@@ -0,0 +1,188 | |||||
|
1 | # DIAS 19 Y 20 FEB 2014 | |||
|
2 | # Comprobacion de Resultados DBS con SA | |||
|
3 | ||||
|
4 | import os, sys | |||
|
5 | ||||
|
6 | path = os.path.split(os.getcwd())[0] | |||
|
7 | path = os.path.split(path)[0] | |||
|
8 | ||||
|
9 | sys.path.insert(0, path) | |||
|
10 | ||||
|
11 | from schainpy.controller import Project | |||
|
12 | ||||
|
13 | desc = "JASMET Experiment Test" | |||
|
14 | filename = "JASMETtest.xml" | |||
|
15 | ||||
|
16 | controllerObj = Project() | |||
|
17 | ||||
|
18 | controllerObj.setup(id = '191', name='test01', description=desc) | |||
|
19 | ||||
|
20 | #Experimentos | |||
|
21 | ||||
|
22 | #2014051 20 Feb 2014 | |||
|
23 | # path = '/home/soporte/Data/JASMET/JASMET_30/2014106' | |||
|
24 | # pathFigure = '/home/soporte/workspace/Graficos/JASMET/prueba1' | |||
|
25 | ||||
|
26 | remotefolder = "/home/wmaster/graficos" | |||
|
27 | path = '/media/joscanoa/84A65E64A65E5730/soporte/Data/JASMET/JASMET_30/' | |||
|
28 | ||||
|
29 | pathfile1 = os.path.join(os.environ['HOME'],'Pictures/JASMET30/meteor') | |||
|
30 | pathfile2 = os.path.join(os.environ['HOME'],'Pictures/JASMET30/wind') | |||
|
31 | pathfile3 = os.path.join(os.environ['HOME'],'Pictures/JASMET30/phase') | |||
|
32 | ||||
|
33 | pathfig = os.path.join(os.environ['HOME'],'Pictures/JASMET30/graph') | |||
|
34 | ||||
|
35 | startTime = '00:00:00' | |||
|
36 | endTime = '23:59:59' | |||
|
37 | xmin ='17.0' | |||
|
38 | xmax = '34.0' | |||
|
39 | ||||
|
40 | #------------------------------------------------------------------------------------------------ | |||
|
41 | readUnitConfObj = controllerObj.addReadUnit(datatype='VoltageReader', | |||
|
42 | path=path, | |||
|
43 | startDate='2014/04/15', | |||
|
44 | endDate='2014/04/16', | |||
|
45 | startTime=startTime, | |||
|
46 | endTime=endTime, | |||
|
47 | online=0, | |||
|
48 | delay=5, | |||
|
49 | walk=1) | |||
|
50 | ||||
|
51 | opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') | |||
|
52 | ||||
|
53 | ||||
|
54 | #-------------------------------------------------------------------------------------------------- | |||
|
55 | ||||
|
56 | procUnitConfObj0 = controllerObj.addProcUnit(datatype='VoltageProc', inputId=readUnitConfObj.getId()) | |||
|
57 | ||||
|
58 | opObj00 = procUnitConfObj0.addOperation(name='selectChannels') | |||
|
59 | opObj00.addParameter(name='channelList', value='0, 1, 2, 3, 4', format='intlist') | |||
|
60 | ||||
|
61 | opObj01 = procUnitConfObj0.addOperation(name='setRadarFrequency') | |||
|
62 | # opObj01.addParameter(name='frequency', value='30.e6', format='float') | |||
|
63 | opObj01.addParameter(name='frequency', value='50.e6', format='float') | |||
|
64 | ||||
|
65 | #opObj11 = procUnitConfObj0.addOperation(name='Decoder', optype='other') | |||
|
66 | #-------------------------------------------------------------------------------------------------- | |||
|
67 | ||||
|
68 | procUnitConfObj1 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=procUnitConfObj0.getId()) | |||
|
69 | procUnitConfObj1.addParameter(name='nSeconds', value='100', format='int') | |||
|
70 | ||||
|
71 | opObj10 = procUnitConfObj1.addOperation(name='MeteorDetection') | |||
|
72 | # opObj10.addParameter(name='predefinedPhaseShifts', value='-89.5, 41.5, 0.0, -138.0, -85.5', format='floatlist') | |||
|
73 | opObj10.addParameter(name='predefinedPhaseShifts', value='0, 0, 0, 0, 0', format='floatlist') | |||
|
74 | opObj10.addParameter(name='cohDetection', value='0', format='bool') | |||
|
75 | opObj10.addParameter(name='noise_multiple', value='4', format='int') | |||
|
76 | opObj10.addParameter(name='SNRThresh', value='5', format='float') | |||
|
77 | opObj10.addParameter(name='phaseThresh', value='20', format='float') | |||
|
78 | opObj10.addParameter(name='azimuth', value='45', format='float') | |||
|
79 | opObj10.addParameter(name='hmin', value='68', format='float') | |||
|
80 | opObj10.addParameter(name='hmax', value='112', format='float') | |||
|
81 | opObj10.addParameter(name='saveAll', value='1', format='bool') | |||
|
82 | ||||
|
83 | opObj12 = procUnitConfObj1.addOperation(name='HDF5Writer', optype='other') | |||
|
84 | opObj12.addParameter(name='path', value=pathfile1) | |||
|
85 | opObj12.addParameter(name='blocksPerFile', value='1000', format='int') | |||
|
86 | opObj12.addParameter(name='metadataList',value='type,inputUnit,heightList,paramInterval',format='list') | |||
|
87 | opObj12.addParameter(name='dataList',value='data_param',format='list') | |||
|
88 | opObj12.addParameter(name='mode',value='0',format='int') | |||
|
89 | #Tiene que ser de 3 dimensiones, append en lugar de aumentar una dimension | |||
|
90 | ||||
|
91 | opObj13 = procUnitConfObj1.addOperation(name='SkyMapPlot', optype='other') | |||
|
92 | opObj13.addParameter(name='id', value='1', format='int') | |||
|
93 | opObj13.addParameter(name='wintitle', value='Sky Map', format='str') | |||
|
94 | opObj13.addParameter(name='save', value='1', format='bool') | |||
|
95 | opObj13.addParameter(name='figpath', value=pathfig, format='str') | |||
|
96 | opObj13.addParameter(name='ftp', value='1', format='int') | |||
|
97 | opObj13.addParameter(name='exp_code', value='15', format='int') | |||
|
98 | opObj13.addParameter(name='sub_exp_code', value='1', format='int') | |||
|
99 | ||||
|
100 | ||||
|
101 | #-------------------------------------------------------------------------------------------------- | |||
|
102 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=procUnitConfObj1.getId()) | |||
|
103 | ||||
|
104 | opObj22 = procUnitConfObj2.addOperation(name='WindProfiler', optype='other') | |||
|
105 | opObj22.addParameter(name='technique', value='Meteors', format='str') | |||
|
106 | opObj22.addParameter(name='nHours', value='0.25', format='float') | |||
|
107 | opObj22.addParameter(name='SNRThresh', value='12.0', format='float') | |||
|
108 | ||||
|
109 | opObj23 = procUnitConfObj2.addOperation(name='WindProfilerPlot', optype='other') | |||
|
110 | opObj23.addParameter(name='id', value='2', format='int') | |||
|
111 | opObj23.addParameter(name='wintitle', value='Wind Profiler', format='str') | |||
|
112 | opObj23.addParameter(name='save', value='1', format='bool') | |||
|
113 | opObj23.addParameter(name='figpath', value = pathfig, format='str') | |||
|
114 | opObj23.addParameter(name='zmin', value='-120', format='int') | |||
|
115 | opObj23.addParameter(name='zmax', value='120', format='int') | |||
|
116 | # opObj12.addParameter(name='zmin_ver', value='-0.8', format='float') | |||
|
117 | # opObj12.addParameter(name='zmax_ver', value='0.8', format='float') | |||
|
118 | # opObj23.addParameter(name='SNRmin', value='-10', format='int') | |||
|
119 | # opObj23.addParameter(name='SNRmax', value='60', format='int') | |||
|
120 | # opObj23.addParameter(name='SNRthresh', value='0', format='float') | |||
|
121 | opObj23.addParameter(name='xmin', value=xmin, format='float') | |||
|
122 | opObj23.addParameter(name='xmax', value=xmax, format='float') | |||
|
123 | opObj23.addParameter(name='ftp', value='1', format='int') | |||
|
124 | opObj23.addParameter(name='exp_code', value='15', format='int') | |||
|
125 | opObj23.addParameter(name='sub_exp_code', value='1', format='int') | |||
|
126 | ||||
|
127 | opObj24 = procUnitConfObj2.addOperation(name='HDF5Writer', optype='other') | |||
|
128 | opObj24.addParameter(name='path', value=pathfile2) | |||
|
129 | opObj24.addParameter(name='blocksPerFile', value='1000', format='int') | |||
|
130 | opObj24.addParameter(name='metadataList',value='type,inputUnit,outputInterval',format='list') | |||
|
131 | opObj24.addParameter(name='dataList',value='data_output,utctime',format='list') | |||
|
132 | ||||
|
133 | #-------------------------------------------------------------------------------------------------- | |||
|
134 | procUnitConfObj3 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=procUnitConfObj1.getId()) | |||
|
135 | ||||
|
136 | ||||
|
137 | opObj31 = procUnitConfObj3.addOperation(name='PhaseCalibration', optype='other') | |||
|
138 | opObj31.addParameter(name='nHours', value='0.25', format='float') | |||
|
139 | opObj31.addParameter(name='distances', value='-15, -15, 12, 12', format='intlist') | |||
|
140 | # opObj31.addParameter(name='distances', value='-25, -25, 20, 20', format='intlist') | |||
|
141 | opObj31.addParameter(name='pairs', value='(0,3),(1,2)', format='pairslist') | |||
|
142 | opObj31.addParameter(name='hmin', value='68', format='float') | |||
|
143 | opObj31.addParameter(name='hmax', value='112', format='float') | |||
|
144 | ||||
|
145 | opObj32 = procUnitConfObj3.addOperation(name='PhasePlot', optype='other') | |||
|
146 | opObj32.addParameter(name='id', value='201', format='int') | |||
|
147 | opObj32.addParameter(name='wintitle', value='PhaseCalibration', format='str') | |||
|
148 | # opObj32.addParameter(name='timerange', value='300', format='int') | |||
|
149 | opObj32.addParameter(name='xmin', value=xmin, format='float') | |||
|
150 | opObj32.addParameter(name='xmax', value=xmax, format='float') | |||
|
151 | # opObj32.addParameter(name='xmin', value='19', format='float') | |||
|
152 | # opObj32.addParameter(name='xmax', value='20', format='float') | |||
|
153 | opObj32.addParameter(name='ymin', value='-180', format='float') | |||
|
154 | opObj32.addParameter(name='ymax', value='180', format='float') | |||
|
155 | opObj32.addParameter(name='figpath', value=pathfig, format='str') | |||
|
156 | opObj32.addParameter(name='ftp', value='1', format='int') | |||
|
157 | opObj32.addParameter(name='exp_code', value='15', format='int') | |||
|
158 | opObj32.addParameter(name='sub_exp_code', value='1', format='int') | |||
|
159 | ||||
|
160 | opObj33 = procUnitConfObj3.addOperation(name='HDF5Writer', optype='other') | |||
|
161 | opObj33.addParameter(name='path', value=pathfile3) | |||
|
162 | opObj33.addParameter(name='blocksPerFile', value='1000', format='int') | |||
|
163 | opObj33.addParameter(name='metadataList',value='type,inputUnit,outputInterval',format='list') | |||
|
164 | opObj33.addParameter(name='dataList',value='data_output,utctime',format='list') | |||
|
165 | # opObj25.addParameter(name='mode',value='1,0,0',format='intlist') | |||
|
166 | ||||
|
167 | #-------------------------------------------------------------------------------------------------- | |||
|
168 | ||||
|
169 | procUnitConfObj4 = controllerObj.addProcUnit(name='SendToServer') | |||
|
170 | procUnitConfObj4.addParameter(name='server', value='jro-app.igp.gob.pe', format='str') | |||
|
171 | procUnitConfObj4.addParameter(name='username', value='wmaster', format='str') | |||
|
172 | procUnitConfObj4.addParameter(name='password', value='mst2010vhf', format='str') | |||
|
173 | procUnitConfObj4.addParameter(name='localfolder', value=pathfig, format='str') | |||
|
174 | procUnitConfObj4.addParameter(name='remotefolder', value=remotefolder, format='str') | |||
|
175 | procUnitConfObj4.addParameter(name='ext', value='.png', format='str') | |||
|
176 | procUnitConfObj4.addParameter(name='period', value=20, format='int') | |||
|
177 | procUnitConfObj4.addParameter(name='protocol', value='ftp', format='str') | |||
|
178 | ||||
|
179 | #-------------------------------------------------------------------------------------------------- | |||
|
180 | ||||
|
181 | print "Escribiendo el archivo XML" | |||
|
182 | controllerObj.writeXml(filename) | |||
|
183 | print "Leyendo el archivo XML" | |||
|
184 | controllerObj.readXml(filename) | |||
|
185 | ||||
|
186 | controllerObj.createObjects() | |||
|
187 | controllerObj.connectObjects() | |||
|
188 | controllerObj.run() No newline at end of file |
@@ -0,0 +1,56 | |||||
|
1 | """ | |||
|
2 | Se debe verficar que el disco de datos se encuentra montado en el sistema | |||
|
3 | """ | |||
|
4 | import os, sys | |||
|
5 | ||||
|
6 | path = os.path.split(os.getcwd())[0] | |||
|
7 | path = os.path.split(path)[0] | |||
|
8 | ||||
|
9 | sys.path.insert(0, path) | |||
|
10 | ||||
|
11 | from schainpy.controller import Project | |||
|
12 | ||||
|
13 | desc = "Meteor Experiment Test" | |||
|
14 | filename = "meteor20130812.xml" | |||
|
15 | ||||
|
16 | controllerObj = Project() | |||
|
17 | controllerObj.setup(id = '191', name='meteor_test01', description=desc) | |||
|
18 | ||||
|
19 | path = '/home/dsuarez/.gvfs/data on 10.10.20.13/Jasmet50' | |||
|
20 | ||||
|
21 | ||||
|
22 | readUnitConfObj = controllerObj.addReadUnit(datatype='Voltage', | |||
|
23 | path=path, | |||
|
24 | startDate='2014/04/16', | |||
|
25 | endDate='2014/04/16', | |||
|
26 | startTime='00:00:00', | |||
|
27 | endTime='23:59:59', | |||
|
28 | online=0, | |||
|
29 | walk=1) | |||
|
30 | ||||
|
31 | opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') | |||
|
32 | ||||
|
33 | procUnitConfObj0 = controllerObj.addProcUnit(datatype='Voltage', inputId=readUnitConfObj.getId()) | |||
|
34 | ||||
|
35 | ||||
|
36 | opObj11 = procUnitConfObj0.addOperation(name='Decoder', optype='other') | |||
|
37 | ||||
|
38 | ||||
|
39 | opObj11 = procUnitConfObj0.addOperation(name='CohInt', optype='other') | |||
|
40 | opObj11.addParameter(name='n', value='2', format='int') | |||
|
41 | ||||
|
42 | opObj11 = procUnitConfObj0.addOperation(name='VoltageWriter', optype='other') | |||
|
43 | opObj11.addParameter(name='path', value='/home/jasmet/jasmet30_abril') | |||
|
44 | opObj11.addParameter(name='blocksPerFile', value='100', format='int') | |||
|
45 | opObj11.addParameter(name='profilesPerBlock', value='200', format='int') | |||
|
46 | ||||
|
47 | ||||
|
48 | ||||
|
49 | print "Escribiendo el archivo XML" | |||
|
50 | controllerObj.writeXml(filename) | |||
|
51 | print "Leyendo el archivo XML" | |||
|
52 | controllerObj.readXml(filename) | |||
|
53 | ||||
|
54 | controllerObj.createObjects() | |||
|
55 | controllerObj.connectObjects() | |||
|
56 | controllerObj.run() |
@@ -1,1115 +1,1124 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import copy |
|
7 | import copy | |
8 | import numpy |
|
8 | import numpy | |
9 | import datetime |
|
9 | import datetime | |
10 |
|
10 | |||
11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
11 | from jroheaderIO import SystemHeader, RadarControllerHeader | |
12 |
|
12 | |||
13 | def getNumpyDtype(dataTypeCode): |
|
13 | def getNumpyDtype(dataTypeCode): | |
14 |
|
14 | |||
15 | if dataTypeCode == 0: |
|
15 | if dataTypeCode == 0: | |
16 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
16 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) | |
17 | elif dataTypeCode == 1: |
|
17 | elif dataTypeCode == 1: | |
18 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
18 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) | |
19 | elif dataTypeCode == 2: |
|
19 | elif dataTypeCode == 2: | |
20 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
20 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) | |
21 | elif dataTypeCode == 3: |
|
21 | elif dataTypeCode == 3: | |
22 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
22 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) | |
23 | elif dataTypeCode == 4: |
|
23 | elif dataTypeCode == 4: | |
24 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
24 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
25 | elif dataTypeCode == 5: |
|
25 | elif dataTypeCode == 5: | |
26 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
26 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) | |
27 | else: |
|
27 | else: | |
28 | raise ValueError, 'dataTypeCode was not defined' |
|
28 | raise ValueError, 'dataTypeCode was not defined' | |
29 |
|
29 | |||
30 | return numpyDtype |
|
30 | return numpyDtype | |
31 |
|
31 | |||
32 | def getDataTypeCode(numpyDtype): |
|
32 | def getDataTypeCode(numpyDtype): | |
33 |
|
33 | |||
34 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
34 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): | |
35 | datatype = 0 |
|
35 | datatype = 0 | |
36 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
36 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): | |
37 | datatype = 1 |
|
37 | datatype = 1 | |
38 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
38 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): | |
39 | datatype = 2 |
|
39 | datatype = 2 | |
40 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
40 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): | |
41 | datatype = 3 |
|
41 | datatype = 3 | |
42 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
42 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): | |
43 | datatype = 4 |
|
43 | datatype = 4 | |
44 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
44 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): | |
45 | datatype = 5 |
|
45 | datatype = 5 | |
46 | else: |
|
46 | else: | |
47 | datatype = None |
|
47 | datatype = None | |
48 |
|
48 | |||
49 | return datatype |
|
49 | return datatype | |
50 |
|
50 | |||
51 | def hildebrand_sekhon(data, navg): |
|
51 | def hildebrand_sekhon(data, navg): | |
52 | """ |
|
52 | """ | |
53 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
53 | This method is for the objective determination of the noise level in Doppler spectra. This | |
54 | implementation technique is based on the fact that the standard deviation of the spectral |
|
54 | implementation technique is based on the fact that the standard deviation of the spectral | |
55 | densities is equal to the mean spectral density for white Gaussian noise |
|
55 | densities is equal to the mean spectral density for white Gaussian noise | |
56 |
|
56 | |||
57 | Inputs: |
|
57 | Inputs: | |
58 | Data : heights |
|
58 | Data : heights | |
59 | navg : numbers of averages |
|
59 | navg : numbers of averages | |
60 |
|
60 | |||
61 | Return: |
|
61 | Return: | |
62 | -1 : any error |
|
62 | -1 : any error | |
63 | anoise : noise's level |
|
63 | anoise : noise's level | |
64 | """ |
|
64 | """ | |
65 |
|
65 | |||
66 | sortdata = numpy.sort(data,axis=None) |
|
66 | sortdata = numpy.sort(data,axis=None) | |
67 | lenOfData = len(sortdata) |
|
67 | lenOfData = len(sortdata) | |
68 | nums_min = lenOfData/10 |
|
68 | nums_min = lenOfData/10 | |
69 |
|
69 | |||
70 | if (lenOfData/10) > 2: |
|
70 | if (lenOfData/10) > 2: | |
71 | nums_min = lenOfData/10 |
|
71 | nums_min = lenOfData/10 | |
72 | else: |
|
72 | else: | |
73 | nums_min = 2 |
|
73 | nums_min = 2 | |
74 |
|
74 | |||
75 | sump = 0. |
|
75 | sump = 0. | |
76 |
|
76 | |||
77 | sumq = 0. |
|
77 | sumq = 0. | |
78 |
|
78 | |||
79 | j = 0 |
|
79 | j = 0 | |
80 |
|
80 | |||
81 | cont = 1 |
|
81 | cont = 1 | |
82 |
|
82 | |||
83 | while((cont==1)and(j<lenOfData)): |
|
83 | while((cont==1)and(j<lenOfData)): | |
84 |
|
84 | |||
85 | sump += sortdata[j] |
|
85 | sump += sortdata[j] | |
86 |
|
86 | |||
87 | sumq += sortdata[j]**2 |
|
87 | sumq += sortdata[j]**2 | |
88 |
|
88 | |||
89 | if j > nums_min: |
|
89 | if j > nums_min: | |
90 | rtest = float(j)/(j-1) + 1.0/navg |
|
90 | rtest = float(j)/(j-1) + 1.0/navg | |
91 | if ((sumq*j) > (rtest*sump**2)): |
|
91 | if ((sumq*j) > (rtest*sump**2)): | |
92 | j = j - 1 |
|
92 | j = j - 1 | |
93 | sump = sump - sortdata[j] |
|
93 | sump = sump - sortdata[j] | |
94 | sumq = sumq - sortdata[j]**2 |
|
94 | sumq = sumq - sortdata[j]**2 | |
95 | cont = 0 |
|
95 | cont = 0 | |
96 |
|
96 | |||
97 | j += 1 |
|
97 | j += 1 | |
98 |
|
98 | |||
99 | lnoise = sump /j |
|
99 | lnoise = sump /j | |
100 | stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) |
|
100 | stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) | |
101 | return lnoise |
|
101 | return lnoise | |
102 |
|
102 | |||
103 | class Beam: |
|
103 | class Beam: | |
104 | def __init__(self): |
|
104 | def __init__(self): | |
105 | self.codeList = [] |
|
105 | self.codeList = [] | |
106 | self.azimuthList = [] |
|
106 | self.azimuthList = [] | |
107 | self.zenithList = [] |
|
107 | self.zenithList = [] | |
108 |
|
108 | |||
109 | class GenericData(object): |
|
109 | class GenericData(object): | |
110 |
|
110 | |||
111 | flagNoData = True |
|
111 | flagNoData = True | |
112 |
|
112 | |||
113 | def __init__(self): |
|
113 | def __init__(self): | |
114 |
|
114 | |||
115 | raise ValueError, "This class has not been implemented" |
|
115 | raise ValueError, "This class has not been implemented" | |
116 |
|
116 | |||
117 | def copy(self, inputObj=None): |
|
117 | def copy(self, inputObj=None): | |
118 |
|
118 | |||
119 | if inputObj == None: |
|
119 | if inputObj == None: | |
120 | return copy.deepcopy(self) |
|
120 | return copy.deepcopy(self) | |
121 |
|
121 | |||
122 | for key in inputObj.__dict__.keys(): |
|
122 | for key in inputObj.__dict__.keys(): | |
123 | self.__dict__[key] = inputObj.__dict__[key] |
|
123 | self.__dict__[key] = inputObj.__dict__[key] | |
124 |
|
124 | |||
125 | def deepcopy(self): |
|
125 | def deepcopy(self): | |
126 |
|
126 | |||
127 | return copy.deepcopy(self) |
|
127 | return copy.deepcopy(self) | |
128 |
|
128 | |||
129 | def isEmpty(self): |
|
129 | def isEmpty(self): | |
130 |
|
130 | |||
131 | return self.flagNoData |
|
131 | return self.flagNoData | |
132 |
|
132 | |||
133 | class JROData(GenericData): |
|
133 | class JROData(GenericData): | |
134 |
|
134 | |||
135 | # m_BasicHeader = BasicHeader() |
|
135 | # m_BasicHeader = BasicHeader() | |
136 | # m_ProcessingHeader = ProcessingHeader() |
|
136 | # m_ProcessingHeader = ProcessingHeader() | |
137 |
|
137 | |||
138 | systemHeaderObj = SystemHeader() |
|
138 | systemHeaderObj = SystemHeader() | |
139 |
|
139 | |||
140 | radarControllerHeaderObj = RadarControllerHeader() |
|
140 | radarControllerHeaderObj = RadarControllerHeader() | |
141 |
|
141 | |||
142 | # data = None |
|
142 | # data = None | |
143 |
|
143 | |||
144 | type = None |
|
144 | type = None | |
145 |
|
145 | |||
146 | datatype = None #dtype but in string |
|
146 | datatype = None #dtype but in string | |
147 |
|
147 | |||
148 | # dtype = None |
|
148 | # dtype = None | |
149 |
|
149 | |||
150 | # nChannels = None |
|
150 | # nChannels = None | |
151 |
|
151 | |||
152 | # nHeights = None |
|
152 | # nHeights = None | |
153 |
|
153 | |||
154 | nProfiles = None |
|
154 | nProfiles = None | |
155 |
|
155 | |||
156 | heightList = None |
|
156 | heightList = None | |
157 |
|
157 | |||
158 | channelList = None |
|
158 | channelList = None | |
159 |
|
159 | |||
160 | flagDiscontinuousBlock = False |
|
160 | flagDiscontinuousBlock = False | |
161 |
|
161 | |||
162 | useLocalTime = False |
|
162 | useLocalTime = False | |
163 |
|
163 | |||
164 | utctime = None |
|
164 | utctime = None | |
165 |
|
165 | |||
166 | timeZone = None |
|
166 | timeZone = None | |
167 |
|
167 | |||
168 | dstFlag = None |
|
168 | dstFlag = None | |
169 |
|
169 | |||
170 | errorCount = None |
|
170 | errorCount = None | |
171 |
|
171 | |||
172 | blocksize = None |
|
172 | blocksize = None | |
173 |
|
173 | |||
174 | # nCode = None |
|
174 | # nCode = None | |
175 | # |
|
175 | # | |
176 | # nBaud = None |
|
176 | # nBaud = None | |
177 | # |
|
177 | # | |
178 | # code = None |
|
178 | # code = None | |
179 |
|
179 | |||
180 | flagDecodeData = False #asumo q la data no esta decodificada |
|
180 | flagDecodeData = False #asumo q la data no esta decodificada | |
181 |
|
181 | |||
182 | flagDeflipData = False #asumo q la data no esta sin flip |
|
182 | flagDeflipData = False #asumo q la data no esta sin flip | |
183 |
|
183 | |||
184 | flagShiftFFT = False |
|
184 | flagShiftFFT = False | |
185 |
|
185 | |||
186 | # ippSeconds = None |
|
186 | # ippSeconds = None | |
187 |
|
187 | |||
188 | # timeInterval = None |
|
188 | # timeInterval = None | |
189 |
|
189 | |||
190 | nCohInt = None |
|
190 | nCohInt = None | |
191 |
|
191 | |||
192 | # noise = None |
|
192 | # noise = None | |
193 |
|
193 | |||
194 | windowOfFilter = 1 |
|
194 | windowOfFilter = 1 | |
195 |
|
195 | |||
196 | #Speed of ligth |
|
196 | #Speed of ligth | |
197 | C = 3e8 |
|
197 | C = 3e8 | |
198 |
|
198 | |||
199 | frequency = 49.92e6 |
|
199 | frequency = 49.92e6 | |
200 |
|
200 | |||
201 | realtime = False |
|
201 | realtime = False | |
202 |
|
202 | |||
203 | beacon_heiIndexList = None |
|
203 | beacon_heiIndexList = None | |
204 |
|
204 | |||
205 | last_block = None |
|
205 | last_block = None | |
206 |
|
206 | |||
207 | blocknow = None |
|
207 | blocknow = None | |
208 |
|
208 | |||
209 | azimuth = None |
|
209 | azimuth = None | |
210 |
|
210 | |||
211 | zenith = None |
|
211 | zenith = None | |
212 |
|
212 | |||
213 | beam = Beam() |
|
213 | beam = Beam() | |
214 |
|
214 | |||
215 | profileIndex = None |
|
215 | profileIndex = None | |
216 |
|
216 | |||
217 | def __init__(self): |
|
217 | def __init__(self): | |
218 |
|
218 | |||
219 | raise ValueError, "This class has not been implemented" |
|
219 | raise ValueError, "This class has not been implemented" | |
220 |
|
220 | |||
221 | def getNoise(self): |
|
221 | def getNoise(self): | |
222 |
|
222 | |||
223 | raise ValueError, "Not implemented" |
|
223 | raise ValueError, "Not implemented" | |
224 |
|
224 | |||
225 | def getNChannels(self): |
|
225 | def getNChannels(self): | |
226 |
|
226 | |||
227 | return len(self.channelList) |
|
227 | return len(self.channelList) | |
228 |
|
228 | |||
229 | def getChannelIndexList(self): |
|
229 | def getChannelIndexList(self): | |
230 |
|
230 | |||
231 | return range(self.nChannels) |
|
231 | return range(self.nChannels) | |
232 |
|
232 | |||
233 | def getNHeights(self): |
|
233 | def getNHeights(self): | |
234 |
|
234 | |||
235 | return len(self.heightList) |
|
235 | return len(self.heightList) | |
236 |
|
236 | |||
237 | def getHeiRange(self, extrapoints=0): |
|
237 | def getHeiRange(self, extrapoints=0): | |
238 |
|
238 | |||
239 | heis = self.heightList |
|
239 | heis = self.heightList | |
240 | # deltah = self.heightList[1] - self.heightList[0] |
|
240 | # deltah = self.heightList[1] - self.heightList[0] | |
241 | # |
|
241 | # | |
242 | # heis.append(self.heightList[-1]) |
|
242 | # heis.append(self.heightList[-1]) | |
243 |
|
243 | |||
244 | return heis |
|
244 | return heis | |
245 |
|
245 | |||
246 | def getltctime(self): |
|
246 | def getltctime(self): | |
247 |
|
247 | |||
248 | if self.useLocalTime: |
|
248 | if self.useLocalTime: | |
249 | return self.utctime - self.timeZone*60 |
|
249 | return self.utctime - self.timeZone*60 | |
250 |
|
250 | |||
251 | return self.utctime |
|
251 | return self.utctime | |
252 |
|
252 | |||
253 | def getDatatime(self): |
|
253 | def getDatatime(self): | |
254 |
|
254 | |||
255 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
255 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
256 | return datatimeValue |
|
256 | return datatimeValue | |
257 |
|
257 | |||
258 | def getTimeRange(self): |
|
258 | def getTimeRange(self): | |
259 |
|
259 | |||
260 | datatime = [] |
|
260 | datatime = [] | |
261 |
|
261 | |||
262 | datatime.append(self.ltctime) |
|
262 | datatime.append(self.ltctime) | |
263 | datatime.append(self.ltctime + self.timeInterval+60) |
|
263 | datatime.append(self.ltctime + self.timeInterval+60) | |
264 |
|
264 | |||
265 | datatime = numpy.array(datatime) |
|
265 | datatime = numpy.array(datatime) | |
266 |
|
266 | |||
267 | return datatime |
|
267 | return datatime | |
268 |
|
268 | |||
269 | def getFmax(self): |
|
269 | def getFmax(self): | |
270 |
|
270 | |||
271 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
271 | PRF = 1./(self.ippSeconds * self.nCohInt) | |
272 |
|
272 | |||
273 | fmax = PRF/2. |
|
273 | fmax = PRF/2. | |
274 |
|
274 | |||
275 | return fmax |
|
275 | return fmax | |
276 |
|
276 | |||
277 | def getVmax(self): |
|
277 | def getVmax(self): | |
278 |
|
278 | |||
279 | _lambda = self.C/self.frequency |
|
279 | _lambda = self.C/self.frequency | |
280 |
|
280 | |||
281 | vmax = self.getFmax() * _lambda |
|
281 | vmax = self.getFmax() * _lambda | |
282 |
|
282 | |||
283 | return vmax |
|
283 | return vmax | |
284 |
|
284 | |||
285 | def get_ippSeconds(self): |
|
285 | def get_ippSeconds(self): | |
286 | ''' |
|
286 | ''' | |
287 | ''' |
|
287 | ''' | |
288 | return self.radarControllerHeaderObj.ippSeconds |
|
288 | return self.radarControllerHeaderObj.ippSeconds | |
289 |
|
289 | |||
290 | def set_ippSeconds(self, ippSeconds): |
|
290 | def set_ippSeconds(self, ippSeconds): | |
291 | ''' |
|
291 | ''' | |
292 | ''' |
|
292 | ''' | |
293 |
|
293 | |||
294 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
294 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
295 |
|
295 | |||
296 | return |
|
296 | return | |
297 |
|
297 | |||
298 | def get_dtype(self): |
|
298 | def get_dtype(self): | |
299 | ''' |
|
299 | ''' | |
300 | ''' |
|
300 | ''' | |
301 | return getNumpyDtype(self.datatype) |
|
301 | return getNumpyDtype(self.datatype) | |
302 |
|
302 | |||
303 | def set_dtype(self, numpyDtype): |
|
303 | def set_dtype(self, numpyDtype): | |
304 | ''' |
|
304 | ''' | |
305 | ''' |
|
305 | ''' | |
306 |
|
306 | |||
307 | self.datatype = getDataTypeCode(numpyDtype) |
|
307 | self.datatype = getDataTypeCode(numpyDtype) | |
308 |
|
308 | |||
309 | def get_code(self): |
|
309 | def get_code(self): | |
310 | ''' |
|
310 | ''' | |
311 | ''' |
|
311 | ''' | |
312 | return self.radarControllerHeaderObj.code |
|
312 | return self.radarControllerHeaderObj.code | |
313 |
|
313 | |||
314 | def set_code(self, code): |
|
314 | def set_code(self, code): | |
315 | ''' |
|
315 | ''' | |
316 | ''' |
|
316 | ''' | |
317 | self.radarControllerHeaderObj.code = code |
|
317 | self.radarControllerHeaderObj.code = code | |
318 |
|
318 | |||
319 | return |
|
319 | return | |
320 |
|
320 | |||
321 | def get_ncode(self): |
|
321 | def get_ncode(self): | |
322 | ''' |
|
322 | ''' | |
323 | ''' |
|
323 | ''' | |
324 | return self.radarControllerHeaderObj.nCode |
|
324 | return self.radarControllerHeaderObj.nCode | |
325 |
|
325 | |||
326 | def set_ncode(self, nCode): |
|
326 | def set_ncode(self, nCode): | |
327 | ''' |
|
327 | ''' | |
328 | ''' |
|
328 | ''' | |
329 | self.radarControllerHeaderObj.nCode = nCode |
|
329 | self.radarControllerHeaderObj.nCode = nCode | |
330 |
|
330 | |||
331 | return |
|
331 | return | |
332 |
|
332 | |||
333 | def get_nbaud(self): |
|
333 | def get_nbaud(self): | |
334 | ''' |
|
334 | ''' | |
335 | ''' |
|
335 | ''' | |
336 | return self.radarControllerHeaderObj.nBaud |
|
336 | return self.radarControllerHeaderObj.nBaud | |
337 |
|
337 | |||
338 | def set_nbaud(self, nBaud): |
|
338 | def set_nbaud(self, nBaud): | |
339 | ''' |
|
339 | ''' | |
340 | ''' |
|
340 | ''' | |
341 | self.radarControllerHeaderObj.nBaud = nBaud |
|
341 | self.radarControllerHeaderObj.nBaud = nBaud | |
342 |
|
342 | |||
343 | return |
|
343 | return | |
344 | # def getTimeInterval(self): |
|
344 | # def getTimeInterval(self): | |
345 | # |
|
345 | # | |
346 | # raise IOError, "This method should be implemented inside each Class" |
|
346 | # raise IOError, "This method should be implemented inside each Class" | |
347 |
|
347 | |||
348 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
348 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
349 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
349 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
350 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
350 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
351 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
351 | #noise = property(getNoise, "I'm the 'nHeights' property.") | |
352 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
352 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
353 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
353 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
354 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
354 | ippSeconds = property(get_ippSeconds, set_ippSeconds) | |
355 | dtype = property(get_dtype, set_dtype) |
|
355 | dtype = property(get_dtype, set_dtype) | |
356 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
356 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
357 | code = property(get_code, set_code) |
|
357 | code = property(get_code, set_code) | |
358 | nCode = property(get_ncode, set_ncode) |
|
358 | nCode = property(get_ncode, set_ncode) | |
359 | nBaud = property(get_nbaud, set_nbaud) |
|
359 | nBaud = property(get_nbaud, set_nbaud) | |
360 |
|
360 | |||
361 | class Voltage(JROData): |
|
361 | class Voltage(JROData): | |
362 |
|
362 | |||
363 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
363 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
364 | data = None |
|
364 | data = None | |
365 |
|
365 | |||
366 | def __init__(self): |
|
366 | def __init__(self): | |
367 | ''' |
|
367 | ''' | |
368 | Constructor |
|
368 | Constructor | |
369 | ''' |
|
369 | ''' | |
370 |
|
370 | |||
371 | self.useLocalTime = True |
|
371 | self.useLocalTime = True | |
372 |
|
372 | |||
373 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
373 | self.radarControllerHeaderObj = RadarControllerHeader() | |
374 |
|
374 | |||
375 | self.systemHeaderObj = SystemHeader() |
|
375 | self.systemHeaderObj = SystemHeader() | |
376 |
|
376 | |||
377 | self.type = "Voltage" |
|
377 | self.type = "Voltage" | |
378 |
|
378 | |||
379 | self.data = None |
|
379 | self.data = None | |
380 |
|
380 | |||
381 | # self.dtype = None |
|
381 | # self.dtype = None | |
382 |
|
382 | |||
383 | # self.nChannels = 0 |
|
383 | # self.nChannels = 0 | |
384 |
|
384 | |||
385 | # self.nHeights = 0 |
|
385 | # self.nHeights = 0 | |
386 |
|
386 | |||
387 | self.nProfiles = None |
|
387 | self.nProfiles = None | |
388 |
|
388 | |||
389 | self.heightList = None |
|
389 | self.heightList = None | |
390 |
|
390 | |||
391 | self.channelList = None |
|
391 | self.channelList = None | |
392 |
|
392 | |||
393 | # self.channelIndexList = None |
|
393 | # self.channelIndexList = None | |
394 |
|
394 | |||
395 | self.flagNoData = True |
|
395 | self.flagNoData = True | |
396 |
|
396 | |||
397 | self.flagDiscontinuousBlock = False |
|
397 | self.flagDiscontinuousBlock = False | |
398 |
|
398 | |||
399 | self.utctime = None |
|
399 | self.utctime = None | |
400 |
|
400 | |||
401 | self.timeZone = None |
|
401 | self.timeZone = None | |
402 |
|
402 | |||
403 | self.dstFlag = None |
|
403 | self.dstFlag = None | |
404 |
|
404 | |||
405 | self.errorCount = None |
|
405 | self.errorCount = None | |
406 |
|
406 | |||
407 | self.nCohInt = None |
|
407 | self.nCohInt = None | |
408 |
|
408 | |||
409 | self.blocksize = None |
|
409 | self.blocksize = None | |
410 |
|
410 | |||
411 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
411 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
412 |
|
412 | |||
413 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
413 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
414 |
|
414 | |||
415 | self.flagShiftFFT = False |
|
415 | self.flagShiftFFT = False | |
416 |
|
416 | |||
417 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
417 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil | |
418 |
|
418 | |||
419 | self.profileIndex = 0 |
|
419 | self.profileIndex = 0 | |
420 |
|
420 | |||
421 | def getNoisebyHildebrand(self, channel = None): |
|
421 | def getNoisebyHildebrand(self, channel = None): | |
422 | """ |
|
422 | """ | |
423 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
423 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
424 |
|
424 | |||
425 | Return: |
|
425 | Return: | |
426 | noiselevel |
|
426 | noiselevel | |
427 | """ |
|
427 | """ | |
428 |
|
428 | |||
429 | if channel != None: |
|
429 | if channel != None: | |
430 | data = self.data[channel] |
|
430 | data = self.data[channel] | |
431 | nChannels = 1 |
|
431 | nChannels = 1 | |
432 | else: |
|
432 | else: | |
433 | data = self.data |
|
433 | data = self.data | |
434 | nChannels = self.nChannels |
|
434 | nChannels = self.nChannels | |
435 |
|
435 | |||
436 | noise = numpy.zeros(nChannels) |
|
436 | noise = numpy.zeros(nChannels) | |
437 | power = data * numpy.conjugate(data) |
|
437 | power = data * numpy.conjugate(data) | |
438 |
|
438 | |||
439 | for thisChannel in range(nChannels): |
|
439 | for thisChannel in range(nChannels): | |
440 | if nChannels == 1: |
|
440 | if nChannels == 1: | |
441 | daux = power[:].real |
|
441 | daux = power[:].real | |
442 | else: |
|
442 | else: | |
443 | daux = power[thisChannel,:].real |
|
443 | daux = power[thisChannel,:].real | |
444 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
444 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
445 |
|
445 | |||
446 | return noise |
|
446 | return noise | |
447 |
|
447 | |||
448 | def getNoise(self, type = 1, channel = None): |
|
448 | def getNoise(self, type = 1, channel = None): | |
449 |
|
449 | |||
450 | if type == 1: |
|
450 | if type == 1: | |
451 | noise = self.getNoisebyHildebrand(channel) |
|
451 | noise = self.getNoisebyHildebrand(channel) | |
452 |
|
452 | |||
453 | return 10*numpy.log10(noise) |
|
453 | return 10*numpy.log10(noise) | |
454 |
|
454 | |||
455 | def getPower(self, channel = None): |
|
455 | def getPower(self, channel = None): | |
456 |
|
456 | |||
457 | if channel != None: |
|
457 | if channel != None: | |
458 | data = self.data[channel] |
|
458 | data = self.data[channel] | |
459 | else: |
|
459 | else: | |
460 | data = self.data |
|
460 | data = self.data | |
461 |
|
461 | |||
462 | power = data * numpy.conjugate(data) |
|
462 | power = data * numpy.conjugate(data) | |
463 |
|
463 | |||
464 | return 10*numpy.log10(power.real) |
|
464 | return 10*numpy.log10(power.real) | |
465 |
|
465 | |||
466 | def getTimeInterval(self): |
|
466 | def getTimeInterval(self): | |
467 |
|
467 | |||
468 | timeInterval = self.ippSeconds * self.nCohInt |
|
468 | timeInterval = self.ippSeconds * self.nCohInt | |
469 |
|
469 | |||
470 | return timeInterval |
|
470 | return timeInterval | |
471 |
|
471 | |||
472 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
472 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
473 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
473 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
474 |
|
474 | |||
475 | class Spectra(JROData): |
|
475 | class Spectra(JROData): | |
476 |
|
476 | |||
477 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
477 | #data es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
478 | data_spc = None |
|
478 | data_spc = None | |
479 |
|
479 | |||
480 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
480 | #data es un numpy array de 2 dmensiones (canales, pares, alturas) | |
481 | data_cspc = None |
|
481 | data_cspc = None | |
482 |
|
482 | |||
483 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
483 | #data es un numpy array de 2 dmensiones (canales, alturas) | |
484 | data_dc = None |
|
484 | data_dc = None | |
485 |
|
485 | |||
486 | nFFTPoints = None |
|
486 | nFFTPoints = None | |
487 |
|
487 | |||
488 | # nPairs = None |
|
488 | # nPairs = None | |
489 |
|
489 | |||
490 | pairsList = None |
|
490 | pairsList = None | |
491 |
|
491 | |||
492 | nIncohInt = None |
|
492 | nIncohInt = None | |
493 |
|
493 | |||
494 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
494 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia | |
495 |
|
495 | |||
496 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
496 | nCohInt = None #se requiere para determinar el valor de timeInterval | |
497 |
|
497 | |||
498 | ippFactor = None |
|
498 | ippFactor = None | |
499 |
|
499 | |||
500 | profileIndex = 0 |
|
500 | profileIndex = 0 | |
501 |
|
501 | |||
502 | def __init__(self): |
|
502 | def __init__(self): | |
503 | ''' |
|
503 | ''' | |
504 | Constructor |
|
504 | Constructor | |
505 | ''' |
|
505 | ''' | |
506 |
|
506 | |||
507 | self.useLocalTime = True |
|
507 | self.useLocalTime = True | |
508 |
|
508 | |||
509 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
509 | self.radarControllerHeaderObj = RadarControllerHeader() | |
510 |
|
510 | |||
511 | self.systemHeaderObj = SystemHeader() |
|
511 | self.systemHeaderObj = SystemHeader() | |
512 |
|
512 | |||
513 | self.type = "Spectra" |
|
513 | self.type = "Spectra" | |
514 |
|
514 | |||
515 | # self.data = None |
|
515 | # self.data = None | |
516 |
|
516 | |||
517 | # self.dtype = None |
|
517 | # self.dtype = None | |
518 |
|
518 | |||
519 | # self.nChannels = 0 |
|
519 | # self.nChannels = 0 | |
520 |
|
520 | |||
521 | # self.nHeights = 0 |
|
521 | # self.nHeights = 0 | |
522 |
|
522 | |||
523 | self.nProfiles = None |
|
523 | self.nProfiles = None | |
524 |
|
524 | |||
525 | self.heightList = None |
|
525 | self.heightList = None | |
526 |
|
526 | |||
527 | self.channelList = None |
|
527 | self.channelList = None | |
528 |
|
528 | |||
529 | # self.channelIndexList = None |
|
529 | # self.channelIndexList = None | |
530 |
|
530 | |||
531 | self.pairsList = None |
|
531 | self.pairsList = None | |
532 |
|
532 | |||
533 | self.flagNoData = True |
|
533 | self.flagNoData = True | |
534 |
|
534 | |||
535 | self.flagDiscontinuousBlock = False |
|
535 | self.flagDiscontinuousBlock = False | |
536 |
|
536 | |||
537 | self.utctime = None |
|
537 | self.utctime = None | |
538 |
|
538 | |||
539 | self.nCohInt = None |
|
539 | self.nCohInt = None | |
540 |
|
540 | |||
541 | self.nIncohInt = None |
|
541 | self.nIncohInt = None | |
542 |
|
542 | |||
543 | self.blocksize = None |
|
543 | self.blocksize = None | |
544 |
|
544 | |||
545 | self.nFFTPoints = None |
|
545 | self.nFFTPoints = None | |
546 |
|
546 | |||
547 | self.wavelength = None |
|
547 | self.wavelength = None | |
548 |
|
548 | |||
549 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
549 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
550 |
|
550 | |||
551 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
551 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
552 |
|
552 | |||
553 | self.flagShiftFFT = False |
|
553 | self.flagShiftFFT = False | |
554 |
|
554 | |||
555 | self.ippFactor = 1 |
|
555 | self.ippFactor = 1 | |
556 |
|
556 | |||
557 | #self.noise = None |
|
557 | #self.noise = None | |
558 |
|
558 | |||
559 | self.beacon_heiIndexList = [] |
|
559 | self.beacon_heiIndexList = [] | |
560 |
|
560 | |||
561 | self.noise_estimation = None |
|
561 | self.noise_estimation = None | |
562 |
|
562 | |||
563 |
|
563 | |||
564 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
564 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
565 | """ |
|
565 | """ | |
566 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
566 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
567 |
|
567 | |||
568 | Return: |
|
568 | Return: | |
569 | noiselevel |
|
569 | noiselevel | |
570 | """ |
|
570 | """ | |
571 |
|
571 | |||
572 | noise = numpy.zeros(self.nChannels) |
|
572 | noise = numpy.zeros(self.nChannels) | |
573 |
|
573 | |||
574 | for channel in range(self.nChannels): |
|
574 | for channel in range(self.nChannels): | |
575 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
575 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] | |
576 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
576 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
577 |
|
577 | |||
578 | return noise |
|
578 | return noise | |
579 |
|
579 | |||
580 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
580 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
581 |
|
581 | |||
582 | if self.noise_estimation != None: |
|
582 | if self.noise_estimation != None: | |
583 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
583 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py | |
584 | else: |
|
584 | else: | |
585 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
585 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) | |
586 | return noise |
|
586 | return noise | |
587 |
|
587 | |||
588 |
|
588 | |||
589 | def getFreqRange(self, extrapoints=0): |
|
589 | def getFreqRange(self, extrapoints=0): | |
590 |
|
590 | |||
591 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
591 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) | |
592 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
592 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 | |
593 |
|
593 | |||
594 | return freqrange |
|
594 | return freqrange | |
595 |
|
595 | |||
596 | def getVelRange(self, extrapoints=0): |
|
596 | def getVelRange(self, extrapoints=0): | |
597 |
|
597 | |||
598 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
598 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) | |
599 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 |
|
599 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltav/2 | |
600 |
|
600 | |||
601 | return velrange |
|
601 | return velrange | |
602 |
|
602 | |||
603 | def getNPairs(self): |
|
603 | def getNPairs(self): | |
604 |
|
604 | |||
605 | return len(self.pairsList) |
|
605 | return len(self.pairsList) | |
606 |
|
606 | |||
607 | def getPairsIndexList(self): |
|
607 | def getPairsIndexList(self): | |
608 |
|
608 | |||
609 | return range(self.nPairs) |
|
609 | return range(self.nPairs) | |
610 |
|
610 | |||
611 | def getNormFactor(self): |
|
611 | def getNormFactor(self): | |
612 | pwcode = 1 |
|
612 | pwcode = 1 | |
613 | if self.flagDecodeData: |
|
613 | if self.flagDecodeData: | |
614 | pwcode = numpy.sum(self.code[0]**2) |
|
614 | pwcode = numpy.sum(self.code[0]**2) | |
615 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
615 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
616 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
616 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
617 |
|
617 | |||
618 | return normFactor |
|
618 | return normFactor | |
619 |
|
619 | |||
620 | def getFlagCspc(self): |
|
620 | def getFlagCspc(self): | |
621 |
|
621 | |||
622 | if self.data_cspc == None: |
|
622 | if self.data_cspc == None: | |
623 | return True |
|
623 | return True | |
624 |
|
624 | |||
625 | return False |
|
625 | return False | |
626 |
|
626 | |||
627 | def getFlagDc(self): |
|
627 | def getFlagDc(self): | |
628 |
|
628 | |||
629 | if self.data_dc == None: |
|
629 | if self.data_dc == None: | |
630 | return True |
|
630 | return True | |
631 |
|
631 | |||
632 | return False |
|
632 | return False | |
633 |
|
633 | |||
634 | def getTimeInterval(self): |
|
634 | def getTimeInterval(self): | |
635 |
|
635 | |||
636 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
636 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles | |
637 |
|
637 | |||
638 | return timeInterval |
|
638 | return timeInterval | |
639 |
|
639 | |||
640 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") |
|
640 | nPairs = property(getNPairs, "I'm the 'nPairs' property.") | |
641 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") |
|
641 | pairsIndexList = property(getPairsIndexList, "I'm the 'pairsIndexList' property.") | |
642 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
642 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
643 | flag_cspc = property(getFlagCspc) |
|
643 | flag_cspc = property(getFlagCspc) | |
644 | flag_dc = property(getFlagDc) |
|
644 | flag_dc = property(getFlagDc) | |
645 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
645 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
646 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
646 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
647 |
|
647 | |||
648 | class SpectraHeis(Spectra): |
|
648 | class SpectraHeis(Spectra): | |
649 |
|
649 | |||
650 | data_spc = None |
|
650 | data_spc = None | |
651 |
|
651 | |||
652 | data_cspc = None |
|
652 | data_cspc = None | |
653 |
|
653 | |||
654 | data_dc = None |
|
654 | data_dc = None | |
655 |
|
655 | |||
656 | nFFTPoints = None |
|
656 | nFFTPoints = None | |
657 |
|
657 | |||
658 | # nPairs = None |
|
658 | # nPairs = None | |
659 |
|
659 | |||
660 | pairsList = None |
|
660 | pairsList = None | |
661 |
|
661 | |||
662 | nCohInt = None |
|
662 | nCohInt = None | |
663 |
|
663 | |||
664 | nIncohInt = None |
|
664 | nIncohInt = None | |
665 |
|
665 | |||
666 | def __init__(self): |
|
666 | def __init__(self): | |
667 |
|
667 | |||
668 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
668 | self.radarControllerHeaderObj = RadarControllerHeader() | |
669 |
|
669 | |||
670 | self.systemHeaderObj = SystemHeader() |
|
670 | self.systemHeaderObj = SystemHeader() | |
671 |
|
671 | |||
672 | self.type = "SpectraHeis" |
|
672 | self.type = "SpectraHeis" | |
673 |
|
673 | |||
674 | # self.dtype = None |
|
674 | # self.dtype = None | |
675 |
|
675 | |||
676 | # self.nChannels = 0 |
|
676 | # self.nChannels = 0 | |
677 |
|
677 | |||
678 | # self.nHeights = 0 |
|
678 | # self.nHeights = 0 | |
679 |
|
679 | |||
680 | self.nProfiles = None |
|
680 | self.nProfiles = None | |
681 |
|
681 | |||
682 | self.heightList = None |
|
682 | self.heightList = None | |
683 |
|
683 | |||
684 | self.channelList = None |
|
684 | self.channelList = None | |
685 |
|
685 | |||
686 | # self.channelIndexList = None |
|
686 | # self.channelIndexList = None | |
687 |
|
687 | |||
688 | self.flagNoData = True |
|
688 | self.flagNoData = True | |
689 |
|
689 | |||
690 | self.flagDiscontinuousBlock = False |
|
690 | self.flagDiscontinuousBlock = False | |
691 |
|
691 | |||
692 | # self.nPairs = 0 |
|
692 | # self.nPairs = 0 | |
693 |
|
693 | |||
694 | self.utctime = None |
|
694 | self.utctime = None | |
695 |
|
695 | |||
696 | self.blocksize = None |
|
696 | self.blocksize = None | |
697 |
|
697 | |||
698 | self.profileIndex = 0 |
|
698 | self.profileIndex = 0 | |
699 |
|
699 | |||
700 | self.nCohInt = 1 |
|
700 | self.nCohInt = 1 | |
701 |
|
701 | |||
702 | self.nIncohInt = 1 |
|
702 | self.nIncohInt = 1 | |
703 |
|
703 | |||
704 | def getNormFactor(self): |
|
704 | def getNormFactor(self): | |
705 | pwcode = 1 |
|
705 | pwcode = 1 | |
706 | if self.flagDecodeData: |
|
706 | if self.flagDecodeData: | |
707 | pwcode = numpy.sum(self.code[0]**2) |
|
707 | pwcode = numpy.sum(self.code[0]**2) | |
708 |
|
708 | |||
709 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
709 | normFactor = self.nIncohInt*self.nCohInt*pwcode | |
710 |
|
710 | |||
711 | return normFactor |
|
711 | return normFactor | |
712 |
|
712 | |||
713 | def getTimeInterval(self): |
|
713 | def getTimeInterval(self): | |
714 |
|
714 | |||
715 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
715 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
716 |
|
716 | |||
717 | return timeInterval |
|
717 | return timeInterval | |
718 |
|
718 | |||
719 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
719 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
720 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
720 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
721 |
|
721 | |||
722 | class Fits(JROData): |
|
722 | class Fits(JROData): | |
723 |
|
723 | |||
724 | heightList = None |
|
724 | heightList = None | |
725 |
|
725 | |||
726 | channelList = None |
|
726 | channelList = None | |
727 |
|
727 | |||
728 | flagNoData = True |
|
728 | flagNoData = True | |
729 |
|
729 | |||
730 | flagDiscontinuousBlock = False |
|
730 | flagDiscontinuousBlock = False | |
731 |
|
731 | |||
732 | useLocalTime = False |
|
732 | useLocalTime = False | |
733 |
|
733 | |||
734 | utctime = None |
|
734 | utctime = None | |
735 |
|
735 | |||
736 | timeZone = None |
|
736 | timeZone = None | |
737 |
|
737 | |||
738 | # ippSeconds = None |
|
738 | # ippSeconds = None | |
739 |
|
739 | |||
740 | # timeInterval = None |
|
740 | # timeInterval = None | |
741 |
|
741 | |||
742 | nCohInt = None |
|
742 | nCohInt = None | |
743 |
|
743 | |||
744 | nIncohInt = None |
|
744 | nIncohInt = None | |
745 |
|
745 | |||
746 | noise = None |
|
746 | noise = None | |
747 |
|
747 | |||
748 | windowOfFilter = 1 |
|
748 | windowOfFilter = 1 | |
749 |
|
749 | |||
750 | #Speed of ligth |
|
750 | #Speed of ligth | |
751 | C = 3e8 |
|
751 | C = 3e8 | |
752 |
|
752 | |||
753 | frequency = 49.92e6 |
|
753 | frequency = 49.92e6 | |
754 |
|
754 | |||
755 | realtime = False |
|
755 | realtime = False | |
756 |
|
756 | |||
757 |
|
757 | |||
758 | def __init__(self): |
|
758 | def __init__(self): | |
759 |
|
759 | |||
760 | self.type = "Fits" |
|
760 | self.type = "Fits" | |
761 |
|
761 | |||
762 | self.nProfiles = None |
|
762 | self.nProfiles = None | |
763 |
|
763 | |||
764 | self.heightList = None |
|
764 | self.heightList = None | |
765 |
|
765 | |||
766 | self.channelList = None |
|
766 | self.channelList = None | |
767 |
|
767 | |||
768 | # self.channelIndexList = None |
|
768 | # self.channelIndexList = None | |
769 |
|
769 | |||
770 | self.flagNoData = True |
|
770 | self.flagNoData = True | |
771 |
|
771 | |||
772 | self.utctime = None |
|
772 | self.utctime = None | |
773 |
|
773 | |||
774 | self.nCohInt = 1 |
|
774 | self.nCohInt = 1 | |
