##// END OF EJS Templates
Wind and rainfall processing of CLAIRE radar with V3.0
George Yong -
r1205:45d75be01895
parent child
Show More

The requested changes are too big and content was truncated. Show full diff

@@ -1,1363 +1,1353
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $
5 5 '''
6 6
7 7 import copy
8 8 import numpy
9 9 import datetime
10 10 import json
11 11
12 12 from schainpy.utils import log
13 13 from .jroheaderIO import SystemHeader, RadarControllerHeader
14 14
15 15
16 16 def getNumpyDtype(dataTypeCode):
17 17
18 18 if dataTypeCode == 0:
19 19 numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')])
20 20 elif dataTypeCode == 1:
21 21 numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')])
22 22 elif dataTypeCode == 2:
23 23 numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')])
24 24 elif dataTypeCode == 3:
25 25 numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')])
26 26 elif dataTypeCode == 4:
27 27 numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')])
28 28 elif dataTypeCode == 5:
29 29 numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')])
30 30 else:
31 31 raise ValueError('dataTypeCode was not defined')
32 32
33 33 return numpyDtype
34 34
35 35
36 36 def getDataTypeCode(numpyDtype):
37 37
38 38 if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]):
39 39 datatype = 0
40 40 elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]):
41 41 datatype = 1
42 42 elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]):
43 43 datatype = 2
44 44 elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]):
45 45 datatype = 3
46 46 elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]):
47 47 datatype = 4
48 48 elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]):
49 49 datatype = 5
50 50 else:
51 51 datatype = None
52 52
53 53 return datatype
54 54
55 55
56 56 def hildebrand_sekhon(data, navg):
57 57 """
58 58 This method is for the objective determination of the noise level in Doppler spectra. This
59 59 implementation technique is based on the fact that the standard deviation of the spectral
60 60 densities is equal to the mean spectral density for white Gaussian noise
61 61
62 62 Inputs:
63 63 Data : heights
64 64 navg : numbers of averages
65 65
66 66 Return:
67 67 mean : noise's level
68 68 """
69 69
70 70 sortdata = numpy.sort(data, axis=None)
71 71 lenOfData = len(sortdata)
72 72 nums_min = lenOfData*0.2
73 73
74 74 if nums_min <= 5:
75 75
76 76 nums_min = 5
77 77
78 78 sump = 0.
79 79 sumq = 0.
80 80
81 81 j = 0
82 82 cont = 1
83 83
84 84 while((cont == 1)and(j < lenOfData)):
85 85
86 86 sump += sortdata[j]
87 87 sumq += sortdata[j]**2
88 88
89 89 if j > nums_min:
90 90 rtest = float(j)/(j-1) + 1.0/navg
91 91 if ((sumq*j) > (rtest*sump**2)):
92 92 j = j - 1
93 93 sump = sump - sortdata[j]
94 94 sumq = sumq - sortdata[j]**2
95 95 cont = 0
96 96
97 97 j += 1
98 98
99 99 lnoise = sump / j
100 100
101 101 return lnoise
102 102
103 103
104 104 class Beam:
105 105
106 106 def __init__(self):
107 107 self.codeList = []
108 108 self.azimuthList = []
109 109 self.zenithList = []
110 110
111 111
112 112 class GenericData(object):
113 113
114 114 flagNoData = True
115 115
116 116 def copy(self, inputObj=None):
117 117
118 118 if inputObj == None:
119 119 return copy.deepcopy(self)
120 120
121 121 for key in list(inputObj.__dict__.keys()):
122 122
123 123 attribute = inputObj.__dict__[key]
124 124
125 125 # If this attribute is a tuple or list
126 126 if type(inputObj.__dict__[key]) in (tuple, list):
127 127 self.__dict__[key] = attribute[:]
128 128 continue
129 129
130 130 # If this attribute is another object or instance
131 131 if hasattr(attribute, '__dict__'):
132 132 self.__dict__[key] = attribute.copy()
133 133 continue
134 134
135 135 self.__dict__[key] = inputObj.__dict__[key]
136 136
137 137 def deepcopy(self):
138 138
139 139 return copy.deepcopy(self)
140 140
141 141 def isEmpty(self):
142 142
143 143 return self.flagNoData
144 144
145 145
146 146 class JROData(GenericData):
147 147
148 148 # m_BasicHeader = BasicHeader()
149 149 # m_ProcessingHeader = ProcessingHeader()
150 150
151 151 systemHeaderObj = SystemHeader()
152 152 radarControllerHeaderObj = RadarControllerHeader()
153 153 # data = None
154 154 type = None
155 155 datatype = None # dtype but in string
156 156 # dtype = None
157 157 # nChannels = None
158 158 # nHeights = None
159 159 nProfiles = None
160 160 heightList = None
161 161 channelList = None
162 162 flagDiscontinuousBlock = False
163 163 useLocalTime = False
164 164 utctime = None
165 165 timeZone = None
166 166 dstFlag = None
167 167 errorCount = None
168 168 blocksize = None
169 169 # nCode = None
170 170 # nBaud = None
171 171 # code = None
172 172 flagDecodeData = False # asumo q la data no esta decodificada
173 173 flagDeflipData = False # asumo q la data no esta sin flip
174 174 flagShiftFFT = False
175 175 # ippSeconds = None
176 176 # timeInterval = None
177 177 nCohInt = None
178 178 # noise = None
179 179 windowOfFilter = 1
180 180 # Speed of ligth
181 181 C = 3e8
182 182 frequency = 49.92e6
183 183 realtime = False
184 184 beacon_heiIndexList = None
185 185 last_block = None
186 186 blocknow = None
187 187 azimuth = None
188 188 zenith = None
189 189 beam = Beam()
190 190 profileIndex = None
191 191 error = None
192 192 data = None
193 193 nmodes = None
194 194
195 195 def __str__(self):
196 196
197 197 return '{} - {}'.format(self.type, self.getDatatime())
198 198
199 199 def getNoise(self):
200 200
201 201 raise NotImplementedError
202 202
203 203 def getNChannels(self):
204 204
205 205 return len(self.channelList)
206 206
207 207 def getChannelIndexList(self):
208 208
209 209 return list(range(self.nChannels))
210 210
211 211 def getNHeights(self):
212 212
213 213 return len(self.heightList)
214 214
215 215 def getHeiRange(self, extrapoints=0):
216 216
217 217 heis = self.heightList
218 218 # deltah = self.heightList[1] - self.heightList[0]
219 219 #
220 220 # heis.append(self.heightList[-1])
221 221
222 222 return heis
223 223
224 224 def getDeltaH(self):
225 225
226 226 delta = self.heightList[1] - self.heightList[0]
227 227
228 228 return delta
229 229
230 230 def getltctime(self):
231 231
232 232 if self.useLocalTime:
233 233 return self.utctime - self.timeZone * 60
234 234
235 235 return self.utctime
236 236
237 237 def getDatatime(self):
238 238
239 239 datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime)
240 240 return datatimeValue
241 241
242 242 def getTimeRange(self):
243 243
244 244 datatime = []
245 245
246 246 datatime.append(self.ltctime)
247 247 datatime.append(self.ltctime + self.timeInterval + 1)
248 248
249 249 datatime = numpy.array(datatime)
250 250
251 251 return datatime
252 252
253 253 def getFmaxTimeResponse(self):
254 254
255 255 period = (10**-6) * self.getDeltaH() / (0.15)
256 256
257 257 PRF = 1. / (period * self.nCohInt)
258 258
259 259 fmax = PRF
260 260
261 261 return fmax
262 262
263 263 def getFmax(self):
264 264 PRF = 1. / (self.ippSeconds * self.nCohInt)
265 265
266 266 fmax = PRF
267 267 return fmax
268 268
269 269 def getVmax(self):
270 270
271 271 _lambda = self.C / self.frequency
272 272
273 273 vmax = self.getFmax() * _lambda / 2
274 274
275 275 return vmax
276 276
277 277 def get_ippSeconds(self):
278 278 '''
279 279 '''
280 280 return self.radarControllerHeaderObj.ippSeconds
281 281
282 282 def set_ippSeconds(self, ippSeconds):
283 283 '''
284 284 '''
285 285
286 286 self.radarControllerHeaderObj.ippSeconds = ippSeconds
287 287
288 288 return
289 289
290 290 def get_dtype(self):
291 291 '''
292 292 '''
293 293 return getNumpyDtype(self.datatype)
294 294
295 295 def set_dtype(self, numpyDtype):
296 296 '''
297 297 '''
298 298
299 299 self.datatype = getDataTypeCode(numpyDtype)
300 300
301 301 def get_code(self):
302 302 '''
303 303 '''
304 304 return self.radarControllerHeaderObj.code
305 305
306 306 def set_code(self, code):
307 307 '''
308 308 '''
309 309 self.radarControllerHeaderObj.code = code
310 310
311 311 return
312 312
313 313 def get_ncode(self):
314 314 '''
315 315 '''
316 316 return self.radarControllerHeaderObj.nCode
317 317
318 318 def set_ncode(self, nCode):
319 319 '''
320 320 '''
321 321 self.radarControllerHeaderObj.nCode = nCode
322 322
323 323 return
324 324
325 325 def get_nbaud(self):
326 326 '''
327 327 '''
328 328 return self.radarControllerHeaderObj.nBaud
329 329
330 330 def set_nbaud(self, nBaud):
331 331 '''
332 332 '''
333 333 self.radarControllerHeaderObj.nBaud = nBaud
334 334
335 335 return
336 336
337 337 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
338 338 channelIndexList = property(
339 339 getChannelIndexList, "I'm the 'channelIndexList' property.")
340 340 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
341 341 #noise = property(getNoise, "I'm the 'nHeights' property.")
342 342 datatime = property(getDatatime, "I'm the 'datatime' property")
343 343 ltctime = property(getltctime, "I'm the 'ltctime' property")
344 344 ippSeconds = property(get_ippSeconds, set_ippSeconds)
345 345 dtype = property(get_dtype, set_dtype)
346 346 # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
347 347 code = property(get_code, set_code)
348 348 nCode = property(get_ncode, set_ncode)
349 349 nBaud = property(get_nbaud, set_nbaud)
350 350
351 351
352 352 class Voltage(JROData):
353 353
354 354 # data es un numpy array de 2 dmensiones (canales, alturas)
355 355 data = None
356 356
357 357 def __init__(self):
358 358 '''
359 359 Constructor
360 360 '''
361 361
362 362 self.useLocalTime = True
363 363 self.radarControllerHeaderObj = RadarControllerHeader()
364 364 self.systemHeaderObj = SystemHeader()
365 365 self.type = "Voltage"
366 366 self.data = None
367 367 # self.dtype = None
368 368 # self.nChannels = 0
369 369 # self.nHeights = 0
370 370 self.nProfiles = None
371 371 self.heightList = None
372 372 self.channelList = None
373 373 # self.channelIndexList = None
374 374 self.flagNoData = True
375 375 self.flagDiscontinuousBlock = False
376 376 self.utctime = None
377 377 self.timeZone = None
378 378 self.dstFlag = None
379 379 self.errorCount = None
380 380 self.nCohInt = None
381 381 self.blocksize = None
382 382 self.flagDecodeData = False # asumo q la data no esta decodificada
383 383 self.flagDeflipData = False # asumo q la data no esta sin flip
384 384 self.flagShiftFFT = False
385 385 self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil
386 386 self.profileIndex = 0
387 387
388 388 def getNoisebyHildebrand(self, channel=None):
389 389 """
390 390 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
391 391
392 392 Return:
393 393 noiselevel
394 394 """
395 395
396 396 if channel != None:
397 397 data = self.data[channel]
398 398 nChannels = 1
399 399 else:
400 400 data = self.data
401 401 nChannels = self.nChannels
402 402
403 403 noise = numpy.zeros(nChannels)
404 404 power = data * numpy.conjugate(data)
405 405
406 406 for thisChannel in range(nChannels):
407 407 if nChannels == 1:
408 408 daux = power[:].real
409 409 else:
410 410 daux = power[thisChannel, :].real
411 411 noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt)
412 412
413 413 return noise
414 414
415 415 def getNoise(self, type=1, channel=None):
416 416
417 417 if type == 1:
418 418 noise = self.getNoisebyHildebrand(channel)
419 419
420 420 return noise
421 421
422 422 def getPower(self, channel=None):
423 423
424 424 if channel != None:
425 425 data = self.data[channel]
426 426 else:
427 427 data = self.data
428 428
429 429 power = data * numpy.conjugate(data)
430 430 powerdB = 10 * numpy.log10(power.real)
431 431 powerdB = numpy.squeeze(powerdB)
432 432
433 433 return powerdB
434 434
435 435 def getTimeInterval(self):
436 436
437 437 timeInterval = self.ippSeconds * self.nCohInt
438 438
439 439 return timeInterval
440 440
441 441 noise = property(getNoise, "I'm the 'nHeights' property.")
442 442 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
443 443
444 444
445 445 class Spectra(JROData):
446 446
447 447 # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas)
448 448 data_spc = None
449 449 # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas)
450 450 data_cspc = None
451 451 # data dc es un numpy array de 2 dmensiones (canales, alturas)
452 452 data_dc = None
453 453 # data power
454 454 data_pwr = None
455 455 nFFTPoints = None
456 456 # nPairs = None
457 457 pairsList = None
458 458 nIncohInt = None
459 459 wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia
460 460 nCohInt = None # se requiere para determinar el valor de timeInterval
461 461 ippFactor = None
462 462 profileIndex = 0
463 463 plotting = "spectra"
464 464
465 465 def __init__(self):
466 466 '''
467 467 Constructor
468 468 '''
469 469
470 470 self.useLocalTime = True
471 471 self.radarControllerHeaderObj = RadarControllerHeader()
472 472 self.systemHeaderObj = SystemHeader()
473 473 self.type = "Spectra"
474 474 # self.data = None
475 475 # self.dtype = None
476 476 # self.nChannels = 0
477 477 # self.nHeights = 0
478 478 self.nProfiles = None
479 479 self.heightList = None
480 480 self.channelList = None
481 481 # self.channelIndexList = None
482 482 self.pairsList = None
483 483 self.flagNoData = True
484 484 self.flagDiscontinuousBlock = False
485 485 self.utctime = None
486 486 self.nCohInt = None
487 487 self.nIncohInt = None
488 488 self.blocksize = None
489 489 self.nFFTPoints = None
490 490 self.wavelength = None
491 491 self.flagDecodeData = False # asumo q la data no esta decodificada
492 492 self.flagDeflipData = False # asumo q la data no esta sin flip
493 493 self.flagShiftFFT = False
494 494 self.ippFactor = 1
495 495 #self.noise = None
496 496 self.beacon_heiIndexList = []
497 497 self.noise_estimation = None
498 498
499 499 def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
500 500 """
501 501 Determino el nivel de ruido usando el metodo Hildebrand-Sekhon
502 502
503 503 Return:
504 504 noiselevel
505 505 """
506 506
507 507 noise = numpy.zeros(self.nChannels)
508 508
509 509 for channel in range(self.nChannels):
510 510 daux = self.data_spc[channel,
511 511 xmin_index:xmax_index, ymin_index:ymax_index]
512 512 noise[channel] = hildebrand_sekhon(daux, self.nIncohInt)
513 513
514 514 return noise
515 515
516 516 def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None):
517 517
518 518 if self.noise_estimation is not None:
519 519 # this was estimated by getNoise Operation defined in jroproc_spectra.py
520 520 return self.noise_estimation
521 521 else:
522 522 noise = self.getNoisebyHildebrand(
523 523 xmin_index, xmax_index, ymin_index, ymax_index)
524 524 return noise
525 525
526 526 def getFreqRangeTimeResponse(self, extrapoints=0):
527 527
528 528 deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor)
529 freqrange = deltafreq * \
530 (numpy.arange(self.nFFTPoints + extrapoints) -
531 self.nFFTPoints / 2.) - deltafreq / 2
529 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
532 530
533 531 return freqrange
534 532
535 533 def getAcfRange(self, extrapoints=0):
536 534
537 535 deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor))
538 freqrange = deltafreq * \
539 (numpy.arange(self.nFFTPoints + extrapoints) -
540 self.nFFTPoints / 2.) - deltafreq / 2
536 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
541 537
542 538 return freqrange
543 539
544 540 def getFreqRange(self, extrapoints=0):
545 541
546 542 deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor)
547 freqrange = deltafreq * \
548 (numpy.arange(self.nFFTPoints + extrapoints) -
549 self.nFFTPoints / 2.) - deltafreq / 2
543 freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2
550 544
551 545 return freqrange
552 546
553 547 def getVelRange(self, extrapoints=0):
554 548
555 549 deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor)
556 velrange = deltav * (numpy.arange(self.nFFTPoints +
557 extrapoints) - self.nFFTPoints / 2.)
550 velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.)
558 551
559 552 if self.nmodes:
560 553 return velrange/self.nmodes
561 554 else:
562 555 return velrange
563 556
564 557 def getNPairs(self):
565 558
566 559 return len(self.pairsList)
567 560
568 561 def getPairsIndexList(self):
569 562
570 563 return list(range(self.nPairs))
571 564
572 565 def getNormFactor(self):
573 566
574 567 pwcode = 1
575 568
576 569 if self.flagDecodeData:
577 570 pwcode = numpy.sum(self.code[0]**2)
578 571 #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter
579 normFactor = self.nProfiles * self.nIncohInt * \
580 self.nCohInt * pwcode * self.windowOfFilter
572 normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter
581 573
582 574 return normFactor
583 575
584 576 def getFlagCspc(self):
585 577
586 578 if self.data_cspc is None:
587 579 return True
588 580
589 581 return False
590 582
591 583 def getFlagDc(self):
592 584
593 585 if self.data_dc is None:
594 586 return True
595 587
596 588 return False
597 589
598 590 def getTimeInterval(self):
599 591
600 timeInterval = self.ippSeconds * self.nCohInt * \
601 self.nIncohInt * self.nProfiles * self.ippFactor
592 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor
602 593
603 594 return timeInterval
604 595
605 596 def getPower(self):
606 597
607 598 factor = self.normFactor
608 599 z = self.data_spc / factor
609 600 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
610 601 avg = numpy.average(z, axis=1)
611 602
612 603 return 10 * numpy.log10(avg)
613 604
614 605 def getCoherence(self, pairsList=None, phase=False):
615 606
616 607 z = []
617 608 if pairsList is None:
618 609 pairsIndexList = self.pairsIndexList
619 610 else:
620 611 pairsIndexList = []
621 612 for pair in pairsList:
622 613 if pair not in self.pairsList:
623 614 raise ValueError("Pair %s is not in dataOut.pairsList" % (
624 615 pair))
625 616 pairsIndexList.append(self.pairsList.index(pair))
626 617 for i in range(len(pairsIndexList)):
627 618 pair = self.pairsList[pairsIndexList[i]]
628 ccf = numpy.average(
629 self.data_cspc[pairsIndexList[i], :, :], axis=0)
619 ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0)
630 620 powa = numpy.average(self.data_spc[pair[0], :, :], axis=0)
631 621 powb = numpy.average(self.data_spc[pair[1], :, :], axis=0)
632 622 avgcoherenceComplex = ccf / numpy.sqrt(powa * powb)
633 623 if phase:
634 624 data = numpy.arctan2(avgcoherenceComplex.imag,
635 625 avgcoherenceComplex.real) * 180 / numpy.pi
636 626 else:
637 627 data = numpy.abs(avgcoherenceComplex)
638 628
639 629 z.append(data)
640 630
641 631 return numpy.array(z)
642 632
643 633 def setValue(self, value):
644 634
645 635 print("This property should not be initialized")
646 636
647 637 return
648 638
649 639 nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.")
650 640 pairsIndexList = property(
651 641 getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.")
652 642 normFactor = property(getNormFactor, setValue,
653 643 "I'm the 'getNormFactor' property.")
654 644 flag_cspc = property(getFlagCspc, setValue)
655 645 flag_dc = property(getFlagDc, setValue)
656 646 noise = property(getNoise, setValue, "I'm the 'nHeights' property.")
657 647 timeInterval = property(getTimeInterval, setValue,
658 648 "I'm the 'timeInterval' property")
659 649
660 650
661 651 class SpectraHeis(Spectra):
662 652
663 653 data_spc = None
664 654 data_cspc = None
665 655 data_dc = None
666 656 nFFTPoints = None
667 657 # nPairs = None
668 658 pairsList = None
669 659 nCohInt = None
670 660 nIncohInt = None
671 661
672 662 def __init__(self):
673 663
674 664 self.radarControllerHeaderObj = RadarControllerHeader()
675 665
676 666 self.systemHeaderObj = SystemHeader()
677 667
678 668 self.type = "SpectraHeis"
679 669
680 670 # self.dtype = None
681 671
682 672 # self.nChannels = 0
683 673
684 674 # self.nHeights = 0
685 675
686 676 self.nProfiles = None
687 677
688 678 self.heightList = None
689 679
690 680 self.channelList = None
691 681
692 682 # self.channelIndexList = None
693 683
694 684 self.flagNoData = True
695 685
696 686 self.flagDiscontinuousBlock = False
697 687
698 688 # self.nPairs = 0
699 689
700 690 self.utctime = None
701 691
702 692 self.blocksize = None
703 693
704 694 self.profileIndex = 0
705 695
706 696 self.nCohInt = 1
707 697
708 698 self.nIncohInt = 1
709 699
710 700 def getNormFactor(self):
711 701 pwcode = 1
712 702 if self.flagDecodeData:
713 703 pwcode = numpy.sum(self.code[0]**2)
714 704
715 705 normFactor = self.nIncohInt * self.nCohInt * pwcode
716 706
717 707 return normFactor
718 708
719 709 def getTimeInterval(self):
720 710
721 711 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
722 712
723 713 return timeInterval
724 714
725 715 normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.")
