@@ -1,377 +1,427 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import zmq |
|
3 | import zmq | |
4 | import time |
|
4 | import time | |
5 | import numpy |
|
5 | import numpy | |
6 | import datetime |
|
6 | import datetime | |
7 | import numpy as np |
|
7 | import numpy as np | |
8 | import matplotlib.pyplot as plt |
|
8 | import matplotlib.pyplot as plt | |
9 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
9 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
10 | from matplotlib.ticker import FuncFormatter, LinearLocator |
|
10 | from matplotlib.ticker import FuncFormatter, LinearLocator | |
11 | from multiprocessing import Process |
|
11 | from multiprocessing import Process | |
12 |
|
12 | |||
13 | from schainpy.model.proc.jroproc_base import Operation |
|
13 | from schainpy.model.proc.jroproc_base import Operation | |
14 |
|
14 | |||
15 | #plt.ion() |
|
15 | #plt.ion() | |
16 |
|
16 | |||
17 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime('%H:%M')) |
|
17 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime('%H:%M')) | |
18 |
|
18 | |||
19 | d1970 = datetime.datetime(1970,1,1) |
|
19 | d1970 = datetime.datetime(1970,1,1) | |
20 |
|
20 | |||
21 | class PlotData(Operation, Process): |
|
21 | class PlotData(Operation, Process): | |
22 |
|
22 | |||
23 | CODE = 'Figure' |
|
23 | CODE = 'Figure' | |
24 | colormap = 'jet' |
|
24 | colormap = 'jet' | |
25 | CONFLATE = True |
|
25 | CONFLATE = True | |
26 | __MAXNUMX = 80 |
|
26 | __MAXNUMX = 80 | |
27 | __MAXNUMY = 80 |
|
27 | __MAXNUMY = 80 | |
28 | __missing = 1E30 |
|
28 | __missing = 1E30 | |
29 |
|
29 | |||
30 | def __init__(self, **kwargs): |
|
30 | def __init__(self, **kwargs): | |
31 |
|
31 | |||
32 | Operation.__init__(self, **kwargs) |
|
32 | Operation.__init__(self, **kwargs) | |
33 | Process.__init__(self) |
|
33 | Process.__init__(self) | |
34 | self.mp = False |
|
34 | self.mp = False | |
35 | self.dataOut = None |
|
35 | self.dataOut = None | |
36 | self.isConfig = False |
|
36 | self.isConfig = False | |
37 | self.figure = None |
|
37 | self.figure = None | |
38 | self.axes = [] |
|
38 | self.axes = [] | |
39 | self.localtime = kwargs.pop('localtime', True) |
|
39 | self.localtime = kwargs.pop('localtime', True) | |
40 | self.show = kwargs.get('show', True) |
|
40 | self.show = kwargs.get('show', True) | |
41 | self.save = kwargs.get('save', False) |
|
41 | self.save = kwargs.get('save', False) | |
42 | self.colormap = kwargs.get('colormap', self.colormap) |
|
42 | self.colormap = kwargs.get('colormap', self.colormap) | |
43 |
self.showprofile = kwargs.get('showprofile', |
|
43 | self.showprofile = kwargs.get('showprofile', True) | |
44 | self.title = kwargs.get('wintitle', '') |
|
44 | self.title = kwargs.get('wintitle', '') | |
45 | self.xaxis = kwargs.get('xaxis', 'time') |
|
45 | self.xaxis = kwargs.get('xaxis', 'time') | |
46 | self.zmin = kwargs.get('zmin', None) |
|
46 | self.zmin = kwargs.get('zmin', None) | |
47 | self.zmax = kwargs.get('zmax', None) |
|
47 | self.zmax = kwargs.get('zmax', None) | |
48 | self.xmin = kwargs.get('xmin', None) |
|
48 | self.xmin = kwargs.get('xmin', None) | |
49 | self.xmax = kwargs.get('xmax', None) |
|
49 | self.xmax = kwargs.get('xmax', None) | |
50 | self.xrange = kwargs.get('xrange', 24) |
|
50 | self.xrange = kwargs.get('xrange', 24) | |
51 | self.ymin = kwargs.get('ymin', None) |
|