775 |
|
775 | |||
776 | self.nIncohInt = 1 |
|
776 | self.nIncohInt = 1 | |
777 |
|
777 | |||
778 | self.useLocalTime = True |
|
778 | self.useLocalTime = True | |
779 |
|
779 | |||
780 | self.profileIndex = 0 |
|
780 | self.profileIndex = 0 | |
781 |
|
781 | |||
782 | # self.utctime = None |
|
782 | # self.utctime = None | |
783 | # self.timeZone = None |
|
783 | # self.timeZone = None | |
784 | # self.ltctime = None |
|
784 | # self.ltctime = None | |
785 | # self.timeInterval = None |
|
785 | # self.timeInterval = None | |
786 | # self.header = None |
|
786 | # self.header = None | |
787 | # self.data_header = None |
|
787 | # self.data_header = None | |
788 | # self.data = None |
|
788 | # self.data = None | |
789 | # self.datatime = None |
|
789 | # self.datatime = None | |
790 | # self.flagNoData = False |
|
790 | # self.flagNoData = False | |
791 | # self.expName = '' |
|
791 | # self.expName = '' | |
792 | # self.nChannels = None |
|
792 | # self.nChannels = None | |
793 | # self.nSamples = None |
|
793 | # self.nSamples = None | |
794 | # self.dataBlocksPerFile = None |
|
794 | # self.dataBlocksPerFile = None | |
795 | # self.comments = '' |
|
795 | # self.comments = '' | |
796 | # |
|
796 | # | |
797 |
|
797 | |||
798 |
|
798 | |||
799 | def getltctime(self): |
|
799 | def getltctime(self): | |
800 |
|
800 | |||
801 | if self.useLocalTime: |
|
801 | if self.useLocalTime: | |
802 | return self.utctime - self.timeZone*60 |
|
802 | return self.utctime - self.timeZone*60 | |
803 |
|
803 | |||
804 | return self.utctime |
|
804 | return self.utctime | |
805 |
|
805 | |||
806 | def getDatatime(self): |
|
806 | def getDatatime(self): | |
807 |
|
807 | |||
808 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
808 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
809 | return datatime |
|
809 | return datatime | |
810 |
|
810 | |||
811 | def getTimeRange(self): |
|
811 | def getTimeRange(self): | |
812 |
|
812 | |||
813 | datatime = [] |
|
813 | datatime = [] | |
814 |
|
814 | |||
815 | datatime.append(self.ltctime) |
|
815 | datatime.append(self.ltctime) | |
816 | datatime.append(self.ltctime + self.timeInterval) |
|
816 | datatime.append(self.ltctime + self.timeInterval) | |
817 |
|
817 | |||
818 | datatime = numpy.array(datatime) |
|
818 | datatime = numpy.array(datatime) | |
819 |
|
819 | |||
820 | return datatime |
|
820 | return datatime | |
821 |
|
821 | |||
822 | def getHeiRange(self): |
|
822 | def getHeiRange(self): | |
823 |
|
823 | |||
824 | heis = self.heightList |
|
824 | heis = self.heightList | |
825 |
|
825 | |||
826 | return heis |
|
826 | return heis | |
827 |
|
827 | |||
828 | def isEmpty(self): |
|
828 | def isEmpty(self): | |
829 |
|
829 | |||
830 | return self.flagNoData |
|
830 | return self.flagNoData | |
831 |
|
831 | |||
832 | def getNHeights(self): |
|
832 | def getNHeights(self): | |
833 |
|
833 | |||
834 | return len(self.heightList) |
|
834 | return len(self.heightList) | |
835 |
|
835 | |||
836 | def getNChannels(self): |
|
836 | def getNChannels(self): | |
837 |
|
837 | |||
838 | return len(self.channelList) |
|
838 | return len(self.channelList) | |
839 |
|
839 | |||
840 | def getChannelIndexList(self): |
|
840 | def getChannelIndexList(self): | |
841 |
|
841 | |||
842 | return range(self.nChannels) |
|
842 | return range(self.nChannels) | |
843 |
|
843 | |||
844 | def getNoise(self, type = 1): |
|
844 | def getNoise(self, type = 1): | |
845 |
|
845 | |||
846 | #noise = numpy.zeros(self.nChannels) |
|
846 | #noise = numpy.zeros(self.nChannels) | |
847 |
|
847 | |||
848 | if type == 1: |
|
848 | if type == 1: | |
849 | noise = self.getNoisebyHildebrand() |
|
849 | noise = self.getNoisebyHildebrand() | |
850 |
|
850 | |||
851 | if type == 2: |
|
851 | if type == 2: | |
852 | noise = self.getNoisebySort() |
|
852 | noise = self.getNoisebySort() | |
853 |
|
853 | |||
854 | if type == 3: |
|
854 | if type == 3: | |
855 | noise = self.getNoisebyWindow() |
|
855 | noise = self.getNoisebyWindow() | |
856 |
|
856 | |||
857 | return noise |
|
857 | return noise | |
858 |
|
858 | |||
859 | def getTimeInterval(self): |
|
859 | def getTimeInterval(self): | |
860 |
|
860 | |||
861 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
861 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
862 |
|
862 | |||
863 | return timeInterval |
|
863 | return timeInterval | |
864 |
|
864 | |||
865 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
865 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
866 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
866 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
867 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
867 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
868 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
868 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") | |
869 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
869 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
870 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
870 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
871 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
871 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
872 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
872 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
873 |
|
873 | |||
874 | class Correlation(JROData): |
|
874 | class Correlation(JROData): | |
875 |
|
875 | |||
876 | noise = None |
|
876 | noise = None | |
877 |
|
877 | |||
878 | SNR = None |
|
878 | SNR = None | |
879 |
|
879 | |||
880 | pairsAutoCorr = None #Pairs of Autocorrelation |
|
880 | pairsAutoCorr = None #Pairs of Autocorrelation | |
881 |
|
881 | |||
882 | #-------------------------------------------------- |
|
882 | #-------------------------------------------------- | |
883 |
|
883 | |||
884 | data_corr = None |
|
884 | data_corr = None | |
885 |
|
885 | |||
886 | data_volt = None |
|
886 | data_volt = None | |
887 |
|
887 | |||
888 | lagT = None # each element value is a profileIndex |
|
888 | lagT = None # each element value is a profileIndex | |
889 |
|
889 | |||
890 | lagR = None # each element value is in km |
|
890 | lagR = None # each element value is in km | |
891 |
|
891 | |||
892 | pairsList = None |
|
892 | pairsList = None | |
893 |
|
893 | |||
894 | calculateVelocity = None |
|
894 | calculateVelocity = None | |
895 |
|
895 | |||
896 | nPoints = None |
|
896 | nPoints = None | |
897 |
|
897 | |||
898 | nAvg = None |
|
898 | nAvg = None | |
899 |
|
899 | |||
900 | bufferSize = None |
|
900 | bufferSize = None | |
901 |
|
901 | |||
902 | def __init__(self): |
|
902 | def __init__(self): | |
903 | ''' |
|
903 | ''' | |
904 | Constructor |
|
904 | Constructor | |
905 | ''' |
|
905 | ''' | |
906 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
906 | self.radarControllerHeaderObj = RadarControllerHeader() | |
907 |
|
907 | |||
908 | self.systemHeaderObj = SystemHeader() |
|
908 | self.systemHeaderObj = SystemHeader() | |
909 |
|
909 | |||
910 | self.type = "Correlation" |
|
910 | self.type = "Correlation" | |
911 |
|
911 | |||
912 | self.data = None |
|
912 | self.data = None | |
913 |
|
913 | |||
914 | self.dtype = None |
|
914 | self.dtype = None | |
915 |
|
915 | |||
916 | self.nProfiles = None |
|
916 | self.nProfiles = None | |
917 |
|
917 | |||
918 | self.heightList = None |
|
918 | self.heightList = None | |
919 |
|
919 | |||
920 | self.channelList = None |
|
920 | self.channelList = None | |
921 |
|
921 | |||
922 | self.flagNoData = True |
|
922 | self.flagNoData = True | |
923 |
|
923 | |||
924 | self.flagDiscontinuousBlock = False |
|
924 | self.flagDiscontinuousBlock = False | |
925 |
|
925 | |||
926 | self.utctime = None |
|
926 | self.utctime = None | |
927 |
|
927 | |||
928 | self.timeZone = None |
|
928 | self.timeZone = None | |
929 |
|
929 | |||
930 | self.dstFlag = None |
|
930 | self.dstFlag = None | |
931 |
|
931 | |||
932 | self.errorCount = None |
|
932 | self.errorCount = None | |
933 |
|
933 | |||
934 | self.blocksize = None |
|
934 | self.blocksize = None | |
935 |
|
935 | |||
936 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
936 | self.flagDecodeData = False #asumo q la data no esta decodificada | |
937 |
|
937 | |||
938 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
938 | self.flagDeflipData = False #asumo q la data no esta sin flip | |
939 |
|
939 | |||
940 | self.pairsList = None |
|
940 | self.pairsList = None | |
941 |
|
941 | |||
942 | self.nPoints = None |
|
942 | self.nPoints = None | |
943 |
|
943 | |||
944 | def getLagTRange(self, extrapoints=0): |
|
944 | def getLagTRange(self, extrapoints=0): | |
945 |
|
945 | |||
946 | lagTRange = self.lagT |
|
946 | lagTRange = self.lagT | |
947 | diff = lagTRange[1] - lagTRange[0] |
|
947 | diff = lagTRange[1] - lagTRange[0] | |
948 | extra = numpy.arange(1,extrapoints + 1)*diff + lagTRange[-1] |
|
948 | extra = numpy.arange(1,extrapoints + 1)*diff + lagTRange[-1] | |
949 | lagTRange = numpy.hstack((lagTRange, extra)) |
|
949 | lagTRange = numpy.hstack((lagTRange, extra)) | |
950 |
|
950 | |||
951 | return lagTRange |
|
951 | return lagTRange | |
952 |
|
952 | |||
953 | def getLagRRange(self, extrapoints=0): |
|
953 | def getLagRRange(self, extrapoints=0): | |
954 |
|
954 | |||
955 | return self.lagR |
|
955 | return self.lagR | |
956 |
|
956 | |||
957 | def getPairsList(self): |
|
957 | def getPairsList(self): | |
958 |
|
958 | |||
959 | return self.pairsList |
|
959 | return self.pairsList | |
960 |
|
960 | |||
961 | def getCalculateVelocity(self): |
|
961 | def getCalculateVelocity(self): | |
962 |
|
962 | |||
963 | return self.calculateVelocity |
|
963 | return self.calculateVelocity | |
964 |
|
964 | |||
965 | def getNPoints(self): |
|
965 | def getNPoints(self): | |
966 |
|
966 | |||
967 | return self.nPoints |
|
967 | return self.nPoints | |
968 |
|
968 | |||
969 | def getNAvg(self): |
|
969 | def getNAvg(self): | |
970 |
|
970 | |||
971 | return self.nAvg |
|
971 | return self.nAvg | |
972 |
|
972 | |||
973 | def getBufferSize(self): |
|
973 | def getBufferSize(self): | |
974 |
|
974 | |||
975 | return self.bufferSize |
|
975 | return self.bufferSize | |
976 |
|
976 | |||
977 | def getPairsAutoCorr(self): |
|
977 | def getPairsAutoCorr(self): | |
978 | pairsList = self.pairsList |
|
978 | pairsList = self.pairsList | |
979 | pairsAutoCorr = numpy.zeros(self.nChannels, dtype = 'int')*numpy.nan |
|
979 | pairsAutoCorr = numpy.zeros(self.nChannels, dtype = 'int')*numpy.nan | |
980 |
|
980 | |||
981 | for l in range(len(pairsList)): |
|
981 | for l in range(len(pairsList)): | |
982 | firstChannel = pairsList[l][0] |
|
982 | firstChannel = pairsList[l][0] | |
983 | secondChannel = pairsList[l][1] |
|
983 | secondChannel = pairsList[l][1] | |
984 |
|
984 | |||
985 | #Obteniendo pares de Autocorrelacion |
|
985 | #Obteniendo pares de Autocorrelacion | |
986 | if firstChannel == secondChannel: |
|
986 | if firstChannel == secondChannel: | |
987 | pairsAutoCorr[firstChannel] = int(l) |
|
987 | pairsAutoCorr[firstChannel] = int(l) | |
988 |
|
988 | |||
989 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
989 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
990 |
|
990 | |||
991 | return pairsAutoCorr |
|
991 | return pairsAutoCorr | |
992 |
|
992 | |||
993 | def getNoise(self, mode = 2): |
|
993 | def getNoise(self, mode = 2): | |
994 |
|
994 | |||
995 | indR = numpy.where(self.lagR == 0)[0][0] |
|
995 | indR = numpy.where(self.lagR == 0)[0][0] | |
996 | indT = numpy.where(self.lagT == 0)[0][0] |
|
996 | indT = numpy.where(self.lagT == 0)[0][0] | |
997 |
|
997 | |||
998 | jspectra0 = self.data_corr[:,:,indR,:] |
|
998 | jspectra0 = self.data_corr[:,:,indR,:] | |
999 | jspectra = copy.copy(jspectra0) |
|
999 | jspectra = copy.copy(jspectra0) | |
1000 |
|
1000 | |||
1001 | num_chan = jspectra.shape[0] |
|
1001 | num_chan = jspectra.shape[0] | |
1002 | num_hei = jspectra.shape[2] |
|
1002 | num_hei = jspectra.shape[2] | |
1003 |
|
1003 | |||
1004 | freq_dc = jspectra.shape[1]/2 |
|
1004 | freq_dc = jspectra.shape[1]/2 | |
1005 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1005 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc | |
1006 |
|
1006 | |||
1007 | if ind_vel[0]<0: |
|
1007 | if ind_vel[0]<0: | |
1008 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1008 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof | |
1009 |
|
1009 | |||
1010 | if mode == 1: |
|
1010 | if mode == 1: | |
1011 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1011 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION | |
1012 |
|
1012 | |||
1013 | if mode == 2: |
|
1013 | if mode == 2: | |
1014 |
|
1014 | |||
1015 | vel = numpy.array([-2,-1,1,2]) |
|
1015 | vel = numpy.array([-2,-1,1,2]) | |
1016 | xx = numpy.zeros([4,4]) |
|
1016 | xx = numpy.zeros([4,4]) | |
1017 |
|
1017 | |||
1018 | for fil in range(4): |
|
1018 | for fil in range(4): | |
1019 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1019 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) | |
1020 |
|
1020 | |||
1021 | xx_inv = numpy.linalg.inv(xx) |
|
1021 | xx_inv = numpy.linalg.inv(xx) | |
1022 | xx_aux = xx_inv[0,:] |
|
1022 | xx_aux = xx_inv[0,:] | |
1023 |
|
1023 | |||
1024 | for ich in range(num_chan): |
|
1024 | for ich in range(num_chan): | |
1025 | yy = jspectra[ich,ind_vel,:] |
|
1025 | yy = jspectra[ich,ind_vel,:] | |
1026 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1026 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) | |
1027 |
|
1027 | |||
1028 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1028 | junkid = jspectra[ich,freq_dc,:]<=0 | |
1029 | cjunkid = sum(junkid) |
|
1029 | cjunkid = sum(junkid) | |
1030 |
|
1030 | |||
1031 | if cjunkid.any(): |
|
1031 | if cjunkid.any(): | |
1032 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1032 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 | |
1033 |
|
1033 | |||
1034 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1034 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] | |
1035 |
|
1035 | |||
1036 | return noise |
|
1036 | return noise | |
1037 |
|
1037 | |||
1038 | def getTimeInterval(self): |
|
1038 | def getTimeInterval(self): | |
1039 |
|
1039 | |||
1040 | timeInterval = self.ippSeconds * self.nCohInt * self.nPoints |
|
1040 | timeInterval = self.ippSeconds * self.nCohInt * self.nPoints | |
1041 |
|
1041 | |||
1042 | return timeInterval |
|
1042 | return timeInterval | |
1043 |
|
1043 | |||
1044 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1044 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
1045 | # pairsList = property(getPairsList, "I'm the 'pairsList' property.") |
|
1045 | # pairsList = property(getPairsList, "I'm the 'pairsList' property.") | |
1046 | # nPoints = property(getNPoints, "I'm the 'nPoints' property.") |
|
1046 | # nPoints = property(getNPoints, "I'm the 'nPoints' property.") | |
1047 | calculateVelocity = property(getCalculateVelocity, "I'm the 'calculateVelocity' property.") |
|
1047 | calculateVelocity = property(getCalculateVelocity, "I'm the 'calculateVelocity' property.") | |
1048 | nAvg = property(getNAvg, "I'm the 'nAvg' property.") |
|
1048 | nAvg = property(getNAvg, "I'm the 'nAvg' property.") | |
1049 | bufferSize = property(getBufferSize, "I'm the 'bufferSize' property.") |
|
1049 | bufferSize = property(getBufferSize, "I'm the 'bufferSize' property.") | |
1050 |
|
1050 | |||
1051 |
|
1051 | |||
1052 | class Parameters(JROData): |
|
1052 | class Parameters(JROData): | |
1053 |
|
1053 | |||
1054 | #Information from previous data |
|
1054 | #Information from previous data | |
1055 |
|
1055 | |||
1056 | inputUnit = None #Type of data to be processed |
|
1056 | inputUnit = None #Type of data to be processed | |
1057 |
|
1057 | |||
1058 | operation = None #Type of operation to parametrize |
|
1058 | operation = None #Type of operation to parametrize | |
1059 |
|
1059 | |||
1060 | normFactor = None #Normalization Factor |
|
1060 | normFactor = None #Normalization Factor | |
1061 |
|
1061 | |||
1062 | groupList = None #List of Pairs, Groups, etc |
|
1062 | groupList = None #List of Pairs, Groups, etc | |
1063 |
|
1063 | |||
1064 | #Parameters |
|
1064 | #Parameters | |
1065 |
|
1065 | |||
1066 | data_param = None #Parameters obtained |
|
1066 | data_param = None #Parameters obtained | |
1067 |
|
1067 | |||
1068 | data_pre = None #Data Pre Parametrization |
|
1068 | data_pre = None #Data Pre Parametrization | |
1069 |
|
1069 | |||
1070 | data_SNR = None #Signal to Noise Ratio |
|
1070 | data_SNR = None #Signal to Noise Ratio | |
1071 |
|
1071 | |||
1072 | heightRange = None #Heights |
|
1072 | # heightRange = None #Heights | |
1073 |
|
1073 | |||
1074 |
abscissa |
|
1074 | abscissaList = None #Abscissa, can be velocities, lags or time | |
1075 |
|
1075 | |||
1076 | noise = None #Noise Potency |
|
1076 | noise = None #Noise Potency | |
1077 |
|
1077 | |||
1078 |
|
|
1078 | utctimeInit = None #Initial UTC time | |
1079 |
|
1079 | |||
1080 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1080 | paramInterval = None #Time interval to calculate Parameters in seconds | |
1081 |
|
1081 | |||
1082 | #Fitting |
|
1082 | #Fitting | |
1083 |
|
1083 | |||
1084 | data_error = None #Error of the estimation |
|
1084 | data_error = None #Error of the estimation | |
1085 |
|
1085 | |||
1086 | constants = None |
|
1086 | constants = None | |
1087 |
|
1087 | |||
1088 | library = None |
|
1088 | library = None | |
1089 |
|
1089 | |||
1090 | #Output signal |
|
1090 | #Output signal | |
1091 |
|
1091 | |||
1092 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1092 | outputInterval = None #Time interval to calculate output signal in seconds | |
1093 |
|
1093 | |||
1094 | data_output = None #Out signal |
|
1094 | data_output = None #Out signal | |
1095 |
|
1095 | |||
|
1096 | ||||
|
1097 | ||||
1096 | def __init__(self): |
|
1098 | def __init__(self): | |
1097 | ''' |
|
1099 | ''' | |
1098 | Constructor |
|
1100 | Constructor | |
1099 | ''' |
|
1101 | ''' | |
1100 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1102 | self.radarControllerHeaderObj = RadarControllerHeader() | |
1101 |
|
1103 | |||
1102 | self.systemHeaderObj = SystemHeader() |
|
1104 | self.systemHeaderObj = SystemHeader() | |
1103 |
|
1105 | |||
1104 | self.type = "Parameters" |
|
1106 | self.type = "Parameters" | |
1105 |
|
1107 | |||
1106 | def getTimeRange1(self): |
|
1108 | def getTimeRange1(self): | |
1107 |
|
1109 | |||
1108 | datatime = [] |
|
1110 | datatime = [] | |
1109 |
|
1111 | |||
1110 | datatime.append(self.ltctime) |
|
1112 | if self.useLocalTime: | |
1111 | datatime.append(self.ltctime + self.outputInterval - 1) |
|
1113 | time1 = self.utctimeInit - self.timeZone*60 | |
|
1114 | else: | |||
|
1115 | time1 = utctimeInit | |||
|
1116 | ||||
|
1117 | # datatime.append(self.utctimeInit) | |||
|
1118 | # datatime.append(self.utctimeInit + self.outputInterval) | |||
|
1119 | datatime.append(time1) | |||
|
1120 | datatime.append(time1 + self.outputInterval) | |||
1112 |
|
1121 | |||
1113 | datatime = numpy.array(datatime) |
|
1122 | datatime = numpy.array(datatime) | |
1114 |
|
1123 | |||
1115 | return datatime |
|
1124 | return datatime |
@@ -1,610 +1,610 | |||||
1 | import os |
|
1 | import os | |
2 | import numpy |
|
2 | import numpy | |
3 | import time, datetime |
|
3 | import time, datetime | |
4 | import mpldriver |
|
4 | import mpldriver | |
5 |
|
5 | |||
6 | from schainpy.model.proc.jroproc_base import Operation |
|
6 | from schainpy.model.proc.jroproc_base import Operation | |
7 |
|
7 | |||
8 | def isRealtime(utcdatatime): |
|
8 | def isRealtime(utcdatatime): | |
9 | utcnow = time.mktime(time.localtime()) |
|
9 | utcnow = time.mktime(time.localtime()) | |
10 | delta = abs(utcnow - utcdatatime) # abs |
|
10 | delta = abs(utcnow - utcdatatime) # abs | |
11 | if delta >= 30.: |
|
11 | if delta >= 30.: | |
12 | return False |
|
12 | return False | |
13 | return True |
|
13 | return True | |
14 |
|
14 | |||
15 | class Figure(Operation): |
|
15 | class Figure(Operation): | |
16 |
|
16 | |||
17 | __driver = mpldriver |
|
17 | __driver = mpldriver | |
18 | __isConfigThread = False |
|
18 | __isConfigThread = False | |
19 | fig = None |
|
19 | fig = None | |
20 |
|
20 | |||
21 | id = None |
|
21 | id = None | |
22 | wintitle = None |
|
22 | wintitle = None | |
23 | width = None |
|
23 | width = None | |
24 | height = None |
|
24 | height = None | |
25 | nplots = None |
|
25 | nplots = None | |
26 | timerange = None |
|
26 | timerange = None | |
27 |
|
27 | |||
28 | axesObjList = [] |
|
28 | axesObjList = [] | |
29 |
|
29 | |||
30 | WIDTH = None |
|
30 | WIDTH = None | |
31 | HEIGHT = None |
|
31 | HEIGHT = None | |
32 | PREFIX = 'fig' |
|
32 | PREFIX = 'fig' | |
33 |
|
33 | |||
34 | xmin = None |
|
34 | xmin = None | |
35 | xmax = None |
|
35 | xmax = None | |
36 |
|
36 | |||
37 | counter_imagwr = 0 |
|
37 | counter_imagwr = 0 | |
38 |
|
38 | |||
39 | figfile = None |
|
39 | figfile = None | |
40 |
|
40 | |||
41 | def __init__(self): |
|
41 | def __init__(self): | |
42 |
|
42 | |||
43 | raise ValueError, "This method is not implemented" |
|
43 | raise ValueError, "This method is not implemented" | |
44 |
|
44 | |||
45 | def __del__(self): |
|
45 | def __del__(self): | |
46 |
|
46 | |||
47 | self.__driver.closeFigure() |
|
47 | self.__driver.closeFigure() | |
48 |
|
48 | |||
49 | def getFilename(self, name, ext='.png'): |
|
49 | def getFilename(self, name, ext='.png'): | |
50 |
|
50 | |||
51 | path = '%s%03d' %(self.PREFIX, self.id) |
|
51 | path = '%s%03d' %(self.PREFIX, self.id) | |
52 | filename = '%s_%s%s' %(self.PREFIX, name, ext) |
|
52 | filename = '%s_%s%s' %(self.PREFIX, name, ext) | |
53 | return os.path.join(path, filename) |
|
53 | return os.path.join(path, filename) | |
54 |
|
54 | |||
55 | def getAxesObjList(self): |
|
55 | def getAxesObjList(self): | |
56 |
|
56 | |||
57 | return self.axesObjList |
|
57 | return self.axesObjList | |
58 |
|
58 | |||
59 | def getSubplots(self): |
|
59 | def getSubplots(self): | |
60 |
|
60 | |||
61 | raise ValueError, "Abstract method: This method should be defined" |
|
61 | raise ValueError, "Abstract method: This method should be defined" | |
62 |
|
62 | |||
63 | def getScreenDim(self, widthplot, heightplot): |
|
63 | def getScreenDim(self, widthplot, heightplot): | |
64 |
|
64 | |||
65 | nrow, ncol = self.getSubplots() |
|
65 | nrow, ncol = self.getSubplots() | |
66 |
|
66 | |||
67 | widthscreen = widthplot*ncol |
|
67 | widthscreen = widthplot*ncol | |
68 | heightscreen = heightplot*nrow |
|
68 | heightscreen = heightplot*nrow | |
69 |
|
69 | |||
70 | return widthscreen, heightscreen |
|
70 | return widthscreen, heightscreen | |
71 |
|
71 | |||
72 | def getTimeLim(self, x, xmin=None, xmax=None, timerange=None): |
|
72 | def getTimeLim(self, x, xmin=None, xmax=None, timerange=None): | |
73 |
|
73 | |||
74 | if self.xmin != None and self.xmax != None: |
|
74 | if self.xmin != None and self.xmax != None: | |
75 | if timerange == None: |
|
75 | if timerange == None: | |
76 | timerange = self.xmax - self.xmin |
|
76 | timerange = self.xmax - self.xmin | |
77 | xmin = self.xmin + timerange |
|
77 | xmin = self.xmin + timerange | |
78 | xmax = self.xmax + timerange |
|
78 | xmax = self.xmax + timerange | |
79 |
|
79 | |||
80 | return xmin, xmax |
|
80 | return xmin, xmax | |
81 |
|
81 | |||
82 | if timerange == None and (xmin==None or xmax==None): |
|
82 | if timerange == None and (xmin==None or xmax==None): | |
83 | timerange = 14400 #seconds |
|
83 | timerange = 14400 #seconds | |
84 | #raise ValueError, "(timerange) or (xmin & xmax) should be defined" |
|
84 | #raise ValueError, "(timerange) or (xmin & xmax) should be defined" | |
85 |
|
85 | |||
86 | if timerange != None: |
|
86 | if timerange != None: | |
87 | txmin = x[0] - x[0] % min(timerange/10, 10*60) |
|
87 | txmin = x[0] #- x[0] % min(timerange/10, 10*60) | |
88 | else: |
|
88 | else: | |
89 | txmin = x[0] - x[0] % 10*60 |
|
89 | txmin = x[0] #- x[0] % 10*60 | |
90 |
|
90 | |||
91 | thisdatetime = datetime.datetime.utcfromtimestamp(txmin) |
|
91 | thisdatetime = datetime.datetime.utcfromtimestamp(txmin) | |
92 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) |
|
92 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) | |
93 |
|
93 | |||
94 | if timerange != None: |
|
94 | if timerange != None: | |
95 | xmin = (thisdatetime - thisdate).seconds/(60*60.) |
|
95 | xmin = (thisdatetime - thisdate).seconds/(60*60.) | |
96 | xmax = xmin + timerange/(60*60.) |
|
96 | xmax = xmin + timerange/(60*60.) | |
97 |
|
97 | |||
98 | mindt = thisdate + datetime.timedelta(hours=xmin) - datetime.timedelta(seconds=time.timezone) |
|
98 | mindt = thisdate + datetime.timedelta(hours=xmin) - datetime.timedelta(seconds=time.timezone) | |
99 | xmin_sec = time.mktime(mindt.timetuple()) |
|
99 | xmin_sec = time.mktime(mindt.timetuple()) | |
100 |
|
100 | |||
101 | maxdt = thisdate + datetime.timedelta(hours=xmax) - datetime.timedelta(seconds=time.timezone) |
|
101 | maxdt = thisdate + datetime.timedelta(hours=xmax) - datetime.timedelta(seconds=time.timezone) | |
102 | xmax_sec = time.mktime(maxdt.timetuple()) |
|
102 | xmax_sec = time.mktime(maxdt.timetuple()) | |
103 |
|
103 | |||
104 | return xmin_sec, xmax_sec |
|
104 | return xmin_sec, xmax_sec | |
105 |
|
105 | |||
106 | def init(self, id, nplots, wintitle): |
|
106 | def init(self, id, nplots, wintitle): | |
107 |
|
107 | |||
108 | raise ValueError, "This method has been replaced with createFigure" |
|
108 | raise ValueError, "This method has been replaced with createFigure" | |
109 |
|
109 | |||
110 | def createFigure(self, id, wintitle, widthplot=None, heightplot=None, show=True): |
|
110 | def createFigure(self, id, wintitle, widthplot=None, heightplot=None, show=True): | |
111 |
|
111 | |||
112 | """ |
|
112 | """ | |
113 | Crea la figura de acuerdo al driver y parametros seleccionados seleccionados. |
|
113 | Crea la figura de acuerdo al driver y parametros seleccionados seleccionados. | |
114 | Las dimensiones de la pantalla es calculada a partir de los atributos self.WIDTH |
|
114 | Las dimensiones de la pantalla es calculada a partir de los atributos self.WIDTH | |
115 | y self.HEIGHT y el numero de subplots (nrow, ncol) |
|
115 | y self.HEIGHT y el numero de subplots (nrow, ncol) | |
116 |
|
116 | |||
117 | Input: |
|
117 | Input: | |
118 | id : Los parametros necesarios son |
|
118 | id : Los parametros necesarios son | |
119 | wintitle : |
|
119 | wintitle : | |
120 |
|
120 | |||
121 | """ |
|
121 | """ | |
122 |
|
122 | |||
123 | if widthplot == None: |
|
123 | if widthplot == None: | |
124 | widthplot = self.WIDTH |
|
124 | widthplot = self.WIDTH | |
125 |
|
125 | |||
126 | if heightplot == None: |
|
126 | if heightplot == None: | |
127 | heightplot = self.HEIGHT |
|
127 | heightplot = self.HEIGHT | |
128 |
|
128 | |||
129 | self.id = id |
|
129 | self.id = id | |
130 |
|
130 | |||
131 | self.wintitle = wintitle |
|
131 | self.wintitle = wintitle | |
132 |
|
132 | |||
133 | self.widthscreen, self.heightscreen = self.getScreenDim(widthplot, heightplot) |
|
133 | self.widthscreen, self.heightscreen = self.getScreenDim(widthplot, heightplot) | |
134 |
|
134 | |||
135 | self.fig = self.__driver.createFigure(id=self.id, |
|
135 | self.fig = self.__driver.createFigure(id=self.id, | |
136 | wintitle=self.wintitle, |
|
136 | wintitle=self.wintitle, | |
137 | width=self.widthscreen, |
|
137 | width=self.widthscreen, | |
138 | height=self.heightscreen, |
|
138 | height=self.heightscreen, | |
139 | show=show) |
|
139 | show=show) | |
140 |
|
140 | |||
141 | self.axesObjList = [] |
|
141 | self.axesObjList = [] | |
142 | self.counter_imagwr = 0 |
|
142 | self.counter_imagwr = 0 | |
143 |
|
143 | |||
144 |
|
144 | |||
145 | def setDriver(self, driver=mpldriver): |
|
145 | def setDriver(self, driver=mpldriver): | |
146 |
|
146 | |||
147 | self.__driver = driver |
|
147 | self.__driver = driver | |
148 |
|
148 | |||
149 | def setTitle(self, title): |
|
149 | def setTitle(self, title): | |
150 |
|
150 | |||
151 | self.__driver.setTitle(self.fig, title) |
|
151 | self.__driver.setTitle(self.fig, title) | |
152 |
|
152 | |||
153 | def setWinTitle(self, title): |
|
153 | def setWinTitle(self, title): | |
154 |
|
154 | |||
155 | self.__driver.setWinTitle(self.fig, title=title) |
|
155 | self.__driver.setWinTitle(self.fig, title=title) | |
156 |
|
156 | |||
157 | def setTextFromAxes(self, text): |
|
157 | def setTextFromAxes(self, text): | |
158 |
|
158 | |||
159 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo setText de la clase Axes" |
|
159 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo setText de la clase Axes" | |
160 |
|
160 | |||
161 | def makeAxes(self, nrow, ncol, xpos, ypos, colspan, rowspan): |
|
161 | def makeAxes(self, nrow, ncol, xpos, ypos, colspan, rowspan): | |
162 |
|
162 | |||
163 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo addAxes" |
|
163 | raise ValueError, "Este metodo ha sido reemplazaado con el metodo addAxes" | |
164 |
|
164 | |||
165 | def addAxes(self, *args): |
|
165 | def addAxes(self, *args): | |
166 | """ |
|
166 | """ | |
167 |
|
167 | |||
168 | Input: |
|
168 | Input: | |
169 | *args : Los parametros necesarios son |
|
169 | *args : Los parametros necesarios son | |
170 | nrow, ncol, xpos, ypos, colspan, rowspan |
|
170 | nrow, ncol, xpos, ypos, colspan, rowspan | |
171 | """ |
|
171 | """ | |
172 |
|
172 | |||
173 | axesObj = Axes(self.fig, *args) |
|
173 | axesObj = Axes(self.fig, *args) | |
174 | self.axesObjList.append(axesObj) |
|
174 | self.axesObjList.append(axesObj) | |
175 |
|
175 | |||
176 | def saveFigure(self, figpath, figfile, *args): |
|
176 | def saveFigure(self, figpath, figfile, *args): | |
177 |
|
177 | |||
178 | filename = os.path.join(figpath, figfile) |
|
178 | filename = os.path.join(figpath, figfile) | |
179 |
|
179 | |||
180 | fullpath = os.path.split(filename)[0] |
|
180 | fullpath = os.path.split(filename)[0] | |
181 |
|
181 | |||
182 | if not os.path.exists(fullpath): |
|
182 | if not os.path.exists(fullpath): | |
183 | subpath = os.path.split(fullpath)[0] |
|
183 | subpath = os.path.split(fullpath)[0] | |
184 |
|
184 | |||
185 | if not os.path.exists(subpath): |
|
185 | if not os.path.exists(subpath): | |
186 | os.mkdir(subpath) |
|
186 | os.mkdir(subpath) | |
187 |
|
187 | |||
188 | os.mkdir(fullpath) |
|
188 | os.mkdir(fullpath) | |
189 |
|
189 | |||
190 | self.__driver.saveFigure(self.fig, filename, *args) |
|
190 | self.__driver.saveFigure(self.fig, filename, *args) | |
191 |
|
191 | |||
192 | def save(self, figpath, figfile=None, save=True, ftp=False, wr_period=1, thisDatetime=None, update_figfile=True): |
|
192 | def save(self, figpath, figfile=None, save=True, ftp=False, wr_period=1, thisDatetime=None, update_figfile=True): | |
193 |
|
193 | |||
194 | self.counter_imagwr += 1 |
|
194 | self.counter_imagwr += 1 | |
195 | if self.counter_imagwr < wr_period: |
|
195 | if self.counter_imagwr < wr_period: | |
196 | return |
|
196 | return | |
197 |
|
197 | |||
198 | self.counter_imagwr = 0 |
|
198 | self.counter_imagwr = 0 | |
199 |
|
199 | |||
200 | if save: |
|
200 | if save: | |
201 |
|
201 | |||
202 | if not figfile: |
|
202 | if not figfile: | |
203 |
|
203 | |||
204 | if not thisDatetime: |
|
204 | if not thisDatetime: | |
205 | raise ValueError, "Saving figure: figfile or thisDatetime should be defined" |
|
205 | raise ValueError, "Saving figure: figfile or thisDatetime should be defined" | |
206 | return |
|
206 | return | |
207 |
|
207 | |||
208 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
208 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
209 | figfile = self.getFilename(name = str_datetime) |
|
209 | figfile = self.getFilename(name = str_datetime) | |
210 |
|
210 | |||
211 | if self.figfile == None: |
|
211 | if self.figfile == None: | |
212 | self.figfile = figfile |
|
212 | self.figfile = figfile | |
213 |
|
213 | |||
214 | if update_figfile: |
|
214 | if update_figfile: | |
215 | self.figfile = figfile |
|
215 | self.figfile = figfile | |
216 |
|
216 | |||
217 | # store png plot to local folder |
|
217 | # store png plot to local folder | |
218 | self.saveFigure(figpath, self.figfile) |
|
218 | self.saveFigure(figpath, self.figfile) | |
219 |
|
219 | |||
220 |
|
220 | |||
221 | if not ftp: |
|
221 | if not ftp: | |
222 | return |
|
222 | return | |
223 |
|
223 | |||
224 | if not thisDatetime: |
|
224 | if not thisDatetime: | |
225 | return |
|
225 | return | |
226 |
|
226 | |||
227 | # store png plot to FTP server according to RT-Web format |
|
227 | # store png plot to FTP server according to RT-Web format | |
228 | ftp_filename = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS) |
|
228 | ftp_filename = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS) | |
229 | # ftp_filename = os.path.join(figpath, name) |
|
229 | # ftp_filename = os.path.join(figpath, name) | |
230 | self.saveFigure(figpath, ftp_filename) |
|
230 | self.saveFigure(figpath, ftp_filename) | |
231 |
|
231 | |||
232 | def getNameToFtp(self, thisDatetime, FTP_WEI, EXP_CODE, SUB_EXP_CODE, PLOT_CODE, PLOT_POS): |
|
232 | def getNameToFtp(self, thisDatetime, FTP_WEI, EXP_CODE, SUB_EXP_CODE, PLOT_CODE, PLOT_POS): | |
233 | YEAR_STR = '%4.4d'%thisDatetime.timetuple().tm_year |
|
233 | YEAR_STR = '%4.4d'%thisDatetime.timetuple().tm_year | |
234 | DOY_STR = '%3.3d'%thisDatetime.timetuple().tm_yday |
|
234 | DOY_STR = '%3.3d'%thisDatetime.timetuple().tm_yday | |
235 | FTP_WEI = '%2.2d'%FTP_WEI |
|
235 | FTP_WEI = '%2.2d'%FTP_WEI | |
236 | EXP_CODE = '%3.3d'%EXP_CODE |
|
236 | EXP_CODE = '%3.3d'%EXP_CODE | |
237 | SUB_EXP_CODE = '%2.2d'%SUB_EXP_CODE |
|
237 | SUB_EXP_CODE = '%2.2d'%SUB_EXP_CODE | |
238 | PLOT_CODE = '%2.2d'%PLOT_CODE |
|
238 | PLOT_CODE = '%2.2d'%PLOT_CODE | |
239 | PLOT_POS = '%2.2d'%PLOT_POS |
|
239 | PLOT_POS = '%2.2d'%PLOT_POS | |
240 | name = YEAR_STR + DOY_STR + FTP_WEI + EXP_CODE + SUB_EXP_CODE + PLOT_CODE + PLOT_POS |
|
240 | name = YEAR_STR + DOY_STR + FTP_WEI + EXP_CODE + SUB_EXP_CODE + PLOT_CODE + PLOT_POS | |
241 | return name |
|
241 | return name | |
242 |
|
242 | |||
243 | def draw(self): |
|
243 | def draw(self): | |
244 |
|
244 | |||
245 | self.__driver.draw(self.fig) |
|
245 | self.__driver.draw(self.fig) | |
246 |
|
246 | |||
247 | def run(self): |
|
247 | def run(self): | |
248 |
|
248 | |||
249 | raise ValueError, "This method is not implemented" |
|
249 | raise ValueError, "This method is not implemented" | |
250 |
|
250 | |||
251 | def close(self, show=False): |
|
251 | def close(self, show=False): | |
252 |
|
252 | |||
253 | self.__driver.closeFigure(show=show, fig=self.fig) |
|
253 | self.__driver.closeFigure(show=show, fig=self.fig) | |
254 |
|
254 | |||
255 | axesList = property(getAxesObjList) |
|
255 | axesList = property(getAxesObjList) | |
256 |
|
256 | |||
257 |
|
257 | |||
258 | class Axes: |
|
258 | class Axes: | |
259 |
|
259 | |||
260 | __driver = mpldriver |
|
260 | __driver = mpldriver | |
261 | fig = None |
|
261 | fig = None | |
262 | ax = None |
|
262 | ax = None | |
263 | plot = None |
|
263 | plot = None | |
264 | __missing = 1E30 |
|
264 | __missing = 1E30 | |
265 | __firsttime = None |
|
265 | __firsttime = None | |
266 |
|
266 | |||
267 | __showprofile = False |
|
267 | __showprofile = False | |
268 |
|
268 | |||
269 | xmin = None |
|
269 | xmin = None | |
270 | xmax = None |
|
270 | xmax = None | |
271 | ymin = None |
|
271 | ymin = None | |
272 | ymax = None |
|
272 | ymax = None | |
273 | zmin = None |
|
273 | zmin = None | |
274 | zmax = None |
|
274 | zmax = None | |
275 |
|
275 | |||
276 | x_buffer = None |
|
276 | x_buffer = None | |
277 | z_buffer = None |
|
277 | z_buffer = None | |
278 |
|
278 | |||
279 | decimationx = None |
|
279 | decimationx = None | |
280 | decimationy = None |
|
280 | decimationy = None | |
281 |
|
281 | |||
282 | __MAXNUMX = 300 |
|
282 | __MAXNUMX = 300 | |
283 | __MAXNUMY = 150 |
|
283 | __MAXNUMY = 150 | |
284 |
|
284 | |||
285 | def __init__(self, *args): |
|
285 | def __init__(self, *args): | |
286 |
|
286 | |||
287 | """ |
|
287 | """ | |
288 |
|
288 | |||
289 | Input: |
|
289 | Input: | |
290 | *args : Los parametros necesarios son |
|
290 | *args : Los parametros necesarios son | |
291 | fig, nrow, ncol, xpos, ypos, colspan, rowspan |
|
291 | fig, nrow, ncol, xpos, ypos, colspan, rowspan | |
292 | """ |
|
292 | """ | |
293 |
|
293 | |||
294 | ax = self.__driver.createAxes(*args) |
|
294 | ax = self.__driver.createAxes(*args) | |
295 | self.fig = args[0] |
|
295 | self.fig = args[0] | |
296 | self.ax = ax |
|
296 | self.ax = ax | |
297 | self.plot = None |
|
297 | self.plot = None | |
298 |
|
298 | |||
299 | self.__firsttime = True |
|
299 | self.__firsttime = True | |
300 | self.idlineList = [] |
|
300 | self.idlineList = [] | |
301 |
|
301 | |||
302 | self.x_buffer = numpy.array([]) |
|
302 | self.x_buffer = numpy.array([]) | |
303 | self.z_buffer = numpy.array([]) |
|
303 | self.z_buffer = numpy.array([]) | |
304 |
|
304 | |||
305 | def setText(self, text): |
|
305 | def setText(self, text): | |
306 |
|
306 | |||
307 | self.__driver.setAxesText(self.ax, text) |
|
307 | self.__driver.setAxesText(self.ax, text) | |
308 |
|
308 | |||
309 | def setXAxisAsTime(self): |
|
309 | def setXAxisAsTime(self): | |
310 | pass |
|
310 | pass | |
311 |
|
311 | |||
312 | def pline(self, x, y, |
|
312 | def pline(self, x, y, | |
313 | xmin=None, xmax=None, |
|
313 | xmin=None, xmax=None, | |
314 | ymin=None, ymax=None, |
|
314 | ymin=None, ymax=None, | |
315 | xlabel='', ylabel='', |
|
315 | xlabel='', ylabel='', | |
316 | title='', |
|
316 | title='', | |
317 | **kwargs): |
|
317 | **kwargs): | |
318 |
|
318 | |||
319 | """ |
|
319 | """ | |
320 |
|
320 | |||
321 | Input: |
|
321 | Input: | |
322 | x : |
|
322 | x : | |
323 | y : |
|
323 | y : | |
324 | xmin : |
|
324 | xmin : | |
325 | xmax : |
|
325 | xmax : | |
326 | ymin : |
|
326 | ymin : | |
327 | ymax : |
|
327 | ymax : | |
328 | xlabel : |
|
328 | xlabel : | |
329 | ylabel : |
|
329 | ylabel : | |
330 | title : |
|
330 | title : | |
331 | **kwargs : Los parametros aceptados son |
|
331 | **kwargs : Los parametros aceptados son | |
332 |
|
332 | |||
333 | ticksize |
|
333 | ticksize | |
334 | ytick_visible |
|
334 | ytick_visible | |
335 | """ |
|
335 | """ | |
336 |
|
336 | |||
337 | if self.__firsttime: |
|
337 | if self.__firsttime: | |
338 |
|
338 | |||
339 | if xmin == None: xmin = numpy.nanmin(x) |
|
339 | if xmin == None: xmin = numpy.nanmin(x) | |
340 | if xmax == None: xmax = numpy.nanmax(x) |
|
340 | if xmax == None: xmax = numpy.nanmax(x) | |
341 | if ymin == None: ymin = numpy.nanmin(y) |
|
341 | if ymin == None: ymin = numpy.nanmin(y) | |
342 | if ymax == None: ymax = numpy.nanmax(y) |
|
342 | if ymax == None: ymax = numpy.nanmax(y) | |
343 |
|
343 | |||
344 | self.plot = self.__driver.createPline(self.ax, x, y, |
|
344 | self.plot = self.__driver.createPline(self.ax, x, y, | |
345 | xmin, xmax, |
|
345 | xmin, xmax, | |
346 | ymin, ymax, |
|
346 | ymin, ymax, | |
347 | xlabel=xlabel, |
|
347 | xlabel=xlabel, | |
348 | ylabel=ylabel, |
|
348 | ylabel=ylabel, | |
349 | title=title, |
|
349 | title=title, | |
350 | **kwargs) |
|
350 | **kwargs) | |
351 |
|
351 | |||
352 | self.idlineList.append(0) |
|
352 | self.idlineList.append(0) | |
353 | self.__firsttime = False |
|
353 | self.__firsttime = False | |
354 | return |
|
354 | return | |
355 |
|
355 | |||
356 | self.__driver.pline(self.plot, x, y, xlabel=xlabel, |
|
356 | self.__driver.pline(self.plot, x, y, xlabel=xlabel, | |
357 | ylabel=ylabel, |
|
357 | ylabel=ylabel, | |
358 | title=title) |
|
358 | title=title) | |
359 |
|
359 | |||
360 | def addpline(self, x, y, idline, **kwargs): |
|
360 | def addpline(self, x, y, idline, **kwargs): | |
361 | lines = self.ax.lines |
|
361 | lines = self.ax.lines | |
362 |
|
362 | |||
363 | if idline in self.idlineList: |
|
363 | if idline in self.idlineList: | |
364 | self.__driver.set_linedata(self.ax, x, y, idline) |
|
364 | self.__driver.set_linedata(self.ax, x, y, idline) | |
365 |
|
365 | |||
366 | if idline not in(self.idlineList): |
|
366 | if idline not in(self.idlineList): | |
367 | self.__driver.addpline(self.ax, x, y, **kwargs) |
|
367 | self.__driver.addpline(self.ax, x, y, **kwargs) | |
368 | self.idlineList.append(idline) |
|
368 | self.idlineList.append(idline) | |
369 |
|
369 | |||
370 | return |
|
370 | return | |
371 |
|
371 | |||
372 | def pmultiline(self, x, y, |
|
372 | def pmultiline(self, x, y, | |
373 | xmin=None, xmax=None, |
|
373 | xmin=None, xmax=None, | |
374 | ymin=None, ymax=None, |
|
374 | ymin=None, ymax=None, | |
375 | xlabel='', ylabel='', |
|
375 | xlabel='', ylabel='', | |
376 | title='', |
|
376 | title='', | |
377 | **kwargs): |
|
377 | **kwargs): | |
378 |
|
378 | |||
379 | if self.__firsttime: |
|
379 | if self.__firsttime: | |
380 |
|
380 | |||
381 | if xmin == None: xmin = numpy.nanmin(x) |
|
381 | if xmin == None: xmin = numpy.nanmin(x) | |
382 | if xmax == None: xmax = numpy.nanmax(x) |
|
382 | if xmax == None: xmax = numpy.nanmax(x) | |
383 | if ymin == None: ymin = numpy.nanmin(y) |
|
383 | if ymin == None: ymin = numpy.nanmin(y) | |
384 | if ymax == None: ymax = numpy.nanmax(y) |
|
384 | if ymax == None: ymax = numpy.nanmax(y) | |
385 |
|
385 | |||
386 | self.plot = self.__driver.createPmultiline(self.ax, x, y, |
|
386 | self.plot = self.__driver.createPmultiline(self.ax, x, y, | |
387 | xmin, xmax, |
|
387 | xmin, xmax, | |
388 | ymin, ymax, |
|
388 | ymin, ymax, | |
389 | xlabel=xlabel, |
|
389 | xlabel=xlabel, | |
390 | ylabel=ylabel, |
|
390 | ylabel=ylabel, | |
391 | title=title, |
|
391 | title=title, | |
392 | **kwargs) |
|
392 | **kwargs) | |
393 | self.__firsttime = False |
|
393 | self.__firsttime = False | |
394 | return |
|
394 | return | |
395 |
|
395 | |||
396 | self.__driver.pmultiline(self.plot, x, y, xlabel=xlabel, |
|
396 | self.__driver.pmultiline(self.plot, x, y, xlabel=xlabel, | |
397 | ylabel=ylabel, |
|
397 | ylabel=ylabel, | |
398 | title=title) |
|
398 | title=title) | |
399 |
|
399 | |||
400 | def pmultilineyaxis(self, x, y, |
|
400 | def pmultilineyaxis(self, x, y, | |
401 | xmin=None, xmax=None, |
|
401 | xmin=None, xmax=None, | |
402 | ymin=None, ymax=None, |
|
402 | ymin=None, ymax=None, | |
403 | xlabel='', ylabel='', |
|
403 | xlabel='', ylabel='', | |
404 | title='', |
|
404 | title='', | |
405 | **kwargs): |
|
405 | **kwargs): | |
406 |
|
406 | |||
407 | if self.__firsttime: |
|
407 | if self.__firsttime: | |
408 |
|
408 | |||
409 | if xmin == None: xmin = numpy.nanmin(x) |
|
409 | if xmin == None: xmin = numpy.nanmin(x) | |
410 | if xmax == None: xmax = numpy.nanmax(x) |
|
410 | if xmax == None: xmax = numpy.nanmax(x) | |
411 | if ymin == None: ymin = numpy.nanmin(y) |
|
411 | if ymin == None: ymin = numpy.nanmin(y) | |
412 | if ymax == None: ymax = numpy.nanmax(y) |
|
412 | if ymax == None: ymax = numpy.nanmax(y) | |
413 |
|
413 | |||
414 | self.plot = self.__driver.createPmultilineYAxis(self.ax, x, y, |
|
414 | self.plot = self.__driver.createPmultilineYAxis(self.ax, x, y, | |
415 | xmin, xmax, |
|
415 | xmin, xmax, | |
416 | ymin, ymax, |
|
416 | ymin, ymax, | |
417 | xlabel=xlabel, |
|
417 | xlabel=xlabel, | |
418 | ylabel=ylabel, |
|
418 | ylabel=ylabel, | |
419 | title=title, |
|
419 | title=title, | |
420 | **kwargs) |
|
420 | **kwargs) | |
421 | if self.xmin == None: self.xmin = xmin |
|
421 | if self.xmin == None: self.xmin = xmin | |
422 | if self.xmax == None: self.xmax = xmax |
|
422 | if self.xmax == None: self.xmax = xmax | |
423 | if self.ymin == None: self.ymin = ymin |
|
423 | if self.ymin == None: self.ymin = ymin | |
424 | if self.ymax == None: self.ymax = ymax |
|
424 | if self.ymax == None: self.ymax = ymax | |
425 |
|
425 | |||
426 | self.__firsttime = False |
|
426 | self.__firsttime = False | |
427 | return |
|
427 | return | |
428 |
|
428 | |||
429 | self.__driver.pmultilineyaxis(self.plot, x, y, xlabel=xlabel, |
|
429 | self.__driver.pmultilineyaxis(self.plot, x, y, xlabel=xlabel, | |
430 | ylabel=ylabel, |
|
430 | ylabel=ylabel, | |
431 | title=title) |
|
431 | title=title) | |
432 |
|
432 | |||
433 | def pcolor(self, x, y, z, |
|
433 | def pcolor(self, x, y, z, | |
434 | xmin=None, xmax=None, |
|
434 | xmin=None, xmax=None, | |
435 | ymin=None, ymax=None, |
|
435 | ymin=None, ymax=None, | |
436 | zmin=None, zmax=None, |
|
436 | zmin=None, zmax=None, | |
437 | xlabel='', ylabel='', |
|
437 | xlabel='', ylabel='', | |
438 | title='', rti = False, colormap='jet', |
|
438 | title='', rti = False, colormap='jet', | |
439 | **kwargs): |
|
439 | **kwargs): | |
440 |
|
440 | |||
441 | """ |
|
441 | """ | |
442 | Input: |
|
442 | Input: | |
443 | x : |
|
443 | x : | |
444 | y : |
|
444 | y : | |
445 | x : |
|
445 | x : | |
446 | xmin : |
|
446 | xmin : | |
447 | xmax : |
|
447 | xmax : | |
448 | ymin : |
|
448 | ymin : | |
449 | ymax : |
|
449 | ymax : | |
450 | zmin : |
|
450 | zmin : | |
451 | zmax : |
|
451 | zmax : | |
452 | xlabel : |
|
452 | xlabel : | |
453 | ylabel : |
|
453 | ylabel : | |
454 | title : |
|
454 | title : | |
455 | **kwargs : Los parametros aceptados son |
|
455 | **kwargs : Los parametros aceptados son | |
456 | ticksize=9, |
|
456 | ticksize=9, | |
457 | cblabel='' |
|
457 | cblabel='' | |
458 | rti = True or False |
|
458 | rti = True or False | |
459 | """ |
|
459 | """ | |
460 |
|
460 | |||
461 | if self.__firsttime: |
|
461 | if self.__firsttime: | |
462 |
|
462 | |||
463 | if xmin == None: xmin = numpy.nanmin(x) |
|
463 | if xmin == None: xmin = numpy.nanmin(x) | |
464 | if xmax == None: xmax = numpy.nanmax(x) |
|
464 | if xmax == None: xmax = numpy.nanmax(x) | |
465 | if ymin == None: ymin = numpy.nanmin(y) |
|
465 | if ymin == None: ymin = numpy.nanmin(y) | |
466 | if ymax == None: ymax = numpy.nanmax(y) |
|
466 | if ymax == None: ymax = numpy.nanmax(y) | |
467 | if zmin == None: zmin = numpy.nanmin(z) |
|
467 | if zmin == None: zmin = numpy.nanmin(z) | |
468 | if zmax == None: zmax = numpy.nanmax(z) |
|
468 | if zmax == None: zmax = numpy.nanmax(z) | |
469 |
|
469 | |||
470 |
|
470 | |||
471 | self.plot = self.__driver.createPcolor(self.ax, x, y, z, |
|
471 | self.plot = self.__driver.createPcolor(self.ax, x, y, z, | |
472 | xmin, xmax, |
|
472 | xmin, xmax, | |
473 | ymin, ymax, |
|
473 | ymin, ymax, | |
474 | zmin, zmax, |
|
474 | zmin, zmax, | |
475 | xlabel=xlabel, |
|
475 | xlabel=xlabel, | |
476 | ylabel=ylabel, |
|
476 | ylabel=ylabel, | |
477 | title=title, |
|
477 | title=title, | |
478 | colormap=colormap, |
|
478 | colormap=colormap, | |
479 | **kwargs) |
|
479 | **kwargs) | |
480 |
|
480 | |||
481 | if self.xmin == None: self.xmin = xmin |
|
481 | if self.xmin == None: self.xmin = xmin | |
482 | if self.xmax == None: self.xmax = xmax |
|
482 | if self.xmax == None: self.xmax = xmax | |
483 | if self.ymin == None: self.ymin = ymin |
|
483 | if self.ymin == None: self.ymin = ymin | |
484 | if self.ymax == None: self.ymax = ymax |
|
484 | if self.ymax == None: self.ymax = ymax | |
485 | if self.zmin == None: self.zmin = zmin |
|
485 | if self.zmin == None: self.zmin = zmin | |
486 | if self.zmax == None: self.zmax = zmax |
|
486 | if self.zmax == None: self.zmax = zmax | |
487 |
|
487 | |||
488 | self.__firsttime = False |
|
488 | self.__firsttime = False | |
489 | return |
|
489 | return | |
490 |
|
490 | |||
491 | if rti: |
|
491 | if rti: | |
492 | self.__driver.addpcolor(self.ax, x, y, z, self.zmin, self.zmax, |
|
492 | self.__driver.addpcolor(self.ax, x, y, z, self.zmin, self.zmax, | |
493 | xlabel=xlabel, |
|
493 | xlabel=xlabel, | |
494 | ylabel=ylabel, |
|
494 | ylabel=ylabel, | |
495 | title=title, |
|
495 | title=title, | |
496 | colormap=colormap) |
|
496 | colormap=colormap) | |
497 | return |
|
497 | return | |
498 |
|
498 | |||
499 | self.__driver.pcolor(self.plot, z, |
|
499 | self.__driver.pcolor(self.plot, z, | |
500 | xlabel=xlabel, |
|
500 | xlabel=xlabel, | |
501 | ylabel=ylabel, |
|
501 | ylabel=ylabel, | |
502 | title=title) |
|
502 | title=title) | |
503 |
|
503 | |||
504 | def pcolorbuffer(self, x, y, z, |
|
504 | def pcolorbuffer(self, x, y, z, | |
505 | xmin=None, xmax=None, |
|
505 | xmin=None, xmax=None, | |
506 | ymin=None, ymax=None, |
|
506 | ymin=None, ymax=None, | |
507 | zmin=None, zmax=None, |
|
507 | zmin=None, zmax=None, | |
508 | xlabel='', ylabel='', |
|
508 | xlabel='', ylabel='', | |
509 | title='', rti = True, colormap='jet', |
|
509 | title='', rti = True, colormap='jet', | |
510 | maxNumX = None, maxNumY = None, |
|
510 | maxNumX = None, maxNumY = None, | |
511 | **kwargs): |
|
511 | **kwargs): | |
512 |
|
512 | |||
513 | if maxNumX == None: |
|
513 | if maxNumX == None: | |
514 | maxNumX = self.__MAXNUMX |
|
514 | maxNumX = self.__MAXNUMX | |
515 |
|
515 | |||
516 | if maxNumY == None: |
|
516 | if maxNumY == None: | |
517 | maxNumY = self.__MAXNUMY |
|
517 | maxNumY = self.__MAXNUMY | |
518 |
|
518 | |||
519 | if self.__firsttime: |
|
519 | if self.__firsttime: | |
520 | self.z_buffer = z |
|
520 | self.z_buffer = z | |
521 | self.x_buffer = numpy.hstack((self.x_buffer, x)) |
|
521 | self.x_buffer = numpy.hstack((self.x_buffer, x)) | |
522 |
|
522 | |||
523 | if xmin == None: xmin = numpy.nanmin(x) |
|
523 | if xmin == None: xmin = numpy.nanmin(x) | |
524 | if xmax == None: xmax = numpy.nanmax(x) |
|
524 | if xmax == None: xmax = numpy.nanmax(x) | |
525 | if ymin == None: ymin = numpy.nanmin(y) |
|
525 | if ymin == None: ymin = numpy.nanmin(y) | |
526 | if ymax == None: ymax = numpy.nanmax(y) |
|
526 | if ymax == None: ymax = numpy.nanmax(y) | |
527 | if zmin == None: zmin = numpy.nanmin(z) |
|
527 | if zmin == None: zmin = numpy.nanmin(z) | |
528 | if zmax == None: zmax = numpy.nanmax(z) |
|
528 | if zmax == None: zmax = numpy.nanmax(z) | |
529 |
|
529 | |||
530 |
|
530 | |||
531 | self.plot = self.__driver.createPcolor(self.ax, self.x_buffer, y, z, |
|
531 | self.plot = self.__driver.createPcolor(self.ax, self.x_buffer, y, z, | |
532 | xmin, xmax, |
|
532 | xmin, xmax, | |
533 | ymin, ymax, |
|
533 | ymin, ymax, | |
534 | zmin, zmax, |
|
534 | zmin, zmax, | |
535 | xlabel=xlabel, |
|
535 | xlabel=xlabel, | |
536 | ylabel=ylabel, |
|
536 | ylabel=ylabel, | |
537 | title=title, |
|
537 | title=title, | |
538 | colormap=colormap, |
|
538 | colormap=colormap, | |
539 | **kwargs) |
|
539 | **kwargs) | |
540 |
|
540 | |||
541 | if self.xmin == None: self.xmin = xmin |
|
541 | if self.xmin == None: self.xmin = xmin | |
542 | if self.xmax == None: self.xmax = xmax |
|
542 | if self.xmax == None: self.xmax = xmax | |
543 | if self.ymin == None: self.ymin = ymin |
|
543 | if self.ymin == None: self.ymin = ymin | |
544 | if self.ymax == None: self.ymax = ymax |
|
544 | if self.ymax == None: self.ymax = ymax | |
545 | if self.zmin == None: self.zmin = zmin |
|
545 | if self.zmin == None: self.zmin = zmin | |
546 | if self.zmax == None: self.zmax = zmax |
|
546 | if self.zmax == None: self.zmax = zmax | |
547 |
|
547 | |||
548 | self.__firsttime = False |
|
548 | self.__firsttime = False | |
549 | return |
|
549 | return | |
550 |
|
550 | |||
551 | self.x_buffer = numpy.hstack((self.x_buffer, x[-1])) |
|
551 | self.x_buffer = numpy.hstack((self.x_buffer, x[-1])) | |
552 | self.z_buffer = numpy.hstack((self.z_buffer, z)) |
|
552 | self.z_buffer = numpy.hstack((self.z_buffer, z)) | |
553 |
|
553 | |||
554 | if self.decimationx == None: |
|
554 | if self.decimationx == None: | |
555 | deltax = float(self.xmax - self.xmin)/maxNumX |
|
555 | deltax = float(self.xmax - self.xmin)/maxNumX | |
556 | deltay = float(self.ymax - self.ymin)/maxNumY |
|
556 | deltay = float(self.ymax - self.ymin)/maxNumY | |
557 |
|
557 | |||
558 | resolutionx = self.x_buffer[2]-self.x_buffer[0] |
|
558 | resolutionx = self.x_buffer[2]-self.x_buffer[0] | |
559 | resolutiony = y[1]-y[0] |
|
559 | resolutiony = y[1]-y[0] | |
560 |
|
560 | |||
561 | self.decimationx = numpy.ceil(deltax / resolutionx) |
|
561 | self.decimationx = numpy.ceil(deltax / resolutionx) | |
562 | self.decimationy = numpy.ceil(deltay / resolutiony) |
|
562 | self.decimationy = numpy.ceil(deltay / resolutiony) | |
563 |
|
563 | |||
564 | z_buffer = self.z_buffer.reshape(-1,len(y)) |
|
564 | z_buffer = self.z_buffer.reshape(-1,len(y)) | |
565 |
|
565 | |||
566 | x_buffer = self.x_buffer[::self.decimationx] |
|
566 | x_buffer = self.x_buffer[::self.decimationx] | |
567 | y_buffer = y[::self.decimationy] |
|
567 | y_buffer = y[::self.decimationy] | |
568 | z_buffer = z_buffer[::self.decimationx, ::self.decimationy] |
|
568 | z_buffer = z_buffer[::self.decimationx, ::self.decimationy] | |
569 | #=================================================== |
