNR0)
1710 1711 A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly)
1711 1712
1712 1713 #Calculo de Componentes de la velocidad con DBS
1713 1714 winds = self.__calculateVelUVW(A,velRadial1)
1714 1715
1715 1716 return winds, heiRang1, SNR1
1716 1717
1717 1718 def __calculateDistance(self, posx, posy, pairs_ccf, azimuth = None):
1718 1719
1719 1720 nPairs = len(pairs_ccf)
1720 1721 posx = numpy.asarray(posx)
1721 1722 posy = numpy.asarray(posy)
1722 1723
1723 1724 #Rotacion Inversa para alinear con el azimuth
1724 1725 if azimuth!= None:
1725 1726 azimuth = azimuth*math.pi/180
1726 1727 posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth)
1727 1728 posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth)
1728 1729 else:
1729 1730 posx1 = posx
1730 1731 posy1 = posy
1731 1732
1732 1733 #Calculo de Distancias
1733 1734 distx = numpy.zeros(nPairs)
1734 1735 disty = numpy.zeros(nPairs)
1735 1736 dist = numpy.zeros(nPairs)
1736 1737 ang = numpy.zeros(nPairs)
1737 1738
1738 1739 for i in range(nPairs):
1739 1740 distx[i] = posx1[pairs_ccf[i][1]] - posx1[pairs_ccf[i][0]]
1740 1741 disty[i] = posy1[pairs_ccf[i][1]] - posy1[pairs_ccf[i][0]]
1741 1742 dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2)
1742 1743 ang[i] = numpy.arctan2(disty[i],distx[i])
1743 1744
1744 1745 return distx, disty, dist, ang
1745 1746 #Calculo de Matrices
1746 1747 # nPairs = len(pairs)
1747 1748 # ang1 = numpy.zeros((nPairs, 2, 1))
1748 1749 # dist1 = numpy.zeros((nPairs, 2, 1))
1749 1750 #
1750 1751 # for j in range(nPairs):
1751 1752 # dist1[j,0,0] = dist[pairs[j][0]]
1752 1753 # dist1[j,1,0] = dist[pairs[j][1]]
1753 1754 # ang1[j,0,0] = ang[pairs[j][0]]
1754 1755 # ang1[j,1,0] = ang[pairs[j][1]]
1755 1756 #
1756 1757 # return distx,disty, dist1,ang1
1757 1758
1758 1759
1759 1760 def __calculateVelVer(self, phase, lagTRange, _lambda):
1760 1761
1761 1762 Ts = lagTRange[1] - lagTRange[0]
1762 1763 velW = -_lambda*phase/(4*math.pi*Ts)
1763 1764
1764 1765 return velW
1765 1766
1766 1767 def __calculateVelHorDir(self, dist, tau1, tau2, ang):
1767 1768 nPairs = tau1.shape[0]
1768 1769 nHeights = tau1.shape[1]
1769 1770 vel = numpy.zeros((nPairs,3,nHeights))
1770 1771 dist1 = numpy.reshape(dist, (dist.size,1))
1771 1772
1772 1773 angCos = numpy.cos(ang)
1773 1774 angSin = numpy.sin(ang)
1774 1775
1775 1776 vel0 = dist1*tau1/(2*tau2**2)
1776 1777 vel[:,0,:] = (vel0*angCos).sum(axis = 1)
1777 1778 vel[:,1,:] = (vel0*angSin).sum(axis = 1)
1778 1779
1779 1780 ind = numpy.where(numpy.isinf(vel))
1780 1781 vel[ind] = numpy.nan
1781 1782
1782 1783 return vel
1783 1784
1784 1785 # def __getPairsAutoCorr(self, pairsList, nChannels):
1785 1786 #
1786 1787 # pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan
1787 1788 #
1788 1789 # for l in range(len(pairsList)):
1789 1790 # firstChannel = pairsList[l][0]
1790 1791 # secondChannel = pairsList[l][1]
1791 1792 #
1792 1793 # #Obteniendo pares de Autocorrelacion
1793 1794 # if firstChannel == secondChannel:
1794 1795 # pairsAutoCorr[firstChannel] = int(l)
1795 1796 #
1796 1797 # pairsAutoCorr = pairsAutoCorr.astype(int)
1797 1798 #
1798 1799 # pairsCrossCorr = range(len(pairsList))
1799 1800 # pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr)
1800 1801 #
1801 1802 # return pairsAutoCorr, pairsCrossCorr
1802 1803
1803 1804 # def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor):
1804 1805 def techniqueSA(self, kwargs):
1805 1806
1806 1807 """
1807 1808 Function that implements Spaced Antenna (SA) technique.
1808 1809
1809 1810 Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth,
1810 1811 Direction correction (if necessary), Ranges and SNR
1811 1812
1812 1813 Output: Winds estimation (Zonal, Meridional and Vertical)
1813 1814
1814 1815 Parameters affected: Winds
1815 1816 """
1816 1817 position_x = kwargs['positionX']
1817 1818 position_y = kwargs['positionY']
1818 1819 azimuth = kwargs['azimuth']
1819 1820
1820 1821 if 'correctFactor' in kwargs:
1821 1822 correctFactor = kwargs['correctFactor']
1822 1823 else:
1823 1824 correctFactor = 1
1824 1825
1825 1826 groupList = kwargs['groupList']
1826 1827 pairs_ccf = groupList[1]
1827 1828 tau = kwargs['tau']
1828 1829 _lambda = kwargs['_lambda']
1829 1830
1830 1831 #Cross Correlation pairs obtained
1831 1832 # pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairssList, nChannels)
1832 1833 # pairsArray = numpy.array(pairsList)[pairsCrossCorr]
1833 1834 # pairsSelArray = numpy.array(pairsSelected)
1834 1835 # pairs = []
1835 1836 #
1836 1837 # #Wind estimation pairs obtained
1837 1838 # for i in range(pairsSelArray.shape[0]/2):
1838 1839 # ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0]
1839 1840 # ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0]
1840 1841 # pairs.append((ind1,ind2))
1841 1842
1842 1843 indtau = tau.shape[0]/2
1843 1844 tau1 = tau[:indtau,:]
1844 1845 tau2 = tau[indtau:-1,:]
1845 1846 # tau1 = tau1[pairs,:]
1846 1847 # tau2 = tau2[pairs,:]
1847 1848 phase1 = tau[-1,:]
1848 1849
1849 1850 #---------------------------------------------------------------------
1850 1851 #Metodo Directo
1851 1852 distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairs_ccf,azimuth)
1852 1853 winds = self.__calculateVelHorDir(dist, tau1, tau2, ang)
1853 1854 winds = stats.nanmean(winds, axis=0)
1854 1855 #---------------------------------------------------------------------
1855 1856 #Metodo General
1856 1857 # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth)
1857 1858 # #Calculo Coeficientes de Funcion de Correlacion
1858 1859 # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n)
1859 1860 # #Calculo de Velocidades
1860 1861 # winds = self.calculateVelUV(F,G,A,B,H)
1861 1862
1862 1863 #---------------------------------------------------------------------
1863 1864 winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda)
1864 1865 winds = correctFactor*winds
1865 1866 return winds
1866 1867
1867 1868 def __checkTime(self, currentTime, paramInterval, outputInterval):
1868 1869
1869 1870 dataTime = currentTime + paramInterval
1870 1871 deltaTime = dataTime - self.__initime
1871 1872
1872 1873 if deltaTime >= outputInterval or deltaTime < 0:
1873 1874 self.__dataReady = True
1874 1875 return
1875 1876
1876 1877 def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax):
1877 1878 '''
1878 1879 Function that implements winds estimation technique with detected meteors.
1879 1880
1880 1881 Input: Detected meteors, Minimum meteor quantity to wind estimation
1881 1882
1882 1883 Output: Winds estimation (Zonal and Meridional)
1883 1884
1884 1885 Parameters affected: Winds
1885 1886 '''
1886 1887 #Settings
1887 1888 nInt = (heightMax - heightMin)/2
1888 1889 nInt = int(nInt)
1889 1890 winds = numpy.zeros((2,nInt))*numpy.nan
1890 1891
1891 1892 #Filter errors
1892 1893 error = numpy.where(arrayMeteor[:,-1] == 0)[0]
1893 1894 finalMeteor = arrayMeteor[error,:]
1894 1895
1895 1896 #Meteor Histogram
1896 1897 finalHeights = finalMeteor[:,2]
1897 1898 hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax))
1898 1899 nMeteorsPerI = hist[0]
1899 1900 heightPerI = hist[1]
1900 1901
1901 1902 #Sort of meteors
1902 1903 indSort = finalHeights.argsort()
1903 1904 finalMeteor2 = finalMeteor[indSort,:]
1904 1905
1905 1906 # Calculating winds
1906 1907 ind1 = 0
1907 1908 ind2 = 0
1908 1909
1909 1910 for i in range(nInt):
1910 1911 nMet = nMeteorsPerI[i]
1911 1912 ind1 = ind2
1912 1913 ind2 = ind1 + nMet
1913 1914
1914 1915 meteorAux = finalMeteor2[ind1:ind2,:]
1915 1916
1916 1917 if meteorAux.shape[0] >= meteorThresh:
1917 1918 vel = meteorAux[:, 6]
1918 1919 zen = meteorAux[:, 4]*numpy.pi/180
1919 1920 azim = meteorAux[:, 3]*numpy.pi/180
1920 1921
1921 1922 n = numpy.cos(zen)
1922 1923 # m = (1 - n**2)/(1 - numpy.tan(azim)**2)
1923 1924 # l = m*numpy.tan(azim)
1924 1925 l = numpy.sin(zen)*numpy.sin(azim)
1925 1926 m = numpy.sin(zen)*numpy.cos(azim)
1926 1927
1927 1928 A = numpy.vstack((l, m)).transpose()
1928 1929 A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose())
1929 1930 windsAux = numpy.dot(A1, vel)
1930 1931
1931 1932 winds[0,i] = windsAux[0]
1932 1933 winds[1,i] = windsAux[1]
1933 1934
1934 1935 return winds, heightPerI[:-1]
1935 1936
1936 1937 def techniqueNSM_SA(self, **kwargs):
1937 1938 metArray = kwargs['metArray']
1938 1939 heightList = kwargs['heightList']
1939 1940 timeList = kwargs['timeList']
1940 1941
1941 1942 rx_location = kwargs['rx_location']
1942 1943 groupList = kwargs['groupList']
1943 1944 azimuth = kwargs['azimuth']
1944 1945 dfactor = kwargs['dfactor']
1945 1946 k = kwargs['k']
1946 1947
1947 1948 azimuth1, dist = self.__calculateAzimuth1(rx_location, groupList, azimuth)
1948 1949 d = dist*dfactor
1949 1950 #Phase calculation
1950 1951 metArray1 = self.__getPhaseSlope(metArray, heightList, timeList)
1951 1952
1952 1953 metArray1[:,-2] = metArray1[:,-2]*metArray1[:,2]*1000/(k*d[metArray1[:,1].astype(int)]) #angles into velocities
1953 1954
1954 1955 velEst = numpy.zeros((heightList.size,2))*numpy.nan
1955 1956 azimuth1 = azimuth1*numpy.pi/180
1956 1957
1957 1958 for i in range(heightList.size):
1958 1959 h = heightList[i]
1959 1960 indH = numpy.where((metArray1[:,2] == h)&(numpy.abs(metArray1[:,-2]) < 100))[0]