51 | self.ymin = kwargs.get('ymin', None) | |
52 | self.ymax = kwargs.get('ymax', None) |
|
52 | self.ymax = kwargs.get('ymax', None) | |
53 | self.throttle_value = 1 |
|
53 | self.throttle_value = 1 | |
54 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
54 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
55 |
|
55 | |||
56 | if x_buffer.shape[0] < 2: |
|
56 | if x_buffer.shape[0] < 2: | |
57 | return x_buffer, y_buffer, z_buffer |
|
57 | return x_buffer, y_buffer, z_buffer | |
58 |
|
58 | |||
59 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
59 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
60 | x_median = np.median(deltas) |
|
60 | x_median = np.median(deltas) | |
61 |
|
61 | |||
62 | index = np.where(deltas > 5*x_median) |
|
62 | index = np.where(deltas > 5*x_median) | |
63 |
|
63 | |||
64 | if len(index[0]) != 0: |
|
64 | if len(index[0]) != 0: | |
65 | z_buffer[::, index[0], ::] = self.__missing |
|
65 | z_buffer[::, index[0], ::] = self.__missing | |
66 | z_buffer = np.ma.masked_inside(z_buffer, |
|
66 | z_buffer = np.ma.masked_inside(z_buffer, | |
67 | 0.99*self.__missing, |
|
67 | 0.99*self.__missing, | |
68 | 1.01*self.__missing) |
|
68 | 1.01*self.__missing) | |
69 |
|
69 | |||
70 | return x_buffer, y_buffer, z_buffer |
|
70 | return x_buffer, y_buffer, z_buffer | |
71 |
|
71 | |||
72 | def decimate(self): |
|
72 | def decimate(self): | |
73 |
|
73 | |||
74 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
74 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
75 | dy = int(len(self.y)/self.__MAXNUMY) + 1 |
|
75 | dy = int(len(self.y)/self.__MAXNUMY) + 1 | |
76 |
|
76 | |||
77 | # x = self.x[::dx] |
|
77 | # x = self.x[::dx] | |
78 | x = self.x |
|
78 | x = self.x | |
79 | y = self.y[::dy] |
|
79 | y = self.y[::dy] | |
80 | z = self.z[::, ::, ::dy] |
|
80 | z = self.z[::, ::, ::dy] | |
81 |
|
81 | |||
82 | return x, y, z |
|
82 | return x, y, z | |
83 |
|
83 | |||
84 | def __plot(self): |
|
84 | def __plot(self): | |
85 |
|
85 | |||
86 | print 'plotting...{}'.format(self.CODE) |
|
86 | print 'plotting...{}'.format(self.CODE) | |
87 |
|
87 | |||
88 | self.plot() |
|
88 | self.plot() | |
89 | self.figure.suptitle('{} {} - Date:{}'.format(self.title, self.CODE.upper(), |
|
89 | self.figure.suptitle('{} {} - Date:{}'.format(self.title, self.CODE.upper(), | |
90 | datetime.datetime.utcfromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) |
|
90 | datetime.datetime.utcfromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S'))) | |
91 |
|
91 | |||
92 | if self.save: |
|
92 | if self.save: | |
93 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, |
|
93 | figname = os.path.join(self.save, '{}_{}.png'.format(self.CODE, | |
94 | datetime.datetime.utcfromtimestamp(self.times[0]).strftime('%y%m%d_%H%M%S'))) |
|
94 | datetime.datetime.utcfromtimestamp(self.times[0]).strftime('%y%m%d_%H%M%S'))) | |
95 | print 'Saving figure: {}'.format(figname) |
|
95 | print 'Saving figure: {}'.format(figname) | |
96 | self.figure.savefig(figname) |
|
96 | self.figure.savefig(figname) | |
97 |
|
97 | |||
98 | self.figure.canvas.draw() |
|
98 | self.figure.canvas.draw() | |
99 |
|
99 | |||
100 | def plot(self): |
|
100 | def plot(self): | |
101 |
|
101 | |||
102 | print 'plotting...{}'.format(self.CODE.upper()) |
|
102 | print 'plotting...{}'.format(self.CODE.upper()) | |
103 | return |
|
103 | return | |