|
569 | #=================================================== | |
570 |
|
570 | |||
571 | x_buffer, y_buffer, z_buffer = self.__fillGaps(x_buffer, y_buffer, z_buffer) |
|
571 | x_buffer, y_buffer, z_buffer = self.__fillGaps(x_buffer, y_buffer, z_buffer) | |
572 |
|
572 | |||
573 | self.__driver.addpcolorbuffer(self.ax, x_buffer, y_buffer, z_buffer, self.zmin, self.zmax, |
|
573 | self.__driver.addpcolorbuffer(self.ax, x_buffer, y_buffer, z_buffer, self.zmin, self.zmax, | |
574 | xlabel=xlabel, |
|
574 | xlabel=xlabel, | |
575 | ylabel=ylabel, |
|
575 | ylabel=ylabel, | |
576 | title=title, |
|
576 | title=title, | |
577 | colormap=colormap) |
|
577 | colormap=colormap) | |
578 |
|
578 | |||
579 | def polar(self, x, y, |
|
579 | def polar(self, x, y, | |
580 | title='', xlabel='',ylabel='',**kwargs): |
|
580 | title='', xlabel='',ylabel='',**kwargs): | |
581 |
|
581 | |||
582 | if self.__firsttime: |
|
582 | if self.__firsttime: | |
583 | self.plot = self.__driver.createPolar(self.ax, x, y, title = title, xlabel = xlabel, ylabel = ylabel) |
|
583 | self.plot = self.__driver.createPolar(self.ax, x, y, title = title, xlabel = xlabel, ylabel = ylabel) | |
584 | self.__firsttime = False |
|
584 | self.__firsttime = False | |
585 | self.x_buffer = x |
|
585 | self.x_buffer = x | |
586 | self.y_buffer = y |
|
586 | self.y_buffer = y | |
587 | return |
|
587 | return | |
588 |
|
588 | |||
589 | self.x_buffer = numpy.hstack((self.x_buffer,x)) |
|
589 | self.x_buffer = numpy.hstack((self.x_buffer,x)) | |
590 | self.y_buffer = numpy.hstack((self.y_buffer,y)) |
|
590 | self.y_buffer = numpy.hstack((self.y_buffer,y)) | |
591 | self.__driver.polar(self.plot, self.x_buffer, self.y_buffer, xlabel=xlabel, |
|
591 | self.__driver.polar(self.plot, self.x_buffer, self.y_buffer, xlabel=xlabel, | |
592 | ylabel=ylabel, |
|
592 | ylabel=ylabel, | |
593 | title=title) |
|
593 | title=title) | |
594 |
|
594 | |||
595 | def __fillGaps(self, x_buffer, y_buffer, z_buffer): |
|
595 | def __fillGaps(self, x_buffer, y_buffer, z_buffer): | |
596 |
|
596 | |||
597 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
597 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
598 | x_median = numpy.median(deltas) |
|
598 | x_median = numpy.median(deltas) | |
599 |
|
599 | |||
600 | index = numpy.where(deltas >= 2*x_median) |
|
600 | index = numpy.where(deltas >= 2*x_median) | |
601 |
|
601 | |||
602 | if len(index[0]) != 0: |
|
602 | if len(index[0]) != 0: | |
603 | z_buffer[index[0],::] = self.__missing |
|
603 | z_buffer[index[0],::] = self.__missing | |
604 | z_buffer = numpy.ma.masked_inside(z_buffer,0.99*self.__missing,1.01*self.__missing) |
|
604 | z_buffer = numpy.ma.masked_inside(z_buffer,0.99*self.__missing,1.01*self.__missing) | |
605 |
|
605 | |||
606 | return x_buffer, y_buffer, z_buffer |
|
606 | return x_buffer, y_buffer, z_buffer | |
607 |
|
607 | |||
608 |
|
608 | |||
609 |
|
609 | |||
610 | No newline at end of file |
|
610 |
@@ -1,1164 +1,1362 | |||||
1 | import os |
|
1 | import os | |
2 | import datetime |
|
2 | import datetime | |
3 | import numpy |
|
3 | import numpy | |
4 |
|
4 | |||
5 | from figure import Figure, isRealtime |
|
5 | from figure import Figure, isRealtime | |
6 | from plotting_codes import * |
|
6 | from plotting_codes import * | |
7 |
|
7 | |||
8 | class MomentsPlot(Figure): |
|
8 | class MomentsPlot(Figure): | |
9 |
|
9 | |||
10 | isConfig = None |
|
10 | isConfig = None | |
11 | __nsubplots = None |
|
11 | __nsubplots = None | |
12 |
|
12 | |||
13 | WIDTHPROF = None |
|
13 | WIDTHPROF = None | |
14 | HEIGHTPROF = None |
|
14 | HEIGHTPROF = None | |
15 | PREFIX = 'prm' |
|
15 | PREFIX = 'prm' | |
16 |
|
16 | |||
17 | def __init__(self): |
|
17 | def __init__(self): | |
18 |
|
18 | |||
19 | self.isConfig = False |
|
19 | self.isConfig = False | |
20 | self.__nsubplots = 1 |
|
20 | self.__nsubplots = 1 | |
21 |
|
21 | |||
22 | self.WIDTH = 280 |
|
22 | self.WIDTH = 280 | |
23 | self.HEIGHT = 250 |
|
23 | self.HEIGHT = 250 | |
24 | self.WIDTHPROF = 120 |
|
24 | self.WIDTHPROF = 120 | |
25 | self.HEIGHTPROF = 0 |
|
25 | self.HEIGHTPROF = 0 | |
26 | self.counter_imagwr = 0 |
|
26 | self.counter_imagwr = 0 | |
27 |
|
27 | |||
28 | self.PLOT_CODE = MOMENTS_CODE |
|
28 | self.PLOT_CODE = MOMENTS_CODE | |
29 |
|
29 | |||
30 | self.FTP_WEI = None |
|
30 | self.FTP_WEI = None | |
31 | self.EXP_CODE = None |
|
31 | self.EXP_CODE = None | |
32 | self.SUB_EXP_CODE = None |
|
32 | self.SUB_EXP_CODE = None | |
33 | self.PLOT_POS = None |
|
33 | self.PLOT_POS = None | |
34 |
|
34 | |||
35 | def getSubplots(self): |
|
35 | def getSubplots(self): | |
36 |
|
36 | |||
37 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
37 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
38 | nrow = int(self.nplots*1./ncol + 0.9) |
|
38 | nrow = int(self.nplots*1./ncol + 0.9) | |
39 |
|
39 | |||
40 | return nrow, ncol |
|
40 | return nrow, ncol | |
41 |
|
41 | |||
42 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
42 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
43 |
|
43 | |||
44 | self.__showprofile = showprofile |
|
44 | self.__showprofile = showprofile | |
45 | self.nplots = nplots |
|
45 | self.nplots = nplots | |
46 |
|
46 | |||
47 | ncolspan = 1 |
|
47 | ncolspan = 1 | |
48 | colspan = 1 |
|
48 | colspan = 1 | |
49 | if showprofile: |
|
49 | if showprofile: | |
50 | ncolspan = 3 |
|
50 | ncolspan = 3 | |
51 | colspan = 2 |
|
51 | colspan = 2 | |
52 | self.__nsubplots = 2 |
|
52 | self.__nsubplots = 2 | |
53 |
|
53 | |||
54 | self.createFigure(id = id, |
|
54 | self.createFigure(id = id, | |
55 | wintitle = wintitle, |
|
55 | wintitle = wintitle, | |
56 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
56 | widthplot = self.WIDTH + self.WIDTHPROF, | |
57 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
57 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
58 | show=show) |
|
58 | show=show) | |
59 |
|
59 | |||
60 | nrow, ncol = self.getSubplots() |
|
60 | nrow, ncol = self.getSubplots() | |
61 |
|
61 | |||
62 | counter = 0 |
|
62 | counter = 0 | |
63 | for y in range(nrow): |
|
63 | for y in range(nrow): | |
64 | for x in range(ncol): |
|
64 | for x in range(ncol): | |
65 |
|
65 | |||
66 | if counter >= self.nplots: |
|
66 | if counter >= self.nplots: | |
67 | break |
|
67 | break | |
68 |
|
68 | |||
69 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
69 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
70 |
|
70 | |||
71 | if showprofile: |
|
71 | if showprofile: | |
72 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
72 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
73 |
|
73 | |||
74 | counter += 1 |
|
74 | counter += 1 | |
75 |
|
75 | |||
76 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
76 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
77 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
77 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
78 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
78 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
79 | server=None, folder=None, username=None, password=None, |
|
79 | server=None, folder=None, username=None, password=None, | |
80 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
80 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): | |
81 |
|
81 | |||
82 | """ |
|
82 | """ | |
83 |
|
83 | |||
84 | Input: |
|
84 | Input: | |
85 | dataOut : |
|
85 | dataOut : | |
86 | id : |
|
86 | id : | |
87 | wintitle : |
|
87 | wintitle : | |
88 | channelList : |
|
88 | channelList : | |
89 | showProfile : |
|
89 | showProfile : | |
90 | xmin : None, |
|
90 | xmin : None, | |
91 | xmax : None, |
|
91 | xmax : None, | |
92 | ymin : None, |
|
92 | ymin : None, | |
93 | ymax : None, |
|
93 | ymax : None, | |
94 | zmin : None, |
|
94 | zmin : None, | |
95 | zmax : None |
|
95 | zmax : None | |
96 | """ |
|
96 | """ | |
97 |
|
97 | |||
98 | if dataOut.flagNoData: |
|
98 | if dataOut.flagNoData: | |
99 | return None |
|
99 | return None | |
100 |
|
100 | |||
101 | if realtime: |
|
101 | if realtime: | |
102 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
102 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
103 | print 'Skipping this plot function' |
|
103 | print 'Skipping this plot function' | |
104 | return |
|
104 | return | |
105 |
|
105 | |||
106 | if channelList == None: |
|
106 | if channelList == None: | |
107 | channelIndexList = dataOut.channelIndexList |
|
107 | channelIndexList = dataOut.channelIndexList | |
108 | else: |
|
108 | else: | |
109 | channelIndexList = [] |
|
109 | channelIndexList = [] | |
110 | for channel in channelList: |
|
110 | for channel in channelList: | |
111 | if channel not in dataOut.channelList: |
|
111 | if channel not in dataOut.channelList: | |
112 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
112 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
113 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
113 | channelIndexList.append(dataOut.channelList.index(channel)) | |
114 |
|
114 | |||
115 | factor = dataOut.normFactor |
|
115 | factor = dataOut.normFactor | |
116 | x = dataOut.abscissaList |
|
116 | x = dataOut.abscissaList | |
117 | y = dataOut.heightList |
|
117 | y = dataOut.heightList | |
118 |
|
118 | |||
119 | z = dataOut.data_pre[channelIndexList,:,:]/factor |
|
119 | z = dataOut.data_pre[channelIndexList,:,:]/factor | |
120 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
120 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
121 | avg = numpy.average(z, axis=1) |
|
121 | avg = numpy.average(z, axis=1) | |
122 | noise = dataOut.noise/factor |
|
122 | noise = dataOut.noise/factor | |
123 |
|
123 | |||
124 | zdB = 10*numpy.log10(z) |
|
124 | zdB = 10*numpy.log10(z) | |
125 | avgdB = 10*numpy.log10(avg) |
|
125 | avgdB = 10*numpy.log10(avg) | |
126 | noisedB = 10*numpy.log10(noise) |
|
126 | noisedB = 10*numpy.log10(noise) | |
127 |
|
127 | |||
128 | #thisDatetime = dataOut.datatime |
|
128 | #thisDatetime = dataOut.datatime | |
129 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
129 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
130 | title = wintitle + " Parameters" |
|
130 | title = wintitle + " Parameters" | |
131 | xlabel = "Velocity (m/s)" |
|
131 | xlabel = "Velocity (m/s)" | |
132 | ylabel = "Range (Km)" |
|
132 | ylabel = "Range (Km)" | |
133 |
|
133 | |||
134 | if not self.isConfig: |
|
134 | if not self.isConfig: | |
135 |
|
135 | |||
136 | nplots = len(channelIndexList) |
|
136 | nplots = len(channelIndexList) | |
137 |
|
137 | |||
138 | self.setup(id=id, |
|
138 | self.setup(id=id, | |
139 | nplots=nplots, |
|
139 | nplots=nplots, | |
140 | wintitle=wintitle, |
|
140 | wintitle=wintitle, | |
141 | showprofile=showprofile, |
|
141 | showprofile=showprofile, | |
142 | show=show) |
|
142 | show=show) | |
143 |
|
143 | |||
144 | if xmin == None: xmin = numpy.nanmin(x) |
|
144 | if xmin == None: xmin = numpy.nanmin(x) | |
145 | if xmax == None: xmax = numpy.nanmax(x) |
|
145 | if xmax == None: xmax = numpy.nanmax(x) | |
146 | if ymin == None: ymin = numpy.nanmin(y) |
|
146 | if ymin == None: ymin = numpy.nanmin(y) | |
147 | if ymax == None: ymax = numpy.nanmax(y) |
|
147 | if ymax == None: ymax = numpy.nanmax(y) | |
148 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 |
|
148 | if zmin == None: zmin = numpy.nanmin(avgdB)*0.9 | |
149 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 |
|
149 | if zmax == None: zmax = numpy.nanmax(avgdB)*0.9 | |
150 |
|
150 | |||
151 | self.FTP_WEI = ftp_wei |
|
151 | self.FTP_WEI = ftp_wei | |
152 | self.EXP_CODE = exp_code |
|
152 | self.EXP_CODE = exp_code | |
153 | self.SUB_EXP_CODE = sub_exp_code |
|
153 | self.SUB_EXP_CODE = sub_exp_code | |
154 | self.PLOT_POS = plot_pos |
|
154 | self.PLOT_POS = plot_pos | |
155 |
|
155 | |||
156 | self.isConfig = True |
|
156 | self.isConfig = True | |
157 |
|
157 | |||
158 | self.setWinTitle(title) |
|
158 | self.setWinTitle(title) | |
159 |
|
159 | |||
160 | for i in range(self.nplots): |
|
160 | for i in range(self.nplots): | |
161 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
161 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
162 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i]+1, noisedB[i], str_datetime) |
|
162 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[i]+1, noisedB[i], str_datetime) | |
163 | axes = self.axesList[i*self.__nsubplots] |
|
163 | axes = self.axesList[i*self.__nsubplots] | |
164 | axes.pcolor(x, y, zdB[i,:,:], |
|
164 | axes.pcolor(x, y, zdB[i,:,:], | |
165 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
165 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
166 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
166 | xlabel=xlabel, ylabel=ylabel, title=title, | |
167 | ticksize=9, cblabel='') |
|
167 | ticksize=9, cblabel='') | |
168 | #Mean Line |
|
168 | #Mean Line | |
169 | mean = dataOut.data_param[i, 1, :] |
|
169 | mean = dataOut.data_param[i, 1, :] | |
170 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) |
|
170 | axes.addpline(mean, y, idline=0, color="black", linestyle="solid", lw=1) | |
171 |
|
171 | |||
172 | if self.__showprofile: |
|
172 | if self.__showprofile: | |
173 | axes = self.axesList[i*self.__nsubplots +1] |
|
173 | axes = self.axesList[i*self.__nsubplots +1] | |
174 | axes.pline(avgdB[i], y, |
|
174 | axes.pline(avgdB[i], y, | |
175 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
175 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
176 | xlabel='dB', ylabel='', title='', |
|
176 | xlabel='dB', ylabel='', title='', | |
177 | ytick_visible=False, |
|
177 | ytick_visible=False, | |
178 | grid='x') |
|
178 | grid='x') | |
179 |
|
179 | |||
180 | noiseline = numpy.repeat(noisedB[i], len(y)) |
|
180 | noiseline = numpy.repeat(noisedB[i], len(y)) | |
181 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
181 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
182 |
|
182 | |||
183 | self.draw() |
|
183 | self.draw() | |
184 |
|
184 | |||
185 | self.save(figpath=figpath, |
|
185 | self.save(figpath=figpath, | |
186 | figfile=figfile, |
|
186 | figfile=figfile, | |
187 | save=save, |
|
187 | save=save, | |
188 | ftp=ftp, |
|
188 | ftp=ftp, | |
189 | wr_period=wr_period, |
|
189 | wr_period=wr_period, | |
190 | thisDatetime=thisDatetime) |
|
190 | thisDatetime=thisDatetime) | |
191 |
|
191 | |||
192 |
|
192 | |||
193 |
|
193 | |||
194 | class SkyMapPlot(Figure): |
|
194 | class SkyMapPlot(Figure): | |
195 |
|
195 | |||
196 | __isConfig = None |
|
196 | __isConfig = None | |
197 | __nsubplots = None |
|
197 | __nsubplots = None | |
198 |
|
198 | |||
199 | WIDTHPROF = None |
|
199 | WIDTHPROF = None | |
200 | HEIGHTPROF = None |
|
200 | HEIGHTPROF = None | |
201 |
PREFIX = 'p |
|
201 | PREFIX = 'mmap' | |
202 |
|
202 | |||
203 | def __init__(self): |
|
203 | def __init__(self): | |
204 |
|
204 | |||
205 | self.__isConfig = False |
|
205 | self.__isConfig = False | |
206 | self.__nsubplots = 1 |
|
206 | self.__nsubplots = 1 | |
207 |
|
207 | |||
208 | # self.WIDTH = 280 |
|
208 | # self.WIDTH = 280 | |
209 | # self.HEIGHT = 250 |
|
209 | # self.HEIGHT = 250 | |
210 | self.WIDTH = 600 |
|
210 | self.WIDTH = 600 | |
211 | self.HEIGHT = 600 |
|
211 | self.HEIGHT = 600 | |
212 | self.WIDTHPROF = 120 |
|
212 | self.WIDTHPROF = 120 | |
213 | self.HEIGHTPROF = 0 |
|
213 | self.HEIGHTPROF = 0 | |
214 | self.counter_imagwr = 0 |
|
214 | self.counter_imagwr = 0 | |
215 |
|
215 | |||
216 | self.PLOT_CODE = SKYMAP_CODE |
|
216 | self.PLOT_CODE = MSKYMAP_CODE | |
217 |
|
217 | |||
218 | self.FTP_WEI = None |
|
218 | self.FTP_WEI = None | |
219 | self.EXP_CODE = None |
|
219 | self.EXP_CODE = None | |
220 | self.SUB_EXP_CODE = None |
|
220 | self.SUB_EXP_CODE = None | |
221 | self.PLOT_POS = None |
|
221 | self.PLOT_POS = None | |
222 |
|
222 | |||
223 | def getSubplots(self): |
|
223 | def getSubplots(self): | |
224 |
|
224 | |||
225 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
225 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
226 | nrow = int(self.nplots*1./ncol + 0.9) |
|
226 | nrow = int(self.nplots*1./ncol + 0.9) | |
227 |
|
227 | |||
228 | return nrow, ncol |
|
228 | return nrow, ncol | |
229 |
|
229 | |||
230 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
230 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): | |
231 |
|
231 | |||
232 | self.__showprofile = showprofile |
|
232 | self.__showprofile = showprofile | |
233 | self.nplots = nplots |
|
233 | self.nplots = nplots | |
234 |
|
234 | |||
235 | ncolspan = 1 |
|
235 | ncolspan = 1 | |
236 | colspan = 1 |
|
236 | colspan = 1 | |
237 |
|
237 | |||
238 | self.createFigure(id = id, |
|
238 | self.createFigure(id = id, | |
239 | wintitle = wintitle, |
|
239 | wintitle = wintitle, | |
240 | widthplot = self.WIDTH, #+ self.WIDTHPROF, |
|
240 | widthplot = self.WIDTH, #+ self.WIDTHPROF, | |
241 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, |
|
241 | heightplot = self.HEIGHT,# + self.HEIGHTPROF, | |
242 | show=show) |
|
242 | show=show) | |
243 |
|
243 | |||
244 | nrow, ncol = 1,1 |
|
244 | nrow, ncol = 1,1 | |
245 | counter = 0 |
|
245 | counter = 0 | |
246 | x = 0 |
|
246 | x = 0 | |
247 | y = 0 |
|
247 | y = 0 | |
248 | self.addAxes(1, 1, 0, 0, 1, 1, True) |
|
248 | self.addAxes(1, 1, 0, 0, 1, 1, True) | |
249 |
|
249 | |||
250 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
250 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, | |
251 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
251 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
252 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
252 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
253 | server=None, folder=None, username=None, password=None, |
|
253 | server=None, folder=None, username=None, password=None, | |
254 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): |
|
254 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False): | |
255 |
|
255 | |||
256 | """ |
|
256 | """ | |
257 |
|
257 | |||
258 | Input: |
|
258 | Input: | |
259 | dataOut : |
|
259 | dataOut : | |
260 | id : |
|
260 | id : | |
261 | wintitle : |
|
261 | wintitle : | |
262 | channelList : |
|
262 | channelList : | |
263 | showProfile : |
|
263 | showProfile : | |
264 | xmin : None, |
|
264 | xmin : None, | |
265 | xmax : None, |
|
265 | xmax : None, | |
266 | ymin : None, |
|
266 | ymin : None, | |
267 | ymax : None, |
|
267 | ymax : None, | |
268 | zmin : None, |
|
268 | zmin : None, | |
269 | zmax : None |
|
269 | zmax : None | |
270 | """ |
|
270 | """ | |
271 |
|
271 | |||
272 | arrayParameters = dataOut.data_param |
|
272 | arrayParameters = dataOut.data_param[0,:] | |
273 | error = arrayParameters[:,-1] |
|
273 | error = arrayParameters[:,-1] | |
274 | indValid = numpy.where(error == 0)[0] |
|
274 | indValid = numpy.where(error == 0)[0] | |
275 | finalMeteor = arrayParameters[indValid,:] |
|
275 | finalMeteor = arrayParameters[indValid,:] | |
276 | finalAzimuth = finalMeteor[:,4] |
|
276 | finalAzimuth = finalMeteor[:,4] | |
277 | finalZenith = finalMeteor[:,5] |
|
277 | finalZenith = finalMeteor[:,5] | |
278 |
|
278 | |||
279 | x = finalAzimuth*numpy.pi/180 |
|
279 | x = finalAzimuth*numpy.pi/180 | |
280 | y = finalZenith |
|
280 | y = finalZenith | |
281 |
|
281 | |||
282 |
|
282 | |||
283 | #thisDatetime = dataOut.datatime |
|
283 | #thisDatetime = dataOut.datatime | |
284 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
284 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
285 | title = wintitle + " Parameters" |
|
285 | title = wintitle + " Parameters" | |
286 | xlabel = "Zonal Zenith Angle (deg) " |
|
286 | xlabel = "Zonal Zenith Angle (deg) " | |
287 | ylabel = "Meridional Zenith Angle (deg)" |
|
287 | ylabel = "Meridional Zenith Angle (deg)" | |
288 |
|
288 | |||
289 | if not self.__isConfig: |
|
289 | if not self.__isConfig: | |
290 |
|
290 | |||
291 | nplots = 1 |
|
291 | nplots = 1 | |
292 |
|
292 | |||
293 | self.setup(id=id, |
|
293 | self.setup(id=id, | |
294 | nplots=nplots, |
|
294 | nplots=nplots, | |
295 | wintitle=wintitle, |
|
295 | wintitle=wintitle, | |
296 | showprofile=showprofile, |
|
296 | showprofile=showprofile, | |
297 | show=show) |
|
297 | show=show) | |
298 |
|
298 | |||
299 | self.FTP_WEI = ftp_wei |
|
299 | self.FTP_WEI = ftp_wei | |
300 | self.EXP_CODE = exp_code |
|
300 | self.EXP_CODE = exp_code | |
301 | self.SUB_EXP_CODE = sub_exp_code |
|
301 | self.SUB_EXP_CODE = sub_exp_code | |
302 | self.PLOT_POS = plot_pos |
|
302 | self.PLOT_POS = plot_pos | |
303 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
303 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
304 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
304 | self.firstdate = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
305 | self.__isConfig = True |
|
305 | self.__isConfig = True | |
306 |
|
306 | |||
307 | self.setWinTitle(title) |
|
307 | self.setWinTitle(title) | |
308 |
|
308 | |||
309 | i = 0 |
|
309 | i = 0 | |
310 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
310 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
311 |
|
311 | |||
312 | axes = self.axesList[i*self.__nsubplots] |
|
312 | axes = self.axesList[i*self.__nsubplots] | |
313 | nevents = axes.x_buffer.shape[0] + x.shape[0] |
|
313 | nevents = axes.x_buffer.shape[0] + x.shape[0] | |
314 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) |
|
314 | title = "Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n" %(self.firstdate,str_datetime,nevents) | |
315 | axes.polar(x, y, |
|
315 | axes.polar(x, y, | |
316 | title=title, xlabel=xlabel, ylabel=ylabel, |
|
316 | title=title, xlabel=xlabel, ylabel=ylabel, | |
317 | ticksize=9, cblabel='') |
|
317 | ticksize=9, cblabel='') | |
318 |
|
318 | |||
319 | self.draw() |
|
319 | self.draw() | |
320 |
|
320 | |||
321 | self.save(figpath=figpath, |
|
321 | self.save(figpath=figpath, | |
322 | figfile=figfile, |
|
322 | figfile=figfile, | |
323 | save=save, |
|
323 | save=save, | |
324 | ftp=ftp, |
|
324 | ftp=ftp, | |
325 | wr_period=wr_period, |
|
325 | wr_period=wr_period, | |
326 | thisDatetime=thisDatetime) |
|
326 | thisDatetime=thisDatetime) | |
327 |
|
327 | |||
|
328 | ||||
328 | class WindProfilerPlot(Figure): |
|
329 | class WindProfilerPlot(Figure): | |
329 |
|
330 | |||
330 | __isConfig = None |
|
331 | __isConfig = None | |
331 | __nsubplots = None |
|
332 | __nsubplots = None | |
332 |
|
333 | |||
333 | WIDTHPROF = None |
|
334 | WIDTHPROF = None | |
334 | HEIGHTPROF = None |
|
335 | HEIGHTPROF = None | |
335 | PREFIX = 'wind' |
|
336 | PREFIX = 'wind' | |
336 |
|
337 | |||
337 | def __init__(self): |
|
338 | def __init__(self): | |
338 |
|
339 | |||
339 |
self.timerange = |
|
340 | self.timerange = None | |
340 | self.__isConfig = False |
|
341 | self.__isConfig = False | |
341 | self.__nsubplots = 1 |
|
342 | self.__nsubplots = 1 | |
342 |
|
343 | |||
343 | self.WIDTH = 800 |
|
344 | self.WIDTH = 800 | |
344 | self.HEIGHT = 150 |
|
345 | self.HEIGHT = 150 | |
345 | self.WIDTHPROF = 120 |
|
346 | self.WIDTHPROF = 120 | |
346 | self.HEIGHTPROF = 0 |
|
347 | self.HEIGHTPROF = 0 | |
347 | self.counter_imagwr = 0 |
|
348 | self.counter_imagwr = 0 | |
348 |
|
349 | |||
349 | self.PLOT_CODE = WIND_CODE |
|
350 | self.PLOT_CODE = WIND_CODE | |
350 |
|
351 | |||
351 | self.FTP_WEI = None |
|
352 | self.FTP_WEI = None | |
352 | self.EXP_CODE = None |
|
353 | self.EXP_CODE = None | |
353 | self.SUB_EXP_CODE = None |
|
354 | self.SUB_EXP_CODE = None | |
354 | self.PLOT_POS = None |
|
355 | self.PLOT_POS = None | |
355 | self.tmin = None |
|
356 | self.tmin = None | |
356 | self.tmax = None |
|
357 | self.tmax = None | |
357 |
|
358 | |||
358 | self.xmin = None |
|
359 | self.xmin = None | |
359 | self.xmax = None |
|
360 | self.xmax = None | |
360 |
|
361 | |||
361 | self.figfile = None |
|
362 | self.figfile = None | |
362 |
|
363 | |||
363 | def getSubplots(self): |
|
364 | def getSubplots(self): | |
364 |
|
365 | |||
365 | ncol = 1 |
|
366 | ncol = 1 | |
366 | nrow = self.nplots |
|
367 | nrow = self.nplots | |
367 |
|
368 | |||
368 | return nrow, ncol |
|
369 | return nrow, ncol | |
369 |
|
370 | |||
370 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
371 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
371 |
|
372 | |||
372 | self.__showprofile = showprofile |
|
373 | self.__showprofile = showprofile | |
373 | self.nplots = nplots |
|
374 | self.nplots = nplots | |
374 |
|
375 | |||
375 | ncolspan = 1 |
|
376 | ncolspan = 1 | |
376 | colspan = 1 |
|
377 | colspan = 1 | |
377 |
|
378 | |||
378 | self.createFigure(id = id, |
|
379 | self.createFigure(id = id, | |
379 | wintitle = wintitle, |
|
380 | wintitle = wintitle, | |
380 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
381 | widthplot = self.WIDTH + self.WIDTHPROF, | |
381 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
382 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
382 | show=show) |
|
383 | show=show) | |
383 |
|
384 | |||
384 | nrow, ncol = self.getSubplots() |
|
385 | nrow, ncol = self.getSubplots() | |
385 |
|
386 | |||
386 | counter = 0 |
|
387 | counter = 0 | |
387 | for y in range(nrow): |
|
388 | for y in range(nrow): | |
388 | if counter >= self.nplots: |
|
389 | if counter >= self.nplots: | |
389 | break |
|
390 | break | |
390 |
|
391 | |||
391 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
392 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) | |
392 | counter += 1 |
|
393 | counter += 1 | |
393 |
|
394 | |||
394 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
395 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='False', | |
395 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
396 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
396 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, |
|
397 | zmax_ver = None, zmin_ver = None, SNRmin = None, SNRmax = None, | |
397 | timerange=None, SNRthresh = None, |
|
398 | timerange=None, SNRthresh = None, | |
398 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
399 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
399 | server=None, folder=None, username=None, password=None, |
|
400 | server=None, folder=None, username=None, password=None, | |
400 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
401 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
401 | """ |
|
402 | """ | |
402 |
|
403 | |||
403 | Input: |
|
404 | Input: | |
404 | dataOut : |
|
405 | dataOut : | |
405 | id : |
|
406 | id : | |
406 | wintitle : |
|
407 | wintitle : | |
407 | channelList : |
|
408 | channelList : | |
408 | showProfile : |
|
409 | showProfile : | |
409 | xmin : None, |
|
410 | xmin : None, | |
410 | xmax : None, |
|
411 | xmax : None, | |
411 | ymin : None, |
|
412 | ymin : None, | |
412 | ymax : None, |
|
413 | ymax : None, | |
413 | zmin : None, |
|
414 | zmin : None, | |
414 | zmax : None |
|
415 | zmax : None | |
415 | """ |
|
416 | """ | |
416 |
|
417 | |||
417 | if channelList == None: |
|
418 | if channelList == None: | |
418 | channelIndexList = dataOut.channelIndexList |
|
419 | channelIndexList = dataOut.channelIndexList | |
419 | else: |
|
420 | else: | |
420 | channelIndexList = [] |
|
421 | channelIndexList = [] | |
421 | for channel in channelList: |
|
422 | for channel in channelList: | |
422 | if channel not in dataOut.channelList: |
|
423 | if channel not in dataOut.channelList: | |
423 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
424 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
424 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
425 | channelIndexList.append(dataOut.channelList.index(channel)) | |
425 |
|
426 | |||
426 | if timerange != None: |
|
427 | # if timerange != None: | |
427 | self.timerange = timerange |
|
428 | # self.timerange = timerange | |
428 |
|
429 | # | ||
429 | tmin = None |
|
430 | # tmin = None | |
430 | tmax = None |
|
431 | # tmax = None | |
431 |
|
432 | |||
432 | x = dataOut.getTimeRange1() |
|
433 | x = dataOut.getTimeRange1() | |
433 | # y = dataOut.heightList |
|
434 | # y = dataOut.heightList | |
434 | y = dataOut.heightList |
|
435 | y = dataOut.heightList | |
435 |
|
436 | |||
436 | z = dataOut.data_output.copy() |
|
437 | z = dataOut.data_output.copy() | |
437 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
438 | nplots = z.shape[0] #Number of wind dimensions estimated | |
438 | nplotsw = nplots |
|
439 | nplotsw = nplots | |
439 |
|
440 | |||
440 | #If there is a SNR function defined |
|
441 | #If there is a SNR function defined | |
441 | if dataOut.data_SNR != None: |
|
442 | if dataOut.data_SNR != None: | |
442 | nplots += 1 |
|
443 | nplots += 1 | |
443 | SNR = dataOut.data_SNR |
|
444 | SNR = dataOut.data_SNR | |
444 | SNRavg = numpy.average(SNR, axis=0) |
|
445 | SNRavg = numpy.average(SNR, axis=0) | |
445 |
|
446 | |||
446 | SNRdB = 10*numpy.log10(SNR) |
|
447 | SNRdB = 10*numpy.log10(SNR) | |
447 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
448 | SNRavgdB = 10*numpy.log10(SNRavg) | |
448 |
|
449 | |||
449 | if SNRthresh == None: SNRthresh = -5.0 |
|
450 | if SNRthresh == None: SNRthresh = -5.0 | |
450 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
451 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
451 |
|
452 | |||
452 | for i in range(nplotsw): |
|
453 | for i in range(nplotsw): | |
453 | z[i,ind] = numpy.nan |
|
454 | z[i,ind] = numpy.nan | |
454 |
|
455 | |||
455 |
|
456 | |||
456 | showprofile = False |
|
457 | # showprofile = False | |
457 | # thisDatetime = dataOut.datatime |
|
458 | # thisDatetime = dataOut.datatime | |
458 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
459 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
459 | title = wintitle + "Wind" |
|
460 | title = wintitle + "Wind" | |
460 | xlabel = "" |
|
461 | xlabel = "" | |
461 | ylabel = "Range (Km)" |
|
462 | ylabel = "Range (Km)" | |
462 |
|
463 | |||
463 | if not self.__isConfig: |
|
464 | if not self.__isConfig: | |
464 |
|
465 | |||
465 | self.setup(id=id, |
|
466 | self.setup(id=id, | |
466 | nplots=nplots, |
|
467 | nplots=nplots, | |
467 | wintitle=wintitle, |
|
468 | wintitle=wintitle, | |
468 | showprofile=showprofile, |
|
469 | showprofile=showprofile, | |
469 | show=show) |
|
470 | show=show) | |
470 |
|
471 | |||
|
472 | if timerange != None: | |||
|
473 | self.timerange = timerange | |||
|
474 | ||||
471 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
475 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
472 |
|
476 | |||
473 | if ymin == None: ymin = numpy.nanmin(y) |
|
477 | if ymin == None: ymin = numpy.nanmin(y) | |
474 | if ymax == None: ymax = numpy.nanmax(y) |
|
478 | if ymax == None: ymax = numpy.nanmax(y) | |
475 |
|
479 | |||
476 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) |
|
480 | if zmax == None: zmax = numpy.nanmax(abs(z[range(2),:])) | |
477 | #if numpy.isnan(zmax): zmax = 50 |
|
481 | #if numpy.isnan(zmax): zmax = 50 | |
478 | if zmin == None: zmin = -zmax |
|
482 | if zmin == None: zmin = -zmax | |
479 |
|
483 | |||
480 | if nplotsw == 3: |
|
484 | if nplotsw == 3: | |
481 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) |
|
485 | if zmax_ver == None: zmax_ver = numpy.nanmax(abs(z[2,:])) | |
482 | if zmin_ver == None: zmin_ver = -zmax_ver |
|
486 | if zmin_ver == None: zmin_ver = -zmax_ver | |
483 |
|
487 | |||
484 | if dataOut.data_SNR != None: |
|
488 | if dataOut.data_SNR != None: | |
485 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
489 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) | |
486 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
490 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) | |
487 |
|
491 | |||
|
492 | ||||
488 | self.FTP_WEI = ftp_wei |
|
493 | self.FTP_WEI = ftp_wei | |
489 | self.EXP_CODE = exp_code |
|
494 | self.EXP_CODE = exp_code | |
490 | self.SUB_EXP_CODE = sub_exp_code |
|
495 | self.SUB_EXP_CODE = sub_exp_code | |
491 | self.PLOT_POS = plot_pos |
|
496 | self.PLOT_POS = plot_pos | |
492 |
|
|
497 | ||
493 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
498 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
494 | self.__isConfig = True |
|
499 | self.__isConfig = True | |
495 |
|
500 | self.figfile = figfile | ||
496 |
|
|
501 | ||
497 | self.setWinTitle(title) |
|
502 | self.setWinTitle(title) | |
498 |
|
|
503 | ||
499 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
504 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
500 | x[1] = self.xmax |
|
505 | x[1] = self.xmax | |
501 |
|
506 | |||
502 | strWind = ['Zonal', 'Meridional', 'Vertical'] |
|
507 | strWind = ['Zonal', 'Meridional', 'Vertical'] | |
503 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] |
|
508 | strCb = ['Velocity (m/s)','Velocity (m/s)','Velocity (cm/s)'] | |
504 | zmaxVector = [zmax, zmax, zmax_ver] |
|
509 | zmaxVector = [zmax, zmax, zmax_ver] | |
505 | zminVector = [zmin, zmin, zmin_ver] |
|
510 | zminVector = [zmin, zmin, zmin_ver] | |
506 | windFactor = [1,1,100] |
|
511 | windFactor = [1,1,100] | |
507 |
|
512 | |||
508 | for i in range(nplotsw): |
|
513 | for i in range(nplotsw): | |
509 |
|
514 | |||
510 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
515 | title = "%s Wind: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
511 | axes = self.axesList[i*self.__nsubplots] |
|
516 | axes = self.axesList[i*self.__nsubplots] | |
512 |
|
517 | |||
513 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
518 | z1 = z[i,:].reshape((1,-1))*windFactor[i] | |
514 |
|
519 | |||
515 | axes.pcolorbuffer(x, y, z1, |
|
520 | axes.pcolorbuffer(x, y, z1, | |
516 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
521 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
517 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
522 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
518 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="RdBu_r" ) |
|
523 | ticksize=9, cblabel=strCb[i], cbsize="1%", colormap="RdBu_r" ) | |
519 |
|
524 | |||
520 | if dataOut.data_SNR != None: |
|
525 | if dataOut.data_SNR != None: | |
521 | i += 1 |
|
526 | i += 1 | |
522 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
527 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
523 | axes = self.axesList[i*self.__nsubplots] |
|
528 | axes = self.axesList[i*self.__nsubplots] | |
524 |
|
529 | |||
525 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
530 | SNRavgdB = SNRavgdB.reshape((1,-1)) | |
526 |
|
531 | |||
527 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
532 | axes.pcolorbuffer(x, y, SNRavgdB, | |
528 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
533 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
529 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
534 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
530 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
535 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") | |
531 |
|
536 | |||
532 | self.draw() |
|
537 | self.draw() | |
533 |
|
538 | |||
534 | if x[1] >= self.axesList[0].xmax: |
|
539 | if x[1] >= self.axesList[0].xmax: | |
535 | self.counter_imagwr = wr_period |
|
540 | self.counter_imagwr = wr_period | |
536 | self.__isConfig = False |
|
541 | self.__isConfig = False | |
537 | self.figfile = None |
|
542 | self.figfile = None | |
538 |
|
543 | |||
539 | self.save(figpath=figpath, |
|
544 | self.save(figpath=figpath, | |
540 | figfile=figfile, |
|
545 | figfile=figfile, | |
541 | save=save, |
|
546 | save=save, | |
542 | ftp=ftp, |
|
547 | ftp=ftp, | |
543 | wr_period=wr_period, |
|
548 | wr_period=wr_period, | |
544 | thisDatetime=thisDatetime, |
|
549 | thisDatetime=thisDatetime, | |
545 | update_figfile=False) |
|
550 | update_figfile=False) | |
546 |
|
551 | |||
547 |
|
552 | |||
548 | class ParametersPlot(Figure): |
|
553 | class ParametersPlot(Figure): | |
549 |
|
554 | |||
550 | __isConfig = None |
|
555 | __isConfig = None | |
551 | __nsubplots = None |
|
556 | __nsubplots = None | |
552 |
|
557 | |||
553 | WIDTHPROF = None |
|
558 | WIDTHPROF = None | |
554 | HEIGHTPROF = None |
|
559 | HEIGHTPROF = None | |
555 | PREFIX = 'prm' |
|
560 | PREFIX = 'prm' | |
556 |
|
561 | |||
557 | def __init__(self): |
|
562 | def __init__(self): | |
558 |
|
563 | |||
559 | self.timerange = 2*60*60 |
|
564 | self.timerange = 2*60*60 | |
560 | self.__isConfig = False |
|
565 | self.__isConfig = False | |
561 | self.__nsubplots = 1 |
|
566 | self.__nsubplots = 1 | |
562 |
|
567 | |||
563 | self.WIDTH = 800 |
|
568 | self.WIDTH = 800 | |
564 | self.HEIGHT = 150 |
|
569 | self.HEIGHT = 150 | |
565 | self.WIDTHPROF = 120 |
|
570 | self.WIDTHPROF = 120 | |
566 | self.HEIGHTPROF = 0 |
|
571 | self.HEIGHTPROF = 0 | |
567 | self.counter_imagwr = 0 |
|
572 | self.counter_imagwr = 0 | |
568 |
|
573 | |||
569 | self.PLOT_CODE = PARMS_CODE |
|
574 | self.PLOT_CODE = PARMS_CODE | |
570 |
|
575 | |||
571 | self.FTP_WEI = None |
|
576 | self.FTP_WEI = None | |
572 | self.EXP_CODE = None |
|
577 | self.EXP_CODE = None | |
573 | self.SUB_EXP_CODE = None |
|
578 | self.SUB_EXP_CODE = None | |
574 | self.PLOT_POS = None |
|
579 | self.PLOT_POS = None | |
575 | self.tmin = None |
|
580 | self.tmin = None | |
576 | self.tmax = None |
|
581 | self.tmax = None | |
577 |
|
582 | |||
578 | self.xmin = None |
|
583 | self.xmin = None | |
579 | self.xmax = None |
|
584 | self.xmax = None | |
580 |
|
585 | |||
581 | self.figfile = None |
|
586 | self.figfile = None | |
582 |
|
587 | |||
583 | def getSubplots(self): |
|
588 | def getSubplots(self): | |
584 |
|
589 | |||
585 | ncol = 1 |
|
590 | ncol = 1 | |
586 | nrow = self.nplots |
|
591 | nrow = self.nplots | |
587 |
|
592 | |||
588 | return nrow, ncol |
|
593 | return nrow, ncol | |
589 |
|
594 | |||
590 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
595 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
591 |
|
596 | |||
592 | self.__showprofile = showprofile |
|
597 | self.__showprofile = showprofile | |
593 | self.nplots = nplots |
|
598 | self.nplots = nplots | |
594 |
|
599 | |||
595 | ncolspan = 1 |
|
600 | ncolspan = 1 | |
596 | colspan = 1 |
|
601 | colspan = 1 | |
597 |
|
602 | |||
598 | self.createFigure(id = id, |
|
603 | self.createFigure(id = id, | |
599 | wintitle = wintitle, |
|
604 | wintitle = wintitle, | |
600 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
605 | widthplot = self.WIDTH + self.WIDTHPROF, | |
601 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
606 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
602 | show=show) |
|
607 | show=show) | |
603 |
|
608 | |||
604 | nrow, ncol = self.getSubplots() |
|
609 | nrow, ncol = self.getSubplots() | |
605 |
|
610 | |||
606 | counter = 0 |
|
611 | counter = 0 | |
607 | for y in range(nrow): |
|
612 | for y in range(nrow): | |
608 | for x in range(ncol): |
|
613 | for x in range(ncol): | |
609 |
|
614 | |||
610 | if counter >= self.nplots: |
|
615 | if counter >= self.nplots: | |
611 | break |
|
616 | break | |
612 |
|
617 | |||
613 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
618 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
614 |
|
619 | |||
615 | if showprofile: |
|
620 | if showprofile: | |
616 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
621 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
617 |
|
622 | |||
618 | counter += 1 |
|
623 | counter += 1 | |
619 |
|
624 | |||
620 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, |
|
625 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=False, | |
621 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, |
|
626 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None,timerange=None, | |
622 | parameterIndex = None, onlyPositive = False, |
|
627 | parameterIndex = None, onlyPositive = False, | |
623 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, |
|
628 | SNRthresh = -numpy.inf, SNR = True, SNRmin = None, SNRmax = None, onlySNR = False, | |
624 | DOP = True, |
|
629 | DOP = True, | |
625 | zlabel = "", parameterName = "", parameterObject = "data_param", |
|
630 | zlabel = "", parameterName = "", parameterObject = "data_param", | |
626 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
631 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
627 | server=None, folder=None, username=None, password=None, |
|
632 | server=None, folder=None, username=None, password=None, | |
628 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
633 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
629 |
|
634 | |||
630 | """ |
|
635 | """ | |
631 |
|
636 | |||
632 | Input: |
|
637 | Input: | |
633 | dataOut : |
|
638 | dataOut : | |
634 | id : |
|
639 | id : | |
635 | wintitle : |
|
640 | wintitle : | |
636 | channelList : |
|
641 | channelList : | |
637 | showProfile : |
|
642 | showProfile : | |
638 | xmin : None, |
|
643 | xmin : None, | |
639 | xmax : None, |
|
644 | xmax : None, | |
640 | ymin : None, |
|
645 | ymin : None, | |
641 | ymax : None, |
|
646 | ymax : None, | |
642 | zmin : None, |
|
647 | zmin : None, | |
643 | zmax : None |
|
648 | zmax : None | |
644 | """ |
|
649 | """ | |
645 |
|
650 | |||
646 | data_param = getattr(dataOut, parameterObject) |
|
651 | data_param = getattr(dataOut, parameterObject) | |
647 |
|
652 | |||
648 | if channelList == None: |
|
653 | if channelList == None: | |
649 | channelIndexList = numpy.arange(data_param.shape[0]) |
|
654 | channelIndexList = numpy.arange(data_param.shape[0]) | |
650 | else: |
|
655 | else: | |
651 | channelIndexList = numpy.array(channelList) |
|
656 | channelIndexList = numpy.array(channelList) | |
652 |
|
657 | |||
653 | nchan = len(channelIndexList) #Number of channels being plotted |
|
658 | nchan = len(channelIndexList) #Number of channels being plotted | |
654 |
|
659 | |||
655 | if nchan < 1: |
|
660 | if nchan < 1: | |
656 | return |
|
661 | return | |
657 |
|
662 | |||
658 | nGraphsByChannel = 0 |
|
663 | nGraphsByChannel = 0 | |
659 |
|
664 | |||
660 | if SNR: |
|
665 | if SNR: | |
661 | nGraphsByChannel += 1 |
|
666 | nGraphsByChannel += 1 | |
662 | if DOP: |
|
667 | if DOP: | |
663 | nGraphsByChannel += 1 |
|
668 | nGraphsByChannel += 1 | |
664 |
|
669 | |||
665 | if nGraphsByChannel < 1: |
|
670 | if nGraphsByChannel < 1: | |
666 | return |
|
671 | return | |
667 |
|
672 | |||
668 | nplots = nGraphsByChannel*nchan |
|
673 | nplots = nGraphsByChannel*nchan | |
669 |
|
674 | |||
670 | if timerange != None: |
|
675 | if timerange != None: | |
671 | self.timerange = timerange |
|
676 | self.timerange = timerange | |
672 |
|
677 | |||
673 | #tmin = None |
|
678 | #tmin = None | |
674 | #tmax = None |
|
679 | #tmax = None | |
675 | if parameterIndex == None: |
|
680 | if parameterIndex == None: | |
676 | parameterIndex = 1 |
|
681 | parameterIndex = 1 | |
677 |
|
682 | |||
678 | x = dataOut.getTimeRange1() |
|
683 | x = dataOut.getTimeRange1() | |
679 | y = dataOut.heightList |
|
684 | y = dataOut.heightList | |
680 | z = data_param[channelIndexList,parameterIndex,:].copy() |
|
685 | z = data_param[channelIndexList,parameterIndex,:].copy() | |
681 |
|
686 | |||
682 | zRange = dataOut.abscissaList |
|
687 | zRange = dataOut.abscissaList | |
683 | # nChannels = z.shape[0] #Number of wind dimensions estimated |
|
688 | # nChannels = z.shape[0] #Number of wind dimensions estimated | |
684 | # thisDatetime = dataOut.datatime |
|
689 | # thisDatetime = dataOut.datatime | |
685 |
|
690 | |||
686 | if dataOut.data_SNR != None: |
|
691 | if dataOut.data_SNR != None: | |
687 | SNRarray = dataOut.data_SNR[channelIndexList,:] |
|
692 | SNRarray = dataOut.data_SNR[channelIndexList,:] | |
688 | SNRdB = 10*numpy.log10(SNRarray) |
|
693 | SNRdB = 10*numpy.log10(SNRarray) | |
689 | # SNRavgdB = 10*numpy.log10(SNRavg) |
|
694 | # SNRavgdB = 10*numpy.log10(SNRavg) | |
690 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) |
|
695 | ind = numpy.where(SNRdB < 10**(SNRthresh/10)) | |
691 | z[ind] = numpy.nan |
|
696 | z[ind] = numpy.nan | |
692 |
|
697 | |||
693 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
698 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
694 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
699 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
695 | xlabel = "" |
|
700 | xlabel = "" | |
696 | ylabel = "Range (Km)" |
|
701 | ylabel = "Range (Km)" | |
697 |
|
702 | |||
|
703 | if (SNR and not onlySNR): nplots = 2*nplots | |||
|
704 | ||||
698 | if onlyPositive: |
|
705 | if onlyPositive: | |
699 | colormap = "jet" |
|
706 | colormap = "jet" | |
700 | zmin = 0 |
|
707 | zmin = 0 | |
701 | else: colormap = "RdBu_r" |
|
708 | else: colormap = "RdBu_r" | |
702 |
|
709 | |||
703 | if not self.__isConfig: |
|
710 | if not self.__isConfig: | |
704 |
|
711 | |||
705 | self.setup(id=id, |
|
712 | self.setup(id=id, | |
706 | nplots=nplots, |
|
713 | nplots=nplots, | |
707 | wintitle=wintitle, |
|
714 | wintitle=wintitle, | |
708 | showprofile=showprofile, |
|
715 | showprofile=showprofile, | |
709 | show=show) |
|
716 | show=show) | |
710 |
|
717 | |||
711 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
718 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
712 |
|
719 | |||
713 | if ymin == None: ymin = numpy.nanmin(y) |
|
720 | if ymin == None: ymin = numpy.nanmin(y) | |
714 | if ymax == None: ymax = numpy.nanmax(y) |
|
721 | if ymax == None: ymax = numpy.nanmax(y) | |
715 | if zmin == None: zmin = numpy.nanmin(zRange) |
|
722 | if zmin == None: zmin = numpy.nanmin(zRange) | |
716 | if zmax == None: zmax = numpy.nanmax(zRange) |
|
723 | if zmax == None: zmax = numpy.nanmax(zRange) | |
717 |
|
724 | |||
718 | if SNR: |
|
725 | if SNR: | |
719 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) |
|
726 | if SNRmin == None: SNRmin = numpy.nanmin(SNRdB) | |
720 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) |
|
727 | if SNRmax == None: SNRmax = numpy.nanmax(SNRdB) | |
721 |
|
728 | |||
722 | self.FTP_WEI = ftp_wei |
|
729 | self.FTP_WEI = ftp_wei | |
723 | self.EXP_CODE = exp_code |
|
730 | self.EXP_CODE = exp_code | |
724 | self.SUB_EXP_CODE = sub_exp_code |
|
731 | self.SUB_EXP_CODE = sub_exp_code | |
725 | self.PLOT_POS = plot_pos |
|
732 | self.PLOT_POS = plot_pos | |
726 |
|
733 | |||
727 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
734 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
728 | self.__isConfig = True |
|
735 | self.__isConfig = True | |
729 | self.figfile = figfile |
|
736 | self.figfile = figfile | |
730 |
|
737 | |||
731 | self.setWinTitle(title) |
|
738 | self.setWinTitle(title) | |
732 |
|
739 | |||
733 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
740 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
734 | x[1] = self.xmax |
|
741 | x[1] = self.xmax | |
735 |
|
742 | |||
736 | for i in range(nchan): |
|
743 | for i in range(nchan): | |
737 |
|
744 | |||
|
745 | if (SNR and not onlySNR): j = 2*i | |||
|
746 | else: j = i | |||
|
747 | ||||
738 | j = nGraphsByChannel*i |
|
748 | j = nGraphsByChannel*i | |
739 |
|
749 | |||
|
750 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |||
|
751 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |||
|
752 | ||||
|
753 | if not onlySNR: | |||
|
754 | axes = self.axesList[j*self.__nsubplots] | |||
|
755 | z1 = z[i,:].reshape((1,-1)) | |||
|
756 | axes.pcolorbuffer(x, y, z1, | |||
|
757 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |||
|
758 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |||
|
759 | ticksize=9, cblabel=zlabel, cbsize="1%") | |||
|
760 | ||||
740 | if DOP: |
|
761 | if DOP: | |
741 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
762 | title = "%s Channel %d: %s" %(parameterName, channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
742 |
|
763 | |||
743 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
764 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
744 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
765 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
745 | axes = self.axesList[j] |
|
766 | axes = self.axesList[j] | |
746 | z1 = z[i,:].reshape((1,-1)) |
|
767 | z1 = z[i,:].reshape((1,-1)) | |
747 | axes.pcolorbuffer(x, y, z1, |
|
768 | axes.pcolorbuffer(x, y, z1, | |
748 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
769 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
749 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, |
|
770 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap=colormap, | |
750 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
771 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
751 |
|
772 | |||
752 | if SNR: |
|
773 | if SNR: | |
753 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
774 | title = "Channel %d Signal Noise Ratio (SNR): %s" %(channelIndexList[i]+1, thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
|
775 | axes = self.axesList[(j)*self.__nsubplots] | |||
|
776 | if not onlySNR: | |||
|
777 | axes = self.axesList[(j + 1)*self.__nsubplots] | |||
|
778 | ||||
754 | axes = self.axesList[(j + nGraphsByChannel-1)] |
|
779 | axes = self.axesList[(j + nGraphsByChannel-1)] | |
|
780 | ||||
755 | z1 = SNRdB[i,:].reshape((1,-1)) |
|
781 | z1 = SNRdB[i,:].reshape((1,-1)) | |
756 | axes.pcolorbuffer(x, y, z1, |
|
782 | axes.pcolorbuffer(x, y, z1, | |
757 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
783 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
758 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", |
|
784 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True,colormap="jet", | |
759 | ticksize=9, cblabel=zlabel, cbsize="1%") |
|
785 | ticksize=9, cblabel=zlabel, cbsize="1%") | |
760 |
|
786 | |||
761 |
|
787 | |||
762 |
|
788 | |||
763 | self.draw() |
|
789 | self.draw() | |
764 |
|
790 | |||
765 | if x[1] >= self.axesList[0].xmax: |
|
791 | if x[1] >= self.axesList[0].xmax: | |
766 | self.counter_imagwr = wr_period |
|
792 | self.counter_imagwr = wr_period | |
767 | self.__isConfig = False |
|
793 | self.__isConfig = False | |
768 | self.figfile = None |
|
794 | self.figfile = None | |
769 |
|
795 | |||
770 | self.save(figpath=figpath, |
|
796 | self.save(figpath=figpath, | |
771 | figfile=figfile, |
|
797 | figfile=figfile, | |
772 | save=save, |
|
798 | save=save, | |
773 | ftp=ftp, |
|
799 | ftp=ftp, | |
774 | wr_period=wr_period, |
|
800 | wr_period=wr_period, | |
775 | thisDatetime=thisDatetime, |
|
801 | thisDatetime=thisDatetime, | |
776 | update_figfile=False) |
|
802 | update_figfile=False) | |
777 |
|
803 | |||
778 | class SpectralFittingPlot(Figure): |
|
804 | class SpectralFittingPlot(Figure): | |
779 |
|
805 | |||
780 | __isConfig = None |
|
806 | __isConfig = None | |
781 | __nsubplots = None |
|
807 | __nsubplots = None | |
782 |
|
808 | |||
783 | WIDTHPROF = None |
|
809 | WIDTHPROF = None | |
784 | HEIGHTPROF = None |
|
810 | HEIGHTPROF = None | |
785 | PREFIX = 'prm' |
|
811 | PREFIX = 'prm' | |
786 |
|
812 | |||
787 |
|
813 | |||
788 | N = None |
|
814 | N = None | |
789 | ippSeconds = None |
|
815 | ippSeconds = None | |
790 |
|
816 | |||
791 | def __init__(self): |
|
817 | def __init__(self): | |
792 | self.__isConfig = False |
|
818 | self.__isConfig = False | |
793 | self.__nsubplots = 1 |
|
819 | self.__nsubplots = 1 | |
794 |
|
820 | |||
795 | self.PLOT_CODE = SPECFIT_CODE |
|
821 | self.PLOT_CODE = SPECFIT_CODE | |
796 |
|
822 | |||
797 | self.WIDTH = 450 |
|
823 | self.WIDTH = 450 | |
798 | self.HEIGHT = 250 |
|
824 | self.HEIGHT = 250 | |
799 | self.WIDTHPROF = 0 |
|
825 | self.WIDTHPROF = 0 | |
800 | self.HEIGHTPROF = 0 |
|
826 | self.HEIGHTPROF = 0 | |
801 |
|
827 | |||
802 | def getSubplots(self): |
|
828 | def getSubplots(self): | |
803 |
|
829 | |||
804 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
830 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
805 | nrow = int(self.nplots*1./ncol + 0.9) |
|
831 | nrow = int(self.nplots*1./ncol + 0.9) | |
806 |
|
832 | |||
807 | return nrow, ncol |
|
833 | return nrow, ncol | |
808 |
|
834 | |||
809 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): |
|
835 | def setup(self, id, nplots, wintitle, showprofile=False, show=True): | |
810 |
|
836 | |||
811 | showprofile = False |
|
837 | showprofile = False | |
812 | self.__showprofile = showprofile |
|
838 | self.__showprofile = showprofile | |
813 | self.nplots = nplots |
|
839 | self.nplots = nplots | |
814 |
|
840 | |||
815 | ncolspan = 5 |
|
841 | ncolspan = 5 | |
816 | colspan = 4 |
|
842 | colspan = 4 | |
817 | if showprofile: |
|
843 | if showprofile: | |
818 | ncolspan = 5 |
|
844 | ncolspan = 5 | |
819 | colspan = 4 |
|
845 | colspan = 4 | |
820 | self.__nsubplots = 2 |
|
846 | self.__nsubplots = 2 | |
821 |
|
847 | |||
822 | self.createFigure(id = id, |
|
848 | self.createFigure(id = id, | |
823 | wintitle = wintitle, |
|
849 | wintitle = wintitle, | |
824 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