1960 1961 metHeight = metArray1[indH,:]
1961 1962 if metHeight.shape[0] >= 2:
1962 1963 velAux = numpy.asmatrix(metHeight[:,-2]).T #Radial Velocities
1963 1964 iazim = metHeight[:,1].astype(int)
1964 1965 azimAux = numpy.asmatrix(azimuth1[iazim]).T #Azimuths
1965 1966 A = numpy.hstack((numpy.cos(azimAux),numpy.sin(azimAux)))
1966 1967 A = numpy.asmatrix(A)
1967 1968 A1 = numpy.linalg.pinv(A.transpose()*A)*A.transpose()
1968 1969 velHor = numpy.dot(A1,velAux)
1969 1970
1970 1971 velEst[i,:] = numpy.squeeze(velHor)
1971 1972 return velEst
1972 1973
1973 1974 def __getPhaseSlope(self, metArray, heightList, timeList):
1974 1975 meteorList = []
1975 1976 #utctime sec1 height SNR velRad ph0 ph1 ph2 coh0 coh1 coh2
1976 1977 #Putting back together the meteor matrix
1977 1978 utctime = metArray[:,0]
1978 1979 uniqueTime = numpy.unique(utctime)
1979 1980
1980 1981 phaseDerThresh = 0.5
1981 1982 ippSeconds = timeList[1] - timeList[0]
1982 1983 sec = numpy.where(timeList>1)[0][0]
1983 1984 nPairs = metArray.shape[1] - 6
1984 1985 nHeights = len(heightList)
1985 1986
1986 1987 for t in uniqueTime:
1987 1988 metArray1 = metArray[utctime==t,:]
1988 1989 # phaseDerThresh = numpy.pi/4 #reducir Phase thresh
1989 1990 tmet = metArray1[:,1].astype(int)
1990 1991 hmet = metArray1[:,2].astype(int)
1991 1992
1992 1993 metPhase = numpy.zeros((nPairs, heightList.size, timeList.size - 1))
1993 1994 metPhase[:,:] = numpy.nan
1994 1995 metPhase[:,hmet,tmet] = metArray1[:,6:].T
1995 1996
1996 1997 #Delete short trails
1997 1998 metBool = ~numpy.isnan(metPhase[0,:,:])
1998 1999 heightVect = numpy.sum(metBool, axis = 1)
1999 2000 metBool[heightVect<sec,:] = False
2000 2001 metPhase[:,heightVect<sec,:] = numpy.nan
2001 2002
2002 2003 #Derivative
2003 2004 metDer = numpy.abs(metPhase[:,:,1:] - metPhase[:,:,:-1])
2004 2005 phDerAux = numpy.dstack((numpy.full((nPairs,nHeights,1), False, dtype=bool),metDer > phaseDerThresh))
2005 2006 metPhase[phDerAux] = numpy.nan
2006 2007
2007 2008 #--------------------------METEOR DETECTION -----------------------------------------
2008 2009 indMet = numpy.where(numpy.any(metBool,axis=1))[0]
2009 2010
2010 2011 for p in numpy.arange(nPairs):
2011 2012 phase = metPhase[p,:,:]
2012 2013 phDer = metDer[p,:,:]
2013 2014
2014 2015 for h in indMet:
2015 2016 height = heightList[h]
2016 2017 phase1 = phase[h,:] #82
2017 2018 phDer1 = phDer[h,:]
2018 2019
2019 2020 phase1[~numpy.isnan(phase1)] = numpy.unwrap(phase1[~numpy.isnan(phase1)]) #Unwrap
2020 2021
2021 2022 indValid = numpy.where(~numpy.isnan(phase1))[0]
2022 2023 initMet = indValid[0]
2023 2024 endMet = 0
2024 2025
2025 2026 for i in range(len(indValid)-1):
2026 2027
2027 2028 #Time difference
2028 2029 inow = indValid[i]
2029 2030 inext = indValid[i+1]
2030 2031 idiff = inext - inow
2031 2032 #Phase difference
2032 2033 phDiff = numpy.abs(phase1[inext] - phase1[inow])
2033 2034
2034 2035 if idiff>sec or phDiff>numpy.pi/4 or inext==indValid[-1]: #End of Meteor
2035 2036 sizeTrail = inow - initMet + 1
2036 2037 if sizeTrail>3*sec: #Too short meteors
2037 2038 x = numpy.arange(initMet,inow+1)*ippSeconds
2038 2039 y = phase1[initMet:inow+1]
2039 2040 ynnan = ~numpy.isnan(y)
2040 2041 x = x[ynnan]
2041 2042 y = y[ynnan]
2042 2043 slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
2043 2044 ylin = x*slope + intercept
2044 2045 rsq = r_value**2
2045 2046 if rsq > 0.5:
2046 2047 vel = slope#*height*1000/(k*d)
2047 2048 estAux = numpy.array([utctime,p,height, vel, rsq])
2048 2049 meteorList.append(estAux)
2049 2050 initMet = inext
2050 2051 metArray2 = numpy.array(meteorList)
2051 2052
2052 2053 return metArray2
2053 2054
2054 2055 def __calculateAzimuth1(self, rx_location, pairslist, azimuth0):
2055 2056
2056 2057 azimuth1 = numpy.zeros(len(pairslist))
2057 2058 dist = numpy.zeros(len(pairslist))
2058 2059
2059 2060 for i in range(len(rx_location)):
2060 2061 ch0 = pairslist[i][0]
2061 2062 ch1 = pairslist[i][1]
2062 2063
2063 2064 diffX = rx_location[ch0][0] - rx_location[ch1][0]
2064 2065 diffY = rx_location[ch0][1] - rx_location[ch1][1]
2065 2066 azimuth1[i] = numpy.arctan2(diffY,diffX)*180/numpy.pi
2066 2067 dist[i] = numpy.sqrt(diffX**2 + diffY**2)
2067 2068
2068 2069 azimuth1 -= azimuth0
2069 2070 return azimuth1, dist
2070 2071
2071 2072 def techniqueNSM_DBS(self, **kwargs):
2072 2073 metArray = kwargs['metArray']
2073 2074 heightList = kwargs['heightList']
2074 2075 timeList = kwargs['timeList']
2075 2076 azimuth = kwargs['azimuth']
2076 2077 theta_x = numpy.array(kwargs['theta_x'])
2077 2078 theta_y = numpy.array(kwargs['theta_y'])
2078 2079
2079 2080 utctime = metArray[:,0]
2080 2081 cmet = metArray[:,1].astype(int)
2081 2082 hmet = metArray[:,3].astype(int)
2082 2083 SNRmet = metArray[:,4]
2083 2084 vmet = metArray[:,5]
2084 2085 spcmet = metArray[:,6]
2085 2086
2086 2087 nChan = numpy.max(cmet) + 1
2087 2088 nHeights = len(heightList)
2088 2089
2089 2090 azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(theta_x, theta_y, azimuth)
2090 2091 hmet = heightList[hmet]
2091 2092 h1met = hmet*numpy.cos(zenith_arr[cmet]) #Corrected heights
2092 2093
2093 2094 velEst = numpy.zeros((heightList.size,2))*numpy.nan
2094 2095
2095 2096 for i in range(nHeights - 1):
2096 2097 hmin = heightList[i]
2097 2098 hmax = heightList[i + 1]
2098 2099
2099 2100 thisH = (h1met>=hmin) & (h1met<hmax) & (cmet!=2) & (SNRmet>8) & (vmet<50) & (spcmet<10)
2100 2101 indthisH = numpy.where(thisH)
2101 2102
2102 2103 if numpy.size(indthisH) > 3:
2103 2104
2104 2105 vel_aux = vmet[thisH]
2105 2106 chan_aux = cmet[thisH]
2106 2107 cosu_aux = dir_cosu[chan_aux]
2107 2108 cosv_aux = dir_cosv[chan_aux]
2108 2109 cosw_aux = dir_cosw[chan_aux]
2109 2110
2110 2111 nch = numpy.size(numpy.unique(chan_aux))
2111 2112 if nch > 1:
2112 2113 A = self.__calculateMatA(cosu_aux, cosv_aux, cosw_aux, True)
2113 2114 velEst[i,:] = numpy.dot(A,vel_aux)
2114 2115
2115 2116 return velEst
2116 2117
2117 2118 def run(self, dataOut, technique, nHours=1, hmin=70, hmax=110, **kwargs):
2118 2119
2119 2120 param = dataOut.data_param
2120 2121 if dataOut.abscissaList != None:
2121 2122 absc = dataOut.abscissaList[:-1]
2122 2123 # noise = dataOut.noise
2123 2124 heightList = dataOut.heightList
2124 2125 SNR = dataOut.data_SNR
2125 2126
2126 2127 if technique == 'DBS':
2127 2128
2128 2129 kwargs['velRadial'] = param[:,1,:] #Radial velocity
2129 2130 kwargs['heightList'] = heightList
2130 2131 kwargs['SNR'] = SNR
2131 2132
2132 2133 dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(kwargs) #DBS Function
2133 2134 dataOut.utctimeInit = dataOut.utctime
2134 2135 dataOut.outputInterval = dataOut.paramInterval
2135 2136
2136 2137 elif technique == 'SA':
2137 2138
2138 2139 #Parameters
2139 2140 # position_x = kwargs['positionX']
2140 2141 # position_y = kwargs['positionY']
2141 2142 # azimuth = kwargs['azimuth']
2142 2143 #
2143 2144 # if kwargs.has_key('crosspairsList'):
2144 2145 # pairs = kwargs['crosspairsList']
2145 2146 # else:
2146 2147 # pairs = None
2147 2148 #
2148 2149 # if kwargs.has_key('correctFactor'):
2149 2150 # correctFactor = kwargs['correctFactor']
2150 2151 # else:
2151 2152 # correctFactor = 1
2152 2153
2153 2154 # tau = dataOut.data_param
2154 2155 # _lambda = dataOut.C/dataOut.frequency
2155 2156 # pairsList = dataOut.groupList
2156 2157 # nChannels = dataOut.nChannels
2157 2158
2158 2159 kwargs['groupList'] = dataOut.groupList
2159 2160 kwargs['tau'] = dataOut.data_param
2160 2161 kwargs['_lambda'] = dataOut.C/dataOut.frequency
2161 2162 # dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor)
2162 2163 dataOut.data_output = self.techniqueSA(kwargs)
2163 2164 dataOut.utctimeInit = dataOut.utctime
2164 2165 dataOut.outputInterval = dataOut.timeInterval
2165 2166
2166 2167 elif technique == 'Meteors':
2167 2168 dataOut.flagNoData = True
2168 2169 self.__dataReady = False
2169 2170
2170 2171 if 'nHours' in kwargs:
2171 2172 nHours = kwargs['nHours']
2172 2173 else:
2173 2174 nHours = 1
2174 2175
2175 2176 if 'meteorsPerBin' in kwargs:
2176 2177 meteorThresh = kwargs['meteorsPerBin']
2177 2178 else:
2178 2179 meteorThresh = 6
2179 2180
2180 2181 if 'hmin' in kwargs:
2181 2182 hmin = kwargs['hmin']
2182 2183 else: hmin = 70
2183 2184 if 'hmax' in kwargs:
2184 2185 hmax = kwargs['hmax']
2185 2186 else: hmax = 110
2186 2187
2187 2188 dataOut.outputInterval = nHours*3600
2188 2189
2189 2190 if self.__isConfig == False:
2190 2191 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2191 2192 #Get Initial LTC time
2192 2193 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2193 2194 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2194 2195
2195 2196 self.__isConfig = True
2196 2197
2197 2198 if self.__buffer is None:
2198 2199 self.__buffer = dataOut.data_param
2199 2200 self.__firstdata = copy.copy(dataOut)
2200 2201
2201 2202 else:
2202 2203 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2203 2204
2204 2205 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2205 2206
2206 2207 if self.__dataReady:
2207 2208 dataOut.utctimeInit = self.__initime
2208 2209
2209 2210 self.__initime += dataOut.outputInterval #to erase time offset
2210 2211
2211 2212 dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax)