104 |
|
104 | |||
105 | def run(self): |
|
105 | def run(self): | |
106 |
|
106 | |||
107 | print '[Starting] {}'.format(self.name) |
|
107 | print '[Starting] {}'.format(self.name) | |
108 | context = zmq.Context() |
|
108 | context = zmq.Context() | |
109 | receiver = context.socket(zmq.SUB) |
|
109 | receiver = context.socket(zmq.SUB) | |
110 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
110 | receiver.setsockopt(zmq.SUBSCRIBE, '') | |
111 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
111 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) | |
112 | receiver.connect("ipc:///tmp/zmq.plots") |
|
112 | receiver.connect("ipc:///tmp/zmq.plots") | |
113 |
|
113 | |||
114 | while True: |
|
114 | while True: | |
115 | try: |
|
115 | try: | |
116 | #if True: |
|
116 | #if True: | |
117 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
117 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) | |
118 | self.dataOut = self.data['dataOut'] |
|
118 | self.dataOut = self.data['dataOut'] | |
119 | self.times = self.data['times'] |
|
119 | self.times = self.data['times'] | |
120 | self.times.sort() |
|
120 | self.times.sort() | |
121 | self.throttle_value = self.data['throttle'] |
|
121 | self.throttle_value = self.data['throttle'] | |
122 | self.min_time = self.times[0] |
|
122 | self.min_time = self.times[0] | |
123 | self.max_time = self.times[-1] |
|
123 | self.max_time = self.times[-1] | |
124 |
|
124 | |||
125 | if self.isConfig is False: |
|
125 | if self.isConfig is False: | |
126 | self.setup() |
|
126 | self.setup() | |
127 | self.isConfig = True |
|
127 | self.isConfig = True | |
128 | self.__plot() |
|
128 | self.__plot() | |
129 |
|
129 | |||
130 | if self.data['ENDED'] is True: |
|
130 | if self.data['ENDED'] is True: | |
131 | # self.__plot() |
|
131 | # self.__plot() | |
132 | self.isConfig = False |
|
132 | self.isConfig = False | |
133 |
|
133 | |||
134 | except zmq.Again as e: |
|
134 | except zmq.Again as e: | |
135 | print 'Waiting for data...' |
|
135 | print 'Waiting for data...' | |
136 | plt.pause(self.throttle_value) |
|
136 | plt.pause(self.throttle_value) | |
137 | # time.sleep(3) |
|
137 | # time.sleep(3) | |
138 |
|
138 | |||
139 | def close(self): |
|
139 | def close(self): | |
140 | if self.dataOut: |
|
140 | if self.dataOut: | |
141 | self._plot() |
|
141 | self._plot() | |
142 |
|
142 | |||
143 |
|
143 | |||
144 | class PlotSpectraData(PlotData): |
|
144 | class PlotSpectraData(PlotData): | |
145 |
|
145 | |||
146 | CODE = 'spc' |
|
146 | CODE = 'spc' | |
147 | colormap = 'jro' |
|
147 | colormap = 'jro' | |
148 | CONFLATE = False |
|
148 | CONFLATE = False | |
149 | def setup(self): |
|
149 | def setup(self): | |
150 |
|
150 | |||
151 | ncolspan = 1 |
|
151 | ncolspan = 1 | |
152 | colspan = 1 |
|
152 | colspan = 1 | |
153 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) |
|
153 | self.ncols = int(numpy.sqrt(self.dataOut.nChannels)+0.9) | |
154 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) |
|
154 | self.nrows = int(self.dataOut.nChannels*1./self.ncols + 0.9) | |
155 | self.width = 3.6*self.ncols |
|
155 | self.width = 3.6*self.ncols | |
156 | self.height = 3.2*self.nrows |
|
156 | self.height = 3.2*self.nrows | |
157 | if self.showprofile: |
|
157 | if self.showprofile: | |
158 | ncolspan = 3 |
|
158 | ncolspan = 3 | |
159 | colspan = 2 |
|
159 | colspan = 2 | |