726 716 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
727 717
728 718
729 719 class Fits(JROData):
730 720
731 721 heightList = None
732 722 channelList = None
733 723 flagNoData = True
734 724 flagDiscontinuousBlock = False
735 725 useLocalTime = False
736 726 utctime = None
737 727 timeZone = None
738 728 # ippSeconds = None
739 729 # timeInterval = None
740 730 nCohInt = None
741 731 nIncohInt = None
742 732 noise = None
743 733 windowOfFilter = 1
744 734 # Speed of ligth
745 735 C = 3e8
746 736 frequency = 49.92e6
747 737 realtime = False
748 738
749 739 def __init__(self):
750 740
751 741 self.type = "Fits"
752 742
753 743 self.nProfiles = None
754 744
755 745 self.heightList = None
756 746
757 747 self.channelList = None
758 748
759 749 # self.channelIndexList = None
760 750
761 751 self.flagNoData = True
762 752
763 753 self.utctime = None
764 754
765 755 self.nCohInt = 1
766 756
767 757 self.nIncohInt = 1
768 758
769 759 self.useLocalTime = True
770 760
771 761 self.profileIndex = 0
772 762
773 763 # self.utctime = None
774 764 # self.timeZone = None
775 765 # self.ltctime = None
776 766 # self.timeInterval = None
777 767 # self.header = None
778 768 # self.data_header = None
779 769 # self.data = None
780 770 # self.datatime = None
781 771 # self.flagNoData = False
782 772 # self.expName = ''
783 773 # self.nChannels = None
784 774 # self.nSamples = None
785 775 # self.dataBlocksPerFile = None
786 776 # self.comments = ''
787 777 #
788 778
789 779 def getltctime(self):
790 780
791 781 if self.useLocalTime:
792 782 return self.utctime - self.timeZone * 60
793 783
794 784 return self.utctime
795 785
796 786 def getDatatime(self):
797 787
798 788 datatime = datetime.datetime.utcfromtimestamp(self.ltctime)
799 789 return datatime
800 790
801 791 def getTimeRange(self):
802 792
803 793 datatime = []
804 794
805 795 datatime.append(self.ltctime)
806 796 datatime.append(self.ltctime + self.timeInterval)
807 797
808 798 datatime = numpy.array(datatime)
809 799
810 800 return datatime
811 801
812 802 def getHeiRange(self):
813 803
814 804 heis = self.heightList
815 805
816 806 return heis
817 807
818 808 def getNHeights(self):
819 809
820 810 return len(self.heightList)
821 811
822 812 def getNChannels(self):
823 813
824 814 return len(self.channelList)
825 815
826 816 def getChannelIndexList(self):
827 817
828 818 return list(range(self.nChannels))
829 819
830 820 def getNoise(self, type=1):
831 821
832 822 #noise = numpy.zeros(self.nChannels)
833 823
834 824 if type == 1:
835 825 noise = self.getNoisebyHildebrand()
836 826
837 827 if type == 2:
838 828 noise = self.getNoisebySort()
839 829
840 830 if type == 3:
841 831 noise = self.getNoisebyWindow()
842 832
843 833 return noise
844 834
845 835 def getTimeInterval(self):
846 836
847 837 timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt
848 838
849 839 return timeInterval
850 840
851 841 def get_ippSeconds(self):
852 842 '''
853 843 '''
854 844 return self.ipp_sec
855 845
856 846
857 847 datatime = property(getDatatime, "I'm the 'datatime' property")
858 848 nHeights = property(getNHeights, "I'm the 'nHeights' property.")
859 849 nChannels = property(getNChannels, "I'm the 'nChannel' property.")
860 850 channelIndexList = property(
861 851 getChannelIndexList, "I'm the 'channelIndexList' property.")
862 852 noise = property(getNoise, "I'm the 'nHeights' property.")
863 853
864 854 ltctime = property(getltctime, "I'm the 'ltctime' property")
865 855 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
866 856 ippSeconds = property(get_ippSeconds, '')
867 857
868 858 class Correlation(JROData):
869 859
870 860 noise = None
871 861 SNR = None
872 862 #--------------------------------------------------
873 863 mode = None
874 864 split = False
875 865 data_cf = None
876 866 lags = None
877 867 lagRange = None
878 868 pairsList = None
879 869 normFactor = None
880 870 #--------------------------------------------------
881 871 # calculateVelocity = None
882 872 nLags = None
883 873 nPairs = None
884 874 nAvg = None
885 875
886 876 def __init__(self):
887 877 '''
888 878 Constructor
889 879 '''
890 880 self.radarControllerHeaderObj = RadarControllerHeader()
891 881
892 882 self.systemHeaderObj = SystemHeader()
893 883
894 884 self.type = "Correlation"
895 885
896 886 self.data = None
897 887
898 888 self.dtype = None
899 889
900 890 self.nProfiles = None
901 891
902 892 self.heightList = None
903 893
904 894 self.channelList = None
905 895
906 896 self.flagNoData = True
907 897
908 898 self.flagDiscontinuousBlock = False
909 899
910 900 self.utctime = None
911 901
912 902 self.timeZone = None
913 903
914 904 self.dstFlag = None
915 905
916 906 self.errorCount = None
917 907
918 908 self.blocksize = None
919 909
920 910 self.flagDecodeData = False # asumo q la data no esta decodificada
921 911
922 912 self.flagDeflipData = False # asumo q la data no esta sin flip
923 913
924 914 self.pairsList = None
925 915
926 916 self.nPoints = None
927 917
928 918 def getPairsList(self):
929 919
930 920 return self.pairsList
931 921
932 922 def getNoise(self, mode=2):
933 923
934 924 indR = numpy.where(self.lagR == 0)[0][0]
935 925 indT = numpy.where(self.lagT == 0)[0][0]
936 926
937 927 jspectra0 = self.data_corr[:, :, indR, :]
938 928 jspectra = copy.copy(jspectra0)
939 929
940 930 num_chan = jspectra.shape[0]
941 931 num_hei = jspectra.shape[2]
942 932
943 933 freq_dc = jspectra.shape[1] / 2
944 934 ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc
945 935
946 936 if ind_vel[0] < 0:
947 937 ind_vel[list(range(0, 1))] = ind_vel[list(
948 938 range(0, 1))] + self.num_prof
949 939
950 940 if mode == 1:
951 941 jspectra[:, freq_dc, :] = (
952 942 jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION
953 943
954 944 if mode == 2:
955 945
956 946 vel = numpy.array([-2, -1, 1, 2])
957 947 xx = numpy.zeros([4, 4])
958 948
959 949 for fil in range(4):
960 950 xx[fil, :] = vel[fil]**numpy.asarray(list(range(4)))
961 951
962 952 xx_inv = numpy.linalg.inv(xx)
963 953 xx_aux = xx_inv[0, :]
964 954
965 955 for ich in range(num_chan):
966 956 yy = jspectra[ich, ind_vel, :]
967 957 jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy)
968 958
969 959 junkid = jspectra[ich, freq_dc, :] <= 0
970 960 cjunkid = sum(junkid)
971 961
972 962 if cjunkid.any():
973 963 jspectra[ich, freq_dc, junkid.nonzero()] = (
974 964 jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2
975 965
976 966 noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :]
977 967
978 968 return noise
979 969
980 970 def getTimeInterval(self):
981 971
982 972 timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles
983 973
984 974 return timeInterval
985 975
986 976 def splitFunctions(self):
987 977
988 978 pairsList = self.pairsList
989 979 ccf_pairs = []
990 980 acf_pairs = []
991 981 ccf_ind = []
992 982 acf_ind = []
993 983 for l in range(len(pairsList)):
994 984 chan0 = pairsList[l][0]
995 985 chan1 = pairsList[l][1]
996 986
997 987 # Obteniendo pares de Autocorrelacion
998 988 if chan0 == chan1:
999 989 acf_pairs.append(chan0)
1000 990 acf_ind.append(l)
1001 991 else:
1002 992 ccf_pairs.append(pairsList[l])
1003 993 ccf_ind.append(l)
1004 994
1005 995 data_acf = self.data_cf[acf_ind]
1006 996 data_ccf = self.data_cf[ccf_ind]
1007 997
1008 998 return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf
1009 999
1010 1000 def getNormFactor(self):
1011 1001 acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions()
1012 1002 acf_pairs = numpy.array(acf_pairs)
1013 1003 normFactor = numpy.zeros((self.nPairs, self.nHeights))
1014 1004
1015 1005 for p in range(self.nPairs):
1016 1006 pair = self.pairsList[p]
1017 1007
1018 1008 ch0 = pair[0]
1019 1009 ch1 = pair[1]
1020 1010
1021 1011 ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1)
1022 1012 ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1)
1023 1013 normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max)
1024 1014
1025 1015 return normFactor
1026 1016
1027 1017 timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property")
1028 1018 normFactor = property(getNormFactor, "I'm the 'normFactor property'")
1029 1019
1030 1020
1031 1021 class Parameters(Spectra):
1032 1022
1033 1023 experimentInfo = None # Information about the experiment
1034 1024 # Information from previous data
1035 1025 inputUnit = None # Type of data to be processed
1036 1026 operation = None # Type of operation to parametrize
1037 1027 # normFactor = None #Normalization Factor
1038 1028 groupList = None # List of Pairs, Groups, etc
1039 1029 # Parameters
1040 1030 data_param = None # Parameters obtained
1041 1031 data_pre = None # Data Pre Parametrization
1042 1032 data_SNR = None # Signal to Noise Ratio
1043 1033 # heightRange = None #Heights
1044 1034 abscissaList = None # Abscissa, can be velocities, lags or time
1045 1035 # noise = None #Noise Potency
1046 1036 utctimeInit = None # Initial UTC time
1047 1037 paramInterval = None # Time interval to calculate Parameters in seconds
1048 1038 useLocalTime = True
1049 1039 # Fitting
1050 1040 data_error = None # Error of the estimation
1051 1041 constants = None
1052 1042 library = None
1053 1043 # Output signal
1054 1044 outputInterval = None # Time interval to calculate output signal in seconds
1055 1045 data_output = None # Out signal
1056 1046 nAvg = None
1057 1047 noise_estimation = None
1058 1048 GauSPC = None # Fit gaussian SPC
1059 1049
1060 1050 def __init__(self):
1061 1051 '''
1062 1052 Constructor
1063 1053 '''
1064 1054 self.radarControllerHeaderObj = RadarControllerHeader()
1065 1055
1066 1056 self.systemHeaderObj = SystemHeader()
1067 1057
1068 1058 self.type = "Parameters"
1069 1059
1070 1060 def getTimeRange1(self, interval):
1071 1061
1072 1062 datatime = []
1073 1063
1074 1064 if self.useLocalTime:
1075 1065 time1 = self.utctimeInit - self.timeZone * 60
1076 1066 else:
1077 1067 time1 = self.utctimeInit
1078 1068
1079 1069 datatime.append(time1)
1080 1070 datatime.append(time1 + interval)
1081 1071 datatime = numpy.array(datatime)
1082 1072
1083 1073 return datatime
1084 1074
1085 1075 def getTimeInterval(self):
1086 1076
1087 1077 if hasattr(self, 'timeInterval1'):
1088 1078 return self.timeInterval1
1089 1079 else:
1090 1080 return self.paramInterval
1091 1081
1092 1082 def setValue(self, value):
1093 1083
1094 1084 print("This property should not be initialized")
1095 1085
1096 1086 return
1097 1087
1098 1088 def getNoise(self):
1099 1089
1100 1090 return self.spc_noise
1101 1091
1102 1092 timeInterval = property(getTimeInterval)
1103 1093 noise = property(getNoise, setValue, "I'm the 'Noise' property.")
1104 1094
1105 1095
1106 1096 class PlotterData(object):
1107 1097 '''
1108 1098 Object to hold data to be plotted
1109 1099 '''
1110 1100
1111 1101 MAXNUMX = 100
1112 1102 MAXNUMY = 100
1113 1103
1114 1104 def __init__(self, code, throttle_value, exp_code, buffering=True):
1115 1105
1116 1106 self.throttle = throttle_value
1117 1107 self.exp_code = exp_code
1118 1108 self.buffering = buffering
1119 1109 self.ready = False
1120 1110 self.localtime = False
1121 1111 self.data = {}
1122 1112 self.meta = {}
1123 1113 self.__times = []
1124 1114 self.__heights = []
1125 1115
1126 1116 if 'snr' in code:
1127 1117 self.plottypes = ['snr']
1128 1118 elif code == 'spc':
1129 1119 self.plottypes = ['spc', 'noise', 'rti']
1130 1120 elif code == 'rti':
1131 1121 self.plottypes = ['noise', 'rti']
1132 1122 else:
1133 1123 self.plottypes = [code]
1134 1124
1135 1125 for plot in self.plottypes:
1136 1126 self.data[plot] = {}
1137 1127
1138 1128 def __str__(self):
1139 1129 dum = ['{}{}'.format(key, self.shape(key)) for key in self.data]
1140 1130 return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times))
1141 1131
1142 1132 def __len__(self):
1143 1133 return len(self.__times)
1144 1134
1145 1135 def __getitem__(self, key):
1146 1136
1147 1137 if key not in self.data:
1148 1138 raise KeyError(log.error('Missing key: {}'.format(key)))
1149 1139 if 'spc' in key or not self.buffering:
1150 1140 ret = self.data[key]
1151 1141 elif 'scope' in key:
1152 1142 ret = numpy.array(self.data[key][float(self.tm)])
1153 1143 else:
1154 1144 ret = numpy.array([self.data[key][x] for x in self.times])
1155 1145 if ret.ndim > 1:
1156 1146 ret = numpy.swapaxes(ret, 0, 1)
1157 1147 return ret
1158 1148
1159 1149 def __contains__(self, key):
1160 1150 return key in self.data
1161 1151
1162 1152 def setup(self):
1163 1153 '''
1164 1154 Configure object
1165 1155 '''
1166 1156
1167 1157 self.type = ''
1168 1158 self.ready = False
1169 1159 self.data = {}
1170 1160 self.__times = []
1171 1161 self.__heights = []
1172 1162 self.__all_heights = set()
1173 1163 for plot in self.plottypes:
1174 1164 if 'snr' in plot:
1175 1165 plot = 'snr'
1176 1166 self.data[plot] = {}
1177 1167
1178 1168 if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data:
1179 1169 self.data['noise'] = {}
1180 1170 if 'noise' not in self.plottypes:
1181 1171 self.plottypes.append('noise')
1182 1172
1183 1173 def shape(self, key):
1184 1174 '''
1185 1175 Get the shape of the one-element data for the given key
1186 1176 '''
1187 1177
1188 1178 if len(self.data[key]):
1189 1179 if 'spc' in key or not self.buffering:
1190 1180 return self.data[key].shape
1191 1181 return self.data[key][self.__times[0]].shape
1192 1182 return (0,)
1193 1183
1194 1184 def update(self, dataOut, tm):
1195 1185 '''
1196 1186 Update data object with new dataOut
1197 1187 '''
1198 1188
1199 1189 if tm in self.__times:
1200 1190 return
1201 1191 self.profileIndex = dataOut.profileIndex
1202 1192 self.tm = tm
1203 1193 self.type = dataOut.type
1204 1194 self.parameters = getattr(dataOut, 'parameters', [])
1205 1195 if hasattr(dataOut, 'pairsList'):
1206 1196 self.pairs = dataOut.pairsList
1207 1197 if hasattr(dataOut, 'meta'):
1208 1198 self.meta = dataOut.meta
1209 1199 self.channels = dataOut.channelList
1210 1200 self.interval = dataOut.getTimeInterval()
1211 1201 self.localtime = dataOut.useLocalTime
1212 1202 if 'spc' in self.plottypes or 'cspc' in self.plottypes:
1213 1203 self.xrange = (dataOut.getFreqRange(1)/1000.,
1214 1204 dataOut.getAcfRange(1), dataOut.getVelRange(1))
1215 1205 self.factor = dataOut.normFactor
1216 1206 self.__heights.append(dataOut.heightList)
1217 1207 self.__all_heights.update(dataOut.heightList)
1218 1208 self.__times.append(tm)
1219 1209
1220 1210 for plot in self.plottypes:
1221 1211 if plot == 'spc':
1222 1212 z = dataOut.data_spc/dataOut.normFactor
1223 1213 buffer = 10*numpy.log10(z)
1224 1214 if plot == 'cspc':
1225 1215 z = dataOut.data_spc/dataOut.normFactor
1226 1216 buffer = (dataOut.data_spc, dataOut.data_cspc)
1227 1217 if plot == 'noise':
1228 1218 buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor)
1229 1219 if plot == 'rti':
1230 1220 buffer = dataOut.getPower()
1231 1221 if plot == 'snr_db':
1232 1222 buffer = dataOut.data_SNR
1233 1223 if plot == 'snr':
1234 1224 buffer = 10*numpy.log10(dataOut.data_SNR)
1235 1225 if plot == 'dop':
1236 1226 buffer = 10*numpy.log10(dataOut.data_DOP)
1237 1227 if plot == 'mean':
1238 1228 buffer = dataOut.data_MEAN
1239 1229 if plot == 'std':
1240 1230 buffer = dataOut.data_STD
1241 1231 if plot == 'coh':
1242 1232 buffer = dataOut.getCoherence()
1243 1233 if plot == 'phase':
1244 1234 buffer = dataOut.getCoherence(phase=True)
1245 1235 if plot == 'output':
1246 1236 buffer = dataOut.data_output
1247 1237 if plot == 'param':
1248 1238 buffer = dataOut.data_param
1249 1239 if plot == 'scope':
1250 1240 buffer = dataOut.data
1251 1241 self.flagDataAsBlock = dataOut.flagDataAsBlock
1252 1242 self.nProfiles = dataOut.nProfiles
1253 1243
1254 1244 if plot == 'spc':
1255 1245 self.data[plot] = buffer
1256 1246 elif plot == 'cspc':
1257 1247 self.data['spc'] = buffer[0]
1258 1248 self.data['cspc'] = buffer[1]
1259 1249 else:
1260 1250 if self.buffering:
1261 1251 self.data[plot][tm] = buffer
1262 1252 else:
1263 1253 self.data[plot] = buffer
1264 1254
1265 1255 def normalize_heights(self):
1266 1256 '''
1267 1257 Ensure same-dimension of the data for different heighList
1268 1258 '''
1269 1259
1270 1260 H = numpy.array(list(self.__all_heights))
1271 1261 H.sort()
1272 1262 for key in self.data:
1273 1263 shape = self.shape(key)[:-1] + H.shape
1274 1264 for tm, obj in list(self.data[key].items()):
1275 1265 h = self.__heights[self.__times.index(tm)]
1276 1266 if H.size == h.size:
1277 1267 continue
1278 1268 index = numpy.where(numpy.in1d(H, h))[0]
1279 1269 dummy = numpy.zeros(shape) + numpy.nan
1280 1270 if len(shape) == 2:
1281 1271 dummy[:, index] = obj
1282 1272 else:
1283 1273 dummy[index] = obj
1284 1274 self.data[key][tm] = dummy
1285 1275
1286 1276 self.__heights = [H for tm in self.__times]
1287 1277
1288 1278 def jsonify(self, decimate=False):
1289 1279 '''
1290 1280 Convert data to json
1291 1281 '''
1292 1282
1293 1283 data = {}
1294 1284 tm = self.times[-1]
1295 1285 dy = int(self.heights.size/self.MAXNUMY) + 1
1296 1286 for key in self.data:
1297 1287 if key in ('spc', 'cspc') or not self.buffering:
1298 1288 dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1
1299 1289 data[key] = self.roundFloats(
1300 1290 self.data[key][::, ::dx, ::dy].tolist())
1301 1291 else:
1302 1292 data[key] = self.roundFloats(self.data[key][tm].tolist())
1303 1293
1304 1294 ret = {'data': data}
1305 1295 ret['exp_code'] = self.exp_code
1306 1296 ret['time'] = float(tm)
1307 1297 ret['interval'] = float(self.interval)
1308 1298 ret['localtime'] = self.localtime
1309 1299 ret['yrange'] = self.roundFloats(self.heights[::dy].tolist())
1310 1300 if 'spc' in self.data or 'cspc' in self.data:
1311 1301 ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist())
1312 1302 else:
1313 1303 ret['xrange'] = []
1314 1304 if hasattr(self, 'pairs'):
1315 1305 ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs]
1316 1306 else:
1317 1307 ret['pairs'] = []
1318 1308
1319 1309 for key, value in list(self.meta.items()):
1320 1310 ret[key] = value
1321 1311
1322 1312 return json.dumps(ret)
1323 1313
1324 1314 @property
1325 1315 def times(self):
1326 1316 '''
1327 1317 Return the list of times of the current data
1328 1318 '''
1329 1319
1330 1320 ret = numpy.array(self.__times)
1331 1321 ret.sort()
1332 1322 return ret
1333 1323
1334 1324 @property
