This diff has been collapsed as it changes many lines, (803 lines changed) Show them Hide them | |||||
@@ -0,0 +1,803 | |||||
|
1 | ||||
|
2 | import os | |||
|
3 | import sys | |||
|
4 | import zmq | |||
|
5 | import time | |||
|
6 | import datetime | |||
|
7 | from functools import wraps | |||
|
8 | import numpy | |||
|
9 | import matplotlib | |||
|
10 | ||||
|
11 | if 'BACKEND' in os.environ: | |||
|
12 | matplotlib.use(os.environ['BACKEND']) | |||
|
13 | elif 'linux' in sys.platform: | |||
|
14 | matplotlib.use("TkAgg") | |||
|
15 | elif 'darwin' in sys.platform: | |||
|
16 | matplotlib.use('TkAgg') | |||
|
17 | else: | |||
|
18 | from schainpy.utils import log | |||
|
19 | log.warning('Using default Backend="Agg"', 'INFO') | |||
|
20 | matplotlib.use('Agg') | |||
|
21 | ||||
|
22 | import matplotlib.pyplot as plt | |||
|
23 | from matplotlib.patches import Polygon | |||
|
24 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |||
|
25 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |||
|
26 | ||||
|
27 | from schainpy.model.data.jrodata import PlotterData | |||
|
28 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |||
|
29 | from schainpy.utils import log | |||
|
30 | ||||
|
31 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] | |||
|
32 | blu_values = matplotlib.pyplot.get_cmap( | |||
|
33 | 'seismic_r', 20)(numpy.arange(20))[10:15] | |||
|
34 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( | |||
|
35 | 'jro', numpy.vstack((blu_values, jet_values))) | |||
|
36 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |||
|
37 | ||||
|
38 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', | |||
|
39 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] | |||
|
40 | ||||
|
41 | EARTH_RADIUS = 6.3710e3 | |||
|
42 | ||||
|
43 | ||||
|
44 | def ll2xy(lat1, lon1, lat2, lon2): | |||
|
45 | ||||
|
46 | p = 0.017453292519943295 | |||
|
47 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |||
|
48 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |||
|
49 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |||
|
50 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |||
|
51 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |||
|
52 | theta = -theta + numpy.pi/2 | |||
|
53 | return r*numpy.cos(theta), r*numpy.sin(theta) | |||
|
54 | ||||
|
55 | ||||
|
56 | def km2deg(km): | |||
|
57 | ''' | |||
|
58 | Convert distance in km to degrees | |||
|
59 | ''' | |||
|
60 | ||||
|
61 | return numpy.rad2deg(km/EARTH_RADIUS) | |||
|
62 | ||||
|
63 | ||||
|
64 | def figpause(interval): | |||
|
65 | backend = plt.rcParams['backend'] | |||
|
66 | if backend in matplotlib.rcsetup.interactive_bk: | |||
|
67 | figManager = matplotlib._pylab_helpers.Gcf.get_active() | |||
|
68 | if figManager is not None: | |||
|
69 | canvas = figManager.canvas | |||
|
70 | if canvas.figure.stale: | |||
|
71 | canvas.draw() | |||
|
72 | try: | |||
|
73 | canvas.start_event_loop(interval) | |||
|
74 | except: | |||
|
75 | pass | |||
|
76 | return | |||
|
77 | ||||
|
78 | ||||
|
79 | def popup(message): | |||
|
80 | ''' | |||
|
81 | ''' | |||
|
82 | ||||
|
83 | fig = plt.figure(figsize=(12, 8), facecolor='r') | |||
|
84 | text = '\n'.join([s.strip() for s in message.split(':')]) | |||
|
85 | fig.text(0.01, 0.5, text, ha='left', va='center', | |||
|
86 | size='20', weight='heavy', color='w') | |||
|
87 | fig.show() | |||
|
88 | figpause(1000) | |||
|
89 | ||||
|
90 | ||||
|
91 | class Throttle(object): | |||
|
92 | ''' | |||
|
93 | Decorator that prevents a function from being called more than once every | |||
|
94 | time period. | |||
|
95 | To create a function that cannot be called more than once a minute, but | |||
|
96 | will sleep until it can be called: | |||
|
97 | @Throttle(minutes=1) | |||
|
98 | def foo(): | |||
|
99 | pass | |||
|
100 | ||||
|
101 | for i in range(10): | |||
|
102 | foo() | |||