160 | self.width += 1.2*self.ncols |
|
160 | self.width += 1.2*self.ncols | |
161 |
|
161 | |||
162 | self.ylabel = 'Range [Km]' |
|
162 | self.ylabel = 'Range [Km]' | |
163 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
163 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
164 |
|
164 | |||
165 | if self.figure is None: |
|
165 | if self.figure is None: | |
166 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
166 | self.figure = plt.figure(figsize=(self.width, self.height), | |
167 | edgecolor='k', |
|
167 | edgecolor='k', | |
168 | facecolor='w') |
|
168 | facecolor='w') | |
169 | else: |
|
169 | else: | |
170 | self.figure.clf() |
|
170 | self.figure.clf() | |
171 |
|
171 | |||
172 | n = 0 |
|
172 | n = 0 | |
173 | for y in range(self.nrows): |
|
173 | for y in range(self.nrows): | |
174 | for x in range(self.ncols): |
|
174 | for x in range(self.ncols): | |
175 | if n >= self.dataOut.nChannels: |
|
175 | if n >= self.dataOut.nChannels: | |
176 | break |
|
176 | break | |
177 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) |
|
177 | ax = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan), 1, colspan) | |
178 | if self.showprofile: |
|
178 | if self.showprofile: | |
179 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) |
|
179 | ax.ax_profile = plt.subplot2grid((self.nrows, self.ncols*ncolspan), (y, x*ncolspan+colspan), 1, 1) | |
180 |
|
180 | |||
181 | ax.firsttime = True |
|
181 | ax.firsttime = True | |
182 | self.axes.append(ax) |
|
182 | self.axes.append(ax) | |
183 | n += 1 |
|
183 | n += 1 | |
184 |
|
184 | |||
185 | self.figure.subplots_adjust(wspace=0.9, hspace=0.5) |
|
185 | self.figure.subplots_adjust(left=0.1, right=0.95, bottom=0.15, top=0.85, wspace=0.9, hspace=0.5) | |
186 | self.figure.show() |
|
186 | self.figure.show() | |
187 |
|
187 | |||
188 | def plot(self): |
|
188 | def plot(self): | |
189 |
|
189 | |||
190 | if self.xaxis == "frequency": |
|
190 | if self.xaxis == "frequency": | |
191 | x = self.dataOut.getFreqRange(1)/1000. |
|
191 | x = self.dataOut.getFreqRange(1)/1000. | |
192 | xlabel = "Frequency (kHz)" |
|
192 | xlabel = "Frequency (kHz)" | |
193 | elif self.xaxis == "time": |
|
193 | elif self.xaxis == "time": | |
194 | x = self.dataOut.getAcfRange(1) |
|
194 | x = self.dataOut.getAcfRange(1) | |
195 | xlabel = "Time (ms)" |
|
195 | xlabel = "Time (ms)" | |
196 | else: |
|
196 | else: | |
197 | x = self.dataOut.getVelRange(1) |
|
197 | x = self.dataOut.getVelRange(1) | |
198 | xlabel = "Velocity (m/s)" |
|
198 | xlabel = "Velocity (m/s)" | |
199 |
|
199 | |||
200 | y = self.dataOut.getHeiRange() |
|
200 | y = self.dataOut.getHeiRange() | |
201 | z = self.data[self.CODE] |
|
201 | z = self.data[self.CODE] | |
202 |
|
202 | |||
203 | for n, ax in enumerate(self.axes): |
|
203 | for n, ax in enumerate(self.axes): | |
204 |
|
204 | |||
205 | if ax.firsttime: |
|
205 | if ax.firsttime: | |
206 | self.xmax = self.xmax if self.xmax else np.nanmax(x) |
|
206 | self.xmax = self.xmax if self.xmax else np.nanmax(x) | |
207 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
207 | self.xmin = self.xmin if self.xmin else -self.xmax | |
208 | self.ymin = self.ymin if self.ymin else np.nanmin(y) |
|
208 | self.ymin = self.ymin if self.ymin else np.nanmin(y) | |
209 | self.ymax = self.ymax if self.ymax else np.nanmax(y) |
|
209 | self.ymax = self.ymax if self.ymax else np.nanmax(y) | |