1335 1325 def min_time(self):
1336 1326 '''
1337 1327 Return the minimun time value
1338 1328 '''
1339 1329
1340 1330 return self.times[0]
1341 1331
1342 1332 @property
1343 1333 def max_time(self):
1344 1334 '''
1345 1335 Return the maximun time value
1346 1336 '''
1347 1337
1348 1338 return self.times[-1]
1349 1339
1350 1340 @property
1351 1341 def heights(self):
1352 1342 '''
1353 1343 Return the list of heights of the current data
1354 1344 '''
1355 1345
1356 1346 return numpy.array(self.__heights[-1])
1357 1347
1358 1348 @staticmethod
1359 1349 def roundFloats(obj):
1360 1350 if isinstance(obj, list):
1361 1351 return list(map(PlotterData.roundFloats, obj))
1362 1352 elif isinstance(obj, float):
1363 1353 return round(obj, 2)
@@ -1,2389 +1,2394
1 1 import os
2 2 import datetime
3 3 import numpy
4 4 import inspect
5 5 from .figure import Figure, isRealtime, isTimeInHourRange
6 6 from .plotting_codes import *
7 7 from schainpy.model.proc.jroproc_base import MPDecorator
8 8 from schainpy.utils import log
9 9
10 10 class ParamLine_(Figure):
11 11
12 12 isConfig = None
13 13
14 14 def __init__(self):
15 15
16 16 self.isConfig = False
17 17 self.WIDTH = 300
18 18 self.HEIGHT = 200
19 19 self.counter_imagwr = 0
20 20
21 21 def getSubplots(self):
22 22
23 23 nrow = self.nplots
24 24 ncol = 3
25 25 return nrow, ncol
26 26
27 27 def setup(self, id, nplots, wintitle, show):
28 28
29 29 self.nplots = nplots
30 30
31 31 self.createFigure(id=id,
32 32 wintitle=wintitle,
33 33 show=show)
34 34
35 35 nrow,ncol = self.getSubplots()
36 36 colspan = 3
37 37 rowspan = 1
38 38
39 39 for i in range(nplots):
40 40 self.addAxes(nrow, ncol, i, 0, colspan, rowspan)
41 41
42 42 def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
43 43 yreal = y[channelIndexList,:].real
44 44 yimag = y[channelIndexList,:].imag
45 45
46 46 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
47 47 xlabel = "Range (Km)"
48 48 ylabel = "Intensity - IQ"
49 49
50 50 if not self.isConfig:
51 51 nplots = len(channelIndexList)
52 52
53 53 self.setup(id=id,
54 54 nplots=nplots,
55 55 wintitle='',
56 56 show=show)
57 57
58 58 if xmin == None: xmin = numpy.nanmin(x)
59 59 if xmax == None: xmax = numpy.nanmax(x)
60 60 if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag))
61 61 if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag))
62 62
63 63 self.isConfig = True
64 64
65 65 self.setWinTitle(title)
66 66
67 67 for i in range(len(self.axesList)):
68 68 title = "Channel %d" %(i)
69 69 axes = self.axesList[i]
70 70
71 71 axes.pline(x, yreal[i,:],
72 72 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
73 73 xlabel=xlabel, ylabel=ylabel, title=title)
74 74
75 75 axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2)
76 76
77 77 def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax):
78 78 y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:])
79 79 yreal = y.real
80 80
81 81 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
82 82 xlabel = "Range (Km)"
83 83 ylabel = "Intensity"
84 84
85 85 if not self.isConfig:
86 86 nplots = len(channelIndexList)
87 87
88 88 self.setup(id=id,
89 89 nplots=nplots,
90 90 wintitle='',
91 91 show=show)
92 92
93 93 if xmin == None: xmin = numpy.nanmin(x)
94 94 if xmax == None: xmax = numpy.nanmax(x)
95 95 if ymin == None: ymin = numpy.nanmin(yreal)
96 96 if ymax == None: ymax = numpy.nanmax(yreal)
97 97
98 98 self.isConfig = True
99 99
100 100 self.setWinTitle(title)
101 101
102 102 for i in range(len(self.axesList)):
103 103 title = "Channel %d" %(i)
104 104 axes = self.axesList[i]
105 105 ychannel = yreal[i,:]
106 106 axes.pline(x, ychannel,
107 107 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
108 108 xlabel=xlabel, ylabel=ylabel, title=title)
109 109
110 110
111 111 def run(self, dataOut, id, wintitle="", channelList=None,
112 112 xmin=None, xmax=None, ymin=None, ymax=None, save=False,
113 113 figpath='./', figfile=None, show=True, wr_period=1,
114 114 ftp=False, server=None, folder=None, username=None, password=None):
115 115
116 116 """
117 117
118 118 Input:
119 119 dataOut :
120 120 id :
121 121 wintitle :
122 122 channelList :
123 123 xmin : None,
124 124 xmax : None,
125 125 ymin : None,
126 126 ymax : None,
127 127 """
128 128
129 129 if channelList == None:
130 130 channelIndexList = dataOut.channelIndexList
131 131 else:
132 132 channelIndexList = []
133 133 for channel in channelList:
134 134 if channel not in dataOut.channelList:
135 135 raise ValueError("Channel %d is not in dataOut.channelList" % channel)
136 136 channelIndexList.append(dataOut.channelList.index(channel))
137 137
138 138 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
139 139
140 140 y = dataOut.RR
141 141
142 142 title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
143 143 xlabel = "Range (Km)"
144 144 ylabel = "Intensity"
145 145
146 146 if not self.isConfig:
147 147 nplots = len(channelIndexList)
148 148
149 149 self.setup(id=id,
150 150 nplots=nplots,
151 151 wintitle='',
152 152 show=show)
153 153
154 154 if xmin == None: xmin = numpy.nanmin(x)
155 155 if xmax == None: xmax = numpy.nanmax(x)
156 156 if ymin == None: ymin = numpy.nanmin(y)
157 157 if ymax == None: ymax = numpy.nanmax(y)
158 158
159 159 self.isConfig = True
160 160
161 161 self.setWinTitle(title)
162 162
163 163 for i in range(len(self.axesList)):
164 164 title = "Channel %d" %(i)
165 165 axes = self.axesList[i]
166 166 ychannel = y[i,:]
167 167 axes.pline(x, ychannel,
168 168 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
169 169 xlabel=xlabel, ylabel=ylabel, title=title)
170 170
171 171
172 172 self.draw()
173 173
174 174 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex)
175 175 figfile = self.getFilename(name = str_datetime)
176 176
177 177 self.save(figpath=figpath,
178 178 figfile=figfile,
179 179 save=save,
180 180 ftp=ftp,
181 181 wr_period=wr_period,
182 182 thisDatetime=thisDatetime)
183 183
184 184
185 185
186 186 class SpcParamPlot_(Figure):
187 187
188 188 isConfig = None
189 189 __nsubplots = None
190 190
191 191 WIDTHPROF = None
192 192 HEIGHTPROF = None
193 193 PREFIX = 'SpcParam'
194 194
195 195 def __init__(self, **kwargs):
196 196 Figure.__init__(self, **kwargs)
197 197 self.isConfig = False
198 198 self.__nsubplots = 1
199 199
200 200 self.WIDTH = 250
201 201 self.HEIGHT = 250
202 202 self.WIDTHPROF = 120
203 203 self.HEIGHTPROF = 0
204 204 self.counter_imagwr = 0
205 205
206 206 self.PLOT_CODE = SPEC_CODE
207 207
208 208 self.FTP_WEI = None
209 209 self.EXP_CODE = None
210 210 self.SUB_EXP_CODE = None
211 211 self.PLOT_POS = None
212 212
213 213 self.__xfilter_ena = False
214 214 self.__yfilter_ena = False
215 215
216 216 def getSubplots(self):
217 217
218 218 ncol = int(numpy.sqrt(self.nplots)+0.9)
219 219 nrow = int(self.nplots*1./ncol + 0.9)
220 220
221 221 return nrow, ncol
222 222
223 223 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
224 224
225 225 self.__showprofile = showprofile
226 226 self.nplots = nplots
227 227
228 228 ncolspan = 1
229 229 colspan = 1
230 230 if showprofile:
231 231 ncolspan = 3
232 232 colspan = 2
233 233 self.__nsubplots = 2
234 234
235 235 self.createFigure(id = id,
236 236 wintitle = wintitle,
237 237 widthplot = self.WIDTH + self.WIDTHPROF,
238 238 heightplot = self.HEIGHT + self.HEIGHTPROF,
239 239 show=show)
240 240
241 241 nrow, ncol = self.getSubplots()
242 242
243 243 counter = 0
244 244 for y in range(nrow):
245 245 for x in range(ncol):
246 246
247 247 if counter >= self.nplots:
248 248 break
249 249
250 250 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
251 251
252 252 if showprofile:
253 253 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
254 254
255 255 counter += 1
256 256
257 257 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
258 258 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
259 259 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
260 260 server=None, folder=None, username=None, password=None,
261 261 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
262 262 xaxis="frequency", colormap='jet', normFactor=None , Selector = 0):
263 263
264 264 """
265 265
266 266 Input:
267 267 dataOut :
268 268 id :
269 269 wintitle :
270 270 channelList :
271 271 showProfile :
272 272 xmin : None,
273 273 xmax : None,
274 274 ymin : None,
275 275 ymax : None,
276 276 zmin : None,
277 277 zmax : None
278 278 """
279 279 if realtime:
280 280 if not(isRealtime(utcdatatime = dataOut.utctime)):
281 281 print('Skipping this plot function')
282 282 return
283 283
284 284 if channelList == None:
285 285 channelIndexList = dataOut.channelIndexList
286 286 else:
287 287 channelIndexList = []
288 288 for channel in channelList:
289 289 if channel not in dataOut.channelList:
290 290 raise ValueError("Channel %d is not in dataOut.channelList" %channel)
291 291 channelIndexList.append(dataOut.channelList.index(channel))
292 292
293 293 # if normFactor is None:
294 294 # factor = dataOut.normFactor
295 295 # else:
296 296 # factor = normFactor
297 297 if xaxis == "frequency":
298 298 x = dataOut.spcparam_range[0]
299 299 xlabel = "Frequency (kHz)"
300 300
301 301 elif xaxis == "time":
302 302 x = dataOut.spcparam_range[1]
303 303 xlabel = "Time (ms)"
304 304
305 305 else:
306 306 x = dataOut.spcparam_range[2]
307 307 xlabel = "Velocity (m/s)"
308 308
309 309 ylabel = "Range (km)"
310 310
311 311 y = dataOut.getHeiRange()
312 312
313 313 z = dataOut.SPCparam[Selector] /1966080.0#/ dataOut.normFactor#GauSelector] #dataOut.data_spc/factor
314 314 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
315 315 zdB = 10*numpy.log10(z)
316 316
317 317 avg = numpy.average(z, axis=1)
318 318 avgdB = 10*numpy.log10(avg)
319 319
320 320 noise = dataOut.spc_noise
321 321 noisedB = 10*numpy.log10(noise)
322 322
323 323 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
324 324 title = wintitle + " Spectra"
325 325 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
326 326 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
327 327
328 328 if not self.isConfig:
329 329
330 330 nplots = len(channelIndexList)
331 331
332 332 self.setup(id=id,
333 333 nplots=nplots,
334 334 wintitle=wintitle,
335 335 showprofile=showprofile,
336 336 show=show)
337 337
338 338 if xmin == None: xmin = numpy.nanmin(x)
339 339 if xmax == None: xmax = numpy.nanmax(x)
340 340 if ymin == None: ymin = numpy.nanmin(y)
341 341 if ymax == None: ymax = numpy.nanmax(y)
342 342 if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3
343 343 if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3
344 344
345 345 self.FTP_WEI = ftp_wei
346 346 self.EXP_CODE = exp_code
347 347 self.SUB_EXP_CODE = sub_exp_code
348 348 self.PLOT_POS = plot_pos
349 349
350 350 self.isConfig = True
351 351
352 352 self.setWinTitle(title)
353 353
354 354 for i in range(self.nplots):
355 355 index = channelIndexList[i]
356 356 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
357 357 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime)
358 358 if len(dataOut.beam.codeList) != 0:
359 359 title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime)
360 360
361 361 axes = self.axesList[i*self.__nsubplots]
362 362 axes.pcolor(x, y, zdB[index,:,:],
363 363 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
364 364 xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap,
365 365 ticksize=9, cblabel='')
366 366
367 367 if self.__showprofile:
368 368 axes = self.axesList[i*self.__nsubplots +1]
369 369 axes.pline(avgdB[index,:], y,
370 370 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
371 371 xlabel='dB', ylabel='', title='',
372 372 ytick_visible=False,
373 373 grid='x')
374 374
375 375 noiseline = numpy.repeat(noisedB[index], len(y))
376 376 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
377 377
378 378 self.draw()
379 379
380 380 if figfile == None:
381 381 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
382 382 name = str_datetime
383 383 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
384 384 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
385 385 figfile = self.getFilename(name)
386 386
387 387 self.save(figpath=figpath,
388 388 figfile=figfile,
389 389 save=save,
390 390 ftp=ftp,
391 391 wr_period=wr_period,
392 392 thisDatetime=thisDatetime)
393 393
394 394
395 395
396 396 class MomentsPlot_(Figure):
397 397
398 398 isConfig = None
399 399 __nsubplots = None
400 400
401 401 WIDTHPROF = None
402 402 HEIGHTPROF = None
403 403 PREFIX = 'prm'
404 404 def __init__(self):
405 405 Figure.__init__(self)
406 406 self.isConfig = False
407 407 self.__nsubplots = 1
408 408
409 409 self.WIDTH = 280
410 410 self.HEIGHT = 250
411 411 self.WIDTHPROF = 120
412 412 self.HEIGHTPROF = 0
413 413 self.counter_imagwr = 0
414 414
415 415 self.PLOT_CODE = MOMENTS_CODE
416 416
417 417 self.FTP_WEI = None
418 418 self.EXP_CODE = None
419 419 self.SUB_EXP_CODE = None
420 420 self.PLOT_POS = None
421 421
422 422 def getSubplots(self):
423 423
424 424 ncol = int(numpy.sqrt(self.nplots)+0.9)
425 425 nrow = int(self.nplots*1./ncol + 0.9)
426 426
427 427 return nrow, ncol
428 428
429 429 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
430 430
431 431 self.__showprofile = showprofile
432 432 self.nplots = nplots
433 433
434 434 ncolspan = 1
435 435 colspan = 1
436 436 if showprofile:
437 437 ncolspan = 3
438 438 colspan = 2
439 439 self.__nsubplots = 2
440 440
441 441 self.createFigure(id = id,
442 442 wintitle = wintitle,
443 443 widthplot = self.WIDTH + self.WIDTHPROF,
444 444 heightplot = self.HEIGHT + self.HEIGHTPROF,
445 445 show=show)
446 446
447 447 nrow, ncol = self.getSubplots()
448 448
449 449 counter = 0
450 450 for y in range(nrow):
451 451 for x in range(ncol):
452 452
453 453 if counter >= self.nplots:
454 454 break
455 455
456 456 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
457 457
458 458 if showprofile:
459 459 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
460 460
461 461 counter += 1
462 462
463 463 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
464 464 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
465 465 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
466 466 server=None, folder=None, username=None, password=None,
467 467 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
468 468
469 469 """
470 470
471 471 Input:
472 472 dataOut :
473 473 id :
474 474 wintitle :
475 475 channelList :
476 476 showProfile :
477 477 xmin : None,
478 478 xmax : None,
479 479 ymin : None,
480 480 ymax : None,
481 481 zmin : None,
482 482 zmax : None
483 483 """
484 484
485 485 if dataOut.flagNoData:
486 486 return None
487 487
488 488 if realtime:
489 489 if not(isRealtime(utcdatatime = dataOut.utctime)):
490 490 print('Skipping this plot function')
491 491 return
492 492
493 493 if channelList == None:
494 494 channelIndexList = dataOut.channelIndexList
495 495 else:
496 496 channelIndexList = []
497 497 for channel in channelList:
498 498 if channel not in dataOut.channelList:
499 499 raise ValueError("Channel %d is not in dataOut.channelList")
500 500 channelIndexList.append(dataOut.channelList.index(channel))
501 501
502 502 factor = dataOut.normFactor
503 503 x = dataOut.abscissaList
504 504 y = dataOut.heightList
505 505
506 506 z = dataOut.data_pre[channelIndexList,:,:]/factor
507 507 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
508 508 avg = numpy.average(z, axis=1)
509 509 noise = dataOut.noise/factor
510 510
511 511 zdB = 10*numpy.log10(z)
512 512 avgdB = 10*numpy.log10(avg)
513 513 noisedB = 10*numpy.log10(noise)
514 514
515 515 #thisDatetime = dataOut.datatime
516 516 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
517 517 title = wintitle + " Parameters"
518 518 xlabel = "Velocity (m/s)"
519 519 ylabel = "Range (Km)"
520 520
521 521 update_figfile = False
522 522
523 523 if not self.isConfig:
524 524
525 525 nplots = len(channelIndexList)
526 526
527 527 self.setup(id=id,
528 528 nplots=nplots,
529 529 wintitle=wintitle,
530 530 showprofile=showprofile,
531 531 show=show)
532 532
533 533 if xmin == None: xmin = numpy.nanmin(x)
534 534 if xmax == None: xmax = numpy.nanmax(x)
535 535 if ymin == None: ymin = numpy.nanmin(y)
536 536 if ymax == None: ymax = numpy.nanmax(y)
537 537 if zmin == None: zmin = numpy.nanmin(avgdB)*0.9
538 538 if zmax == None: zmax = numpy.nanmax(avgdB)*0.9
539 539
540 540 self.FTP_WEI = ftp_wei
541 541 self.EXP_CODE = exp_code
542 542 self.SUB_EXP_CODE = sub_exp_code
543 543 self.PLOT_POS = plot_pos
544 544
545 545 self.isConfig = True
546 546 update_figfile = True
547 547
548 548 self.setWinTitle(title)
549 549
550 550 for i in range(self.nplots):
551 551 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
552 552 title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i], noisedB[i], str_datetime)
553 553 axes = self.axesList[i*self.__nsubplots]
554 554 axes.pcolor(x, y, zdB[i,:,:],
555 555 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
556 556 xlabel=xlabel, ylabel=ylabel, title=title,
557 557 ticksize=9, cblabel='')
558 558 #Mean Line
559 559 mean = dataOut.data_param[i, 1, :]
560 560 axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1)
561 561
562 562 if self.__showprofile:
563 563 axes = self.axesList[i*self.__nsubplots +1]
564 564 axes.pline(avgdB[i], y,
565 565 xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax,
566 566 xlabel='dB', ylabel='', title='',
567 567 ytick_visible=False,
568 568 grid='x')
569 569
570 570 noiseline = numpy.repeat(noisedB[i], len(y))
571 571 axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2)
572 572
573 573 self.draw()
574 574
575 575 self.save(figpath=figpath,
576 576 figfile=figfile,
577 577 save=save,
578 578 ftp=ftp,
579 579 wr_period=wr_period,
580 580 thisDatetime=thisDatetime)
581 581
582 582
583 583 class SkyMapPlot_(Figure):
584 584
585 585 __isConfig = None
586 586 __nsubplots = None
587 587
588 588 WIDTHPROF = None
589 589 HEIGHTPROF = None
590 590 PREFIX = 'mmap'
591 591
592 592 def __init__(self, **kwargs):
593 593 Figure.__init__(self, **kwargs)
594 594 self.isConfig = False
595 595 self.__nsubplots = 1
596 596
597 597 # self.WIDTH = 280
598 598 # self.HEIGHT = 250
599 599 self.WIDTH = 600
600 600 self.HEIGHT = 600
601 601 self.WIDTHPROF = 120
602 602 self.HEIGHTPROF = 0
603 603 self.counter_imagwr = 0
604 604
605 605 self.PLOT_CODE = MSKYMAP_CODE
606 606