2212 2213 dataOut.flagNoData = False
2213 2214 self.__buffer = None
2214 2215
2215 2216 elif technique == 'Meteors1':
2216 2217 dataOut.flagNoData = True
2217 2218 self.__dataReady = False
2218 2219
2219 2220 if 'nMins' in kwargs:
2220 2221 nMins = kwargs['nMins']
2221 2222 else: nMins = 20
2222 2223 if 'rx_location' in kwargs:
2223 2224 rx_location = kwargs['rx_location']
2224 2225 else: rx_location = [(0,1),(1,1),(1,0)]
2225 2226 if 'azimuth' in kwargs:
2226 2227 azimuth = kwargs['azimuth']
2227 2228 else: azimuth = 51.06
2228 2229 if 'dfactor' in kwargs:
2229 2230 dfactor = kwargs['dfactor']
2230 2231 if 'mode' in kwargs:
2231 2232 mode = kwargs['mode']
2232 2233 if 'theta_x' in kwargs:
2233 2234 theta_x = kwargs['theta_x']
2234 2235 if 'theta_y' in kwargs:
2235 2236 theta_y = kwargs['theta_y']
2236 2237 else: mode = 'SA'
2237 2238
2238 2239 #Borrar luego esto
2239 2240 if dataOut.groupList is None:
2240 2241 dataOut.groupList = [(0,1),(0,2),(1,2)]
2241 2242 groupList = dataOut.groupList
2242 2243 C = 3e8
2243 2244 freq = 50e6
2244 2245 lamb = C/freq
2245 2246 k = 2*numpy.pi/lamb
2246 2247
2247 2248 timeList = dataOut.abscissaList
2248 2249 heightList = dataOut.heightList
2249 2250
2250 2251 if self.__isConfig == False:
2251 2252 dataOut.outputInterval = nMins*60
2252 2253 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
2253 2254 #Get Initial LTC time
2254 2255 initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
2255 2256 minuteAux = initime.minute
2256 2257 minuteNew = int(numpy.floor(minuteAux/nMins)*nMins)
2257 2258 self.__initime = (initime.replace(minute = minuteNew, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
2258 2259
2259 2260 self.__isConfig = True
2260 2261
2261 2262 if self.__buffer is None:
2262 2263 self.__buffer = dataOut.data_param
2263 2264 self.__firstdata = copy.copy(dataOut)
2264 2265
2265 2266 else:
2266 2267 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
2267 2268
2268 2269 self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
2269 2270
2270 2271 if self.__dataReady:
2271 2272 dataOut.utctimeInit = self.__initime
2272 2273 self.__initime += dataOut.outputInterval #to erase time offset
2273 2274
2274 2275 metArray = self.__buffer
2275 2276 if mode == 'SA':
2276 2277 dataOut.data_output = self.techniqueNSM_SA(rx_location=rx_location, groupList=groupList, azimuth=azimuth, dfactor=dfactor, k=k,metArray=metArray, heightList=heightList,timeList=timeList)
2277 2278 elif mode == 'DBS':
2278 2279 dataOut.data_output = self.techniqueNSM_DBS(metArray=metArray,heightList=heightList,timeList=timeList, azimuth=azimuth, theta_x=theta_x, theta_y=theta_y)
2279 2280 dataOut.data_output = dataOut.data_output.T
2280 2281 dataOut.flagNoData = False
2281 2282 self.__buffer = None
2282 2283
2283 2284 return
2284 2285
2285 2286 class EWDriftsEstimation(Operation):
2286 2287
2287 2288 def __init__(self):
2288 2289 Operation.__init__(self)
2289 2290
2290 2291 def __correctValues(self, heiRang, phi, velRadial, SNR):
2291 2292 listPhi = phi.tolist()
2292 2293 maxid = listPhi.index(max(listPhi))
2293 2294 minid = listPhi.index(min(listPhi))
2294 2295
2295 2296 rango = list(range(len(phi)))
2296 2297 # rango = numpy.delete(rango,maxid)
2297 2298
2298 2299 heiRang1 = heiRang*math.cos(phi[maxid])
2299 2300 heiRangAux = heiRang*math.cos(phi[minid])
2300 2301 indOut = (heiRang1 < heiRangAux[0]).nonzero()
2301 2302 heiRang1 = numpy.delete(heiRang1,indOut)
2302 2303
2303 2304 velRadial1 = numpy.zeros([len(phi),len(heiRang1)])
2304 2305 SNR1 = numpy.zeros([len(phi),len(heiRang1)])
2305 2306
2306 2307 for i in rango:
2307 2308 x = heiRang*math.cos(phi[i])
2308 2309 y1 = velRadial[i,:]
2309 2310 f1 = interpolate.interp1d(x,y1,kind = 'cubic')
2310 2311
2311 2312 x1 = heiRang1
2312 2313 y11 = f1(x1)
2313 2314
2314 2315 y2 = SNR[i,:]
2315 2316 f2 = interpolate.interp1d(x,y2,kind = 'cubic')
2316 2317 y21 = f2(x1)
2317 2318
2318 2319 velRadial1[i,:] = y11
2319 2320 SNR1[i,:] = y21
2320 2321
2321 2322 return heiRang1, velRadial1, SNR1
2322 2323
2323 2324 def run(self, dataOut, zenith, zenithCorrection):
2324 2325 heiRang = dataOut.heightList
2325 2326 velRadial = dataOut.data_param[:,3,:]
2326 2327 SNR = dataOut.data_SNR
2327 2328
2328 2329 zenith = numpy.array(zenith)
2329 2330 zenith -= zenithCorrection
2330 2331 zenith *= numpy.pi/180
2331 2332
2332 2333 heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR)
2333 2334
2334 2335 alp = zenith[0]
2335 2336 bet = zenith[1]
2336 2337
2337 2338 w_w = velRadial1[0,:]
2338 2339 w_e = velRadial1[1,:]
2339 2340
2340 2341 w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp))
2341 2342 u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp))
2342 2343
2343 2344 winds = numpy.vstack((u,w))
2344 2345
2345 2346 dataOut.heightList = heiRang1
2346 2347 dataOut.data_output = winds
2347 2348 dataOut.data_SNR = SNR1
2348 2349
2349 2350 dataOut.utctimeInit = dataOut.utctime
2350 2351 dataOut.outputInterval = dataOut.timeInterval
2351 2352 return
2352 2353
2353 2354 #--------------- Non Specular Meteor ----------------
2354 2355
2355 2356 class NonSpecularMeteorDetection(Operation):
2356 2357
2357 2358 def run(self, dataOut, mode, SNRthresh=8, phaseDerThresh=0.5, cohThresh=0.8, allData = False):
2358 2359 data_acf = dataOut.data_pre[0]
2359 2360 data_ccf = dataOut.data_pre[1]
2360 2361 pairsList = dataOut.groupList[1]
2361 2362
2362 2363 lamb = dataOut.C/dataOut.frequency
2363 2364 tSamp = dataOut.ippSeconds*dataOut.nCohInt
2364 2365 paramInterval = dataOut.paramInterval
2365 2366
2366 2367 nChannels = data_acf.shape[0]
2367 2368 nLags = data_acf.shape[1]
2368 2369 nProfiles = data_acf.shape[2]
2369 2370 nHeights = dataOut.nHeights
2370 2371 nCohInt = dataOut.nCohInt
2371 2372 sec = numpy.round(nProfiles/dataOut.paramInterval)
2372 2373 heightList = dataOut.heightList
2373 2374 ippSeconds = dataOut.ippSeconds*dataOut.nCohInt*dataOut.nAvg
2374 2375 utctime = dataOut.utctime
2375 2376
2376 2377 dataOut.abscissaList = numpy.arange(0,paramInterval+ippSeconds,ippSeconds)
2377 2378
2378 2379 #------------------------ SNR --------------------------------------
2379 2380 power = data_acf[:,0,:,:].real
2380 2381 noise = numpy.zeros(nChannels)
2381 2382 SNR = numpy.zeros(power.shape)
2382 2383 for i in range(nChannels):
2383 2384 noise[i] = hildebrand_sekhon(power[i,:], nCohInt)
2384 2385 SNR[i] = (power[i]-noise[i])/noise[i]
2385 2386 SNRm = numpy.nanmean(SNR, axis = 0)
2386 2387 SNRdB = 10*numpy.log10(SNR)
2387 2388
2388 2389 if mode == 'SA':
2389 2390 dataOut.groupList = dataOut.groupList[1]
2390 2391 nPairs = data_ccf.shape[0]
2391 2392 #---------------------- Coherence and Phase --------------------------
2392 2393 phase = numpy.zeros(data_ccf[:,0,:,:].shape)
2393 2394 # phase1 = numpy.copy(phase)
2394 2395 coh1 = numpy.zeros(data_ccf[:,0,:,:].shape)
2395 2396
2396 2397 for p in range(nPairs):
2397 2398 ch0 = pairsList[p][0]
2398 2399 ch1 = pairsList[p][1]
2399 2400 ccf = data_ccf[p,0,:,:]/numpy.sqrt(data_acf[ch0,0,:,:]*data_acf[ch1,0,:,:])
2400 2401 phase[p,:,:] = ndimage.median_filter(numpy.angle(ccf), size = (5,1)) #median filter
2401 2402 # phase1[p,:,:] = numpy.angle(ccf) #median filter
2402 2403 coh1[p,:,:] = ndimage.median_filter(numpy.abs(ccf), 5) #median filter
2403 2404 # coh1[p,:,:] = numpy.abs(ccf) #median filter
2404 2405 coh = numpy.nanmax(coh1, axis = 0)
2405 2406 # struc = numpy.ones((5,1))
2406 2407 # coh = ndimage.morphology.grey_dilation(coh, size=(10,1))
2407 2408 #---------------------- Radial Velocity ----------------------------
2408 2409 phaseAux = numpy.mean(numpy.angle(data_acf[:,1,:,:]), axis = 0)
2409 2410 velRad = phaseAux*lamb/(4*numpy.pi*tSamp)
2410 2411
2411 2412 if allData:
2412 2413 boolMetFin = ~numpy.isnan(SNRm)
2413 2414 # coh[:-1,:] = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2414 2415 else:
2415 2416 #------------------------ Meteor mask ---------------------------------
2416 2417 # #SNR mask
2417 2418 # boolMet = (SNRdB>SNRthresh)#|(~numpy.isnan(SNRdB))
2418 2419 #
2419 2420 # #Erase small objects
2420 2421 # boolMet1 = self.__erase_small(boolMet, 2*sec, 5)
2421 2422 #
2422 2423 # auxEEJ = numpy.sum(boolMet1,axis=0)
2423 2424 # indOver = auxEEJ>nProfiles*0.8 #Use this later
2424 2425 # indEEJ = numpy.where(indOver)[0]
2425 2426 # indNEEJ = numpy.where(~indOver)[0]
2426 2427 #
2427 2428 # boolMetFin = boolMet1
2428 2429 #
2429 2430 # if indEEJ.size > 0:
2430 2431 # boolMet1[:,indEEJ] = False #Erase heights with EEJ
2431 2432 #
2432 2433 # boolMet2 = coh > cohThresh
2433 2434 # boolMet2 = self.__erase_small(boolMet2, 2*sec,5)
2434 2435 #
2435 2436 # #Final Meteor mask
2436 2437 # boolMetFin = boolMet1|boolMet2
2437 2438
2438 2439 #Coherence mask
2439 2440 boolMet1 = coh > 0.75
2440 2441 struc = numpy.ones((30,1))
2441 2442 boolMet1 = ndimage.morphology.binary_dilation(boolMet1, structure=struc)
2442 2443
2443 2444 #Derivative mask
2444 2445 derPhase = numpy.nanmean(numpy.abs(phase[:,1:,:] - phase[:,:-1,:]),axis=0)
2445 2446 boolMet2 = derPhase < 0.2
2446 2447 # boolMet2 = ndimage.morphology.binary_opening(boolMet2)
2447 2448 # boolMet2 = ndimage.morphology.binary_closing(boolMet2, structure = numpy.ones((10,1)))
2448 2449 boolMet2 = ndimage.median_filter(boolMet2,size=5)