210 | self.zmin = self.zmin if self.zmin else np.nanmin(z) |
|
210 | self.zmin = self.zmin if self.zmin else np.nanmin(z) | |
211 | self.zmax = self.zmax if self.zmax else np.nanmax(z) |
|
211 | self.zmax = self.zmax if self.zmax else np.nanmax(z) | |
212 | ax.plot = ax.pcolormesh(x, y, z[n].T, |
|
212 | ax.plot = ax.pcolormesh(x, y, z[n].T, | |
213 | vmin=self.zmin, |
|
213 | vmin=self.zmin, | |
214 | vmax=self.zmax, |
|
214 | vmax=self.zmax, | |
215 | cmap=plt.get_cmap(self.colormap) |
|
215 | cmap=plt.get_cmap(self.colormap) | |
216 | ) |
|
216 | ) | |
217 | divider = make_axes_locatable(ax) |
|
217 | divider = make_axes_locatable(ax) | |
218 | cax = divider.new_horizontal(size='3%', pad=0.05) |
|
218 | cax = divider.new_horizontal(size='3%', pad=0.05) | |
219 | self.figure.add_axes(cax) |
|
219 | self.figure.add_axes(cax) | |
220 | plt.colorbar(ax.plot, cax) |
|
220 | plt.colorbar(ax.plot, cax) | |
221 |
|
221 | |||
222 | ax.set_xlim(self.xmin, self.xmax) |
|
222 | ax.set_xlim(self.xmin, self.xmax) | |
223 | ax.set_ylim(self.ymin, self.ymax) |
|
223 | ax.set_ylim(self.ymin, self.ymax) | |
224 |
|
224 | |||
225 | ax.xaxis.set_major_locator(LinearLocator(5)) |
|
225 | ax.xaxis.set_major_locator(LinearLocator(5)) | |
226 | #ax.yaxis.set_major_locator(LinearLocator(4)) |
|
226 | #ax.yaxis.set_major_locator(LinearLocator(4)) | |
227 |
|
227 | |||
228 | ax.set_ylabel(self.ylabel) |
|
228 | ax.set_ylabel(self.ylabel) | |
229 | ax.set_xlabel(xlabel) |
|
229 | ax.set_xlabel(xlabel) | |
230 |
|
230 | |||
231 | ax.firsttime = False |
|
231 | ax.firsttime = False | |
232 |
|
232 | |||
233 | if self.showprofile: |
|
233 | if self.showprofile: | |
234 | ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] |
|
234 | ax.plot_profile= ax.ax_profile.plot(self.data['rti'][self.max_time][n], y)[0] | |
235 | ax.ax_profile.set_xlim(self.zmin, self.zmax) |
|
235 | ax.ax_profile.set_xlim(self.zmin, self.zmax) | |
236 | ax.ax_profile.set_ylim(self.ymin, self.ymax) |
|
236 | ax.ax_profile.set_ylim(self.ymin, self.ymax) | |
237 | ax.ax_profile.set_xlabel('dB') |
|
237 | ax.ax_profile.set_xlabel('dB') | |
238 | ax.ax_profile.grid(b=True, axis='x') |
|
238 | ax.ax_profile.grid(b=True, axis='x') | |
239 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, |
|
239 | ax.plot_noise = ax.ax_profile.plot(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y, | |
240 | color="k", linestyle="dashed", lw=2)[0] |
|
240 | color="k", linestyle="dashed", lw=2)[0] | |
241 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] |
|
241 | [tick.set_visible(False) for tick in ax.ax_profile.get_yticklabels()] | |
242 | else: |
|
242 | else: | |
243 | ax.plot.set_array(z[n].T.ravel()) |
|
243 | ax.plot.set_array(z[n].T.ravel()) | |
244 | if self.showprofile: |
|
244 | if self.showprofile: | |
245 | ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) |
|
245 | ax.plot_profile.set_data(self.data['rti'][self.max_time][n], y) | |
246 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) |
|
246 | ax.plot_noise.set_data(numpy.repeat(self.data['noise'][self.max_time][n], len(y)), y) | |
247 |
|
247 | |||
248 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), |
|
248 | ax.set_title('{} - Noise: {:.2f} dB'.format(self.titles[n], self.data['noise'][self.max_time][n]), | |
249 | size=8) |
|
249 | size=8) | |
250 |
|
250 | |||
251 | class PlotRTIData(PlotData): |