|
103 | print "This function has run %s times." % i | |||
|
104 | ''' | |||
|
105 | ||||
|
106 | def __init__(self, seconds=0, minutes=0, hours=0): | |||
|
107 | self.throttle_period = datetime.timedelta( | |||
|
108 | seconds=seconds, minutes=minutes, hours=hours | |||
|
109 | ) | |||
|
110 | ||||
|
111 | self.time_of_last_call = datetime.datetime.min | |||
|
112 | ||||
|
113 | def __call__(self, fn): | |||
|
114 | @wraps(fn) | |||
|
115 | def wrapper(*args, **kwargs): | |||
|
116 | coerce = kwargs.pop('coerce', None) | |||
|
117 | if coerce: | |||
|
118 | self.time_of_last_call = datetime.datetime.now() | |||
|
119 | return fn(*args, **kwargs) | |||
|
120 | else: | |||
|
121 | now = datetime.datetime.now() | |||
|
122 | time_since_last_call = now - self.time_of_last_call | |||
|
123 | time_left = self.throttle_period - time_since_last_call | |||
|
124 | ||||
|
125 | if time_left > datetime.timedelta(seconds=0): | |||
|
126 | return | |||
|
127 | ||||
|
128 | self.time_of_last_call = datetime.datetime.now() | |||
|
129 | return fn(*args, **kwargs) | |||
|
130 | ||||
|
131 | return wrapper | |||
|
132 | ||||
|
133 | def apply_throttle(value): | |||
|
134 | ||||
|
135 | @Throttle(seconds=value) | |||
|
136 | def fnThrottled(fn): | |||
|
137 | fn() | |||
|
138 | ||||
|
139 | return fnThrottled | |||
|
140 | ||||
|
141 | @MPDecorator | |||
|
142 | class Plotter(ProcessingUnit): | |||
|
143 | ''' | |||
|
144 | Proccessing unit to handle plot operations | |||
|
145 | ''' | |||
|
146 | ||||
|
147 | def __init__(self): | |||
|
148 | ||||
|
149 | ProcessingUnit.__init__(self) | |||
|
150 | ||||
|
151 | def setup(self, **kwargs): | |||
|
152 | ||||
|
153 | self.connections = 0 | |||
|
154 | self.web_address = kwargs.get('web_server', False) | |||
|
155 | self.realtime = kwargs.get('realtime', False) | |||
|
156 | self.localtime = kwargs.get('localtime', True) | |||
|
157 | self.buffering = kwargs.get('buffering', True) | |||
|
158 | self.throttle = kwargs.get('throttle', 2) | |||
|
159 | self.exp_code = kwargs.get('exp_code', None) | |||
|
160 | self.set_ready = apply_throttle(self.throttle) | |||
|
161 | self.dates = [] | |||
|
162 | self.data = PlotterData( | |||
|
163 | self.plots, self.throttle, self.exp_code, self.buffering) | |||
|
164 | self.isConfig = True | |||
|
165 | ||||
|
166 | def ready(self): | |||
|
167 | ''' | |||
|
168 | Set dataOut ready | |||
|
169 | ''' | |||
|
170 | ||||
|
171 | self.data.ready = True | |||
|
172 | self.dataOut.data_plt = self.data | |||
|
173 | ||||
|
174 | def run(self, realtime=True, localtime=True, buffering=True, | |||
|
175 | throttle=2, exp_code=None, web_server=None): | |||
|
176 | ||||
|
177 | if not self.isConfig: | |||
|
178 | self.setup(realtime=realtime, localtime=localtime, | |||
|
179 | buffering=buffering, throttle=throttle, exp_code=exp_code, | |||
|
180 | web_server=web_server) | |||
|
181 | ||||
|
182 | if self.web_address: | |||
|
183 | log.success( | |||
|
184 | 'Sending to web: {}'.format(self.web_address), | |||
|
185 | self.name | |||
|
186 | ) | |||
|
187 | self.context = zmq.Context() | |||
|
188 | self.sender_web = self.context.socket(zmq.REQ) | |||
|
189 | self.sender_web.connect(self.web_address) | |||
|
190 | self.poll = zmq.Poller() | |||
|
191 | self.poll.register(self.sender_web, zmq.POLLIN) | |||
|
192 | time.sleep(1) | |||
|
193 | ||||
|
194 | # t = Thread(target=self.event_monitor, args=(monitor,)) | |||
|
195 | # t.start() | |||
|
196 | ||||
|
197 | self.dataOut = self.dataIn | |||
|
198 | self.data.ready = False | |||
|
199 | ||||
|
200 | if self.dataOut.flagNoData: | |||
|
201 | coerce = True | |||
|
202 | else: | |||
|
203 | coerce = False | |||
|
204 | ||||
|
205 | if self.dataOut.type == 'Parameters': | |||
|
206 | tm = self.dataOut.utctimeInit | |||
|
207 | else: | |||
|
208 | tm = self.dataOut.utctime | |||
|