2449 2450 boolMet2 = numpy.vstack((boolMet2,numpy.full((1,nHeights), True, dtype=bool)))
2450 2451 # #Final mask
2451 2452 # boolMetFin = boolMet2
2452 2453 boolMetFin = boolMet1&boolMet2
2453 2454 # boolMetFin = ndimage.morphology.binary_dilation(boolMetFin)
2454 2455 #Creating data_param
2455 2456 coordMet = numpy.where(boolMetFin)
2456 2457
2457 2458 tmet = coordMet[0]
2458 2459 hmet = coordMet[1]
2459 2460
2460 2461 data_param = numpy.zeros((tmet.size, 6 + nPairs))
2461 2462 data_param[:,0] = utctime
2462 2463 data_param[:,1] = tmet
2463 2464 data_param[:,2] = hmet
2464 2465 data_param[:,3] = SNRm[tmet,hmet]
2465 2466 data_param[:,4] = velRad[tmet,hmet]
2466 2467 data_param[:,5] = coh[tmet,hmet]
2467 2468 data_param[:,6:] = phase[:,tmet,hmet].T
2468 2469
2469 2470 elif mode == 'DBS':
2470 2471 dataOut.groupList = numpy.arange(nChannels)
2471 2472
2472 2473 #Radial Velocities
2473 2474 phase = numpy.angle(data_acf[:,1,:,:])
2474 2475 # phase = ndimage.median_filter(numpy.angle(data_acf[:,1,:,:]), size = (1,5,1))
2475 2476 velRad = phase*lamb/(4*numpy.pi*tSamp)
2476 2477
2477 2478 #Spectral width
2478 2479 # acf1 = ndimage.median_filter(numpy.abs(data_acf[:,1,:,:]), size = (1,5,1))
2479 2480 # acf2 = ndimage.median_filter(numpy.abs(data_acf[:,2,:,:]), size = (1,5,1))
2480 2481 acf1 = data_acf[:,1,:,:]
2481 2482 acf2 = data_acf[:,2,:,:]
2482 2483
2483 2484 spcWidth = (lamb/(2*numpy.sqrt(6)*numpy.pi*tSamp))*numpy.sqrt(numpy.log(acf1/acf2))
2484 2485 # velRad = ndimage.median_filter(velRad, size = (1,5,1))
2485 2486 if allData:
2486 2487 boolMetFin = ~numpy.isnan(SNRdB)
2487 2488 else:
2488 2489 #SNR
2489 2490 boolMet1 = (SNRdB>SNRthresh) #SNR mask
2490 2491 boolMet1 = ndimage.median_filter(boolMet1, size=(1,5,5))
2491 2492
2492 2493 #Radial velocity
2493 2494 boolMet2 = numpy.abs(velRad) < 20
2494 2495 boolMet2 = ndimage.median_filter(boolMet2, (1,5,5))
2495 2496
2496 2497 #Spectral Width
2497 2498 boolMet3 = spcWidth < 30
2498 2499 boolMet3 = ndimage.median_filter(boolMet3, (1,5,5))
2499 2500 # boolMetFin = self.__erase_small(boolMet1, 10,5)
2500 2501 boolMetFin = boolMet1&boolMet2&boolMet3
2501 2502
2502 2503 #Creating data_param
2503 2504 coordMet = numpy.where(boolMetFin)
2504 2505
2505 2506 cmet = coordMet[0]
2506 2507 tmet = coordMet[1]
2507 2508 hmet = coordMet[2]
2508 2509
2509 2510 data_param = numpy.zeros((tmet.size, 7))
2510 2511 data_param[:,0] = utctime
2511 2512 data_param[:,1] = cmet
2512 2513 data_param[:,2] = tmet
2513 2514 data_param[:,3] = hmet
2514 2515 data_param[:,4] = SNR[cmet,tmet,hmet].T
2515 2516 data_param[:,5] = velRad[cmet,tmet,hmet].T
2516 2517 data_param[:,6] = spcWidth[cmet,tmet,hmet].T
2517 2518
2518 2519 # self.dataOut.data_param = data_int
2519 2520 if len(data_param) == 0:
2520 2521 dataOut.flagNoData = True
2521 2522 else:
2522 2523 dataOut.data_param = data_param
2523 2524
2524 2525 def __erase_small(self, binArray, threshX, threshY):
2525 2526 labarray, numfeat = ndimage.measurements.label(binArray)
2526 2527 binArray1 = numpy.copy(binArray)
2527 2528
2528 2529 for i in range(1,numfeat + 1):
2529 2530 auxBin = (labarray==i)
2530 2531 auxSize = auxBin.sum()
2531 2532
2532 2533 x,y = numpy.where(auxBin)
2533 2534 widthX = x.max() - x.min()
2534 2535 widthY = y.max() - y.min()
2535 2536
2536 2537 #width X: 3 seg -> 12.5*3
2537 2538 #width Y:
2538 2539
2539 2540 if (auxSize < 50) or (widthX < threshX) or (widthY < threshY):
2540 2541 binArray1[auxBin] = False
2541 2542
2542 2543 return binArray1
2543 2544
2544 2545 #--------------- Specular Meteor ----------------
2545 2546
2546 2547 class SMDetection(Operation):
2547 2548 '''
2548 2549 Function DetectMeteors()
2549 2550 Project developed with paper:
2550 2551 HOLDSWORTH ET AL. 2004
2551 2552
2552 2553 Input:
2553 2554 self.dataOut.data_pre
2554 2555
2555 2556 centerReceiverIndex: From the channels, which is the center receiver
2556 2557
2557 2558 hei_ref: Height reference for the Beacon signal extraction
2558 2559 tauindex:
2559 2560 predefinedPhaseShifts: Predefined phase offset for the voltge signals
2560 2561
2561 2562 cohDetection: Whether to user Coherent detection or not
2562 2563 cohDet_timeStep: Coherent Detection calculation time step
2563 2564 cohDet_thresh: Coherent Detection phase threshold to correct phases
2564 2565
2565 2566 noise_timeStep: Noise calculation time step
2566 2567 noise_multiple: Noise multiple to define signal threshold
2567 2568
2568 2569 multDet_timeLimit: Multiple Detection Removal time limit in seconds
2569 2570 multDet_rangeLimit: Multiple Detection Removal range limit in km
2570 2571
2571 2572 phaseThresh: Maximum phase difference between receiver to be consider a meteor
2572 2573 SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor
2573 2574
2574 2575 hmin: Minimum Height of the meteor to use it in the further wind estimations
2575 2576 hmax: Maximum Height of the meteor to use it in the further wind estimations
2576 2577 azimuth: Azimuth angle correction
2577 2578
2578 2579 Affected:
2579 2580 self.dataOut.data_param
2580 2581
2581 2582 Rejection Criteria (Errors):
2582 2583 0: No error; analysis OK
2583 2584 1: SNR < SNR threshold
2584 2585 2: angle of arrival (AOA) ambiguously determined
2585 2586 3: AOA estimate not feasible
2586 2587 4: Large difference in AOAs obtained from different antenna baselines
2587 2588 5: echo at start or end of time series
2588 2589 6: echo less than 5 examples long; too short for analysis
2589 2590 7: echo rise exceeds 0.3s
2590 2591 8: echo decay time less than twice rise time
2591 2592 9: large power level before echo
2592 2593 10: large power level after echo
2593 2594 11: poor fit to amplitude for estimation of decay time
2594 2595 12: poor fit to CCF phase variation for estimation of radial drift velocity
2595 2596 13: height unresolvable echo: not valid height within 70 to 110 km
2596 2597 14: height ambiguous echo: more then one possible height within 70 to 110 km
2597 2598 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s
2598 2599 16: oscilatory echo, indicating event most likely not an underdense echo
2599 2600
2600 2601 17: phase difference in meteor Reestimation
2601 2602
2602 2603 Data Storage:
2603 2604 Meteors for Wind Estimation (8):
2604 2605 Utc Time | Range Height
2605 2606 Azimuth Zenith errorCosDir
2606 2607 VelRad errorVelRad
2607 2608 Phase0 Phase1 Phase2 Phase3
2608 2609 TypeError
2609 2610
2610 2611 '''
2611 2612
2612 2613 def run(self, dataOut, hei_ref = None, tauindex = 0,
2613 2614 phaseOffsets = None,
2614 2615 cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25,
2615 2616 noise_timeStep = 4, noise_multiple = 4,
2616 2617 multDet_timeLimit = 1, multDet_rangeLimit = 3,
2617 2618 phaseThresh = 20, SNRThresh = 5,
2618 2619 hmin = 50, hmax=150, azimuth = 0,
2619 2620 channelPositions = None) :
2620 2621
2621 2622
2622 2623 #Getting Pairslist
2623 2624 if channelPositions is None:
2624 2625 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
2625 2626 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
2626 2627 meteorOps = SMOperations()
2627 2628 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
2628 2629 heiRang = dataOut.getHeiRange()
2629 2630 #Get Beacon signal - No Beacon signal anymore
2630 2631 # newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex])
2631 2632 #
2632 2633 # if hei_ref != None:
2633 2634 # newheis = numpy.where(self.dataOut.heightList>hei_ref)
2634 2635 #
2635 2636
2636 2637
2637 2638 #****************REMOVING HARDWARE PHASE DIFFERENCES***************
2638 2639 # see if the user put in pre defined phase shifts
2639 2640 voltsPShift = dataOut.data_pre.copy()
2640 2641
2641 2642 # if predefinedPhaseShifts != None:
2642 2643 # hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180
2643 2644 #
2644 2645 # # elif beaconPhaseShifts:
2645 2646 # # #get hardware phase shifts using beacon signal
2646 2647 # # hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10)
2647 2648 # # hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0)
2648 2649 #
2649 2650 # else:
2650 2651 # hardwarePhaseShifts = numpy.zeros(5)
2651 2652 #
2652 2653 # voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex')
2653 2654 # for i in range(self.dataOut.data_pre.shape[0]):
2654 2655 # voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i])
2655 2656
2656 2657 #******************END OF REMOVING HARDWARE PHASE DIFFERENCES*********
2657 2658
2658 2659 #Remove DC
2659 2660 voltsDC = numpy.mean(voltsPShift,1)
2660 2661 voltsDC = numpy.mean(voltsDC,1)
2661 2662 for i in range(voltsDC.shape[0]):
2662 2663 voltsPShift[i] = voltsPShift[i] - voltsDC[i]
2663 2664
2664 2665 #Don't considerate last heights, theyre used to calculate Hardware Phase Shift
2665 2666 # voltsPShift = voltsPShift[:,:,:newheis[0][0]]
2666 2667
2667 2668 #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) **********
2668 2669 #Coherent Detection
2669 2670 if cohDetection:
2670 2671 #use coherent detection to get the net power
2671 2672 cohDet_thresh = cohDet_thresh*numpy.pi/180
2672 2673 voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, dataOut.timeInterval, pairslist0, cohDet_thresh)
2673 2674
2674 2675 #Non-coherent detection!