607 607 self.FTP_WEI = None
608 608 self.EXP_CODE = None
609 609 self.SUB_EXP_CODE = None
610 610 self.PLOT_POS = None
611 611
612 612 def getSubplots(self):
613 613
614 614 ncol = int(numpy.sqrt(self.nplots)+0.9)
615 615 nrow = int(self.nplots*1./ncol + 0.9)
616 616
617 617 return nrow, ncol
618 618
619 619 def setup(self, id, nplots, wintitle, showprofile=False, show=True):
620 620
621 621 self.__showprofile = showprofile
622 622 self.nplots = nplots
623 623
624 624 ncolspan = 1
625 625 colspan = 1
626 626
627 627 self.createFigure(id = id,
628 628 wintitle = wintitle,
629 629 widthplot = self.WIDTH, #+ self.WIDTHPROF,
630 630 heightplot = self.HEIGHT,# + self.HEIGHTPROF,
631 631 show=show)
632 632
633 633 nrow, ncol = 1,1
634 634 counter = 0
635 635 x = 0
636 636 y = 0
637 637 self.addAxes(1, 1, 0, 0, 1, 1, True)
638 638
639 639 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False,
640 640 tmin=0, tmax=24, timerange=None,
641 641 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
642 642 server=None, folder=None, username=None, password=None,
643 643 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False):
644 644
645 645 """
646 646
647 647 Input:
648 648 dataOut :
649 649 id :
650 650 wintitle :
651 651 channelList :
652 652 showProfile :
653 653 xmin : None,
654 654 xmax : None,
655 655 ymin : None,
656 656 ymax : None,
657 657 zmin : None,
658 658 zmax : None
659 659 """
660 660
661 661 arrayParameters = dataOut.data_param
662 662 error = arrayParameters[:,-1]
663 663 indValid = numpy.where(error == 0)[0]
664 664 finalMeteor = arrayParameters[indValid,:]
665 665 finalAzimuth = finalMeteor[:,3]
666 666 finalZenith = finalMeteor[:,4]
667 667
668 668 x = finalAzimuth*numpy.pi/180
669 669 y = finalZenith
670 670 x1 = [dataOut.ltctime, dataOut.ltctime]
671 671
672 672 #thisDatetime = dataOut.datatime
673 673 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
674 674 title = wintitle + " Parameters"
675 675 xlabel = "Zonal Zenith Angle (deg) "
676 676 ylabel = "Meridional Zenith Angle (deg)"
677 677 update_figfile = False
678 678
679 679 if not self.isConfig:
680 680
681 681 nplots = 1
682 682
683 683 self.setup(id=id,
684 684 nplots=nplots,
685 685 wintitle=wintitle,
686 686 showprofile=showprofile,
687 687 show=show)
688 688
689 689 if self.xmin is None and self.xmax is None:
690 690 self.xmin, self.xmax = self.getTimeLim(x1, tmin, tmax, timerange)
691 691
692 692 if timerange != None:
693 693 self.timerange = timerange
694 694 else:
695 695 self.timerange = self.xmax - self.xmin
696 696
697 697 self.FTP_WEI = ftp_wei
698 698 self.EXP_CODE = exp_code
699 699 self.SUB_EXP_CODE = sub_exp_code
700 700 self.PLOT_POS = plot_pos
701 701 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
702 702 self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
703 703 self.isConfig = True
704 704 update_figfile = True
705 705
706 706 self.setWinTitle(title)
707 707
708 708 i = 0
709 709 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
710 710
711 711 axes = self.axesList[i*self.__nsubplots]
712 712 nevents = axes.x_buffer.shape[0] + x.shape[0]
713 713 title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents)
714 714 axes.polar(x, y,
715 715 title=title, xlabel=xlabel, ylabel=ylabel,
716 716 ticksize=9, cblabel='')
717 717
718 718 self.draw()
719 719
720 720 self.save(figpath=figpath,
721 721 figfile=figfile,
722 722 save=save,
723 723 ftp=ftp,
724 724 wr_period=wr_period,
725 725 thisDatetime=thisDatetime,
726 726 update_figfile=update_figfile)
727 727
728 728 if dataOut.ltctime >= self.xmax:
729 729 self.isConfigmagwr = wr_period
730 730 self.isConfig = False
731 731 update_figfile = True
732 732 axes.__firsttime = True
733 733 self.xmin += self.timerange
734 734 self.xmax += self.timerange
735 735
736 736
737 737
738
738 @MPDecorator
739 739 class WindProfilerPlot_(Figure):
740 740
741 741 __isConfig = None
742 742 __nsubplots = None
743 743
744 744 WIDTHPROF = None
745 745 HEIGHTPROF = None
746 746 PREFIX = 'wind'
747 747
748 def __init__(self, **kwargs):
749 Figure.__init__(self, **kwargs)
748 def __init__(self):
749 Figure.__init__(self)
750 750 self.timerange = None
751 751 self.isConfig = False
752 752 self.__nsubplots = 1
753 753
754 754 self.WIDTH = 800
755 755 self.HEIGHT = 300
756 756 self.WIDTHPROF = 120
757 757 self.HEIGHTPROF = 0
758 758 self.counter_imagwr = 0
759 759
760 760 self.PLOT_CODE = WIND_CODE
761 761
762 762 self.FTP_WEI = None
763 763 self.EXP_CODE = None
764 764 self.SUB_EXP_CODE = None
765 765 self.PLOT_POS = None
766 766 self.tmin = None
767 767 self.tmax = None
768 768
769 769 self.xmin = None
770 770 self.xmax = None
771 771
772 772 self.figfile = None
773 773
774 774 def getSubplots(self):
775 775
776 776 ncol = 1
777 777 nrow = self.nplots
778 778
779 779 return nrow, ncol
780 780
781 781 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
782 782
783 783 self.__showprofile = showprofile
784 784 self.nplots = nplots
785 785
786 786 ncolspan = 1
787 787 colspan = 1
788 788
789 789 self.createFigure(id = id,
790 790 wintitle = wintitle,
791 791 widthplot = self.WIDTH + self.WIDTHPROF,
792 792 heightplot = self.HEIGHT + self.HEIGHTPROF,
793 793 show=show)
794 794
795 795 nrow, ncol = self.getSubplots()
796 796
797 797 counter = 0
798 798 for y in range(nrow):
799 799 if counter >= self.nplots:
800 800 break
801 801
802 802 self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1)
803 803 counter += 1
804 804
805 805 def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False',
806 806 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
807 807 zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None,
808 808 timerange=None, SNRthresh = None,
809 809 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
810 810 server=None, folder=None, username=None, password=None,
811 811 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
812 812 """
813 813
814 814 Input:
815 815 dataOut :
816 816 id :
817 817 wintitle :
818 818 channelList :
819 819 showProfile :
820 820 xmin : None,
821 821 xmax : None,
822 822 ymin : None,
823 823 ymax : None,
824 824 zmin : None,
825 825 zmax : None
826 826 """
827 827
828 if dataOut.flagNoData:
829 return dataOut
830
828 831 # if timerange is not None:
829 832 # self.timerange = timerange
830 833 #
831 834 # tmin = None
832 835 # tmax = None
833 836
834 837 x = dataOut.getTimeRange1(dataOut.paramInterval)
835 838 y = dataOut.heightList
836 839 z = dataOut.data_output.copy()
837 840 nplots = z.shape[0] #Number of wind dimensions estimated
838 841 nplotsw = nplots
839 842
840 843
841 844 #If there is a SNR function defined
842 845 if dataOut.data_SNR is not None:
843 846 nplots += 1
844 847 SNR = dataOut.data_SNR[0]
845 848 SNRavg = SNR#numpy.average(SNR, axis=0)
846 849
847 850 SNRdB = 10*numpy.log10(SNR)
848 851 SNRavgdB = 10*numpy.log10(SNRavg)
849 852
850 853 if SNRthresh == None:
851 854 SNRthresh = -5.0
852 855 ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0]
853 856
854 857 for i in range(nplotsw):
855 858 z[i,ind] = numpy.nan
856 859
857 860 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
858 861 #thisDatetime = datetime.datetime.now()
859 862 title = wintitle + "Wind"
860 863 xlabel = ""
861 864 ylabel = "Height (km)"
862 865 update_figfile = False
863 866
864 867 if not self.isConfig:
865 868
866 869 self.setup(id=id,
867 870 nplots=nplots,
868 871 wintitle=wintitle,
869 872 showprofile=showprofile,
870 873 show=show)
871 874
872 875 if timerange is not None:
873 876 self.timerange = timerange
874 877
875 878 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
876 879
877 880 if ymin == None: ymin = numpy.nanmin(y)
878 881 if ymax == None: ymax = numpy.nanmax(y)
879 882
880 883 if zmax == None: zmax = numpy.nanmax(abs(z[list(range(2)),:]))
881 884 #if numpy.isnan(zmax): zmax = 50
882 885 if zmin == None: zmin = -zmax
883 886
884 887 if nplotsw == 3:
885 888 if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:]))
886 889 if zmin_ver == None: zmin_ver = -zmax_ver
887 890
888 891 if dataOut.data_SNR is not None:
889 892 if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB)
890 893 if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB)
891 894
892 895
893 896 self.FTP_WEI = ftp_wei
894 897 self.EXP_CODE = exp_code
895 898 self.SUB_EXP_CODE = sub_exp_code
896 899 self.PLOT_POS = plot_pos
897 900
898 901 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
899 902 self.isConfig = True
900 903 self.figfile = figfile
901 904 update_figfile = True
902 905
903 906 self.setWinTitle(title)
904 907
905 908 if ((self.xmax - x[1]) < (x[1]-x[0])):
906 909 x[1] = self.xmax
907 910
908 911 strWind = ['Zonal', 'Meridional', 'Vertical']
909 912 strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)']
910 913 zmaxVector = [zmax, zmax, zmax_ver]
911 914 zminVector = [zmin, zmin, zmin_ver]
912 915 windFactor = [1,1,100]
913 916
914 917 for i in range(nplotsw):
915 918
916 919 title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
917 920 axes = self.axesList[i*self.__nsubplots]
918 921
919 922 z1 = z[i,:].reshape((1,-1))*windFactor[i]
920 923
921 924 axes.pcolorbuffer(x, y, z1,
922 925 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i],
923 926 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
924 927 ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="seismic" )
925 928
926 929 if dataOut.data_SNR is not None:
927 930 i += 1
928 931 title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
929 932 axes = self.axesList[i*self.__nsubplots]
930 933 SNRavgdB = SNRavgdB.reshape((1,-1))
931 934 axes.pcolorbuffer(x, y, SNRavgdB,
932 935 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
933 936 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
934 937 ticksize=9, cblabel='', cbsize="1%", colormap="jet")
935 938
936 939 self.draw()
937 940
938 941 self.save(figpath=figpath,
939 942 figfile=figfile,
940 943 save=save,
941 944 ftp=ftp,
942 945 wr_period=wr_period,
943 946 thisDatetime=thisDatetime,
944 947 update_figfile=update_figfile)
945 948
946 949 if dataOut.ltctime + dataOut.paramInterval >= self.xmax:
947 950 self.counter_imagwr = wr_period
948 951 self.isConfig = False
949 952 update_figfile = True
950 953
954 return dataOut
955
951 956 @MPDecorator
952 957 class ParametersPlot_(Figure):
953 958
954 959 __isConfig = None
955 960 __nsubplots = None
956 961
957 962 WIDTHPROF = None
958 963 HEIGHTPROF = None
959 964 PREFIX = 'param'
960 965
961 966 nplots = None
962 967 nchan = None
963 968
964 969 def __init__(self):#, **kwargs):
965 970 Figure.__init__(self)#, **kwargs)
966 971 self.timerange = None
967 972 self.isConfig = False
968 973 self.__nsubplots = 1
969 974
970 975 self.WIDTH = 300
971 976 self.HEIGHT = 550
972 977 self.WIDTHPROF = 120
973 978 self.HEIGHTPROF = 0
974 979 self.counter_imagwr = 0
975 980
976 981 self.PLOT_CODE = RTI_CODE
977 982
978 983 self.FTP_WEI = None
979 984 self.EXP_CODE = None
980 985 self.SUB_EXP_CODE = None
981 986 self.PLOT_POS = None
982 987 self.tmin = None
983 988 self.tmax = None
984 989
985 990 self.xmin = None
986 991 self.xmax = None
987 992
988 993 self.figfile = None
989 994
990 995 def getSubplots(self):
991 996
992 997 ncol = 1
993 998 nrow = self.nplots
994 999
995 1000 return nrow, ncol
996 1001
997 1002 def setup(self, id, nplots, wintitle, show=True):
998 1003
999 1004 self.nplots = nplots
1000 1005
1001 1006 ncolspan = 1
1002 1007 colspan = 1
1003 1008
1004 1009 self.createFigure(id = id,
1005 1010 wintitle = wintitle,
1006 1011 widthplot = self.WIDTH + self.WIDTHPROF,
1007 1012 heightplot = self.HEIGHT + self.HEIGHTPROF,
1008 1013 show=show)
1009 1014
1010 1015 nrow, ncol = self.getSubplots()
1011 1016
1012 1017 counter = 0
1013 1018 for y in range(nrow):
1014 1019 for x in range(ncol):
1015 1020
1016 1021 if counter >= self.nplots:
1017 1022 break
1018 1023
1019 1024 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1020 1025
1021 1026 counter += 1
1022 1027
1023 1028 def run(self, dataOut, id, wintitle="", channelList=None, paramIndex = 0, colormap="jet",
1024 1029 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, timerange=None,
1025 1030 showSNR=False, SNRthresh = -numpy.inf, SNRmin=None, SNRmax=None,
1026 1031 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1027 1032 server=None, folder=None, username=None, password=None,
1028 1033 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, HEIGHT=None):
1029 1034 """
1030 1035
1031 1036 Input:
1032 1037 dataOut :
1033 1038 id :
1034 1039 wintitle :
1035 1040 channelList :
1036 1041 showProfile :
1037 1042 xmin : None,
1038 1043 xmax : None,
1039 1044 ymin : None,
1040 1045 ymax : None,
1041 1046 zmin : None,
1042 1047 zmax : None
1043 1048 """
1044 1049 if dataOut.flagNoData:
1045 1050 return dataOut
1046 1051
1047 1052
1048 1053 if HEIGHT is not None:
1049 1054 self.HEIGHT = HEIGHT
1050 1055
1051 1056
1052 1057 if not isTimeInHourRange(dataOut.datatime, xmin, xmax):
1053 1058 return
1054 1059
1055 1060 if channelList == None:
1056 1061 channelIndexList = list(range(dataOut.data_param.shape[0]))
1057 1062 else:
1058 1063 channelIndexList = []
1059 1064 for channel in channelList:
1060 1065 if channel not in dataOut.channelList:
1061 1066 raise ValueError("Channel %d is not in dataOut.channelList")
1062 1067 channelIndexList.append(dataOut.channelList.index(channel))
1063 1068
1064 1069 x = dataOut.getTimeRange1(dataOut.paramInterval)
1065 1070 y = dataOut.getHeiRange()
1066 1071
1067 1072 if dataOut.data_param.ndim == 3:
1068 1073 z = dataOut.data_param[channelIndexList,paramIndex,:]
1069 1074 else:
1070 1075 z = dataOut.data_param[channelIndexList,:]
1071 1076
1072 1077 if showSNR:
1073 1078 #SNR data
1074 1079 SNRarray = dataOut.data_SNR[channelIndexList,:]
1075 1080 SNRdB = 10*numpy.log10(SNRarray)
1076 1081 ind = numpy.where(SNRdB < SNRthresh)
1077 1082 z[ind] = numpy.nan
1078 1083
1079 1084 thisDatetime = dataOut.datatime
1080 1085 # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1081 1086 title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1082 1087 xlabel = ""
1083 1088 ylabel = "Range (km)"
1084 1089
1085 1090 update_figfile = False
1086 1091
1087 1092 if not self.isConfig:
1088 1093
1089 1094 nchan = len(channelIndexList)
1090 1095 self.nchan = nchan
1091 1096 self.plotFact = 1
1092 1097 nplots = nchan
1093 1098
1094 1099 if showSNR:
1095 1100 nplots = nchan*2
1096 1101 self.plotFact = 2
1097 1102 if SNRmin == None: SNRmin = numpy.nanmin(SNRdB)
1098 1103 if SNRmax == None: SNRmax = numpy.nanmax(SNRdB)
1099 1104
1100 1105 self.setup(id=id,
1101 1106 nplots=nplots,
1102 1107 wintitle=wintitle,
1103 1108 show=show)
1104 1109
1105 1110 if timerange != None:
1106 1111 self.timerange = timerange
1107 1112
1108 1113 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1109 1114
1110 1115 if ymin == None: ymin = numpy.nanmin(y)
1111 1116 if ymax == None: ymax = numpy.nanmax(y)
1112 1117 if zmin == None: zmin = numpy.nanmin(z)
1113 1118 if zmax == None: zmax = numpy.nanmax(z)
1114 1119
1115 1120 self.FTP_WEI = ftp_wei
1116 1121 self.EXP_CODE = exp_code
1117 1122 self.SUB_EXP_CODE = sub_exp_code
1118 1123 self.PLOT_POS = plot_pos
1119 1124
1120 1125 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1121 1126 self.isConfig = True
1122 1127 self.figfile = figfile
1123 1128 update_figfile = True
1124 1129
1125 1130 self.setWinTitle(title)
1126 1131
1127 1132 # for i in range(self.nchan):
1128 1133 # index = channelIndexList[i]
1129 1134 # title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1130 1135 # axes = self.axesList[i*self.plotFact]
1131 1136 # z1 = z[i,:].reshape((1,-1))
1132 1137 # axes.pcolorbuffer(x, y, z1,
1133 1138 # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1134 1139 # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1135 1140 # ticksize=9, cblabel='', cbsize="1%",colormap=colormap)
1136 1141 #
1137 1142 # if showSNR:
1138 1143 # title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1139 1144 # axes = self.axesList[i*self.plotFact + 1]
1140 1145 # SNRdB1 = SNRdB[i,:].reshape((1,-1))
1141 1146 # axes.pcolorbuffer(x, y, SNRdB1,
1142 1147 # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1143 1148 # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1144 1149 # ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1145 1150
1146 1151 i=0
1147 1152 index = channelIndexList[i]
1148 1153 title = "Factor de reflectividad Z [dBZ]"
1149 1154 axes = self.axesList[i*self.plotFact]
1150 1155 z1 = z[i,:].reshape((1,-1))
1151 1156 axes.pcolorbuffer(x, y, z1,
1152 1157 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1153 1158 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1154 1159 ticksize=9, cblabel='', cbsize="1%",colormap=colormap)
1155 1160
1156 1161 if showSNR:
1157 1162 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1158 1163 axes = self.axesList[i*self.plotFact + 1]
1159 1164 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1160 1165 axes.pcolorbuffer(x, y, SNRdB1,
1161 1166 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1162 1167 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1163 1168 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1164 1169
1165 1170 i=1
1166 1171 index = channelIndexList[i]
1167 1172 title = "Velocidad vertical Doppler [m/s]"
1168 1173 axes = self.axesList[i*self.plotFact]
1169 1174 z1 = z[i,:].reshape((1,-1))
1170 1175 axes.pcolorbuffer(x, y, z1,
1171 1176 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=-10, zmax=10,
1172 1177 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1173 1178 ticksize=9, cblabel='', cbsize="1%",colormap='seismic_r')
1174 1179
1175 1180 if showSNR:
1176 1181 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1177 1182 axes = self.axesList[i*self.plotFact + 1]
1178 1183 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1179 1184 axes.pcolorbuffer(x, y, SNRdB1,
1180 1185 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1181 1186 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1182 1187 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1183 1188
1184 1189 i=2
1185 1190 index = channelIndexList[i]
1186 1191 title = "Intensidad de lluvia [mm/h]"
1187 1192 axes = self.axesList[i*self.plotFact]
1188 1193 z1 = z[i,:].reshape((1,-1))
1189 1194 axes.pcolorbuffer(x, y, z1,