850 | widthplot = self.WIDTH + self.WIDTHPROF, | |
825 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
851 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
826 | show=show) |
|
852 | show=show) | |
827 |
|
853 | |||
828 | nrow, ncol = self.getSubplots() |
|
854 | nrow, ncol = self.getSubplots() | |
829 |
|
855 | |||
830 | counter = 0 |
|
856 | counter = 0 | |
831 | for y in range(nrow): |
|
857 | for y in range(nrow): | |
832 | for x in range(ncol): |
|
858 | for x in range(ncol): | |
833 |
|
859 | |||
834 | if counter >= self.nplots: |
|
860 | if counter >= self.nplots: | |
835 | break |
|
861 | break | |
836 |
|
862 | |||
837 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
863 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
838 |
|
864 | |||
839 | if showprofile: |
|
865 | if showprofile: | |
840 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
866 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
841 |
|
867 | |||
842 | counter += 1 |
|
868 | counter += 1 | |
843 |
|
869 | |||
844 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, |
|
870 | def run(self, dataOut, id, cutHeight=None, fit=False, wintitle="", channelList=None, showprofile=True, | |
845 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
871 | xmin=None, xmax=None, ymin=None, ymax=None, | |
846 | save=False, figpath='./', figfile=None, show=True): |
|
872 | save=False, figpath='./', figfile=None, show=True): | |
847 |
|
873 | |||
848 | """ |
|
874 | """ | |
849 |
|
875 | |||
850 | Input: |
|
876 | Input: | |
851 | dataOut : |
|
877 | dataOut : | |
852 | id : |
|
878 | id : | |
853 | wintitle : |
|
879 | wintitle : | |
854 | channelList : |
|
880 | channelList : | |
855 | showProfile : |
|
881 | showProfile : | |
856 | xmin : None, |
|
882 | xmin : None, | |
857 | xmax : None, |
|
883 | xmax : None, | |
858 | zmin : None, |
|
884 | zmin : None, | |
859 | zmax : None |
|
885 | zmax : None | |
860 | """ |
|
886 | """ | |
861 |
|
887 | |||
862 | if cutHeight==None: |
|
888 | if cutHeight==None: | |
863 | h=270 |
|
889 | h=270 | |
864 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() |
|
890 | heightindex = numpy.abs(cutHeight - dataOut.heightList).argmin() | |
865 | cutHeight = dataOut.heightList[heightindex] |
|
891 | cutHeight = dataOut.heightList[heightindex] | |
866 |
|
892 | |||
867 | factor = dataOut.normFactor |
|
893 | factor = dataOut.normFactor | |
868 | x = dataOut.abscissaList[:-1] |
|
894 | x = dataOut.abscissaList[:-1] | |
869 | #y = dataOut.getHeiRange() |
|
895 | #y = dataOut.getHeiRange() | |
870 |
|
896 | |||
871 | z = dataOut.data_pre[:,:,heightindex]/factor |
|
897 | z = dataOut.data_pre[:,:,heightindex]/factor | |
872 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
898 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
873 | avg = numpy.average(z, axis=1) |
|
899 | avg = numpy.average(z, axis=1) | |
874 | listChannels = z.shape[0] |
|
900 | listChannels = z.shape[0] | |
875 |
|
901 | |||
876 | #Reconstruct Function |
|
902 | #Reconstruct Function | |
877 | if fit==True: |
|
903 | if fit==True: | |
878 | groupArray = dataOut.groupList |
|
904 | groupArray = dataOut.groupList | |
879 | listChannels = groupArray.reshape((groupArray.size)) |
|
905 | listChannels = groupArray.reshape((groupArray.size)) | |
880 | listChannels.sort() |
|
906 | listChannels.sort() | |
881 | spcFitLine = numpy.zeros(z.shape) |
|
907 | spcFitLine = numpy.zeros(z.shape) | |
882 | constants = dataOut.constants |
|
908 | constants = dataOut.constants | |
883 |
|
909 | |||
884 | nGroups = groupArray.shape[0] |
|
910 | nGroups = groupArray.shape[0] | |
885 | nChannels = groupArray.shape[1] |
|
911 | nChannels = groupArray.shape[1] | |
886 | nProfiles = z.shape[1] |
|
912 | nProfiles = z.shape[1] | |
887 |
|
913 | |||
888 | for f in range(nGroups): |
|
914 | for f in range(nGroups): | |
889 | groupChann = groupArray[f,:] |
|
915 | groupChann = groupArray[f,:] | |
890 | p = dataOut.data_param[f,:,heightindex] |
|
916 | p = dataOut.data_param[f,:,heightindex] | |
891 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) |
|
917 | # p = numpy.array([ 89.343967,0.14036615,0.17086219,18.89835291,1.58388365,1.55099167]) | |
892 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles |
|
918 | fitLineAux = dataOut.library.modelFunction(p, constants)*nProfiles | |
893 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) |
|
919 | fitLineAux = fitLineAux.reshape((nChannels,nProfiles)) | |
894 | spcFitLine[groupChann,:] = fitLineAux |
|
920 | spcFitLine[groupChann,:] = fitLineAux | |
895 | # spcFitLine = spcFitLine/factor |
|
921 | # spcFitLine = spcFitLine/factor | |
896 |
|
922 | |||
897 | z = z[listChannels,:] |
|
923 | z = z[listChannels,:] | |
898 | spcFitLine = spcFitLine[listChannels,:] |
|
924 | spcFitLine = spcFitLine[listChannels,:] | |
899 | spcFitLinedB = 10*numpy.log10(spcFitLine) |
|
925 | spcFitLinedB = 10*numpy.log10(spcFitLine) | |
900 |
|
926 | |||
901 | zdB = 10*numpy.log10(z) |
|
927 | zdB = 10*numpy.log10(z) | |
902 | #thisDatetime = dataOut.datatime |
|
928 | #thisDatetime = dataOut.datatime | |
903 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
929 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
904 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
930 | title = wintitle + " Doppler Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
905 | xlabel = "Velocity (m/s)" |
|
931 | xlabel = "Velocity (m/s)" | |
906 | ylabel = "Spectrum" |
|
932 | ylabel = "Spectrum" | |
907 |
|
933 | |||
908 | if not self.__isConfig: |
|
934 | if not self.__isConfig: | |
909 |
|
935 | |||
910 | nplots = listChannels.size |
|
936 | nplots = listChannels.size | |
911 |
|
937 | |||
912 | self.setup(id=id, |
|
938 | self.setup(id=id, | |
913 | nplots=nplots, |
|
939 | nplots=nplots, | |
914 | wintitle=wintitle, |
|
940 | wintitle=wintitle, | |
915 | showprofile=showprofile, |
|
941 | showprofile=showprofile, | |
916 | show=show) |
|
942 | show=show) | |
917 |
|
943 | |||
918 | if xmin == None: xmin = numpy.nanmin(x) |
|
944 | if xmin == None: xmin = numpy.nanmin(x) | |
919 | if xmax == None: xmax = numpy.nanmax(x) |
|
945 | if xmax == None: xmax = numpy.nanmax(x) | |
920 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
946 | if ymin == None: ymin = numpy.nanmin(zdB) | |
921 | if ymax == None: ymax = numpy.nanmax(zdB)+2 |
|
947 | if ymax == None: ymax = numpy.nanmax(zdB)+2 | |
922 |
|
948 | |||
923 | self.__isConfig = True |
|
949 | self.__isConfig = True | |
924 |
|
950 | |||
925 | self.setWinTitle(title) |
|
951 | self.setWinTitle(title) | |
926 | for i in range(self.nplots): |
|
952 | for i in range(self.nplots): | |
927 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) |
|
953 | # title = "Channel %d: %4.2fdB" %(dataOut.channelList[i]+1, noisedB[i]) | |
928 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]+1) |
|
954 | title = "Height %4.1f km\nChannel %d:" %(cutHeight, listChannels[i]+1) | |
929 | axes = self.axesList[i*self.__nsubplots] |
|
955 | axes = self.axesList[i*self.__nsubplots] | |
930 | if fit == False: |
|
956 | if fit == False: | |
931 | axes.pline(x, zdB[i,:], |
|
957 | axes.pline(x, zdB[i,:], | |
932 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
958 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
933 | xlabel=xlabel, ylabel=ylabel, title=title |
|
959 | xlabel=xlabel, ylabel=ylabel, title=title | |
934 | ) |
|
960 | ) | |
935 | if fit == True: |
|
961 | if fit == True: | |
936 | fitline=spcFitLinedB[i,:] |
|
962 | fitline=spcFitLinedB[i,:] | |
937 | y=numpy.vstack([zdB[i,:],fitline] ) |
|
963 | y=numpy.vstack([zdB[i,:],fitline] ) | |
938 | legendlabels=['Data','Fitting'] |
|
964 | legendlabels=['Data','Fitting'] | |
939 | axes.pmultilineyaxis(x, y, |
|
965 | axes.pmultilineyaxis(x, y, | |
940 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
966 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
941 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
967 | xlabel=xlabel, ylabel=ylabel, title=title, | |
942 | legendlabels=legendlabels, marker=None, |
|
968 | legendlabels=legendlabels, marker=None, | |
943 | linestyle='solid', grid='both') |
|
969 | linestyle='solid', grid='both') | |
944 |
|
970 | |||
945 | self.draw() |
|
971 | self.draw() | |
946 |
|
972 | |||
947 | self.save(figpath=figpath, |
|
973 | self.save(figpath=figpath, | |
948 | figfile=figfile, |
|
974 | figfile=figfile, | |
949 | save=save, |
|
975 | save=save, | |
950 | ftp=ftp, |
|
976 | ftp=ftp, | |
951 | wr_period=wr_period, |
|
977 | wr_period=wr_period, | |
952 | thisDatetime=thisDatetime) |
|
978 | thisDatetime=thisDatetime) | |
953 |
|
979 | |||
954 |
|
980 | |||
955 | class EWDriftsPlot(Figure): |
|
981 | class EWDriftsPlot(Figure): | |
956 |
|
982 | |||
957 | __isConfig = None |
|
983 | __isConfig = None | |
958 | __nsubplots = None |
|
984 | __nsubplots = None | |
959 |
|
985 | |||
960 | WIDTHPROF = None |
|
986 | WIDTHPROF = None | |
961 | HEIGHTPROF = None |
|
987 | HEIGHTPROF = None | |
962 | PREFIX = 'drift' |
|
988 | PREFIX = 'drift' | |
963 |
|
989 | |||
964 | def __init__(self): |
|
990 | def __init__(self): | |
965 |
|
991 | |||
966 | self.timerange = 2*60*60 |
|
992 | self.timerange = 2*60*60 | |
967 | self.isConfig = False |
|
993 | self.isConfig = False | |
968 | self.__nsubplots = 1 |
|
994 | self.__nsubplots = 1 | |
969 |
|
995 | |||
970 | self.WIDTH = 800 |
|
996 | self.WIDTH = 800 | |
971 | self.HEIGHT = 150 |
|
997 | self.HEIGHT = 150 | |
972 | self.WIDTHPROF = 120 |
|
998 | self.WIDTHPROF = 120 | |
973 | self.HEIGHTPROF = 0 |
|
999 | self.HEIGHTPROF = 0 | |
974 | self.counter_imagwr = 0 |
|
1000 | self.counter_imagwr = 0 | |
975 |
|
1001 | |||
976 | self.PLOT_CODE = EWDRIFT_CODE |
|
1002 | self.PLOT_CODE = EWDRIFT_CODE | |
977 |
|
1003 | |||
978 | self.FTP_WEI = None |
|
1004 | self.FTP_WEI = None | |
979 | self.EXP_CODE = None |
|
1005 | self.EXP_CODE = None | |
980 | self.SUB_EXP_CODE = None |
|
1006 | self.SUB_EXP_CODE = None | |
981 | self.PLOT_POS = None |
|
1007 | self.PLOT_POS = None | |
982 | self.tmin = None |
|
1008 | self.tmin = None | |
983 | self.tmax = None |
|
1009 | self.tmax = None | |
984 |
|
1010 | |||
985 | self.xmin = None |
|
1011 | self.xmin = None | |
986 | self.xmax = None |
|
1012 | self.xmax = None | |
987 |
|
1013 | |||
988 | self.figfile = None |
|
1014 | self.figfile = None | |
989 |
|
1015 | |||
990 | def getSubplots(self): |
|
1016 | def getSubplots(self): | |
991 |
|
1017 | |||
992 | ncol = 1 |
|
1018 | ncol = 1 | |
993 | nrow = self.nplots |
|
1019 | nrow = self.nplots | |
994 |
|
1020 | |||
995 | return nrow, ncol |
|
1021 | return nrow, ncol | |
996 |
|
1022 | |||
997 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1023 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
998 |
|
1024 | |||
999 | self.__showprofile = showprofile |
|
1025 | self.__showprofile = showprofile | |
1000 | self.nplots = nplots |
|
1026 | self.nplots = nplots | |
1001 |
|
1027 | |||
1002 | ncolspan = 1 |
|
1028 | ncolspan = 1 | |
1003 | colspan = 1 |
|
1029 | colspan = 1 | |
1004 |
|
1030 | |||
1005 | self.createFigure(id = id, |
|
1031 | self.createFigure(id = id, | |
1006 | wintitle = wintitle, |
|
1032 | wintitle = wintitle, | |
1007 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
1033 | widthplot = self.WIDTH + self.WIDTHPROF, | |
1008 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
1034 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
1009 | show=show) |
|
1035 | show=show) | |
1010 |
|
1036 | |||
1011 | nrow, ncol = self.getSubplots() |
|
1037 | nrow, ncol = self.getSubplots() | |
1012 |
|
1038 | |||
1013 | counter = 0 |
|
1039 | counter = 0 | |
1014 | for y in range(nrow): |
|
1040 | for y in range(nrow): | |
1015 | if counter >= self.nplots: |
|
1041 | if counter >= self.nplots: | |
1016 | break |
|
1042 | break | |
1017 |
|
1043 | |||
1018 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) |
|
1044 | self.addAxes(nrow, ncol*ncolspan, y, 0, colspan, 1) | |
1019 | counter += 1 |
|
1045 | counter += 1 | |
1020 |
|
1046 | |||
1021 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1047 | def run(self, dataOut, id, wintitle="", channelList=None, | |
1022 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
1048 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
1023 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, |
|
1049 | zmaxVertical = None, zminVertical = None, zmaxZonal = None, zminZonal = None, | |
1024 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, |
|
1050 | timerange=None, SNRthresh = -numpy.inf, SNRmin = None, SNRmax = None, SNR_1 = False, | |
1025 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1051 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
1026 | server=None, folder=None, username=None, password=None, |
|
1052 | server=None, folder=None, username=None, password=None, | |
1027 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1053 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1028 | """ |
|
1054 | """ | |
1029 |
|
1055 | |||
1030 | Input: |
|
1056 | Input: | |
1031 | dataOut : |
|
1057 | dataOut : | |
1032 | id : |
|
1058 | id : | |
1033 | wintitle : |
|
1059 | wintitle : | |
1034 | channelList : |
|
1060 | channelList : | |
1035 | showProfile : |
|
1061 | showProfile : | |
1036 | xmin : None, |
|
1062 | xmin : None, | |
1037 | xmax : None, |
|
1063 | xmax : None, | |
1038 | ymin : None, |
|
1064 | ymin : None, | |
1039 | ymax : None, |
|
1065 | ymax : None, | |
1040 | zmin : None, |
|
1066 | zmin : None, | |
1041 | zmax : None |
|
1067 | zmax : None | |
1042 | """ |
|
1068 | """ | |
1043 |
|
1069 | |||
1044 | if timerange != None: |
|
1070 | if timerange != None: | |
1045 | self.timerange = timerange |
|
1071 | self.timerange = timerange | |
1046 |
|
1072 | |||
1047 | tmin = None |
|
1073 | tmin = None | |
1048 | tmax = None |
|
1074 | tmax = None | |
1049 |
|
1075 | |||
1050 | x = dataOut.getTimeRange1() |
|
1076 | x = dataOut.getTimeRange1() | |
1051 | # y = dataOut.heightList |
|
1077 | # y = dataOut.heightList | |
1052 | y = dataOut.heightList |
|
1078 | y = dataOut.heightList | |
1053 |
|
1079 | |||
1054 | z = dataOut.data_output |
|
1080 | z = dataOut.data_output | |
1055 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
1081 | nplots = z.shape[0] #Number of wind dimensions estimated | |
1056 | nplotsw = nplots |
|
1082 | nplotsw = nplots | |
1057 |
|
1083 | |||
1058 | #If there is a SNR function defined |
|
1084 | #If there is a SNR function defined | |
1059 | if dataOut.data_SNR != None: |
|
1085 | if dataOut.data_SNR != None: | |
1060 | nplots += 1 |
|
1086 | nplots += 1 | |
1061 | SNR = dataOut.data_SNR |
|
1087 | SNR = dataOut.data_SNR | |
1062 |
|
1088 | |||
1063 | if SNR_1: |
|
1089 | if SNR_1: | |
1064 | SNR += 1 |
|
1090 | SNR += 1 | |
1065 |
|
1091 | |||
1066 | SNRavg = numpy.average(SNR, axis=0) |
|
1092 | SNRavg = numpy.average(SNR, axis=0) | |
1067 |
|
1093 | |||
1068 | SNRdB = 10*numpy.log10(SNR) |
|
1094 | SNRdB = 10*numpy.log10(SNR) | |
1069 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
1095 | SNRavgdB = 10*numpy.log10(SNRavg) | |
1070 |
|
1096 | |||
1071 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
1097 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
1072 |
|
1098 | |||
1073 | for i in range(nplotsw): |
|
1099 | for i in range(nplotsw): | |
1074 | z[i,ind] = numpy.nan |
|
1100 | z[i,ind] = numpy.nan | |
1075 |
|
1101 | |||
1076 |
|
1102 | |||
1077 | showprofile = False |
|
1103 | showprofile = False | |
1078 | # thisDatetime = dataOut.datatime |
|
1104 | # thisDatetime = dataOut.datatime | |
1079 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) |
|
1105 | thisDatetime = datetime.datetime.utcfromtimestamp(x[1]) | |
1080 | title = wintitle + " EW Drifts" |
|
1106 | title = wintitle + " EW Drifts" | |
1081 | xlabel = "" |
|
1107 | xlabel = "" | |
1082 | ylabel = "Height (Km)" |
|
1108 | ylabel = "Height (Km)" | |
1083 |
|
1109 | |||
1084 | if not self.__isConfig: |
|
1110 | if not self.__isConfig: | |
1085 |
|
1111 | |||
1086 | self.setup(id=id, |
|
1112 | self.setup(id=id, | |
1087 | nplots=nplots, |
|
1113 | nplots=nplots, | |
1088 | wintitle=wintitle, |
|
1114 | wintitle=wintitle, | |
1089 | showprofile=showprofile, |
|
1115 | showprofile=showprofile, | |
1090 | show=show) |
|
1116 | show=show) | |
1091 |
|
1117 | |||
1092 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1118 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1093 |
|
1119 | |||
1094 | if ymin == None: ymin = numpy.nanmin(y) |
|
1120 | if ymin == None: ymin = numpy.nanmin(y) | |
1095 | if ymax == None: ymax = numpy.nanmax(y) |
|
1121 | if ymax == None: ymax = numpy.nanmax(y) | |
1096 |
|
1122 | |||
1097 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) |
|
1123 | if zmaxZonal == None: zmaxZonal = numpy.nanmax(abs(z[0,:])) | |
1098 | if zminZonal == None: zminZonal = -zmaxZonal |
|
1124 | if zminZonal == None: zminZonal = -zmaxZonal | |
1099 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) |
|
1125 | if zmaxVertical == None: zmaxVertical = numpy.nanmax(abs(z[1,:])) | |
1100 | if zminVertical == None: zminVertical = -zmaxVertical |
|
1126 | if zminVertical == None: zminVertical = -zmaxVertical | |
1101 |
|
1127 | |||
1102 | if dataOut.data_SNR != None: |
|
1128 | if dataOut.data_SNR != None: | |
1103 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) |
|
1129 | if SNRmin == None: SNRmin = numpy.nanmin(SNRavgdB) | |
1104 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) |
|
1130 | if SNRmax == None: SNRmax = numpy.nanmax(SNRavgdB) | |
1105 |
|
1131 | |||
1106 | self.FTP_WEI = ftp_wei |
|
1132 | self.FTP_WEI = ftp_wei | |
1107 | self.EXP_CODE = exp_code |
|
1133 | self.EXP_CODE = exp_code | |
1108 | self.SUB_EXP_CODE = sub_exp_code |
|
1134 | self.SUB_EXP_CODE = sub_exp_code | |
1109 | self.PLOT_POS = plot_pos |
|
1135 | self.PLOT_POS = plot_pos | |
1110 |
|
1136 | |||
1111 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1137 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1112 | self.__isConfig = True |
|
1138 | self.__isConfig = True | |
1113 |
|
1139 | |||
1114 |
|
1140 | |||
1115 | self.setWinTitle(title) |
|
1141 | self.setWinTitle(title) | |
1116 |
|
1142 | |||
1117 | if ((self.xmax - x[1]) < (x[1]-x[0])): |
|
1143 | if ((self.xmax - x[1]) < (x[1]-x[0])): | |
1118 | x[1] = self.xmax |
|
1144 | x[1] = self.xmax | |
1119 |
|
1145 | |||
1120 | strWind = ['Zonal','Vertical'] |
|
1146 | strWind = ['Zonal','Vertical'] | |
1121 | strCb = 'Velocity (m/s)' |
|
1147 | strCb = 'Velocity (m/s)' | |
1122 | zmaxVector = [zmaxZonal, zmaxVertical] |
|
1148 | zmaxVector = [zmaxZonal, zmaxVertical] | |
1123 | zminVector = [zminZonal, zminVertical] |
|
1149 | zminVector = [zminZonal, zminVertical] | |
1124 |
|
1150 | |||
1125 | for i in range(nplotsw): |
|
1151 | for i in range(nplotsw): | |
1126 |
|
1152 | |||
1127 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1153 | title = "%s Drifts: %s" %(strWind[i], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1128 | axes = self.axesList[i*self.__nsubplots] |
|
1154 | axes = self.axesList[i*self.__nsubplots] | |
1129 |
|
1155 | |||
1130 | z1 = z[i,:].reshape((1,-1)) |
|
1156 | z1 = z[i,:].reshape((1,-1)) | |
1131 |
|
1157 | |||
1132 | axes.pcolorbuffer(x, y, z1, |
|
1158 | axes.pcolorbuffer(x, y, z1, | |
1133 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
1159 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
1134 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1160 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
1135 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") |
|
1161 | ticksize=9, cblabel=strCb, cbsize="1%", colormap="RdBu_r") | |
1136 |
|
1162 | |||
1137 | if dataOut.data_SNR != None: |
|
1163 | if dataOut.data_SNR != None: | |
1138 | i += 1 |
|
1164 | i += 1 | |
1139 | if SNR_1: |
|
1165 | if SNR_1: | |
1140 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1166 | title = "Signal Noise Ratio + 1 (SNR+1): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1141 | else: |
|
1167 | else: | |
1142 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1168 | title = "Signal Noise Ratio (SNR): %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1143 | axes = self.axesList[i*self.__nsubplots] |
|
1169 | axes = self.axesList[i*self.__nsubplots] | |
1144 | SNRavgdB = SNRavgdB.reshape((1,-1)) |
|
1170 | SNRavgdB = SNRavgdB.reshape((1,-1)) | |
1145 |
|
1171 | |||
1146 | axes.pcolorbuffer(x, y, SNRavgdB, |
|
1172 | axes.pcolorbuffer(x, y, SNRavgdB, | |
1147 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1173 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
1148 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1174 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
1149 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") |
|
1175 | ticksize=9, cblabel='', cbsize="1%", colormap="jet") | |
1150 |
|
1176 | |||
1151 | self.draw() |
|
1177 | self.draw() | |
1152 |
|
1178 | |||
1153 | if x[1] >= self.axesList[0].xmax: |
|
1179 | if x[1] >= self.axesList[0].xmax: | |
1154 | self.counter_imagwr = wr_period |
|
1180 | self.counter_imagwr = wr_period | |
1155 | self.__isConfig = False |
|
1181 | self.__isConfig = False | |
1156 | self.figfile = None |
|
1182 | self.figfile = None | |
1157 |
|
1183 | |||
|
1184 | ||||
|
1185 | ||||
|
1186 | ||||
|
1187 | class PhasePlot(Figure): | |||
|
1188 | ||||
|
1189 | __isConfig = None | |||
|
1190 | __nsubplots = None | |||
|
1191 | ||||
|
1192 | PREFIX = 'mphase' | |||
|
1193 | ||||
|
1194 | def __init__(self): | |||
|
1195 | ||||
|
1196 | self.timerange = 24*60*60 | |||
|
1197 | self.__isConfig = False | |||
|
1198 | self.__nsubplots = 1 | |||
|
1199 | self.counter_imagwr = 0 | |||
|
1200 | self.WIDTH = 600 | |||
|
1201 | self.HEIGHT = 300 | |||
|
1202 | self.WIDTHPROF = 120 | |||
|
1203 | self.HEIGHTPROF = 0 | |||
|
1204 | self.xdata = None | |||
|
1205 | self.ydata = None | |||
|
1206 | ||||
|
1207 | self.PLOT_CODE = MPHASE_CODE | |||
|
1208 | ||||
|
1209 | self.FTP_WEI = None | |||
|
1210 | self.EXP_CODE = None | |||
|
1211 | self.SUB_EXP_CODE = None | |||
|
1212 | self.PLOT_POS = None | |||
|
1213 | ||||
|
1214 | ||||
|
1215 | self.filename_phase = None | |||
|
1216 | ||||
|
1217 | self.figfile = None | |||
|
1218 | ||||
|
1219 | def getSubplots(self): | |||
|
1220 | ||||
|
1221 | ncol = 1 | |||
|
1222 | nrow = 1 | |||
|
1223 | ||||
|
1224 | return nrow, ncol | |||
|
1225 | ||||
|
1226 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |||
|
1227 | ||||
|
1228 | self.__showprofile = showprofile | |||
|
1229 | self.nplots = nplots | |||
|
1230 | ||||
|
1231 | ncolspan = 7 | |||
|
1232 | colspan = 6 | |||
|
1233 | self.__nsubplots = 2 | |||
|
1234 | ||||
|
1235 | self.createFigure(id = id, | |||
|
1236 | wintitle = wintitle, | |||
|
1237 | widthplot = self.WIDTH+self.WIDTHPROF, | |||
|
1238 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |||
|
1239 | show=show) | |||
|
1240 | ||||
|
1241 | nrow, ncol = self.getSubplots() | |||
|
1242 | ||||
|
1243 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |||
|
1244 | ||||
|
1245 | ||||
|
1246 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |||
|
1247 | xmin=None, xmax=None, ymin=None, ymax=None, | |||
|
1248 | timerange=None, | |||
|
1249 | save=False, figpath='', figfile=None, show=True, ftp=False, wr_period=1, | |||
|
1250 | server=None, folder=None, username=None, password=None, | |||
|
1251 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |||
|
1252 | ||||
|
1253 | ||||
|
1254 | if timerange != None: | |||
|
1255 | self.timerange = timerange | |||
|
1256 | ||||
|
1257 | tmin = None | |||
|
1258 | tmax = None | |||
|
1259 | x = dataOut.getTimeRange1() | |||
|
1260 | y = dataOut.getHeiRange() | |||
|
1261 | ||||
|
1262 | ||||
|
1263 | #thisDatetime = dataOut.datatime | |||
|
1264 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[1]) | |||
|
1265 | title = wintitle + " Phase of Beacon Signal" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |||
|
1266 | xlabel = "Local Time" | |||
|
1267 | ylabel = "Phase" | |||
|
1268 | ||||
|
1269 | ||||
|
1270 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |||
|
1271 | phase_beacon = dataOut.data_output | |||
|
1272 | ||||
|
1273 | ||||
|
1274 | if not self.__isConfig: | |||
|
1275 | ||||
|
1276 | self.nplots = phase_beacon.size | |||
|
1277 | ||||
|
1278 | self.setup(id=id, | |||
|
1279 | nplots=self.nplots, | |||
|
1280 | wintitle=wintitle, | |||
|
1281 | showprofile=showprofile, | |||
|
1282 | show=show) | |||
|
1283 | ||||
|
1284 | tmin, tmax = self.getTimeLim(x, xmin, xmax) | |||
|
1285 | if ymin == None: ymin = numpy.nanmin(phase_beacon) - 10.0 | |||
|
1286 | if ymax == None: ymax = numpy.nanmax(phase_beacon) + 10.0 | |||
|
1287 | ||||
|
1288 | self.FTP_WEI = ftp_wei | |||
|
1289 | self.EXP_CODE = exp_code | |||
|
1290 | self.SUB_EXP_CODE = sub_exp_code | |||
|
1291 | self.PLOT_POS = plot_pos | |||
|
1292 | ||||
|
1293 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |||
|
1294 | self.__isConfig = True | |||
|
1295 | self.figfile = figfile | |||
|
1296 | self.xdata = numpy.array([]) | |||
|
1297 | self.ydata = numpy.array([]) | |||
|
1298 | ||||
|
1299 | #open file beacon phase | |||
|
1300 | path = '%s%03d' %(self.PREFIX, self.id) | |||
|
1301 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |||
|
1302 | self.filename_phase = os.path.join(figpath,beacon_file) | |||
|
1303 | #self.save_phase(self.filename_phase) | |||
|
1304 | ||||
|
1305 | ||||
|
1306 | #store data beacon phase | |||
|
1307 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |||
|
1308 | ||||
|
1309 | self.setWinTitle(title) | |||
|
1310 | ||||
|
1311 | ||||
|
1312 | title = "Phase Offset %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1313 | ||||
|
1314 | legendlabels = ["phase %d"%(chan) for chan in numpy.arange(self.nplots)] | |||
|
1315 | ||||
|
1316 | axes = self.axesList[0] | |||
|
1317 | ||||
|
1318 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |||
|
1319 | ||||
|
1320 | if len(self.ydata)==0: | |||
|
1321 | self.ydata = phase_beacon.reshape(-1,1) | |||
|
1322 | else: | |||
|
1323 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |||
|
1324 | ||||
|
1325 | ||||
|
1326 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |||
|
1327 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, | |||
|
1328 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |||
|
1329 | XAxisAsTime=True, grid='both' | |||
|
1330 | ) | |||
|
1331 | ||||
|
1332 | self.draw() | |||
|
1333 | ||||
|
1334 | if x[1] >= self.axesList[0].xmax: | |||
|
1335 | self.counter_imagwr = wr_period | |||
|
1336 | del self.xdata | |||
|
1337 | del self.ydata | |||
|
1338 | self.__isConfig = False | |||
|
1339 | ||||
|
1340 | if self.figfile == None: | |||
|
1341 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |||
|
1342 | self.figfile = self.getFilename(name = str_datetime) | |||
|
1343 | ||||
|
1344 | if figpath != '': | |||
|
1345 | self.counter_imagwr += 1 | |||
|
1346 | if (self.counter_imagwr>=wr_period): | |||
|
1347 | # store png plot to local folder | |||
|
1348 | self.saveFigure(figpath, self.figfile) | |||
|
1349 | # store png plot to FTP server according to RT-Web format | |||
|
1350 | name = self.getNameToFtp(thisDatetime, self.FTP_WEI, self.EXP_CODE, self.SUB_EXP_CODE, self.PLOT_CODE, self.PLOT_POS) | |||
|
1351 | ftp_filename = os.path.join(figpath, name) | |||
|
1352 | self.saveFigure(figpath, ftp_filename) | |||
|
1353 | self.counter_imagwr = 0 | |||
|
1354 | self.figfile = None | |||
|
1355 | ||||
1158 | self.save(figpath=figpath, |
|
1356 | self.save(figpath=figpath, | |
1159 | figfile=figfile, |
|
1357 | figfile=figfile, | |
1160 | save=save, |
|
1358 | save=save, | |
1161 | ftp=ftp, |
|
1359 | ftp=ftp, | |
1162 | wr_period=wr_period, |
|
1360 | wr_period=wr_period, | |
1163 | thisDatetime=thisDatetime, |
|
1361 | thisDatetime=thisDatetime, | |
1164 | update_figfile=False) |
|
1362 | update_figfile=False) |
@@ -1,435 +1,437 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import datetime |
|
2 | import datetime | |
3 | import sys |
|
3 | import sys | |
4 | import matplotlib |
|
4 | import matplotlib | |
5 |
|
5 | |||
6 | if 'linux' in sys.platform: |
|
6 | if 'linux' in sys.platform: | |
7 | matplotlib.use("TKAgg") |
|
7 | matplotlib.use("TKAgg") | |
8 |
|
8 | |||
9 | if 'darwin' in sys.platform: |
|
9 | if 'darwin' in sys.platform: | |
10 | matplotlib.use("WXAgg") |
|
10 | matplotlib.use("WXAgg") | |
11 | #Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX' |
|
11 | #Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX' | |
12 | import matplotlib.pyplot |
|
12 | import matplotlib.pyplot | |
13 |
|
13 | |||
14 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
14 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
15 | from matplotlib.ticker import * |
|
15 | from matplotlib.ticker import * | |
16 |
|
16 | |||
17 | ########################################### |
|
17 | ########################################### | |
18 | #Actualizacion de las funciones del driver |
|
18 | #Actualizacion de las funciones del driver | |
19 | ########################################### |
|
19 | ########################################### | |
20 |
|
20 | |||
21 | def createFigure(id, wintitle, width, height, facecolor="w", show=True): |
|
21 | def createFigure(id, wintitle, width, height, facecolor="w", show=True): | |
22 |
|
22 | |||
23 | matplotlib.pyplot.ioff() |
|
23 | matplotlib.pyplot.ioff() | |
24 | fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor) |
|
24 | fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor) | |
25 | fig.canvas.manager.set_window_title(wintitle) |
|
25 | fig.canvas.manager.set_window_title(wintitle) | |
26 | fig.canvas.manager.resize(width, height) |
|
26 | fig.canvas.manager.resize(width, height) | |
27 | matplotlib.pyplot.ion() |
|
27 | matplotlib.pyplot.ion() | |
28 | if show: |
|
28 | if show: | |
29 | matplotlib.pyplot.show() |
|
29 | matplotlib.pyplot.show() | |
30 |
|
30 | |||
31 | return fig |
|
31 | return fig | |
32 |
|
32 | |||
33 | def closeFigure(show=False, fig=None): |
|
33 | def closeFigure(show=False, fig=None): | |
34 |
|
34 | |||
35 | matplotlib.pyplot.ioff() |
|
35 | matplotlib.pyplot.ioff() | |
36 | matplotlib.pyplot.pause(0.1) |
|
36 | matplotlib.pyplot.pause(0.1) | |
37 |
|
37 | |||
38 | if show: |
|
38 | if show: | |
39 | matplotlib.pyplot.show() |
|
39 | matplotlib.pyplot.show() | |
40 |
|
40 | |||
41 | if fig != None: |
|
41 | if fig != None: | |
42 | matplotlib.pyplot.close(fig) |
|
42 | matplotlib.pyplot.close(fig) | |
43 | matplotlib.pyplot.pause(0.1) |
|
43 | matplotlib.pyplot.pause(0.1) | |
44 | matplotlib.pyplot.ion() |
|
44 | matplotlib.pyplot.ion() | |
45 | return |
|
45 | return | |
46 |
|
46 | |||
47 | matplotlib.pyplot.close("all") |
|
47 | matplotlib.pyplot.close("all") | |
48 | matplotlib.pyplot.pause(0.1) |
|
48 | matplotlib.pyplot.pause(0.1) | |
49 | matplotlib.pyplot.ion() |
|
49 | matplotlib.pyplot.ion() | |
50 | return |
|
50 | return | |
51 |
|
51 | |||
52 | def saveFigure(fig, filename): |
|
52 | def saveFigure(fig, filename): | |
53 |
|
53 | |||
54 | matplotlib.pyplot.ioff() |
|
54 | matplotlib.pyplot.ioff() | |
55 | fig.savefig(filename) |
|
55 | fig.savefig(filename) | |
56 | matplotlib.pyplot.ion() |
|
56 | matplotlib.pyplot.ion() | |
57 |
|
57 | |||
58 | def setWinTitle(fig, title): |
|
58 | def setWinTitle(fig, title): | |
59 |
|
59 | |||
60 | fig.canvas.manager.set_window_title(title) |
|
60 | fig.canvas.manager.set_window_title(title) | |
61 |
|
61 | |||
62 | def setTitle(fig, title): |
|
62 | def setTitle(fig, title): | |
63 |
|
63 | |||
64 | fig.suptitle(title) |
|
64 | fig.suptitle(title) | |
65 |
|
65 | |||
66 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False): |
|
66 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False): | |
67 |
|
67 | |||
68 | matplotlib.pyplot.ioff() |
|
68 | matplotlib.pyplot.ioff() | |
69 | matplotlib.pyplot.figure(fig.number) |
|
69 | matplotlib.pyplot.figure(fig.number) | |
70 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), |
|
70 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), | |
71 | (xpos, ypos), |
|
71 | (xpos, ypos), | |
72 | colspan=colspan, |
|
72 | colspan=colspan, | |
73 | rowspan=rowspan, |
|
73 | rowspan=rowspan, | |
74 | polar=polar) |
|
74 | polar=polar) | |
75 |
|
75 | |||
76 | matplotlib.pyplot.ion() |
|
76 | matplotlib.pyplot.ion() | |
77 | return axes |
|
77 | return axes | |
78 |
|
78 | |||
79 | def setAxesText(ax, text): |
|
79 | def setAxesText(ax, text): | |
80 |
|
80 | |||
81 | ax.annotate(text, |
|
81 | ax.annotate(text, | |
82 | xy = (.1, .99), |
|
82 | xy = (.1, .99), | |
83 | xycoords = 'figure fraction', |
|
83 | xycoords = 'figure fraction', | |
84 | horizontalalignment = 'left', |
|
84 | horizontalalignment = 'left', | |
85 | verticalalignment = 'top', |
|
85 | verticalalignment = 'top', | |
86 | fontsize = 10) |
|
86 | fontsize = 10) | |
87 |
|
87 | |||
88 | def printLabels(ax, xlabel, ylabel, title): |
|
88 | def printLabels(ax, xlabel, ylabel, title): | |
89 |
|
89 | |||
90 | ax.set_xlabel(xlabel, size=11) |
|
90 | ax.set_xlabel(xlabel, size=11) | |
91 | ax.set_ylabel(ylabel, size=11) |
|
91 | ax.set_ylabel(ylabel, size=11) | |
92 | ax.set_title(title, size=8) |
|
92 | ax.set_title(title, size=8) | |
93 |
|
93 | |||
94 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', |
|
94 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', | |
95 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
95 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
96 | nxticks=4, nyticks=10, |
|
96 | nxticks=4, nyticks=10, | |
97 | grid=None,color='blue'): |
|
97 | grid=None,color='blue'): | |
98 |
|
98 | |||
99 | """ |
|
99 | """ | |
100 |
|
100 | |||
101 | Input: |
|
101 | Input: | |
102 | grid : None, 'both', 'x', 'y' |
|
102 | grid : None, 'both', 'x', 'y' | |
103 | """ |
|
103 | """ | |
104 |
|
104 | |||
105 | matplotlib.pyplot.ioff() |
|
105 | matplotlib.pyplot.ioff() | |
106 |
|
106 | |||
107 | ax.set_xlim([xmin,xmax]) |
|
107 | ax.set_xlim([xmin,xmax]) | |
108 | ax.set_ylim([ymin,ymax]) |
|
108 | ax.set_ylim([ymin,ymax]) | |
109 |
|
109 | |||
110 | printLabels(ax, xlabel, ylabel, title) |
|
110 | printLabels(ax, xlabel, ylabel, title) | |
111 |
|
111 | |||
112 | ###################################################### |
|
112 | ###################################################### | |
113 | if (xmax-xmin)<=1: |
|
113 | if (xmax-xmin)<=1: | |
114 | xtickspos = numpy.linspace(xmin,xmax,nxticks) |
|
114 | xtickspos = numpy.linspace(xmin,xmax,nxticks) | |
115 | xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos]) |
|
115 | xtickspos = numpy.array([float("%.1f"%i) for i in xtickspos]) | |
116 | ax.set_xticks(xtickspos) |
|
116 | ax.set_xticks(xtickspos) | |
117 | else: |
|
117 | else: | |
118 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
118 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
119 | # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin) |
|
119 | # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin) | |
120 | ax.set_xticks(xtickspos) |
|
120 | ax.set_xticks(xtickspos) | |
121 |
|
121 | |||
122 | for tick in ax.get_xticklabels(): |
|
122 | for tick in ax.get_xticklabels(): | |
123 | tick.set_visible(xtick_visible) |
|
123 | tick.set_visible(xtick_visible) | |
124 |
|
124 | |||
125 | for tick in ax.xaxis.get_major_ticks(): |
|
125 | for tick in ax.xaxis.get_major_ticks(): | |
126 | tick.label.set_fontsize(ticksize) |
|
126 | tick.label.set_fontsize(ticksize) | |
127 |
|
127 | |||
128 | ###################################################### |
|
128 | ###################################################### | |
129 | for tick in ax.get_yticklabels(): |
|
129 | for tick in ax.get_yticklabels(): | |
130 | tick.set_visible(ytick_visible) |
|
130 | tick.set_visible(ytick_visible) | |
131 |
|
131 | |||
132 | for tick in ax.yaxis.get_major_ticks(): |
|
132 | for tick in ax.yaxis.get_major_ticks(): | |
133 | tick.label.set_fontsize(ticksize) |
|
133 | tick.label.set_fontsize(ticksize) | |
134 |
|
134 | |||
135 | ax.plot(x, y, color=color) |
|
135 | ax.plot(x, y, color=color) | |
136 | iplot = ax.lines[-1] |
|
136 | iplot = ax.lines[-1] | |
137 |
|
137 | |||
138 | ###################################################### |
|
138 | ###################################################### | |
139 | if '0.' in matplotlib.__version__[0:2]: |
|
139 | if '0.' in matplotlib.__version__[0:2]: | |
140 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
140 | print "The matplotlib version has to be updated to 1.1 or newer" | |
141 | return iplot |
|
141 | return iplot | |
142 |
|
142 | |||
143 | if '1.0.' in matplotlib.__version__[0:4]: |
|
143 | if '1.0.' in matplotlib.__version__[0:4]: | |
144 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
144 | print "The matplotlib version has to be updated to 1.1 or newer" | |
145 | return iplot |
|
145 | return iplot | |
146 |
|
146 | |||
147 | if grid != None: |
|
147 | if grid != None: | |
148 | ax.grid(b=True, which='major', axis=grid) |
|
148 | ax.grid(b=True, which='major', axis=grid) | |
149 |
|
149 | |||
150 | matplotlib.pyplot.tight_layout() |
|
150 | matplotlib.pyplot.tight_layout() | |
151 |
|
151 | |||
152 | matplotlib.pyplot.ion() |
|
152 | matplotlib.pyplot.ion() | |
153 |
|
153 | |||
154 | return iplot |
|
154 | return iplot | |
155 |
|
155 | |||
156 | def set_linedata(ax, x, y, idline): |
|
156 | def set_linedata(ax, x, y, idline): | |
157 |
|
157 | |||
158 | ax.lines[idline].set_data(x,y) |
|
158 | ax.lines[idline].set_data(x,y) | |
159 |
|
159 | |||
160 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
160 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): | |
161 |
|
161 | |||
162 | ax = iplot.get_axes() |
|
162 | ax = iplot.get_axes() | |
163 |
|
163 | |||
164 | printLabels(ax, xlabel, ylabel, title) |
|
164 | printLabels(ax, xlabel, ylabel, title) | |
165 |
|
165 | |||
166 | set_linedata(ax, x, y, idline=0) |
|
166 | set_linedata(ax, x, y, idline=0) | |
167 |
|
167 | |||
168 | def addpline(ax, x, y, color, linestyle, lw): |
|
168 | def addpline(ax, x, y, color, linestyle, lw): | |
169 |
|
169 | |||
170 | ax.plot(x,y,color=color,linestyle=linestyle,lw=lw) |
|
170 | ax.plot(x,y,color=color,linestyle=linestyle,lw=lw) | |
171 |
|
171 | |||
172 |
|
172 | |||
173 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, |
|
173 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, | |
174 | xlabel='', ylabel='', title='', ticksize = 9, |
|
174 | xlabel='', ylabel='', title='', ticksize = 9, | |
175 | colormap='jet',cblabel='', cbsize="5%", |
|
175 | colormap='jet',cblabel='', cbsize="5%", | |
176 | XAxisAsTime=False): |
|
176 | XAxisAsTime=False): | |
177 |
|
177 | |||
178 | matplotlib.pyplot.ioff() |
|
178 | matplotlib.pyplot.ioff() | |
179 |
|
179 | |||
180 | divider = make_axes_locatable(ax) |
|
180 | divider = make_axes_locatable(ax) | |
181 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) |
|
181 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) | |
182 | fig = ax.get_figure() |
|
182 | fig = ax.get_figure() | |
183 | fig.add_axes(ax_cb) |
|
183 | fig.add_axes(ax_cb) | |
184 |
|
184 | |||
185 | ax.set_xlim([xmin,xmax]) |
|
185 | ax.set_xlim([xmin,xmax]) | |
186 | ax.set_ylim([ymin,ymax]) |
|
186 | ax.set_ylim([ymin,ymax]) | |
187 |
|
187 | |||
188 | printLabels(ax, xlabel, ylabel, title) |
|
188 | printLabels(ax, xlabel, ylabel, title) | |
189 |
|
189 | |||
190 | imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
190 | imesh = ax.pcolormesh(x,y,z.T, vmin=zmin, vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) | |
191 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) |
|
191 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) | |
192 | cb.set_label(cblabel) |
|
192 | cb.set_label(cblabel) | |
193 |
|
193 | |||
194 | # for tl in ax_cb.get_yticklabels(): |
|
194 | # for tl in ax_cb.get_yticklabels(): | |
195 | # tl.set_visible(True) |
|
195 | # tl.set_visible(True) | |
196 |
|
196 | |||
197 | for tick in ax.yaxis.get_major_ticks(): |
|
197 | for tick in ax.yaxis.get_major_ticks(): | |
198 | tick.label.set_fontsize(ticksize) |
|
198 | tick.label.set_fontsize(ticksize) | |
199 |
|
199 | |||
200 | for tick in ax.xaxis.get_major_ticks(): |
|
200 | for tick in ax.xaxis.get_major_ticks(): | |
201 | tick.label.set_fontsize(ticksize) |
|
201 | tick.label.set_fontsize(ticksize) | |
202 |
|
202 | |||
203 | for tick in cb.ax.get_yticklabels(): |
|
203 | for tick in cb.ax.get_yticklabels(): | |
204 | tick.set_fontsize(ticksize) |
|
204 | tick.set_fontsize(ticksize) | |
205 |
|
205 | |||
206 | ax_cb.yaxis.tick_right() |
|
206 | ax_cb.yaxis.tick_right() | |
207 |
|
207 | |||
208 | if '0.' in matplotlib.__version__[0:2]: |
|
208 | if '0.' in matplotlib.__version__[0:2]: | |
209 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
209 | print "The matplotlib version has to be updated to 1.1 or newer" | |
210 | return imesh |
|
210 | return imesh | |
211 |
|
211 | |||
212 | if '1.0.' in matplotlib.__version__[0:4]: |
|
212 | if '1.0.' in matplotlib.__version__[0:4]: | |
213 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
213 | print "The matplotlib version has to be updated to 1.1 or newer" | |
214 | return imesh |
|
214 | return imesh | |
215 |
|
215 | |||
216 | matplotlib.pyplot.tight_layout() |
|
216 | matplotlib.pyplot.tight_layout() | |
217 |
|
217 | |||
218 | if XAxisAsTime: |
|
218 | if XAxisAsTime: | |
219 |
|
219 | |||
220 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
220 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
221 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
221 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
222 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
222 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
223 |
|
223 | |||
224 | matplotlib.pyplot.ion() |
|
224 | matplotlib.pyplot.ion() | |
225 | return imesh |
|
225 | return imesh | |
226 |
|
226 | |||
227 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): |
|
227 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): | |
228 |
|
228 | |||
229 | z = z.T |
|
229 | z = z.T | |
230 | ax = imesh.get_axes() |
|
230 | ax = imesh.get_axes() | |
231 | printLabels(ax, xlabel, ylabel, title) |
|
231 | printLabels(ax, xlabel, ylabel, title) | |
232 | imesh.set_array(z.ravel()) |
|
232 | imesh.set_array(z.ravel()) | |
233 |
|
233 | |||
234 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
234 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): | |
235 |
|
235 | |||
236 | printLabels(ax, xlabel, ylabel, title) |
|
236 | printLabels(ax, xlabel, ylabel, title) | |
237 |
|
237 | |||
238 | ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
238 | ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) | |
239 |
|
239 | |||
240 | def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
240 | def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): | |
241 |
|
241 | |||
242 | printLabels(ax, xlabel, ylabel, title) |
|
242 | printLabels(ax, xlabel, ylabel, title) | |
243 |
|
243 | |||
244 | ax.collections.remove(ax.collections[0]) |
|
244 | ax.collections.remove(ax.collections[0]) | |
245 |
|
245 | |||
246 | ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
246 | ax.pcolormesh(x,y,z.T,vmin=zmin,vmax=zmax, cmap=matplotlib.pyplot.get_cmap(colormap)) | |
247 |
|
247 | |||
248 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
248 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
249 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
249 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
250 | nxticks=4, nyticks=10, |
|
250 | nxticks=4, nyticks=10, | |
251 | grid=None): |
|
251 | grid=None): | |
252 |
|
252 | |||
253 | """ |
|
253 | """ | |
254 |
|
254 | |||
255 | Input: |
|
255 | Input: | |
256 | grid : None, 'both', 'x', 'y' |
|
256 | grid : None, 'both', 'x', 'y' | |
257 | """ |
|
257 | """ | |
258 |
|
258 | |||
259 | matplotlib.pyplot.ioff() |
|
259 | matplotlib.pyplot.ioff() | |
260 |
|
260 | |||
261 | lines = ax.plot(x.T, y) |
|
261 | lines = ax.plot(x.T, y) | |
262 | leg = ax.legend(lines, legendlabels, loc='upper right') |
|
262 | leg = ax.legend(lines, legendlabels, loc='upper right') | |
263 | leg.get_frame().set_alpha(0.5) |
|
263 | leg.get_frame().set_alpha(0.5) | |
264 | ax.set_xlim([xmin,xmax]) |
|
264 | ax.set_xlim([xmin,xmax]) | |
265 | ax.set_ylim([ymin,ymax]) |
|
265 | ax.set_ylim([ymin,ymax]) | |
266 | printLabels(ax, xlabel, ylabel, title) |
|
266 | printLabels(ax, xlabel, ylabel, title) | |
267 |
|
267 | |||
268 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
268 | xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
269 | ax.set_xticks(xtickspos) |
|
269 | ax.set_xticks(xtickspos) | |
270 |
|
270 | |||
271 | for tick in ax.get_xticklabels(): |
|
271 | for tick in ax.get_xticklabels(): | |
272 | tick.set_visible(xtick_visible) |
|
272 | tick.set_visible(xtick_visible) | |
273 |
|
273 | |||
274 | for tick in ax.xaxis.get_major_ticks(): |
|
274 | for tick in ax.xaxis.get_major_ticks(): | |
275 | tick.label.set_fontsize(ticksize) |
|
275 | tick.label.set_fontsize(ticksize) | |
276 |
|
276 | |||
277 | for tick in ax.get_yticklabels(): |
|
277 | for tick in ax.get_yticklabels(): | |
278 | tick.set_visible(ytick_visible) |
|
278 | tick.set_visible(ytick_visible) | |
279 |
|
279 | |||
280 | for tick in ax.yaxis.get_major_ticks(): |
|
280 | for tick in ax.yaxis.get_major_ticks(): | |
281 | tick.label.set_fontsize(ticksize) |
|
281 | tick.label.set_fontsize(ticksize) | |
282 |
|
282 | |||
283 | iplot = ax.lines[-1] |
|
283 | iplot = ax.lines[-1] | |
284 |
|
284 | |||
285 | if '0.' in matplotlib.__version__[0:2]: |
|
285 | if '0.' in matplotlib.__version__[0:2]: | |
286 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
286 | print "The matplotlib version has to be updated to 1.1 or newer" | |
287 | return iplot |
|
287 | return iplot | |
288 |
|
288 | |||
289 | if '1.0.' in matplotlib.__version__[0:4]: |
|
289 | if '1.0.' in matplotlib.__version__[0:4]: | |
290 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
290 | print "The matplotlib version has to be updated to 1.1 or newer" | |
291 | return iplot |
|
291 | return iplot | |
292 |
|
292 | |||
293 | if grid != None: |
|
293 | if grid != None: | |
294 | ax.grid(b=True, which='major', axis=grid) |
|
294 | ax.grid(b=True, which='major', axis=grid) | |
295 |
|
295 | |||
296 | matplotlib.pyplot.tight_layout() |
|
296 | matplotlib.pyplot.tight_layout() | |
297 |
|
297 | |||
298 | matplotlib.pyplot.ion() |
|
298 | matplotlib.pyplot.ion() | |
299 |
|
299 | |||
300 | return iplot |
|
300 | return iplot | |
301 |
|
301 | |||
302 |
|
302 | |||
303 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
303 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): | |
304 |
|
304 | |||
305 | ax = iplot.get_axes() |
|
305 | ax = iplot.get_axes() | |
306 |
|
306 | |||
307 | printLabels(ax, xlabel, ylabel, title) |
|
307 | printLabels(ax, xlabel, ylabel, title) | |
308 |
|
308 | |||
309 | for i in range(len(ax.lines)): |
|
309 | for i in range(len(ax.lines)): | |
310 | line = ax.lines[i] |
|
310 | line = ax.lines[i] | |
311 | line.set_data(x[i,:],y) |
|
311 | line.set_data(x[i,:],y) | |
312 |
|
312 | |||
313 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
313 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
314 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
314 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
315 | nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None", |
|
315 | nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None", | |
316 | grid=None, XAxisAsTime=False): |
|
316 | grid=None, XAxisAsTime=False): | |
317 |
|
317 | |||
318 | """ |
|
318 | """ | |
319 |
|
319 | |||
320 | Input: |
|
320 | Input: | |
321 | grid : None, 'both', 'x', 'y' |
|
321 | grid : None, 'both', 'x', 'y' | |
322 | """ |
|
322 | """ | |
323 |
|
323 | |||
324 | matplotlib.pyplot.ioff() |
|
324 | matplotlib.pyplot.ioff() | |
325 |
|
325 | |||
326 | # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) |
|
326 | # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) | |
327 | lines = ax.plot(x, y.T, linestyle=linestyle, marker=marker, markersize=markersize) |
|
327 | lines = ax.plot(x, y.T, linestyle=linestyle, marker=marker, markersize=markersize) | |
328 | leg = ax.legend(lines, legendlabels, loc='upper left', bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \ |
|
328 | leg = ax.legend(lines, legendlabels, loc='upper left', bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \ | |
329 | handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.) |
|
329 | handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.) | |
330 |
|
330 | |||
331 | for label in leg.get_texts(): label.set_fontsize(9) |
|
331 | for label in leg.get_texts(): label.set_fontsize(9) | |
332 |
|
332 | |||
333 | ax.set_xlim([xmin,xmax]) |
|
333 | ax.set_xlim([xmin,xmax]) | |
334 | ax.set_ylim([ymin,ymax]) |
|
334 | ax.set_ylim([ymin,ymax]) | |
335 | printLabels(ax, xlabel, ylabel, title) |
|
335 | printLabels(ax, xlabel, ylabel, title) | |
336 |
|
336 | |||
337 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
337 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
338 | # ax.set_xticks(xtickspos) |
|
338 | # ax.set_xticks(xtickspos) | |
339 |
|
339 | |||
340 | for tick in ax.get_xticklabels(): |
|
340 | for tick in ax.get_xticklabels(): | |
341 | tick.set_visible(xtick_visible) |
|
341 | tick.set_visible(xtick_visible) | |
342 |
|
342 | |||
343 | for tick in ax.xaxis.get_major_ticks(): |
|
343 | for tick in ax.xaxis.get_major_ticks(): | |
344 | tick.label.set_fontsize(ticksize) |
|
344 | tick.label.set_fontsize(ticksize) | |
345 |
|
345 | |||
346 | for tick in ax.get_yticklabels(): |
|
346 | for tick in ax.get_yticklabels(): | |
347 | tick.set_visible(ytick_visible) |
|
347 | tick.set_visible(ytick_visible) | |
348 |
|
348 | |||
349 | for tick in ax.yaxis.get_major_ticks(): |
|
349 | for tick in ax.yaxis.get_major_ticks(): | |
350 | tick.label.set_fontsize(ticksize) |
|
350 | tick.label.set_fontsize(ticksize) | |
351 |
|
351 | |||
352 | iplot = ax.lines[-1] |
|
352 | iplot = ax.lines[-1] | |
353 |
|
353 | |||
354 | if '0.' in matplotlib.__version__[0:2]: |
|
354 | if '0.' in matplotlib.__version__[0:2]: | |
355 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
355 | print "The matplotlib version has to be updated to 1.1 or newer" | |
356 | return iplot |
|
356 | return iplot | |
357 |
|
357 | |||
358 | if '1.0.' in matplotlib.__version__[0:4]: |
|
358 | if '1.0.' in matplotlib.__version__[0:4]: | |
359 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
359 | print "The matplotlib version has to be updated to 1.1 or newer" | |
360 | return iplot |
|
360 | return iplot | |
361 |
|
361 | |||
362 | if grid != None: |
|
362 | if grid != None: | |
363 | ax.grid(b=True, which='major', axis=grid) |
|
363 | ax.grid(b=True, which='major', axis=grid) | |
364 |
|
364 | |||
365 | matplotlib.pyplot.tight_layout() |
|
365 | matplotlib.pyplot.tight_layout() | |
366 |
|
366 | |||
367 | if XAxisAsTime: |
|
367 | if XAxisAsTime: | |
368 |
|
368 | |||
369 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
369 | func = lambda x, pos: ('%s') %(datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
370 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
370 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
371 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
371 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
372 |
|
372 | |||
373 | matplotlib.pyplot.ion() |
|
373 | matplotlib.pyplot.ion() | |
374 |
|
374 | |||
375 | return iplot |
|
375 | return iplot | |
376 |
|
376 | |||
377 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
377 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): | |
378 |
|
378 | |||
379 | ax = iplot.get_axes() |
|
379 | ax = iplot.get_axes() | |
380 |
|
380 | |||
381 | printLabels(ax, xlabel, ylabel, title) |
|
381 | printLabels(ax, xlabel, ylabel, title) | |
382 |
|
382 | |||
383 | for i in range(len(ax.lines)): |
|
383 | for i in range(len(ax.lines)): | |
384 | line = ax.lines[i] |
|
384 | line = ax.lines[i] | |
385 | line.set_data(x,y[i,:]) |
|
385 | line.set_data(x,y[i,:]) | |
386 |
|
386 | |||
387 | def createPolar(ax, x, y, |
|
387 | def createPolar(ax, x, y, | |
388 | xlabel='', ylabel='', title='', ticksize = 9, |
|
388 | xlabel='', ylabel='', title='', ticksize = 9, | |
389 | colormap='jet',cblabel='', cbsize="5%", |
|
389 | colormap='jet',cblabel='', cbsize="5%", | |
390 | XAxisAsTime=False): |
|
390 | XAxisAsTime=False): | |
391 |
|
391 | |||
392 | matplotlib.pyplot.ioff() |
|
392 | matplotlib.pyplot.ioff() | |