2675 2676 powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0)
2676 2677 #********** END OF COH/NON-COH POWER CALCULATION**********************
2677 2678
2678 2679 #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS ****************
2679 2680 #Get noise
2680 2681 noise, noise1 = self.__getNoise(powerNet, noise_timeStep, dataOut.timeInterval)
2681 2682 # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval)
2682 2683 #Get signal threshold
2683 2684 signalThresh = noise_multiple*noise
2684 2685 #Meteor echoes detection
2685 2686 listMeteors = self.__findMeteors(powerNet, signalThresh)
2686 2687 #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION **********
2687 2688
2688 2689 #************** REMOVE MULTIPLE DETECTIONS (3.5) ***************************
2689 2690 #Parameters
2690 2691 heiRange = dataOut.getHeiRange()
2691 2692 rangeInterval = heiRange[1] - heiRange[0]
2692 2693 rangeLimit = multDet_rangeLimit/rangeInterval
2693 2694 timeLimit = multDet_timeLimit/dataOut.timeInterval
2694 2695 #Multiple detection removals
2695 2696 listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit)
2696 2697 #************ END OF REMOVE MULTIPLE DETECTIONS **********************
2697 2698
2698 2699 #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ********************
2699 2700 #Parameters
2700 2701 phaseThresh = phaseThresh*numpy.pi/180
2701 2702 thresh = [phaseThresh, noise_multiple, SNRThresh]
2702 2703 #Meteor reestimation (Errors N 1, 6, 12, 17)
2703 2704 listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist0, thresh, noise, dataOut.timeInterval, dataOut.frequency)
2704 2705 # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise)
2705 2706 #Estimation of decay times (Errors N 7, 8, 11)
2706 2707 listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, dataOut.timeInterval, dataOut.frequency)
2707 2708 #******************* END OF METEOR REESTIMATION *******************
2708 2709
2709 2710 #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) **************************
2710 2711 #Calculating Radial Velocity (Error N 15)
2711 2712 radialStdThresh = 10
2712 2713 listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist0, dataOut.timeInterval)
2713 2714
2714 2715 if len(listMeteors4) > 0:
2715 2716 #Setting New Array
2716 2717 date = dataOut.utctime
2717 2718 arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang)
2718 2719
2719 2720 #Correcting phase offset
2720 2721 if phaseOffsets != None:
2721 2722 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
2722 2723 arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
2723 2724
2724 2725 #Second Pairslist
2725 2726 pairsList = []
2726 2727 pairx = (0,1)
2727 2728 pairy = (2,3)
2728 2729 pairsList.append(pairx)
2729 2730 pairsList.append(pairy)
2730 2731
2731 2732 jph = numpy.array([0,0,0,0])
2732 2733 h = (hmin,hmax)
2733 2734 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
2734 2735
2735 2736 # #Calculate AOA (Error N 3, 4)
2736 2737 # #JONES ET AL. 1998
2737 2738 # error = arrayParameters[:,-1]
2738 2739 # AOAthresh = numpy.pi/8
2739 2740 # phases = -arrayParameters[:,9:13]
2740 2741 # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth)
2741 2742 #
2742 2743 # #Calculate Heights (Error N 13 and 14)
2743 2744 # error = arrayParameters[:,-1]
2744 2745 # Ranges = arrayParameters[:,2]
2745 2746 # zenith = arrayParameters[:,5]
2746 2747 # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax)
2747 2748 # error = arrayParameters[:,-1]
2748 2749 #********************* END OF PARAMETERS CALCULATION **************************
2749 2750
2750 2751 #***************************+ PASS DATA TO NEXT STEP **********************
2751 2752 # arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1]))
2752 2753 dataOut.data_param = arrayParameters
2753 2754
2754 2755 if arrayParameters is None:
2755 2756 dataOut.flagNoData = True
2756 2757 else:
2757 2758 dataOut.flagNoData = True
2758 2759
2759 2760 return
2760 2761
2761 2762 def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n):
2762 2763
2763 2764 minIndex = min(newheis[0])
2764 2765 maxIndex = max(newheis[0])
2765 2766
2766 2767 voltage = voltage0[:,:,minIndex:maxIndex+1]
2767 2768 nLength = voltage.shape[1]/n
2768 2769 nMin = 0
2769 2770 nMax = 0
2770 2771 phaseOffset = numpy.zeros((len(pairslist),n))
2771 2772
2772 2773 for i in range(n):
2773 2774 nMax += nLength
2774 2775 phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0]))
2775 2776 phaseCCF = numpy.mean(phaseCCF, axis = 2)
2776 2777 phaseOffset[:,i] = phaseCCF.transpose()
2777 2778 nMin = nMax
2778 2779 # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist)
2779 2780
2780 2781 #Remove Outliers
2781 2782 factor = 2
2782 2783 wt = phaseOffset - signal.medfilt(phaseOffset,(1,5))
2783 2784 dw = numpy.std(wt,axis = 1)
2784 2785 dw = dw.reshape((dw.size,1))
2785 2786 ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor))
2786 2787 phaseOffset[ind] = numpy.nan
2787 2788 phaseOffset = stats.nanmean(phaseOffset, axis=1)
2788 2789
2789 2790 return phaseOffset
2790 2791
2791 2792 def __shiftPhase(self, data, phaseShift):
2792 2793 #this will shift the phase of a complex number
2793 2794 dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j)
2794 2795 return dataShifted
2795 2796
2796 2797 def __estimatePhaseDifference(self, array, pairslist):
2797 2798 nChannel = array.shape[0]
2798 2799 nHeights = array.shape[2]
2799 2800 numPairs = len(pairslist)
2800 2801 # phaseCCF = numpy.zeros((nChannel, 5, nHeights))
2801 2802 phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2]))
2802 2803
2803 2804 #Correct phases
2804 2805 derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:]
2805 2806 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
2806 2807
2807 2808 if indDer[0].shape[0] > 0:
2808 2809 for i in range(indDer[0].shape[0]):
2809 2810 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]])
2810 2811 phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi
2811 2812
2812 2813 # for j in range(numSides):
2813 2814 # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2])
2814 2815 # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux)
2815 2816 #
2816 2817 #Linear
2817 2818 phaseInt = numpy.zeros((numPairs,1))
2818 2819 angAllCCF = phaseCCF[:,[0,1,3,4],0]
2819 2820 for j in range(numPairs):
2820 2821 fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:])
2821 2822 phaseInt[j] = fit[1]
2822 2823 #Phase Differences
2823 2824 phaseDiff = phaseInt - phaseCCF[:,2,:]
2824 2825 phaseArrival = phaseInt.reshape(phaseInt.size)
2825 2826
2826 2827 #Dealias
2827 2828 phaseArrival = numpy.angle(numpy.exp(1j*phaseArrival))
2828 2829 # indAlias = numpy.where(phaseArrival > numpy.pi)
2829 2830 # phaseArrival[indAlias] -= 2*numpy.pi
2830 2831 # indAlias = numpy.where(phaseArrival < -numpy.pi)
2831 2832 # phaseArrival[indAlias] += 2*numpy.pi
2832 2833
2833 2834 return phaseDiff, phaseArrival
2834 2835
2835 2836 def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh):
2836 2837 #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power
2837 2838 #find the phase shifts of each channel over 1 second intervals
2838 2839 #only look at ranges below the beacon signal
2839 2840 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2840 2841 numBlocks = int(volts.shape[1]/numProfPerBlock)
2841 2842 numHeights = volts.shape[2]
2842 2843 nChannel = volts.shape[0]
2843 2844 voltsCohDet = volts.copy()
2844 2845
2845 2846 pairsarray = numpy.array(pairslist)
2846 2847 indSides = pairsarray[:,1]
2847 2848 # indSides = numpy.array(range(nChannel))
2848 2849 # indSides = numpy.delete(indSides, indCenter)
2849 2850 #
2850 2851 # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0)
2851 2852 listBlocks = numpy.array_split(volts, numBlocks, 1)
2852 2853
2853 2854 startInd = 0
2854 2855 endInd = 0
2855 2856
2856 2857 for i in range(numBlocks):
2857 2858 startInd = endInd
2858 2859 endInd = endInd + listBlocks[i].shape[1]
2859 2860
2860 2861 arrayBlock = listBlocks[i]
2861 2862 # arrayBlockCenter = listCenter[i]
2862 2863
2863 2864 #Estimate the Phase Difference
2864 2865 phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist)
2865 2866 #Phase Difference RMS
2866 2867 arrayPhaseRMS = numpy.abs(phaseDiff)
2867 2868 phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0)
2868 2869 indPhase = numpy.where(phaseRMSaux==4)
2869 2870 #Shifting
2870 2871 if indPhase[0].shape[0] > 0:
2871 2872 for j in range(indSides.size):
2872 2873 arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose())
2873 2874 voltsCohDet[:,startInd:endInd,:] = arrayBlock
2874 2875
2875 2876 return voltsCohDet
2876 2877
2877 2878 def __calculateCCF(self, volts, pairslist ,laglist):
2878 2879
2879 2880 nHeights = volts.shape[2]
2880 2881 nPoints = volts.shape[1]
2881 2882 voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex')
2882 2883
2883 2884 for i in range(len(pairslist)):
2884 2885 volts1 = volts[pairslist[i][0]]
2885 2886 volts2 = volts[pairslist[i][1]]
2886 2887
2887 2888 for t in range(len(laglist)):
2888 2889 idxT = laglist[t]
2889 2890 if idxT >= 0:
2890 2891 vStacked = numpy.vstack((volts2[idxT:,:],
2891 2892 numpy.zeros((idxT, nHeights),dtype='complex')))
2892 2893 else:
2893 2894 vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'),
2894 2895 volts2[:(nPoints + idxT),:]))
2895 2896 voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0)
2896 2897
2897 2898 vStacked = None
2898 2899 return voltsCCF
2899 2900
2900 2901 def __getNoise(self, power, timeSegment, timeInterval):
2901 2902 numProfPerBlock = numpy.ceil(timeSegment/timeInterval)
2902 2903 numBlocks = int(power.shape[0]/numProfPerBlock)
2903 2904 numHeights = power.shape[1]
2904 2905
2905 2906 listPower = numpy.array_split(power, numBlocks, 0)
2906 2907 noise = numpy.zeros((power.shape[0], power.shape[1]))
2907 2908 noise1 = numpy.zeros((power.shape[0], power.shape[1]))
2908 2909
2909 2910 startInd = 0
2910 2911 endInd = 0
2911 2912
2912 2913 for i in range(numBlocks): #split por canal
2913 2914 startInd = endInd
2914 2915 endInd = endInd + listPower[i].shape[0]
2915 2916
2916 2917 arrayBlock = listPower[i]
2917 2918 noiseAux = numpy.mean(arrayBlock, 0)
2918 2919 # noiseAux = numpy.median(noiseAux)
2919 2920 # noiseAux = numpy.mean(arrayBlock)
2920 2921 noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux
2921 2922
2922 2923 noiseAux1 = numpy.mean(arrayBlock)
2923 2924 noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1
2924 2925
2925 2926 return noise, noise1
2926 2927
2927 2928 def __findMeteors(self, power, thresh):
2928 2929 nProf = power.shape[0]
2929 2930 nHeights = power.shape[1]
2930 2931 listMeteors = []
2931 2932
2932 2933 for i in range(nHeights):
2933 2934 powerAux = power[:,i]
2934 2935 threshAux = thresh[:,i]
2935 2936
2936 2937 indUPthresh = numpy.where(powerAux > threshAux)[0]
2937 2938 indDNthresh = numpy.where(powerAux <= threshAux)[0]
2938 2939
2939 2940 j = 0
2940 2941
2941 2942 while (j < indUPthresh.size - 2):
2942 2943 if (indUPthresh[j + 2] == indUPthresh[j] + 2):
2943 2944 indDNAux = numpy.where(indDNthresh > indUPthresh[j])
2944 2945 indDNthresh = indDNthresh[indDNAux]
2945 2946
2946 2947 if (indDNthresh.size > 0):
2947 2948 indEnd = indDNthresh[0] - 1
2948 2949 indInit = indUPthresh[j]
2949 2950
2950 2951 meteor = powerAux[indInit:indEnd + 1]
2951 2952 indPeak = meteor.argmax() + indInit
2952 2953 FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0)))
2953 2954
2954 2955 listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!!