1190 1195 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=40,
1191 1196 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1192 1197 ticksize=9, cblabel='', cbsize="1%",colormap='ocean_r')
1193 1198
1194 1199 if showSNR:
1195 1200 title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1196 1201 axes = self.axesList[i*self.plotFact + 1]
1197 1202 SNRdB1 = SNRdB[i,:].reshape((1,-1))
1198 1203 axes.pcolorbuffer(x, y, SNRdB1,
1199 1204 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1200 1205 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1201 1206 ticksize=9, cblabel='', cbsize="1%",colormap='jet')
1202 1207
1203 1208
1204 1209 self.draw()
1205 1210
1206 1211 if dataOut.ltctime >= self.xmax:
1207 1212 self.counter_imagwr = wr_period
1208 1213 self.isConfig = False
1209 1214 update_figfile = True
1210 1215
1211 1216 self.save(figpath=figpath,
1212 1217 figfile=figfile,
1213 1218 save=save,
1214 1219 ftp=ftp,
1215 1220 wr_period=wr_period,
1216 1221 thisDatetime=thisDatetime,
1217 1222 update_figfile=update_figfile)
1218 1223
1219 1224 return dataOut
1220 1225 @MPDecorator
1221 1226 class Parameters1Plot_(Figure):
1222 1227
1223 1228 __isConfig = None
1224 1229 __nsubplots = None
1225 1230
1226 1231 WIDTHPROF = None
1227 1232 HEIGHTPROF = None
1228 1233 PREFIX = 'prm'
1229 1234
1230 1235 def __init__(self):
1231 1236 Figure.__init__(self)
1232 1237 self.timerange = 2*60*60
1233 1238 self.isConfig = False
1234 1239 self.__nsubplots = 1
1235 1240
1236 1241 self.WIDTH = 800
1237 1242 self.HEIGHT = 180
1238 1243 self.WIDTHPROF = 120
1239 1244 self.HEIGHTPROF = 0
1240 1245 self.counter_imagwr = 0
1241 1246
1242 1247 self.PLOT_CODE = PARMS_CODE
1243 1248
1244 1249 self.FTP_WEI = None
1245 1250 self.EXP_CODE = None
1246 1251 self.SUB_EXP_CODE = None
1247 1252 self.PLOT_POS = None
1248 1253 self.tmin = None
1249 1254 self.tmax = None
1250 1255
1251 1256 self.xmin = None
1252 1257 self.xmax = None
1253 1258
1254 1259 self.figfile = None
1255 1260
1256 1261 def getSubplots(self):
1257 1262
1258 1263 ncol = 1
1259 1264 nrow = self.nplots
1260 1265
1261 1266 return nrow, ncol
1262 1267
1263 1268 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1264 1269
1265 1270 self.__showprofile = showprofile
1266 1271 self.nplots = nplots
1267 1272
1268 1273 ncolspan = 1
1269 1274 colspan = 1
1270 1275
1271 1276 self.createFigure(id = id,
1272 1277 wintitle = wintitle,
1273 1278 widthplot = self.WIDTH + self.WIDTHPROF,
1274 1279 heightplot = self.HEIGHT + self.HEIGHTPROF,
1275 1280 show=show)
1276 1281
1277 1282 nrow, ncol = self.getSubplots()
1278 1283
1279 1284 counter = 0
1280 1285 for y in range(nrow):
1281 1286 for x in range(ncol):
1282 1287
1283 1288 if counter >= self.nplots:
1284 1289 break
1285 1290
1286 1291 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1287 1292
1288 1293 if showprofile:
1289 1294 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1290 1295
1291 1296 counter += 1
1292 1297
1293 1298 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False,
1294 1299 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None,
1295 1300 parameterIndex = None, onlyPositive = False,
1296 1301 SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False,
1297 1302 DOP = True,
1298 1303 zlabel = "", parameterName = "", parameterObject = "data_param",
1299 1304 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1300 1305 server=None, folder=None, username=None, password=None,
1301 1306 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1302 1307
1303 1308 """
1304 1309 Input:
1305 1310 dataOut :
1306 1311 id :
1307 1312 wintitle :
1308 1313 channelList :
1309 1314 showProfile :
1310 1315 xmin : None,
1311 1316 xmax : None,
1312 1317 ymin : None,
1313 1318 ymax : None,
1314 1319 zmin : None,
1315 1320 zmax : None
1316 1321 """
1317 1322 if dataOut.flagNoData:
1318 1323 return dataOut
1319 1324
1320 1325 data_param = getattr(dataOut, parameterObject)
1321 1326
1322 1327 if channelList == None:
1323 1328 channelIndexList = numpy.arange(data_param.shape[0])
1324 1329 else:
1325 1330 channelIndexList = numpy.array(channelList)
1326 1331
1327 1332 nchan = len(channelIndexList) #Number of channels being plotted
1328 1333
1329 1334 if nchan < 1:
1330 1335 return
1331 1336
1332 1337 nGraphsByChannel = 0
1333 1338
1334 1339 if SNR:
1335 1340 nGraphsByChannel += 1
1336 1341 if DOP:
1337 1342 nGraphsByChannel += 1
1338 1343
1339 1344 if nGraphsByChannel < 1:
1340 1345 return
1341 1346
1342 1347 nplots = nGraphsByChannel*nchan
1343 1348
1344 1349 if timerange is not None:
1345 1350 self.timerange = timerange
1346 1351
1347 1352 #tmin = None
1348 1353 #tmax = None
1349 1354 if parameterIndex == None:
1350 1355 parameterIndex = 1
1351 1356
1352 1357 x = dataOut.getTimeRange1(dataOut.paramInterval)
1353 1358 y = dataOut.heightList
1354 1359
1355 1360 if dataOut.data_param.ndim == 3:
1356 1361 z = dataOut.data_param[channelIndexList,parameterIndex,:]
1357 1362 else:
1358 1363 z = dataOut.data_param[channelIndexList,:]
1359 1364
1360 1365 if dataOut.data_SNR is not None:
1361 1366 if dataOut.data_SNR.ndim == 2:
1362 1367 SNRavg = numpy.average(dataOut.data_SNR, axis=0)
1363 1368 else:
1364 1369 SNRavg = dataOut.data_SNR
1365 1370 SNRdB = 10*numpy.log10(SNRavg)
1366 1371
1367 1372 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1368 1373 title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y"))
1369 1374 xlabel = ""
1370 1375 ylabel = "Range (Km)"
1371 1376
1372 1377 if onlyPositive:
1373 1378 colormap = "jet"
1374 1379 zmin = 0
1375 1380 else: colormap = "RdBu_r"
1376 1381
1377 1382 if not self.isConfig:
1378 1383
1379 1384 self.setup(id=id,
1380 1385 nplots=nplots,
1381 1386 wintitle=wintitle,
1382 1387 showprofile=showprofile,
1383 1388 show=show)
1384 1389
1385 1390 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1386 1391
1387 1392 if ymin == None: ymin = numpy.nanmin(y)
1388 1393 if ymax == None: ymax = numpy.nanmax(y)
1389 1394 if zmin == None: zmin = numpy.nanmin(z)
1390 1395 if zmax == None: zmax = numpy.nanmax(z)
1391 1396
1392 1397 if SNR:
1393 1398 if SNRmin == None: SNRmin = numpy.nanmin(SNRdB)
1394 1399 if SNRmax == None: SNRmax = numpy.nanmax(SNRdB)
1395 1400
1396 1401 self.FTP_WEI = ftp_wei
1397 1402 self.EXP_CODE = exp_code
1398 1403 self.SUB_EXP_CODE = sub_exp_code
1399 1404 self.PLOT_POS = plot_pos
1400 1405
1401 1406 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1402 1407 self.isConfig = True
1403 1408 self.figfile = figfile
1404 1409
1405 1410 self.setWinTitle(title)
1406 1411
1407 1412 if ((self.xmax - x[1]) < (x[1]-x[0])):
1408 1413 x[1] = self.xmax
1409 1414
1410 1415 for i in range(nchan):
1411 1416
1412 1417 if (SNR and not onlySNR): j = 2*i
1413 1418 else: j = i
1414 1419
1415 1420 j = nGraphsByChannel*i
1416 1421
1417 1422 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
1418 1423 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
1419 1424
1420 1425 if not onlySNR:
1421 1426 axes = self.axesList[j*self.__nsubplots]
1422 1427 z1 = z[i,:].reshape((1,-1))
1423 1428 axes.pcolorbuffer(x, y, z1,
1424 1429 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1425 1430 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap,
1426 1431 ticksize=9, cblabel=zlabel, cbsize="1%")
1427 1432
1428 1433 if DOP:
1429 1434 title = "%s Channel %d: %s" %(parameterName, channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1430 1435
1431 1436 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
1432 1437 title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith)
1433 1438 axes = self.axesList[j]
1434 1439 z1 = z[i,:].reshape((1,-1))
1435 1440 axes.pcolorbuffer(x, y, z1,
1436 1441 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax,
1437 1442 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap,
1438 1443 ticksize=9, cblabel=zlabel, cbsize="1%")
1439 1444
1440 1445 if SNR:
1441 1446 title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1442 1447 axes = self.axesList[(j)*self.__nsubplots]
1443 1448 if not onlySNR:
1444 1449 axes = self.axesList[(j + 1)*self.__nsubplots]
1445 1450
1446 1451 axes = self.axesList[(j + nGraphsByChannel-1)]
1447 1452 z1 = SNRdB.reshape((1,-1))
1448 1453 axes.pcolorbuffer(x, y, z1,
1449 1454 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1450 1455 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet",
1451 1456 ticksize=9, cblabel=zlabel, cbsize="1%")
1452 1457
1453 1458
1454 1459
1455 1460 self.draw()
1456 1461
1457 1462 if x[1] >= self.axesList[0].xmax:
1458 1463 self.counter_imagwr = wr_period
1459 1464 self.isConfig = False
1460 1465 self.figfile = None
1461 1466
1462 1467 self.save(figpath=figpath,
1463 1468 figfile=figfile,
1464 1469 save=save,
1465 1470 ftp=ftp,
1466 1471 wr_period=wr_period,
1467 1472 thisDatetime=thisDatetime,
1468 1473 update_figfile=False)
1469 1474 return dataOut
1470 1475
1471 1476 class SpectralFittingPlot_(Figure):
1472 1477
1473 1478 __isConfig = None
1474 1479 __nsubplots = None
1475 1480
1476 1481 WIDTHPROF = None
1477 1482 HEIGHTPROF = None
1478 1483 PREFIX = 'prm'
1479 1484
1480 1485
1481 1486 N = None
1482 1487 ippSeconds = None
1483 1488
1484 1489 def __init__(self, **kwargs):
1485 1490 Figure.__init__(self, **kwargs)
1486 1491 self.isConfig = False
1487 1492 self.__nsubplots = 1
1488 1493
1489 1494 self.PLOT_CODE = SPECFIT_CODE
1490 1495
1491 1496 self.WIDTH = 450
1492 1497 self.HEIGHT = 250
1493 1498 self.WIDTHPROF = 0
1494 1499 self.HEIGHTPROF = 0
1495 1500
1496 1501 def getSubplots(self):
1497 1502
1498 1503 ncol = int(numpy.sqrt(self.nplots)+0.9)
1499 1504 nrow = int(self.nplots*1./ncol + 0.9)
1500 1505
1501 1506 return nrow, ncol
1502 1507
1503 1508 def setup(self, id, nplots, wintitle, showprofile=False, show=True):
1504 1509
1505 1510 showprofile = False
1506 1511 self.__showprofile = showprofile
1507 1512 self.nplots = nplots
1508 1513
1509 1514 ncolspan = 5
1510 1515 colspan = 4
1511 1516 if showprofile:
1512 1517 ncolspan = 5
1513 1518 colspan = 4
1514 1519 self.__nsubplots = 2
1515 1520
1516 1521 self.createFigure(id = id,
1517 1522 wintitle = wintitle,
1518 1523 widthplot = self.WIDTH + self.WIDTHPROF,
1519 1524 heightplot = self.HEIGHT + self.HEIGHTPROF,
1520 1525 show=show)
1521 1526
1522 1527 nrow, ncol = self.getSubplots()
1523 1528
1524 1529 counter = 0
1525 1530 for y in range(nrow):
1526 1531 for x in range(ncol):
1527 1532
1528 1533 if counter >= self.nplots:
1529 1534 break
1530 1535
1531 1536 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
1532 1537
1533 1538 if showprofile:
1534 1539 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1)
1535 1540
1536 1541 counter += 1
1537 1542
1538 1543 def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True,
1539 1544 xmin=None, xmax=None, ymin=None, ymax=None,
1540 1545 save=False, figpath='./', figfile=None, show=True):
1541 1546
1542 1547 """
1543 1548
1544 1549 Input:
1545 1550 dataOut :
1546 1551 id :
1547 1552 wintitle :
1548 1553 channelList :
1549 1554 showProfile :
1550 1555 xmin : None,
1551 1556 xmax : None,
1552 1557 zmin : None,
1553 1558 zmax : None
1554 1559 """
1555 1560
1556 1561 if cutHeight==None:
1557 1562 h=270
1558 1563 heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin()
1559 1564 cutHeight = dataOut.heightList[heightindex]
1560 1565
1561 1566 factor = dataOut.normFactor
1562 1567 x = dataOut.abscissaList[:-1]
1563 1568 #y = dataOut.getHeiRange()
1564 1569
1565 1570 z = dataOut.data_pre[:,:,heightindex]/factor
1566 1571 z = numpy.where(numpy.isfinite(z), z, numpy.NAN)
1567 1572 avg = numpy.average(z, axis=1)
1568 1573 listChannels = z.shape[0]
1569 1574
1570 1575 #Reconstruct Function
1571 1576 if fit==True:
1572 1577 groupArray = dataOut.groupList
1573 1578 listChannels = groupArray.reshape((groupArray.size))
1574 1579 listChannels.sort()
1575 1580 spcFitLine = numpy.zeros(z.shape)
1576 1581 constants = dataOut.constants
1577 1582
1578 1583 nGroups = groupArray.shape[0]
1579 1584 nChannels = groupArray.shape[1]
1580 1585 nProfiles = z.shape[1]
1581 1586
1582 1587 for f in range(nGroups):
1583 1588 groupChann = groupArray[f,:]
1584 1589 p = dataOut.data_param[f,:,heightindex]
1585 1590 # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167])
1586 1591 fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles
1587 1592 fitLineAux = fitLineAux.reshape((nChannels,nProfiles))
1588 1593 spcFitLine[groupChann,:] = fitLineAux
1589 1594 # spcFitLine = spcFitLine/factor
1590 1595
1591 1596 z = z[listChannels,:]
1592 1597 spcFitLine = spcFitLine[listChannels,:]
1593 1598 spcFitLinedB = 10*numpy.log10(spcFitLine)
1594 1599
1595 1600 zdB = 10*numpy.log10(z)
1596 1601 #thisDatetime = dataOut.datatime
1597 1602 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0])
1598 1603 title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S"))
1599 1604 xlabel = "Velocity (m/s)"
1600 1605 ylabel = "Spectrum"
1601 1606
1602 1607 if not self.isConfig:
1603 1608
1604 1609 nplots = listChannels.size
1605 1610
1606 1611 self.setup(id=id,
1607 1612 nplots=nplots,
1608 1613 wintitle=wintitle,
1609 1614 showprofile=showprofile,
1610 1615 show=show)
1611 1616
1612 1617 if xmin == None: xmin = numpy.nanmin(x)
1613 1618 if xmax == None: xmax = numpy.nanmax(x)
1614 1619 if ymin == None: ymin = numpy.nanmin(zdB)
1615 1620 if ymax == None: ymax = numpy.nanmax(zdB)+2
1616 1621
1617 1622 self.isConfig = True
1618 1623
1619 1624 self.setWinTitle(title)
1620 1625 for i in range(self.nplots):
1621 1626 # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i])
1622 1627 title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i])
1623 1628 axes = self.axesList[i*self.__nsubplots]
1624 1629 if fit == False:
1625 1630 axes.pline(x, zdB[i,:],
1626 1631 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1627 1632 xlabel=xlabel, ylabel=ylabel, title=title
1628 1633 )
1629 1634 if fit == True:
1630 1635 fitline=spcFitLinedB[i,:]
1631 1636 y=numpy.vstack([zdB[i,:],fitline] )
1632 1637 legendlabels=['Data','Fitting']
1633 1638 axes.pmultilineyaxis(x, y,
1634 1639 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax,
1635 1640 xlabel=xlabel, ylabel=ylabel, title=title,
1636 1641 legendlabels=legendlabels, marker=None,
1637 1642 linestyle='solid', grid='both')
1638 1643
1639 1644 self.draw()
1640 1645
1641 1646 self.save(figpath=figpath,
1642 1647 figfile=figfile,
1643 1648 save=save,
1644 1649 ftp=ftp,
1645 1650 wr_period=wr_period,
1646 1651 thisDatetime=thisDatetime)
1647 1652
1648 1653
1649 1654 class EWDriftsPlot_(Figure):
1650 1655
1651 1656 __isConfig = None
1652 1657 __nsubplots = None
1653 1658
1654 1659 WIDTHPROF = None
1655 1660 HEIGHTPROF = None
1656 1661 PREFIX = 'drift'
1657 1662
1658 1663 def __init__(self, **kwargs):
1659 1664 Figure.__init__(self, **kwargs)
1660 1665 self.timerange = 2*60*60
1661 1666 self.isConfig = False
1662 1667 self.__nsubplots = 1
1663 1668
1664 1669 self.WIDTH = 800
1665 1670 self.HEIGHT = 150
1666 1671 self.WIDTHPROF = 120
1667 1672 self.HEIGHTPROF = 0
1668 1673 self.counter_imagwr = 0
1669 1674
1670 1675 self.PLOT_CODE = EWDRIFT_CODE
1671 1676
1672 1677 self.FTP_WEI = None
1673 1678 self.EXP_CODE = None
1674 1679 self.SUB_EXP_CODE = None
1675 1680 self.PLOT_POS = None
1676 1681 self.tmin = None
1677 1682 self.tmax = None
1678 1683
1679 1684 self.xmin = None
1680 1685 self.xmax = None
1681 1686
1682 1687 self.figfile = None
1683 1688
1684 1689 def getSubplots(self):
1685 1690
1686 1691 ncol = 1
1687 1692 nrow = self.nplots
1688 1693
1689 1694 return nrow, ncol
1690 1695
1691 1696 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1692 1697
1693 1698 self.__showprofile = showprofile
1694 1699 self.nplots = nplots
1695 1700
1696 1701 ncolspan = 1
1697 1702 colspan = 1
1698 1703
1699 1704 self.createFigure(id = id,
1700 1705 wintitle = wintitle,
1701 1706 widthplot = self.WIDTH + self.WIDTHPROF,
1702 1707 heightplot = self.HEIGHT + self.HEIGHTPROF,
1703 1708 show=show)
1704 1709
1705 1710 nrow, ncol = self.getSubplots()
1706 1711
1707 1712 counter = 0
1708 1713 for y in range(nrow):
1709 1714 if counter >= self.nplots:
1710 1715 break
1711 1716
1712 1717 self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1)
1713 1718 counter += 1
1714 1719
1715 1720 def run(self, dataOut, id, wintitle="", channelList=None,
1716 1721 xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,
1717 1722 zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None,
1718 1723 timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False,
1719 1724 save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True,
1720 1725 server=None, folder=None, username=None, password=None,
1721 1726 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1722 1727 """
1723 1728
1724 1729 Input:
1725 1730 dataOut :
1726 1731 id :
1727 1732 wintitle :
1728 1733 channelList :
1729 1734 showProfile :
1730 1735 xmin : None,
1731 1736 xmax : None,
1732 1737 ymin : None,
1733 1738 ymax : None,
1734 1739 zmin : None,
1735 1740 zmax : None
1736 1741 """
1737 1742
1738 1743 if timerange is not None:
1739 1744 self.timerange = timerange
1740 1745
1741 1746 tmin = None
1742 1747 tmax = None
1743 1748
1744 1749 x = dataOut.getTimeRange1(dataOut.outputInterval)
1745 1750 # y = dataOut.heightList
1746 1751 y = dataOut.heightList
1747 1752
1748 1753 z = dataOut.data_output
1749 1754 nplots = z.shape[0] #Number of wind dimensions estimated
1750 1755 nplotsw = nplots
1751 1756
1752 1757 #If there is a SNR function defined
1753 1758 if dataOut.data_SNR is not None:
1754 1759 nplots += 1
1755 1760 SNR = dataOut.data_SNR
1756 1761
1757 1762 if SNR_1:
1758 1763 SNR += 1
1759 1764
1760 1765 SNRavg = numpy.average(SNR, axis=0)
1761 1766
1762 1767 SNRdB = 10*numpy.log10(SNR)
1763 1768 SNRavgdB = 10*numpy.log10(SNRavg)
1764 1769
1765 1770 ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0]
1766 1771
1767 1772 for i in range(nplotsw):
1768 1773 z[i,ind] = numpy.nan
1769 1774
1770 1775
1771 1776 showprofile = False
1772 1777 # thisDatetime = dataOut.datatime
1773 1778 thisDatetime = datetime.datetime.utcfromtimestamp(x[1])
1774 1779 title = wintitle + " EW Drifts"
1775 1780 xlabel = ""
1776 1781 ylabel = "Height (Km)"
1777 1782
1778 1783 if not self.isConfig:
1779 1784
1780 1785 self.setup(id=id,
1781 1786 nplots=nplots,
1782 1787 wintitle=wintitle,
1783 1788 showprofile=showprofile,
1784 1789 show=show)
1785 1790