|
251 | class PlotRTIData(PlotData): | |
252 |
|
252 | |||
253 | CODE = 'rti' |
|
253 | CODE = 'rti' | |
254 | colormap = 'jro' |
|
254 | colormap = 'jro' | |
255 |
|
255 | |||
256 | def setup(self): |
|
256 | def setup(self): | |
257 | self.ncols = 1 |
|
257 | self.ncols = 1 | |
258 | self.nrows = self.dataOut.nChannels |
|
258 | self.nrows = self.dataOut.nChannels | |
259 | self.width = 10 |
|
259 | self.width = 10 | |
260 | self.height = 2.2*self.nrows |
|
260 | self.height = 2.2*self.nrows | |
|
261 | if self.nrows==1: | |||
|
262 | self.height += 1 | |||
261 | self.ylabel = 'Range [Km]' |
|
263 | self.ylabel = 'Range [Km]' | |
262 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] |
|
264 | self.titles = ['Channel {}'.format(x) for x in self.dataOut.channelList] | |
263 |
|
265 | |||
264 | if self.figure is None: |
|
266 | if self.figure is None: | |
265 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
267 | self.figure = plt.figure(figsize=(self.width, self.height), | |
266 | edgecolor='k', |
|
268 | edgecolor='k', | |
267 | facecolor='w') |
|
269 | facecolor='w') | |
268 | else: |
|
270 | else: | |
269 | self.figure.clf() |
|
271 | self.figure.clf() | |
270 | self.axes = [] |
|
272 | self.axes = [] | |
271 |
|
273 | |||
272 | for n in range(self.nrows): |
|
274 | for n in range(self.nrows): | |
273 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
275 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
274 | ax.firsttime = True |
|
276 | ax.firsttime = True | |
275 | self.axes.append(ax) |
|
277 | self.axes.append(ax) | |
276 | self.figure.subplots_adjust(hspace=0.5) |
|
278 | self.figure.subplots_adjust(hspace=0.5) | |
277 | self.figure.show() |
|
279 | self.figure.show() | |
278 |
|
280 | |||
279 | def plot(self): |
|
281 | def plot(self): | |
280 |
|
282 | |||
281 | self.x = np.array(self.times) |
|
283 | self.x = np.array(self.times) | |
282 | self.y = self.dataOut.getHeiRange() |
|
284 | self.y = self.dataOut.getHeiRange() | |
283 | self.z = [] |
|
285 | self.z = [] | |
284 |
|
286 | |||
285 | for ch in range(self.nrows): |
|
287 | for ch in range(self.nrows): | |
286 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) |
|
288 | self.z.append([self.data[self.CODE][t][ch] for t in self.times]) | |
287 |
|
289 | |||
288 | self.z = np.array(self.z) |
|
290 | self.z = np.array(self.z) | |
289 | for n, ax in enumerate(self.axes): |
|
291 | for n, ax in enumerate(self.axes): | |
290 |
|
292 | |||
291 | x, y, z = self.fill_gaps(*self.decimate()) |
|
293 | x, y, z = self.fill_gaps(*self.decimate()) | |
292 | xmin = self.min_time |
|
294 | xmin = self.min_time | |
293 | xmax = xmin+self.xrange*60*60 |
|
295 | xmax = xmin+self.xrange*60*60 | |
294 | if ax.firsttime: |
|
296 | if ax.firsttime: | |
295 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) |
|
297 | self.ymin = self.ymin if self.ymin else np.nanmin(self.y) | |
296 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) |
|
298 | self.ymax = self.ymax if self.ymax else np.nanmax(self.y) | |
297 | self.zmin = self.zmin if self.zmin else np.nanmin(self.z) |
|
299 | self.zmin = self.zmin if self.zmin else np.nanmin(self.z) | |
298 | self.zmax = self.zmax if self.zmax else np.nanmax(self.z) |
|
300 | self.zmax = self.zmax if self.zmax else np.nanmax(self.z) | |
299 | plot = ax.pcolormesh(x, y, z[n].T, |
|
301 | plot = ax.pcolormesh(x, y, z[n].T, | |