2955 2956 j = numpy.where(indUPthresh == indEnd)[0] + 1
2956 2957 else: j+=1
2957 2958 else: j+=1
2958 2959
2959 2960 return listMeteors
2960 2961
2961 2962 def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit):
2962 2963
2963 2964 arrayMeteors = numpy.asarray(listMeteors)
2964 2965 listMeteors1 = []
2965 2966
2966 2967 while arrayMeteors.shape[0] > 0:
2967 2968 FLAs = arrayMeteors[:,4]
2968 2969 maxFLA = FLAs.argmax()
2969 2970 listMeteors1.append(arrayMeteors[maxFLA,:])
2970 2971
2971 2972 MeteorInitTime = arrayMeteors[maxFLA,1]
2972 2973 MeteorEndTime = arrayMeteors[maxFLA,3]
2973 2974 MeteorHeight = arrayMeteors[maxFLA,0]
2974 2975
2975 2976 #Check neighborhood
2976 2977 maxHeightIndex = MeteorHeight + rangeLimit
2977 2978 minHeightIndex = MeteorHeight - rangeLimit
2978 2979 minTimeIndex = MeteorInitTime - timeLimit
2979 2980 maxTimeIndex = MeteorEndTime + timeLimit
2980 2981
2981 2982 #Check Heights
2982 2983 indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex)
2983 2984 indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex)
2984 2985 indBoth = numpy.where(numpy.logical_and(indTime,indHeight))
2985 2986
2986 2987 arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0)
2987 2988
2988 2989 return listMeteors1
2989 2990
2990 2991 def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency):
2991 2992 numHeights = volts.shape[2]
2992 2993 nChannel = volts.shape[0]
2993 2994
2994 2995 thresholdPhase = thresh[0]
2995 2996 thresholdNoise = thresh[1]
2996 2997 thresholdDB = float(thresh[2])
2997 2998
2998 2999 thresholdDB1 = 10**(thresholdDB/10)
2999 3000 pairsarray = numpy.array(pairslist)
3000 3001 indSides = pairsarray[:,1]
3001 3002
3002 3003 pairslist1 = list(pairslist)
3003 3004 pairslist1.append((0,1))
3004 3005 pairslist1.append((3,4))
3005 3006
3006 3007 listMeteors1 = []
3007 3008 listPowerSeries = []
3008 3009 listVoltageSeries = []
3009 3010 #volts has the war data
3010 3011
3011 3012 if frequency == 30e6:
3012 3013 timeLag = 45*10**-3
3013 3014 else:
3014 3015 timeLag = 15*10**-3
3015 3016 lag = numpy.ceil(timeLag/timeInterval)
3016 3017
3017 3018 for i in range(len(listMeteors)):
3018 3019
3019 3020 ###################### 3.6 - 3.7 PARAMETERS REESTIMATION #########################
3020 3021 meteorAux = numpy.zeros(16)
3021 3022
3022 3023 #Loading meteor Data (mHeight, mStart, mPeak, mEnd)
3023 3024 mHeight = listMeteors[i][0]
3024 3025 mStart = listMeteors[i][1]
3025 3026 mPeak = listMeteors[i][2]
3026 3027 mEnd = listMeteors[i][3]
3027 3028
3028 3029 #get the volt data between the start and end times of the meteor
3029 3030 meteorVolts = volts[:,mStart:mEnd+1,mHeight]
3030 3031 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3031 3032
3032 3033 #3.6. Phase Difference estimation
3033 3034 phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist)
3034 3035
3035 3036 #3.7. Phase difference removal & meteor start, peak and end times reestimated
3036 3037 #meteorVolts0.- all Channels, all Profiles
3037 3038 meteorVolts0 = volts[:,:,mHeight]
3038 3039 meteorThresh = noise[:,mHeight]*thresholdNoise
3039 3040 meteorNoise = noise[:,mHeight]
3040 3041 meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting
3041 3042 powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power
3042 3043
3043 3044 #Times reestimation
3044 3045 mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0]
3045 3046 if mStart1.size > 0:
3046 3047 mStart1 = mStart1[-1] + 1
3047 3048
3048 3049 else:
3049 3050 mStart1 = mPeak
3050 3051
3051 3052 mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1
3052 3053 mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0]
3053 3054 if mEndDecayTime1.size == 0:
3054 3055 mEndDecayTime1 = powerNet0.size
3055 3056 else:
3056 3057 mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1
3057 3058 # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax()
3058 3059
3059 3060 #meteorVolts1.- all Channels, from start to end
3060 3061 meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1]
3061 3062 meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1]
3062 3063 if meteorVolts2.shape[1] == 0:
3063 3064 meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1]
3064 3065 meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1)
3065 3066 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1)
3066 3067 ##################### END PARAMETERS REESTIMATION #########################
3067 3068
3068 3069 ##################### 3.8 PHASE DIFFERENCE REESTIMATION ########################
3069 3070 # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis
3070 3071 if meteorVolts2.shape[1] > 0:
3071 3072 #Phase Difference re-estimation
3072 3073 phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation
3073 3074 # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist)
3074 3075 meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1])
3075 3076 phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1))
3076 3077 meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting
3077 3078
3078 3079 #Phase Difference RMS
3079 3080 phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1)))
3080 3081 powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0)
3081 3082 #Data from Meteor
3082 3083 mPeak1 = powerNet1.argmax() + mStart1
3083 3084 mPeakPower1 = powerNet1.max()
3084 3085 noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight])
3085 3086 mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux
3086 3087 Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1])
3087 3088 Meteor1 = numpy.hstack((Meteor1,phaseDiffint))
3088 3089 PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1]
3089 3090 #Vectorize
3090 3091 meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]
3091 3092 meteorAux[7:11] = phaseDiffint[0:4]
3092 3093
3093 3094 #Rejection Criterions
3094 3095 if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation
3095 3096 meteorAux[-1] = 17
3096 3097 elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB
3097 3098 meteorAux[-1] = 1
3098 3099
3099 3100
3100 3101 else:
3101 3102 meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd]
3102 3103 meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis
3103 3104 PowerSeries = 0
3104 3105
3105 3106 listMeteors1.append(meteorAux)
3106 3107 listPowerSeries.append(PowerSeries)
3107 3108 listVoltageSeries.append(meteorVolts1)
3108 3109
3109 3110 return listMeteors1, listPowerSeries, listVoltageSeries
3110 3111
3111 3112 def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency):
3112 3113
3113 3114 threshError = 10
3114 3115 #Depending if it is 30 or 50 MHz
3115 3116 if frequency == 30e6:
3116 3117 timeLag = 45*10**-3
3117 3118 else:
3118 3119 timeLag = 15*10**-3
3119 3120 lag = numpy.ceil(timeLag/timeInterval)
3120 3121
3121 3122 listMeteors1 = []
3122 3123
3123 3124 for i in range(len(listMeteors)):
3124 3125 meteorPower = listPower[i]
3125 3126 meteorAux = listMeteors[i]
3126 3127
3127 3128 if meteorAux[-1] == 0:
3128 3129
3129 3130 try:
3130 3131 indmax = meteorPower.argmax()
3131 3132 indlag = indmax + lag
3132 3133
3133 3134 y = meteorPower[indlag:]
3134 3135 x = numpy.arange(0, y.size)*timeLag
3135 3136
3136 3137 #first guess
3137 3138 a = y[0]
3138 3139 tau = timeLag
3139 3140 #exponential fit
3140 3141 popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau])
3141 3142 y1 = self.__exponential_function(x, *popt)
3142 3143 #error estimation
3143 3144 error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size))
3144 3145
3145 3146 decayTime = popt[1]
3146 3147 riseTime = indmax*timeInterval
3147 3148 meteorAux[11:13] = [decayTime, error]
3148 3149
3149 3150 #Table items 7, 8 and 11
3150 3151 if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s
3151 3152 meteorAux[-1] = 7
3152 3153 elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time
3153 3154 meteorAux[-1] = 8
3154 3155 if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time
3155 3156 meteorAux[-1] = 11
3156 3157
3157 3158
3158 3159 except:
3159 3160 meteorAux[-1] = 11
3160 3161
3161 3162
3162 3163 listMeteors1.append(meteorAux)
3163 3164
3164 3165 return listMeteors1
3165 3166
3166 3167 #Exponential Function
3167 3168
3168 3169 def __exponential_function(self, x, a, tau):
3169 3170 y = a*numpy.exp(-x/tau)
3170 3171 return y
3171 3172
3172 3173 def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval):
3173 3174
3174 3175 pairslist1 = list(pairslist)
3175 3176 pairslist1.append((0,1))
3176 3177 pairslist1.append((3,4))
3177 3178 numPairs = len(pairslist1)
3178 3179 #Time Lag
3179 3180 timeLag = 45*10**-3
3180 3181 c = 3e8
3181 3182 lag = numpy.ceil(timeLag/timeInterval)
3182 3183 freq = 30e6
3183 3184
3184 3185 listMeteors1 = []
3185 3186
3186 3187 for i in range(len(listMeteors)):
3187 3188 meteorAux = listMeteors[i]
3188 3189 if meteorAux[-1] == 0:
3189 3190 mStart = listMeteors[i][1]
3190 3191 mPeak = listMeteors[i][2]
3191 3192 mLag = mPeak - mStart + lag
3192 3193
3193 3194 #get the volt data between the start and end times of the meteor
3194 3195 meteorVolts = listVolts[i]
3195 3196 meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1)
3196 3197
3197 3198 #Get CCF
3198 3199 allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2])
3199 3200
3200 3201 #Method 2
3201 3202 slopes = numpy.zeros(numPairs)
3202 3203 time = numpy.array([-2,-1,1,2])*timeInterval
3203 3204 angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0])
3204 3205
3205 3206 #Correct phases
3206 3207 derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1]
3207 3208 indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi)
3208 3209
3209 3210 if indDer[0].shape[0] > 0:
3210 3211 for i in range(indDer[0].shape[0]):
3211 3212 signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]])
3212 3213 angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi
3213 3214
3214 3215 # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]]))
3215 3216 for j in range(numPairs):
3216 3217 fit = stats.linregress(time, angAllCCF[j,:])
3217 3218 slopes[j] = fit[0]
3218 3219
3219 3220 #Remove Outlier
3220 3221 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3221 3222 # slopes = numpy.delete(slopes,indOut)
3222 3223 # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes)))
3223 3224 # slopes = numpy.delete(slopes,indOut)
3224 3225
3225 3226 radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq)
3226 3227 radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq)
3227 3228 meteorAux[-2] = radialError
3228 3229 meteorAux[-3] = radialVelocity
3229 3230
3230 3231 #Setting Error
3231 3232 #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s
3232 3233 if numpy.abs(radialVelocity) > 200:
3233 3234 meteorAux[-1] = 15
3234 3235 #Number 12: Poor fit to CCF variation for estimation of radial drift velocity
3235 3236 elif radialError > radialStdThresh:
3236 3237 meteorAux[-1] = 12
3237 3238
3238 3239 listMeteors1.append(meteorAux)
3239 3240 return listMeteors1
3240 3241
3241 3242 def __setNewArrays(self, listMeteors, date, heiRang):
3242 3243
3243 3244 #New arrays
3244 3245 arrayMeteors = numpy.array(listMeteors)
3245 3246 arrayParameters = numpy.zeros((len(listMeteors), 13))
3246 3247
3247 3248 #Date inclusion
3248 3249 # date = re.findall(r'\((.*?)\)', date)
3249 3250 # date = date[0].split(',')
3250 3251 # date = map(int, date)
3251 3252 #
3252 3253 # if len(date)<6:
3253 3254 # date.append(0)