1786 1791 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1787 1792
1788 1793 if ymin == None: ymin = numpy.nanmin(y)
1789 1794 if ymax == None: ymax = numpy.nanmax(y)
1790 1795
1791 1796 if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:]))
1792 1797 if zminZonal == None: zminZonal = -zmaxZonal
1793 1798 if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:]))
1794 1799 if zminVertical == None: zminVertical = -zmaxVertical
1795 1800
1796 1801 if dataOut.data_SNR is not None:
1797 1802 if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB)
1798 1803 if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB)
1799 1804
1800 1805 self.FTP_WEI = ftp_wei
1801 1806 self.EXP_CODE = exp_code
1802 1807 self.SUB_EXP_CODE = sub_exp_code
1803 1808 self.PLOT_POS = plot_pos
1804 1809
1805 1810 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1806 1811 self.isConfig = True
1807 1812
1808 1813
1809 1814 self.setWinTitle(title)
1810 1815
1811 1816 if ((self.xmax - x[1]) < (x[1]-x[0])):
1812 1817 x[1] = self.xmax
1813 1818
1814 1819 strWind = ['Zonal','Vertical']
1815 1820 strCb = 'Velocity (m/s)'
1816 1821 zmaxVector = [zmaxZonal, zmaxVertical]
1817 1822 zminVector = [zminZonal, zminVertical]
1818 1823
1819 1824 for i in range(nplotsw):
1820 1825
1821 1826 title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1822 1827 axes = self.axesList[i*self.__nsubplots]
1823 1828
1824 1829 z1 = z[i,:].reshape((1,-1))
1825 1830
1826 1831 axes.pcolorbuffer(x, y, z1,
1827 1832 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i],
1828 1833 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1829 1834 ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r")
1830 1835
1831 1836 if dataOut.data_SNR is not None:
1832 1837 i += 1
1833 1838 if SNR_1:
1834 1839 title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1835 1840 else:
1836 1841 title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1837 1842 axes = self.axesList[i*self.__nsubplots]
1838 1843 SNRavgdB = SNRavgdB.reshape((1,-1))
1839 1844
1840 1845 axes.pcolorbuffer(x, y, SNRavgdB,
1841 1846 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax,
1842 1847 xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,
1843 1848 ticksize=9, cblabel='', cbsize="1%", colormap="jet")
1844 1849
1845 1850 self.draw()
1846 1851
1847 1852 if x[1] >= self.axesList[0].xmax:
1848 1853 self.counter_imagwr = wr_period
1849 1854 self.isConfig = False
1850 1855 self.figfile = None
1851 1856
1852 1857
1853 1858
1854 1859
1855 1860 class PhasePlot_(Figure):
1856 1861
1857 1862 __isConfig = None
1858 1863 __nsubplots = None
1859 1864
1860 1865 PREFIX = 'mphase'
1861 1866
1862 1867
1863 1868 def __init__(self, **kwargs):
1864 1869 Figure.__init__(self, **kwargs)
1865 1870 self.timerange = 24*60*60
1866 1871 self.isConfig = False
1867 1872 self.__nsubplots = 1
1868 1873 self.counter_imagwr = 0
1869 1874 self.WIDTH = 600
1870 1875 self.HEIGHT = 300
1871 1876 self.WIDTHPROF = 120
1872 1877 self.HEIGHTPROF = 0
1873 1878 self.xdata = None
1874 1879 self.ydata = None
1875 1880
1876 1881 self.PLOT_CODE = MPHASE_CODE
1877 1882
1878 1883 self.FTP_WEI = None
1879 1884 self.EXP_CODE = None
1880 1885 self.SUB_EXP_CODE = None
1881 1886 self.PLOT_POS = None
1882 1887
1883 1888
1884 1889 self.filename_phase = None
1885 1890
1886 1891 self.figfile = None
1887 1892
1888 1893 def getSubplots(self):
1889 1894
1890 1895 ncol = 1
1891 1896 nrow = 1
1892 1897
1893 1898 return nrow, ncol
1894 1899
1895 1900 def setup(self, id, nplots, wintitle, showprofile=True, show=True):
1896 1901
1897 1902 self.__showprofile = showprofile
1898 1903 self.nplots = nplots
1899 1904
1900 1905 ncolspan = 7
1901 1906 colspan = 6
1902 1907 self.__nsubplots = 2
1903 1908
1904 1909 self.createFigure(id = id,
1905 1910 wintitle = wintitle,
1906 1911 widthplot = self.WIDTH+self.WIDTHPROF,
1907 1912 heightplot = self.HEIGHT+self.HEIGHTPROF,
1908 1913 show=show)
1909 1914
1910 1915 nrow, ncol = self.getSubplots()
1911 1916
1912 1917 self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1)
1913 1918
1914 1919
1915 1920 def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True',
1916 1921 xmin=None, xmax=None, ymin=None, ymax=None,
1917 1922 timerange=None,
1918 1923 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
1919 1924 server=None, folder=None, username=None, password=None,
1920 1925 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0):
1921 1926
1922 1927
1923 1928 tmin = None
1924 1929 tmax = None
1925 1930 x = dataOut.getTimeRange1(dataOut.outputInterval)
1926 1931 y = dataOut.getHeiRange()
1927 1932
1928 1933
1929 1934 #thisDatetime = dataOut.datatime
1930 1935 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
1931 1936 title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y"))
1932 1937 xlabel = "Local Time"
1933 1938 ylabel = "Phase"
1934 1939
1935 1940
1936 1941 #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList)))
1937 1942 phase_beacon = dataOut.data_output
1938 1943 update_figfile = False
1939 1944
1940 1945 if not self.isConfig:
1941 1946
1942 1947 self.nplots = phase_beacon.size
1943 1948
1944 1949 self.setup(id=id,
1945 1950 nplots=self.nplots,
1946 1951 wintitle=wintitle,
1947 1952 showprofile=showprofile,
1948 1953 show=show)
1949 1954
1950 1955 if timerange is not None:
1951 1956 self.timerange = timerange
1952 1957
1953 1958 self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange)
1954 1959
1955 1960 if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0
1956 1961 if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0
1957 1962
1958 1963 self.FTP_WEI = ftp_wei
1959 1964 self.EXP_CODE = exp_code
1960 1965 self.SUB_EXP_CODE = sub_exp_code
1961 1966 self.PLOT_POS = plot_pos
1962 1967
1963 1968 self.name = thisDatetime.strftime("%Y%m%d_%H%M%S")
1964 1969 self.isConfig = True
1965 1970 self.figfile = figfile
1966 1971 self.xdata = numpy.array([])
1967 1972 self.ydata = numpy.array([])
1968 1973
1969 1974 #open file beacon phase
1970 1975 path = '%s%03d' %(self.PREFIX, self.id)
1971 1976 beacon_file = os.path.join(path,'%s.txt'%self.name)
1972 1977 self.filename_phase = os.path.join(figpath,beacon_file)
1973 1978 update_figfile = True
1974 1979
1975 1980
1976 1981 #store data beacon phase
1977 1982 #self.save_data(self.filename_phase, phase_beacon, thisDatetime)
1978 1983
1979 1984 self.setWinTitle(title)
1980 1985
1981 1986
1982 1987 title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S"))
1983 1988
1984 1989 legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)]
1985 1990
1986 1991 axes = self.axesList[0]
1987 1992
1988 1993 self.xdata = numpy.hstack((self.xdata, x[0:1]))
1989 1994
1990 1995 if len(self.ydata)==0:
1991 1996 self.ydata = phase_beacon.reshape(-1,1)
1992 1997 else:
1993 1998 self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1)))
1994 1999
1995 2000
1996 2001 axes.pmultilineyaxis(x=self.xdata, y=self.ydata,
1997 2002 xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax,
1998 2003 xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid",
1999 2004 XAxisAsTime=True, grid='both'
2000 2005 )
2001 2006
2002 2007 self.draw()
2003 2008
2004 2009 self.save(figpath=figpath,
2005 2010 figfile=figfile,
2006 2011 save=save,
2007 2012 ftp=ftp,
2008 2013 wr_period=wr_period,
2009 2014 thisDatetime=thisDatetime,
2010 2015 update_figfile=update_figfile)
2011 2016
2012 2017 if dataOut.ltctime + dataOut.outputInterval >= self.xmax:
2013 2018 self.counter_imagwr = wr_period
2014 2019 self.isConfig = False
2015 2020 update_figfile = True
2016 2021
2017 2022
2018 2023
2019 2024 class NSMeteorDetection1Plot_(Figure):
2020 2025
2021 2026 isConfig = None
2022 2027 __nsubplots = None
2023 2028
2024 2029 WIDTHPROF = None
2025 2030 HEIGHTPROF = None
2026 2031 PREFIX = 'nsm'
2027 2032
2028 2033 zminList = None
2029 2034 zmaxList = None
2030 2035 cmapList = None
2031 2036 titleList = None
2032 2037 nPairs = None
2033 2038 nChannels = None
2034 2039 nParam = None
2035 2040
2036 2041 def __init__(self, **kwargs):
2037 2042 Figure.__init__(self, **kwargs)
2038 2043 self.isConfig = False
2039 2044 self.__nsubplots = 1
2040 2045
2041 2046 self.WIDTH = 750
2042 2047 self.HEIGHT = 250
2043 2048 self.WIDTHPROF = 120
2044 2049 self.HEIGHTPROF = 0
2045 2050 self.counter_imagwr = 0
2046 2051
2047 2052 self.PLOT_CODE = SPEC_CODE
2048 2053
2049 2054 self.FTP_WEI = None
2050 2055 self.EXP_CODE = None
2051 2056 self.SUB_EXP_CODE = None
2052 2057 self.PLOT_POS = None
2053 2058
2054 2059 self.__xfilter_ena = False
2055 2060 self.__yfilter_ena = False
2056 2061
2057 2062 def getSubplots(self):
2058 2063
2059 2064 ncol = 3
2060 2065 nrow = int(numpy.ceil(self.nplots/3.0))
2061 2066
2062 2067 return nrow, ncol
2063 2068
2064 2069 def setup(self, id, nplots, wintitle, show=True):
2065 2070
2066 2071 self.nplots = nplots
2067 2072
2068 2073 ncolspan = 1
2069 2074 colspan = 1
2070 2075
2071 2076 self.createFigure(id = id,
2072 2077 wintitle = wintitle,
2073 2078 widthplot = self.WIDTH + self.WIDTHPROF,
2074 2079 heightplot = self.HEIGHT + self.HEIGHTPROF,
2075 2080 show=show)
2076 2081
2077 2082 nrow, ncol = self.getSubplots()
2078 2083
2079 2084 counter = 0
2080 2085 for y in range(nrow):
2081 2086 for x in range(ncol):
2082 2087
2083 2088 if counter >= self.nplots:
2084 2089 break
2085 2090
2086 2091 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
2087 2092
2088 2093 counter += 1
2089 2094
2090 2095 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
2091 2096 xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None,
2092 2097 vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA',
2093 2098 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
2094 2099 server=None, folder=None, username=None, password=None,
2095 2100 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
2096 2101 xaxis="frequency"):
2097 2102
2098 2103 """
2099 2104
2100 2105 Input:
2101 2106 dataOut :
2102 2107 id :
2103 2108 wintitle :
2104 2109 channelList :
2105 2110 showProfile :
2106 2111 xmin : None,
2107 2112 xmax : None,
2108 2113 ymin : None,
2109 2114 ymax : None,
2110 2115 zmin : None,
2111 2116 zmax : None
2112 2117 """
2113 2118 #SEPARAR EN DOS PLOTS
2114 2119 nParam = dataOut.data_param.shape[1] - 3
2115 2120
2116 2121 utctime = dataOut.data_param[0,0]
2117 2122 tmet = dataOut.data_param[:,1].astype(int)
2118 2123 hmet = dataOut.data_param[:,2].astype(int)
2119 2124
2120 2125 x = dataOut.abscissaList
2121 2126 y = dataOut.heightList
2122 2127
2123 2128 z = numpy.zeros((nParam, y.size, x.size - 1))
2124 2129 z[:,:] = numpy.nan
2125 2130 z[:,hmet,tmet] = dataOut.data_param[:,3:].T
2126 2131 z[0,:,:] = 10*numpy.log10(z[0,:,:])
2127 2132
2128 2133 xlabel = "Time (s)"
2129 2134 ylabel = "Range (km)"
2130 2135
2131 2136 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
2132 2137
2133 2138 if not self.isConfig:
2134 2139
2135 2140 nplots = nParam
2136 2141
2137 2142 self.setup(id=id,
2138 2143 nplots=nplots,
2139 2144 wintitle=wintitle,
2140 2145 show=show)
2141 2146
2142 2147 if xmin is None: xmin = numpy.nanmin(x)
2143 2148 if xmax is None: xmax = numpy.nanmax(x)
2144 2149 if ymin is None: ymin = numpy.nanmin(y)
2145 2150 if ymax is None: ymax = numpy.nanmax(y)
2146 2151 if SNRmin is None: SNRmin = numpy.nanmin(z[0,:])
2147 2152 if SNRmax is None: SNRmax = numpy.nanmax(z[0,:])
2148 2153 if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:]))
2149 2154 if vmin is None: vmin = -vmax
2150 2155 if wmin is None: wmin = 0
2151 2156 if wmax is None: wmax = 50
2152 2157
2153 2158 pairsList = dataOut.groupList
2154 2159 self.nPairs = len(dataOut.groupList)
2155 2160
2156 2161 zminList = [SNRmin, vmin, cmin] + [pmin]*self.nPairs
2157 2162 zmaxList = [SNRmax, vmax, cmax] + [pmax]*self.nPairs
2158 2163 titleList = ["SNR","Radial Velocity","Coherence"]
2159 2164 cmapList = ["jet","RdBu_r","jet"]
2160 2165
2161 2166 for i in range(self.nPairs):
2162 2167 strAux1 = "Phase Difference "+ str(pairsList[i][0]) + str(pairsList[i][1])
2163 2168 titleList = titleList + [strAux1]
2164 2169 cmapList = cmapList + ["RdBu_r"]
2165 2170
2166 2171 self.zminList = zminList
2167 2172 self.zmaxList = zmaxList
2168 2173 self.cmapList = cmapList
2169 2174 self.titleList = titleList
2170 2175
2171 2176 self.FTP_WEI = ftp_wei
2172 2177 self.EXP_CODE = exp_code
2173 2178 self.SUB_EXP_CODE = sub_exp_code
2174 2179 self.PLOT_POS = plot_pos
2175 2180
2176 2181 self.isConfig = True
2177 2182
2178 2183 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
2179 2184
2180 2185 for i in range(nParam):
2181 2186 title = self.titleList[i] + ": " +str_datetime
2182 2187 axes = self.axesList[i]
2183 2188 axes.pcolor(x, y, z[i,:].T,
2184 2189 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i],
2185 2190 xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='')
2186 2191 self.draw()
2187 2192
2188 2193 if figfile == None:
2189 2194 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
2190 2195 name = str_datetime
2191 2196 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
2192 2197 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
2193 2198 figfile = self.getFilename(name)
2194 2199
2195 2200 self.save(figpath=figpath,
2196 2201 figfile=figfile,
2197 2202 save=save,
2198 2203 ftp=ftp,
2199 2204 wr_period=wr_period,
2200 2205 thisDatetime=thisDatetime)
2201 2206
2202 2207
2203 2208 class NSMeteorDetection2Plot_(Figure):
2204 2209
2205 2210 isConfig = None
2206 2211 __nsubplots = None
2207 2212
2208 2213 WIDTHPROF = None
2209 2214 HEIGHTPROF = None
2210 2215 PREFIX = 'nsm'
2211 2216
2212 2217 zminList = None
2213 2218 zmaxList = None
2214 2219 cmapList = None
2215 2220 titleList = None
2216 2221 nPairs = None
2217 2222 nChannels = None
2218 2223 nParam = None
2219 2224
2220 2225 def __init__(self, **kwargs):
2221 2226 Figure.__init__(self, **kwargs)
2222 2227 self.isConfig = False
2223 2228 self.__nsubplots = 1
2224 2229
2225 2230 self.WIDTH = 750
2226 2231 self.HEIGHT = 250
2227 2232 self.WIDTHPROF = 120
2228 2233 self.HEIGHTPROF = 0
2229 2234 self.counter_imagwr = 0
2230 2235
2231 2236 self.PLOT_CODE = SPEC_CODE
2232 2237
2233 2238 self.FTP_WEI = None
2234 2239 self.EXP_CODE = None
2235 2240 self.SUB_EXP_CODE = None
2236 2241 self.PLOT_POS = None
2237 2242
2238 2243 self.__xfilter_ena = False
2239 2244 self.__yfilter_ena = False
2240 2245
2241 2246 def getSubplots(self):
2242 2247
2243 2248 ncol = 3
2244 2249 nrow = int(numpy.ceil(self.nplots/3.0))
2245 2250
2246 2251 return nrow, ncol
2247 2252
2248 2253 def setup(self, id, nplots, wintitle, show=True):
2249 2254
2250 2255 self.nplots = nplots
2251 2256
2252 2257 ncolspan = 1
2253 2258 colspan = 1
2254 2259
2255 2260 self.createFigure(id = id,
2256 2261 wintitle = wintitle,
2257 2262 widthplot = self.WIDTH + self.WIDTHPROF,
2258 2263 heightplot = self.HEIGHT + self.HEIGHTPROF,
2259 2264 show=show)
2260 2265
2261 2266 nrow, ncol = self.getSubplots()
2262 2267
2263 2268 counter = 0
2264 2269 for y in range(nrow):
2265 2270 for x in range(ncol):
2266 2271
2267 2272 if counter >= self.nplots:
2268 2273 break
2269 2274
2270 2275 self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1)
2271 2276
2272 2277 counter += 1
2273 2278
2274 2279 def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True,
2275 2280 xmin=None, xmax=None, ymin=None, ymax=None, SNRmin=None, SNRmax=None,
2276 2281 vmin=None, vmax=None, wmin=None, wmax=None, mode = 'SA',
2277 2282 save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1,
2278 2283 server=None, folder=None, username=None, password=None,
2279 2284 ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False,
2280 2285 xaxis="frequency"):
2281 2286
2282 2287 """
2283 2288
2284 2289 Input:
2285 2290 dataOut :
2286 2291 id :
2287 2292 wintitle :
2288 2293 channelList :
2289 2294 showProfile :
2290 2295 xmin : None,
2291 2296 xmax : None,
2292 2297 ymin : None,
2293 2298 ymax : None,
2294 2299 zmin : None,
2295 2300 zmax : None
2296 2301 """
2297 2302 #Rebuild matrix
2298 2303 utctime = dataOut.data_param[0,0]
2299 2304 cmet = dataOut.data_param[:,1].astype(int)
2300 2305 tmet = dataOut.data_param[:,2].astype(int)
2301 2306 hmet = dataOut.data_param[:,3].astype(int)
2302 2307
2303 2308 nParam = 3
2304 2309 nChan = len(dataOut.groupList)
2305 2310 x = dataOut.abscissaList
2306 2311 y = dataOut.heightList
2307 2312
2308 2313 z = numpy.full((nChan, nParam, y.size, x.size - 1),numpy.nan)
2309 2314 z[cmet,:,hmet,tmet] = dataOut.data_param[:,4:]
2310 2315 z[:,0,:,:] = 10*numpy.log10(z[:,0,:,:]) #logarithmic scale
2311 2316 z = numpy.reshape(z, (nChan*nParam, y.size, x.size-1))
2312 2317
2313 2318 xlabel = "Time (s)"
2314 2319 ylabel = "Range (km)"
2315 2320
2316 2321 thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.ltctime)
2317 2322
2318 2323 if not self.isConfig:
2319 2324
2320 2325 nplots = nParam*nChan
2321 2326
2322 2327 self.setup(id=id,
2323 2328 nplots=nplots,
2324 2329 wintitle=wintitle,
2325 2330 show=show)
2326 2331
2327 2332 if xmin is None: xmin = numpy.nanmin(x)
2328 2333 if xmax is None: xmax = numpy.nanmax(x)
2329 2334 if ymin is None: ymin = numpy.nanmin(y)
2330 2335 if ymax is None: ymax = numpy.nanmax(y)
2331 2336 if SNRmin is None: SNRmin = numpy.nanmin(z[0,:])
2332 2337 if SNRmax is None: SNRmax = numpy.nanmax(z[0,:])
2333 2338 if vmax is None: vmax = numpy.nanmax(numpy.abs(z[1,:]))
2334 2339 if vmin is None: vmin = -vmax
2335 2340 if wmin is None: wmin = 0
2336 2341 if wmax is None: wmax = 50
2337 2342
2338 2343 self.nChannels = nChan
2339 2344
2340 2345 zminList = []
2341 2346 zmaxList = []
2342 2347 titleList = []
2343 2348 cmapList = []
2344 2349 for i in range(self.nChannels):
2345 2350 strAux1 = "SNR Channel "+ str(i)
2346 2351 strAux2 = "Radial Velocity Channel "+ str(i)
2347 2352 strAux3 = "Spectral Width Channel "+ str(i)
2348 2353
2349 2354 titleList = titleList + [strAux1,strAux2,strAux3]
2350 2355 cmapList = cmapList + ["jet","RdBu_r","jet"]
2351 2356 zminList = zminList + [SNRmin,vmin,wmin]
2352 2357 zmaxList = zmaxList + [SNRmax,vmax,wmax]
2353 2358
2354 2359 self.zminList = zminList
2355 2360 self.zmaxList = zmaxList
2356 2361 self.cmapList = cmapList
2357 2362 self.titleList = titleList
2358 2363
2359 2364 self.FTP_WEI = ftp_wei
2360 2365 self.EXP_CODE = exp_code
2361 2366 self.SUB_EXP_CODE = sub_exp_code
2362 2367 self.PLOT_POS = plot_pos
2363 2368