209 | if self.dataOut.useLocalTime: | |||
|
210 | if not self.localtime: | |||
|
211 | tm += time.timezone | |||
|
212 | dt = datetime.datetime.fromtimestamp(tm).date() | |||
|
213 | else: | |||
|
214 | if self.localtime: | |||
|
215 | tm -= time.timezone | |||
|
216 | dt = datetime.datetime.utcfromtimestamp(tm).date() | |||
|
217 | if dt not in self.dates: | |||
|
218 | if self.data: | |||
|
219 | self.ready() | |||
|
220 | self.data.setup() | |||
|
221 | self.dates.append(dt) | |||
|
222 | ||||
|
223 | self.data.update(self.dataOut, tm) | |||
|
224 | ||||
|
225 | if False: # TODO check when publishers ends | |||
|
226 | self.connections -= 1 | |||
|
227 | if self.connections == 0 and dt in self.dates: | |||
|
228 | self.data.ended = True | |||
|
229 | self.ready() | |||
|
230 | time.sleep(1) | |||
|
231 | else: | |||
|
232 | if self.realtime: | |||
|
233 | self.ready() | |||
|
234 | if self.web_address: | |||
|
235 | retries = 5 | |||
|
236 | while True: | |||
|
237 | self.sender_web.send(self.data.jsonify()) | |||
|
238 | socks = dict(self.poll.poll(5000)) | |||
|
239 | if socks.get(self.sender_web) == zmq.POLLIN: | |||
|
240 | reply = self.sender_web.recv_string() | |||
|
241 | if reply == 'ok': | |||
|
242 | log.log("Response from server ok", self.name) | |||
|
243 | break | |||
|
244 | else: | |||
|
245 | log.warning( | |||
|
246 | "Malformed reply from server: {}".format(reply), self.name) | |||
|
247 | ||||
|
248 | else: | |||
|
249 | log.warning( | |||
|
250 | "No response from server, retrying...", self.name) | |||
|
251 | self.sender_web.setsockopt(zmq.LINGER, 0) | |||
|
252 | self.sender_web.close() | |||
|
253 | self.poll.unregister(self.sender_web) | |||
|
254 | retries -= 1 | |||
|
255 | if retries == 0: | |||
|
256 | log.error( | |||
|
257 | "Server seems to be offline, abandoning", self.name) | |||
|
258 | self.sender_web = self.context.socket(zmq.REQ) | |||
|
259 | self.sender_web.connect(self.web_address) | |||
|
260 | self.poll.register(self.sender_web, zmq.POLLIN) | |||
|
261 | time.sleep(1) | |||
|
262 | break | |||
|
263 | self.sender_web = self.context.socket(zmq.REQ) | |||
|
264 | self.sender_web.connect(self.web_address) | |||
|
265 | self.poll.register(self.sender_web, zmq.POLLIN) | |||
|
266 | time.sleep(1) | |||
|
267 | else: | |||
|
268 | self.set_ready(self.ready, coerce=coerce) | |||
|
269 | ||||
|
270 | return | |||
|
271 | ||||
|
272 | def close(self): | |||
|
273 | pass | |||
|
274 | ||||
|
275 | ||||
|
276 | @MPDecorator | |||
|
277 | class Plot(Operation): | |||
|
278 | ''' | |||
|
279 | Base class for Schain plotting operations | |||
|
280 | ''' | |||
|
281 | ||||
|
282 | CODE = 'Figure' | |||
|
283 | colormap = 'jro' | |||
|
284 | bgcolor = 'white' | |||
|
285 | __missing = 1E30 | |||
|
286 | ||||
|
287 | __attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax', | |||
|
288 | 'zlimits', 'xlabel', 'ylabel', 'xaxis', 'cb_label', 'title', | |||
|
289 | 'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure', | |||
|
290 | 'showprofile', 'decimation', 'pause'] | |||
|
291 | ||||
|
292 | def __init__(self): | |||
|
293 | ||||
|
294 | Operation.__init__(self) | |||
|
295 | self.isConfig = False | |||
|
296 | self.isPlotConfig = False | |||
|
297 | ||||
|
298 | def __fmtTime(self, x, pos): | |||
|
299 | ''' | |||
|
300 | ''' | |||
|
301 | ||||
|
302 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) | |||
|
303 | ||||
|
304 | def __setup(self, **kwargs): | |||
|
305 | ''' | |||
|
306 | Initialize variables | |||
|
307 | ''' | |||
|
308 | ||||
|
309 | self.figures = [] | |||
|
310 | self.axes = [] | |||
|
311 | self.cb_axes = [] | |||
|
312 | self.localtime = kwargs.pop('localtime', True) | |||
|
313 | self.show = kwargs.get('show', True) | |||
|
314 | self.save = kwargs.get('save', False) | |||
|
315 | self.ftp = kwargs.get('ftp', False) | |||
|