3254 3255 #
3255 3256 # date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]]
3256 3257 # arrayDate = numpy.tile(date, (len(listMeteors), 1))
3257 3258 arrayDate = numpy.tile(date, (len(listMeteors)))
3258 3259
3259 3260 #Meteor array
3260 3261 # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)]
3261 3262 # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors))
3262 3263
3263 3264 #Parameters Array
3264 3265 arrayParameters[:,0] = arrayDate #Date
3265 3266 arrayParameters[:,1] = heiRang[arrayMeteors[:,0].astype(int)] #Range
3266 3267 arrayParameters[:,6:8] = arrayMeteors[:,-3:-1] #Radial velocity and its error
3267 3268 arrayParameters[:,8:12] = arrayMeteors[:,7:11] #Phases
3268 3269 arrayParameters[:,-1] = arrayMeteors[:,-1] #Error
3269 3270
3270 3271
3271 3272 return arrayParameters
3272 3273
3273 3274 class CorrectSMPhases(Operation):
3274 3275
3275 3276 def run(self, dataOut, phaseOffsets, hmin = 50, hmax = 150, azimuth = 45, channelPositions = None):
3276 3277
3277 3278 arrayParameters = dataOut.data_param
3278 3279 pairsList = []
3279 3280 pairx = (0,1)
3280 3281 pairy = (2,3)
3281 3282 pairsList.append(pairx)
3282 3283 pairsList.append(pairy)
3283 3284 jph = numpy.zeros(4)
3284 3285
3285 3286 phaseOffsets = numpy.array(phaseOffsets)*numpy.pi/180
3286 3287 # arrayParameters[:,8:12] = numpy.unwrap(arrayParameters[:,8:12] + phaseOffsets)
3287 3288 arrayParameters[:,8:12] = numpy.angle(numpy.exp(1j*(arrayParameters[:,8:12] + phaseOffsets)))
3288 3289
3289 3290 meteorOps = SMOperations()
3290 3291 if channelPositions is None:
3291 3292 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3292 3293 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3293 3294
3294 3295 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3295 3296 h = (hmin,hmax)
3296 3297
3297 3298 arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, distances, jph)
3298 3299
3299 3300 dataOut.data_param = arrayParameters
3300 3301 return
3301 3302
3302 3303 class SMPhaseCalibration(Operation):
3303 3304
3304 3305 __buffer = None
3305 3306
3306 3307 __initime = None
3307 3308
3308 3309 __dataReady = False
3309 3310
3310 3311 __isConfig = False
3311 3312
3312 3313 def __checkTime(self, currentTime, initTime, paramInterval, outputInterval):
3313 3314
3314 3315 dataTime = currentTime + paramInterval
3315 3316 deltaTime = dataTime - initTime
3316 3317
3317 3318 if deltaTime >= outputInterval or deltaTime < 0:
3318 3319 return True
3319 3320
3320 3321 return False
3321 3322
3322 3323 def __getGammas(self, pairs, d, phases):
3323 3324 gammas = numpy.zeros(2)
3324 3325
3325 3326 for i in range(len(pairs)):
3326 3327
3327 3328 pairi = pairs[i]
3328 3329
3329 3330 phip3 = phases[:,pairi[0]]
3330 3331 d3 = d[pairi[0]]
3331 3332 phip2 = phases[:,pairi[1]]
3332 3333 d2 = d[pairi[1]]
3333 3334 #Calculating gamma
3334 3335 # jdcos = alp1/(k*d1)
3335 3336 # jgamma = numpy.angle(numpy.exp(1j*(d0*alp1/d1 - alp0)))
3336 3337 jgamma = -phip2*d3/d2 - phip3
3337 3338 jgamma = numpy.angle(numpy.exp(1j*jgamma))
3338 3339 # jgamma[jgamma>numpy.pi] -= 2*numpy.pi
3339 3340 # jgamma[jgamma<-numpy.pi] += 2*numpy.pi
3340 3341
3341 3342 #Revised distribution
3342 3343 jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi))
3343 3344
3344 3345 #Histogram
3345 3346 nBins = 64
3346 3347 rmin = -0.5*numpy.pi
3347 3348 rmax = 0.5*numpy.pi
3348 3349 phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax))
3349 3350
3350 3351 meteorsY = phaseHisto[0]
3351 3352 phasesX = phaseHisto[1][:-1]
3352 3353 width = phasesX[1] - phasesX[0]
3353 3354 phasesX += width/2
3354 3355
3355 3356 #Gaussian aproximation
3356 3357 bpeak = meteorsY.argmax()
3357 3358 peak = meteorsY.max()
3358 3359 jmin = bpeak - 5
3359 3360 jmax = bpeak + 5 + 1
3360 3361
3361 3362 if jmin<0:
3362 3363 jmin = 0
3363 3364 jmax = 6
3364 3365 elif jmax > meteorsY.size:
3365 3366 jmin = meteorsY.size - 6
3366 3367 jmax = meteorsY.size
3367 3368
3368 3369 x0 = numpy.array([peak,bpeak,50])
3369 3370 coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax]))
3370 3371
3371 3372 #Gammas
3372 3373 gammas[i] = coeff[0][1]
3373 3374
3374 3375 return gammas
3375 3376
3376 3377 def __residualFunction(self, coeffs, y, t):
3377 3378
3378 3379 return y - self.__gauss_function(t, coeffs)
3379 3380
3380 3381 def __gauss_function(self, t, coeffs):
3381 3382
3382 3383 return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2)
3383 3384
3384 3385 def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray):
3385 3386 meteorOps = SMOperations()
3386 3387 nchan = 4
3387 3388 pairx = pairsList[0] #x es 0
3388 3389 pairy = pairsList[1] #y es 1
3389 3390 center_xangle = 0
3390 3391 center_yangle = 0
3391 3392 range_angle = numpy.array([10*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4])
3392 3393 ntimes = len(range_angle)
3393 3394
3394 3395 nstepsx = 20
3395 3396 nstepsy = 20
3396 3397
3397 3398 for iz in range(ntimes):
3398 3399 min_xangle = -range_angle[iz]/2 + center_xangle
3399 3400 max_xangle = range_angle[iz]/2 + center_xangle
3400 3401 min_yangle = -range_angle[iz]/2 + center_yangle
3401 3402 max_yangle = range_angle[iz]/2 + center_yangle
3402 3403
3403 3404 inc_x = (max_xangle-min_xangle)/nstepsx
3404 3405 inc_y = (max_yangle-min_yangle)/nstepsy
3405 3406
3406 3407 alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle
3407 3408 alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle
3408 3409 penalty = numpy.zeros((nstepsx,nstepsy))
3409 3410 jph_array = numpy.zeros((nchan,nstepsx,nstepsy))
3410 3411 jph = numpy.zeros(nchan)
3411 3412
3412 3413 # Iterations looking for the offset
3413 3414 for iy in range(int(nstepsy)):
3414 3415 for ix in range(int(nstepsx)):
3415 3416 d3 = d[pairsList[1][0]]
3416 3417 d2 = d[pairsList[1][1]]
3417 3418 d5 = d[pairsList[0][0]]
3418 3419 d4 = d[pairsList[0][1]]
3419 3420
3420 3421 alp2 = alpha_y[iy] #gamma 1
3421 3422 alp4 = alpha_x[ix] #gamma 0
3422 3423
3423 3424 alp3 = -alp2*d3/d2 - gammas[1]
3424 3425 alp5 = -alp4*d5/d4 - gammas[0]
3425 3426 # jph[pairy[1]] = alpha_y[iy]
3426 3427 # jph[pairy[0]] = -gammas[1] - alpha_y[iy]*d[pairy[1]]/d[pairy[0]]
3427 3428
3428 3429 # jph[pairx[1]] = alpha_x[ix]
3429 3430 # jph[pairx[0]] = -gammas[0] - alpha_x[ix]*d[pairx[1]]/d[pairx[0]]
3430 3431 jph[pairsList[0][1]] = alp4
3431 3432 jph[pairsList[0][0]] = alp5
3432 3433 jph[pairsList[1][0]] = alp3
3433 3434 jph[pairsList[1][1]] = alp2
3434 3435 jph_array[:,ix,iy] = jph
3435 3436 # d = [2.0,2.5,2.5,2.0]
3436 3437 #falta chequear si va a leer bien los meteoros
3437 3438 meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, d, jph)
3438 3439 error = meteorsArray1[:,-1]
3439 3440 ind1 = numpy.where(error==0)[0]
3440 3441 penalty[ix,iy] = ind1.size
3441 3442
3442 3443 i,j = numpy.unravel_index(penalty.argmax(), penalty.shape)
3443 3444 phOffset = jph_array[:,i,j]
3444 3445
3445 3446 center_xangle = phOffset[pairx[1]]
3446 3447 center_yangle = phOffset[pairy[1]]
3447 3448
3448 3449 phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j]))
3449 3450 phOffset = phOffset*180/numpy.pi
3450 3451 return phOffset
3451 3452
3452 3453
3453 3454 def run(self, dataOut, hmin, hmax, channelPositions=None, nHours = 1):
3454 3455
3455 3456 dataOut.flagNoData = True
3456 3457 self.__dataReady = False
3457 3458 dataOut.outputInterval = nHours*3600
3458 3459
3459 3460 if self.__isConfig == False:
3460 3461 # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03)
3461 3462 #Get Initial LTC time
3462 3463 self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime)
3463 3464 self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds()
3464 3465
3465 3466 self.__isConfig = True
3466 3467
3467 3468 if self.__buffer is None:
3468 3469 self.__buffer = dataOut.data_param.copy()
3469 3470
3470 3471 else:
3471 3472 self.__buffer = numpy.vstack((self.__buffer, dataOut.data_param))
3472 3473
3473 3474 self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready
3474 3475
3475 3476 if self.__dataReady:
3476 3477 dataOut.utctimeInit = self.__initime
3477 3478 self.__initime += dataOut.outputInterval #to erase time offset
3478 3479
3479 3480 freq = dataOut.frequency
3480 3481 c = dataOut.C #m/s
3481 3482 lamb = c/freq
3482 3483 k = 2*numpy.pi/lamb
3483 3484 azimuth = 0
3484 3485 h = (hmin, hmax)
3485 3486 # pairs = ((0,1),(2,3)) #Estrella
3486 3487 # pairs = ((1,0),(2,3)) #T
3487 3488
3488 3489 if channelPositions is None:
3489 3490 # channelPositions = [(2.5,0), (0,2.5), (0,0), (0,4.5), (-2,0)] #T
3490 3491 channelPositions = [(4.5,2), (2,4.5), (2,2), (2,0), (0,2)] #Estrella
3491 3492 meteorOps = SMOperations()
3492 3493 pairslist0, distances = meteorOps.getPhasePairs(channelPositions)
3493 3494
3494 3495 #Checking correct order of pairs
3495 3496 pairs = []
3496 3497 if distances[1] > distances[0]:
3497 3498 pairs.append((1,0))
3498 3499 else:
3499 3500 pairs.append((0,1))
3500 3501
3501 3502 if distances[3] > distances[2]:
3502 3503 pairs.append((3,2))
3503 3504 else:
3504 3505 pairs.append((2,3))
3505 3506 # distances1 = [-distances[0]*lamb, distances[1]*lamb, -distances[2]*lamb, distances[3]*lamb]
3506 3507
3507 3508 meteorsArray = self.__buffer
3508 3509 error = meteorsArray[:,-1]
3509 3510 boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14)
3510 3511 ind1 = numpy.where(boolError)[0]
3511 3512 meteorsArray = meteorsArray[ind1,:]
3512 3513 meteorsArray[:,-1] = 0
3513 3514 phases = meteorsArray[:,8:12]
3514 3515
3515 3516 #Calculate Gammas
3516 3517 gammas = self.__getGammas(pairs, distances, phases)
3517 3518 # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180
3518 3519 #Calculate Phases
3519 3520 phasesOff = self.__getPhases(azimuth, h, pairs, distances, gammas, meteorsArray)
3520 3521 phasesOff = phasesOff.reshape((1,phasesOff.size))
3521 3522 dataOut.data_output = -phasesOff
3522 3523 dataOut.flagNoData = False
3523 3524 self.__buffer = None
3524 3525
3525 3526
3526 3527 return
3527 3528
3528 3529 class SMOperations():
3529 3530
3530 3531 def __init__(self):
3531 3532
3532 3533 return
3533 3534
3534 3535 def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, distances, jph):
3535 3536
3536 3537 arrayParameters = arrayParameters0.copy()
3537 3538 hmin = h[0]
3538 3539 hmax = h[1]
3539 3540
3540 3541 #Calculate AOA (Error N 3, 4)
3541 3542 #JONES ET AL. 1998
3542 3543 AOAthresh = numpy.pi/8
3543 3544 error = arrayParameters[:,-1]
3544 3545 phases = -arrayParameters[:,8:12] + jph
3545 3546 # phases = numpy.unwrap(phases)
3546 3547 arrayParameters[:,3:6], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, distances, error, AOAthresh, azimuth)
3547 3548
3548 3549 #Calculate Heights (Error N 13 and 14)
3549 3550 error = arrayParameters[:,-1]
3550 3551 Ranges = arrayParameters[:,1]
3551 3552 zenith = arrayParameters[:,4]
3552 3553 arrayParameters[:,2], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax)
3553 3554
3554 3555 #----------------------- Get Final data ------------------------------------
3555 3556 # error = arrayParameters[:,-1]
3556 3557 # ind1 = numpy.where(error==0)[0]
3557 3558 # arrayParameters = arrayParameters[ind1,:]
3558 3559
3559 3560 return arrayParameters
3560 3561
3561 3562 def __getAOA(self, phases, pairsList, directions, error, AOAthresh, azimuth):
3562 3563
3563 3564 arrayAOA = numpy.zeros((phases.shape[0],3))
3564 3565 cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList,directions)