2364 2369 self.isConfig = True
2365 2370
2366 2371 str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S"))
2367 2372
2368 2373 for i in range(self.nplots):
2369 2374 title = self.titleList[i] + ": " +str_datetime
2370 2375 axes = self.axesList[i]
2371 2376 axes.pcolor(x, y, z[i,:].T,
2372 2377 xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=self.zminList[i], zmax=self.zmaxList[i],
2373 2378 xlabel=xlabel, ylabel=ylabel, title=title, colormap=self.cmapList[i],ticksize=9, cblabel='')
2374 2379 self.draw()
2375 2380
2376 2381 if figfile == None:
2377 2382 str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S")
2378 2383 name = str_datetime
2379 2384 if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)):
2380 2385 name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith)
2381 2386 figfile = self.getFilename(name)
2382 2387
2383 2388 self.save(figpath=figpath,
2384 2389 figfile=figfile,
2385 2390 save=save,
2386 2391 ftp=ftp,
2387 2392 wr_period=wr_period,
2388 2393 thisDatetime=thisDatetime)
2389 2394 No newline at end of file
@@ -1,500 +1,500
1 1 import os
2 2 import sys
3 3 import datetime
4 4 import numpy
5 5 import matplotlib
6 6
7 7 if 'BACKEND' in os.environ:
8 8 matplotlib.use(os.environ['BACKEND'])
9 9 elif 'linux' in sys.platform:
10 10 matplotlib.use("TkAgg")
11 11 elif 'darwin' in sys.platform:
12 12 matplotlib.use('TkAgg')
13 13 else:
14 14 from schainpy.utils import log
15 15 log.warning('Using default Backend="Agg"', 'INFO')
16 16 matplotlib.use('Agg')
17 17 # Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX'
18 18 import matplotlib.pyplot
19 19
20 20 from mpl_toolkits.axes_grid1 import make_axes_locatable
21 21 from matplotlib.ticker import FuncFormatter, LinearLocator
22 22
23 23 ###########################################
24 24 # Actualizacion de las funciones del driver
25 25 ###########################################
26 26
27 27 # create jro colormap
28 28
29 29 jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90]
30 30 blu_values = matplotlib.pyplot.get_cmap(
31 31 "seismic_r", 20)(numpy.arange(20))[10:15]
32 32 ncmap = matplotlib.colors.LinearSegmentedColormap.from_list(
33 33 "jro", numpy.vstack((blu_values, jet_values)))
34 34 matplotlib.pyplot.register_cmap(cmap=ncmap)
35 35
36 36
37 37 def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi=80):
38 38
39 39 matplotlib.pyplot.ioff()
40 40
41 41 fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=(
42 42 1.0 * width / dpi, 1.0 * height / dpi))
43 43 fig.canvas.manager.set_window_title(wintitle)
44 44 # fig.canvas.manager.resize(width, height)
45 45 matplotlib.pyplot.ion()
46 46
47 47 if show:
48 48 matplotlib.pyplot.show()
49 49
50 50 return fig
51 51
52 52
53 53 def closeFigure(show=False, fig=None):
54 54
55 55 # matplotlib.pyplot.ioff()
56 56 # matplotlib.pyplot.pause(0)
57 57
58 58 if show:
59 59 matplotlib.pyplot.show()
60 60
61 61 if fig != None:
62 62 matplotlib.pyplot.close(fig)
63 63 # matplotlib.pyplot.pause(0)
64 64 # matplotlib.pyplot.ion()
65 65
66 66 return
67 67
68 68 matplotlib.pyplot.close("all")
69 69 # matplotlib.pyplot.pause(0)
70 70 # matplotlib.pyplot.ion()
71 71
72 72 return
73 73
74 74
75 75 def saveFigure(fig, filename):
76 76
77 77 # matplotlib.pyplot.ioff()
78 78 fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi)
79 79 # matplotlib.pyplot.ion()
80 80
81 81
82 82 def clearFigure(fig):
83 83
84 84 fig.clf()
85 85
86 86
87 87 def setWinTitle(fig, title):
88 88
89 89 fig.canvas.manager.set_window_title(title)
90 90
91 91
92 92 def setTitle(fig, title):
93 93
94 94 fig.suptitle(title)
95 95
96 96
97 97 def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False):
98 98
99 99 matplotlib.pyplot.ioff()
100 100 matplotlib.pyplot.figure(fig.number)
101 101 axes = matplotlib.pyplot.subplot2grid((nrow, ncol),
102 102 (xpos, ypos),
103 103 colspan=colspan,
104 104 rowspan=rowspan,
105 105 polar=polar)
106 106
107 107 matplotlib.pyplot.ion()
108 108 return axes
109 109
110 110
111 111 def setAxesText(ax, text):
112 112
113 113 ax.annotate(text,
114 114 xy=(.1, .99),
115 115 xycoords='figure fraction',
116 116 horizontalalignment='left',
117 117 verticalalignment='top',
118 118 fontsize=10)
119 119
120 120
121 121 def printLabels(ax, xlabel, ylabel, title):
122 122
123 123 ax.set_xlabel(xlabel, size=11)
124 124 ax.set_ylabel(ylabel, size=11)
125 125 ax.set_title(title, size=8)
126 126
127 127
128 128 def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='',
129 129 ticksize=9, xtick_visible=True, ytick_visible=True,
130 130 nxticks=4, nyticks=10,
131 131 grid=None, color='blue'):
132 132 """
133 133
134 134 Input:
135 135 grid : None, 'both', 'x', 'y'
136 136 """
137 137
138 138 matplotlib.pyplot.ioff()
139 139
140 140 ax.set_xlim([xmin, xmax])
141 141 ax.set_ylim([ymin, ymax])
142 142
143 143 printLabels(ax, xlabel, ylabel, title)
144 144
145 145 ######################################################
146 146 if (xmax - xmin) <= 1:
147 147 xtickspos = numpy.linspace(xmin, xmax, nxticks)
148 148 xtickspos = numpy.array([float("%.1f" % i) for i in xtickspos])
149 149 ax.set_xticks(xtickspos)
150 150 else:
151 151 xtickspos = numpy.arange(nxticks) * \
152 152 int((xmax - xmin) / (nxticks)) + int(xmin)
153 153 # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin)
154 154 ax.set_xticks(xtickspos)
155 155
156 156 for tick in ax.get_xticklabels():
157 157 tick.set_visible(xtick_visible)
158 158
159 159 for tick in ax.xaxis.get_major_ticks():
160 160 tick.label.set_fontsize(ticksize)
161 161
162 162 ######################################################
163 163 for tick in ax.get_yticklabels():
164 164 tick.set_visible(ytick_visible)
165 165
166 166 for tick in ax.yaxis.get_major_ticks():
167 167 tick.label.set_fontsize(ticksize)
168 168
169 169 ax.plot(x, y, color=color)
170 170 iplot = ax.lines[-1]
171 171
172 172 ######################################################
173 173 if '0.' in matplotlib.__version__[0:2]:
174 174 print("The matplotlib version has to be updated to 1.1 or newer")
175 175 return iplot
176 176
177 177 if '1.0.' in matplotlib.__version__[0:4]:
178 178 print("The matplotlib version has to be updated to 1.1 or newer")
179 179 return iplot
180 180
181 181 if grid != None:
182 182 ax.grid(b=True, which='major', axis=grid)
183 183
184 184 matplotlib.pyplot.tight_layout()
185 185
186 186 matplotlib.pyplot.ion()
187 187
188 188 return iplot
189 189
190 190
191 191 def set_linedata(ax, x, y, idline):
192 192
193 193 ax.lines[idline].set_data(x, y)
194 194
195 195
196 196 def pline(iplot, x, y, xlabel='', ylabel='', title=''):
197 197
198 198 ax = iplot.axes
199 199
200 200 printLabels(ax, xlabel, ylabel, title)
201 201
202 202 set_linedata(ax, x, y, idline=0)
203 203
204 204
205 205 def addpline(ax, x, y, color, linestyle, lw):
206 206
207 207 ax.plot(x, y, color=color, linestyle=linestyle, lw=lw)
208 208
209 209
210 210 def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax,
211 211 xlabel='', ylabel='', title='', ticksize=9,
212 212 colormap='jet', cblabel='', cbsize="5%",
213 213 XAxisAsTime=False):
214 214
215 215 matplotlib.pyplot.ioff()
216 216
217 217 divider = make_axes_locatable(ax)
218 218 ax_cb = divider.new_horizontal(size=cbsize, pad=0.05)
219 219 fig = ax.get_figure()
220 220 fig.add_axes(ax_cb)
221 221
222 222 ax.set_xlim([xmin, xmax])
223 223 ax.set_ylim([ymin, ymax])
224 224
225 225 printLabels(ax, xlabel, ylabel, title)
226 226
227 227 z = numpy.ma.masked_invalid(z)
228 228 cmap = matplotlib.pyplot.get_cmap(colormap)
229 cmap.set_bad('black', 1.)
229 cmap.set_bad('white', 1.)
230 230 imesh = ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap)
231 231 cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb)
232 232 cb.set_label(cblabel)
233 233
234 234 # for tl in ax_cb.get_yticklabels():
235 235 # tl.set_visible(True)
236 236
237 237 for tick in ax.yaxis.get_major_ticks():
238 238 tick.label.set_fontsize(ticksize)
239 239
240 240 for tick in ax.xaxis.get_major_ticks():
241 241 tick.label.set_fontsize(ticksize)
242 242
243 243 for tick in cb.ax.get_yticklabels():
244 244 tick.set_fontsize(ticksize)
245 245
246 246 ax_cb.yaxis.tick_right()
247 247
248 248 if '0.' in matplotlib.__version__[0:2]:
249 249 print("The matplotlib version has to be updated to 1.1 or newer")
250 250 return imesh
251 251
252 252 if '1.0.' in matplotlib.__version__[0:4]:
253 253 print("The matplotlib version has to be updated to 1.1 or newer")
254 254 return imesh
255 255
256 256 matplotlib.pyplot.tight_layout()
257 257
258 258 if XAxisAsTime:
259 259
260 260 def func(x, pos): return ('%s') % (
261 261 datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
262 262 ax.xaxis.set_major_formatter(FuncFormatter(func))
263 263 ax.xaxis.set_major_locator(LinearLocator(7))
264 264
265 265 matplotlib.pyplot.ion()
266 266 return imesh
267 267
268 268
269 269 def pcolor(imesh, z, xlabel='', ylabel='', title=''):
270 270
271 271 z = z.T
272 272 ax = imesh.axes
273 273 printLabels(ax, xlabel, ylabel, title)
274 274 imesh.set_array(z.ravel())
275 275
276 276
277 277 def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
278 278
279 279 printLabels(ax, xlabel, ylabel, title)
280 280
281 281 ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax,
282 282 cmap=matplotlib.pyplot.get_cmap(colormap))
283 283
284 284
285 285 def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'):
286 286
287 287 printLabels(ax, xlabel, ylabel, title)
288 288
289 289 ax.collections.remove(ax.collections[0])
290 290
291 291 z = numpy.ma.masked_invalid(z)
292 292
293 293 cmap = matplotlib.pyplot.get_cmap(colormap)
294 cmap.set_bad('black', 1.)
294 cmap.set_bad('white', 1.)
295 295
296 296 ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap)
297 297
298 298
299 299 def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
300 300 ticksize=9, xtick_visible=True, ytick_visible=True,
301 301 nxticks=4, nyticks=10,
302 302 grid=None):
303 303 """
304 304
305 305 Input:
306 306 grid : None, 'both', 'x', 'y'
307 307 """
308 308
309 309 matplotlib.pyplot.ioff()
310 310
311 311 lines = ax.plot(x.T, y)
312 312 leg = ax.legend(lines, legendlabels, loc='upper right')
313 313 leg.get_frame().set_alpha(0.5)
314 314 ax.set_xlim([xmin, xmax])
315 315 ax.set_ylim([ymin, ymax])
316 316 printLabels(ax, xlabel, ylabel, title)
317 317
318 318 xtickspos = numpy.arange(nxticks) * \
319 319 int((xmax - xmin) / (nxticks)) + int(xmin)
320 320 ax.set_xticks(xtickspos)
321 321
322 322 for tick in ax.get_xticklabels():
323 323 tick.set_visible(xtick_visible)
324 324
325 325 for tick in ax.xaxis.get_major_ticks():
326 326 tick.label.set_fontsize(ticksize)
327 327
328 328 for tick in ax.get_yticklabels():
329 329 tick.set_visible(ytick_visible)
330 330
331 331 for tick in ax.yaxis.get_major_ticks():
332 332 tick.label.set_fontsize(ticksize)
333 333
334 334 iplot = ax.lines[-1]
335 335
336 336 if '0.' in matplotlib.__version__[0:2]:
337 337 print("The matplotlib version has to be updated to 1.1 or newer")
338 338 return iplot
339 339
340 340 if '1.0.' in matplotlib.__version__[0:4]:
341 341 print("The matplotlib version has to be updated to 1.1 or newer")
342 342 return iplot
343 343
344 344 if grid != None:
345 345 ax.grid(b=True, which='major', axis=grid)
346 346
347 347 matplotlib.pyplot.tight_layout()
348 348
349 349 matplotlib.pyplot.ion()
350 350
351 351 return iplot
352 352
353 353
354 354 def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''):
355 355
356 356 ax = iplot.axes
357 357
358 358 printLabels(ax, xlabel, ylabel, title)
359 359
360 360 for i in range(len(ax.lines)):
361 361 line = ax.lines[i]
362 362 line.set_data(x[i, :], y)
363 363
364 364
365 365 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None,
366 366 ticksize=9, xtick_visible=True, ytick_visible=True,
367 367 nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None",
368 368 grid=None, XAxisAsTime=False):
369 369 """
370 370
371 371 Input:
372 372 grid : None, 'both', 'x', 'y'
373 373 """
374 374
375 375 matplotlib.pyplot.ioff()
376 376
377 377 # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle)
378 378 lines = ax.plot(x, y.T)
379 379 # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \
380 380 # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.)
381 381
382 382 leg = ax.legend(lines, legendlabels,
383 383 loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0)
384 384
385 385 for label in leg.get_texts():
386 386 label.set_fontsize(9)
387 387
388 388 ax.set_xlim([xmin, xmax])
389 389 ax.set_ylim([ymin, ymax])
390 390 printLabels(ax, xlabel, ylabel, title)
391 391
392 392 # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin)
393 393 # ax.set_xticks(xtickspos)
394 394
395 395 for tick in ax.get_xticklabels():
396 396 tick.set_visible(xtick_visible)
397 397
398 398 for tick in ax.xaxis.get_major_ticks():
399 399 tick.label.set_fontsize(ticksize)
400 400
401 401 for tick in ax.get_yticklabels():
402 402 tick.set_visible(ytick_visible)
403 403
404 404 for tick in ax.yaxis.get_major_ticks():
405 405 tick.label.set_fontsize(ticksize)
406 406
407 407 iplot = ax.lines[-1]
408 408
409 409 if '0.' in matplotlib.__version__[0:2]:
410 410 print("The matplotlib version has to be updated to 1.1 or newer")
411 411 return iplot
412 412
413 413 if '1.0.' in matplotlib.__version__[0:4]:
414 414 print("The matplotlib version has to be updated to 1.1 or newer")
415 415 return iplot
416 416
417 417 if grid != None:
418 418 ax.grid(b=True, which='major', axis=grid)
419 419
420 420 matplotlib.pyplot.tight_layout()
421 421
422 422 if XAxisAsTime:
423 423
424 424 def func(x, pos): return ('%s') % (
425 425 datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S"))
426 426 ax.xaxis.set_major_formatter(FuncFormatter(func))
427 427 ax.xaxis.set_major_locator(LinearLocator(7))
428 428
429 429 matplotlib.pyplot.ion()
430 430
431 431 return iplot
432 432
433 433
434 434 def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''):
435 435
436 436 ax = iplot.axes
437 437 printLabels(ax, xlabel, ylabel, title)
438 438
439 439 for i in range(len(ax.lines)):
440 440 line = ax.lines[i]
441 441 line.set_data(x, y[i, :])
442 442
443 443
444 444 def createPolar(ax, x, y,
445 445 xlabel='', ylabel='', title='', ticksize=9,
446 446 colormap='jet', cblabel='', cbsize="5%",
447 447 XAxisAsTime=False):
448 448
449 449 matplotlib.pyplot.ioff()
450 450
451 451 ax.plot(x, y, 'bo', markersize=5)
452 452 # ax.set_rmax(90)
453 453 ax.set_ylim(0, 90)
454 454 ax.set_yticks(numpy.arange(0, 90, 20))
455 455 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11')
456 456 # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11')
457 457 # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical')
458 458 ax.yaxis.labelpad = 40
459 459 printLabels(ax, xlabel, ylabel, title)
460 460 iplot = ax.lines[-1]
461 461
462 462 if '0.' in matplotlib.__version__[0:2]:
463 463 print("The matplotlib version has to be updated to 1.1 or newer")
464 464 return iplot
465 465
466 466 if '1.0.' in matplotlib.__version__[0:4]:
467 467 print("The matplotlib version has to be updated to 1.1 or newer")
468 468 return iplot
469 469
470 470 # if grid != None:
471 471 # ax.grid(b=True, which='major', axis=grid)
472 472
473 473 matplotlib.pyplot.tight_layout()
474 474
475 475 matplotlib.pyplot.ion()
476 476
477 477 return iplot
478 478
479 479
480 480 def polar(iplot, x, y, xlabel='', ylabel='', title=''):
481 481
482 482 ax = iplot.axes
483 483
484 484 # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11')
485 485 printLabels(ax, xlabel, ylabel, title)
486 486
487 487 set_linedata(ax, x, y, idline=0)
488 488
489 489
490 490 def draw(fig):
491 491
492 492 if type(fig) == 'int':
493 493 raise ValueError("Error drawing: Fig parameter should be a matplotlib figure object figure")
494 494
495 495 fig.canvas.draw()
496 496
497 497
498 498 def pause(interval=0.000001):
499 499
500 500 matplotlib.pyplot.pause(interval) No newline at end of file
@@ -1,642 +1,642
1 1 '''
2 2 Created on Aug 1, 2017
3 3
4 4 @author: Juan C. Espinoza
5 5 '''
6 6
7 7 import os
8 8 import sys
9 9 import time
10 10 import json
11 11 import glob
12 12 import datetime
13 13
14 14 import numpy
15 15 import h5py
16 16
17 17 from schainpy.model.io.jroIO_base import JRODataReader
18 18 from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator
19 19 from schainpy.model.data.jrodata import Parameters
20 20 from schainpy.utils import log
21 21
22 22 try:
23 23 import madrigal.cedar
24 24 except:
25 25 log.warning(
26 26 'You should install "madrigal library" module if you want to read/write Madrigal data'
27 27 )
28 28
29 29 DEF_CATALOG = {
30 30 'principleInvestigator': 'Marco Milla',
31 31 'expPurpose': None,
32 32 'cycleTime': None,
33 33 'correlativeExp': None,
34 34 'sciRemarks': None,
35 35 'instRemarks': None
36 36 }
37 37 DEF_HEADER = {
38 38 'kindatDesc': None,
39 39 'analyst': 'Jicamarca User',
40 40 'comments': None,
41 41 'history': None
42 42 }
43 43 MNEMONICS = {
44 44 10: 'jro',
45 45 11: 'jbr',
46 46 840: 'jul',
47 47 13: 'jas',
48 48 1000: 'pbr',
49 49 1001: 'hbr',
50 50 1002: 'obr',
51 51 }
52 52
53 53 UT1970 = datetime.datetime(1970, 1, 1) - datetime.timedelta(seconds=time.timezone)
54 54
55 55 def load_json(obj):
56 56 '''
57 57 Parse json as string instead of unicode
58 58 '''
59 59
60 60 if isinstance(obj, str):
61 61 iterable = json.loads(obj)
62 62 else:
63 63 iterable = obj
64 64
65 65 if isinstance(iterable, dict):
66 66 return {str(k): load_json(v) if isinstance(v, dict) else str(v) if isinstance(v, str) else v
67 67 for k, v in list(iterable.items())}
68 68 elif isinstance(iterable, (list, tuple)):
69 69 return [str(v) if isinstance(v, str) else v for v in iterable]
70 70
71 71 return iterable
72 72
73 73 @MPDecorator
74 74 class MADReader(JRODataReader, ProcessingUnit):
75 75
76 76 def __init__(self):
77 77
78 78 ProcessingUnit.__init__(self)
79 79
80 80 self.dataOut = Parameters()
81 81 self.counter_records = 0
82 82 self.nrecords = None
83 83 self.flagNoMoreFiles = 0
84 84 self.isConfig = False
85 85 self.filename = None
86 86 self.intervals = set()
87 87
88 88 def setup(self,
89 89 path=None,
90 90 startDate=None,
91 91 endDate=None,
92 92 format=None,
93 93 startTime=datetime.time(0, 0, 0),
94 94 endTime=datetime.time(23, 59, 59),
95 95 **kwargs):
96 96