316 | self.colormap = kwargs.get('colormap', self.colormap) | |||
|
317 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |||
|
318 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |||
|
319 | self.colormaps = kwargs.get('colormaps', None) | |||
|
320 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |||
|
321 | self.showprofile = kwargs.get('showprofile', False) | |||
|
322 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |||
|
323 | self.cb_label = kwargs.get('cb_label', None) | |||
|
324 | self.cb_labels = kwargs.get('cb_labels', None) | |||
|
325 | self.labels = kwargs.get('labels', None) | |||
|
326 | self.xaxis = kwargs.get('xaxis', 'frequency') | |||
|
327 | self.zmin = kwargs.get('zmin', None) | |||
|
328 | self.zmax = kwargs.get('zmax', None) | |||
|
329 | self.zlimits = kwargs.get('zlimits', None) | |||
|
330 | self.xmin = kwargs.get('xmin', None) | |||
|
331 | self.xmax = kwargs.get('xmax', None) | |||
|
332 | self.xrange = kwargs.get('xrange', 12) | |||
|
333 | self.xscale = kwargs.get('xscale', None) | |||
|
334 | self.ymin = kwargs.get('ymin', None) | |||
|
335 | self.ymax = kwargs.get('ymax', None) | |||
|
336 | self.yscale = kwargs.get('yscale', None) | |||
|
337 | self.xlabel = kwargs.get('xlabel', None) | |||
|
338 | self.decimation = kwargs.get('decimation', None) | |||
|
339 | self.showSNR = kwargs.get('showSNR', False) | |||
|
340 | self.oneFigure = kwargs.get('oneFigure', True) | |||
|
341 | self.width = kwargs.get('width', None) | |||
|
342 | self.height = kwargs.get('height', None) | |||
|
343 | self.colorbar = kwargs.get('colorbar', True) | |||
|
344 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |||
|
345 | self.channels = kwargs.get('channels', None) | |||
|
346 | self.titles = kwargs.get('titles', []) | |||
|
347 | self.polar = False | |||
|
348 | self.grid = kwargs.get('grid', False) | |||
|
349 | self.pause = kwargs.get('pause', False) | |||
|
350 | self.save_labels = kwargs.get('save_labels', None) | |||
|
351 | self.realtime = kwargs.get('realtime', True) | |||
|
352 | self.buffering = kwargs.get('buffering', True) | |||
|
353 | self.throttle = kwargs.get('throttle', 2) | |||
|
354 | self.exp_code = kwargs.get('exp_code', None) | |||
|
355 | self.__throttle_plot = apply_throttle(self.throttle) | |||
|
356 | self.data = PlotterData( | |||
|
357 | self.CODE, self.throttle, self.exp_code, self.buffering) | |||
|
358 | ||||
|
359 | def __setup_plot(self): | |||
|
360 | ''' | |||
|
361 | Common setup for all figures, here figures and axes are created | |||
|
362 | ''' | |||
|
363 | ||||
|
364 | self.setup() | |||
|
365 | ||||
|
366 | self.time_label = 'LT' if self.localtime else 'UTC' | |||
|
367 | if self.data.localtime: | |||
|
368 | self.getDateTime = datetime.datetime.fromtimestamp | |||
|
369 | else: | |||
|
370 | self.getDateTime = datetime.datetime.utcfromtimestamp | |||
|
371 | ||||
|
372 | if self.width is None: | |||
|
373 | self.width = 8 | |||
|
374 | ||||
|
375 | self.figures = [] | |||
|
376 | self.axes = [] | |||
|
377 | self.cb_axes = [] | |||
|
378 | self.pf_axes = [] | |||
|
379 | self.cmaps = [] | |||
|
380 | ||||
|
381 | size = '15%' if self.ncols == 1 else '30%' | |||
|
382 | pad = '4%' if self.ncols == 1 else '8%' | |||
|
383 | ||||
|
384 | if self.oneFigure: | |||
|
385 | if self.height is None: | |||
|
386 | self.height = 1.4 * self.nrows + 1 | |||
|
387 | fig = plt.figure(figsize=(self.width, self.height), | |||
|
388 | edgecolor='k', | |||
|
389 | facecolor='w') | |||
|
390 | self.figures.append(fig) | |||
|
391 | for n in range(self.nplots): | |||
|
392 | ax = fig.add_subplot(self.nrows, self.ncols, | |||
|
393 | n + 1, polar=self.polar) | |||
|
394 | ax.tick_params(labelsize=8) | |||
|
395 | ax.firsttime = True | |||
|
396 | ax.index = 0 | |||
|
397 | ax.press = None | |||
|
398 | self.axes.append(ax) | |||
|
399 | if self.showprofile: | |||
|