393 |
|
393 | |||
394 | ax.plot(x,y,'bo', markersize=5) |
|
394 | ax.plot(x,y,'bo', markersize=5) | |
395 | # ax.set_rmax(90) |
|
395 | # ax.set_rmax(90) | |
396 | ax.set_ylim(0,90) |
|
396 | ax.set_ylim(0,90) | |
397 | ax.set_yticks(numpy.arange(0,90,20)) |
|
397 | ax.set_yticks(numpy.arange(0,90,20)) | |
398 | ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11') |
|
398 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11') | |
|
399 | # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11') | |||
399 | # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical') |
|
400 | # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical') | |
400 | printLabels(ax, xlabel, '', title) |
|
401 | ax.yaxis.labelpad = 230 | |
|
402 | printLabels(ax, xlabel, ylabel, title) | |||
401 | iplot = ax.lines[-1] |
|
403 | iplot = ax.lines[-1] | |
402 |
|
404 | |||
403 | if '0.' in matplotlib.__version__[0:2]: |
|
405 | if '0.' in matplotlib.__version__[0:2]: | |
404 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
406 | print "The matplotlib version has to be updated to 1.1 or newer" | |
405 | return iplot |
|
407 | return iplot | |
406 |
|
408 | |||
407 | if '1.0.' in matplotlib.__version__[0:4]: |
|
409 | if '1.0.' in matplotlib.__version__[0:4]: | |
408 | print "The matplotlib version has to be updated to 1.1 or newer" |
|
410 | print "The matplotlib version has to be updated to 1.1 or newer" | |
409 | return iplot |
|
411 | return iplot | |
410 |
|
412 | |||
411 | # if grid != None: |
|
413 | # if grid != None: | |
412 | # ax.grid(b=True, which='major', axis=grid) |
|
414 | # ax.grid(b=True, which='major', axis=grid) | |
413 |
|
415 | |||
414 | matplotlib.pyplot.tight_layout() |
|
416 | matplotlib.pyplot.tight_layout() | |
415 |
|
417 | |||
416 | matplotlib.pyplot.ion() |
|
418 | matplotlib.pyplot.ion() | |
417 |
|
419 | |||
418 |
|
420 | |||
419 | return iplot |
|
421 | return iplot | |
420 |
|
422 | |||
421 | def polar(iplot, x, y, xlabel='', ylabel='', title=''): |
|
423 | def polar(iplot, x, y, xlabel='', ylabel='', title=''): | |
422 |
|
424 | |||
423 | ax = iplot.get_axes() |
|
425 | ax = iplot.get_axes() | |
424 |
|
426 | |||
425 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11') |
|
427 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11') | |
426 |
printLabels(ax, xlabel, |
|
428 | printLabels(ax, xlabel, ylabel, title) | |
427 |
|
429 | |||
428 | set_linedata(ax, x, y, idline=0) |
|
430 | set_linedata(ax, x, y, idline=0) | |
429 |
|
431 | |||
430 | def draw(fig): |
|
432 | def draw(fig): | |
431 |
|
433 | |||
432 | if type(fig) == 'int': |
|
434 | if type(fig) == 'int': | |
433 | raise ValueError, "Error drawing: Fig parameter should be a matplotlib figure object figure" |
|
435 | raise ValueError, "Error drawing: Fig parameter should be a matplotlib figure object figure" | |
434 |
|
436 | |||
435 | fig.canvas.draw() |
|
437 | fig.canvas.draw() |
@@ -1,27 +1,28 | |||||
1 | ''' |
|
1 | ''' | |
2 | @author: roj-idl71 |
|
2 | @author: roj-idl71 | |
3 | ''' |
|
3 | ''' | |
4 | #USED IN jroplot_spectra.py |
|
4 | #USED IN jroplot_spectra.py | |
5 | RTI_CODE = 0 #Range time intensity (RTI). |
|
5 | RTI_CODE = 0 #Range time intensity (RTI). | |
6 | SPEC_CODE = 1 #Spectra (and Cross-spectra) information. |
|
6 | SPEC_CODE = 1 #Spectra (and Cross-spectra) information. | |
7 | CROSS_CODE = 2 #Cross-Correlation information. |
|
7 | CROSS_CODE = 2 #Cross-Correlation information. | |
8 | COH_CODE = 3 #Coherence map. |
|
8 | COH_CODE = 3 #Coherence map. | |
9 | BASE_CODE = 4 #Base lines graphic. |
|
9 | BASE_CODE = 4 #Base lines graphic. | |
10 | ROW_CODE = 5 #Row Spectra. |
|
10 | ROW_CODE = 5 #Row Spectra. | |
11 | TOTAL_CODE = 6 #Total Power. |
|
11 | TOTAL_CODE = 6 #Total Power. | |
12 | DRIFT_CODE = 7 #Drifts graphics. |
|
12 | DRIFT_CODE = 7 #Drifts graphics. | |
13 | HEIGHT_CODE = 8 #Height profile. |
|
13 | HEIGHT_CODE = 8 #Height profile. | |
14 | PHASE_CODE = 9 #Signal Phase. |
|
14 | PHASE_CODE = 9 #Signal Phase. | |
15 |
|
15 | |||
16 | POWER_CODE = 16 |
|
16 | POWER_CODE = 16 | |
17 | NOISE_CODE = 17 |
|
17 | NOISE_CODE = 17 | |
18 | BEACON_CODE = 18 |
|
18 | BEACON_CODE = 18 | |
19 |
|
19 | |||
20 | #USED IN jroplot_parameters.py |
|
20 | #USED IN jroplot_parameters.py | |
21 |
|
||||
22 | MOMENTS_CODE = 20 |
|
|||
23 | SKYMAP_CODE = 21 |
|
|||
24 | WIND_CODE = 22 |
|
21 | WIND_CODE = 22 | |
25 |
|
|
22 | MSKYMAP_CODE = 23 | |
26 |
S |
|
23 | MPHASE_CODE = 24 | |
27 | EWDRIFT_CODE = 25 |
|
24 | ||
|
25 | MOMENTS_CODE = 25 | |||
|
26 | PARMS_CODE = 26 | |||
|
27 | SPECFIT_CODE = 27 | |||
|
28 | EWDRIFT_CODE = 28 |
@@ -1,903 +1,1005 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import time |
|
2 | import time | |
3 | import os |
|
3 | import os | |
4 | import h5py |
|
4 | import h5py | |
5 | import re |
|
5 | import re | |
|
6 | import tables | |||
6 |
|
7 | |||
7 | from schainpy.model.data.jrodata import * |
|
8 | from schainpy.model.data.jrodata import * | |
8 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation |
|
9 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation | |
9 | from schainpy.model.io.jroIO_base import * |
|
10 | from schainpy.model.io.jroIO_base import * | |
10 |
|
11 | |||
11 |
|
12 | |||
12 | class HDF5Reader(ProcessingUnit): |
|
13 | class HDF5Reader(ProcessingUnit): | |
13 |
|
14 | |||
14 | ext = ".hdf5" |
|
15 | ext = ".hdf5" | |
15 |
|
16 | |||
16 | optchar = "D" |
|
17 | optchar = "D" | |
17 |
|
18 | |||
18 | timezone = None |
|
19 | timezone = None | |
19 |
|
20 | |||
20 | secStart = None |
|
21 | secStart = None | |
21 |
|
22 | |||
22 | secEnd = None |
|
23 | secEnd = None | |
23 |
|
24 | |||
24 | fileIndex = None |
|
25 | fileIndex = None | |
25 |
|
26 | |||
26 | blockIndex = None |
|
27 | blockIndex = None | |
27 |
|
28 | |||
28 | blocksPerFile = None |
|
29 | blocksPerFile = None | |
29 |
|
30 | |||
30 | path = None |
|
31 | path = None | |
31 |
|
32 | |||
32 | #List of Files |
|
33 | #List of Files | |
33 |
|
34 | |||
34 | filenameList = None |
|
35 | filenameList = None | |
35 |
|
36 | |||
36 | datetimeList = None |
|
37 | datetimeList = None | |
37 |
|
38 | |||
38 | #Hdf5 File |
|
39 | #Hdf5 File | |
39 |
|
40 | |||
40 | fpMetadata = None |
|
41 | fpMetadata = None | |
41 |
|
42 | |||
42 | pathMeta = None |
|
43 | pathMeta = None | |
43 |
|
44 | |||
44 | listMetaname = None |
|
45 | listMetaname = None | |
45 |
|
46 | |||
46 | listMeta = None |
|
47 | listMeta = None | |
47 |
|
48 | |||
48 | listDataname = None |
|
49 | listDataname = None | |
49 |
|
50 | |||
50 | listData = None |
|
51 | listData = None | |
51 |
|
52 | |||
52 | listShapes = None |
|
53 | listShapes = None | |
53 |
|
54 | |||
54 | fp = None |
|
55 | fp = None | |
55 |
|
56 | |||
56 | #dataOut reconstruction |
|
57 | #dataOut reconstruction | |
57 |
|
58 | |||
58 | dataOut = None |
|
59 | dataOut = None | |
59 |
|
60 | |||
60 | nRecords = None |
|
61 | nRecords = None | |
61 |
|
62 | |||
62 |
|
63 | |||
63 | def __init__(self): |
|
64 | def __init__(self): | |
64 | self.dataOut = self.__createObjByDefault() |
|
65 | self.dataOut = self.__createObjByDefault() | |
65 | return |
|
66 | return | |
66 |
|
67 | |||
67 | def __createObjByDefault(self): |
|
68 | def __createObjByDefault(self): | |
68 |
|
69 | |||
69 | dataObj = Parameters() |
|
70 | dataObj = Parameters() | |
70 |
|
71 | |||
71 | return dataObj |
|
72 | return dataObj | |
72 |
|
73 | |||
73 | def setup(self,path=None, |
|
74 | def setup(self,path=None, | |
74 | startDate=None, |
|
75 | startDate=None, | |
75 | endDate=None, |
|
76 | endDate=None, | |
76 | startTime=datetime.time(0,0,0), |
|
77 | startTime=datetime.time(0,0,0), | |
77 | endTime=datetime.time(23,59,59), |
|
78 | endTime=datetime.time(23,59,59), | |
78 | walk=True, |
|
79 | walk=True, | |
79 | timezone='ut', |
|
80 | timezone='ut', | |
80 | all=0, |
|
81 | all=0, | |
81 | online=False, |
|
82 | online=False, | |
82 | ext=None): |
|
83 | ext=None): | |
83 |
|
84 | |||
84 | if ext==None: |
|
85 | if ext==None: | |
85 | ext = self.ext |
|
86 | ext = self.ext | |
86 | self.timezone = timezone |
|
87 | self.timezone = timezone | |
87 | # self.all = all |
|
88 | # self.all = all | |
88 | # self.online = online |
|
89 | # self.online = online | |
89 | self.path = path |
|
90 | self.path = path | |
90 |
|
91 | |||
91 | startDateTime = datetime.datetime.combine(startDate,startTime) |
|
92 | startDateTime = datetime.datetime.combine(startDate,startTime) | |
92 | endDateTime = datetime.datetime.combine(endDate,endTime) |
|
93 | endDateTime = datetime.datetime.combine(endDate,endTime) | |
93 | secStart = (startDateTime-datetime.datetime(1970,1,1)).total_seconds() |
|
94 | secStart = (startDateTime-datetime.datetime(1970,1,1)).total_seconds() | |
94 | secEnd = (endDateTime-datetime.datetime(1970,1,1)).total_seconds() |
|
95 | secEnd = (endDateTime-datetime.datetime(1970,1,1)).total_seconds() | |
95 |
|
96 | |||
96 | self.secStart = secStart |
|
97 | self.secStart = secStart | |
97 | self.secEnd = secEnd |
|
98 | self.secEnd = secEnd | |
98 |
|
99 | |||
99 | if not(online): |
|
100 | if not(online): | |
100 | #Busqueda de archivos offline |
|
101 | #Busqueda de archivos offline | |
101 | self.__searchFilesOffline(path, startDate, endDate, ext, startTime, endTime, secStart, secEnd, walk) |
|
102 | self.__searchFilesOffline(path, startDate, endDate, ext, startTime, endTime, secStart, secEnd, walk) | |
102 | else: |
|
103 | else: | |
103 | self.__searchFilesOnline(path, walk) |
|
104 | self.__searchFilesOnline(path, walk) | |
104 |
|
105 | |||
105 | if not(self.filenameList): |
|
106 | if not(self.filenameList): | |
106 | print "There is no files into the folder: %s"%(path) |
|
107 | print "There is no files into the folder: %s"%(path) | |
107 | sys.exit(-1) |
|
108 | sys.exit(-1) | |
108 |
|
109 | |||
109 | # self.__getExpParameters() |
|
110 | # self.__getExpParameters() | |
110 |
|
111 | |||
111 | self.fileIndex = -1 |
|
112 | self.fileIndex = -1 | |
112 |
|
113 | |||
113 | self.__setNextFileOffline() |
|
114 | self.__setNextFileOffline() | |
114 |
|
115 | |||
115 | self.__readMetadata() |
|
116 | self.__readMetadata() | |
116 |
|
117 | |||
117 | self.blockIndex = 0 |
|
118 | self.blockIndex = 0 | |
118 |
|
119 | |||
119 | return |
|
120 | return | |
120 |
|
121 | |||
121 | def __searchFilesOffline(self, |
|
122 | def __searchFilesOffline(self, | |
122 | path, |
|
123 | path, | |
123 | startDate, |
|
124 | startDate, | |
124 | endDate, |
|
125 | endDate, | |
125 | ext, |
|
126 | ext, | |
126 | startTime=datetime.time(0,0,0), |
|
127 | startTime=datetime.time(0,0,0), | |
127 | endTime=datetime.time(23,59,59), |
|
128 | endTime=datetime.time(23,59,59), | |
128 | secStart = 0, |
|
129 | secStart = 0, | |
129 | secEnd = numpy.inf, |
|
130 | secEnd = numpy.inf, | |
130 | walk=True): |
|
131 | walk=True): | |
131 |
|
132 | |||
132 | # self.__setParameters(path, startDate, endDate, startTime, endTime, walk) |
|
133 | # self.__setParameters(path, startDate, endDate, startTime, endTime, walk) | |
133 | # |
|
134 | # | |
134 | # self.__checkPath() |
|
135 | # self.__checkPath() | |
135 | # |
|
136 | # | |
136 | # self.__findDataForDates() |
|
137 | # self.__findDataForDates() | |
137 | # |
|
138 | # | |
138 | # self.__selectDataForTimes() |
|
139 | # self.__selectDataForTimes() | |
139 | # |
|
140 | # | |
140 | # for i in range(len(self.filenameList)): |
|
141 | # for i in range(len(self.filenameList)): | |
141 | # print "%s" %(self.filenameList[i]) |
|
142 | # print "%s" %(self.filenameList[i]) | |
142 |
|
143 | |||
143 | pathList = [] |
|
144 | pathList = [] | |
144 |
|
145 | |||
145 | if not walk: |
|
146 | if not walk: | |
146 | #pathList.append(path) |
|
147 | #pathList.append(path) | |
147 | multi_path = path.split(',') |
|
148 | multi_path = path.split(',') | |
148 | for single_path in multi_path: |
|
149 | for single_path in multi_path: | |
149 | pathList.append(single_path) |
|
150 | pathList.append(single_path) | |
150 |
|
151 | |||
151 | else: |
|
152 | else: | |
152 | #dirList = [] |
|
153 | #dirList = [] | |
153 | multi_path = path.split(',') |
|
154 | multi_path = path.split(',') | |
154 | for single_path in multi_path: |
|
155 | for single_path in multi_path: | |
155 | dirList = [] |
|
156 | dirList = [] | |
156 | for thisPath in os.listdir(single_path): |
|
157 | for thisPath in os.listdir(single_path): | |
157 | if not os.path.isdir(os.path.join(single_path,thisPath)): |
|
158 | if not os.path.isdir(os.path.join(single_path,thisPath)): | |
158 | continue |
|
159 | continue | |
159 |
if not is |
|
160 | if not isDoyFolder(thisPath): | |
160 | continue |
|
161 | continue | |
161 |
|
162 | |||
162 | dirList.append(thisPath) |
|
163 | dirList.append(thisPath) | |
163 |
|
164 | |||
164 | if not(dirList): |
|
165 | if not(dirList): | |
165 | return None, None |
|
166 | return None, None | |
166 |
|
167 | |||
167 | thisDate = startDate |
|
168 | thisDate = startDate | |
168 |
|
169 | |||
169 | while(thisDate <= endDate): |
|
170 | while(thisDate <= endDate): | |
170 | year = thisDate.timetuple().tm_year |
|
171 | year = thisDate.timetuple().tm_year | |
171 | doy = thisDate.timetuple().tm_yday |
|
172 | doy = thisDate.timetuple().tm_yday | |
172 |
|
173 | |||
173 | matchlist = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy) + '*') |
|
174 | matchlist = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy) + '*') | |
174 | if len(matchlist) == 0: |
|
175 | if len(matchlist) == 0: | |
175 | thisDate += datetime.timedelta(1) |
|
176 | thisDate += datetime.timedelta(1) | |
176 | continue |
|
177 | continue | |
177 | for match in matchlist: |
|
178 | for match in matchlist: | |
178 | pathList.append(os.path.join(single_path,match)) |
|
179 | pathList.append(os.path.join(single_path,match)) | |
179 |
|
180 | |||
180 | thisDate += datetime.timedelta(1) |
|
181 | thisDate += datetime.timedelta(1) | |
181 |
|
182 | |||
182 | if pathList == []: |
|
183 | if pathList == []: | |
183 | print "Any folder was found for the date range: %s-%s" %(startDate, endDate) |
|
184 | print "Any folder was found for the date range: %s-%s" %(startDate, endDate) | |
184 | return None, None |
|
185 | return None, None | |
185 |
|
186 | |||
186 | print "%d folder(s) was(were) found for the date range: %s - %s" %(len(pathList), startDate, endDate) |
|
187 | print "%d folder(s) was(were) found for the date range: %s - %s" %(len(pathList), startDate, endDate) | |
187 |
|
188 | |||
188 | filenameList = [] |
|
189 | filenameList = [] | |
189 | datetimeList = [] |
|
190 | datetimeList = [] | |
190 | pathDict = {} |
|
191 | pathDict = {} | |
191 | filenameList_to_sort = [] |
|
192 | filenameList_to_sort = [] | |
192 |
|
193 | |||
193 | for i in range(len(pathList)): |
|
194 | for i in range(len(pathList)): | |
194 |
|
195 | |||
195 | thisPath = pathList[i] |
|
196 | thisPath = pathList[i] | |
196 |
|
197 | |||
197 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
198 | fileList = glob.glob1(thisPath, "*%s" %ext) | |
198 | fileList.sort() |
|
199 | fileList.sort() | |
199 | pathDict.setdefault(fileList[0]) |
|
200 | pathDict.setdefault(fileList[0]) | |
200 | pathDict[fileList[0]] = i |
|
201 | pathDict[fileList[0]] = i | |
201 | filenameList_to_sort.append(fileList[0]) |
|
202 | filenameList_to_sort.append(fileList[0]) | |
202 |
|
203 | |||
203 | filenameList_to_sort.sort() |
|
204 | filenameList_to_sort.sort() | |
204 |
|
205 | |||
205 | for file in filenameList_to_sort: |
|
206 | for file in filenameList_to_sort: | |
206 | thisPath = pathList[pathDict[file]] |
|
207 | thisPath = pathList[pathDict[file]] | |
207 |
|
208 | |||
208 | fileList = glob.glob1(thisPath, "*%s" %ext) |
|
209 | fileList = glob.glob1(thisPath, "*%s" %ext) | |
209 | fileList.sort() |
|
210 | fileList.sort() | |
210 |
|
211 | |||
211 | for file in fileList: |
|
212 | for file in fileList: | |
212 |
|
213 | |||
213 | filename = os.path.join(thisPath,file) |
|
214 | filename = os.path.join(thisPath,file) | |
214 | thisDatetime = self.__isFileinThisTime(filename, secStart, secEnd) |
|
215 | thisDatetime = self.__isFileinThisTime(filename, secStart, secEnd) | |
215 |
|
216 | |||
216 | if not(thisDatetime): |
|
217 | if not(thisDatetime): | |
217 | continue |
|
218 | continue | |
218 |
|
219 | |||
219 | filenameList.append(filename) |
|
220 | filenameList.append(filename) | |
220 | datetimeList.append(thisDatetime) |
|
221 | datetimeList.append(thisDatetime) | |
221 |
|
222 | |||
222 | if not(filenameList): |
|
223 | if not(filenameList): | |
223 | print "Any file was found for the time range %s - %s" %(startTime, endTime) |
|
224 | print "Any file was found for the time range %s - %s" %(startTime, endTime) | |
224 | return None, None |
|
225 | return None, None | |
225 |
|
226 | |||
226 | print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime) |
|
227 | print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime) | |
227 |
|
228 | |||
228 |
|
229 | |||
229 | for i in range(len(filenameList)): |
|
230 | for i in range(len(filenameList)): | |
230 | print "%s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) |
|
231 | print "%s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) | |
231 |
|
232 | |||
232 | self.filenameList = filenameList |
|
233 | self.filenameList = filenameList | |
233 | self.datetimeList = datetimeList |
|
234 | self.datetimeList = datetimeList | |
234 |
|
235 | |||
235 | return pathList, filenameList |
|
236 | return pathList, filenameList | |
236 |
|
237 | |||
237 | def __isFileinThisTime(self, filename, startSeconds, endSeconds): |
|
238 | def __isFileinThisTime(self, filename, startSeconds, endSeconds): | |
238 | """ |
|
239 | """ | |
239 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. |
|
240 | Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado. | |
240 |
|
241 | |||
241 | Inputs: |
|
242 | Inputs: | |
242 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) |
|
243 | filename : nombre completo del archivo de datos en formato Jicamarca (.r) | |
243 |
|
244 | |||
244 | startTime : tiempo inicial del rango seleccionado en formato datetime.time |
|
245 | startTime : tiempo inicial del rango seleccionado en formato datetime.time | |
245 |
|
246 | |||
246 | endTime : tiempo final del rango seleccionado en formato datetime.time |
|
247 | endTime : tiempo final del rango seleccionado en formato datetime.time | |
247 |
|
248 | |||
248 | Return: |
|
249 | Return: | |
249 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de |
|
250 | Boolean : Retorna True si el archivo de datos contiene datos en el rango de | |
250 | fecha especificado, de lo contrario retorna False. |
|
251 | fecha especificado, de lo contrario retorna False. | |
251 |
|
252 | |||
252 | Excepciones: |
|
253 | Excepciones: | |
253 | Si el archivo no existe o no puede ser abierto |
|
254 | Si el archivo no existe o no puede ser abierto | |
254 | Si la cabecera no puede ser leida. |
|
255 | Si la cabecera no puede ser leida. | |
255 |
|
256 | |||
256 | """ |
|
257 | """ | |
257 |
|
258 | |||
258 | try: |
|
259 | try: | |
259 | fp = fp = h5py.File(filename,'r') |
|
260 | fp = fp = h5py.File(filename,'r') | |
260 | except IOError: |
|
261 | except IOError: | |
261 | traceback.print_exc() |
|
262 | traceback.print_exc() | |
262 | raise IOError, "The file %s can't be opened" %(filename) |
|
263 | raise IOError, "The file %s can't be opened" %(filename) | |
263 |
|
264 | |||
264 | grp = fp['Data'] |
|
265 | grp = fp['Data'] | |
265 | timeAux = grp['time'] |
|
266 | timeAux = grp['time'] | |
266 | time0 = timeAux[:][0].astype(numpy.float) #Time Vector |
|
267 | time0 = timeAux[:][0].astype(numpy.float) #Time Vector | |
267 |
|
268 | |||
268 | fp.close() |
|
269 | fp.close() | |
269 |
|
270 | |||
270 | if self.timezone == 'lt': |
|
271 | if self.timezone == 'lt': | |
271 | time0 -= 5*3600 |
|
272 | time0 -= 5*3600 | |
272 |
|
273 | |||
273 | boolTimer = numpy.logical_and(time0 >= startSeconds,time0 < endSeconds) |
|
274 | boolTimer = numpy.logical_and(time0 >= startSeconds,time0 < endSeconds) | |
274 |
|
275 | |||
275 | if not (numpy.any(boolTimer)): |
|
276 | if not (numpy.any(boolTimer)): | |
276 | return None |
|
277 | return None | |
277 |
|
278 | |||
278 | thisDatetime = datetime.datetime.utcfromtimestamp(time0[0]) |
|
279 | thisDatetime = datetime.datetime.utcfromtimestamp(time0[0]) | |
279 | return thisDatetime |
|
280 | return thisDatetime | |
280 |
|
281 | |||
281 | def __checkPath(self): |
|
282 | def __checkPath(self): | |
282 | if os.path.exists(self.path): |
|
283 | if os.path.exists(self.path): | |
283 | self.status = 1 |
|
284 | self.status = 1 | |
284 | else: |
|
285 | else: | |
285 | self.status = 0 |
|
286 | self.status = 0 | |
286 | print 'Path:%s does not exists'%self.path |
|
287 | print 'Path:%s does not exists'%self.path | |
287 |
|
288 | |||
288 | return |
|
289 | return | |
289 |
|
290 | |||
290 | def __setNextFileOffline(self): |
|
291 | def __setNextFileOffline(self): | |
291 | idFile = self.fileIndex |
|
292 | idFile = self.fileIndex | |
292 | idFile += 1 |
|
293 | idFile += 1 | |
293 |
|
294 | |||
294 | if not(idFile < len(self.filenameList)): |
|
295 | if not(idFile < len(self.filenameList)): | |
295 | print "No more Files" |
|
296 | print "No more Files" | |
296 | return 0 |
|
297 | return 0 | |
297 |
|
298 | |||
298 | filename = self.filenameList[idFile] |
|
299 | filename = self.filenameList[idFile] | |
299 |
|
300 | |||
300 | filePointer = h5py.File(filename,'r') |
|
301 | filePointer = h5py.File(filename,'r') | |
301 |
|
302 | |||
302 | self.flagIsNewFile = 1 |
|
303 | self.flagIsNewFile = 1 | |
303 | self.fileIndex = idFile |
|
304 | self.fileIndex = idFile | |
304 | self.filename = filename |
|
305 | self.filename = filename | |
305 |
|
306 | |||
306 | self.fp = filePointer |
|
307 | self.fp = filePointer | |
307 |
|
308 | |||
308 | print "Setting the file: %s"%self.filename |
|
309 | print "Setting the file: %s"%self.filename | |
309 |
|
310 | |||
310 | self.__readMetadata() |
|
311 | self.__readMetadata() | |
311 | self.__setBlockList() |
|
312 | self.__setBlockList() | |
312 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] |
|
313 | # self.nRecords = self.fp['Data'].attrs['blocksPerFile'] | |
313 | self.nRecords = self.fp['Data'].attrs['nRecords'] |
|
314 | self.nRecords = self.fp['Data'].attrs['nRecords'] | |
314 | self.blockIndex = 0 |
|
315 | self.blockIndex = 0 | |
315 | return 1 |
|
316 | return 1 | |
316 |
|
317 | |||
317 | def __setBlockList(self): |
|
318 | def __setBlockList(self): | |
318 | ''' |
|
319 | ''' | |
319 | self.fp |
|
320 | self.fp | |
320 | self.startDateTime |
|
321 | self.startDateTime | |
321 | self.endDateTime |
|
322 | self.endDateTime | |
322 |
|
323 | |||
323 | self.blockList |
|
324 | self.blockList | |
324 | self.blocksPerFile |
|
325 | self.blocksPerFile | |
325 |
|
326 | |||
326 | ''' |
|
327 | ''' | |
327 | filePointer = self.fp |
|
328 | filePointer = self.fp | |
328 | secStart = self.secStart |
|
329 | secStart = self.secStart | |
329 | secEnd = self.secEnd |
|
330 | secEnd = self.secEnd | |
330 |
|
331 | |||
331 | grp = filePointer['Data'] |
|
332 | grp = filePointer['Data'] | |
332 | timeVector = grp['time'].value.astype(numpy.float)[0] |
|
333 | timeVector = grp['time'].value.astype(numpy.float)[0] | |
333 |
|
334 | |||
334 | if self.timezone == 'lt': |
|
335 | if self.timezone == 'lt': | |
335 | timeVector -= 5*3600 |
|
336 | timeVector -= 5*3600 | |
336 |
|
337 | |||
337 | ind = numpy.where(numpy.logical_and(timeVector >= secStart , timeVector < secEnd))[0] |
|
338 | ind = numpy.where(numpy.logical_and(timeVector >= secStart , timeVector < secEnd))[0] | |
338 |
|
339 | |||
339 | self.blockList = ind |
|
340 | self.blockList = ind | |
340 | self.blocksPerFile = len(ind) |
|
341 | self.blocksPerFile = len(ind) | |
341 |
|
342 | |||
342 | return |
|
343 | return | |
343 |
|
344 | |||
344 | def __readMetadata(self): |
|
345 | def __readMetadata(self): | |
345 | ''' |
|
346 | ''' | |
346 | self.pathMeta |
|
347 | self.pathMeta | |
347 |
|
348 | |||
348 | self.listShapes |
|
349 | self.listShapes | |
349 | self.listMetaname |
|
350 | self.listMetaname | |
350 | self.listMeta |
|
351 | self.listMeta | |
351 |
|
352 | |||
352 | ''' |
|
353 | ''' | |
353 |
|
354 | |||
354 | grp = self.fp['Data'] |
|
355 | grp = self.fp['Data'] | |
355 | pathMeta = os.path.join(self.path, grp.attrs['metadata']) |
|
356 | pathMeta = os.path.join(self.path, grp.attrs['metadata']) | |
356 |
|
357 | |||
357 | if pathMeta == self.pathMeta: |
|
358 | if pathMeta == self.pathMeta: | |
358 | return |
|
359 | return | |
359 | else: |
|
360 | else: | |
360 | self.pathMeta = pathMeta |
|
361 | self.pathMeta = pathMeta | |
361 |
|
362 | |||
362 | filePointer = h5py.File(self.pathMeta,'r') |
|
363 | filePointer = h5py.File(self.pathMeta,'r') | |
363 | groupPointer = filePointer['Metadata'] |
|
364 | groupPointer = filePointer['Metadata'] | |
364 |
|
365 | |||
365 | listMetaname = [] |
|
366 | listMetaname = [] | |
366 | listMetadata = [] |
|
367 | listMetadata = [] | |
367 | for item in groupPointer.items(): |
|
368 | for item in groupPointer.items(): | |
368 | name = item[0] |
|
369 | name = item[0] | |
369 |
|
370 | |||
370 | if name=='array dimensions': |
|
371 | if name=='array dimensions': | |
371 | table = groupPointer[name][:] |
|
372 | table = groupPointer[name][:] | |
372 | listShapes = {} |
|
373 | listShapes = {} | |
373 | for shapes in table: |
|
374 | for shapes in table: | |
374 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4]]) |
|
375 | listShapes[shapes[0]] = numpy.array([shapes[1],shapes[2],shapes[3],shapes[4]]) | |
375 | else: |
|
376 | else: | |
376 | data = groupPointer[name].value |
|
377 | data = groupPointer[name].value | |
377 | listMetaname.append(name) |
|
378 | listMetaname.append(name) | |
378 | listMetadata.append(data) |
|
379 | listMetadata.append(data) | |
379 |
|
380 | |||
380 | if name=='type': |
|
381 | if name=='type': | |
381 | self.__initDataOut(data) |
|
382 | self.__initDataOut(data) | |
382 |
|
383 | |||
383 | filePointer.close() |
|
384 | filePointer.close() | |
384 |
|
385 | |||
385 | self.listShapes = listShapes |
|
386 | self.listShapes = listShapes | |
386 | self.listMetaname = listMetaname |
|
387 | self.listMetaname = listMetaname | |
387 | self.listMeta = listMetadata |
|
388 | self.listMeta = listMetadata | |
388 |
|
389 | |||
389 | return |
|
390 | return | |
390 |
|
391 | |||
391 | def __readData(self): |
|
392 | def __readData(self): | |
392 | grp = self.fp['Data'] |
|
393 | grp = self.fp['Data'] | |
393 | listdataname = [] |
|
394 | listdataname = [] | |
394 | listdata = [] |
|
395 | listdata = [] | |
395 |
|
396 | |||
396 | for item in grp.items(): |
|
397 | for item in grp.items(): | |
397 | name = item[0] |
|
398 | name = item[0] | |
398 |
|
399 | |||
399 | if name == 'time': |
|
400 | if name == 'time': | |
400 | listdataname.append('utctime') |
|
401 | listdataname.append('utctime') | |
401 | timeAux = grp[name].value.astype(numpy.float)[0] |
|
402 | timeAux = grp[name].value.astype(numpy.float)[0] | |
402 | listdata.append(timeAux) |
|
403 | listdata.append(timeAux) | |
403 | continue |
|
404 | continue | |
404 |
|
405 | |||
405 | listdataname.append(name) |
|
406 | listdataname.append(name) | |
406 | array = self.__setDataArray(self.nRecords, grp[name],self.listShapes[name]) |
|
407 | array = self.__setDataArray(self.nRecords, grp[name],self.listShapes[name]) | |
407 | listdata.append(array) |
|
408 | listdata.append(array) | |
408 |
|
409 | |||
409 | self.listDataname = listdataname |
|
410 | self.listDataname = listdataname | |
410 | self.listData = listdata |
|
411 | self.listData = listdata | |
411 | return |
|
412 | return | |
412 |
|
413 | |||
413 | def __setDataArray(self, nRecords, dataset, shapes): |
|
414 | def __setDataArray(self, nRecords, dataset, shapes): | |
414 |
|
415 | |||
415 | nChannels = shapes[0] #Dimension 0 |
|
416 | nChannels = shapes[0] #Dimension 0 | |
416 |
|
417 | |||
417 | nPoints = shapes[1] #Dimension 1, number of Points or Parameters |
|
418 | nPoints = shapes[1] #Dimension 1, number of Points or Parameters | |
418 |
|
419 | |||
419 | nSamples = shapes[2] #Dimension 2, number of samples or ranges |
|
420 | nSamples = shapes[2] #Dimension 2, number of samples or ranges | |
420 |
|
421 | |||
421 | mode = shapes[3] |
|
422 | mode = shapes[3] | |
422 |
|
423 | |||
423 | # if nPoints>1: |
|
424 | # if nPoints>1: | |
424 | # arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) |
|
425 | # arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) | |
425 | # else: |
|
426 | # else: | |
426 | # arrayData = numpy.zeros((nRecords,nChannels,nSamples)) |
|
427 | # arrayData = numpy.zeros((nRecords,nChannels,nSamples)) | |
427 | # |
|
428 | # | |
428 | # chn = 'channel' |
|
429 | # chn = 'channel' | |
429 | # |
|
430 | # | |
430 | # for i in range(nChannels): |
|
431 | # for i in range(nChannels): | |
431 | # |
|
432 | # | |
432 | # data = dataset[chn + str(i)].value |
|
433 | # data = dataset[chn + str(i)].value | |
433 | # |
|
434 | # | |
434 | # if nPoints>1: |
|
435 | # if nPoints>1: | |
435 | # data = numpy.rollaxis(data,2) |
|
436 | # data = numpy.rollaxis(data,2) | |
436 | # |
|
437 | # | |
437 | # arrayData[:,i,:] = data |
|
438 | # arrayData[:,i,:] = data | |
438 |
|
439 | |||
439 | arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) |
|
440 | arrayData = numpy.zeros((nRecords,nChannels,nPoints,nSamples)) | |
440 | doSqueeze = False |
|
441 | doSqueeze = False | |
441 | if mode == 0: |
|
442 | if mode == 0: | |
442 | strds = 'channel' |
|
443 | strds = 'channel' | |
443 | nDatas = nChannels |
|
444 | nDatas = nChannels | |
444 | newShapes = (nRecords,nPoints,nSamples) |
|
445 | newShapes = (nRecords,nPoints,nSamples) | |
445 | if nPoints == 1: |
|
446 | if nPoints == 1: | |
446 | doSqueeze = True |
|
447 | doSqueeze = True | |
447 | axisSqueeze = 2 |
|
448 | axisSqueeze = 2 | |
448 | else: |
|
449 | else: | |
449 | strds = 'param' |
|
450 | strds = 'param' | |
450 | nDatas = nPoints |
|
451 | nDatas = nPoints | |
451 | newShapes = (nRecords,nChannels,nSamples) |
|
452 | newShapes = (nRecords,nChannels,nSamples) | |
452 | if nChannels == 1: |
|
453 | if nChannels == 1: | |
453 | doSqueeze = True |
|
454 | doSqueeze = True | |
454 | axisSqueeze = 1 |
|
455 | axisSqueeze = 1 | |
455 |
|
456 | |||
456 | for i in range(nDatas): |
|
457 | for i in range(nDatas): | |
457 |
|
458 | |||
458 | data = dataset[strds + str(i)].value |
|
459 | data = dataset[strds + str(i)].value | |
459 | data = data.reshape(newShapes) |
|
460 | data = data.reshape(newShapes) | |
460 |
|
461 | |||
461 | if mode == 0: |
|
462 | if mode == 0: | |
462 | arrayData[:,i,:,:] = data |
|
463 | arrayData[:,i,:,:] = data | |
463 | else: |
|
464 | else: | |
464 | arrayData[:,:,i,:] = data |
|
465 | arrayData[:,:,i,:] = data | |
465 |
|
466 | |||
466 | if doSqueeze: |
|
467 | if doSqueeze: | |
467 | arrayData = numpy.squeeze(arrayData, axis=axisSqueeze) |
|
468 | arrayData = numpy.squeeze(arrayData, axis=axisSqueeze) | |
468 |
|
469 | |||
469 | return arrayData |
|
470 | return arrayData | |
470 |
|
471 | |||
471 | def __initDataOut(self, type): |
|
472 | def __initDataOut(self, type): | |
472 |
|
473 | |||
473 | # if type =='Parameters': |
|
474 | # if type =='Parameters': | |
474 | # self.dataOut = Parameters() |
|
475 | # self.dataOut = Parameters() | |
475 | # elif type =='Spectra': |
|
476 | # elif type =='Spectra': | |
476 | # self.dataOut = Spectra() |
|
477 | # self.dataOut = Spectra() | |
477 | # elif type =='Voltage': |
|
478 | # elif type =='Voltage': | |
478 | # self.dataOut = Voltage() |
|
479 | # self.dataOut = Voltage() | |
479 | # elif type =='Correlation': |
|
480 | # elif type =='Correlation': | |
480 | # self.dataOut = Correlation() |
|
481 | # self.dataOut = Correlation() | |
481 |
|
482 | |||
482 | return |
|
483 | return | |
483 |
|
484 | |||
484 | def __setDataOut(self): |
|
485 | def __setDataOut(self): | |
485 | listMeta = self.listMeta |
|
486 | listMeta = self.listMeta | |
486 | listMetaname = self.listMetaname |
|
487 | listMetaname = self.listMetaname | |
487 | listDataname = self.listDataname |
|
488 | listDataname = self.listDataname | |
488 | listData = self.listData |
|
489 | listData = self.listData | |
489 |
|
490 | |||
490 | blockIndex = self.blockIndex |
|
491 | blockIndex = self.blockIndex | |
491 | blockList = self.blockList |
|
492 | blockList = self.blockList | |
492 |
|
493 | |||
493 | for i in range(len(listMeta)): |
|
494 | for i in range(len(listMeta)): | |
494 | setattr(self.dataOut,listMetaname[i],listMeta[i]) |
|
495 | setattr(self.dataOut,listMetaname[i],listMeta[i]) | |
495 |
|
496 | |||
496 | for j in range(len(listData)): |
|
497 | for j in range(len(listData)): | |
497 | if listDataname[j]=='utctime': |
|
498 | if listDataname[j]=='utctime': | |
498 | # setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex]]) |
|
499 | # setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex]]) | |
499 | setattr(self.dataOut,'utctimeInit',listData[j][blockList[blockIndex]]) |
|
500 | setattr(self.dataOut,'utctimeInit',listData[j][blockList[blockIndex]]) | |
500 | continue |
|
501 | continue | |
501 |
|
502 | |||
502 | setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex],:]) |
|
503 | setattr(self.dataOut,listDataname[j],listData[j][blockList[blockIndex],:]) | |
503 |
|
504 | |||
504 | return self.dataOut.data_param |
|
505 | return self.dataOut.data_param | |
505 |
|
506 | |||
506 | def getData(self): |
|
507 | def getData(self): | |
507 |
|
508 | |||
508 | # if self.flagNoMoreFiles: |
|
509 | # if self.flagNoMoreFiles: | |
509 | # self.dataOut.flagNoData = True |
|
510 | # self.dataOut.flagNoData = True | |
510 | # print 'Process finished' |
|
511 | # print 'Process finished' | |
511 | # return 0 |
|
512 | # return 0 | |
512 | # |
|
513 | # | |
513 | if self.blockIndex==self.blocksPerFile: |
|
514 | if self.blockIndex==self.blocksPerFile: | |
514 | if not( self.__setNextFileOffline() ): |
|
515 | if not( self.__setNextFileOffline() ): | |
515 | self.dataOut.flagNoData = True |
|
516 | self.dataOut.flagNoData = True | |
516 | return 0 |
|
517 | return 0 | |
517 |
|
518 | |||
518 | # |
|
519 | # | |
519 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers |
|
520 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers | |
520 | # self.dataOut.flagNoData = True |
|
521 | # self.dataOut.flagNoData = True | |
521 | # return 0 |
|
522 | # return 0 | |
522 |
|
523 | |||
523 | self.__readData() |
|
524 | self.__readData() | |
524 | self.__setDataOut() |
|
525 | self.__setDataOut() | |
525 | self.dataOut.flagNoData = False |
|
526 | self.dataOut.flagNoData = False | |
526 |
|
527 | |||
527 | self.blockIndex += 1 |
|
528 | self.blockIndex += 1 | |
528 |
|
529 | |||
529 | return |
|
530 | return | |
530 |
|
531 | |||
531 | def run(self, **kwargs): |
|
532 | def run(self, **kwargs): | |
532 |
|
533 | |||
533 | if not(self.isConfig): |
|
534 | if not(self.isConfig): | |
534 | self.setup(**kwargs) |
|
535 | self.setup(**kwargs) | |
535 | # self.setObjProperties() |
|
536 | # self.setObjProperties() | |
536 | self.isConfig = True |
|
537 | self.isConfig = True | |
537 |
|
538 | |||
538 | self.getData() |
|
539 | self.getData() | |
539 |
|
540 | |||
540 | return |
|
541 | return | |
541 |
|
542 | |||
542 | class HDF5Writer(Operation): |
|
543 | class HDF5Writer(Operation): | |
543 |
|
544 | |||
544 | ext = ".hdf5" |
|
545 | ext = ".hdf5" | |
545 |
|
546 | |||
546 | optchar = "D" |
|
547 | optchar = "D" | |
547 |
|
548 | |||
548 | metaoptchar = "M" |
|
549 | metaoptchar = "M" | |
549 |
|
550 | |||
550 | metaFile = None |
|
551 | metaFile = None | |
551 |
|
552 | |||
|
553 | filename = None | |||
|
554 | ||||
552 | path = None |
|
555 | path = None | |
553 |
|
556 | |||
554 | setFile = None |
|
557 | setFile = None | |
555 |
|
558 | |||
556 | fp = None |
|
559 | fp = None | |
557 |
|
560 | |||
558 | grp = None |
|
561 | grp = None | |
559 |
|
562 | |||
560 | ds = None |
|
563 | ds = None | |
561 |
|
564 | |||
562 | firsttime = True |
|
565 | firsttime = True | |
563 |
|
566 | |||
564 | #Configurations |
|
567 | #Configurations | |
565 |
|
568 | |||
566 | blocksPerFile = None |
|
569 | blocksPerFile = None | |
567 |
|
570 | |||
568 | blockIndex = None |
|
571 | blockIndex = None | |
569 |
|
572 | |||
570 | dataOut = None |
|
573 | dataOut = None | |
571 |
|
574 | |||
572 | #Data Arrays |
|
575 | #Data Arrays | |
573 |
|
576 | |||
574 | dataList = None |
|
577 | dataList = None | |
575 |
|
578 | |||
576 | metadataList = None |
|
579 | metadataList = None | |
577 |
|
580 | |||
578 | arrayDim = None |
|
581 | arrayDim = None | |
579 |
|
582 | |||
580 | tableDim = None |
|
583 | tableDim = None | |
581 |
|
584 | |||
582 | # dtype = [('arrayName', 'S20'),('nChannels', 'i'), ('nPoints', 'i'), ('nSamples', 'i'),('mode', 'b')] |
|
585 | # dtype = [('arrayName', 'S20'),('nChannels', 'i'), ('nPoints', 'i'), ('nSamples', 'i'),('mode', 'b')] | |
583 |
|
586 | |||
584 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] |
|
587 | dtype = [('arrayName', 'S20'),('nDimensions', 'i'), ('dim2', 'i'), ('dim1', 'i'),('dim0', 'i'),('mode', 'b')] | |
585 |
|
588 | |||
586 | mode = None |
|
589 | mode = None | |
587 |
|
590 | |||
588 | nDatas = None #Number of datasets to be stored per array |
|
591 | nDatas = None #Number of datasets to be stored per array | |
589 |
|
592 | |||
590 | nDims = None #Number Dimensions in each dataset |
|
593 | nDims = None #Number Dimensions in each dataset | |
591 |
|
594 | |||
|
595 | nDimsForDs = None | |||
|
596 | ||||
592 | def __init__(self): |
|
597 | def __init__(self): | |
593 |
|
598 | |||
594 | Operation.__init__(self) |
|
599 | Operation.__init__(self) | |
595 | self.isConfig = False |
|
600 | self.isConfig = False | |
596 | return |
|
601 | return | |
597 |
|
602 | |||
598 |
|
603 | |||
599 | def setup(self, dataOut, **kwargs): |
|
604 | def setup(self, dataOut, **kwargs): | |
600 |
|
605 | |||
601 | self.path = kwargs['path'] |
|
606 | self.path = kwargs['path'] | |
602 |
|
607 | |||
603 | if kwargs.has_key('ext'): |
|
608 | if kwargs.has_key('ext'): | |
604 | self.ext = kwargs['ext'] |
|
609 | self.ext = kwargs['ext'] | |
605 |
|
610 | |||
606 | if kwargs.has_key('blocksPerFile'): |
|
611 | if kwargs.has_key('blocksPerFile'): | |
607 | self.blocksPerFile = kwargs['blocksPerFile'] |
|
612 | self.blocksPerFile = kwargs['blocksPerFile'] | |
608 | else: |
|
613 | else: | |
609 | self.blocksPerFile = 10 |
|
614 | self.blocksPerFile = 10 | |
610 |
|
615 | |||
611 | self.metadataList = kwargs['metadataList'] |
|
616 | self.metadataList = kwargs['metadataList'] | |
612 |
|
617 | |||
613 | self.dataList = kwargs['dataList'] |
|
618 | self.dataList = kwargs['dataList'] | |
614 |
|
619 | |||
615 | self.dataOut = dataOut |
|
620 | self.dataOut = dataOut | |
616 |
|
621 | |||
617 | if kwargs.has_key('mode'): |
|
622 | if kwargs.has_key('mode'): | |
618 | mode = kwargs['mode'] |
|
623 | mode = kwargs['mode'] | |
619 |
|
624 | |||
620 | if type(mode) == int: |
|
625 | if type(mode) == int: | |
621 | mode = numpy.zeros(len(self.dataList)) + mode |
|
626 | mode = numpy.zeros(len(self.dataList)) + mode | |
622 | else: |
|
627 | else: | |
623 | mode = numpy.zeros(len(self.dataList)) |
|
628 | mode = numpy.zeros(len(self.dataList)) | |
624 |
|
629 | |||
625 | self.mode = mode |
|
630 | self.mode = mode | |
626 |
|
631 | |||
627 | arrayDim = numpy.zeros((len(self.dataList),5)) |
|
632 | arrayDim = numpy.zeros((len(self.dataList),5)) | |
628 |
|
633 | |||
629 | #Table dimensions |
|
634 | #Table dimensions | |
630 |
|
635 | |||
631 | dtype0 = self.dtype |
|
636 | dtype0 = self.dtype | |
632 |
|
637 | |||
633 | tableList = [] |
|
638 | tableList = [] | |
634 |
|
639 | |||
635 | for i in range(len(self.dataList)): |
|
640 | for i in range(len(self.dataList)): | |
636 |
|
641 | |||
637 | dataAux = getattr(self.dataOut, self.dataList[i]) |
|
642 | dataAux = getattr(self.dataOut, self.dataList[i]) | |
638 |
|
643 | |||
639 | if type(dataAux)==float or type(dataAux)==int: |
|
644 | if type(dataAux)==float or type(dataAux)==int: | |
640 | arrayDim[i,0] = 1 |
|
645 | arrayDim[i,0] = 1 | |
641 | else: |
|
646 | else: | |
642 | arrayDim0 = dataAux.shape |
|
647 | arrayDim0 = dataAux.shape | |
643 | arrayDim[i,0] = len(arrayDim0) |
|
648 | arrayDim[i,0] = len(arrayDim0) | |
644 | arrayDim[i,4] = mode[i] |
|
649 | arrayDim[i,4] = mode[i] | |
645 |
|
650 | |||
646 | if len(arrayDim0) == 3: |
|
651 | if len(arrayDim0) == 3: | |
647 | arrayDim[i,1:-1] = numpy.array(arrayDim0) |
|
652 | arrayDim[i,1:-1] = numpy.array(arrayDim0) | |
648 | elif len(arrayDim0) == 2: |
|
653 | elif len(arrayDim0) == 2: | |
649 | arrayDim[i,2:-1] = numpy.array(arrayDim0) #nHeights |
|
654 | arrayDim[i,2:-1] = numpy.array(arrayDim0) #nHeights | |
650 | elif len(arrayDim0) == 1: |
|
655 | elif len(arrayDim0) == 1: | |
651 | arrayDim[i,3] = arrayDim0 |
|
656 | arrayDim[i,3] = arrayDim0 | |
652 | elif len(arrayDim0) == 0: |
|
657 | elif len(arrayDim0) == 0: | |
653 | arrayDim[i,0] = 1 |
|
658 | arrayDim[i,0] = 1 | |
654 | arrayDim[i,3] = 1 |
|
659 | arrayDim[i,3] = 1 | |
655 |
|
660 | |||
656 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) |
|
661 | table = numpy.array((self.dataList[i],) + tuple(arrayDim[i,:]),dtype = dtype0) | |
657 | tableList.append(table) |
|
662 | tableList.append(table) | |
658 |
|
663 | |||
659 | self.arrayDim = arrayDim |
|
664 | self.arrayDim = arrayDim | |
660 | self.tableDim = numpy.array(tableList, dtype = dtype0) |
|
665 | self.tableDim = numpy.array(tableList, dtype = dtype0) | |
661 | self.blockIndex = 0 |
|
666 | self.blockIndex = 0 | |
662 |
|
667 | |||
663 | return |
|
668 | return | |
664 |
|
669 | |||
665 | def putMetadata(self): |
|
670 | def putMetadata(self): | |
666 |
|
671 | |||
667 | fp = self.createMetadataFile() |
|
672 | fp = self.createMetadataFile() | |
668 | self.writeMetadata(fp) |
|
673 | self.writeMetadata(fp) | |
669 | fp.close() |
|
674 | fp.close() | |
670 | return |
|
675 | return | |
671 |
|
676 | |||
672 | def createMetadataFile(self): |
|
677 | def createMetadataFile(self): | |
673 | ext = self.ext |
|
678 | ext = self.ext | |
674 | path = self.path |
|
679 | path = self.path | |
675 | setFile = self.setFile |
|
680 | setFile = self.setFile | |
676 |
|
681 | |||
677 | timeTuple = time.localtime(self.dataOut.utctime) |
|
682 | timeTuple = time.localtime(self.dataOut.utctime) | |
|
683 | ||||
678 | subfolder = '' |
|
684 | subfolder = '' | |
|
685 | fullpath = os.path.join( path, subfolder ) | |||
679 |
|
686 | |||
|
687 | if not( os.path.exists(fullpath) ): | |||
|
688 | os.mkdir(fullpath) | |||
|
689 | setFile = -1 #inicializo mi contador de seteo | |||
|
690 | ||||
|
691 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |||
680 | fullpath = os.path.join( path, subfolder ) |
|
692 | fullpath = os.path.join( path, subfolder ) | |
|
693 | ||||
681 | if not( os.path.exists(fullpath) ): |
|
694 | if not( os.path.exists(fullpath) ): | |
682 | os.mkdir(fullpath) |
|
695 | os.mkdir(fullpath) | |
683 | setFile = -1 #inicializo mi contador de seteo |
|
696 | setFile = -1 #inicializo mi contador de seteo | |
|
697 | ||||
684 | else: |
|
698 | else: | |
685 | filesList = os.listdir( fullpath ) |
|
699 | filesList = os.listdir( fullpath ) | |
686 | if len( filesList ) > 0: |
|
|||
687 |
|
|
700 | filesList = sorted( filesList, key=str.lower ) | |
|
701 | if len( filesList ) > 0: | |||
|
702 | filesList = [k for k in filesList if 'M' in k] | |||
688 | filen = filesList[-1] |
|
703 | filen = filesList[-1] | |
689 | # el filename debera tener el siguiente formato |
|
704 | # el filename debera tener el siguiente formato | |
690 | # 0 1234 567 89A BCDE (hex) |
|
705 | # 0 1234 567 89A BCDE (hex) | |
691 | # x YYYY DDD SSS .ext |
|
706 | # x YYYY DDD SSS .ext | |
692 | if isNumber( filen[8:11] ): |
|
707 | if isNumber( filen[8:11] ): | |
693 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
708 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file | |
694 | else: |
|
709 | else: | |
695 | setFile = -1 |
|
710 | setFile = -1 | |
696 | else: |
|
711 | else: | |
697 | setFile = -1 #inicializo mi contador de seteo |
|
712 | setFile = -1 #inicializo mi contador de seteo | |
698 |
|
713 | |||
699 | setFile += 1 |
|
714 | setFile += 1 | |
700 |
|
715 | |||
701 | file = '%s%4.4d%3.3d%3.3d%s' % (self.metaoptchar, |
|
716 | file = '%s%4.4d%3.3d%3.3d%s' % (self.metaoptchar, | |
702 | timeTuple.tm_year, |
|
717 | timeTuple.tm_year, | |
703 | timeTuple.tm_yday, |
|
718 | timeTuple.tm_yday, | |
704 | setFile, |
|
719 | setFile, | |
705 | ext ) |
|
720 | ext ) | |
706 |
|
721 | |||
707 | filename = os.path.join( path, subfolder, file ) |
|
722 | filename = os.path.join( path, subfolder, file ) | |
708 | self.metaFile = file |
|
723 | self.metaFile = file | |
709 | #Setting HDF5 File |
|
724 | #Setting HDF5 File | |
710 | fp = h5py.File(filename,'w') |
|
725 | fp = h5py.File(filename,'w') | |
711 |
|
726 | |||
712 | return fp |
|
727 | return fp | |
713 |
|
728 | |||
714 | def writeMetadata(self, fp): |
|
729 | def writeMetadata(self, fp): | |
715 |
|
730 | |||
716 | grp = fp.create_group("Metadata") |
|
731 | grp = fp.create_group("Metadata") | |
717 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) |
|
732 | grp.create_dataset('array dimensions', data = self.tableDim, dtype = self.dtype) | |
718 |
|
733 | |||
719 | for i in range(len(self.metadataList)): |
|
734 | for i in range(len(self.metadataList)): | |
720 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) |
|
735 | grp.create_dataset(self.metadataList[i], data=getattr(self.dataOut, self.metadataList[i])) | |
721 | return |
|
736 | return | |
722 |
|
737 | |||
723 | def setNextFile(self): |
|
738 | def setNextFile(self): | |
724 |
|
739 | |||
725 | ext = self.ext |
|
740 | ext = self.ext | |
726 | path = self.path |
|
741 | path = self.path | |
727 | setFile = self.setFile |
|
742 | setFile = self.setFile | |
728 | mode = self.mode |
|
743 | mode = self.mode | |
729 |
|
744 | |||
730 | if self.fp != None: |
|
|||
731 | self.fp.close() |
|
|||
732 |
|
||||
733 | timeTuple = time.localtime(self.dataOut.utctime) |
|
745 | timeTuple = time.localtime(self.dataOut.utctime) | |
734 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) |
|
746 | subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday) | |
735 |
|
747 | |||
736 | fullpath = os.path.join( path, subfolder ) |
|
748 | fullpath = os.path.join( path, subfolder ) | |
737 | if not( os.path.exists(fullpath) ): |
|
749 | ||
738 |
|
|
750 | if os.path.exists(fullpath): | |
739 | setFile = -1 #inicializo mi contador de seteo |
|
|||
740 | else: |
|
|||
741 | filesList = os.listdir( fullpath ) |
|
751 | filesList = os.listdir( fullpath ) | |
|
752 | filesList = [k for k in filesList if 'D' in k] | |||
742 | if len( filesList ) > 0: |
|
753 | if len( filesList ) > 0: | |
743 | filesList = sorted( filesList, key=str.lower ) |
|
754 | filesList = sorted( filesList, key=str.lower ) | |
744 | filen = filesList[-1] |
|
755 | filen = filesList[-1] | |
745 | # el filename debera tener el siguiente formato |
|
756 | # el filename debera tener el siguiente formato | |
746 | # 0 1234 567 89A BCDE (hex) |
|
757 | # 0 1234 567 89A BCDE (hex) | |
747 | # x YYYY DDD SSS .ext |
|
758 | # x YYYY DDD SSS .ext | |
748 | if isNumber( filen[8:11] ): |
|
759 | if isNumber( filen[8:11] ): | |
749 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file |
|
760 | setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file | |
750 | else: |
|
761 | else: | |
751 | setFile = -1 |
|
762 | setFile = -1 | |
752 | else: |
|
763 | else: | |
753 | setFile = -1 #inicializo mi contador de seteo |
|
764 | setFile = -1 #inicializo mi contador de seteo | |
754 |
|
765 | |||
755 | setFile += 1 |
|
766 | setFile += 1 | |
756 |
|
767 | |||
757 | file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar, |
|
768 | file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar, | |
758 | timeTuple.tm_year, |
|
769 | timeTuple.tm_year, | |
759 | timeTuple.tm_yday, |
|
770 | timeTuple.tm_yday, | |
760 | setFile, |
|
771 | setFile, | |
761 | ext ) |
|
772 | ext ) | |
762 |
|
773 | |||
763 | filename = os.path.join( path, subfolder, file ) |
|
774 | filename = os.path.join( path, subfolder, file ) | |
764 |
|
775 | |||
765 | #Setting HDF5 File |
|
776 | #Setting HDF5 File | |
766 | fp = h5py.File(filename,'w') |
|
777 | fp = h5py.File(filename,'w') | |
767 | grp = fp.create_group("Data") |
|
778 | grp = fp.create_group("Data") | |
768 | grp.attrs['metadata'] = self.metaFile |
|
779 | grp.attrs['metadata'] = self.metaFile | |
769 |
|
780 | |||
770 | # grp.attrs['blocksPerFile'] = 0 |
|
781 | # grp.attrs['blocksPerFile'] = 0 | |
771 |
|
782 | |||
772 | ds = [] |
|
783 | ds = [] | |
773 | data = [] |
|
784 | data = [] | |
|
785 | nDimsForDs = [] | |||
774 |
|
786 | |||
775 | nDatas = numpy.zeros(len(self.dataList)) |
|
787 | nDatas = numpy.zeros(len(self.dataList)) | |
776 | nDims = self.arrayDim[:,0] |
|
788 | nDims = self.arrayDim[:,0] | |
777 |
|
789 | |||
|
790 | nDim1 = self.arrayDim[:,2] | |||
|
791 | nDim0 = self.arrayDim[:,3] | |||
|
792 | ||||
778 | for i in range(len(self.dataList)): |
|
793 | for i in range(len(self.dataList)): | |
779 |
|
794 | |||
780 | if nDims[i]==1: |
|
795 | if nDims[i]==1: | |
781 |
ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1, |
|
796 | # ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype='S20') | |
|
797 | ds0 = grp.create_dataset(self.dataList[i], (1,1), maxshape=(1,self.blocksPerFile) , chunks = True, dtype=numpy.float64) | |||
782 | ds.append(ds0) |
|
798 | ds.append(ds0) | |
783 | data.append([]) |
|
799 | data.append([]) | |
784 |
|
800 | nDimsForDs.append(nDims[i]) | ||
785 | else: |
|
801 | else: | |
786 |
|
802 | |||
787 | if mode[i]==0: |
|
803 | if mode[i]==0: | |
788 | strMode = "channel" |
|
804 | strMode = "channel" | |
789 | nDatas[i] = self.arrayDim[i,1] |
|
805 | nDatas[i] = self.arrayDim[i,1] | |
790 | else: |
|
806 | else: | |
791 | strMode = "param" |
|
807 | strMode = "param" | |
792 | nDatas[i] = self.arrayDim[i,2] |
|
808 | nDatas[i] = self.arrayDim[i,2] | |
793 |
|
809 | |||
794 | if nDims[i]==2: |
|
810 | if nDims[i]==2: | |
795 | nDatas[i] = self.arrayDim[i,2] |
|
811 | nDatas[i] = self.arrayDim[i,2] | |
796 |
|
812 | |||
797 | grp0 = grp.create_group(self.dataList[i]) |
|
813 | grp0 = grp.create_group(self.dataList[i]) | |
798 |
|
814 | |||
799 | for j in range(int(nDatas[i])): |
|
815 | for j in range(int(nDatas[i])): | |
800 | tableName = strMode + str(j) |
|
816 | tableName = strMode + str(j) | |
801 |
|
817 | |||
802 | if nDims[i] == 3: |
|
818 | if nDims[i] == 3: | |
803 |
ds0 = grp0.create_dataset(tableName, (1, |
|
819 | ds0 = grp0.create_dataset(tableName, (nDim1[i],nDim0[i],1) , data = numpy.zeros((nDim1[i],nDim0[i],1)) ,maxshape=(None,nDim0[i],None), chunks=True) | |
804 | else: |
|
820 | else: | |
805 |
ds0 = grp0.create_dataset(tableName, (1,1) , maxshape=(None, |
|
821 | ds0 = grp0.create_dataset(tableName, (1,nDim0[i]), data = numpy.zeros((1,nDim0[i])) , maxshape=(None,nDim0[i]), chunks=True) | |
806 |
|
822 | |||
807 | ds.append(ds0) |
|
823 | ds.append(ds0) | |
808 | data.append([]) |
|
824 | data.append([]) | |
809 |
|
825 | nDimsForDs.append(nDims[i]) | ||
810 | self.nDatas = nDatas |
|
826 | self.nDatas = nDatas | |
811 | self.nDims = nDims |
|
827 | self.nDims = nDims | |
812 |
|
828 | self.nDimsForDs = nDimsForDs | ||
813 | #Saving variables |
|
829 | #Saving variables | |
814 | print 'Writing the file: %s'%filename |
|
830 | print 'Writing the file: %s'%filename | |
|
831 | self.filename = filename | |||
815 | self.fp = fp |
|
832 | self.fp = fp | |
816 | self.grp = grp |
|
833 | self.grp = grp | |
|
834 | self.grp.attrs.modify('nRecords', 1) | |||
817 | self.ds = ds |
|
835 | self.ds = ds | |
818 | self.data = data |
|
836 | self.data = data | |
819 |
|
837 | |||
820 | self.setFile = setFile |
|
838 | self.setFile = setFile | |
821 | self.firsttime = True |
|
839 | self.firsttime = True | |
822 | self.blockIndex = 0 |
|
840 | self.blockIndex = 0 | |
823 | return |
|
841 | return | |
824 |
|
842 | |||
825 | def putData(self): |
|
843 | def putData(self): | |
826 | self.setBlock() |
|
844 | ||
827 | self.writeBlock() |
|
845 | if not self.firsttime: | |
|
846 | self.fp.flush() | |||
|
847 | self.fp.close() | |||
|
848 | self.readBlock() | |||
828 |
|
849 | |||
829 | if self.blockIndex == self.blocksPerFile: |
|
850 | if self.blockIndex == self.blocksPerFile: | |
|
851 | ||||
830 |
self.setNextFile() |
|