300 | vmin=self.zmin, |
|
302 | vmin=self.zmin, | |
301 | vmax=self.zmax, |
|
303 | vmax=self.zmax, | |
302 | cmap=plt.get_cmap(self.colormap) |
|
304 | cmap=plt.get_cmap(self.colormap) | |
303 | ) |
|
305 | ) | |
304 | divider = make_axes_locatable(ax) |
|
306 | divider = make_axes_locatable(ax) | |
305 | cax = divider.new_horizontal(size='2%', pad=0.05) |
|
307 | cax = divider.new_horizontal(size='2%', pad=0.05) | |
306 | self.figure.add_axes(cax) |
|
308 | self.figure.add_axes(cax) | |
307 | plt.colorbar(plot, cax) |
|
309 | plt.colorbar(plot, cax) | |
308 | ax.set_ylim(self.ymin, self.ymax) |
|
310 | ax.set_ylim(self.ymin, self.ymax) | |
309 | if self.xaxis == 'time': |
|
311 | if self.xaxis == 'time': | |
310 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
312 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
311 | ax.xaxis.set_major_locator(LinearLocator(6)) |
|
313 | ax.xaxis.set_major_locator(LinearLocator(6)) | |
312 |
|
314 | |||
313 | # ax.yaxis.set_major_locator(LinearLocator(4)) |
|
315 | # ax.yaxis.set_major_locator(LinearLocator(4)) | |
314 |
|
316 | |||
315 | ax.set_ylabel(self.ylabel) |
|
317 | ax.set_ylabel(self.ylabel) | |
316 |
|
318 | |||
317 | # if self.xmin is None: |
|
319 | # if self.xmin is None: | |
318 | # xmin = self.min_time |
|
320 | # xmin = self.min_time | |
319 | # else: |
|
321 | # else: | |
320 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), |
|
322 | # xmin = (datetime.datetime.combine(self.dataOut.datatime.date(), | |
321 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() |
|
323 | # datetime.time(self.xmin, 0, 0))-d1970).total_seconds() | |
322 |
|
324 | |||
323 | ax.set_xlim(xmin, xmax) |
|
325 | ax.set_xlim(xmin, xmax) | |
324 | ax.firsttime = False |
|
326 | ax.firsttime = False | |
325 | else: |
|
327 | else: | |
326 | ax.collections.remove(ax.collections[0]) |
|
328 | ax.collections.remove(ax.collections[0]) | |
327 | ax.set_xlim(xmin, xmax) |
|
329 | ax.set_xlim(xmin, xmax) | |
328 | plot = ax.pcolormesh(x, y, z[n].T, |
|
330 | plot = ax.pcolormesh(x, y, z[n].T, | |
329 | vmin=self.zmin, |
|
331 | vmin=self.zmin, | |
330 | vmax=self.zmax, |
|
332 | vmax=self.zmax, | |
331 | cmap=plt.get_cmap(self.colormap) |
|
333 | cmap=plt.get_cmap(self.colormap) | |
332 | ) |
|
334 | ) | |
333 | ax.set_title('{} {}'.format(self.titles[n], |
|
335 | ax.set_title('{} {}'.format(self.titles[n], | |
334 | datetime.datetime.utcfromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), |
|
336 | datetime.datetime.utcfromtimestamp(self.max_time).strftime('%y/%m/%d %H:%M:%S')), | |
335 | size=8) |
|
337 | size=8) | |
336 |
|
338 | |||
337 |
|
339 | |||
338 | class PlotCOHData(PlotRTIData): |
|
340 | class PlotCOHData(PlotRTIData): | |
339 |
|
341 | |||
340 | CODE = 'coh' |
|
342 | CODE = 'coh' | |
341 |
|
343 | |||
342 | def setup(self): |
|
344 | def setup(self): | |
343 |
|
345 | |||
344 | self.ncols = 1 |
|
346 | self.ncols = 1 | |
345 | self.nrows = self.dataOut.nPairs |
|
347 | self.nrows = self.dataOut.nPairs | |
346 | self.width = 10 |
|
348 | self.width = 10 | |
347 | self.height = 2.2*self.nrows |
|
349 | self.height = 2.2*self.nrows | |
|
350 | if self.nrows==1: | |||
|
351 | self.height += 1 | |||
348 | self.ylabel = 'Range [Km]' |
|
352 | self.ylabel = 'Range [Km]' | |
349 | self.titles = ['Channels {}'.format(x) for x in self.dataOut.pairsList] |
|