400 | cax = self.__add_axes(ax, size=size, pad=pad) | |||
|
401 | cax.tick_params(labelsize=8) | |||
|
402 | self.pf_axes.append(cax) | |||
|
403 | else: | |||
|
404 | if self.height is None: | |||
|
405 | self.height = 3 | |||
|
406 | for n in range(self.nplots): | |||
|
407 | fig = plt.figure(figsize=(self.width, self.height), | |||
|
408 | edgecolor='k', | |||
|
409 | facecolor='w') | |||
|
410 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) | |||
|
411 | ax.tick_params(labelsize=8) | |||
|
412 | ax.firsttime = True | |||
|
413 | ax.index = 0 | |||
|
414 | ax.press = None | |||
|
415 | self.figures.append(fig) | |||
|
416 | self.axes.append(ax) | |||
|
417 | if self.showprofile: | |||
|
418 | cax = self.__add_axes(ax, size=size, pad=pad) | |||
|
419 | cax.tick_params(labelsize=8) | |||
|
420 | self.pf_axes.append(cax) | |||
|
421 | ||||
|
422 | for n in range(self.nrows): | |||
|
423 | if self.colormaps is not None: | |||
|
424 | cmap = plt.get_cmap(self.colormaps[n]) | |||
|
425 | else: | |||
|
426 | cmap = plt.get_cmap(self.colormap) | |||
|
427 | cmap.set_bad(self.bgcolor, 1.) | |||
|
428 | self.cmaps.append(cmap) | |||
|
429 | ||||
|
430 | for fig in self.figures: | |||
|
431 | fig.canvas.mpl_connect('key_press_event', self.OnKeyPress) | |||
|
432 | fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll) | |||
|
433 | fig.canvas.mpl_connect('button_press_event', self.onBtnPress) | |||
|
434 | fig.canvas.mpl_connect('motion_notify_event', self.onMotion) | |||
|
435 | fig.canvas.mpl_connect('button_release_event', self.onBtnRelease) | |||
|
436 | if self.show: | |||
|
437 | fig.show() | |||
|
438 | ||||
|
439 | def OnKeyPress(self, event): | |||
|
440 | ''' | |||
|
441 | Event for pressing keys (up, down) change colormap | |||
|
442 | ''' | |||
|
443 | ax = event.inaxes | |||
|
444 | if ax in self.axes: | |||
|
445 | if event.key == 'down': | |||
|
446 | ax.index += 1 | |||
|
447 | elif event.key == 'up': | |||
|
448 | ax.index -= 1 | |||
|
449 | if ax.index < 0: | |||
|
450 | ax.index = len(CMAPS) - 1 | |||
|
451 | elif ax.index == len(CMAPS): | |||
|
452 | ax.index = 0 | |||
|
453 | cmap = CMAPS[ax.index] | |||
|
454 | ax.cbar.set_cmap(cmap) | |||
|
455 | ax.cbar.draw_all() | |||
|
456 | ax.plt.set_cmap(cmap) | |||
|
457 | ax.cbar.patch.figure.canvas.draw() | |||
|
458 | self.colormap = cmap.name | |||
|
459 | ||||
|
460 | def OnBtnScroll(self, event): | |||
|
461 | ''' | |||
|
462 | Event for scrolling, scale figure | |||
|
463 | ''' | |||
|
464 | cb_ax = event.inaxes | |||
|
465 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |||
|
466 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] | |||
|
467 | pt = ax.cbar.ax.bbox.get_points()[:, 1] | |||
|
468 | nrm = ax.cbar.norm | |||
|
469 | vmin, vmax, p0, p1, pS = ( | |||
|
470 | nrm.vmin, nrm.vmax, pt[0], pt[1], event.y) | |||
|
471 | scale = 2 if event.step == 1 else 0.5 | |||
|
472 | point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0) | |||
|
473 | ax.cbar.norm.vmin = point - scale * (point - vmin) | |||
|
474 | ax.cbar.norm.vmax = point - scale * (point - vmax) | |||
|
475 | ax.plt.set_norm(ax.cbar.norm) | |||
|
476 | ax.cbar.draw_all() | |||
|
477 | ax.cbar.patch.figure.canvas.draw() | |||
|
478 | ||||
|
479 | def onBtnPress(self, event): | |||
|
480 | ''' | |||
|
481 | Event for mouse button press | |||
|
482 | ''' | |||
|
483 | cb_ax = event.inaxes | |||
|
484 | if cb_ax is None: | |||
|
485 | return | |||
|
486 | ||||
|
487 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |||
|
488 | cb_ax.press = event.x, event.y | |||
|
489 | else: | |||
|
490 | cb_ax.press = None | |||
|
491 | ||||
|
492 | def onMotion(self, event): | |||
|
493 | ''' | |||
|
494 | Event for move inside colorbar | |||
|
495 | ''' | |||
|
496 | cb_ax = event.inaxes | |||
|
497 | if cb_ax is None: | |||
|
498 | return | |||
|