852 | self.setNextFile() | |
|
853 | ||||
|
854 | self.setBlock() | |||
|
855 | self.writeBlock() | |||
|
856 | ||||
|
857 | ||||
831 | return |
|
858 | return | |
832 |
|
859 | |||
|
860 | def readBlock(self): | |||
|
861 | ||||
|
862 | ''' | |||
|
863 | data Array configured | |||
|
864 | ||||
|
865 | ||||
|
866 | self.data | |||
|
867 | ''' | |||
|
868 | ds = self.ds | |||
|
869 | #Setting HDF5 File | |||
|
870 | fp = h5py.File(self.filename,'r+') | |||
|
871 | grp = fp["Data"] | |||
|
872 | ind = 0 | |||
|
873 | ||||
|
874 | # grp.attrs['blocksPerFile'] = 0 | |||
|
875 | for i in range(len(self.dataList)): | |||
|
876 | ||||
|
877 | if self.nDims[i]==1: | |||
|
878 | ds0 = grp[self.dataList[i]] | |||
|
879 | ds[ind] = ds0 | |||
|
880 | ind += 1 | |||
|
881 | else: | |||
|
882 | if self.mode[i]==0: | |||
|
883 | strMode = "channel" | |||
|
884 | else: | |||
|
885 | strMode = "param" | |||
|
886 | ||||
|
887 | grp0 = grp[self.dataList[i]] | |||
|
888 | ||||
|
889 | for j in range(int(self.nDatas[i])): | |||
|
890 | tableName = strMode + str(j) | |||
|
891 | ds0 = grp0[tableName] | |||
|
892 | ds[ind] = ds0 | |||
|
893 | ind += 1 | |||
|
894 | ||||
|
895 | ||||
|
896 | self.fp = fp | |||
|
897 | self.grp = grp | |||
|
898 | self.ds = ds | |||
|
899 | ||||
|
900 | return | |||
|
901 | ||||
|
902 | ||||
833 | def setBlock(self): |
|
903 | def setBlock(self): | |
834 | ''' |
|
904 | ''' | |
835 | data Array configured |
|
905 | data Array configured | |
836 |
|
906 | |||
837 |
|
907 | |||
838 | self.data |
|
908 | self.data | |
839 | ''' |
|
909 | ''' | |
840 | #Creating Arrays |
|
910 | #Creating Arrays | |
841 | data = self.data |
|
911 | data = self.data | |
842 | nDatas = self.nDatas |
|
912 | nDatas = self.nDatas | |
843 | nDims = self.nDims |
|
913 | nDims = self.nDims | |
844 | mode = self.mode |
|
914 | mode = self.mode | |
845 | ind = 0 |
|
915 | ind = 0 | |
846 |
|
916 | |||
847 | for i in range(len(self.dataList)): |
|
917 | for i in range(len(self.dataList)): | |
848 | dataAux = getattr(self.dataOut,self.dataList[i]) |
|
918 | dataAux = getattr(self.dataOut,self.dataList[i]) | |
849 |
|
919 | |||
850 | if nDims[i] == 1: |
|
920 | if nDims[i] == 1: | |
851 | data[ind] = numpy.array([str(dataAux)]).reshape((1,1)) |
|
921 | # data[ind] = numpy.array([str(dataAux)]).reshape((1,1)) | |
852 | if not self.firsttime: |
|
922 | data[ind] = dataAux | |
853 | data[ind] = numpy.hstack((self.ds[ind][:], self.data[ind])) |
|
923 | # if not self.firsttime: | |
|
924 | # data[ind] = numpy.hstack((self.ds[ind][:], self.data[ind])) | |||
854 | ind += 1 |
|
925 | ind += 1 | |
855 |
|
||||
856 | else: |
|
926 | else: | |
857 | for j in range(int(nDatas[i])): |
|
927 | for j in range(int(nDatas[i])): | |
858 | if (mode[i] == 0) or (nDims[i] == 2): #In case division per channel or Dimensions is only 1 |
|
928 | if (mode[i] == 0) or (nDims[i] == 2): #In case division per channel or Dimensions is only 1 | |
859 | data[ind] = dataAux[j,:] |
|
929 | data[ind] = dataAux[j,:] | |
860 | else: |
|
930 | else: | |
861 | data[ind] = dataAux[:,j,:] |
|
931 | data[ind] = dataAux[:,j,:] | |
862 |
|
932 | |||
863 | if nDims[i] == 3: |
|
933 | # if nDims[i] == 3: | |
864 | data[ind] = data[ind].reshape((data[ind].shape[0],data[ind].shape[1],1)) |
|
934 | # data[ind] = data[ind].reshape((data[ind].shape[0],data[ind].shape[1],1)) | |
865 |
|
935 | |||
866 | if not self.firsttime: |
|
936 | # if not self.firsttime: | |
867 | data[ind] = numpy.dstack((self.ds[ind][:], data[ind])) |
|
937 | # data[ind] = numpy.dstack((self.ds[ind][:], data[ind])) | |
868 |
|
938 | |||
869 | else: |
|
939 | # else: | |
870 | data[ind] = data[ind].reshape((1,data[ind].shape[0])) |
|
940 | # data[ind] = data[ind].reshape((1,data[ind].shape[0])) | |
871 |
|
941 | |||
872 | if not self.firsttime: |
|
942 | # if not self.firsttime: | |
873 | data[ind] = numpy.vstack((self.ds[ind][:], data[ind])) |
|
943 | # data[ind] = numpy.vstack((self.ds[ind][:], data[ind])) | |
874 | ind += 1 |
|
944 | ind += 1 | |
875 |
|
|
945 | ||
876 | self.data = data |
|
946 | self.data = data | |
877 | return |
|
947 | return | |
878 |
|
948 | |||
879 | def writeBlock(self): |
|
949 | def writeBlock(self): | |
880 | ''' |
|
950 | ''' | |
881 | Saves the block in the HDF5 file |
|
951 | Saves the block in the HDF5 file | |
882 | ''' |
|
952 | ''' | |
883 | for i in range(len(self.ds)): |
|
953 | for i in range(len(self.ds)): | |
|
954 | if self.firsttime: | |||
|
955 | # self.ds[i].resize(self.data[i].shape) | |||
|
956 | # self.ds[i][self.blockIndex,:] = self.data[i] | |||
|
957 | if type(self.data[i]) == numpy.ndarray: | |||
|
958 | nDims1 = len(self.ds[i].shape) | |||
|
959 | ||||
|
960 | if nDims1 == 3: | |||
|
961 | self.data[i] = self.data[i].reshape((self.data[i].shape[0],self.data[i].shape[1],1)) | |||
|
962 | ||||
884 |
self.ds[i].resize(self.data[i].shape) |
|
963 | self.ds[i].resize(self.data[i].shape) | |
885 | self.ds[i][:] = self.data[i] |
|
964 | self.ds[i][:] = self.data[i] | |
|
965 | else: | |||
|
966 | if self.nDimsForDs[i] == 1: | |||
|
967 | self.ds[i].resize((self.ds[i].shape[0], self.ds[i].shape[1] + 1)) | |||
|
968 | self.ds[i][0,-1] = self.data[i] | |||
|
969 | elif self.nDimsForDs[i] == 2: | |||
|
970 | self.ds[i].resize((self.ds[i].shape[0] + 1,self.ds[i].shape[1])) | |||
|
971 | self.ds[i][self.blockIndex,:] = self.data[i] | |||
|
972 | elif self.nDimsForDs[i] == 3: | |||
|
973 | ||||
|
974 | dataShape = self.data[i].shape | |||
|
975 | dsShape = self.ds[i].shape | |||
|
976 | ||||
|
977 | if dataShape[0]==dsShape[0]: | |||
|
978 | self.ds[i].resize((self.ds[i].shape[0],self.ds[i].shape[1],self.ds[i].shape[2]+1)) | |||
|
979 | self.ds[i][:,:,-1] = self.data[i] | |||
|
980 | else: | |||
|
981 | self.ds[i].resize((self.ds[i].shape[0] + dataShape[0],self.ds[i].shape[1],self.ds[i].shape[2])) | |||
|
982 | self.ds[i][dsShape[0]:,:,0] = self.data[i] | |||
|
983 | # self.ds[i].append(self.data[i]) | |||
|
984 | # self.fp.flush() | |||
|
985 | # if not self.firsttime: | |||
|
986 | # self.fp.root.Data._v_attrs.nRecords = self.blockIndex | |||
886 |
|
987 | |||
887 | self.blockIndex += 1 |
|
988 | # if self.firsttime: | |
888 |
|
989 | # self.fp.close() | ||
889 | self.grp.attrs.modify('nRecords', self.blockIndex) |
|
990 | # self.readBlock2() | |
890 |
|
991 | |||
|
992 | self.blockIndex += 1 | |||
891 | self.firsttime = False |
|
993 | self.firsttime = False | |
892 | return |
|
994 | return | |
893 |
|
995 | |||
894 | def run(self, dataOut, **kwargs): |
|
996 | def run(self, dataOut, **kwargs): | |
895 | if not(self.isConfig): |
|
997 | if not(self.isConfig): | |
896 | self.setup(dataOut, **kwargs) |
|
998 | self.setup(dataOut, **kwargs) | |
897 | self.isConfig = True |
|
999 | self.isConfig = True | |
898 | self.putMetadata() |
|
1000 | self.putMetadata() | |
899 | self.setNextFile() |
|
1001 | self.setNextFile() | |
900 |
|
1002 | |||
901 | self.putData() |
|
1003 | self.putData() | |
902 | return |
|
1004 | return | |
903 |
|
1005 |
@@ -1,1786 +1,2144 | |||||
1 | import numpy |
|
1 | import numpy | |
2 | import math |
|
2 | import math | |
3 | from scipy import optimize |
|
3 | from scipy import optimize | |
4 | from scipy import interpolate |
|
4 | from scipy import interpolate | |
5 | from scipy import signal |
|
5 | from scipy import signal | |
6 | from scipy import stats |
|
6 | from scipy import stats | |
7 | import re |
|
7 | import re | |
8 | import datetime |
|
8 | import datetime | |
9 | import copy |
|
9 | import copy | |
10 | import sys |
|
10 | import sys | |
11 | import importlib |
|
11 | import importlib | |
12 | import itertools |
|
12 | import itertools | |
13 |
|
13 | |||
14 | from jroproc_base import ProcessingUnit, Operation |
|
14 | from jroproc_base import ProcessingUnit, Operation | |
15 | from schainpy.model.data.jrodata import Parameters |
|
15 | from schainpy.model.data.jrodata import Parameters | |
16 |
|
16 | |||
17 |
|
17 | |||
18 | class ParametersProc(ProcessingUnit): |
|
18 | class ParametersProc(ProcessingUnit): | |
19 |
|
19 | |||
20 | nSeconds = None |
|
20 | nSeconds = None | |
21 |
|
21 | |||
22 | def __init__(self): |
|
22 | def __init__(self): | |
23 | ProcessingUnit.__init__(self) |
|
23 | ProcessingUnit.__init__(self) | |
24 |
|
24 | |||
25 | # self.objectDict = {} |
|
25 | # self.objectDict = {} | |
26 | self.buffer = None |
|
26 | self.buffer = None | |
27 | self.firstdatatime = None |
|
27 | self.firstdatatime = None | |
28 | self.profIndex = 0 |
|
28 | self.profIndex = 0 | |
29 | self.dataOut = Parameters() |
|
29 | self.dataOut = Parameters() | |
30 |
|
30 | |||
31 | def __updateObjFromInput(self): |
|
31 | def __updateObjFromInput(self): | |
32 |
|
32 | |||
33 | self.dataOut.inputUnit = self.dataIn.type |
|
33 | self.dataOut.inputUnit = self.dataIn.type | |
34 |
|
34 | |||
35 | self.dataOut.timeZone = self.dataIn.timeZone |
|
35 | self.dataOut.timeZone = self.dataIn.timeZone | |
36 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
36 | self.dataOut.dstFlag = self.dataIn.dstFlag | |
37 | self.dataOut.errorCount = self.dataIn.errorCount |
|
37 | self.dataOut.errorCount = self.dataIn.errorCount | |
38 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
38 | self.dataOut.useLocalTime = self.dataIn.useLocalTime | |
39 |
|
39 | |||
40 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
40 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() | |
41 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
41 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() | |
42 | self.dataOut.channelList = self.dataIn.channelList |
|
42 | self.dataOut.channelList = self.dataIn.channelList | |
43 | self.dataOut.heightList = self.dataIn.heightList |
|
43 | self.dataOut.heightList = self.dataIn.heightList | |
44 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
44 | self.dataOut.dtype = numpy.dtype([('real','<f4'),('imag','<f4')]) | |
45 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
45 | # self.dataOut.nHeights = self.dataIn.nHeights | |
46 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
46 | # self.dataOut.nChannels = self.dataIn.nChannels | |
47 | self.dataOut.nBaud = self.dataIn.nBaud |
|
47 | self.dataOut.nBaud = self.dataIn.nBaud | |
48 | self.dataOut.nCode = self.dataIn.nCode |
|
48 | self.dataOut.nCode = self.dataIn.nCode | |
49 | self.dataOut.code = self.dataIn.code |
|
49 | self.dataOut.code = self.dataIn.code | |
50 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
50 | # self.dataOut.nProfiles = self.dataOut.nFFTPoints | |
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock |
|
51 | self.dataOut.flagDiscontinuousBlock = self.dataIn.flagDiscontinuousBlock | |
52 | self.dataOut.utctime = self.firstdatatime |
|
52 | self.dataOut.utctime = self.firstdatatime | |
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
53 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada | |
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
54 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip | |
55 | # self.dataOut.nCohInt = self.dataIn.nCohInt |
|
55 | # self.dataOut.nCohInt = self.dataIn.nCohInt | |
56 | # self.dataOut.nIncohInt = 1 |
|
56 | # self.dataOut.nIncohInt = 1 | |
57 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
57 | self.dataOut.ippSeconds = self.dataIn.ippSeconds | |
58 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter |
|
58 | # self.dataOut.windowOfFilter = self.dataIn.windowOfFilter | |
59 | self.dataOut.timeInterval = self.dataIn.timeInterval |
|
59 | self.dataOut.timeInterval = self.dataIn.timeInterval | |
60 | self.dataOut.heightList = self.dataIn.getHeiRange() |
|
60 | self.dataOut.heightList = self.dataIn.getHeiRange() | |
61 | self.dataOut.frequency = self.dataIn.frequency |
|
61 | self.dataOut.frequency = self.dataIn.frequency | |
62 |
|
62 | |||
63 | def run(self, nSeconds = None, nProfiles = None): |
|
63 | def run(self, nSeconds = None, nProfiles = None): | |
64 |
|
64 | |||
65 |
|
65 | |||
66 |
|
66 | |||
67 | if self.firstdatatime == None: |
|
67 | if self.firstdatatime == None: | |
68 | self.firstdatatime = self.dataIn.utctime |
|
68 | self.firstdatatime = self.dataIn.utctime | |
69 |
|
69 | |||
70 | #---------------------- Voltage Data --------------------------- |
|
70 | #---------------------- Voltage Data --------------------------- | |
71 |
|
71 | |||
72 | if self.dataIn.type == "Voltage": |
|
72 | if self.dataIn.type == "Voltage": | |
73 | self.dataOut.flagNoData = True |
|
73 | self.dataOut.flagNoData = True | |
74 | if nSeconds != None: |
|
74 | if nSeconds != None: | |
75 | self.nSeconds = nSeconds |
|
75 | self.nSeconds = nSeconds | |
76 | self.nProfiles= int(numpy.floor(nSeconds/(self.dataIn.ippSeconds*self.dataIn.nCohInt))) |
|
76 | self.nProfiles= int(numpy.floor(nSeconds/(self.dataIn.ippSeconds*self.dataIn.nCohInt))) | |
77 |
|
77 | |||
78 | if self.buffer == None: |
|
78 | if self.buffer == None: | |
79 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
79 | self.buffer = numpy.zeros((self.dataIn.nChannels, | |
80 | self.nProfiles, |
|
80 | self.nProfiles, | |
81 | self.dataIn.nHeights), |
|
81 | self.dataIn.nHeights), | |
82 | dtype='complex') |
|
82 | dtype='complex') | |
83 |
|
83 | |||
84 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
84 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() | |
85 | self.profIndex += 1 |
|
85 | self.profIndex += 1 | |
86 |
|
86 | |||
87 | if self.profIndex == self.nProfiles: |
|
87 | if self.profIndex == self.nProfiles: | |
88 |
|
88 | |||
89 | self.__updateObjFromInput() |
|
89 | self.__updateObjFromInput() | |
90 | self.dataOut.data_pre = self.buffer.copy() |
|
90 | self.dataOut.data_pre = self.buffer.copy() | |
91 | self.dataOut.paramInterval = nSeconds |
|
91 | self.dataOut.paramInterval = nSeconds | |
92 | self.dataOut.flagNoData = False |
|
92 | self.dataOut.flagNoData = False | |
93 |
|
93 | |||
94 | self.buffer = None |
|
94 | self.buffer = None | |
95 | self.firstdatatime = None |
|
95 | self.firstdatatime = None | |
96 | self.profIndex = 0 |
|
96 | self.profIndex = 0 | |
97 | return |
|
97 | return | |
98 |
|
98 | |||
99 | #---------------------- Spectra Data --------------------------- |
|
99 | #---------------------- Spectra Data --------------------------- | |
100 |
|
100 | |||
101 | if self.dataIn.type == "Spectra": |
|
101 | if self.dataIn.type == "Spectra": | |
102 | self.dataOut.data_pre = self.dataIn.data_spc.copy() |
|
102 | self.dataOut.data_pre = self.dataIn.data_spc.copy() | |
103 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
103 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
104 | self.dataOut.noise = self.dataIn.getNoise() |
|
104 | self.dataOut.noise = self.dataIn.getNoise() | |
105 | self.dataOut.normFactor = self.dataIn.normFactor |
|
105 | self.dataOut.normFactor = self.dataIn.normFactor | |
106 | self.dataOut.groupList = self.dataIn.pairsList |
|
106 | self.dataOut.groupList = self.dataIn.pairsList | |
107 | self.dataOut.flagNoData = False |
|
107 | self.dataOut.flagNoData = False | |
108 |
|
108 | |||
109 | #---------------------- Correlation Data --------------------------- |
|
109 | #---------------------- Correlation Data --------------------------- | |
110 |
|
110 | |||
111 | if self.dataIn.type == "Correlation": |
|
111 | if self.dataIn.type == "Correlation": | |
112 | lagRRange = self.dataIn.lagR |
|
112 | lagRRange = self.dataIn.lagR | |
113 | indR = numpy.where(lagRRange == 0)[0][0] |
|
113 | indR = numpy.where(lagRRange == 0)[0][0] | |
114 |
|
114 | |||
115 | self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] |
|
115 | self.dataOut.data_pre = self.dataIn.data_corr.copy()[:,:,indR,:] | |
116 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) |
|
116 | self.dataOut.abscissaList = self.dataIn.getLagTRange(1) | |
117 | self.dataOut.noise = self.dataIn.noise |
|
117 | self.dataOut.noise = self.dataIn.noise | |
118 | self.dataOut.normFactor = self.dataIn.normFactor |
|
118 | self.dataOut.normFactor = self.dataIn.normFactor | |
119 | self.dataOut.data_SNR = self.dataIn.SNR |
|
119 | self.dataOut.data_SNR = self.dataIn.SNR | |
120 | self.dataOut.groupList = self.dataIn.pairsList |
|
120 | self.dataOut.groupList = self.dataIn.pairsList | |
121 | self.dataOut.flagNoData = False |
|
121 | self.dataOut.flagNoData = False | |
122 |
|
122 | |||
123 | #---------------------- Correlation Data --------------------------- |
|
123 | #---------------------- Correlation Data --------------------------- | |
124 |
|
124 | |||
125 | if self.dataIn.type == "Parameters": |
|
125 | if self.dataIn.type == "Parameters": | |
126 | self.dataOut.copy(self.dataIn) |
|
126 | self.dataOut.copy(self.dataIn) | |
127 | self.dataOut.flagNoData = False |
|
127 | self.dataOut.flagNoData = False | |
128 |
|
128 | |||
129 | return True |
|
129 | return True | |
130 |
|
130 | |||
131 | self.__updateObjFromInput() |
|
131 | self.__updateObjFromInput() | |
132 | self.firstdatatime = None |
|
132 | self.firstdatatime = None | |
133 | self.dataOut.utctimeInit = self.dataIn.utctime |
|
133 | self.dataOut.utctimeInit = self.dataIn.utctime | |
134 | self.dataOut.outputInterval = self.dataIn.timeInterval |
|
134 | self.dataOut.outputInterval = self.dataIn.timeInterval | |
135 |
|
135 | |||
136 | #------------------- Get Moments ---------------------------------- |
|
136 | #------------------- Get Moments ---------------------------------- | |
137 | def GetMoments(self, channelList = None): |
|
137 | def GetMoments(self, channelList = None): | |
138 | ''' |
|
138 | ''' | |
139 | Function GetMoments() |
|
139 | Function GetMoments() | |
140 |
|
140 | |||
141 | Input: |
|
141 | Input: | |
142 | channelList : simple channel list to select e.g. [2,3,7] |
|
142 | channelList : simple channel list to select e.g. [2,3,7] | |
143 | self.dataOut.data_pre |
|
143 | self.dataOut.data_pre | |
144 | self.dataOut.abscissaList |
|
144 | self.dataOut.abscissaList | |
145 | self.dataOut.noise |
|
145 | self.dataOut.noise | |
146 |
|
146 | |||
147 | Affected: |
|
147 | Affected: | |
148 | self.dataOut.data_param |
|
148 | self.dataOut.data_param | |
149 | self.dataOut.data_SNR |
|
149 | self.dataOut.data_SNR | |
150 |
|
150 | |||
151 | ''' |
|
151 | ''' | |
152 | data = self.dataOut.data_pre |
|
152 | data = self.dataOut.data_pre | |
153 | absc = self.dataOut.abscissaList[:-1] |
|
153 | absc = self.dataOut.abscissaList[:-1] | |
154 | noise = self.dataOut.noise |
|
154 | noise = self.dataOut.noise | |
155 |
|
155 | |||
156 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) |
|
156 | data_param = numpy.zeros((data.shape[0], 4, data.shape[2])) | |
157 |
|
157 | |||
158 | if channelList== None: |
|
158 | if channelList== None: | |
159 | channelList = self.dataIn.channelList |
|
159 | channelList = self.dataIn.channelList | |
160 | self.dataOut.channelList = channelList |
|
160 | self.dataOut.channelList = channelList | |
161 |
|
161 | |||
162 | for ind in channelList: |
|
162 | for ind in channelList: | |
163 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) |
|
163 | data_param[ind,:,:] = self.__calculateMoments(data[ind,:,:], absc, noise[ind]) | |
164 |
|
164 | |||
165 | self.dataOut.data_param = data_param[:,1:,:] |
|
165 | self.dataOut.data_param = data_param[:,1:,:] | |
166 | self.dataOut.data_SNR = data_param[:,0] |
|
166 | self.dataOut.data_SNR = data_param[:,0] | |
167 | return |
|
167 | return | |
168 |
|
168 | |||
169 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): |
|
169 | def __calculateMoments(self, oldspec, oldfreq, n0, nicoh = None, graph = None, smooth = None, type1 = None, fwindow = None, snrth = None, dc = None, aliasing = None, oldfd = None, wwauto = None): | |
170 |
|
170 | |||
171 | if (nicoh == None): nicoh = 1 |
|
171 | if (nicoh == None): nicoh = 1 | |
172 | if (graph == None): graph = 0 |
|
172 | if (graph == None): graph = 0 | |
173 | if (smooth == None): smooth = 0 |
|
173 | if (smooth == None): smooth = 0 | |
174 | elif (self.smooth < 3): smooth = 0 |
|
174 | elif (self.smooth < 3): smooth = 0 | |
175 |
|
175 | |||
176 | if (type1 == None): type1 = 0 |
|
176 | if (type1 == None): type1 = 0 | |
177 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 |
|
177 | if (fwindow == None): fwindow = numpy.zeros(oldfreq.size) + 1 | |
178 | if (snrth == None): snrth = -3 |
|
178 | if (snrth == None): snrth = -3 | |
179 | if (dc == None): dc = 0 |
|
179 | if (dc == None): dc = 0 | |
180 | if (aliasing == None): aliasing = 0 |
|
180 | if (aliasing == None): aliasing = 0 | |
181 | if (oldfd == None): oldfd = 0 |
|
181 | if (oldfd == None): oldfd = 0 | |
182 | if (wwauto == None): wwauto = 0 |
|
182 | if (wwauto == None): wwauto = 0 | |
183 |
|
183 | |||
184 | if (n0 < 1.e-20): n0 = 1.e-20 |
|
184 | if (n0 < 1.e-20): n0 = 1.e-20 | |
185 |
|
185 | |||
186 | freq = oldfreq |
|
186 | freq = oldfreq | |
187 | vec_power = numpy.zeros(oldspec.shape[1]) |
|
187 | vec_power = numpy.zeros(oldspec.shape[1]) | |
188 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
188 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
189 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
189 | vec_w = numpy.zeros(oldspec.shape[1]) | |
190 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
190 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
191 |
|
191 | |||
192 | for ind in range(oldspec.shape[1]): |
|
192 | for ind in range(oldspec.shape[1]): | |
193 |
|
193 | |||
194 | spec = oldspec[:,ind] |
|
194 | spec = oldspec[:,ind] | |
195 | aux = spec*fwindow |
|
195 | aux = spec*fwindow | |
196 | max_spec = aux.max() |
|
196 | max_spec = aux.max() | |
197 | m = list(aux).index(max_spec) |
|
197 | m = list(aux).index(max_spec) | |
198 |
|
198 | |||
199 | #Smooth |
|
199 | #Smooth | |
200 | if (smooth == 0): spec2 = spec |
|
200 | if (smooth == 0): spec2 = spec | |
201 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) |
|
201 | else: spec2 = scipy.ndimage.filters.uniform_filter1d(spec,size=smooth) | |
202 |
|
202 | |||
203 | # Calculo de Momentos |
|
203 | # Calculo de Momentos | |
204 | bb = spec2[range(m,spec2.size)] |
|
204 | bb = spec2[range(m,spec2.size)] | |
205 | bb = (bb<n0).nonzero() |
|
205 | bb = (bb<n0).nonzero() | |
206 | bb = bb[0] |
|
206 | bb = bb[0] | |
207 |
|
207 | |||
208 | ss = spec2[range(0,m + 1)] |
|
208 | ss = spec2[range(0,m + 1)] | |
209 | ss = (ss<n0).nonzero() |
|
209 | ss = (ss<n0).nonzero() | |
210 | ss = ss[0] |
|
210 | ss = ss[0] | |
211 |
|
211 | |||
212 | if (bb.size == 0): |
|
212 | if (bb.size == 0): | |
213 | bb0 = spec.size - 1 - m |
|
213 | bb0 = spec.size - 1 - m | |
214 | else: |
|
214 | else: | |
215 | bb0 = bb[0] - 1 |
|
215 | bb0 = bb[0] - 1 | |
216 | if (bb0 < 0): |
|
216 | if (bb0 < 0): | |
217 | bb0 = 0 |
|
217 | bb0 = 0 | |
218 |
|
218 | |||
219 | if (ss.size == 0): ss1 = 1 |
|
219 | if (ss.size == 0): ss1 = 1 | |
220 | else: ss1 = max(ss) + 1 |
|
220 | else: ss1 = max(ss) + 1 | |
221 |
|
221 | |||
222 | if (ss1 > m): ss1 = m |
|
222 | if (ss1 > m): ss1 = m | |
223 |
|
223 | |||
224 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 |
|
224 | valid = numpy.asarray(range(int(m + bb0 - ss1 + 1))) + ss1 | |
225 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() |
|
225 | power = ((spec2[valid] - n0)*fwindow[valid]).sum() | |
226 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
226 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
227 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
227 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
228 | snr = (spec2.mean()-n0)/n0 |
|
228 | snr = (spec2.mean()-n0)/n0 | |
229 |
|
229 | |||
230 | if (snr < 1.e-20) : |
|
230 | if (snr < 1.e-20) : | |
231 | snr = 1.e-20 |
|
231 | snr = 1.e-20 | |
232 |
|
232 | |||
233 | vec_power[ind] = power |
|
233 | vec_power[ind] = power | |
234 | vec_fd[ind] = fd |
|
234 | vec_fd[ind] = fd | |
235 | vec_w[ind] = w |
|
235 | vec_w[ind] = w | |
236 | vec_snr[ind] = snr |
|
236 | vec_snr[ind] = snr | |
237 |
|
237 | |||
238 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
238 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
239 | return moments |
|
239 | return moments | |
240 |
|
240 | |||
241 | #------------------ Get SA Parameters -------------------------- |
|
241 | #------------------ Get SA Parameters -------------------------- | |
|
242 | ||||
242 | def GetSAParameters(self): |
|
243 | def GetSAParameters(self): | |
243 |
|
|
244 | pairslist = self.dataOut.groupList | |
244 | crossdata = self.dataIn.data_cspc |
|
245 | num_pairs = len(pairslist) | |
245 |
|
|
246 | ||
|
247 | vel = self.dataOut.abscissaList | |||
|
248 | spectra = self.dataOut.data_pre | |||
|
249 | cspectra = self.dataIn.data_cspc | |||
|
250 | delta_v = vel[1] - vel[0] | |||
|
251 | ||||
|
252 | #Calculating the power spectrum | |||
|
253 | spc_pow = numpy.sum(spectra, 3)*delta_v | |||
|
254 | #Normalizing Spectra | |||
|
255 | norm_spectra = spectra/spc_pow | |||
|
256 | #Calculating the norm_spectra at peak | |||
|
257 | max_spectra = numpy.max(norm_spectra, 3) | |||
246 |
|
258 | |||
|
259 | #Normalizing Cross Spectra | |||
|
260 | norm_cspectra = numpy.zeros(cspectra.shape) | |||
247 |
|
261 | |||
|
262 | for i in range(num_chan): | |||
|
263 | norm_cspectra[i,:,:] = cspectra[i,:,:]/numpy.sqrt(spc_pow[pairslist[i][0],:]*spc_pow[pairslist[i][1],:]) | |||
248 |
|
264 | |||
|
265 | max_cspectra = numpy.max(norm_cspectra,2) | |||
|
266 | max_cspectra_index = numpy.argmax(norm_cspectra, 2) | |||
|
267 | ||||
|
268 | for i in range(num_pairs): | |||
|
269 | cspc_par[i,:,:] = __calculateMoments(norm_cspectra) | |||
249 | #------------------- Get Lags ---------------------------------- |
|
270 | #------------------- Get Lags ---------------------------------- | |
250 |
|
271 | |||
251 | def GetLags(self): |
|
272 | def GetLags(self): | |
252 | ''' |
|
273 | ''' | |
253 | Function GetMoments() |
|
274 | Function GetMoments() | |
254 |
|
275 | |||
255 | Input: |
|
276 | Input: | |
256 | self.dataOut.data_pre |
|
277 | self.dataOut.data_pre | |
257 | self.dataOut.abscissaList |
|
278 | self.dataOut.abscissaList | |
258 | self.dataOut.noise |
|
279 | self.dataOut.noise | |
259 | self.dataOut.normFactor |
|
280 | self.dataOut.normFactor | |
260 | self.dataOut.data_SNR |
|
281 | self.dataOut.data_SNR | |
261 | self.dataOut.groupList |
|
282 | self.dataOut.groupList | |
262 | self.dataOut.nChannels |
|
283 | self.dataOut.nChannels | |
263 |
|
284 | |||
264 | Affected: |
|
285 | Affected: | |
265 | self.dataOut.data_param |
|
286 | self.dataOut.data_param | |
266 |
|
287 | |||
267 | ''' |
|
288 | ''' | |
268 |
|
289 | |||
269 | data = self.dataOut.data_pre |
|
290 | data = self.dataOut.data_pre | |
270 | normFactor = self.dataOut.normFactor |
|
291 | normFactor = self.dataOut.normFactor | |
271 | nHeights = self.dataOut.nHeights |
|
292 | nHeights = self.dataOut.nHeights | |
272 | absc = self.dataOut.abscissaList[:-1] |
|
293 | absc = self.dataOut.abscissaList[:-1] | |
273 | noise = self.dataOut.noise |
|
294 | noise = self.dataOut.noise | |
274 | SNR = self.dataOut.data_SNR |
|
295 | SNR = self.dataOut.data_SNR | |
275 | pairsList = self.dataOut.groupList |
|
296 | pairsList = self.dataOut.groupList | |
276 | nChannels = self.dataOut.nChannels |
|
297 | nChannels = self.dataOut.nChannels | |
277 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
298 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
278 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) |
|
299 | self.dataOut.data_param = numpy.zeros((len(pairsCrossCorr)*2 + 1, nHeights)) | |
279 |
|
300 | |||
280 | dataNorm = numpy.abs(data) |
|
301 | dataNorm = numpy.abs(data) | |
281 | for l in range(len(pairsList)): |
|
302 | for l in range(len(pairsList)): | |
282 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] |
|
303 | dataNorm[l,:,:] = dataNorm[l,:,:]/normFactor[l,:] | |
283 |
|
304 | |||
284 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) |
|
305 | self.dataOut.data_param[:-1,:] = self.__calculateTaus(dataNorm, pairsCrossCorr, pairsAutoCorr, absc) | |
285 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) |
|
306 | self.dataOut.data_param[-1,:] = self.__calculateLag1Phase(data, pairsAutoCorr, absc) | |
286 | return |
|
307 | return | |
287 |
|
308 | |||
288 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
309 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
289 |
|
310 | |||
290 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
311 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
291 |
|
312 | |||
292 | for l in range(len(pairsList)): |
|
313 | for l in range(len(pairsList)): | |
293 | firstChannel = pairsList[l][0] |
|
314 | firstChannel = pairsList[l][0] | |
294 | secondChannel = pairsList[l][1] |
|
315 | secondChannel = pairsList[l][1] | |
295 |
|
316 | |||
296 | #Obteniendo pares de Autocorrelacion |
|
317 | #Obteniendo pares de Autocorrelacion | |
297 | if firstChannel == secondChannel: |
|
318 | if firstChannel == secondChannel: | |
298 | pairsAutoCorr[firstChannel] = int(l) |
|
319 | pairsAutoCorr[firstChannel] = int(l) | |
299 |
|
320 | |||
300 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
321 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
301 |
|
322 | |||
302 | pairsCrossCorr = range(len(pairsList)) |
|
323 | pairsCrossCorr = range(len(pairsList)) | |
303 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
324 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
304 |
|
325 | |||
305 | return pairsAutoCorr, pairsCrossCorr |
|
326 | return pairsAutoCorr, pairsCrossCorr | |
306 |
|
327 | |||
307 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): |
|
328 | def __calculateTaus(self, data, pairsCrossCorr, pairsAutoCorr, lagTRange): | |
308 |
|
329 | |||
309 | Pt0 = data.shape[1]/2 |
|
330 | Pt0 = data.shape[1]/2 | |
310 | #Funcion de Autocorrelacion |
|
331 | #Funcion de Autocorrelacion | |
311 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) |
|
332 | dataAutoCorr = stats.nanmean(data[pairsAutoCorr,:,:], axis = 0) | |
312 |
|
333 | |||
313 | #Obtencion Indice de TauCross |
|
334 | #Obtencion Indice de TauCross | |
314 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) |
|
335 | indCross = data[pairsCrossCorr,:,:].argmax(axis = 1) | |
315 | #Obtencion Indice de TauAuto |
|
336 | #Obtencion Indice de TauAuto | |
316 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') |
|
337 | indAuto = numpy.zeros(indCross.shape,dtype = 'int') | |
317 | CCValue = data[pairsCrossCorr,Pt0,:] |
|
338 | CCValue = data[pairsCrossCorr,Pt0,:] | |
318 | for i in range(pairsCrossCorr.size): |
|
339 | for i in range(pairsCrossCorr.size): | |
319 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) |
|
340 | indAuto[i,:] = numpy.abs(dataAutoCorr - CCValue[i,:]).argmin(axis = 0) | |
320 |
|
341 | |||
321 | #Obtencion de TauCross y TauAuto |
|
342 | #Obtencion de TauCross y TauAuto | |
322 | tauCross = lagTRange[indCross] |
|
343 | tauCross = lagTRange[indCross] | |
323 | tauAuto = lagTRange[indAuto] |
|
344 | tauAuto = lagTRange[indAuto] | |
324 |
|
345 | |||
325 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) |
|
346 | Nan1, Nan2 = numpy.where(tauCross == lagTRange[0]) | |
326 |
|
347 | |||
327 | tauCross[Nan1,Nan2] = numpy.nan |
|
348 | tauCross[Nan1,Nan2] = numpy.nan | |
328 | tauAuto[Nan1,Nan2] = numpy.nan |
|
349 | tauAuto[Nan1,Nan2] = numpy.nan | |
329 | tau = numpy.vstack((tauCross,tauAuto)) |
|
350 | tau = numpy.vstack((tauCross,tauAuto)) | |
330 |
|
351 | |||
331 | return tau |
|
352 | return tau | |
332 |
|
353 | |||
333 | def __calculateLag1Phase(self, data, pairs, lagTRange): |
|
354 | def __calculateLag1Phase(self, data, pairs, lagTRange): | |
334 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) |
|
355 | data1 = stats.nanmean(data[pairs,:,:], axis = 0) | |
335 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 |
|
356 | lag1 = numpy.where(lagTRange == 0)[0][0] + 1 | |
336 |
|
357 | |||
337 | phase = numpy.angle(data1[lag1,:]) |
|
358 | phase = numpy.angle(data1[lag1,:]) | |
338 |
|
359 | |||
339 | return phase |
|
360 | return phase | |
340 | #------------------- Detect Meteors ------------------------------ |
|
361 | #------------------- Detect Meteors ------------------------------ | |
341 |
|
362 | |||
342 |
def |
|
363 | def MeteorDetection(self, hei_ref = None, tauindex = 0, | |
343 | predefinedPhaseShifts = None, centerReceiverIndex = 2, |
|
364 | predefinedPhaseShifts = None, centerReceiverIndex = 2, saveAll = False, | |
344 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, |
|
365 | cohDetection = False, cohDet_timeStep = 1, cohDet_thresh = 25, | |
345 | noise_timeStep = 4, noise_multiple = 4, |
|
366 | noise_timeStep = 4, noise_multiple = 4, | |
346 | multDet_timeLimit = 1, multDet_rangeLimit = 3, |
|
367 | multDet_timeLimit = 1, multDet_rangeLimit = 3, | |
347 | phaseThresh = 20, SNRThresh = 8, |
|
368 | phaseThresh = 20, SNRThresh = 8, | |
348 | hmin = 70, hmax=110, azimuth = 0) : |
|
369 | hmin = 70, hmax=110, azimuth = 0) : | |
349 |
|
370 | |||
350 | ''' |
|
371 | ''' | |
351 | Function DetectMeteors() |
|
372 | Function DetectMeteors() | |
352 | Project developed with paper: |
|
373 | Project developed with paper: | |
353 | HOLDSWORTH ET AL. 2004 |
|
374 | HOLDSWORTH ET AL. 2004 | |
354 |
|
375 | |||
355 | Input: |
|
376 | Input: | |
356 | self.dataOut.data_pre |
|
377 | self.dataOut.data_pre | |
357 |
|
378 | |||
358 | centerReceiverIndex: From the channels, which is the center receiver |
|
379 | centerReceiverIndex: From the channels, which is the center receiver | |
359 |
|
380 | |||
360 | hei_ref: Height reference for the Beacon signal extraction |
|
381 | hei_ref: Height reference for the Beacon signal extraction | |
361 | tauindex: |
|
382 | tauindex: | |
362 | predefinedPhaseShifts: Predefined phase offset for the voltge signals |
|
383 | predefinedPhaseShifts: Predefined phase offset for the voltge signals | |
363 |
|
384 | |||
364 | cohDetection: Whether to user Coherent detection or not |
|
385 | cohDetection: Whether to user Coherent detection or not | |
365 | cohDet_timeStep: Coherent Detection calculation time step |
|
386 | cohDet_timeStep: Coherent Detection calculation time step | |
366 | cohDet_thresh: Coherent Detection phase threshold to correct phases |
|
387 | cohDet_thresh: Coherent Detection phase threshold to correct phases | |
367 |
|
388 | |||
368 | noise_timeStep: Noise calculation time step |
|
389 | noise_timeStep: Noise calculation time step | |
369 | noise_multiple: Noise multiple to define signal threshold |
|
390 | noise_multiple: Noise multiple to define signal threshold | |
370 |
|
391 | |||
371 | multDet_timeLimit: Multiple Detection Removal time limit in seconds |
|
392 | multDet_timeLimit: Multiple Detection Removal time limit in seconds | |
372 | multDet_rangeLimit: Multiple Detection Removal range limit in km |
|
393 | multDet_rangeLimit: Multiple Detection Removal range limit in km | |
373 |
|
394 | |||
374 | phaseThresh: Maximum phase difference between receiver to be consider a meteor |
|
395 | phaseThresh: Maximum phase difference between receiver to be consider a meteor | |
375 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor |
|
396 | SNRThresh: Minimum SNR threshold of the meteor signal to be consider a meteor | |
376 |
|
397 | |||
377 | hmin: Minimum Height of the meteor to use it in the further wind estimations |
|
398 | hmin: Minimum Height of the meteor to use it in the further wind estimations | |
378 | hmax: Maximum Height of the meteor to use it in the further wind estimations |
|
399 | hmax: Maximum Height of the meteor to use it in the further wind estimations | |
379 | azimuth: Azimuth angle correction |
|
400 | azimuth: Azimuth angle correction | |
380 |
|
401 | |||
381 | Affected: |
|
402 | Affected: | |
382 | self.dataOut.data_param |
|
403 | self.dataOut.data_param | |
383 |
|
404 | |||
384 | Rejection Criteria (Errors): |
|
405 | Rejection Criteria (Errors): | |
385 | 0: No error; analysis OK |
|
406 | 0: No error; analysis OK | |
386 | 1: SNR < SNR threshold |
|
407 | 1: SNR < SNR threshold | |
387 | 2: angle of arrival (AOA) ambiguously determined |
|
408 | 2: angle of arrival (AOA) ambiguously determined | |
388 | 3: AOA estimate not feasible |
|
409 | 3: AOA estimate not feasible | |
389 | 4: Large difference in AOAs obtained from different antenna baselines |
|
410 | 4: Large difference in AOAs obtained from different antenna baselines | |
390 | 5: echo at start or end of time series |
|
411 | 5: echo at start or end of time series | |
391 | 6: echo less than 5 examples long; too short for analysis |
|
412 | 6: echo less than 5 examples long; too short for analysis | |
392 | 7: echo rise exceeds 0.3s |
|
413 | 7: echo rise exceeds 0.3s | |
393 | 8: echo decay time less than twice rise time |
|
414 | 8: echo decay time less than twice rise time | |
394 | 9: large power level before echo |
|
415 | 9: large power level before echo | |
395 | 10: large power level after echo |
|
416 | 10: large power level after echo | |
396 | 11: poor fit to amplitude for estimation of decay time |
|
417 | 11: poor fit to amplitude for estimation of decay time | |
397 | 12: poor fit to CCF phase variation for estimation of radial drift velocity |
|
418 | 12: poor fit to CCF phase variation for estimation of radial drift velocity | |
398 | 13: height unresolvable echo: not valid height within 70 to 110 km |
|
419 | 13: height unresolvable echo: not valid height within 70 to 110 km | |
399 | 14: height ambiguous echo: more then one possible height within 70 to 110 km |
|
420 | 14: height ambiguous echo: more then one possible height within 70 to 110 km | |
400 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s |
|
421 | 15: radial drift velocity or projected horizontal velocity exceeds 200 m/s | |
401 | 16: oscilatory echo, indicating event most likely not an underdense echo |
|
422 | 16: oscilatory echo, indicating event most likely not an underdense echo | |
402 |
|
423 | |||
403 | 17: phase difference in meteor Reestimation |
|
424 | 17: phase difference in meteor Reestimation | |
404 |
|
425 | |||
405 | Data Storage: |
|
426 | Data Storage: | |
406 | Meteors for Wind Estimation (8): |
|
427 | Meteors for Wind Estimation (8): | |
407 | Day Hour | Range Height |
|
428 | Day Hour | Range Height | |
408 | Azimuth Zenith errorCosDir |
|
429 | Azimuth Zenith errorCosDir | |
409 | VelRad errorVelRad |
|
430 | VelRad errorVelRad | |
410 | TypeError |
|
431 | TypeError | |
411 |
|
432 | |||
412 | ''' |
|
433 | ''' | |
413 | #Get Beacon signal |
|
434 | #Get Beacon signal | |
414 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) |
|
435 | newheis = numpy.where(self.dataOut.heightList>self.dataOut.radarControllerHeaderObj.Taus[tauindex]) | |
415 |
|
436 | |||
416 | if hei_ref != None: |
|
437 | if hei_ref != None: | |
417 | newheis = numpy.where(self.dataOut.heightList>hei_ref) |
|
438 | newheis = numpy.where(self.dataOut.heightList>hei_ref) | |
418 |
|
439 | |||
419 | heiRang = self.dataOut.getHeiRange() |
|
440 | heiRang = self.dataOut.getHeiRange() | |
420 | #Pairs List |
|
441 | #Pairs List | |
421 | pairslist = [] |
|
442 | pairslist = [] | |
422 | nChannel = self.dataOut.nChannels |
|
443 | nChannel = self.dataOut.nChannels | |
423 | for i in range(nChannel): |
|
444 | for i in range(nChannel): | |
424 | if i != centerReceiverIndex: |
|
445 | if i != centerReceiverIndex: | |
425 | pairslist.append((centerReceiverIndex,i)) |
|
446 | pairslist.append((centerReceiverIndex,i)) | |
426 |
|
447 | |||
427 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** |
|
448 | #****************REMOVING HARDWARE PHASE DIFFERENCES*************** | |
428 | # see if the user put in pre defined phase shifts |
|
449 | # see if the user put in pre defined phase shifts | |
429 | voltsPShift = self.dataOut.data_pre.copy() |
|
450 | voltsPShift = self.dataOut.data_pre.copy() | |
430 |
|
451 | |||
431 | if predefinedPhaseShifts != None: |
|
452 | if predefinedPhaseShifts != None: | |
432 | hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 |
|
453 | hardwarePhaseShifts = numpy.array(predefinedPhaseShifts)*numpy.pi/180 | |
433 |
|
|
454 | ||
|
455 | elif beaconPhaseShifts: | |||
434 | #get hardware phase shifts using beacon signal |
|
456 | #get hardware phase shifts using beacon signal | |
435 | hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) |
|
457 | hardwarePhaseShifts = self.__getHardwarePhaseDiff(self.dataOut.data_pre, pairslist, newheis, 10) | |
436 | hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) |
|
458 | hardwarePhaseShifts = numpy.insert(hardwarePhaseShifts,centerReceiverIndex,0) | |
437 |
|
459 | |||
|
460 | else: | |||
|
461 | hardwarePhaseShifts = numpy.zeros(5) | |||
|
462 | ||||
|
463 | ||||
438 | voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') |
|
464 | voltsPShift = numpy.zeros((self.dataOut.data_pre.shape[0],self.dataOut.data_pre.shape[1],self.dataOut.data_pre.shape[2]), dtype = 'complex') | |
439 | for i in range(self.dataOut.data_pre.shape[0]): |
|
465 | for i in range(self.dataOut.data_pre.shape[0]): | |
440 | voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) |
|
466 | voltsPShift[i,:,:] = self.__shiftPhase(self.dataOut.data_pre[i,:,:], hardwarePhaseShifts[i]) | |
|
467 | ||||
|
468 | ||||
441 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* |
|
469 | #******************END OF REMOVING HARDWARE PHASE DIFFERENCES********* | |
442 |
|
470 | |||
443 | #Remove DC |
|
471 | #Remove DC | |
444 | voltsDC = numpy.mean(voltsPShift,1) |
|
472 | voltsDC = numpy.mean(voltsPShift,1) | |
445 | voltsDC = numpy.mean(voltsDC,1) |
|
473 | voltsDC = numpy.mean(voltsDC,1) | |
446 | for i in range(voltsDC.shape[0]): |
|
474 | for i in range(voltsDC.shape[0]): | |
447 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] |
|
475 | voltsPShift[i] = voltsPShift[i] - voltsDC[i] | |
448 |
|
476 | |||
449 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift |
|
477 | #Don't considerate last heights, theyre used to calculate Hardware Phase Shift | |
450 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] |
|
478 | voltsPShift = voltsPShift[:,:,:newheis[0][0]] | |
451 |
|
479 | |||
452 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** |
|
480 | #************ FIND POWER OF DATA W/COH OR NON COH DETECTION (3.4) ********** | |
453 | #Coherent Detection |
|
481 | #Coherent Detection | |
454 | if cohDetection: |
|
482 | if cohDetection: | |
455 | #use coherent detection to get the net power |
|
483 | #use coherent detection to get the net power | |
456 | cohDet_thresh = cohDet_thresh*numpy.pi/180 |
|
484 | cohDet_thresh = cohDet_thresh*numpy.pi/180 | |
457 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) |
|
485 | voltsPShift = self.__coherentDetection(voltsPShift, cohDet_timeStep, self.dataOut.timeInterval, pairslist, cohDet_thresh) | |
458 |
|
486 | |||
459 | #Non-coherent detection! |
|
487 | #Non-coherent detection! | |
460 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) |
|
488 | powerNet = numpy.nansum(numpy.abs(voltsPShift[:,:,:])**2,0) | |
461 | #********** END OF COH/NON-COH POWER CALCULATION********************** |
|
489 | #********** END OF COH/NON-COH POWER CALCULATION********************** | |
462 |
|
490 | |||
463 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** |
|
491 | #********** FIND THE NOISE LEVEL AND POSSIBLE METEORS **************** | |
464 | #Get noise |
|
492 | #Get noise | |
465 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
493 | noise, noise1 = self.__getNoise(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
466 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) |
|
494 | # noise = self.getNoise1(powerNet, noise_timeStep, self.dataOut.timeInterval) | |
467 | #Get signal threshold |
|
495 | #Get signal threshold | |
468 | signalThresh = noise_multiple*noise |
|
496 | signalThresh = noise_multiple*noise | |
469 | #Meteor echoes detection |
|
497 | #Meteor echoes detection | |
470 | listMeteors = self.__findMeteors(powerNet, signalThresh) |
|
498 | listMeteors = self.__findMeteors(powerNet, signalThresh) | |
471 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** |
|
499 | #******* END OF NOISE LEVEL AND POSSIBLE METEORS CACULATION ********** | |
472 |
|
500 | |||
473 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** |
|
501 | #************** REMOVE MULTIPLE DETECTIONS (3.5) *************************** | |
474 | #Parameters |
|
502 | #Parameters | |
475 | heiRange = self.dataOut.getHeiRange() |
|
503 | heiRange = self.dataOut.getHeiRange() | |
476 | rangeInterval = heiRange[1] - heiRange[0] |
|
504 | rangeInterval = heiRange[1] - heiRange[0] | |
477 | rangeLimit = multDet_rangeLimit/rangeInterval |
|
505 | rangeLimit = multDet_rangeLimit/rangeInterval | |
478 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval |
|
506 | timeLimit = multDet_timeLimit/self.dataOut.timeInterval | |
479 | #Multiple detection removals |
|
507 | #Multiple detection removals | |
480 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) |
|
508 | listMeteors1 = self.__removeMultipleDetections(listMeteors, rangeLimit, timeLimit) | |
481 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** |
|
509 | #************ END OF REMOVE MULTIPLE DETECTIONS ********************** | |
482 |
|
510 | |||
483 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** |
|
511 | #********************* METEOR REESTIMATION (3.7, 3.8, 3.9, 3.10) ******************** | |
484 | #Parameters |
|
512 | #Parameters | |
485 | phaseThresh = phaseThresh*numpy.pi/180 |
|
513 | phaseThresh = phaseThresh*numpy.pi/180 | |
486 | thresh = [phaseThresh, noise_multiple, SNRThresh] |
|
514 | thresh = [phaseThresh, noise_multiple, SNRThresh] | |
487 | #Meteor reestimation (Errors N 1, 6, 12, 17) |
|
515 | #Meteor reestimation (Errors N 1, 6, 12, 17) | |
488 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) |
|
516 | listMeteors2, listMeteorsPower, listMeteorsVolts = self.__meteorReestimation(listMeteors1, voltsPShift, pairslist, thresh, noise, self.dataOut.timeInterval, self.dataOut.frequency) | |
489 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) |
|
517 | # listMeteors2, listMeteorsPower, listMeteorsVolts = self.meteorReestimation3(listMeteors2, listMeteorsPower, listMeteorsVolts, voltsPShift, pairslist, thresh, noise) | |
490 | #Estimation of decay times (Errors N 7, 8, 11) |
|
518 | #Estimation of decay times (Errors N 7, 8, 11) | |
491 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) |
|
519 | listMeteors3 = self.__estimateDecayTime(listMeteors2, listMeteorsPower, self.dataOut.timeInterval, self.dataOut.frequency) | |
492 | #******************* END OF METEOR REESTIMATION ******************* |
|
520 | #******************* END OF METEOR REESTIMATION ******************* | |
493 |
|
521 | |||
494 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** |
|
522 | #********************* METEOR PARAMETERS CALCULATION (3.11, 3.12, 3.13) ************************** | |
495 | #Calculating Radial Velocity (Error N 15) |
|
523 | #Calculating Radial Velocity (Error N 15) | |
496 | radialStdThresh = 10 |
|
524 | radialStdThresh = 10 | |
497 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) |
|
525 | listMeteors4 = self.__getRadialVelocity(listMeteors3, listMeteorsVolts, radialStdThresh, pairslist, self.dataOut.timeInterval) | |
498 |
|
526 | |||
499 | if len(listMeteors4) > 0: |
|
527 | if len(listMeteors4) > 0: | |
500 | #Setting New Array |
|
|||
501 | date = repr(self.dataOut.datatime) |
|
|||
502 | arrayMeteors4, arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) |
|
|||
503 |
|
528 | |||
504 | #Calculate AOA (Error N 3, 4) |
|
|||
505 | #JONES ET AL. 1998 |
|
|||
506 | AOAthresh = numpy.pi/8 |
|
|||
507 | error = arrayParameters[:,-1] |
|
|||
508 | phases = -arrayMeteors4[:,9:13] |
|
|||
509 | pairsList = [] |
|
529 | pairsList = [] | |
510 |
pair |
|
530 | pairx = (0,3) | |
511 |
pair |
|
531 | pairy = (1,2) | |
512 | arrayParameters[:,4:7], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) |
|
532 | pairsList.append(pairx) | |
|
533 | pairsList.append(pairy) | |||
513 |
|
534 | |||
514 | #Calculate Heights (Error N 13 and 14) |
|
535 | #Setting New Array | |
515 | error = arrayParameters[:,-1] |
|
536 | date = repr(self.dataOut.datatime) | |
516 | Ranges = arrayParameters[:,2] |
|
537 | arrayParameters = self.__setNewArrays(listMeteors4, date, heiRang) | |
517 | zenith = arrayParameters[:,5] |
|
538 | ||
518 | arrayParameters[:,3], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) |
|
539 | meteorOps = MeteorOperations() | |
|
540 | jph = numpy.array([0,0,0,0]) | |||
|
541 | h = (hmin,hmax) | |||
|
542 | arrayParameters = meteorOps.getMeteorParams(arrayParameters, azimuth, h, pairsList, jph) | |||
|
543 | ||||
|
544 | # #Calculate AOA (Error N 3, 4) | |||
|
545 | # #JONES ET AL. 1998 | |||
|
546 | # error = arrayParameters[:,-1] | |||
|
547 | # AOAthresh = numpy.pi/8 | |||
|
548 | # phases = -arrayParameters[:,9:13] | |||
|
549 | # arrayParameters[:,4:7], arrayParameters[:,-1] = meteorOps.getAOA(phases, pairsList, error, AOAthresh, azimuth) | |||
|
550 | # | |||
|
551 | # #Calculate Heights (Error N 13 and 14) | |||
|
552 | # error = arrayParameters[:,-1] | |||
|
553 | # Ranges = arrayParameters[:,2] | |||
|
554 | # zenith = arrayParameters[:,5] | |||
|
555 | # arrayParameters[:,3], arrayParameters[:,-1] = meteorOps.getHeights(Ranges, zenith, error, hmin, hmax) | |||
|
556 | # error = arrayParameters[:,-1] | |||
519 | #********************* END OF PARAMETERS CALCULATION ************************** |
|
557 | #********************* END OF PARAMETERS CALCULATION ************************** | |
520 |
|
558 | |||
521 |
#***************************+ |
|
559 | #***************************+ PASS DATA TO NEXT STEP ********************** | |
522 | self.dataOut.data_param = arrayParameters |
|
560 | arrayFinal = arrayParameters.reshape((1,arrayParameters.shape[0],arrayParameters.shape[1])) | |
|
561 | self.dataOut.data_param = arrayFinal | |||
523 |
|
562 | |||
524 | return |
|
563 | return | |
525 |
|
564 | |||
526 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): |
|
565 | def __getHardwarePhaseDiff(self, voltage0, pairslist, newheis, n): | |
527 |
|
566 | |||
528 | minIndex = min(newheis[0]) |
|
567 | minIndex = min(newheis[0]) | |
529 | maxIndex = max(newheis[0]) |
|
568 | maxIndex = max(newheis[0]) | |
530 |
|
569 | |||
531 | voltage = voltage0[:,:,minIndex:maxIndex+1] |
|
570 | voltage = voltage0[:,:,minIndex:maxIndex+1] | |
532 | nLength = voltage.shape[1]/n |
|
571 | nLength = voltage.shape[1]/n | |
533 | nMin = 0 |
|
572 | nMin = 0 | |
534 | nMax = 0 |
|
573 | nMax = 0 | |
535 | phaseOffset = numpy.zeros((len(pairslist),n)) |
|
574 | phaseOffset = numpy.zeros((len(pairslist),n)) | |
536 |
|
575 | |||
537 | for i in range(n): |
|
576 | for i in range(n): | |
538 | nMax += nLength |
|
577 | nMax += nLength | |
539 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) |
|
578 | phaseCCF = -numpy.angle(self.__calculateCCF(voltage[:,nMin:nMax,:], pairslist, [0])) | |
540 | phaseCCF = numpy.mean(phaseCCF, axis = 2) |
|
579 | phaseCCF = numpy.mean(phaseCCF, axis = 2) | |
541 | phaseOffset[:,i] = phaseCCF.transpose() |
|
580 | phaseOffset[:,i] = phaseCCF.transpose() | |
542 | nMin = nMax |
|
581 | nMin = nMax | |
543 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) |
|
582 | # phaseDiff, phaseArrival = self.estimatePhaseDifference(voltage, pairslist) | |
544 |
|
583 | |||
545 | #Remove Outliers |
|
584 | #Remove Outliers | |
546 | factor = 2 |
|
585 | factor = 2 | |
547 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) |
|
586 | wt = phaseOffset - signal.medfilt(phaseOffset,(1,5)) | |
548 | dw = numpy.std(wt,axis = 1) |
|
587 | dw = numpy.std(wt,axis = 1) | |
549 | dw = dw.reshape((dw.size,1)) |
|
588 | dw = dw.reshape((dw.size,1)) | |
550 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) |
|
589 | ind = numpy.where(numpy.logical_or(wt>dw*factor,wt<-dw*factor)) | |
551 | phaseOffset[ind] = numpy.nan |
|
590 | phaseOffset[ind] = numpy.nan | |
552 | phaseOffset = stats.nanmean(phaseOffset, axis=1) |
|
591 | phaseOffset = stats.nanmean(phaseOffset, axis=1) | |
553 |
|
592 | |||
554 | return phaseOffset |
|
593 | return phaseOffset | |
555 |
|
594 | |||
556 | def __shiftPhase(self, data, phaseShift): |
|
595 | def __shiftPhase(self, data, phaseShift): | |
557 | #this will shift the phase of a complex number |
|
596 | #this will shift the phase of a complex number | |
558 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) |
|
597 | dataShifted = numpy.abs(data) * numpy.exp((numpy.angle(data)+phaseShift)*1j) | |
559 | return dataShifted |
|
598 | return dataShifted | |
560 |
|
599 | |||