97 97 self.path = path
98 98 self.startDate = startDate
99 99 self.endDate = endDate
100 100 self.startTime = startTime
101 101 self.endTime = endTime
102 102 self.datatime = datetime.datetime(1900,1,1)
103 103 self.oneDDict = load_json(kwargs.get('oneDDict',
104 104 "{\"GDLATR\":\"lat\", \"GDLONR\":\"lon\"}"))
105 105 self.twoDDict = load_json(kwargs.get('twoDDict',
106 106 "{\"GDALT\": \"heightList\"}"))
107 107 self.ind2DList = load_json(kwargs.get('ind2DList',
108 108 "[\"GDALT\"]"))
109 109 if self.path is None:
110 110 raise ValueError('The path is not valid')
111 111
112 112 if format is None:
113 113 raise ValueError('The format is not valid choose simple or hdf5')
114 114 elif format.lower() in ('simple', 'txt'):
115 115 self.ext = '.txt'
116 116 elif format.lower() in ('cedar',):
117 117 self.ext = '.001'
118 118 else:
119 119 self.ext = '.hdf5'
120 120
121 121 self.search_files(self.path)
122 122 self.fileId = 0
123 123
124 124 if not self.fileList:
125 125 raise Warning('There is no files matching these date in the folder: {}. \n Check startDate and endDate'.format(path))
126 126
127 127 self.setNextFile()
128 128
129 129 def search_files(self, path):
130 130 '''
131 131 Searching for madrigal files in path
132 132 Creating a list of files to procces included in [startDate,endDate]
133 133
134 134 Input:
135 135 path - Path to find files
136 136 '''
137 137
138 138 log.log('Searching files {} in {} '.format(self.ext, path), 'MADReader')
139 139 foldercounter = 0
140 140 fileList0 = glob.glob1(path, '*{}'.format(self.ext))
141 141 fileList0.sort()
142 142
143 143 self.fileList = []
144 144 self.dateFileList = []
145 145
146 146 startDate = self.startDate - datetime.timedelta(1)
147 147 endDate = self.endDate + datetime.timedelta(1)
148 148
149 149 for thisFile in fileList0:
150 150 year = thisFile[3:7]
151 151 if not year.isdigit():
152 152 continue
153 153
154 154 month = thisFile[7:9]
155 155 if not month.isdigit():
156 156 continue
157 157
158 158 day = thisFile[9:11]
159 159 if not day.isdigit():
160 160 continue
161 161
162 162 year, month, day = int(year), int(month), int(day)
163 163 dateFile = datetime.date(year, month, day)
164 164
165 165 if (startDate > dateFile) or (endDate < dateFile):
166 166 continue
167 167
168 168 self.fileList.append(thisFile)
169 169 self.dateFileList.append(dateFile)
170 170
171 171 return
172 172
173 173 def parseHeader(self):
174 174 '''
175 175 '''
176 176
177 177 self.output = {}
178 178 self.version = '2'
179 179 s_parameters = None
180 180 if self.ext == '.txt':
181 181 self.parameters = [s.strip().lower() for s in self.fp.readline().strip().split(' ') if s]
182 182 elif self.ext == '.hdf5':
183 183 metadata = self.fp['Metadata']
184 184 data = self.fp['Data']['Array Layout']
185 185 if 'Independent Spatial Parameters' in metadata:
186 186 s_parameters = [s[0].lower() for s in metadata['Independent Spatial Parameters']]
187 187 self.version = '3'
188 188 one = [s[0].lower() for s in data['1D Parameters']['Data Parameters']]
189 189 one_d = [1 for s in one]
190 190 two = [s[0].lower() for s in data['2D Parameters']['Data Parameters']]
191 191 two_d = [2 for s in two]
192 192 self.parameters = one + two
193 193 self.parameters_d = one_d + two_d
194 194
195 log.success('Parameters found: {}'.format(','.join(self.parameters)),
195 log.success('Parameters found: {}'.format(','.join(str(self.parameters))),
196 196 'MADReader')
197 197 if s_parameters:
198 log.success('Spatial parameters: {}'.format(','.join(s_parameters)),
198 log.success('Spatial parameters: {}'.format(','.join(str(s_parameters))),
199 199 'MADReader')
200 200
201 201 for param in list(self.oneDDict.keys()):
202 202 if param.lower() not in self.parameters:
203 203 log.warning(
204 204 'Parameter {} not found will be ignored'.format(
205 205 param),
206 206 'MADReader')
207 207 self.oneDDict.pop(param, None)
208 208
209 209 for param, value in list(self.twoDDict.items()):
210 210 if param.lower() not in self.parameters:
211 211 log.warning(
212 212 'Parameter {} not found, it will be ignored'.format(
213 213 param),
214 214 'MADReader')
215 215 self.twoDDict.pop(param, None)
216 216 continue
217 217 if isinstance(value, list):
218 218 if value[0] not in self.output:
219 219 self.output[value[0]] = []
220 220 self.output[value[0]].append(None)
221 221
222 222 def parseData(self):
223 223 '''
224 224 '''
225 225
226 226 if self.ext == '.txt':
227 227 self.data = numpy.genfromtxt(self.fp, missing_values=('missing'))
228 228 self.nrecords = self.data.shape[0]
229 229 self.ranges = numpy.unique(self.data[:,self.parameters.index(self.ind2DList[0].lower())])
230 230 elif self.ext == '.hdf5':
231 231 self.data = self.fp['Data']['Array Layout']
232 232 self.nrecords = len(self.data['timestamps'].value)
233 233 self.ranges = self.data['range'].value
234 234
235 235 def setNextFile(self):
236 236 '''
237 237 '''
238 238
239 239 file_id = self.fileId
240 240
241 241 if file_id == len(self.fileList):
242 242 log.success('No more files', 'MADReader')
243 243 self.flagNoMoreFiles = 1
244 244 return 0
245 245
246 246 log.success(
247 247 'Opening: {}'.format(self.fileList[file_id]),
248 248 'MADReader'
249 249 )
250 250
251 251 filename = os.path.join(self.path, self.fileList[file_id])
252 252
253 253 if self.filename is not None:
254 254 self.fp.close()
255 255
256 256 self.filename = filename
257 257 self.filedate = self.dateFileList[file_id]
258 258
259 259 if self.ext=='.hdf5':
260 260 self.fp = h5py.File(self.filename, 'r')
261 261 else:
262 262 self.fp = open(self.filename, 'rb')
263 263
264 264 self.parseHeader()
265 265 self.parseData()
266 266 self.sizeOfFile = os.path.getsize(self.filename)
267 267 self.counter_records = 0
268 268 self.flagIsNewFile = 0
269 269 self.fileId += 1
270 270
271 271 return 1
272 272
273 273 def readNextBlock(self):
274 274
275 275 while True:
276 276 self.flagDiscontinuousBlock = 0
277 277 if self.flagIsNewFile:
278 278 if not self.setNextFile():
279 279 return 0
280 280
281 281 self.readBlock()
282 282
283 283 if (self.datatime < datetime.datetime.combine(self.startDate, self.startTime)) or \
284 284 (self.datatime > datetime.datetime.combine(self.endDate, self.endTime)):
285 285 log.warning(
286 286 'Reading Record No. {}/{} -> {} [Skipping]'.format(
287 287 self.counter_records,
288 288 self.nrecords,
289 289 self.datatime.ctime()),
290 290 'MADReader')
291 291 continue
292 292 break
293 293
294 294 log.log(
295 295 'Reading Record No. {}/{} -> {}'.format(
296 296 self.counter_records,
297 297 self.nrecords,
298 298 self.datatime.ctime()),
299 299 'MADReader')
300 300
301 301 return 1
302 302
303 303 def readBlock(self):
304 304 '''
305 305 '''
306 306 dum = []
307 307 if self.ext == '.txt':
308 308 dt = self.data[self.counter_records][:6].astype(int)
309 309 if datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5]).date() > self.datatime.date():
310 310 self.flagDiscontinuousBlock = 1
311 311 self.datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5])
312 312 while True:
313 313 dt = self.data[self.counter_records][:6].astype(int)
314 314 datatime = datetime.datetime(dt[0], dt[1], dt[2], dt[3], dt[4], dt[5])
315 315 if datatime == self.datatime:
316 316 dum.append(self.data[self.counter_records])
317 317 self.counter_records += 1
318 318 if self.counter_records == self.nrecords:
319 319 self.flagIsNewFile = True
320 320 break
321 321 continue
322 322 self.intervals.add((datatime-self.datatime).seconds)
323 323 break
324 324 elif self.ext == '.hdf5':
325 325 datatime = datetime.datetime.utcfromtimestamp(
326 326 self.data['timestamps'][self.counter_records])
327 327 nHeights = len(self.ranges)
328 328 for n, param in enumerate(self.parameters):
329 329 if self.parameters_d[n] == 1:
330 330 dum.append(numpy.ones(nHeights)*self.data['1D Parameters'][param][self.counter_records])
331 331 else:
332 332 if self.version == '2':
333 333 dum.append(self.data['2D Parameters'][param][self.counter_records])
334 334 else:
335 335 tmp = self.data['2D Parameters'][param].value.T
336 336 dum.append(tmp[self.counter_records])
337 337 self.intervals.add((datatime-self.datatime).seconds)
338 338 if datatime.date()>self.datatime.date():
339 339 self.flagDiscontinuousBlock = 1
340 340 self.datatime = datatime
341 341 self.counter_records += 1
342 342 if self.counter_records == self.nrecords:
343 343 self.flagIsNewFile = True
344 344
345 345 self.buffer = numpy.array(dum)
346 346 return
347 347
348 348 def set_output(self):
349 349 '''
350 350 Storing data from buffer to dataOut object
351 351 '''
352 352
353 353 parameters = [None for __ in self.parameters]
354 354
355 355 for param, attr in list(self.oneDDict.items()):
356 356 x = self.parameters.index(param.lower())
357 357 setattr(self.dataOut, attr, self.buffer[0][x])
358 358
359 359 for param, value in list(self.twoDDict.items()):
360 360 x = self.parameters.index(param.lower())
361 361 if self.ext == '.txt':
362 362 y = self.parameters.index(self.ind2DList[0].lower())
363 363 ranges = self.buffer[:,y]
364 364 if self.ranges.size == ranges.size:
365 365 continue
366 366 index = numpy.where(numpy.in1d(self.ranges, ranges))[0]
367 367 dummy = numpy.zeros(self.ranges.shape) + numpy.nan
368 368 dummy[index] = self.buffer[:,x]
369 369 else:
370 370 dummy = self.buffer[x]
371 371
372 372 if isinstance(value, str):
373 373 if value not in self.ind2DList:
374 374 setattr(self.dataOut, value, dummy.reshape(1,-1))
375 375 elif isinstance(value, list):
376 376 self.output[value[0]][value[1]] = dummy
377 377 parameters[value[1]] = param
378 378
379 379 for key, value in list(self.output.items()):
380 380 setattr(self.dataOut, key, numpy.array(value))
381 381
382 382 self.dataOut.parameters = [s for s in parameters if s]
383 383 self.dataOut.heightList = self.ranges
384 384 self.dataOut.utctime = (self.datatime - datetime.datetime(1970, 1, 1)).total_seconds()
385 385 self.dataOut.utctimeInit = self.dataOut.utctime
386 386 self.dataOut.paramInterval = min(self.intervals)
387 387 self.dataOut.useLocalTime = False
388 388 self.dataOut.flagNoData = False
389 389 self.dataOut.nrecords = self.nrecords
390 390 self.dataOut.flagDiscontinuousBlock = self.flagDiscontinuousBlock
391 391
392 392 def getData(self):
393 393 '''
394 394 Storing data from databuffer to dataOut object
395 395 '''
396 396 if self.flagNoMoreFiles:
397 397 self.dataOut.flagNoData = True
398 398 self.dataOut.error = 'No file left to process'
399 399 return 0
400 400
401 401 if not self.readNextBlock():
402 402 self.dataOut.flagNoData = True
403 403 return 0
404 404
405 405 self.set_output()
406 406
407 407 return 1
408 408
409 409
410 410 class MADWriter(Operation):
411 411
412 412 missing = -32767
413 413
414 414 def __init__(self, **kwargs):
415 415
416 416 Operation.__init__(self, **kwargs)
417 417 self.dataOut = Parameters()
418 418 self.counter = 0
419 419 self.path = None
420 420 self.fp = None
421 421
422 422 def run(self, dataOut, path, oneDDict, ind2DList='[]', twoDDict='{}',
423 423 metadata='{}', format='cedar', **kwargs):
424 424 '''
425 425 Inputs:
426 426 path - path where files will be created
427 427 oneDDict - json of one-dimensional parameters in record where keys
428 428 are Madrigal codes (integers or mnemonics) and values the corresponding
429 429 dataOut attribute e.g: {
430 430 'gdlatr': 'lat',
431 431 'gdlonr': 'lon',
432 432 'gdlat2':'lat',
433 433 'glon2':'lon'}
434 434 ind2DList - list of independent spatial two-dimensional parameters e.g:
435 435 ['heighList']
436 436 twoDDict - json of two-dimensional parameters in record where keys
437 437 are Madrigal codes (integers or mnemonics) and values the corresponding
438 438 dataOut attribute if multidimensional array specify as tupple
439 439 ('attr', pos) e.g: {
440 440 'gdalt': 'heightList',
441 441 'vn1p2': ('data_output', 0),
442 442 'vn2p2': ('data_output', 1),
443 443 'vn3': ('data_output', 2),
444 444 'snl': ('data_SNR', 'db')
445 445 }
446 446 metadata - json of madrigal metadata (kinst, kindat, catalog and header)
447 447 '''
448 448 if not self.isConfig:
449 449 self.setup(path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs)
450 450 self.isConfig = True
451 451
452 452 self.dataOut = dataOut
453 453 self.putData()
454 454 return
455 455
456 456 def setup(self, path, oneDDict, ind2DList, twoDDict, metadata, format, **kwargs):
457 457 '''
458 458 Configure Operation
459 459 '''
460 460
461 461 self.path = path
462 462 self.blocks = kwargs.get('blocks', None)
463 463 self.counter = 0
464 464 self.oneDDict = load_json(oneDDict)
465 465 self.twoDDict = load_json(twoDDict)
466 466 self.ind2DList = load_json(ind2DList)
467 467 meta = load_json(metadata)
468 468 self.kinst = meta.get('kinst')
469 469 self.kindat = meta.get('kindat')
470 470 self.catalog = meta.get('catalog', DEF_CATALOG)
471 471 self.header = meta.get('header', DEF_HEADER)
472 472 if format == 'cedar':
473 473 self.ext = '.dat'
474 474 self.extra_args = {}
475 475 elif format == 'hdf5':
476 476 self.ext = '.hdf5'
477 477 self.extra_args = {'ind2DList': self.ind2DList}
478 478
479 479 self.keys = [k.lower() for k in self.twoDDict]
480 480 if 'range' in self.keys:
481 481 self.keys.remove('range')
482 482 if 'gdalt' in self.keys:
483 483 self.keys.remove('gdalt')
484 484
485 485 def setFile(self):
486 486 '''
487 487 Create new cedar file object
488 488 '''
489 489
490 490 self.mnemonic = MNEMONICS[self.kinst] #TODO get mnemonic from madrigal
491 491 date = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
492 492
493 493 filename = '{}{}{}'.format(self.mnemonic,
494 494 date.strftime('%Y%m%d_%H%M%S'),
495 495 self.ext)
496 496
497 497 self.fullname = os.path.join(self.path, filename)
498 498
499 499 if os.path.isfile(self.fullname) :
500 500 log.warning(
501 501 'Destination file {} already exists, previous file deleted.'.format(
502 502 self.fullname),
503 503 'MADWriter')
504 504 os.remove(self.fullname)
505 505
506 506 try:
507 507 log.success(
508 508 'Creating file: {}'.format(self.fullname),
509 509 'MADWriter')
510 510 self.fp = madrigal.cedar.MadrigalCedarFile(self.fullname, True)
511 511 except ValueError as e:
512 512 log.error(
513 513 'Impossible to create a cedar object with "madrigal.cedar.MadrigalCedarFile"',
514 514 'MADWriter')
515 515 return
516 516
517 517 return 1
518 518
519 519 def writeBlock(self):
520 520 '''
521 521 Add data records to cedar file taking data from oneDDict and twoDDict
522 522 attributes.
523 523 Allowed parameters in: parcodes.tab
524 524 '''
525 525
526 526 startTime = datetime.datetime.utcfromtimestamp(self.dataOut.utctime)
527 527 endTime = startTime + datetime.timedelta(seconds=self.dataOut.paramInterval)
528 528 heights = self.dataOut.heightList
529 529
530 530 if self.ext == '.dat':
531 531 for key, value in list(self.twoDDict.items()):
532 532 if isinstance(value, str):
533 533 data = getattr(self.dataOut, value)
534 534 invalid = numpy.isnan(data)
535 535 data[invalid] = self.missing
536 536 elif isinstance(value, (tuple, list)):
537 537 attr, key = value
538 538 data = getattr(self.dataOut, attr)
539 539 invalid = numpy.isnan(data)
540 540 data[invalid] = self.missing
541 541
542 542 out = {}
543 543 for key, value in list(self.twoDDict.items()):
544 544 key = key.lower()
545 545 if isinstance(value, str):
546 546 if 'db' in value.lower():
547 547 tmp = getattr(self.dataOut, value.replace('_db', ''))
548 548 SNRavg = numpy.average(tmp, axis=0)
549 549 tmp = 10*numpy.log10(SNRavg)
550 550 else:
551 551 tmp = getattr(self.dataOut, value)
552 552 out[key] = tmp.flatten()
553 553 elif isinstance(value, (tuple, list)):
554 554 attr, x = value
555 555 data = getattr(self.dataOut, attr)
556 556 out[key] = data[int(x)]
557 557
558 558 a = numpy.array([out[k] for k in self.keys])
559 559 nrows = numpy.array([numpy.isnan(a[:, x]).all() for x in range(len(heights))])
560 560 index = numpy.where(nrows == False)[0]
561 561
562 562 rec = madrigal.cedar.MadrigalDataRecord(
563 563 self.kinst,
564 564 self.kindat,
565 565 startTime.year,
566 566 startTime.month,
567 567 startTime.day,
568 568 startTime.hour,
569 569 startTime.minute,
570 570 startTime.second,
571 571 startTime.microsecond/10000,
572 572 endTime.year,
573 573 endTime.month,
574 574 endTime.day,
575 575 endTime.hour,
576 576 endTime.minute,
577 577 endTime.second,
578 578 endTime.microsecond/10000,
579 579 list(self.oneDDict.keys()),
580 580 list(self.twoDDict.keys()),
581 581 len(index),
582 582 **self.extra_args
583 583 )
584 584
585 585 # Setting 1d values
586 586 for key in self.oneDDict:
587 587 rec.set1D(key, getattr(self.dataOut, self.oneDDict[key]))
588 588
589 589 # Setting 2d values
590 590 nrec = 0
591 591 for n in index:
592 592 for key in out:
593 593 rec.set2D(key, nrec, out[key][n])
594 594 nrec += 1
595 595
596 596 self.fp.append(rec)
597 597 if self.ext == '.hdf5' and self.counter % 500 == 0 and self.counter > 0:
598 598 self.fp.dump()
599 599 if self.counter % 100 == 0 and self.counter > 0:
600 600 log.log(
601 601 'Writing {} records'.format(
602 602 self.counter),
603 603 'MADWriter')
604 604
605 605 def setHeader(self):
606 606 '''
607 607 Create an add catalog and header to cedar file
608 608 '''
609 609
610 610 log.success('Closing file {}'.format(self.fullname), 'MADWriter')
611 611
612 612 if self.ext == '.dat':
613 613 self.fp.write()
614 614 else:
615 615 self.fp.dump()
616 616 self.fp.close()
617 617
618 618 header = madrigal.cedar.CatalogHeaderCreator(self.fullname)
619 619 header.createCatalog(**self.catalog)
620 620 header.createHeader(**self.header)
621 621 header.write()
622 622
623 623 def putData(self):
624 624
625 625 if self.dataOut.flagNoData:
626 626 return 0
627 627
628 628 if self.dataOut.flagDiscontinuousBlock or self.counter == self.blocks:
629 629 if self.counter > 0:
630 630 self.setHeader()
631 631 self.counter = 0
632 632
633 633 if self.counter == 0:
634 634 self.setFile()
635 635
636 636 self.writeBlock()
637 637 self.counter += 1
638 638
639 639 def close(self):
640 640
641 641 if self.counter > 0:
642 642 self.setHeader() No newline at end of file
1 NO CONTENT: modified file
The requested commit or file is too big and content was truncated. Show full diff
General Comments 0
You need to be logged in to leave comments. Login now