499 | if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |||
|
500 | return | |||
|
501 | if cb_ax.press is None: | |||
|
502 | return | |||
|
503 | ||||
|
504 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] | |||
|
505 | xprev, yprev = cb_ax.press | |||
|
506 | dx = event.x - xprev | |||
|
507 | dy = event.y - yprev | |||
|
508 | cb_ax.press = event.x, event.y | |||
|
509 | scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin | |||
|
510 | perc = 0.03 | |||
|
511 | ||||
|
512 | if event.button == 1: | |||
|
513 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) | |||
|
514 | ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy) | |||
|
515 | elif event.button == 3: | |||
|
516 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) | |||
|
517 | ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy) | |||
|
518 | ||||
|
519 | ax.cbar.draw_all() | |||
|
520 | ax.plt.set_norm(ax.cbar.norm) | |||
|
521 | ax.cbar.patch.figure.canvas.draw() | |||
|
522 | ||||
|
523 | def onBtnRelease(self, event): | |||
|
524 | ''' | |||
|
525 | Event for mouse button release | |||
|
526 | ''' | |||
|
527 | cb_ax = event.inaxes | |||
|
528 | if cb_ax is not None: | |||
|
529 | cb_ax.press = None | |||
|
530 | ||||
|
531 | def __add_axes(self, ax, size='30%', pad='8%'): | |||
|
532 | ''' | |||
|
533 | Add new axes to the given figure | |||
|
534 | ''' | |||
|
535 | divider = make_axes_locatable(ax) | |||
|
536 | nax = divider.new_horizontal(size=size, pad=pad) | |||
|
537 | ax.figure.add_axes(nax) | |||
|
538 | return nax | |||
|
539 | ||||
|
540 | def setup(self): | |||
|
541 | ''' | |||
|
542 | This method should be implemented in the child class, the following | |||
|
543 | attributes should be set: | |||
|
544 | ||||
|
545 | self.nrows: number of rows | |||
|
546 | self.ncols: number of cols | |||
|
547 | self.nplots: number of plots (channels or pairs) | |||
|
548 | self.ylabel: label for Y axes | |||
|
549 | self.titles: list of axes title | |||
|
550 | ||||
|
551 | ''' | |||
|
552 | raise NotImplementedError | |||
|
553 | ||||
|
554 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |||
|
555 | ''' | |||
|
556 | Create a masked array for missing data | |||
|
557 | ''' | |||
|
558 | if x_buffer.shape[0] < 2: | |||
|
559 | return x_buffer, y_buffer, z_buffer | |||
|
560 | ||||
|
561 | deltas = x_buffer[1:] - x_buffer[0:-1] | |||
|
562 | x_median = numpy.median(deltas) | |||
|
563 | ||||
|
564 | index = numpy.where(deltas > 5 * x_median) | |||
|
565 | ||||
|
566 | if len(index[0]) != 0: | |||
|
567 | z_buffer[::, index[0], ::] = self.__missing | |||
|
568 | z_buffer = numpy.ma.masked_inside(z_buffer, | |||
|
569 | 0.99 * self.__missing, | |||
|
570 | 1.01 * self.__missing) | |||
|
571 | ||||
|
572 | return x_buffer, y_buffer, z_buffer | |||
|
573 | ||||
|
574 | def decimate(self): | |||
|
575 | ||||
|
576 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |||
|
577 | dy = int(len(self.y) / self.decimation) + 1 | |||
|
578 | ||||
|
579 | # x = self.x[::dx] | |||
|
580 | x = self.x | |||
|
581 | y = self.y[::dy] | |||
|
582 | z = self.z[::, ::, ::dy] | |||
|
583 | ||||
|
584 | return x, y, z | |||
|
585 | ||||
|
586 | def format(self): | |||
|
587 | ''' | |||
|
588 | Set min and max values, labels, ticks and titles | |||
|
589 | ''' | |||
|
590 | ||||
|
591 | if self.xmin is None: | |||
|
592 | xmin = self.data.min_time | |||
|
593 | else: | |||
|
594 | if self.xaxis is 'time': | |||
|
595 | dt = self.getDateTime(self.data.min_time) | |||
|
596 | xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - | |||
|
597 | datetime.datetime(1970, 1, 1)).total_seconds() | |||
|
598 | if self.data.localtime: | |||
|
599 | xmin += time.timezone | |||
|
600 | else: | |||
|
601 | xmin = self.xmin | |||
|
602 | ||||
|
603 | if self.xmax is None: | |||
|
604 | xmax = xmin + self.xrange * 60 * 60 | |||
|
605 | else: | |||