3565 3566
3566 3567 arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3567 3568 cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3568 3569 arrayAOA[:,2] = cosDirError
3569 3570
3570 3571 azimuthAngle = arrayAOA[:,0]
3571 3572 zenithAngle = arrayAOA[:,1]
3572 3573
3573 3574 #Setting Error
3574 3575 indError = numpy.where(numpy.logical_or(error == 3, error == 4))[0]
3575 3576 error[indError] = 0
3576 3577 #Number 3: AOA not fesible
3577 3578 indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3578 3579 error[indInvalid] = 3
3579 3580 #Number 4: Large difference in AOAs obtained from different antenna baselines
3580 3581 indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3581 3582 error[indInvalid] = 4
3582 3583 return arrayAOA, error
3583 3584
3584 3585 def __getDirectionCosines(self, arrayPhase, pairsList, distances):
3585 3586
3586 3587 #Initializing some variables
3587 3588 ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3588 3589 ang_aux = ang_aux.reshape(1,ang_aux.size)
3589 3590
3590 3591 cosdir = numpy.zeros((arrayPhase.shape[0],2))
3591 3592 cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3592 3593
3593 3594
3594 3595 for i in range(2):
3595 3596 ph0 = arrayPhase[:,pairsList[i][0]]
3596 3597 ph1 = arrayPhase[:,pairsList[i][1]]
3597 3598 d0 = distances[pairsList[i][0]]
3598 3599 d1 = distances[pairsList[i][1]]
3599 3600
3600 3601 ph0_aux = ph0 + ph1
3601 3602 ph0_aux = numpy.angle(numpy.exp(1j*ph0_aux))
3602 3603 # ph0_aux[ph0_aux > numpy.pi] -= 2*numpy.pi
3603 3604 # ph0_aux[ph0_aux < -numpy.pi] += 2*numpy.pi
3604 3605 #First Estimation
3605 3606 cosdir0[:,i] = (ph0_aux)/(2*numpy.pi*(d0 - d1))
3606 3607
3607 3608 #Most-Accurate Second Estimation
3608 3609 phi1_aux = ph0 - ph1
3609 3610 phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3610 3611 #Direction Cosine 1
3611 3612 cosdir1 = (phi1_aux + ang_aux)/(2*numpy.pi*(d0 + d1))
3612 3613
3613 3614 #Searching the correct Direction Cosine
3614 3615 cosdir0_aux = cosdir0[:,i]
3615 3616 cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3616 3617 #Minimum Distance
3617 3618 cosDiff = (cosdir1 - cosdir0_aux)**2
3618 3619 indcos = cosDiff.argmin(axis = 1)
3619 3620 #Saving Value obtained
3620 3621 cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3621 3622
3622 3623 return cosdir0, cosdir
3623 3624
3624 3625 def __calculateAOA(self, cosdir, azimuth):
3625 3626 cosdirX = cosdir[:,0]
3626 3627 cosdirY = cosdir[:,1]
3627 3628
3628 3629 zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3629 3630 azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth#0 deg north, 90 deg east
3630 3631 angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3631 3632
3632 3633 return angles
3633 3634
3634 3635 def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3635 3636
3636 3637 Ramb = 375 #Ramb = c/(2*PRF)
3637 3638 Re = 6371 #Earth Radius
3638 3639 heights = numpy.zeros(Ranges.shape)
3639 3640
3640 3641 R_aux = numpy.array([0,1,2])*Ramb
3641 3642 R_aux = R_aux.reshape(1,R_aux.size)
3642 3643
3643 3644 Ranges = Ranges.reshape(Ranges.size,1)
3644 3645
3645 3646 Ri = Ranges + R_aux
3646 3647 hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3647 3648
3648 3649 #Check if there is a height between 70 and 110 km
3649 3650 h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3650 3651 ind_h = numpy.where(h_bool == 1)[0]
3651 3652
3652 3653 hCorr = hi[ind_h, :]
3653 3654 ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3654 3655
3655 3656 hCorr = hi[ind_hCorr][:len(ind_h)]
3656 3657 heights[ind_h] = hCorr
3657 3658
3658 3659 #Setting Error
3659 3660 #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3660 3661 #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3661 3662 indError = numpy.where(numpy.logical_or(error == 13, error == 14))[0]
3662 3663 error[indError] = 0
3663 3664 indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3664 3665 error[indInvalid2] = 14
3665 3666 indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3666 3667 error[indInvalid1] = 13
3667 3668
3668 3669 return heights, error
3669 3670
3670 3671 def getPhasePairs(self, channelPositions):
3671 3672 chanPos = numpy.array(channelPositions)
3672 3673 listOper = list(itertools.combinations(list(range(5)),2))
3673 3674
3674 3675 distances = numpy.zeros(4)
3675 3676 axisX = []
3676 3677 axisY = []
3677 3678 distX = numpy.zeros(3)
3678 3679 distY = numpy.zeros(3)
3679 3680 ix = 0
3680 3681 iy = 0
3681 3682
3682 3683 pairX = numpy.zeros((2,2))
3683 3684 pairY = numpy.zeros((2,2))
3684 3685
3685 3686 for i in range(len(listOper)):
3686 3687 pairi = listOper[i]
3687 3688
3688 3689 posDif = numpy.abs(chanPos[pairi[0],:] - chanPos[pairi[1],:])
3689 3690
3690 3691 if posDif[0] == 0:
3691 3692 axisY.append(pairi)
3692 3693 distY[iy] = posDif[1]
3693 3694 iy += 1
3694 3695 elif posDif[1] == 0:
3695 3696 axisX.append(pairi)
3696 3697 distX[ix] = posDif[0]
3697 3698 ix += 1
3698 3699
3699 3700 for i in range(2):
3700 3701 if i==0:
3701 3702 dist0 = distX
3702 3703 axis0 = axisX
3703 3704 else:
3704 3705 dist0 = distY
3705 3706 axis0 = axisY
3706 3707
3707 3708 side = numpy.argsort(dist0)[:-1]
3708 3709 axis0 = numpy.array(axis0)[side,:]
3709 3710 chanC = int(numpy.intersect1d(axis0[0,:], axis0[1,:])[0])
3710 3711 axis1 = numpy.unique(numpy.reshape(axis0,4))
3711 3712 side = axis1[axis1 != chanC]
3712 3713 diff1 = chanPos[chanC,i] - chanPos[side[0],i]
3713 3714 diff2 = chanPos[chanC,i] - chanPos[side[1],i]
3714 3715 if diff1<0:
3715 3716 chan2 = side[0]
3716 3717 d2 = numpy.abs(diff1)
3717 3718 chan1 = side[1]
3718 3719 d1 = numpy.abs(diff2)
3719 3720 else:
3720 3721 chan2 = side[1]
3721 3722 d2 = numpy.abs(diff2)
3722 3723 chan1 = side[0]
3723 3724 d1 = numpy.abs(diff1)
3724 3725
3725 3726 if i==0:
3726 3727 chanCX = chanC
3727 3728 chan1X = chan1
3728 3729 chan2X = chan2
3729 3730 distances[0:2] = numpy.array([d1,d2])
3730 3731 else:
3731 3732 chanCY = chanC
3732 3733 chan1Y = chan1
3733 3734 chan2Y = chan2
3734 3735 distances[2:4] = numpy.array([d1,d2])
3735 3736 # axisXsides = numpy.reshape(axisX[ix,:],4)
3736 3737 #
3737 3738 # channelCentX = int(numpy.intersect1d(pairX[0,:], pairX[1,:])[0])
3738 3739 # channelCentY = int(numpy.intersect1d(pairY[0,:], pairY[1,:])[0])
3739 3740 #
3740 3741 # ind25X = numpy.where(pairX[0,:] != channelCentX)[0][0]
3741 3742 # ind20X = numpy.where(pairX[1,:] != channelCentX)[0][0]
3742 3743 # channel25X = int(pairX[0,ind25X])
3743 3744 # channel20X = int(pairX[1,ind20X])
3744 3745 # ind25Y = numpy.where(pairY[0,:] != channelCentY)[0][0]
3745 3746 # ind20Y = numpy.where(pairY[1,:] != channelCentY)[0][0]
3746 3747 # channel25Y = int(pairY[0,ind25Y])
3747 3748 # channel20Y = int(pairY[1,ind20Y])
3748 3749
3749 3750 # pairslist = [(channelCentX, channel25X),(channelCentX, channel20X),(channelCentY,channel25Y),(channelCentY, channel20Y)]
3750 3751 pairslist = [(chanCX, chan1X),(chanCX, chan2X),(chanCY,chan1Y),(chanCY, chan2Y)]
3751 3752
3752 3753 return pairslist, distances
3753 3754 # def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth):
3754 3755 #
3755 3756 # arrayAOA = numpy.zeros((phases.shape[0],3))
3756 3757 # cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList)
3757 3758 #
3758 3759 # arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth)
3759 3760 # cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1)
3760 3761 # arrayAOA[:,2] = cosDirError
3761 3762 #
3762 3763 # azimuthAngle = arrayAOA[:,0]
3763 3764 # zenithAngle = arrayAOA[:,1]
3764 3765 #
3765 3766 # #Setting Error
3766 3767 # #Number 3: AOA not fesible
3767 3768 # indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0]
3768 3769 # error[indInvalid] = 3
3769 3770 # #Number 4: Large difference in AOAs obtained from different antenna baselines
3770 3771 # indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0]
3771 3772 # error[indInvalid] = 4
3772 3773 # return arrayAOA, error
3773 3774 #
3774 3775 # def __getDirectionCosines(self, arrayPhase, pairsList):
3775 3776 #
3776 3777 # #Initializing some variables
3777 3778 # ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi
3778 3779 # ang_aux = ang_aux.reshape(1,ang_aux.size)
3779 3780 #
3780 3781 # cosdir = numpy.zeros((arrayPhase.shape[0],2))
3781 3782 # cosdir0 = numpy.zeros((arrayPhase.shape[0],2))
3782 3783 #
3783 3784 #
3784 3785 # for i in range(2):
3785 3786 # #First Estimation
3786 3787 # phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]]
3787 3788 # #Dealias
3788 3789 # indcsi = numpy.where(phi0_aux > numpy.pi)
3789 3790 # phi0_aux[indcsi] -= 2*numpy.pi
3790 3791 # indcsi = numpy.where(phi0_aux < -numpy.pi)
3791 3792 # phi0_aux[indcsi] += 2*numpy.pi
3792 3793 # #Direction Cosine 0
3793 3794 # cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5)
3794 3795 #
3795 3796 # #Most-Accurate Second Estimation
3796 3797 # phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]]
3797 3798 # phi1_aux = phi1_aux.reshape(phi1_aux.size,1)
3798 3799 # #Direction Cosine 1
3799 3800 # cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5)
3800 3801 #
3801 3802 # #Searching the correct Direction Cosine
3802 3803 # cosdir0_aux = cosdir0[:,i]
3803 3804 # cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1)
3804 3805 # #Minimum Distance
3805 3806 # cosDiff = (cosdir1 - cosdir0_aux)**2
3806 3807 # indcos = cosDiff.argmin(axis = 1)
3807 3808 # #Saving Value obtained
3808 3809 # cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos]
3809 3810 #
3810 3811 # return cosdir0, cosdir
3811 3812 #
3812 3813 # def __calculateAOA(self, cosdir, azimuth):
3813 3814 # cosdirX = cosdir[:,0]
3814 3815 # cosdirY = cosdir[:,1]
3815 3816 #
3816 3817 # zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi
3817 3818 # azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east
3818 3819 # angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose()
3819 3820 #
3820 3821 # return angles
3821 3822 #
3822 3823 # def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight):
3823 3824 #
3824 3825 # Ramb = 375 #Ramb = c/(2*PRF)
3825 3826 # Re = 6371 #Earth Radius
3826 3827 # heights = numpy.zeros(Ranges.shape)
3827 3828 #
3828 3829 # R_aux = numpy.array([0,1,2])*Ramb
3829 3830 # R_aux = R_aux.reshape(1,R_aux.size)
3830 3831 #
3831 3832 # Ranges = Ranges.reshape(Ranges.size,1)
3832 3833 #
3833 3834 # Ri = Ranges + R_aux
3834 3835 # hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re
3835 3836 #
3836 3837 # #Check if there is a height between 70 and 110 km
3837 3838 # h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1)
3838 3839 # ind_h = numpy.where(h_bool == 1)[0]
3839 3840 #
3840 3841 # hCorr = hi[ind_h, :]
3841 3842 # ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight))
3842 3843 #
3843 3844 # hCorr = hi[ind_hCorr]
3844 3845 # heights[ind_h] = hCorr
3845 3846 #
3846 3847 # #Setting Error
3847 3848 # #Number 13: Height unresolvable echo: not valid height within 70 to 110 km
3848 3849 # #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km
3849 3850 #
3850 3851 # indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0]
3851 3852 # error[indInvalid2] = 14
3852 3853 # indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0]
3853 3854 # error[indInvalid1] = 13
3854 3855 #
3855 3856 # return heights, error
3856 3857 No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now