561 | def __estimatePhaseDifference(self, array, pairslist): |
|
600 | def __estimatePhaseDifference(self, array, pairslist): | |
562 | nChannel = array.shape[0] |
|
601 | nChannel = array.shape[0] | |
563 | nHeights = array.shape[2] |
|
602 | nHeights = array.shape[2] | |
564 | numPairs = len(pairslist) |
|
603 | numPairs = len(pairslist) | |
565 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) |
|
604 | # phaseCCF = numpy.zeros((nChannel, 5, nHeights)) | |
566 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) |
|
605 | phaseCCF = numpy.angle(self.__calculateCCF(array, pairslist, [-2,-1,0,1,2])) | |
567 |
|
606 | |||
568 | #Correct phases |
|
607 | #Correct phases | |
569 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] |
|
608 | derPhaseCCF = phaseCCF[:,1:,:] - phaseCCF[:,0:-1,:] | |
570 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
609 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
571 |
|
610 | |||
572 | if indDer[0].shape[0] > 0: |
|
611 | if indDer[0].shape[0] > 0: | |
573 | for i in range(indDer[0].shape[0]): |
|
612 | for i in range(indDer[0].shape[0]): | |
574 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) |
|
613 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i],indDer[2][i]]) | |
575 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi |
|
614 | phaseCCF[indDer[0][i],indDer[1][i]+1:,:] += signo*2*numpy.pi | |
576 |
|
615 | |||
577 | # for j in range(numSides): |
|
616 | # for j in range(numSides): | |
578 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) |
|
617 | # phaseCCFAux = self.calculateCCF(arrayCenter, arraySides[j,:,:], [-2,1,0,1,2]) | |
579 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) |
|
618 | # phaseCCF[j,:,:] = numpy.angle(phaseCCFAux) | |
580 | # |
|
619 | # | |
581 | #Linear |
|
620 | #Linear | |
582 | phaseInt = numpy.zeros((numPairs,1)) |
|
621 | phaseInt = numpy.zeros((numPairs,1)) | |
583 | angAllCCF = phaseCCF[:,[0,1,3,4],0] |
|
622 | angAllCCF = phaseCCF[:,[0,1,3,4],0] | |
584 | for j in range(numPairs): |
|
623 | for j in range(numPairs): | |
585 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) |
|
624 | fit = stats.linregress([-2,-1,1,2],angAllCCF[j,:]) | |
586 | phaseInt[j] = fit[1] |
|
625 | phaseInt[j] = fit[1] | |
587 | #Phase Differences |
|
626 | #Phase Differences | |
588 | phaseDiff = phaseInt - phaseCCF[:,2,:] |
|
627 | phaseDiff = phaseInt - phaseCCF[:,2,:] | |
589 | phaseArrival = phaseInt.reshape(phaseInt.size) |
|
628 | phaseArrival = phaseInt.reshape(phaseInt.size) | |
590 |
|
629 | |||
591 | #Dealias |
|
630 | #Dealias | |
592 | indAlias = numpy.where(phaseArrival > numpy.pi) |
|
631 | indAlias = numpy.where(phaseArrival > numpy.pi) | |
593 | phaseArrival[indAlias] -= 2*numpy.pi |
|
632 | phaseArrival[indAlias] -= 2*numpy.pi | |
594 | indAlias = numpy.where(phaseArrival < -numpy.pi) |
|
633 | indAlias = numpy.where(phaseArrival < -numpy.pi) | |
595 | phaseArrival[indAlias] += 2*numpy.pi |
|
634 | phaseArrival[indAlias] += 2*numpy.pi | |
596 |
|
635 | |||
597 | return phaseDiff, phaseArrival |
|
636 | return phaseDiff, phaseArrival | |
598 |
|
637 | |||
599 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): |
|
638 | def __coherentDetection(self, volts, timeSegment, timeInterval, pairslist, thresh): | |
600 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power |
|
639 | #this function will run the coherent detection used in Holdworth et al. 2004 and return the net power | |
601 | #find the phase shifts of each channel over 1 second intervals |
|
640 | #find the phase shifts of each channel over 1 second intervals | |
602 | #only look at ranges below the beacon signal |
|
641 | #only look at ranges below the beacon signal | |
603 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
642 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
604 | numBlocks = int(volts.shape[1]/numProfPerBlock) |
|
643 | numBlocks = int(volts.shape[1]/numProfPerBlock) | |
605 | numHeights = volts.shape[2] |
|
644 | numHeights = volts.shape[2] | |
606 | nChannel = volts.shape[0] |
|
645 | nChannel = volts.shape[0] | |
607 | voltsCohDet = volts.copy() |
|
646 | voltsCohDet = volts.copy() | |
608 |
|
647 | |||
609 | pairsarray = numpy.array(pairslist) |
|
648 | pairsarray = numpy.array(pairslist) | |
610 | indSides = pairsarray[:,1] |
|
649 | indSides = pairsarray[:,1] | |
611 | # indSides = numpy.array(range(nChannel)) |
|
650 | # indSides = numpy.array(range(nChannel)) | |
612 | # indSides = numpy.delete(indSides, indCenter) |
|
651 | # indSides = numpy.delete(indSides, indCenter) | |
613 | # |
|
652 | # | |
614 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) |
|
653 | # listCenter = numpy.array_split(volts[indCenter,:,:], numBlocks, 0) | |
615 | listBlocks = numpy.array_split(volts, numBlocks, 1) |
|
654 | listBlocks = numpy.array_split(volts, numBlocks, 1) | |
616 |
|
655 | |||
617 | startInd = 0 |
|
656 | startInd = 0 | |
618 | endInd = 0 |
|
657 | endInd = 0 | |
619 |
|
658 | |||
620 | for i in range(numBlocks): |
|
659 | for i in range(numBlocks): | |
621 | startInd = endInd |
|
660 | startInd = endInd | |
622 | endInd = endInd + listBlocks[i].shape[1] |
|
661 | endInd = endInd + listBlocks[i].shape[1] | |
623 |
|
662 | |||
624 | arrayBlock = listBlocks[i] |
|
663 | arrayBlock = listBlocks[i] | |
625 | # arrayBlockCenter = listCenter[i] |
|
664 | # arrayBlockCenter = listCenter[i] | |
626 |
|
665 | |||
627 | #Estimate the Phase Difference |
|
666 | #Estimate the Phase Difference | |
628 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) |
|
667 | phaseDiff, aux = self.__estimatePhaseDifference(arrayBlock, pairslist) | |
629 | #Phase Difference RMS |
|
668 | #Phase Difference RMS | |
630 | arrayPhaseRMS = numpy.abs(phaseDiff) |
|
669 | arrayPhaseRMS = numpy.abs(phaseDiff) | |
631 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) |
|
670 | phaseRMSaux = numpy.sum(arrayPhaseRMS < thresh,0) | |
632 | indPhase = numpy.where(phaseRMSaux==4) |
|
671 | indPhase = numpy.where(phaseRMSaux==4) | |
633 | #Shifting |
|
672 | #Shifting | |
634 | if indPhase[0].shape[0] > 0: |
|
673 | if indPhase[0].shape[0] > 0: | |
635 | for j in range(indSides.size): |
|
674 | for j in range(indSides.size): | |
636 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) |
|
675 | arrayBlock[indSides[j],:,indPhase] = self.__shiftPhase(arrayBlock[indSides[j],:,indPhase], phaseDiff[j,indPhase].transpose()) | |
637 | voltsCohDet[:,startInd:endInd,:] = arrayBlock |
|
676 | voltsCohDet[:,startInd:endInd,:] = arrayBlock | |
638 |
|
677 | |||
639 | return voltsCohDet |
|
678 | return voltsCohDet | |
640 |
|
679 | |||
641 | def __calculateCCF(self, volts, pairslist ,laglist): |
|
680 | def __calculateCCF(self, volts, pairslist ,laglist): | |
642 |
|
681 | |||
643 | nHeights = volts.shape[2] |
|
682 | nHeights = volts.shape[2] | |
644 | nPoints = volts.shape[1] |
|
683 | nPoints = volts.shape[1] | |
645 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') |
|
684 | voltsCCF = numpy.zeros((len(pairslist), len(laglist), nHeights),dtype = 'complex') | |
646 |
|
685 | |||
647 | for i in range(len(pairslist)): |
|
686 | for i in range(len(pairslist)): | |
648 | volts1 = volts[pairslist[i][0]] |
|
687 | volts1 = volts[pairslist[i][0]] | |
649 | volts2 = volts[pairslist[i][1]] |
|
688 | volts2 = volts[pairslist[i][1]] | |
650 |
|
689 | |||
651 | for t in range(len(laglist)): |
|
690 | for t in range(len(laglist)): | |
652 | idxT = laglist[t] |
|
691 | idxT = laglist[t] | |
653 | if idxT >= 0: |
|
692 | if idxT >= 0: | |
654 | vStacked = numpy.vstack((volts2[idxT:,:], |
|
693 | vStacked = numpy.vstack((volts2[idxT:,:], | |
655 | numpy.zeros((idxT, nHeights),dtype='complex'))) |
|
694 | numpy.zeros((idxT, nHeights),dtype='complex'))) | |
656 | else: |
|
695 | else: | |
657 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), |
|
696 | vStacked = numpy.vstack((numpy.zeros((-idxT, nHeights),dtype='complex'), | |
658 | volts2[:(nPoints + idxT),:])) |
|
697 | volts2[:(nPoints + idxT),:])) | |
659 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) |
|
698 | voltsCCF[i,t,:] = numpy.sum((numpy.conjugate(volts1)*vStacked),axis=0) | |
660 |
|
699 | |||
661 | vStacked = None |
|
700 | vStacked = None | |
662 | return voltsCCF |
|
701 | return voltsCCF | |
663 |
|
702 | |||
664 | def __getNoise(self, power, timeSegment, timeInterval): |
|
703 | def __getNoise(self, power, timeSegment, timeInterval): | |
665 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) |
|
704 | numProfPerBlock = numpy.ceil(timeSegment/timeInterval) | |
666 | numBlocks = int(power.shape[0]/numProfPerBlock) |
|
705 | numBlocks = int(power.shape[0]/numProfPerBlock) | |
667 | numHeights = power.shape[1] |
|
706 | numHeights = power.shape[1] | |
668 |
|
707 | |||
669 | listPower = numpy.array_split(power, numBlocks, 0) |
|
708 | listPower = numpy.array_split(power, numBlocks, 0) | |
670 | noise = numpy.zeros((power.shape[0], power.shape[1])) |
|
709 | noise = numpy.zeros((power.shape[0], power.shape[1])) | |
671 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) |
|
710 | noise1 = numpy.zeros((power.shape[0], power.shape[1])) | |
672 |
|
711 | |||
673 | startInd = 0 |
|
712 | startInd = 0 | |
674 | endInd = 0 |
|
713 | endInd = 0 | |
675 |
|
714 | |||
676 | for i in range(numBlocks): #split por canal |
|
715 | for i in range(numBlocks): #split por canal | |
677 | startInd = endInd |
|
716 | startInd = endInd | |
678 | endInd = endInd + listPower[i].shape[0] |
|
717 | endInd = endInd + listPower[i].shape[0] | |
679 |
|
718 | |||
680 | arrayBlock = listPower[i] |
|
719 | arrayBlock = listPower[i] | |
681 | noiseAux = numpy.mean(arrayBlock, 0) |
|
720 | noiseAux = numpy.mean(arrayBlock, 0) | |
682 | # noiseAux = numpy.median(noiseAux) |
|
721 | # noiseAux = numpy.median(noiseAux) | |
683 | # noiseAux = numpy.mean(arrayBlock) |
|
722 | # noiseAux = numpy.mean(arrayBlock) | |
684 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux |
|
723 | noise[startInd:endInd,:] = noise[startInd:endInd,:] + noiseAux | |
685 |
|
724 | |||
686 | noiseAux1 = numpy.mean(arrayBlock) |
|
725 | noiseAux1 = numpy.mean(arrayBlock) | |
687 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 |
|
726 | noise1[startInd:endInd,:] = noise1[startInd:endInd,:] + noiseAux1 | |
688 |
|
727 | |||
689 | return noise, noise1 |
|
728 | return noise, noise1 | |
690 |
|
729 | |||
691 | def __findMeteors(self, power, thresh): |
|
730 | def __findMeteors(self, power, thresh): | |
692 | nProf = power.shape[0] |
|
731 | nProf = power.shape[0] | |
693 | nHeights = power.shape[1] |
|
732 | nHeights = power.shape[1] | |
694 | listMeteors = [] |
|
733 | listMeteors = [] | |
695 |
|
734 | |||
696 | for i in range(nHeights): |
|
735 | for i in range(nHeights): | |
697 | powerAux = power[:,i] |
|
736 | powerAux = power[:,i] | |
698 | threshAux = thresh[:,i] |
|
737 | threshAux = thresh[:,i] | |
699 |
|
738 | |||
700 | indUPthresh = numpy.where(powerAux > threshAux)[0] |
|
739 | indUPthresh = numpy.where(powerAux > threshAux)[0] | |
701 | indDNthresh = numpy.where(powerAux <= threshAux)[0] |
|
740 | indDNthresh = numpy.where(powerAux <= threshAux)[0] | |
702 |
|
741 | |||
703 | j = 0 |
|
742 | j = 0 | |
704 |
|
743 | |||
705 | while (j < indUPthresh.size - 2): |
|
744 | while (j < indUPthresh.size - 2): | |
706 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): |
|
745 | if (indUPthresh[j + 2] == indUPthresh[j] + 2): | |
707 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) |
|
746 | indDNAux = numpy.where(indDNthresh > indUPthresh[j]) | |
708 | indDNthresh = indDNthresh[indDNAux] |
|
747 | indDNthresh = indDNthresh[indDNAux] | |
709 |
|
748 | |||
710 | if (indDNthresh.size > 0): |
|
749 | if (indDNthresh.size > 0): | |
711 | indEnd = indDNthresh[0] - 1 |
|
750 | indEnd = indDNthresh[0] - 1 | |
712 | indInit = indUPthresh[j] |
|
751 | indInit = indUPthresh[j] | |
713 |
|
752 | |||
714 | meteor = powerAux[indInit:indEnd + 1] |
|
753 | meteor = powerAux[indInit:indEnd + 1] | |
715 | indPeak = meteor.argmax() + indInit |
|
754 | indPeak = meteor.argmax() + indInit | |
716 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) |
|
755 | FLA = sum(numpy.conj(meteor)*numpy.hstack((meteor[1:],0))) | |
717 |
|
756 | |||
718 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! |
|
757 | listMeteors.append(numpy.array([i,indInit,indPeak,indEnd,FLA])) #CHEQUEAR!!!!! | |
719 | j = numpy.where(indUPthresh == indEnd)[0] + 1 |
|
758 | j = numpy.where(indUPthresh == indEnd)[0] + 1 | |
720 | else: j+=1 |
|
759 | else: j+=1 | |
721 | else: j+=1 |
|
760 | else: j+=1 | |
722 |
|
761 | |||
723 | return listMeteors |
|
762 | return listMeteors | |
724 |
|
763 | |||
725 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): |
|
764 | def __removeMultipleDetections(self,listMeteors, rangeLimit, timeLimit): | |
726 |
|
765 | |||
727 | arrayMeteors = numpy.asarray(listMeteors) |
|
766 | arrayMeteors = numpy.asarray(listMeteors) | |
728 | listMeteors1 = [] |
|
767 | listMeteors1 = [] | |
729 |
|
768 | |||
730 | while arrayMeteors.shape[0] > 0: |
|
769 | while arrayMeteors.shape[0] > 0: | |
731 | FLAs = arrayMeteors[:,4] |
|
770 | FLAs = arrayMeteors[:,4] | |
732 | maxFLA = FLAs.argmax() |
|
771 | maxFLA = FLAs.argmax() | |
733 | listMeteors1.append(arrayMeteors[maxFLA,:]) |
|
772 | listMeteors1.append(arrayMeteors[maxFLA,:]) | |
734 |
|
773 | |||
735 | MeteorInitTime = arrayMeteors[maxFLA,1] |
|
774 | MeteorInitTime = arrayMeteors[maxFLA,1] | |
736 | MeteorEndTime = arrayMeteors[maxFLA,3] |
|
775 | MeteorEndTime = arrayMeteors[maxFLA,3] | |
737 | MeteorHeight = arrayMeteors[maxFLA,0] |
|
776 | MeteorHeight = arrayMeteors[maxFLA,0] | |
738 |
|
777 | |||
739 | #Check neighborhood |
|
778 | #Check neighborhood | |
740 | maxHeightIndex = MeteorHeight + rangeLimit |
|
779 | maxHeightIndex = MeteorHeight + rangeLimit | |
741 | minHeightIndex = MeteorHeight - rangeLimit |
|
780 | minHeightIndex = MeteorHeight - rangeLimit | |
742 | minTimeIndex = MeteorInitTime - timeLimit |
|
781 | minTimeIndex = MeteorInitTime - timeLimit | |
743 | maxTimeIndex = MeteorEndTime + timeLimit |
|
782 | maxTimeIndex = MeteorEndTime + timeLimit | |
744 |
|
783 | |||
745 | #Check Heights |
|
784 | #Check Heights | |
746 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) |
|
785 | indHeight = numpy.logical_and(arrayMeteors[:,0] >= minHeightIndex, arrayMeteors[:,0] <= maxHeightIndex) | |
747 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) |
|
786 | indTime = numpy.logical_and(arrayMeteors[:,3] >= minTimeIndex, arrayMeteors[:,1] <= maxTimeIndex) | |
748 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) |
|
787 | indBoth = numpy.where(numpy.logical_and(indTime,indHeight)) | |
749 |
|
788 | |||
750 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) |
|
789 | arrayMeteors = numpy.delete(arrayMeteors, indBoth, axis = 0) | |
751 |
|
790 | |||
752 | return listMeteors1 |
|
791 | return listMeteors1 | |
753 |
|
792 | |||
754 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): |
|
793 | def __meteorReestimation(self, listMeteors, volts, pairslist, thresh, noise, timeInterval,frequency): | |
755 | numHeights = volts.shape[2] |
|
794 | numHeights = volts.shape[2] | |
756 | nChannel = volts.shape[0] |
|
795 | nChannel = volts.shape[0] | |
757 |
|
796 | |||
758 | thresholdPhase = thresh[0] |
|
797 | thresholdPhase = thresh[0] | |
759 | thresholdNoise = thresh[1] |
|
798 | thresholdNoise = thresh[1] | |
760 | thresholdDB = float(thresh[2]) |
|
799 | thresholdDB = float(thresh[2]) | |
761 |
|
800 | |||
762 | thresholdDB1 = 10**(thresholdDB/10) |
|
801 | thresholdDB1 = 10**(thresholdDB/10) | |
763 | pairsarray = numpy.array(pairslist) |
|
802 | pairsarray = numpy.array(pairslist) | |
764 | indSides = pairsarray[:,1] |
|
803 | indSides = pairsarray[:,1] | |
765 |
|
804 | |||
766 | pairslist1 = list(pairslist) |
|
805 | pairslist1 = list(pairslist) | |
767 | pairslist1.append((0,1)) |
|
806 | pairslist1.append((0,1)) | |
768 | pairslist1.append((3,4)) |
|
807 | pairslist1.append((3,4)) | |
769 |
|
808 | |||
770 | listMeteors1 = [] |
|
809 | listMeteors1 = [] | |
771 | listPowerSeries = [] |
|
810 | listPowerSeries = [] | |
772 | listVoltageSeries = [] |
|
811 | listVoltageSeries = [] | |
773 | #volts has the war data |
|
812 | #volts has the war data | |
774 |
|
813 | |||
775 | if frequency == 30e6: |
|
814 | if frequency == 30e6: | |
776 | timeLag = 45*10**-3 |
|
815 | timeLag = 45*10**-3 | |
777 | else: |
|
816 | else: | |
778 | timeLag = 15*10**-3 |
|
817 | timeLag = 15*10**-3 | |
779 | lag = numpy.ceil(timeLag/timeInterval) |
|
818 | lag = numpy.ceil(timeLag/timeInterval) | |
780 |
|
819 | |||
781 | for i in range(len(listMeteors)): |
|
820 | for i in range(len(listMeteors)): | |
782 |
|
821 | |||
783 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### |
|
822 | ###################### 3.6 - 3.7 PARAMETERS REESTIMATION ######################### | |
784 | meteorAux = numpy.zeros(16) |
|
823 | meteorAux = numpy.zeros(16) | |
785 |
|
824 | |||
786 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) |
|
825 | #Loading meteor Data (mHeight, mStart, mPeak, mEnd) | |
787 | mHeight = listMeteors[i][0] |
|
826 | mHeight = listMeteors[i][0] | |
788 | mStart = listMeteors[i][1] |
|
827 | mStart = listMeteors[i][1] | |
789 | mPeak = listMeteors[i][2] |
|
828 | mPeak = listMeteors[i][2] | |
790 | mEnd = listMeteors[i][3] |
|
829 | mEnd = listMeteors[i][3] | |
791 |
|
830 | |||
792 | #get the volt data between the start and end times of the meteor |
|
831 | #get the volt data between the start and end times of the meteor | |
793 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] |
|
832 | meteorVolts = volts[:,mStart:mEnd+1,mHeight] | |
794 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
833 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
795 |
|
834 | |||
796 | #3.6. Phase Difference estimation |
|
835 | #3.6. Phase Difference estimation | |
797 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) |
|
836 | phaseDiff, aux = self.__estimatePhaseDifference(meteorVolts, pairslist) | |
798 |
|
837 | |||
799 | #3.7. Phase difference removal & meteor start, peak and end times reestimated |
|
838 | #3.7. Phase difference removal & meteor start, peak and end times reestimated | |
800 | #meteorVolts0.- all Channels, all Profiles |
|
839 | #meteorVolts0.- all Channels, all Profiles | |
801 | meteorVolts0 = volts[:,:,mHeight] |
|
840 | meteorVolts0 = volts[:,:,mHeight] | |
802 | meteorThresh = noise[:,mHeight]*thresholdNoise |
|
841 | meteorThresh = noise[:,mHeight]*thresholdNoise | |
803 | meteorNoise = noise[:,mHeight] |
|
842 | meteorNoise = noise[:,mHeight] | |
804 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting |
|
843 | meteorVolts0[indSides,:] = self.__shiftPhase(meteorVolts0[indSides,:], phaseDiff) #Phase Shifting | |
805 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power |
|
844 | powerNet0 = numpy.nansum(numpy.abs(meteorVolts0)**2, axis = 0) #Power | |
806 |
|
845 | |||
807 | #Times reestimation |
|
846 | #Times reestimation | |
808 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] |
|
847 | mStart1 = numpy.where(powerNet0[:mPeak] < meteorThresh[:mPeak])[0] | |
809 | if mStart1.size > 0: |
|
848 | if mStart1.size > 0: | |
810 | mStart1 = mStart1[-1] + 1 |
|
849 | mStart1 = mStart1[-1] + 1 | |
811 |
|
850 | |||
812 | else: |
|
851 | else: | |
813 | mStart1 = mPeak |
|
852 | mStart1 = mPeak | |
814 |
|
853 | |||
815 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 |
|
854 | mEnd1 = numpy.where(powerNet0[mPeak:] < meteorThresh[mPeak:])[0][0] + mPeak - 1 | |
816 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] |
|
855 | mEndDecayTime1 = numpy.where(powerNet0[mPeak:] < meteorNoise[mPeak:])[0] | |
817 | if mEndDecayTime1.size == 0: |
|
856 | if mEndDecayTime1.size == 0: | |
818 | mEndDecayTime1 = powerNet0.size |
|
857 | mEndDecayTime1 = powerNet0.size | |
819 | else: |
|
858 | else: | |
820 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 |
|
859 | mEndDecayTime1 = mEndDecayTime1[0] + mPeak - 1 | |
821 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() |
|
860 | # mPeak1 = meteorVolts0[mStart1:mEnd1 + 1].argmax() | |
822 |
|
861 | |||
823 | #meteorVolts1.- all Channels, from start to end |
|
862 | #meteorVolts1.- all Channels, from start to end | |
824 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] |
|
863 | meteorVolts1 = meteorVolts0[:,mStart1:mEnd1 + 1] | |
825 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] |
|
864 | meteorVolts2 = meteorVolts0[:,mPeak + lag:mEnd1 + 1] | |
826 | if meteorVolts2.shape[1] == 0: |
|
865 | if meteorVolts2.shape[1] == 0: | |
827 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] |
|
866 | meteorVolts2 = meteorVolts0[:,mPeak:mEnd1 + 1] | |
828 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) |
|
867 | meteorVolts1 = meteorVolts1.reshape(meteorVolts1.shape[0], meteorVolts1.shape[1], 1) | |
829 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) |
|
868 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1], 1) | |
830 | ##################### END PARAMETERS REESTIMATION ######################### |
|
869 | ##################### END PARAMETERS REESTIMATION ######################### | |
831 |
|
870 | |||
832 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## |
|
871 | ##################### 3.8 PHASE DIFFERENCE REESTIMATION ######################## | |
833 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis |
|
872 | # if mEnd1 - mStart1 > 4: #Error Number 6: echo less than 5 samples long; too short for analysis | |
834 | if meteorVolts2.shape[1] > 0: |
|
873 | if meteorVolts2.shape[1] > 0: | |
835 | #Phase Difference re-estimation |
|
874 | #Phase Difference re-estimation | |
836 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation |
|
875 | phaseDiff1, phaseDiffint = self.__estimatePhaseDifference(meteorVolts2, pairslist1) #Phase Difference Estimation | |
837 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) |
|
876 | # phaseDiff1, phaseDiffint = self.estimatePhaseDifference(meteorVolts2, pairslist) | |
838 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) |
|
877 | meteorVolts2 = meteorVolts2.reshape(meteorVolts2.shape[0], meteorVolts2.shape[1]) | |
839 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) |
|
878 | phaseDiff11 = numpy.reshape(phaseDiff1, (phaseDiff1.shape[0],1)) | |
840 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting |
|
879 | meteorVolts2[indSides,:] = self.__shiftPhase(meteorVolts2[indSides,:], phaseDiff11[0:4]) #Phase Shifting | |
841 |
|
880 | |||
842 | #Phase Difference RMS |
|
881 | #Phase Difference RMS | |
843 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) |
|
882 | phaseRMS1 = numpy.sqrt(numpy.mean(numpy.square(phaseDiff1))) | |
844 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) |
|
883 | powerNet1 = numpy.nansum(numpy.abs(meteorVolts1[:,:])**2,0) | |
845 | #Data from Meteor |
|
884 | #Data from Meteor | |
846 | mPeak1 = powerNet1.argmax() + mStart1 |
|
885 | mPeak1 = powerNet1.argmax() + mStart1 | |
847 | mPeakPower1 = powerNet1.max() |
|
886 | mPeakPower1 = powerNet1.max() | |
848 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) |
|
887 | noiseAux = sum(noise[mStart1:mEnd1 + 1,mHeight]) | |
849 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux |
|
888 | mSNR1 = (sum(powerNet1)-noiseAux)/noiseAux | |
850 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) |
|
889 | Meteor1 = numpy.array([mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1]) | |
851 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) |
|
890 | Meteor1 = numpy.hstack((Meteor1,phaseDiffint)) | |
852 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] |
|
891 | PowerSeries = powerNet0[mStart1:mEndDecayTime1 + 1] | |
853 | #Vectorize |
|
892 | #Vectorize | |
854 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] |
|
893 | meteorAux[0:7] = [mHeight, mStart1, mPeak1, mEnd1, mPeakPower1, mSNR1, phaseRMS1] | |
855 | meteorAux[7:11] = phaseDiffint[0:4] |
|
894 | meteorAux[7:11] = phaseDiffint[0:4] | |
856 |
|
895 | |||
857 | #Rejection Criterions |
|
896 | #Rejection Criterions | |
858 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation |
|
897 | if phaseRMS1 > thresholdPhase: #Error Number 17: Phase variation | |
859 | meteorAux[-1] = 17 |
|
898 | meteorAux[-1] = 17 | |
860 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB |
|
899 | elif mSNR1 < thresholdDB1: #Error Number 1: SNR < threshold dB | |
861 | meteorAux[-1] = 1 |
|
900 | meteorAux[-1] = 1 | |
862 |
|
901 | |||
863 |
|
902 | |||
864 | else: |
|
903 | else: | |
865 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] |
|
904 | meteorAux[0:4] = [mHeight, mStart, mPeak, mEnd] | |
866 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis |
|
905 | meteorAux[-1] = 6 #Error Number 6: echo less than 5 samples long; too short for analysis | |
867 | PowerSeries = 0 |
|
906 | PowerSeries = 0 | |
868 |
|
907 | |||
869 | listMeteors1.append(meteorAux) |
|
908 | listMeteors1.append(meteorAux) | |
870 | listPowerSeries.append(PowerSeries) |
|
909 | listPowerSeries.append(PowerSeries) | |
871 | listVoltageSeries.append(meteorVolts1) |
|
910 | listVoltageSeries.append(meteorVolts1) | |
872 |
|
911 | |||
873 | return listMeteors1, listPowerSeries, listVoltageSeries |
|
912 | return listMeteors1, listPowerSeries, listVoltageSeries | |
874 |
|
913 | |||
875 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): |
|
914 | def __estimateDecayTime(self, listMeteors, listPower, timeInterval, frequency): | |
876 |
|
915 | |||
877 | threshError = 10 |
|
916 | threshError = 10 | |
878 | #Depending if it is 30 or 50 MHz |
|
917 | #Depending if it is 30 or 50 MHz | |
879 | if frequency == 30e6: |
|
918 | if frequency == 30e6: | |
880 | timeLag = 45*10**-3 |
|
919 | timeLag = 45*10**-3 | |
881 | else: |
|
920 | else: | |
882 | timeLag = 15*10**-3 |
|
921 | timeLag = 15*10**-3 | |
883 | lag = numpy.ceil(timeLag/timeInterval) |
|
922 | lag = numpy.ceil(timeLag/timeInterval) | |
884 |
|
923 | |||
885 | listMeteors1 = [] |
|
924 | listMeteors1 = [] | |
886 |
|
925 | |||
887 | for i in range(len(listMeteors)): |
|
926 | for i in range(len(listMeteors)): | |
888 | meteorPower = listPower[i] |
|
927 | meteorPower = listPower[i] | |
889 | meteorAux = listMeteors[i] |
|
928 | meteorAux = listMeteors[i] | |
890 |
|
929 | |||
891 | if meteorAux[-1] == 0: |
|
930 | if meteorAux[-1] == 0: | |
892 |
|
931 | |||
893 | try: |
|
932 | try: | |
894 | indmax = meteorPower.argmax() |
|
933 | indmax = meteorPower.argmax() | |
895 | indlag = indmax + lag |
|
934 | indlag = indmax + lag | |
896 |
|
935 | |||
897 | y = meteorPower[indlag:] |
|
936 | y = meteorPower[indlag:] | |
898 | x = numpy.arange(0, y.size)*timeLag |
|
937 | x = numpy.arange(0, y.size)*timeLag | |
899 |
|
938 | |||
900 | #first guess |
|
939 | #first guess | |
901 | a = y[0] |
|
940 | a = y[0] | |
902 | tau = timeLag |
|
941 | tau = timeLag | |
903 | #exponential fit |
|
942 | #exponential fit | |
904 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) |
|
943 | popt, pcov = optimize.curve_fit(self.__exponential_function, x, y, p0 = [a, tau]) | |
905 | y1 = self.__exponential_function(x, *popt) |
|
944 | y1 = self.__exponential_function(x, *popt) | |
906 | #error estimation |
|
945 | #error estimation | |
907 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) |
|
946 | error = sum((y - y1)**2)/(numpy.var(y)*(y.size - popt.size)) | |
908 |
|
947 | |||
909 | decayTime = popt[1] |
|
948 | decayTime = popt[1] | |
910 | riseTime = indmax*timeInterval |
|
949 | riseTime = indmax*timeInterval | |
911 | meteorAux[11:13] = [decayTime, error] |
|
950 | meteorAux[11:13] = [decayTime, error] | |
912 |
|
951 | |||
913 | #Table items 7, 8 and 11 |
|
952 | #Table items 7, 8 and 11 | |
914 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s |
|
953 | if (riseTime > 0.3): #Number 7: Echo rise exceeds 0.3s | |
915 | meteorAux[-1] = 7 |
|
954 | meteorAux[-1] = 7 | |
916 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time |
|
955 | elif (decayTime < 2*riseTime) : #Number 8: Echo decay time less than than twice rise time | |
917 | meteorAux[-1] = 8 |
|
956 | meteorAux[-1] = 8 | |
918 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time |
|
957 | if (error > threshError): #Number 11: Poor fit to amplitude for estimation of decay time | |
919 | meteorAux[-1] = 11 |
|
958 | meteorAux[-1] = 11 | |
920 |
|
959 | |||
921 |
|
960 | |||
922 | except: |
|
961 | except: | |
923 | meteorAux[-1] = 11 |
|
962 | meteorAux[-1] = 11 | |
924 |
|
963 | |||
925 |
|
964 | |||
926 | listMeteors1.append(meteorAux) |
|
965 | listMeteors1.append(meteorAux) | |
927 |
|
966 | |||
928 | return listMeteors1 |
|
967 | return listMeteors1 | |
929 |
|
968 | |||
930 | #Exponential Function |
|
969 | #Exponential Function | |
931 |
|
970 | |||
932 | def __exponential_function(self, x, a, tau): |
|
971 | def __exponential_function(self, x, a, tau): | |
933 | y = a*numpy.exp(-x/tau) |
|
972 | y = a*numpy.exp(-x/tau) | |
934 | return y |
|
973 | return y | |
935 |
|
974 | |||
936 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): |
|
975 | def __getRadialVelocity(self, listMeteors, listVolts, radialStdThresh, pairslist, timeInterval): | |
937 |
|
976 | |||
938 | pairslist1 = list(pairslist) |
|
977 | pairslist1 = list(pairslist) | |
939 | pairslist1.append((0,1)) |
|
978 | pairslist1.append((0,1)) | |
940 | pairslist1.append((3,4)) |
|
979 | pairslist1.append((3,4)) | |
941 | numPairs = len(pairslist1) |
|
980 | numPairs = len(pairslist1) | |
942 | #Time Lag |
|
981 | #Time Lag | |
943 | timeLag = 45*10**-3 |
|
982 | timeLag = 45*10**-3 | |
944 | c = 3e8 |
|
983 | c = 3e8 | |
945 | lag = numpy.ceil(timeLag/timeInterval) |
|
984 | lag = numpy.ceil(timeLag/timeInterval) | |
946 | freq = 30e6 |
|
985 | freq = 30e6 | |
947 |
|
986 | |||
948 | listMeteors1 = [] |
|
987 | listMeteors1 = [] | |
949 |
|
988 | |||
950 | for i in range(len(listMeteors)): |
|
989 | for i in range(len(listMeteors)): | |
951 | meteor = listMeteors[i] |
|
990 | meteorAux = listMeteors[i] | |
952 | meteorAux = numpy.hstack((meteor[:-1], 0, 0, meteor[-1])) |
|
991 | if meteorAux[-1] == 0: | |
953 | if meteor[-1] == 0: |
|
|||
954 | mStart = listMeteors[i][1] |
|
992 | mStart = listMeteors[i][1] | |
955 | mPeak = listMeteors[i][2] |
|
993 | mPeak = listMeteors[i][2] | |
956 | mLag = mPeak - mStart + lag |
|
994 | mLag = mPeak - mStart + lag | |
957 |
|
995 | |||
958 | #get the volt data between the start and end times of the meteor |
|
996 | #get the volt data between the start and end times of the meteor | |
959 | meteorVolts = listVolts[i] |
|
997 | meteorVolts = listVolts[i] | |
960 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) |
|
998 | meteorVolts = meteorVolts.reshape(meteorVolts.shape[0], meteorVolts.shape[1], 1) | |
961 |
|
999 | |||
962 | #Get CCF |
|
1000 | #Get CCF | |
963 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) |
|
1001 | allCCFs = self.__calculateCCF(meteorVolts, pairslist1, [-2,-1,0,1,2]) | |
964 |
|
1002 | |||
965 | #Method 2 |
|
1003 | #Method 2 | |
966 | slopes = numpy.zeros(numPairs) |
|
1004 | slopes = numpy.zeros(numPairs) | |
967 | time = numpy.array([-2,-1,1,2])*timeInterval |
|
1005 | time = numpy.array([-2,-1,1,2])*timeInterval | |
968 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) |
|
1006 | angAllCCF = numpy.angle(allCCFs[:,[0,1,3,4],0]) | |
969 |
|
1007 | |||
970 | #Correct phases |
|
1008 | #Correct phases | |
971 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] |
|
1009 | derPhaseCCF = angAllCCF[:,1:] - angAllCCF[:,0:-1] | |
972 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) |
|
1010 | indDer = numpy.where(numpy.abs(derPhaseCCF) > numpy.pi) | |
973 |
|
1011 | |||
974 | if indDer[0].shape[0] > 0: |
|
1012 | if indDer[0].shape[0] > 0: | |
975 | for i in range(indDer[0].shape[0]): |
|
1013 | for i in range(indDer[0].shape[0]): | |
976 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) |
|
1014 | signo = -numpy.sign(derPhaseCCF[indDer[0][i],indDer[1][i]]) | |
977 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi |
|
1015 | angAllCCF[indDer[0][i],indDer[1][i]+1:] += signo*2*numpy.pi | |
978 |
|
1016 | |||
979 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) |
|
1017 | # fit = scipy.stats.linregress(numpy.array([-2,-1,1,2])*timeInterval, numpy.array([phaseLagN2s[i],phaseLagN1s[i],phaseLag1s[i],phaseLag2s[i]])) | |
980 | for j in range(numPairs): |
|
1018 | for j in range(numPairs): | |
981 | fit = stats.linregress(time, angAllCCF[j,:]) |
|
1019 | fit = stats.linregress(time, angAllCCF[j,:]) | |
982 | slopes[j] = fit[0] |
|
1020 | slopes[j] = fit[0] | |
983 |
|
1021 | |||
984 | #Remove Outlier |
|
1022 | #Remove Outlier | |
985 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1023 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
986 | # slopes = numpy.delete(slopes,indOut) |
|
1024 | # slopes = numpy.delete(slopes,indOut) | |
987 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) |
|
1025 | # indOut = numpy.argmax(numpy.abs(slopes - numpy.mean(slopes))) | |
988 | # slopes = numpy.delete(slopes,indOut) |
|
1026 | # slopes = numpy.delete(slopes,indOut) | |
989 |
|
1027 | |||
990 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1028 | radialVelocity = -numpy.mean(slopes)*(0.25/numpy.pi)*(c/freq) | |
991 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) |
|
1029 | radialError = numpy.std(slopes)*(0.25/numpy.pi)*(c/freq) | |
992 | meteorAux[-2] = radialError |
|
1030 | meteorAux[-2] = radialError | |
993 | meteorAux[-3] = radialVelocity |
|
1031 | meteorAux[-3] = radialVelocity | |
994 |
|
1032 | |||
995 | #Setting Error |
|
1033 | #Setting Error | |
996 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s |
|
1034 | #Number 15: Radial Drift velocity or projected horizontal velocity exceeds 200 m/s | |
997 | if numpy.abs(radialVelocity) > 200: |
|
1035 | if numpy.abs(radialVelocity) > 200: | |
998 | meteorAux[-1] = 15 |
|
1036 | meteorAux[-1] = 15 | |
999 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity |
|
1037 | #Number 12: Poor fit to CCF variation for estimation of radial drift velocity | |
1000 | elif radialError > radialStdThresh: |
|
1038 | elif radialError > radialStdThresh: | |
1001 | meteorAux[-1] = 12 |
|
1039 | meteorAux[-1] = 12 | |
1002 |
|
1040 | |||
1003 | listMeteors1.append(meteorAux) |
|
1041 | listMeteors1.append(meteorAux) | |
1004 | return listMeteors1 |
|
1042 | return listMeteors1 | |
1005 |
|
1043 | |||
1006 | def __setNewArrays(self, listMeteors, date, heiRang): |
|
1044 | def __setNewArrays(self, listMeteors, date, heiRang): | |
1007 |
|
1045 | |||
1008 | #New arrays |
|
1046 | #New arrays | |
1009 | arrayMeteors = numpy.array(listMeteors) |
|
1047 | arrayMeteors = numpy.array(listMeteors) | |
1010 |
arrayParameters = numpy.zeros((len(listMeteors), |
|
1048 | arrayParameters = numpy.zeros((len(listMeteors), 14)) | |
1011 |
|
1049 | |||
1012 | #Date inclusion |
|
1050 | #Date inclusion | |
1013 | date = re.findall(r'\((.*?)\)', date) |
|
1051 | date = re.findall(r'\((.*?)\)', date) | |
1014 | date = date[0].split(',') |
|
1052 | date = date[0].split(',') | |
1015 | date = map(int, date) |
|
1053 | date = map(int, date) | |
1016 | date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] |
|
1054 | date = [date[0]*10000 + date[1]*100 + date[2], date[3]*10000 + date[4]*100 + date[5]] | |
1017 | arrayDate = numpy.tile(date, (len(listMeteors), 1)) |
|
1055 | arrayDate = numpy.tile(date, (len(listMeteors), 1)) | |
1018 |
|
1056 | |||
1019 | #Meteor array |
|
1057 | #Meteor array | |
1020 | arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] |
|
1058 | # arrayMeteors[:,0] = heiRang[arrayMeteors[:,0].astype(int)] | |
1021 | arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) |
|
1059 | # arrayMeteors = numpy.hstack((arrayDate, arrayMeteors)) | |
1022 |
|
1060 | |||
1023 | #Parameters Array |
|
1061 | #Parameters Array | |
1024 |
arrayParameters[:, |
|
1062 | arrayParameters[:,:2] = arrayDate #Date | |
1025 |
arrayParameters[:, |
|
1063 | arrayParameters[:,2] = heiRang[arrayMeteors[:,0].astype(int)] #Range | |
|
1064 | arrayParameters[:,7:9] = arrayMeteors[:,-3:-1] #Radial velocity and its error | |||
|
1065 | arrayParameters[:,9:13] = arrayMeteors[:,7:11] #Phases | |||
|
1066 | arrayParameters[:,-1] = arrayMeteors[:,-1] #Error | |||
|
1067 | ||||
1026 |
|
1068 | |||
1027 |
return |
|
1069 | return arrayParameters | |
1028 |
|
1070 | |||
1029 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): |
|
1071 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |
1030 |
|
1072 | |||
1031 | arrayAOA = numpy.zeros((phases.shape[0],3)) |
|
1073 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |
1032 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) |
|
1074 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |
1033 |
|
1075 | |||
1034 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) |
|
1076 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |
1035 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) |
|
1077 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |
1036 | arrayAOA[:,2] = cosDirError |
|
1078 | arrayAOA[:,2] = cosDirError | |
1037 |
|
1079 | |||
1038 | azimuthAngle = arrayAOA[:,0] |
|
1080 | azimuthAngle = arrayAOA[:,0] | |
1039 | zenithAngle = arrayAOA[:,1] |
|
1081 | zenithAngle = arrayAOA[:,1] | |
1040 |
|
1082 | |||
1041 | #Setting Error |
|
1083 | #Setting Error | |
1042 | #Number 3: AOA not fesible |
|
1084 | #Number 3: AOA not fesible | |
1043 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] |
|
1085 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |
1044 | error[indInvalid] = 3 |
|
1086 | error[indInvalid] = 3 | |
1045 | #Number 4: Large difference in AOAs obtained from different antenna baselines |
|
1087 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |
1046 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] |
|
1088 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |
1047 | error[indInvalid] = 4 |
|
1089 | error[indInvalid] = 4 | |
1048 | return arrayAOA, error |
|
1090 | return arrayAOA, error | |
1049 |
|
1091 | |||
1050 | def __getDirectionCosines(self, arrayPhase, pairsList): |
|
1092 | def __getDirectionCosines(self, arrayPhase, pairsList): | |
1051 |
|
1093 | |||
1052 | #Initializing some variables |
|
1094 | #Initializing some variables | |
1053 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi |
|
1095 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |
1054 | ang_aux = ang_aux.reshape(1,ang_aux.size) |
|
1096 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |
1055 |
|
1097 | |||
1056 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) |
|
1098 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |
1057 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) |
|
1099 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |
1058 |
|
1100 | |||
1059 |
|
1101 | |||
1060 | for i in range(2): |
|
1102 | for i in range(2): | |
1061 | #First Estimation |
|
1103 | #First Estimation | |
1062 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] |
|
1104 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |
1063 | #Dealias |
|
1105 | #Dealias | |
1064 | indcsi = numpy.where(phi0_aux > numpy.pi) |
|
1106 | indcsi = numpy.where(phi0_aux > numpy.pi) | |
1065 | phi0_aux[indcsi] -= 2*numpy.pi |
|
1107 | phi0_aux[indcsi] -= 2*numpy.pi | |
1066 | indcsi = numpy.where(phi0_aux < -numpy.pi) |
|
1108 | indcsi = numpy.where(phi0_aux < -numpy.pi) | |
1067 | phi0_aux[indcsi] += 2*numpy.pi |
|
1109 | phi0_aux[indcsi] += 2*numpy.pi | |
1068 | #Direction Cosine 0 |
|
1110 | #Direction Cosine 0 | |
1069 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) |
|
1111 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |
1070 |
|
1112 | |||
1071 | #Most-Accurate Second Estimation |
|
1113 | #Most-Accurate Second Estimation | |
1072 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] |
|
1114 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |
1073 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) |
|
1115 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |
1074 | #Direction Cosine 1 |
|
1116 | #Direction Cosine 1 | |
1075 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) |
|
1117 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |
1076 |
|
1118 | |||
1077 | #Searching the correct Direction Cosine |
|
1119 | #Searching the correct Direction Cosine | |
1078 | cosdir0_aux = cosdir0[:,i] |
|
1120 | cosdir0_aux = cosdir0[:,i] | |
1079 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) |
|
1121 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |
1080 | #Minimum Distance |
|
1122 | #Minimum Distance | |
1081 | cosDiff = (cosdir1 - cosdir0_aux)**2 |
|
1123 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |
1082 | indcos = cosDiff.argmin(axis = 1) |
|
1124 | indcos = cosDiff.argmin(axis = 1) | |
1083 | #Saving Value obtained |
|
1125 | #Saving Value obtained | |
1084 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] |
|
1126 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |
1085 |
|
1127 | |||
1086 | return cosdir0, cosdir |
|
1128 | return cosdir0, cosdir | |
1087 |
|
1129 | |||
1088 | def __calculateAOA(self, cosdir, azimuth): |
|
1130 | def __calculateAOA(self, cosdir, azimuth): | |
1089 | cosdirX = cosdir[:,0] |
|
1131 | cosdirX = cosdir[:,0] | |
1090 | cosdirY = cosdir[:,1] |
|
1132 | cosdirY = cosdir[:,1] | |
1091 |
|
1133 | |||
1092 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi |
|
1134 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |
1093 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east |
|
1135 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |
1094 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() |
|
1136 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |
1095 |
|
1137 | |||
1096 | return angles |
|
1138 | return angles | |
1097 |
|
1139 | |||
1098 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): |
|
1140 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |
1099 |
|
1141 | |||
1100 | Ramb = 375 #Ramb = c/(2*PRF) |
|
1142 | Ramb = 375 #Ramb = c/(2*PRF) | |
1101 | Re = 6371 #Earth Radius |
|
1143 | Re = 6371 #Earth Radius | |
1102 | heights = numpy.zeros(Ranges.shape) |
|
1144 | heights = numpy.zeros(Ranges.shape) | |
1103 |
|
1145 | |||
1104 | R_aux = numpy.array([0,1,2])*Ramb |
|
1146 | R_aux = numpy.array([0,1,2])*Ramb | |
1105 | R_aux = R_aux.reshape(1,R_aux.size) |
|
1147 | R_aux = R_aux.reshape(1,R_aux.size) | |
1106 |
|
1148 | |||
1107 | Ranges = Ranges.reshape(Ranges.size,1) |
|
1149 | Ranges = Ranges.reshape(Ranges.size,1) | |
1108 |
|
1150 | |||
1109 | Ri = Ranges + R_aux |
|
1151 | Ri = Ranges + R_aux | |
1110 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re |
|
1152 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |
1111 |
|
1153 | |||
1112 | #Check if there is a height between 70 and 110 km |
|
1154 | #Check if there is a height between 70 and 110 km | |
1113 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) |
|
1155 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |
1114 | ind_h = numpy.where(h_bool == 1)[0] |
|
1156 | ind_h = numpy.where(h_bool == 1)[0] | |
1115 |
|
1157 | |||
1116 | hCorr = hi[ind_h, :] |
|
1158 | hCorr = hi[ind_h, :] | |
1117 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) |
|
1159 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |
1118 |
|
1160 | |||
1119 | hCorr = hi[ind_hCorr] |
|
1161 | hCorr = hi[ind_hCorr] | |
1120 | heights[ind_h] = hCorr |
|
1162 | heights[ind_h] = hCorr | |
1121 |
|
1163 | |||
1122 | #Setting Error |
|
1164 | #Setting Error | |
1123 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km |
|
1165 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |
1124 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km |
|
1166 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |
1125 |
|
1167 | |||
1126 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] |
|
1168 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |
1127 | error[indInvalid2] = 14 |
|
1169 | error[indInvalid2] = 14 | |
1128 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] |
|
1170 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |
1129 | error[indInvalid1] = 13 |
|
1171 | error[indInvalid1] = 13 | |
1130 |
|
1172 | |||
1131 | return heights, error |
|
1173 | return heights, error | |
1132 |
|
1174 | |||
1133 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): |
|
1175 | def SpectralFitting(self, getSNR = True, path=None, file=None, groupList=None): | |
1134 |
|
1176 | |||
1135 | ''' |
|
1177 | ''' | |
1136 | Function GetMoments() |
|
1178 | Function GetMoments() | |
1137 |
|
1179 | |||
1138 | Input: |
|
1180 | Input: | |
1139 | Output: |
|
1181 | Output: | |
1140 | Variables modified: |
|
1182 | Variables modified: | |
1141 | ''' |
|
1183 | ''' | |
1142 | if path != None: |
|
1184 | if path != None: | |
1143 | sys.path.append(path) |
|
1185 | sys.path.append(path) | |
1144 | self.dataOut.library = importlib.import_module(file) |
|
1186 | self.dataOut.library = importlib.import_module(file) | |
1145 |
|
1187 | |||
1146 | #To be inserted as a parameter |
|
1188 | #To be inserted as a parameter | |
1147 | groupArray = numpy.array(groupList) |
|
1189 | groupArray = numpy.array(groupList) | |
1148 | # groupArray = numpy.array([[0,1],[2,3]]) |
|
1190 | # groupArray = numpy.array([[0,1],[2,3]]) | |
1149 | self.dataOut.groupList = groupArray |
|
1191 | self.dataOut.groupList = groupArray | |
1150 |
|
1192 | |||
1151 | nGroups = groupArray.shape[0] |
|
1193 | nGroups = groupArray.shape[0] | |
1152 | nChannels = self.dataIn.nChannels |
|
1194 | nChannels = self.dataIn.nChannels | |
1153 | nHeights=self.dataIn.heightList.size |
|
1195 | nHeights=self.dataIn.heightList.size | |
1154 |
|
1196 | |||
1155 | #Parameters Array |
|
1197 | #Parameters Array | |
1156 | self.dataOut.data_param = None |
|
1198 | self.dataOut.data_param = None | |
1157 |
|
1199 | |||
1158 | #Set constants |
|
1200 | #Set constants | |
1159 | constants = self.dataOut.library.setConstants(self.dataIn) |
|
1201 | constants = self.dataOut.library.setConstants(self.dataIn) | |
1160 | self.dataOut.constants = constants |
|
1202 | self.dataOut.constants = constants | |
1161 | M = self.dataIn.normFactor |
|
1203 | M = self.dataIn.normFactor | |
1162 | N = self.dataIn.nFFTPoints |
|
1204 | N = self.dataIn.nFFTPoints | |
1163 | ippSeconds = self.dataIn.ippSeconds |
|
1205 | ippSeconds = self.dataIn.ippSeconds | |
1164 | K = self.dataIn.nIncohInt |
|
1206 | K = self.dataIn.nIncohInt | |
1165 | pairsArray = numpy.array(self.dataIn.pairsList) |
|
1207 | pairsArray = numpy.array(self.dataIn.pairsList) | |
1166 |
|
1208 | |||
1167 | #List of possible combinations |
|
1209 | #List of possible combinations | |
1168 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) |
|
1210 | listComb = itertools.combinations(numpy.arange(groupArray.shape[1]),2) | |
1169 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') |
|
1211 | indCross = numpy.zeros(len(list(listComb)), dtype = 'int') | |
1170 |
|
1212 | |||
1171 | if getSNR: |
|
1213 | if getSNR: | |
1172 | listChannels = groupArray.reshape((groupArray.size)) |
|
1214 | listChannels = groupArray.reshape((groupArray.size)) | |
1173 | listChannels.sort() |
|
1215 | listChannels.sort() | |
1174 | noise = self.dataIn.getNoise() |
|
1216 | noise = self.dataIn.getNoise() | |
1175 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) |
|
1217 | self.dataOut.data_SNR = self.__getSNR(self.dataIn.data_spc[listChannels,:,:], noise[listChannels]) | |
1176 |
|
1218 | |||
1177 | for i in range(nGroups): |
|
1219 | for i in range(nGroups): | |
1178 | coord = groupArray[i,:] |
|
1220 | coord = groupArray[i,:] | |
1179 |
|
1221 | |||
1180 | #Input data array |
|
1222 | #Input data array | |
1181 | data = self.dataIn.data_spc[coord,:,:]/(M*N) |
|
1223 | data = self.dataIn.data_spc[coord,:,:]/(M*N) | |
1182 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) |
|
1224 | data = data.reshape((data.shape[0]*data.shape[1],data.shape[2])) | |
1183 |
|
1225 | |||
1184 | #Cross Spectra data array for Covariance Matrixes |
|
1226 | #Cross Spectra data array for Covariance Matrixes | |
1185 | ind = 0 |
|
1227 | ind = 0 | |
1186 | for pairs in listComb: |
|
1228 | for pairs in listComb: | |
1187 | pairsSel = numpy.array([coord[x],coord[y]]) |
|
1229 | pairsSel = numpy.array([coord[x],coord[y]]) | |
1188 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) |
|
1230 | indCross[ind] = int(numpy.where(numpy.all(pairsArray == pairsSel, axis = 1))[0][0]) | |
1189 | ind += 1 |
|
1231 | ind += 1 | |
1190 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) |
|
1232 | dataCross = self.dataIn.data_cspc[indCross,:,:]/(M*N) | |
1191 | dataCross = dataCross**2/K |
|
1233 | dataCross = dataCross**2/K | |
1192 |
|
1234 | |||
1193 | for h in range(nHeights): |
|
1235 | for h in range(nHeights): | |
1194 | # print self.dataOut.heightList[h] |
|
1236 | # print self.dataOut.heightList[h] | |
1195 |
|
1237 | |||
1196 | #Input |
|
1238 | #Input | |
1197 | d = data[:,h] |
|
1239 | d = data[:,h] | |
1198 |
|
1240 | |||
1199 | #Covariance Matrix |
|
1241 | #Covariance Matrix | |
1200 | D = numpy.diag(d**2/K) |
|
1242 | D = numpy.diag(d**2/K) | |
1201 | ind = 0 |
|
1243 | ind = 0 | |
1202 | for pairs in listComb: |
|
1244 | for pairs in listComb: | |
1203 | #Coordinates in Covariance Matrix |
|
1245 | #Coordinates in Covariance Matrix | |
1204 | x = pairs[0] |
|
1246 | x = pairs[0] | |
1205 | y = pairs[1] |
|
1247 | y = pairs[1] | |
1206 | #Channel Index |
|
1248 | #Channel Index | |
1207 | S12 = dataCross[ind,:,h] |
|
1249 | S12 = dataCross[ind,:,h] | |
1208 | D12 = numpy.diag(S12) |
|
1250 | D12 = numpy.diag(S12) | |
1209 | #Completing Covariance Matrix with Cross Spectras |
|
1251 | #Completing Covariance Matrix with Cross Spectras | |
1210 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 |
|
1252 | D[x*N:(x+1)*N,y*N:(y+1)*N] = D12 | |
1211 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 |
|
1253 | D[y*N:(y+1)*N,x*N:(x+1)*N] = D12 | |
1212 | ind += 1 |
|
1254 | ind += 1 | |
1213 | Dinv=numpy.linalg.inv(D) |
|
1255 | Dinv=numpy.linalg.inv(D) | |
1214 | L=numpy.linalg.cholesky(Dinv) |
|
1256 | L=numpy.linalg.cholesky(Dinv) | |
1215 | LT=L.T |
|
1257 | LT=L.T | |
1216 |
|
1258 | |||
1217 | dp = numpy.dot(LT,d) |
|
1259 | dp = numpy.dot(LT,d) | |
1218 |
|
1260 | |||
1219 | #Initial values |
|
1261 | #Initial values | |
1220 | data_spc = self.dataIn.data_spc[coord,:,h] |
|
1262 | data_spc = self.dataIn.data_spc[coord,:,h] | |
1221 |
|
1263 | |||
1222 | if (h>0)and(error1[3]<5): |
|
1264 | if (h>0)and(error1[3]<5): | |
1223 | p0 = self.dataOut.data_param[i,:,h-1] |
|
1265 | p0 = self.dataOut.data_param[i,:,h-1] | |
1224 | else: |
|
1266 | else: | |
1225 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) |
|
1267 | p0 = numpy.array(self.dataOut.library.initialValuesFunction(data_spc, constants, i)) | |
1226 |
|
1268 | |||
1227 | try: |
|
1269 | try: | |
1228 | #Least Squares |
|
1270 | #Least Squares | |
1229 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) |
|
1271 | minp,covp,infodict,mesg,ier = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants),full_output=True) | |
1230 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) |
|
1272 | # minp,covp = optimize.leastsq(self.__residFunction,p0,args=(dp,LT,constants)) | |
1231 | #Chi square error |
|
1273 | #Chi square error | |
1232 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) |
|
1274 | error0 = numpy.sum(infodict['fvec']**2)/(2*N) | |
1233 | #Error with Jacobian |
|
1275 | #Error with Jacobian | |
1234 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) |
|
1276 | error1 = self.dataOut.library.errorFunction(minp,constants,LT) | |
1235 | except: |
|
1277 | except: | |
1236 | minp = p0*numpy.nan |
|
1278 | minp = p0*numpy.nan | |
1237 | error0 = numpy.nan |
|
1279 | error0 = numpy.nan | |
1238 | error1 = p0*numpy.nan |
|
1280 | error1 = p0*numpy.nan | |
1239 |
|
1281 | |||
1240 | #Save |
|
1282 | #Save | |
1241 | if self.dataOut.data_param == None: |
|
1283 | if self.dataOut.data_param == None: | |
1242 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan |
|
1284 | self.dataOut.data_param = numpy.zeros((nGroups, p0.size, nHeights))*numpy.nan | |
1243 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan |
|
1285 | self.dataOut.data_error = numpy.zeros((nGroups, p0.size + 1, nHeights))*numpy.nan | |
1244 |
|
1286 | |||
1245 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) |
|
1287 | self.dataOut.data_error[i,:,h] = numpy.hstack((error0,error1)) | |
1246 | self.dataOut.data_param[i,:,h] = minp |
|