|
606 | if self.xaxis is 'time': | |||
|
607 | dt = self.getDateTime(self.data.max_time) | |||
|
608 | xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) - | |||
|
609 | datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() | |||
|
610 | if self.data.localtime: | |||
|
611 | xmax += time.timezone | |||
|
612 | else: | |||
|
613 | xmax = self.xmax | |||
|
614 | ||||
|
615 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |||
|
616 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |||
|
617 | ||||
|
618 | Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000]) | |||
|
619 | i = 1 if numpy.where( | |||
|
620 | abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0] | |||
|
621 | ystep = Y[i] / 10. | |||
|
622 | ||||
|
623 | if self.xaxis is not 'time': | |||
|
624 | X = numpy.array([1, 2, 5, 10, 20, 50, 100, | |||
|
625 | 200, 500, 1000, 2000, 5000])/2. | |||
|
626 | i = 1 if numpy.where( | |||
|
627 | abs(xmax-xmin) <= X)[0][0] < 0 else numpy.where(abs(xmax-xmin) <= X)[0][0] | |||
|
628 | xstep = X[i] / 10. | |||
|
629 | ||||
|
630 | for n, ax in enumerate(self.axes): | |||
|
631 | if ax.firsttime: | |||
|
632 | ax.set_facecolor(self.bgcolor) | |||
|
633 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |||
|
634 | if self.xscale: | |||
|
635 | ax.xaxis.set_major_formatter(FuncFormatter( | |||
|
636 | lambda x, pos: '{0:g}'.format(x*self.xscale))) | |||
|
637 | if self.xscale: | |||
|
638 | ax.yaxis.set_major_formatter(FuncFormatter( | |||
|
639 | lambda x, pos: '{0:g}'.format(x*self.yscale))) | |||
|
640 | if self.xaxis is 'time': | |||
|
641 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |||
|
642 | ax.xaxis.set_major_locator(LinearLocator(9)) | |||
|
643 | else: | |||
|
644 | ax.xaxis.set_major_locator(MultipleLocator(xstep)) | |||
|
645 | if self.xlabel is not None: | |||
|
646 | ax.set_xlabel(self.xlabel) | |||
|
647 | ax.set_ylabel(self.ylabel) | |||
|
648 | ax.firsttime = False | |||
|
649 | if self.showprofile: | |||
|
650 | self.pf_axes[n].set_ylim(ymin, ymax) | |||
|
651 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |||
|
652 | self.pf_axes[n].set_xlabel('dB') | |||
|
653 | self.pf_axes[n].grid(b=True, axis='x') | |||
|
654 | [tick.set_visible(False) | |||
|
655 | for tick in self.pf_axes[n].get_yticklabels()] | |||
|
656 | if self.colorbar: | |||
|
657 | ax.cbar = plt.colorbar( | |||
|
658 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) | |||
|
659 | ax.cbar.ax.tick_params(labelsize=8) | |||
|
660 | ax.cbar.ax.press = None | |||
|
661 | if self.cb_label: | |||
|
662 | ax.cbar.set_label(self.cb_label, size=8) | |||
|
663 | elif self.cb_labels: | |||
|
664 | ax.cbar.set_label(self.cb_labels[n], size=8) | |||
|
665 | else: | |||
|
666 | ax.cbar = None | |||
|
667 | if self.grid: | |||
|
668 | ax.grid(True) | |||
|
669 | ||||
|
670 | if not self.polar: | |||
|
671 | ax.set_xlim(xmin, xmax) | |||
|
672 | ax.set_ylim(ymin, ymax) | |||
|
673 | ax.set_title('{} {} {}'.format( | |||
|
674 | self.titles[n], | |||
|
675 | self.getDateTime(self.data.max_time).strftime( | |||
|
676 | '%Y-%m-%dT%H:%M:%S'), | |||
|
677 | self.time_label), | |||
|
678 | size=8) | |||
|
679 | else: | |||
|
680 | ax.set_title('{}'.format(self.titles[n]), size=8) | |||
|
681 | ax.set_ylim(0, 90) | |||
|
682 | ax.set_yticks(numpy.arange(0, 90, 20)) | |||
|
683 | ax.yaxis.labelpad = 40 | |||
|
684 | ||||
|
685 | def clear_figures(self): | |||
|
686 | ''' | |||
|
687 | Reset axes for redraw plots | |||
|
688 | ''' | |||
|
689 | ||||
|
690 | for ax in self.axes: | |||
|
691 | ax.clear() | |||
|
692 | ax.firsttime = True | |||
|
693 | if ax.cbar: | |||
|
694 | ax.cbar.remove() | |||
|
695 | ||||
|
696 | def __plot(self): | |||
|
697 | ''' | |||
|
698 | Main function to plot, format and save figures | |||
|
699 | ''' | |||
|
700 | ||||
|
701 | #try: | |||
|
702 | self.plot() | |||
|