353 | self.titles = ['Channels {}'.format(x) for x in self.dataOut.pairsList] | |
350 |
|
354 | |||
351 | if self.figure is None: |
|
355 | if self.figure is None: | |
352 | self.figure = plt.figure(figsize=(self.width, self.height), |
|
356 | self.figure = plt.figure(figsize=(self.width, self.height), | |
353 | edgecolor='k', |
|
357 | edgecolor='k', | |
354 | facecolor='w') |
|
358 | facecolor='w') | |
355 | else: |
|
359 | else: | |
356 | self.figure.clf() |
|
360 | self.figure.clf() | |
|
361 | self.axes = [] | |||
357 |
|
362 | |||
358 | for n in range(self.nrows): |
|
363 | for n in range(self.nrows): | |
359 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) |
|
364 | ax = self.figure.add_subplot(self.nrows, self.ncols, n+1) | |
360 | ax.firsttime = True |
|
365 | ax.firsttime = True | |
361 | self.axes.append(ax) |
|
366 | self.axes.append(ax) | |
362 |
|
367 | |||
363 | self.figure.subplots_adjust(hspace=0.5) |
|
368 | self.figure.subplots_adjust(hspace=0.5) | |
364 | self.figure.show() |
|
369 | self.figure.show() | |
365 |
|
370 | |||
366 |
class Plot |
|
371 | class PlotNoiseData(PlotData): | |
|
372 | CODE = 'noise' | |||
|
373 | ||||
|
374 | def setup(self): | |||
|
375 | ||||
|
376 | self.ncols = 1 | |||
|
377 | self.nrows = 1 | |||
|
378 | self.width = 10 | |||
|
379 | self.height = 3.2 | |||
|
380 | self.ylabel = 'Intensity [dB]' | |||
|
381 | self.titles = ['Noise'] | |||
367 |
|
382 | |||
|
383 | if self.figure is None: | |||
|
384 | self.figure = plt.figure(figsize=(self.width, self.height), | |||
|
385 | edgecolor='k', | |||
|
386 | facecolor='w') | |||
|
387 | else: | |||
|
388 | self.figure.clf() | |||
|
389 | self.axes = [] | |||
|
390 | ||||
|
391 | self.ax = self.figure.add_subplot(self.nrows, self.ncols, 1) | |||
|
392 | self.ax.firsttime = True | |||
|
393 | ||||
|
394 | self.figure.show() | |||
|
395 | ||||
|
396 | def plot(self): | |||
|
397 | ||||
|
398 | x = self.times | |||
|
399 | xmin = self.min_time | |||
|
400 | xmax = xmin+self.xrange*60*60 | |||
|
401 | if self.ax.firsttime: | |||
|
402 | for ch in self.dataOut.channelList: | |||
|
403 | y = [self.data[self.CODE][t][ch] for t in self.times] | |||
|
404 | self.ax.plot(x, y, lw=1, label='Ch{}'.format(ch)) | |||
|
405 | self.ax.firsttime = False | |||
|
406 | self.ax.xaxis.set_major_formatter(FuncFormatter(func)) | |||
|
407 | self.ax.xaxis.set_major_locator(LinearLocator(6)) | |||
|
408 | self.ax.set_ylabel(self.ylabel) | |||
|
409 | plt.legend() | |||
|
410 | else: | |||
|
411 | for ch in self.dataOut.channelList: | |||
|
412 | y = [self.data[self.CODE][t][ch] for t in self.times] | |||
|
413 | self.ax.lines[ch].set_data(x, y) | |||
|
414 | ||||
|
415 | self.ax.set_xlim(xmin, xmax) | |||
|
416 | self.ax.set_ylim(min(y)-5, max(y)+5) | |||
|
417 | ||||
|
418 | class PlotSNRData(PlotRTIData): | |||
368 | CODE = 'snr' |
|
419 | CODE = 'snr' | |
369 |
|
420 | |||
370 | class PlotDOPData(PlotRTIData): |
|
421 | class PlotDOPData(PlotRTIData): | |
371 | CODE = 'dop' |
|
422 | CODE = 'dop' | |
372 | colormap = 'jet' |
|
423 | colormap = 'jet' | |
373 |
|
424 | |||
374 | class PlotPHASEData(PlotCOHData): |
|
425 | class PlotPHASEData(PlotCOHData): | |
375 |
|
||||
376 | CODE = 'phase' |
|
426 | CODE = 'phase' | |
377 | colormap = 'seismic' |
|
427 | colormap = 'seismic' |
General Comments 0
You need to be logged in to leave comments.
Login now