1288 | self.dataOut.data_param[i,:,h] = minp | |
1247 | return |
|
1289 | return | |
1248 |
|
1290 | |||
1249 |
|
||||
1250 | def __residFunction(self, p, dp, LT, constants): |
|
1291 | def __residFunction(self, p, dp, LT, constants): | |
1251 |
|
1292 | |||
1252 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1293 | fm = self.dataOut.library.modelFunction(p, constants) | |
1253 | fmp=numpy.dot(LT,fm) |
|
1294 | fmp=numpy.dot(LT,fm) | |
1254 |
|
1295 | |||
1255 | return dp-fmp |
|
1296 | return dp-fmp | |
1256 |
|
1297 | |||
1257 | def __getSNR(self, z, noise): |
|
1298 | def __getSNR(self, z, noise): | |
1258 |
|
1299 | |||
1259 | avg = numpy.average(z, axis=1) |
|
1300 | avg = numpy.average(z, axis=1) | |
1260 | SNR = (avg.T-noise)/noise |
|
1301 | SNR = (avg.T-noise)/noise | |
1261 | SNR = SNR.T |
|
1302 | SNR = SNR.T | |
1262 | return SNR |
|
1303 | return SNR | |
1263 |
|
1304 | |||
1264 | def __chisq(p,chindex,hindex): |
|
1305 | def __chisq(p,chindex,hindex): | |
1265 | #similar to Resid but calculates CHI**2 |
|
1306 | #similar to Resid but calculates CHI**2 | |
1266 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) |
|
1307 | [LT,d,fm]=setupLTdfm(p,chindex,hindex) | |
1267 | dp=numpy.dot(LT,d) |
|
1308 | dp=numpy.dot(LT,d) | |
1268 | fmp=numpy.dot(LT,fm) |
|
1309 | fmp=numpy.dot(LT,fm) | |
1269 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) |
|
1310 | chisq=numpy.dot((dp-fmp).T,(dp-fmp)) | |
1270 | return chisq |
|
1311 | return chisq | |
1271 |
|
1312 | |||
1272 |
|
1313 | |||
1273 |
|
1314 | |||
1274 | class WindProfiler(Operation): |
|
1315 | class WindProfiler(Operation): | |
1275 |
|
1316 | |||
1276 | __isConfig = False |
|
1317 | __isConfig = False | |
1277 |
|
1318 | |||
1278 | __initime = None |
|
1319 | __initime = None | |
1279 | __lastdatatime = None |
|
1320 | __lastdatatime = None | |
1280 | __integrationtime = None |
|
1321 | __integrationtime = None | |
1281 |
|
1322 | |||
1282 | __buffer = None |
|
1323 | __buffer = None | |
1283 |
|
1324 | |||
1284 | __dataReady = False |
|
1325 | __dataReady = False | |
1285 |
|
1326 | |||
1286 | __firstdata = None |
|
1327 | __firstdata = None | |
1287 |
|
1328 | |||
1288 | n = None |
|
1329 | n = None | |
1289 |
|
1330 | |||
1290 | def __init__(self): |
|
1331 | def __init__(self): | |
1291 | Operation.__init__(self) |
|
1332 | Operation.__init__(self) | |
1292 |
|
1333 | |||
1293 | def __calculateCosDir(self, elev, azim): |
|
1334 | def __calculateCosDir(self, elev, azim): | |
1294 | zen = (90 - elev)*numpy.pi/180 |
|
1335 | zen = (90 - elev)*numpy.pi/180 | |
1295 | azim = azim*numpy.pi/180 |
|
1336 | azim = azim*numpy.pi/180 | |
1296 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) |
|
1337 | cosDirX = numpy.sqrt((1-numpy.cos(zen)**2)/((1+numpy.tan(azim)**2))) | |
1297 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) |
|
1338 | cosDirY = numpy.sqrt(1-numpy.cos(zen)**2-cosDirX**2) | |
1298 |
|
1339 | |||
1299 | signX = numpy.sign(numpy.cos(azim)) |
|
1340 | signX = numpy.sign(numpy.cos(azim)) | |
1300 | signY = numpy.sign(numpy.sin(azim)) |
|
1341 | signY = numpy.sign(numpy.sin(azim)) | |
1301 |
|
1342 | |||
1302 | cosDirX = numpy.copysign(cosDirX, signX) |
|
1343 | cosDirX = numpy.copysign(cosDirX, signX) | |
1303 | cosDirY = numpy.copysign(cosDirY, signY) |
|
1344 | cosDirY = numpy.copysign(cosDirY, signY) | |
1304 | return cosDirX, cosDirY |
|
1345 | return cosDirX, cosDirY | |
1305 |
|
1346 | |||
1306 | def __calculateAngles(self, theta_x, theta_y, azimuth): |
|
1347 | def __calculateAngles(self, theta_x, theta_y, azimuth): | |
1307 |
|
1348 | |||
1308 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) |
|
1349 | dir_cosw = numpy.sqrt(1-theta_x**2-theta_y**2) | |
1309 | zenith_arr = numpy.arccos(dir_cosw) |
|
1350 | zenith_arr = numpy.arccos(dir_cosw) | |
1310 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 |
|
1351 | azimuth_arr = numpy.arctan2(theta_x,theta_y) + azimuth*math.pi/180 | |
1311 |
|
1352 | |||
1312 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) |
|
1353 | dir_cosu = numpy.sin(azimuth_arr)*numpy.sin(zenith_arr) | |
1313 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) |
|
1354 | dir_cosv = numpy.cos(azimuth_arr)*numpy.sin(zenith_arr) | |
1314 |
|
1355 | |||
1315 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw |
|
1356 | return azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw | |
1316 |
|
1357 | |||
1317 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): |
|
1358 | def __calculateMatA(self, dir_cosu, dir_cosv, dir_cosw, horOnly): | |
1318 |
|
1359 | |||
1319 | # |
|
1360 | # | |
1320 | if horOnly: |
|
1361 | if horOnly: | |
1321 | A = numpy.c_[dir_cosu,dir_cosv] |
|
1362 | A = numpy.c_[dir_cosu,dir_cosv] | |
1322 | else: |
|
1363 | else: | |
1323 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] |
|
1364 | A = numpy.c_[dir_cosu,dir_cosv,dir_cosw] | |
1324 | A = numpy.asmatrix(A) |
|
1365 | A = numpy.asmatrix(A) | |
1325 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() |
|
1366 | A1 = numpy.linalg.inv(A.transpose()*A)*A.transpose() | |
1326 |
|
1367 | |||
1327 | return A1 |
|
1368 | return A1 | |
1328 |
|
1369 | |||
1329 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1370 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1330 |
|
||||
1331 | listPhi = phi.tolist() |
|
1371 | listPhi = phi.tolist() | |
1332 | maxid = listPhi.index(max(listPhi)) |
|
1372 | maxid = listPhi.index(max(listPhi)) | |
1333 | minid = listPhi.index(min(listPhi)) |
|
1373 | minid = listPhi.index(min(listPhi)) | |
1334 |
|
1374 | |||
1335 | rango = range(len(phi)) |
|
1375 | rango = range(len(phi)) | |
1336 | # rango = numpy.delete(rango,maxid) |
|
1376 | # rango = numpy.delete(rango,maxid) | |
1337 |
|
1377 | |||
1338 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1378 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1339 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1379 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1340 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1380 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1341 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1381 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1342 |
|
1382 | |||
1343 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1383 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1344 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1384 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1345 |
|
1385 | |||
1346 | for i in rango: |
|
1386 | for i in rango: | |
1347 | x = heiRang*math.cos(phi[i]) |
|
1387 | x = heiRang*math.cos(phi[i]) | |
1348 | y1 = velRadial[i,:] |
|
1388 | y1 = velRadial[i,:] | |
1349 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1389 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1350 |
|
1390 | |||
1351 | x1 = heiRang1 |
|
1391 | x1 = heiRang1 | |
1352 | y11 = f1(x1) |
|
1392 | y11 = f1(x1) | |
1353 |
|
1393 | |||
1354 | y2 = SNR[i,:] |
|
1394 | y2 = SNR[i,:] | |
1355 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1395 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1356 | y21 = f2(x1) |
|
1396 | y21 = f2(x1) | |
1357 |
|
1397 | |||
1358 | velRadial1[i,:] = y11 |
|
1398 | velRadial1[i,:] = y11 | |
1359 | SNR1[i,:] = y21 |
|
1399 | SNR1[i,:] = y21 | |
1360 |
|
1400 | |||
1361 | return heiRang1, velRadial1, SNR1 |
|
1401 | return heiRang1, velRadial1, SNR1 | |
1362 |
|
1402 | |||
1363 | def __calculateVelUVW(self, A, velRadial): |
|
1403 | def __calculateVelUVW(self, A, velRadial): | |
1364 |
|
1404 | |||
1365 | #Operacion Matricial |
|
1405 | #Operacion Matricial | |
1366 | # velUVW = numpy.zeros((velRadial.shape[1],3)) |
|
1406 | # velUVW = numpy.zeros((velRadial.shape[1],3)) | |
1367 | # for ind in range(velRadial.shape[1]): |
|
1407 | # for ind in range(velRadial.shape[1]): | |
1368 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) |
|
1408 | # velUVW[ind,:] = numpy.dot(A,velRadial[:,ind]) | |
1369 | # velUVW = velUVW.transpose() |
|
1409 | # velUVW = velUVW.transpose() | |
1370 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) |
|
1410 | velUVW = numpy.zeros((A.shape[0],velRadial.shape[1])) | |
1371 | velUVW[:,:] = numpy.dot(A,velRadial) |
|
1411 | velUVW[:,:] = numpy.dot(A,velRadial) | |
1372 |
|
1412 | |||
1373 |
|
1413 | |||
1374 | return velUVW |
|
1414 | return velUVW | |
1375 |
|
1415 | |||
1376 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): |
|
1416 | def techniqueDBS(self, velRadial0, dirCosx, disrCosy, azimuth, correct, horizontalOnly, heiRang, SNR0): | |
1377 | """ |
|
1417 | """ | |
1378 | Function that implements Doppler Beam Swinging (DBS) technique. |
|
1418 | Function that implements Doppler Beam Swinging (DBS) technique. | |
1379 |
|
1419 | |||
1380 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1420 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1381 | Direction correction (if necessary), Ranges and SNR |
|
1421 | Direction correction (if necessary), Ranges and SNR | |
1382 |
|
1422 | |||
1383 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1423 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1384 |
|
1424 | |||
1385 | Parameters affected: Winds, height range, SNR |
|
1425 | Parameters affected: Winds, height range, SNR | |
1386 | """ |
|
1426 | """ | |
1387 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) |
|
1427 | azimuth_arr, zenith_arr, dir_cosu, dir_cosv, dir_cosw = self.__calculateAngles(dirCosx, disrCosy, azimuth) | |
1388 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) |
|
1428 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, zenith_arr, correct*velRadial0, SNR0) | |
1389 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) |
|
1429 | A = self.__calculateMatA(dir_cosu, dir_cosv, dir_cosw, horizontalOnly) | |
1390 |
|
1430 | |||
1391 | #Calculo de Componentes de la velocidad con DBS |
|
1431 | #Calculo de Componentes de la velocidad con DBS | |
1392 | winds = self.__calculateVelUVW(A,velRadial1) |
|
1432 | winds = self.__calculateVelUVW(A,velRadial1) | |
1393 |
|
1433 | |||
1394 | return winds, heiRang1, SNR1 |
|
1434 | return winds, heiRang1, SNR1 | |
1395 |
|
1435 | |||
1396 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): |
|
1436 | def __calculateDistance(self, posx, posy, pairsCrossCorr, pairsList, pairs, azimuth = None): | |
1397 |
|
1437 | |||
1398 | posx = numpy.asarray(posx) |
|
1438 | posx = numpy.asarray(posx) | |
1399 | posy = numpy.asarray(posy) |
|
1439 | posy = numpy.asarray(posy) | |
1400 |
|
1440 | |||
1401 | #Rotacion Inversa para alinear con el azimuth |
|
1441 | #Rotacion Inversa para alinear con el azimuth | |
1402 | if azimuth!= None: |
|
1442 | if azimuth!= None: | |
1403 | azimuth = azimuth*math.pi/180 |
|
1443 | azimuth = azimuth*math.pi/180 | |
1404 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) |
|
1444 | posx1 = posx*math.cos(azimuth) + posy*math.sin(azimuth) | |
1405 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) |
|
1445 | posy1 = -posx*math.sin(azimuth) + posy*math.cos(azimuth) | |
1406 | else: |
|
1446 | else: | |
1407 | posx1 = posx |
|
1447 | posx1 = posx | |
1408 | posy1 = posy |
|
1448 | posy1 = posy | |
1409 |
|
1449 | |||
1410 | #Calculo de Distancias |
|
1450 | #Calculo de Distancias | |
1411 | distx = numpy.zeros(pairsCrossCorr.size) |
|
1451 | distx = numpy.zeros(pairsCrossCorr.size) | |
1412 | disty = numpy.zeros(pairsCrossCorr.size) |
|
1452 | disty = numpy.zeros(pairsCrossCorr.size) | |
1413 | dist = numpy.zeros(pairsCrossCorr.size) |
|
1453 | dist = numpy.zeros(pairsCrossCorr.size) | |
1414 | ang = numpy.zeros(pairsCrossCorr.size) |
|
1454 | ang = numpy.zeros(pairsCrossCorr.size) | |
1415 |
|
1455 | |||
1416 | for i in range(pairsCrossCorr.size): |
|
1456 | for i in range(pairsCrossCorr.size): | |
1417 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] |
|
1457 | distx[i] = posx1[pairsList[pairsCrossCorr[i]][1]] - posx1[pairsList[pairsCrossCorr[i]][0]] | |
1418 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] |
|
1458 | disty[i] = posy1[pairsList[pairsCrossCorr[i]][1]] - posy1[pairsList[pairsCrossCorr[i]][0]] | |
1419 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) |
|
1459 | dist[i] = numpy.sqrt(distx[i]**2 + disty[i]**2) | |
1420 | ang[i] = numpy.arctan2(disty[i],distx[i]) |
|
1460 | ang[i] = numpy.arctan2(disty[i],distx[i]) | |
1421 | #Calculo de Matrices |
|
1461 | #Calculo de Matrices | |
1422 | nPairs = len(pairs) |
|
1462 | nPairs = len(pairs) | |
1423 | ang1 = numpy.zeros((nPairs, 2, 1)) |
|
1463 | ang1 = numpy.zeros((nPairs, 2, 1)) | |
1424 | dist1 = numpy.zeros((nPairs, 2, 1)) |
|
1464 | dist1 = numpy.zeros((nPairs, 2, 1)) | |
1425 |
|
1465 | |||
1426 | for j in range(nPairs): |
|
1466 | for j in range(nPairs): | |
1427 | dist1[j,0,0] = dist[pairs[j][0]] |
|
1467 | dist1[j,0,0] = dist[pairs[j][0]] | |
1428 | dist1[j,1,0] = dist[pairs[j][1]] |
|
1468 | dist1[j,1,0] = dist[pairs[j][1]] | |
1429 | ang1[j,0,0] = ang[pairs[j][0]] |
|
1469 | ang1[j,0,0] = ang[pairs[j][0]] | |
1430 | ang1[j,1,0] = ang[pairs[j][1]] |
|
1470 | ang1[j,1,0] = ang[pairs[j][1]] | |
1431 |
|
1471 | |||
1432 | return distx,disty, dist1,ang1 |
|
1472 | return distx,disty, dist1,ang1 | |
1433 |
|
1473 | |||
1434 | def __calculateVelVer(self, phase, lagTRange, _lambda): |
|
1474 | def __calculateVelVer(self, phase, lagTRange, _lambda): | |
1435 |
|
1475 | |||
1436 | Ts = lagTRange[1] - lagTRange[0] |
|
1476 | Ts = lagTRange[1] - lagTRange[0] | |
1437 | velW = -_lambda*phase/(4*math.pi*Ts) |
|
1477 | velW = -_lambda*phase/(4*math.pi*Ts) | |
1438 |
|
1478 | |||
1439 | return velW |
|
1479 | return velW | |
1440 |
|
1480 | |||
1441 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): |
|
1481 | def __calculateVelHorDir(self, dist, tau1, tau2, ang): | |
1442 | nPairs = tau1.shape[0] |
|
1482 | nPairs = tau1.shape[0] | |
1443 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) |
|
1483 | vel = numpy.zeros((nPairs,3,tau1.shape[2])) | |
1444 |
|
1484 | |||
1445 | angCos = numpy.cos(ang) |
|
1485 | angCos = numpy.cos(ang) | |
1446 | angSin = numpy.sin(ang) |
|
1486 | angSin = numpy.sin(ang) | |
1447 |
|
1487 | |||
1448 | vel0 = dist*tau1/(2*tau2**2) |
|
1488 | vel0 = dist*tau1/(2*tau2**2) | |
1449 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) |
|
1489 | vel[:,0,:] = (vel0*angCos).sum(axis = 1) | |
1450 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) |
|
1490 | vel[:,1,:] = (vel0*angSin).sum(axis = 1) | |
1451 |
|
1491 | |||
1452 | ind = numpy.where(numpy.isinf(vel)) |
|
1492 | ind = numpy.where(numpy.isinf(vel)) | |
1453 | vel[ind] = numpy.nan |
|
1493 | vel[ind] = numpy.nan | |
1454 |
|
1494 | |||
1455 | return vel |
|
1495 | return vel | |
1456 |
|
1496 | |||
1457 | def __getPairsAutoCorr(self, pairsList, nChannels): |
|
1497 | def __getPairsAutoCorr(self, pairsList, nChannels): | |
1458 |
|
1498 | |||
1459 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan |
|
1499 | pairsAutoCorr = numpy.zeros(nChannels, dtype = 'int')*numpy.nan | |
1460 |
|
1500 | |||
1461 | for l in range(len(pairsList)): |
|
1501 | for l in range(len(pairsList)): | |
1462 | firstChannel = pairsList[l][0] |
|
1502 | firstChannel = pairsList[l][0] | |
1463 | secondChannel = pairsList[l][1] |
|
1503 | secondChannel = pairsList[l][1] | |
1464 |
|
1504 | |||
1465 | #Obteniendo pares de Autocorrelacion |
|
1505 | #Obteniendo pares de Autocorrelacion | |
1466 | if firstChannel == secondChannel: |
|
1506 | if firstChannel == secondChannel: | |
1467 | pairsAutoCorr[firstChannel] = int(l) |
|
1507 | pairsAutoCorr[firstChannel] = int(l) | |
1468 |
|
1508 | |||
1469 | pairsAutoCorr = pairsAutoCorr.astype(int) |
|
1509 | pairsAutoCorr = pairsAutoCorr.astype(int) | |
1470 |
|
1510 | |||
1471 | pairsCrossCorr = range(len(pairsList)) |
|
1511 | pairsCrossCorr = range(len(pairsList)) | |
1472 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) |
|
1512 | pairsCrossCorr = numpy.delete(pairsCrossCorr,pairsAutoCorr) | |
1473 |
|
1513 | |||
1474 | return pairsAutoCorr, pairsCrossCorr |
|
1514 | return pairsAutoCorr, pairsCrossCorr | |
1475 |
|
1515 | |||
1476 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): |
|
1516 | def techniqueSA(self, pairsSelected, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, lagTRange, correctFactor): | |
1477 | """ |
|
1517 | """ | |
1478 | Function that implements Spaced Antenna (SA) technique. |
|
1518 | Function that implements Spaced Antenna (SA) technique. | |
1479 |
|
1519 | |||
1480 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, |
|
1520 | Input: Radial velocities, Direction cosines (x and y) of the Beam, Antenna azimuth, | |
1481 | Direction correction (if necessary), Ranges and SNR |
|
1521 | Direction correction (if necessary), Ranges and SNR | |
1482 |
|
1522 | |||
1483 | Output: Winds estimation (Zonal, Meridional and Vertical) |
|
1523 | Output: Winds estimation (Zonal, Meridional and Vertical) | |
1484 |
|
1524 | |||
1485 | Parameters affected: Winds |
|
1525 | Parameters affected: Winds | |
1486 | """ |
|
1526 | """ | |
1487 | #Cross Correlation pairs obtained |
|
1527 | #Cross Correlation pairs obtained | |
1488 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) |
|
1528 | pairsAutoCorr, pairsCrossCorr = self.__getPairsAutoCorr(pairsList, nChannels) | |
1489 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] |
|
1529 | pairsArray = numpy.array(pairsList)[pairsCrossCorr] | |
1490 | pairsSelArray = numpy.array(pairsSelected) |
|
1530 | pairsSelArray = numpy.array(pairsSelected) | |
1491 | pairs = [] |
|
1531 | pairs = [] | |
1492 |
|
1532 | |||
1493 | #Wind estimation pairs obtained |
|
1533 | #Wind estimation pairs obtained | |
1494 | for i in range(pairsSelArray.shape[0]/2): |
|
1534 | for i in range(pairsSelArray.shape[0]/2): | |
1495 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] |
|
1535 | ind1 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i], axis = 1))[0][0] | |
1496 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] |
|
1536 | ind2 = numpy.where(numpy.all(pairsArray == pairsSelArray[2*i + 1], axis = 1))[0][0] | |
1497 | pairs.append((ind1,ind2)) |
|
1537 | pairs.append((ind1,ind2)) | |
1498 |
|
1538 | |||
1499 | indtau = tau.shape[0]/2 |
|
1539 | indtau = tau.shape[0]/2 | |
1500 | tau1 = tau[:indtau,:] |
|
1540 | tau1 = tau[:indtau,:] | |
1501 | tau2 = tau[indtau:-1,:] |
|
1541 | tau2 = tau[indtau:-1,:] | |
1502 | tau1 = tau1[pairs,:] |
|
1542 | tau1 = tau1[pairs,:] | |
1503 | tau2 = tau2[pairs,:] |
|
1543 | tau2 = tau2[pairs,:] | |
1504 | phase1 = tau[-1,:] |
|
1544 | phase1 = tau[-1,:] | |
1505 |
|
1545 | |||
1506 | #--------------------------------------------------------------------- |
|
1546 | #--------------------------------------------------------------------- | |
1507 | #Metodo Directo |
|
1547 | #Metodo Directo | |
1508 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) |
|
1548 | distx, disty, dist, ang = self.__calculateDistance(position_x, position_y, pairsCrossCorr, pairsList, pairs,azimuth) | |
1509 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) |
|
1549 | winds = self.__calculateVelHorDir(dist, tau1, tau2, ang) | |
1510 | winds = stats.nanmean(winds, axis=0) |
|
1550 | winds = stats.nanmean(winds, axis=0) | |
1511 | #--------------------------------------------------------------------- |
|
1551 | #--------------------------------------------------------------------- | |
1512 | #Metodo General |
|
1552 | #Metodo General | |
1513 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) |
|
1553 | # distx, disty, dist = self.calculateDistance(position_x,position_y,pairsCrossCorr, pairsList, azimuth) | |
1514 | # #Calculo Coeficientes de Funcion de Correlacion |
|
1554 | # #Calculo Coeficientes de Funcion de Correlacion | |
1515 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) |
|
1555 | # F,G,A,B,H = self.calculateCoef(tau1,tau2,distx,disty,n) | |
1516 | # #Calculo de Velocidades |
|
1556 | # #Calculo de Velocidades | |
1517 | # winds = self.calculateVelUV(F,G,A,B,H) |
|
1557 | # winds = self.calculateVelUV(F,G,A,B,H) | |
1518 |
|
1558 | |||
1519 | #--------------------------------------------------------------------- |
|
1559 | #--------------------------------------------------------------------- | |
1520 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) |
|
1560 | winds[2,:] = self.__calculateVelVer(phase1, lagTRange, _lambda) | |
1521 | winds = correctFactor*winds |
|
1561 | winds = correctFactor*winds | |
1522 | return winds |
|
1562 | return winds | |
1523 |
|
1563 | |||
1524 | def __checkTime(self, currentTime, paramInterval, outputInterval): |
|
1564 | def __checkTime(self, currentTime, paramInterval, outputInterval): | |
1525 |
|
1565 | |||
1526 | dataTime = currentTime + paramInterval |
|
1566 | dataTime = currentTime + paramInterval | |
1527 | deltaTime = dataTime - self.__initime |
|
1567 | deltaTime = dataTime - self.__initime | |
1528 |
|
1568 | |||
1529 | if deltaTime >= outputInterval or deltaTime < 0: |
|
1569 | if deltaTime >= outputInterval or deltaTime < 0: | |
1530 | self.__dataReady = True |
|
1570 | self.__dataReady = True | |
1531 | return |
|
1571 | return | |
1532 |
|
1572 | |||
1533 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): |
|
1573 | def techniqueMeteors(self, arrayMeteor, meteorThresh, heightMin, heightMax): | |
1534 | ''' |
|
1574 | ''' | |
1535 | Function that implements winds estimation technique with detected meteors. |
|
1575 | Function that implements winds estimation technique with detected meteors. | |
1536 |
|
1576 | |||
1537 | Input: Detected meteors, Minimum meteor quantity to wind estimation |
|
1577 | Input: Detected meteors, Minimum meteor quantity to wind estimation | |
1538 |
|
1578 | |||
1539 | Output: Winds estimation (Zonal and Meridional) |
|
1579 | Output: Winds estimation (Zonal and Meridional) | |
1540 |
|
1580 | |||
1541 | Parameters affected: Winds |
|
1581 | Parameters affected: Winds | |
1542 |
''' |
|
1582 | ''' | |
|
1583 | print arrayMeteor.shape | |||
1543 | #Settings |
|
1584 | #Settings | |
1544 | nInt = (heightMax - heightMin)/2 |
|
1585 | nInt = (heightMax - heightMin)/2 | |
1545 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1586 | winds = numpy.zeros((2,nInt))*numpy.nan | |
1546 |
|
1587 | |||
1547 | #Filter errors |
|
1588 | #Filter errors | |
1548 | error = numpy.where(arrayMeteor[:,-1] == 0)[0] |
|
1589 | error = numpy.where(arrayMeteor[0,:,-1] == 0)[0] | |
1549 | finalMeteor = arrayMeteor[error,:] |
|
1590 | finalMeteor = arrayMeteor[0,error,:] | |
1550 |
|
1591 | |||
1551 | #Meteor Histogram |
|
1592 | #Meteor Histogram | |
1552 | finalHeights = finalMeteor[:,3] |
|
1593 | finalHeights = finalMeteor[:,3] | |
1553 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) |
|
1594 | hist = numpy.histogram(finalHeights, bins = nInt, range = (heightMin,heightMax)) | |
1554 | nMeteorsPerI = hist[0] |
|
1595 | nMeteorsPerI = hist[0] | |
1555 | heightPerI = hist[1] |
|
1596 | heightPerI = hist[1] | |
1556 |
|
1597 | |||
1557 | #Sort of meteors |
|
1598 | #Sort of meteors | |
1558 | indSort = finalHeights.argsort() |
|
1599 | indSort = finalHeights.argsort() | |
1559 | finalMeteor2 = finalMeteor[indSort,:] |
|
1600 | finalMeteor2 = finalMeteor[indSort,:] | |
1560 |
|
1601 | |||
1561 | # Calculating winds |
|
1602 | # Calculating winds | |
1562 | ind1 = 0 |
|
1603 | ind1 = 0 | |
1563 | ind2 = 0 |
|
1604 | ind2 = 0 | |
1564 |
|
1605 | |||
1565 | for i in range(nInt): |
|
1606 | for i in range(nInt): | |
1566 | nMet = nMeteorsPerI[i] |
|
1607 | nMet = nMeteorsPerI[i] | |
1567 | ind1 = ind2 |
|
1608 | ind1 = ind2 | |
1568 | ind2 = ind1 + nMet |
|
1609 | ind2 = ind1 + nMet | |
1569 |
|
1610 | |||
1570 | meteorAux = finalMeteor2[ind1:ind2,:] |
|
1611 | meteorAux = finalMeteor2[ind1:ind2,:] | |
1571 |
|
1612 | |||
1572 | if meteorAux.shape[0] >= meteorThresh: |
|
1613 | if meteorAux.shape[0] >= meteorThresh: | |
1573 | vel = meteorAux[:, 7] |
|
1614 | vel = meteorAux[:, 7] | |
1574 | zen = meteorAux[:, 5]*numpy.pi/180 |
|
1615 | zen = meteorAux[:, 5]*numpy.pi/180 | |
1575 | azim = meteorAux[:, 4]*numpy.pi/180 |
|
1616 | azim = meteorAux[:, 4]*numpy.pi/180 | |
1576 |
|
1617 | |||
1577 | n = numpy.cos(zen) |
|
1618 | n = numpy.cos(zen) | |
1578 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) |
|
1619 | # m = (1 - n**2)/(1 - numpy.tan(azim)**2) | |
1579 | # l = m*numpy.tan(azim) |
|
1620 | # l = m*numpy.tan(azim) | |
1580 | l = numpy.sin(zen)*numpy.sin(azim) |
|
1621 | l = numpy.sin(zen)*numpy.sin(azim) | |
1581 | m = numpy.sin(zen)*numpy.cos(azim) |
|
1622 | m = numpy.sin(zen)*numpy.cos(azim) | |
1582 |
|
1623 | |||
1583 | A = numpy.vstack((l, m)).transpose() |
|
1624 | A = numpy.vstack((l, m)).transpose() | |
1584 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) |
|
1625 | A1 = numpy.dot(numpy.linalg.inv( numpy.dot(A.transpose(),A) ),A.transpose()) | |
1585 | windsAux = numpy.dot(A1, vel) |
|
1626 | windsAux = numpy.dot(A1, vel) | |
1586 |
|
1627 | |||
1587 | winds[0,i] = windsAux[0] |
|
1628 | winds[0,i] = windsAux[0] | |
1588 | winds[1,i] = windsAux[1] |
|
1629 | winds[1,i] = windsAux[1] | |
1589 |
|
1630 | |||
1590 | return winds, heightPerI[:-1] |
|
1631 | return winds, heightPerI[:-1] | |
1591 |
|
1632 | |||
1592 | def run(self, dataOut, technique, **kwargs): |
|
1633 | def run(self, dataOut, technique, **kwargs): | |
1593 |
|
1634 | |||
1594 | param = dataOut.data_param |
|
1635 | param = dataOut.data_param | |
1595 | if dataOut.abscissaList != None: |
|
1636 | # if dataOut.abscissaList != None: | |
1596 | absc = dataOut.abscissaList[:-1] |
|
1637 | # absc = dataOut.abscissaList[:-1] | |
1597 | noise = dataOut.noise |
|
1638 | noise = dataOut.noise | |
1598 |
heightList = dataOut. |
|
1639 | heightList = dataOut.heightList | |
1599 | SNR = dataOut.data_SNR |
|
1640 | SNR = dataOut.data_SNR | |
1600 |
|
1641 | |||
1601 | if technique == 'DBS': |
|
1642 | if technique == 'DBS': | |
1602 |
|
1643 | |||
1603 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): |
|
1644 | if kwargs.has_key('dirCosx') and kwargs.has_key('dirCosy'): | |
1604 | theta_x = numpy.array(kwargs['dirCosx']) |
|
1645 | theta_x = numpy.array(kwargs['dirCosx']) | |
1605 | theta_y = numpy.array(kwargs['dirCosy']) |
|
1646 | theta_y = numpy.array(kwargs['dirCosy']) | |
1606 | else: |
|
1647 | else: | |
1607 | elev = numpy.array(kwargs['elevation']) |
|
1648 | elev = numpy.array(kwargs['elevation']) | |
1608 | azim = numpy.array(kwargs['azimuth']) |
|
1649 | azim = numpy.array(kwargs['azimuth']) | |
1609 | theta_x, theta_y = self.__calculateCosDir(elev, azim) |
|
1650 | theta_x, theta_y = self.__calculateCosDir(elev, azim) | |
1610 | azimuth = kwargs['correctAzimuth'] |
|
1651 | azimuth = kwargs['correctAzimuth'] | |
1611 | if kwargs.has_key('horizontalOnly'): |
|
1652 | if kwargs.has_key('horizontalOnly'): | |
1612 | horizontalOnly = kwargs['horizontalOnly'] |
|
1653 | horizontalOnly = kwargs['horizontalOnly'] | |
1613 | else: horizontalOnly = False |
|
1654 | else: horizontalOnly = False | |
1614 | if kwargs.has_key('correctFactor'): |
|
1655 | if kwargs.has_key('correctFactor'): | |
1615 | correctFactor = kwargs['correctFactor'] |
|
1656 | correctFactor = kwargs['correctFactor'] | |
1616 | else: correctFactor = 1 |
|
1657 | else: correctFactor = 1 | |
1617 | if kwargs.has_key('channelList'): |
|
1658 | if kwargs.has_key('channelList'): | |
1618 | channelList = kwargs['channelList'] |
|
1659 | channelList = kwargs['channelList'] | |
|
1660 | if len(channelList) == 2: | |||
|
1661 | horizontalOnly = True | |||
1619 | arrayChannel = numpy.array(channelList) |
|
1662 | arrayChannel = numpy.array(channelList) | |
1620 | param = param[arrayChannel,:,:] |
|
1663 | param = param[arrayChannel,:,:] | |
1621 | theta_x = theta_x[arrayChannel] |
|
1664 | theta_x = theta_x[arrayChannel] | |
1622 | theta_y = theta_y[arrayChannel] |
|
1665 | theta_y = theta_y[arrayChannel] | |
1623 |
|
1666 | |||
1624 | velRadial0 = param[:,1,:] #Radial velocity |
|
1667 | velRadial0 = param[:,1,:] #Radial velocity | |
1625 |
|
||||
1626 | if velRadial0.shape[0] != theta_x.shape[0] or velRadial0.shape[0] != theta_y.shape[0]: |
|
|||
1627 | raise ValueError, "The max number of channels is %d, and the length of cosine director is %d. Please check: dirCosX, dirCosY, elevation or azimuth arguments" %(velRadial0.shape[0], theta_x.shape[0]) |
|
|||
1628 |
|
||||
1629 | if theta_x.shape[0] == 2: |
|
|||
1630 | horizontalOnly = True |
|
|||
1631 |
|
||||
1632 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function |
|
1668 | dataOut.data_output, dataOut.heightList, dataOut.data_SNR = self.techniqueDBS(velRadial0, theta_x, theta_y, azimuth, correctFactor, horizontalOnly, heightList, SNR) #DBS Function | |
1633 | dataOut.utctimeInit = dataOut.utctime |
|
1669 | dataOut.utctimeInit = dataOut.utctime | |
1634 | dataOut.outputInterval = dataOut.timeInterval |
|
1670 | dataOut.outputInterval = dataOut.timeInterval | |
1635 |
|
1671 | |||
1636 | elif technique == 'SA': |
|
1672 | elif technique == 'SA': | |
1637 |
|
1673 | |||
1638 | #Parameters |
|
1674 | #Parameters | |
1639 | position_x = kwargs['positionX'] |
|
1675 | position_x = kwargs['positionX'] | |
1640 | position_y = kwargs['positionY'] |
|
1676 | position_y = kwargs['positionY'] | |
1641 | azimuth = kwargs['azimuth'] |
|
1677 | azimuth = kwargs['azimuth'] | |
1642 |
|
1678 | |||
1643 | if kwargs.has_key('crosspairsList'): |
|
1679 | if kwargs.has_key('crosspairsList'): | |
1644 | pairs = kwargs['crosspairsList'] |
|
1680 | pairs = kwargs['crosspairsList'] | |
1645 | else: |
|
1681 | else: | |
1646 | pairs = None |
|
1682 | pairs = None | |
1647 |
|
1683 | |||
1648 | if kwargs.has_key('correctFactor'): |
|
1684 | if kwargs.has_key('correctFactor'): | |
1649 | correctFactor = kwargs['correctFactor'] |
|
1685 | correctFactor = kwargs['correctFactor'] | |
1650 | else: |
|
1686 | else: | |
1651 | correctFactor = 1 |
|
1687 | correctFactor = 1 | |
1652 |
|
1688 | |||
1653 | tau = dataOut.data_param |
|
1689 | tau = dataOut.data_param | |
1654 | _lambda = dataOut.C/dataOut.frequency |
|
1690 | _lambda = dataOut.C/dataOut.frequency | |
1655 | pairsList = dataOut.groupList |
|
1691 | pairsList = dataOut.groupList | |
1656 | nChannels = dataOut.nChannels |
|
1692 | nChannels = dataOut.nChannels | |
1657 |
|
1693 | |||
1658 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) |
|
1694 | dataOut.data_output = self.techniqueSA(pairs, pairsList, nChannels, tau, azimuth, _lambda, position_x, position_y, absc, correctFactor) | |
1659 | dataOut.utctimeInit = dataOut.utctime |
|
1695 | dataOut.utctimeInit = dataOut.utctime | |
1660 | dataOut.outputInterval = dataOut.timeInterval |
|
1696 | dataOut.outputInterval = dataOut.timeInterval | |
1661 |
|
1697 | |||
1662 | elif technique == 'Meteors': |
|
1698 | elif technique == 'Meteors': | |
1663 | dataOut.flagNoData = True |
|
1699 | dataOut.flagNoData = True | |
1664 | self.__dataReady = False |
|
1700 | self.__dataReady = False | |
1665 |
|
1701 | |||
1666 | if kwargs.has_key('nHours'): |
|
1702 | if kwargs.has_key('nHours'): | |
1667 | nHours = kwargs['nHours'] |
|
1703 | nHours = kwargs['nHours'] | |
1668 | else: |
|
1704 | else: | |
1669 | nHours = 1 |
|
1705 | nHours = 1 | |
1670 |
|
1706 | |||
1671 | if kwargs.has_key('meteorsPerBin'): |
|
1707 | if kwargs.has_key('meteorsPerBin'): | |
1672 | meteorThresh = kwargs['meteorsPerBin'] |
|
1708 | meteorThresh = kwargs['meteorsPerBin'] | |
1673 | else: |
|
1709 | else: | |
1674 | meteorThresh = 6 |
|
1710 | meteorThresh = 6 | |
1675 |
|
1711 | |||
1676 | if kwargs.has_key('hmin'): |
|
1712 | if kwargs.has_key('hmin'): | |
1677 | hmin = kwargs['hmin'] |
|
1713 | hmin = kwargs['hmin'] | |
1678 | else: hmin = 70 |
|
1714 | else: hmin = 70 | |
1679 | if kwargs.has_key('hmax'): |
|
1715 | if kwargs.has_key('hmax'): | |
1680 | hmax = kwargs['hmax'] |
|
1716 | hmax = kwargs['hmax'] | |
1681 | else: hmax = 110 |
|
1717 | else: hmax = 110 | |
1682 |
|
1718 | |||
1683 | dataOut.outputInterval = nHours*3600 |
|
1719 | dataOut.outputInterval = nHours*3600 | |
1684 |
|
1720 | |||
1685 | if self.__isConfig == False: |
|
1721 | if self.__isConfig == False: | |
1686 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) |
|
1722 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |
1687 | #Get Initial LTC time |
|
1723 | #Get Initial LTC time | |
1688 |
self.__initime = datetime.datetime.utcfromtimestamp( |
|
1724 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |
1689 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() |
|
1725 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |
1690 |
|
1726 | |||
1691 | self.__isConfig = True |
|
1727 | self.__isConfig = True | |
1692 |
|
1728 | |||
1693 | if self.__buffer == None: |
|
1729 | if self.__buffer == None: | |
1694 | self.__buffer = dataOut.data_param |
|
1730 | self.__buffer = dataOut.data_param | |
1695 | self.__firstdata = copy.copy(dataOut) |
|
1731 | self.__firstdata = copy.copy(dataOut) | |
1696 |
|
1732 | |||
1697 | else: |
|
1733 | else: | |
1698 |
self.__buffer = numpy. |
|
1734 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) | |
1699 |
|
1735 | |||
1700 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready |
|
1736 | self.__checkTime(dataOut.utctime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |
1701 |
|
1737 | |||
1702 | if self.__dataReady: |
|
1738 | if self.__dataReady: | |
1703 | dataOut.utctimeInit = self.__initime |
|
1739 | dataOut.utctimeInit = self.__initime | |
1704 |
|
1740 | |||
1705 | self.__initime += dataOut.outputInterval #to erase time offset |
|
1741 | self.__initime += dataOut.outputInterval #to erase time offset | |
1706 |
|
1742 | |||
1707 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) |
|
1743 | dataOut.data_output, dataOut.heightList = self.techniqueMeteors(self.__buffer, meteorThresh, hmin, hmax) | |
1708 | dataOut.flagNoData = False |
|
1744 | dataOut.flagNoData = False | |
1709 | self.__buffer = None |
|
1745 | self.__buffer = None | |
1710 |
|
1746 | |||
1711 | return |
|
1747 | return | |
1712 |
|
1748 | |||
1713 | class EWDriftsEstimation(Operation): |
|
1749 | class EWDriftsEstimation(Operation): | |
1714 |
|
1750 | |||
1715 |
|
1751 | |||
1716 | def __init__(self): |
|
1752 | def __init__(self): | |
1717 | Operation.__init__(self) |
|
1753 | Operation.__init__(self) | |
1718 |
|
1754 | |||
1719 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
1755 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
1720 | listPhi = phi.tolist() |
|
1756 | listPhi = phi.tolist() | |
1721 | maxid = listPhi.index(max(listPhi)) |
|
1757 | maxid = listPhi.index(max(listPhi)) | |
1722 | minid = listPhi.index(min(listPhi)) |
|
1758 | minid = listPhi.index(min(listPhi)) | |
1723 |
|
1759 | |||
1724 | rango = range(len(phi)) |
|
1760 | rango = range(len(phi)) | |
1725 | # rango = numpy.delete(rango,maxid) |
|
1761 | # rango = numpy.delete(rango,maxid) | |
1726 |
|
1762 | |||
1727 | heiRang1 = heiRang*math.cos(phi[maxid]) |
|
1763 | heiRang1 = heiRang*math.cos(phi[maxid]) | |
1728 | heiRangAux = heiRang*math.cos(phi[minid]) |
|
1764 | heiRangAux = heiRang*math.cos(phi[minid]) | |
1729 | indOut = (heiRang1 < heiRangAux[0]).nonzero() |
|
1765 | indOut = (heiRang1 < heiRangAux[0]).nonzero() | |
1730 | heiRang1 = numpy.delete(heiRang1,indOut) |
|
1766 | heiRang1 = numpy.delete(heiRang1,indOut) | |
1731 |
|
1767 | |||
1732 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1768 | velRadial1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1733 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) |
|
1769 | SNR1 = numpy.zeros([len(phi),len(heiRang1)]) | |
1734 |
|
1770 | |||
1735 | for i in rango: |
|
1771 | for i in rango: | |
1736 | x = heiRang*math.cos(phi[i]) |
|
1772 | x = heiRang*math.cos(phi[i]) | |
1737 | y1 = velRadial[i,:] |
|
1773 | y1 = velRadial[i,:] | |
1738 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') |
|
1774 | f1 = interpolate.interp1d(x,y1,kind = 'cubic') | |
1739 |
|
1775 | |||
1740 | x1 = heiRang1 |
|
1776 | x1 = heiRang1 | |
1741 | y11 = f1(x1) |
|
1777 | y11 = f1(x1) | |
1742 |
|
1778 | |||
1743 | y2 = SNR[i,:] |
|
1779 | y2 = SNR[i,:] | |
1744 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') |
|
1780 | f2 = interpolate.interp1d(x,y2,kind = 'cubic') | |
1745 | y21 = f2(x1) |
|
1781 | y21 = f2(x1) | |
1746 |
|
1782 | |||
1747 | velRadial1[i,:] = y11 |
|
1783 | velRadial1[i,:] = y11 | |
1748 | SNR1[i,:] = y21 |
|
1784 | SNR1[i,:] = y21 | |
1749 |
|
1785 | |||
1750 | return heiRang1, velRadial1, SNR1 |
|
1786 | return heiRang1, velRadial1, SNR1 | |
1751 |
|
1787 | |||
1752 | def run(self, dataOut, zenith, zenithCorrection): |
|
1788 | def run(self, dataOut, zenith, zenithCorrection): | |
1753 | heiRang = dataOut.heightList |
|
1789 | heiRang = dataOut.heightList | |
1754 | velRadial = dataOut.data_param[:,3,:] |
|
1790 | velRadial = dataOut.data_param[:,3,:] | |
1755 | SNR = dataOut.data_SNR |
|
1791 | SNR = dataOut.data_SNR | |
1756 |
|
1792 | |||
1757 | zenith = numpy.array(zenith) |
|
1793 | zenith = numpy.array(zenith) | |
1758 | zenith -= zenithCorrection |
|
1794 | zenith -= zenithCorrection | |
1759 | zenith *= numpy.pi/180 |
|
1795 | zenith *= numpy.pi/180 | |
1760 |
|
1796 | |||
1761 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) |
|
1797 | heiRang1, velRadial1, SNR1 = self.__correctValues(heiRang, numpy.abs(zenith), velRadial, SNR) | |
1762 |
|
1798 | |||
1763 | alp = zenith[0] |
|
1799 | alp = zenith[0] | |
1764 | bet = zenith[1] |
|
1800 | bet = zenith[1] | |
1765 |
|
1801 | |||
1766 | w_w = velRadial1[0,:] |
|
1802 | w_w = velRadial1[0,:] | |
1767 | w_e = velRadial1[1,:] |
|
1803 | w_e = velRadial1[1,:] | |
1768 |
|
1804 | |||
1769 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) |
|
1805 | w = (w_w*numpy.sin(bet) - w_e*numpy.sin(alp))/(numpy.cos(alp)*numpy.sin(bet) - numpy.cos(bet)*numpy.sin(alp)) | |
1770 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) |
|
1806 | u = (w_w*numpy.cos(bet) - w_e*numpy.cos(alp))/(numpy.sin(alp)*numpy.cos(bet) - numpy.sin(bet)*numpy.cos(alp)) | |
1771 |
|
1807 | |||
1772 | winds = numpy.vstack((u,w)) |
|
1808 | winds = numpy.vstack((u,w)) | |
1773 |
|
1809 | |||
1774 | dataOut.heightList = heiRang1 |
|
1810 | dataOut.heightList = heiRang1 | |
1775 | dataOut.data_output = winds |
|
1811 | dataOut.data_output = winds | |
1776 | dataOut.data_SNR = SNR1 |
|
1812 | dataOut.data_SNR = SNR1 | |
1777 |
|
1813 | |||
1778 | dataOut.utctimeInit = dataOut.utctime |
|
1814 | dataOut.utctimeInit = dataOut.utctime | |
1779 | dataOut.outputInterval = dataOut.timeInterval |
|
1815 | dataOut.outputInterval = dataOut.timeInterval | |
1780 | return |
|
1816 | return | |
1781 |
|
1817 | |||
|
1818 | class PhaseCalibration(Operation): | |||
|
1819 | ||||
|
1820 | __buffer = None | |||
|
1821 | ||||
|
1822 | __initime = None | |||
|
1823 | ||||
|
1824 | __dataReady = False | |||
|
1825 | ||||
|
1826 | __isConfig = False | |||
|
1827 | ||||
|
1828 | def __checkTime(self, currentTime, initTime, paramInterval, outputInterval): | |||
|
1829 | ||||
|
1830 | dataTime = currentTime + paramInterval | |||
|
1831 | deltaTime = dataTime - initTime | |||
|
1832 | ||||
|
1833 | if deltaTime >= outputInterval or deltaTime < 0: | |||
|
1834 | return True | |||
|
1835 | ||||
|
1836 | return False | |||
|
1837 | ||||
|
1838 | def __getGammas(self, pairs, k, d, phases): | |||
|
1839 | gammas = numpy.zeros(2) | |||
|
1840 | ||||
|
1841 | for i in range(len(pairs)): | |||
|
1842 | ||||
|
1843 | pairi = pairs[i] | |||
|
1844 | ||||
|
1845 | #Calculating gamma | |||
|
1846 | jdcos = phases[:,pairi[1]]/(k*d[pairi[1]]) | |||
|
1847 | jgamma = numpy.angle(numpy.exp(1j*(k*d[pairi[0]]*jdcos - phases[:,pairi[0]]))) | |||
|
1848 | ||||
|
1849 | #Revised distribution | |||
|
1850 | jgammaArray = numpy.hstack((jgamma,jgamma+0.5*numpy.pi,jgamma-0.5*numpy.pi)) | |||
|
1851 | ||||
|
1852 | #Histogram | |||
|
1853 | nBins = 64.0 | |||
|
1854 | rmin = -0.5*numpy.pi | |||
|
1855 | rmax = 0.5*numpy.pi | |||
|
1856 | phaseHisto = numpy.histogram(jgammaArray, bins=nBins, range=(rmin,rmax)) | |||
|
1857 | ||||
|
1858 | meteorsY = phaseHisto[0] | |||
|
1859 | phasesX = phaseHisto[1][:-1] | |||
|
1860 | width = phasesX[1] - phasesX[0] | |||
|
1861 | phasesX += width/2 | |||
|
1862 | ||||
|
1863 | #Gaussian aproximation | |||
|
1864 | bpeak = meteorsY.argmax() | |||
|
1865 | peak = meteorsY.max() | |||
|
1866 | jmin = bpeak - 5 | |||
|
1867 | jmax = bpeak + 5 + 1 | |||
|
1868 | ||||
|
1869 | if jmin<0: | |||
|
1870 | jmin = 0 | |||
|
1871 | jmax = 6 | |||
|
1872 | elif jmax > meteorsY.size: | |||
|
1873 | jmin = meteorsY.size - 6 | |||
|
1874 | jmax = meteorsY.size | |||
|
1875 | ||||
|
1876 | x0 = numpy.array([peak,bpeak,50]) | |||
|
1877 | coeff = optimize.leastsq(self.__residualFunction, x0, args=(meteorsY[jmin:jmax], phasesX[jmin:jmax])) | |||
|
1878 | ||||
|
1879 | #Gammas | |||
|
1880 | gammas[i] = coeff[0][1] | |||
|
1881 | # gammas[i] = bpeak | |||
|
1882 | ||||
|
1883 | return gammas | |||
|
1884 | ||||
|
1885 | def __residualFunction(self, coeffs, y, t): | |||
|
1886 | ||||
|
1887 | return y - self.__gauss_function(t, coeffs) | |||
|
1888 | ||||
|
1889 | def __gauss_function(self, t, coeffs): | |||
|
1890 | ||||
|
1891 | return coeffs[0]*numpy.exp(-0.5*((t - coeffs[1]) / coeffs[2])**2) | |||
|
1892 | ||||
|
1893 | def __getPhases(self, azimuth, h, pairsList, d, gammas, meteorsArray): | |||
|
1894 | meteorOps = MeteorOperations() | |||
|
1895 | nchan = 4 | |||
|
1896 | pairx = pairsList[0] | |||
|
1897 | pairy = pairsList[1] | |||
|
1898 | center_xangle = 0 | |||
|
1899 | center_yangle = 0 | |||
|
1900 | range_angle = numpy.array([8*numpy.pi,numpy.pi,numpy.pi/2,numpy.pi/4]) | |||
|
1901 | ntimes = len(range_angle) | |||
|
1902 | ||||
|
1903 | nstepsx = 20.0 | |||
|
1904 | nstepsy = 20.0 | |||
|
1905 | ||||
|
1906 | for iz in range(ntimes): | |||
|
1907 | min_xangle = -range_angle[iz]/2 + center_xangle | |||
|
1908 | max_xangle = range_angle[iz]/2 + center_xangle | |||
|
1909 | min_yangle = -range_angle[iz]/2 + center_yangle | |||
|
1910 | max_yangle = range_angle[iz]/2 + center_yangle | |||
|
1911 | ||||
|
1912 | inc_x = (max_xangle-min_xangle)/nstepsx | |||
|
1913 | inc_y = (max_yangle-min_yangle)/nstepsy | |||
|
1914 | ||||
|
1915 | alpha_y = numpy.arange(nstepsy)*inc_y + min_yangle | |||
|
1916 | alpha_x = numpy.arange(nstepsx)*inc_x + min_xangle | |||
|
1917 | penalty = numpy.zeros((nstepsx,nstepsy)) | |||
|
1918 | jph_array = numpy.zeros((nchan,nstepsx,nstepsy)) | |||
|
1919 | jph = numpy.zeros(nchan) | |||
|
1920 | ||||
|
1921 | # Iterations looking for the offset | |||
|
1922 | for iy in range(int(nstepsy)): | |||
|
1923 | for ix in range(int(nstepsx)): | |||
|
1924 | jph[pairy[1]] = alpha_y[iy] | |||
|
1925 | jph[pairy[0]] = -gammas[1] + alpha_y[iy]*d[pairy[0]]/d[pairy[1]] | |||
|
1926 | ||||
|
1927 | jph[pairx[1]] = alpha_x[ix] | |||
|
1928 | jph[pairx[0]] = -gammas[0] + alpha_x[ix]*d[pairx[0]]/d[pairx[1]] | |||
|
1929 | ||||
|
1930 | jph_array[:,ix,iy] = jph | |||
|
1931 | ||||
|
1932 | meteorsArray1 = meteorOps.getMeteorParams(meteorsArray, azimuth, h, pairsList, jph) | |||
|
1933 | error = meteorsArray1[:,-1] | |||
|
1934 | ind1 = numpy.where(error==0)[0] | |||
|
1935 | penalty[ix,iy] = ind1.size | |||
|
1936 | ||||
|
1937 | i,j = numpy.unravel_index(penalty.argmax(), penalty.shape) | |||
|
1938 | phOffset = jph_array[:,i,j] | |||
|
1939 | ||||
|
1940 | center_xangle = phOffset[pairx[1]] | |||
|
1941 | center_yangle = phOffset[pairy[1]] | |||
|
1942 | ||||
|
1943 | phOffset = numpy.angle(numpy.exp(1j*jph_array[:,i,j])) | |||
|
1944 | phOffset = phOffset*180/numpy.pi | |||
|
1945 | return phOffset | |||
|
1946 | ||||
|
1947 | ||||
|
1948 | def run(self, dataOut, pairs, distances, hmin, hmax, nHours = None): | |||
|
1949 | ||||
|
1950 | dataOut.flagNoData = True | |||
|
1951 | self.__dataReady = False | |||
|
1952 | ||||
|
1953 | if nHours == None: | |||
|
1954 | nHours = 1 | |||
|
1955 | ||||
|
1956 | dataOut.outputInterval = nHours*3600 | |||
|
1957 | ||||
|
1958 | if self.__isConfig == False: | |||
|
1959 | # self.__initime = dataOut.datatime.replace(minute = 0, second = 0, microsecond = 03) | |||
|
1960 | #Get Initial LTC time | |||
|
1961 | self.__initime = datetime.datetime.utcfromtimestamp(dataOut.utctime) | |||
|
1962 | self.__initime = (self.__initime.replace(minute = 0, second = 0, microsecond = 0) - datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
1963 | ||||
|
1964 | self.__isConfig = True | |||
|
1965 | ||||
|
1966 | if self.__buffer == None: | |||
|
1967 | self.__buffer = dataOut.data_param.copy() | |||
|
1968 | ||||
|
1969 | else: | |||
|
1970 | self.__buffer = numpy.hstack((self.__buffer, dataOut.data_param)) | |||
|
1971 | ||||
|
1972 | self.__dataReady = self.__checkTime(dataOut.utctime, self.__initime, dataOut.paramInterval, dataOut.outputInterval) #Check if the buffer is ready | |||
|
1973 | ||||
|
1974 | if self.__dataReady: | |||
|
1975 | dataOut.utctimeInit = self.__initime | |||
|
1976 | self.__initime += dataOut.outputInterval #to erase time offset | |||
|
1977 | ||||
|
1978 | freq = dataOut.frequency | |||
|
1979 | c = dataOut.C #m/s | |||
|
1980 | lamb = c/freq | |||
|
1981 | k = 2*numpy.pi/lamb | |||
|
1982 | azimuth = 0 | |||
|
1983 | h = (hmin, hmax) | |||
|
1984 | pairsList = ((0,3),(1,2)) | |||
|
1985 | ||||
|
1986 | meteorsArray = self.__buffer[0,:,:] | |||
|
1987 | error = meteorsArray[:,-1] | |||
|
1988 | boolError = (error==0)|(error==3)|(error==4)|(error==13)|(error==14) | |||
|
1989 | ind1 = numpy.where(boolError)[0] | |||
|
1990 | meteorsArray = meteorsArray[ind1,:] | |||
|
1991 | meteorsArray[:,-1] = 0 | |||
|
1992 | phases = meteorsArray[:,9:13] | |||
|
1993 | ||||
|
1994 | #Calculate Gammas | |||
|
1995 | gammas = self.__getGammas(pairs, k, distances, phases) | |||
|
1996 | # gammas = numpy.array([-21.70409463,45.76935864])*numpy.pi/180 | |||
|
1997 | #Calculate Phases | |||
|
1998 | phasesOff = self.__getPhases(azimuth, h, pairsList, distances, gammas, meteorsArray) | |||
|
1999 | phasesOff = phasesOff.reshape((1,phasesOff.size)) | |||
|
2000 | dataOut.data_output = -phasesOff | |||
|
2001 | dataOut.flagNoData = False | |||
|
2002 | self.__buffer = None | |||
|
2003 | ||||
|
2004 | ||||
|
2005 | return | |||
|
2006 | ||||
|
2007 | class MeteorOperations(): | |||
|
2008 | ||||
|
2009 | def __init__(self): | |||
|
2010 | ||||
|
2011 | return | |||
|
2012 | ||||
|
2013 | def getMeteorParams(self, arrayParameters0, azimuth, h, pairsList, jph): | |||
1782 |
|
2014 | |||
|
2015 | arrayParameters = arrayParameters0.copy() | |||
|
2016 | hmin = h[0] | |||
|
2017 | hmax = h[1] | |||
1783 |
|
2018 | |||
|
2019 | #Calculate AOA (Error N 3, 4) | |||
|
2020 | #JONES ET AL. 1998 | |||
|
2021 | AOAthresh = numpy.pi/8 | |||
|
2022 | error = arrayParameters[:,-1] | |||
|
2023 | phases = -arrayParameters[:,9:13] + jph | |||
|
2024 | arrayParameters[:,4:7], arrayParameters[:,-1] = self.__getAOA(phases, pairsList, error, AOAthresh, azimuth) | |||
|
2025 | ||||
|
2026 | #Calculate Heights (Error N 13 and 14) | |||
|
2027 | error = arrayParameters[:,-1] | |||
|
2028 | Ranges = arrayParameters[:,2] | |||
|
2029 | zenith = arrayParameters[:,5] | |||
|
2030 | arrayParameters[:,3], arrayParameters[:,-1] = self.__getHeights(Ranges, zenith, error, hmin, hmax) | |||
|
2031 | ||||
|
2032 | #----------------------- Get Final data ------------------------------------ | |||
|
2033 | # error = arrayParameters[:,-1] | |||
|
2034 | # ind1 = numpy.where(error==0)[0] | |||
|
2035 | # arrayParameters = arrayParameters[ind1,:] | |||
|
2036 | ||||
|
2037 | return arrayParameters | |||
|
2038 | ||||
|
2039 | def __getAOA(self, phases, pairsList, error, AOAthresh, azimuth): | |||
|
2040 | ||||
|
2041 | arrayAOA = numpy.zeros((phases.shape[0],3)) | |||
|
2042 | cosdir0, cosdir = self.__getDirectionCosines(phases, pairsList) | |||
|
2043 | ||||
|
2044 | arrayAOA[:,:2] = self.__calculateAOA(cosdir, azimuth) | |||
|
2045 | cosDirError = numpy.sum(numpy.abs(cosdir0 - cosdir), axis = 1) | |||
|
2046 | arrayAOA[:,2] = cosDirError | |||
|
2047 | ||||
|
2048 | azimuthAngle = arrayAOA[:,0] | |||
|
2049 | zenithAngle = arrayAOA[:,1] | |||
|
2050 | ||||
|
2051 | #Setting Error | |||
|
2052 | #Number 3: AOA not fesible | |||
|
2053 | indInvalid = numpy.where(numpy.logical_and((numpy.logical_or(numpy.isnan(zenithAngle), numpy.isnan(azimuthAngle))),error == 0))[0] | |||
|
2054 | error[indInvalid] = 3 | |||
|
2055 | #Number 4: Large difference in AOAs obtained from different antenna baselines | |||
|
2056 | indInvalid = numpy.where(numpy.logical_and(cosDirError > AOAthresh,error == 0))[0] | |||
|
2057 | error[indInvalid] = 4 | |||
|
2058 | return arrayAOA, error | |||
|
2059 | ||||
|
2060 | def __getDirectionCosines(self, arrayPhase, pairsList): | |||
|
2061 | ||||
|
2062 | #Initializing some variables | |||
|
2063 | ang_aux = numpy.array([-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8])*2*numpy.pi | |||
|
2064 | ang_aux = ang_aux.reshape(1,ang_aux.size) | |||
|
2065 | ||||
|
2066 | cosdir = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
2067 | cosdir0 = numpy.zeros((arrayPhase.shape[0],2)) | |||
|
2068 | ||||
|
2069 | ||||
|
2070 | for i in range(2): | |||
|
2071 | #First Estimation | |||
|
2072 | phi0_aux = arrayPhase[:,pairsList[i][0]] + arrayPhase[:,pairsList[i][1]] | |||
|
2073 | #Dealias | |||
|
2074 | indcsi = numpy.where(phi0_aux > numpy.pi) | |||
|
2075 | phi0_aux[indcsi] -= 2*numpy.pi | |||
|
2076 | indcsi = numpy.where(phi0_aux < -numpy.pi) | |||
|
2077 | phi0_aux[indcsi] += 2*numpy.pi | |||
|
2078 | #Direction Cosine 0 | |||
|
2079 | cosdir0[:,i] = -(phi0_aux)/(2*numpy.pi*0.5) | |||
|
2080 | ||||
|
2081 | #Most-Accurate Second Estimation | |||
|
2082 | phi1_aux = arrayPhase[:,pairsList[i][0]] - arrayPhase[:,pairsList[i][1]] | |||
|
2083 | phi1_aux = phi1_aux.reshape(phi1_aux.size,1) | |||
|
2084 | #Direction Cosine 1 | |||
|
2085 | cosdir1 = -(phi1_aux + ang_aux)/(2*numpy.pi*4.5) | |||
|
2086 | ||||
|
2087 | #Searching the correct Direction Cosine | |||
|
2088 | cosdir0_aux = cosdir0[:,i] | |||
|
2089 | cosdir0_aux = cosdir0_aux.reshape(cosdir0_aux.size,1) | |||
|
2090 | #Minimum Distance | |||
|
2091 | cosDiff = (cosdir1 - cosdir0_aux)**2 | |||
|
2092 | indcos = cosDiff.argmin(axis = 1) | |||
|
2093 | #Saving Value obtained | |||
|
2094 | cosdir[:,i] = cosdir1[numpy.arange(len(indcos)),indcos] | |||
|
2095 | ||||
|
2096 | return cosdir0, cosdir | |||
|
2097 | ||||
|
2098 | def __calculateAOA(self, cosdir, azimuth): | |||
|
2099 | cosdirX = cosdir[:,0] | |||
|
2100 | cosdirY = cosdir[:,1] | |||
|
2101 | ||||
|
2102 | zenithAngle = numpy.arccos(numpy.sqrt(1 - cosdirX**2 - cosdirY**2))*180/numpy.pi | |||
|
2103 | azimuthAngle = numpy.arctan2(cosdirX,cosdirY)*180/numpy.pi + azimuth #0 deg north, 90 deg east | |||
|
2104 | angles = numpy.vstack((azimuthAngle, zenithAngle)).transpose() | |||
|
2105 | ||||
|
2106 | return angles | |||
|
2107 | ||||
|
2108 | def __getHeights(self, Ranges, zenith, error, minHeight, maxHeight): | |||
|
2109 | ||||
|
2110 | Ramb = 375 #Ramb = c/(2*PRF) | |||
|
2111 | Re = 6371 #Earth Radius | |||
|
2112 | heights = numpy.zeros(Ranges.shape) | |||
|
2113 | ||||
|
2114 | R_aux = numpy.array([0,1,2])*Ramb | |||
|
2115 | R_aux = R_aux.reshape(1,R_aux.size) | |||
|
2116 | ||||
|
2117 | Ranges = Ranges.reshape(Ranges.size,1) | |||
|
2118 | ||||
|
2119 | Ri = Ranges + R_aux | |||
|
2120 | hi = numpy.sqrt(Re**2 + Ri**2 + (2*Re*numpy.cos(zenith*numpy.pi/180)*Ri.transpose()).transpose()) - Re | |||
|
2121 | ||||
|
2122 | #Check if there is a height between 70 and 110 km | |||
|
2123 | h_bool = numpy.sum(numpy.logical_and(hi > minHeight, hi < maxHeight), axis = 1) | |||
|
2124 | ind_h = numpy.where(h_bool == 1)[0] | |||
|
2125 | ||||
|
2126 | hCorr = hi[ind_h, :] | |||
|
2127 | ind_hCorr = numpy.where(numpy.logical_and(hi > minHeight, hi < maxHeight)) | |||
|
2128 | ||||
|
2129 | hCorr = hi[ind_hCorr] | |||
|
2130 | heights[ind_h] = hCorr | |||
|
2131 | ||||
|
2132 | #Setting Error | |||
|
2133 | #Number 13: Height unresolvable echo: not valid height within 70 to 110 km | |||
|
2134 | #Number 14: Height ambiguous echo: more than one possible height within 70 to 110 km | |||
|
2135 | ||||
|
2136 | indInvalid2 = numpy.where(numpy.logical_and(h_bool > 1, error == 0))[0] | |||
|
2137 | error[indInvalid2] = 14 | |||
|
2138 | indInvalid1 = numpy.where(numpy.logical_and(h_bool == 0, error == 0))[0] | |||
|
2139 | error[indInvalid1] = 13 | |||
|
2140 | ||||
|
2141 | return heights, error | |||
1784 |
|
2142 | |||
1785 |
|
2143 | |||
1786 | No newline at end of file |
|
2144 |
General Comments 0
You need to be logged in to leave comments.
Login now