703 | self.format() | |||
|
704 | #except Exception as e: | |||
|
705 | # log.warning('{} Plot could not be updated... check data'.format( | |||
|
706 | # self.CODE), self.name) | |||
|
707 | # log.error(str(e), '') | |||
|
708 | # return | |||
|
709 | ||||
|
710 | for n, fig in enumerate(self.figures): | |||
|
711 | if self.nrows == 0 or self.nplots == 0: | |||
|
712 | log.warning('No data', self.name) | |||
|
713 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') | |||
|
714 | fig.canvas.manager.set_window_title(self.CODE) | |||
|
715 | continue | |||
|
716 | ||||
|
717 | fig.tight_layout() | |||
|
718 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |||
|
719 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) | |||
|
720 | fig.canvas.draw() | |||
|
721 | ||||
|
722 | if self.save: | |||
|
723 | ||||
|
724 | if self.save_labels: | |||
|
725 | labels = self.save_labels | |||
|
726 | else: | |||
|
727 | labels = list(range(self.nrows)) | |||
|
728 | ||||
|
729 | if self.oneFigure: | |||
|
730 | label = '' | |||
|
731 | else: | |||
|
732 | label = '-{}'.format(labels[n]) | |||
|
733 | figname = os.path.join( | |||
|
734 | self.save, | |||
|
735 | self.CODE, | |||
|
736 | '{}{}_{}.png'.format( | |||
|
737 | self.CODE, | |||
|
738 | label, | |||
|
739 | self.getDateTime(self.data.max_time).strftime( | |||
|
740 | '%Y%m%d_%H%M%S'), | |||
|
741 | ) | |||
|
742 | ) | |||
|
743 | log.log('Saving figure: {}'.format(figname), self.name) | |||
|
744 | if not os.path.isdir(os.path.dirname(figname)): | |||
|
745 | os.makedirs(os.path.dirname(figname)) | |||
|
746 | fig.savefig(figname) | |||
|
747 | ||||
|
748 | def plot(self): | |||
|
749 | ''' | |||
|
750 | Must be defined in the child class | |||
|
751 | ''' | |||
|
752 | raise NotImplementedError | |||
|
753 | ||||
|
754 | def run(self, dataOut, **kwargs): | |||
|
755 | ||||
|
756 | if dataOut.flagNoData and not dataOut.error: | |||
|
757 | return dataOut | |||
|
758 | ||||
|
759 | if dataOut.error: | |||
|
760 | coerce = True | |||
|
761 | else: | |||
|
762 | coerce = False | |||
|
763 | ||||
|
764 | if self.isConfig is False: | |||
|
765 | self.__setup(**kwargs) | |||
|
766 | self.data.setup() | |||
|
767 | self.isConfig = True | |||
|
768 | ||||
|
769 | if dataOut.type == 'Parameters': | |||
|
770 | tm = dataOut.utctimeInit | |||
|
771 | else: | |||
|
772 | tm = dataOut.utctime | |||
|
773 | ||||
|
774 | if dataOut.useLocalTime: | |||
|
775 | if not self.localtime: | |||
|
776 | tm += time.timezone | |||
|
777 | else: | |||
|
778 | if self.localtime: | |||
|
779 | tm -= time.timezone | |||
|
780 | ||||
|
781 | if self.data and (tm - self.data.min_time) >= self.xrange*60*60: | |||
|
782 | self.__plot() | |||
|
783 | self.data.setup() | |||
|
784 | self.clear_figures() | |||
|
785 | ||||
|
786 | self.data.update(dataOut, tm) | |||
|
787 | ||||
|
788 | if self.isPlotConfig is False: | |||
|
789 | self.__setup_plot() | |||
|
790 | self.isPlotConfig = True | |||
|
791 | ||||
|
792 | if self.realtime: | |||
|
793 | self.__plot() | |||
|
794 | else: | |||
|
795 | self.__throttle_plot(self.__plot, coerce=coerce) | |||
|
796 | ||||
|
797 | figpause(0.001) | |||
|
798 | ||||
|
799 | def close(self): | |||
|
800 | ||||
|
801 | if self.data and self.pause: | |||
|
802 | figpause(10) | |||
|
803 |
@@ -112,5 +112,3 schainpy/scripts/ | |||||
112 | .vscode |
|
112 | .vscode | |
113 | trash |
|
113 | trash | |
114 | *.log |
|
114 | *.log | |
115 | schainpy/scripts/testDigitalRF.py |
|
|||
116 | schainpy/scripts/testDigitalRFWriter.py |
|
@@ -1,5 +1,12 | |||||
1 | ## CHANGELOG: |
|
1 | ## CHANGELOG: | |
2 |
|
2 | |||
|
3 | ### 3.0 | |||
|
4 | * Python 3.x compatible | |||
|
5 | * New architecture with multiprocessing and IPC communication | |||
|
6 | * Add @MPDecorator for multiprocessing Units and Operations | |||
|
7 | * Added new type of operation `external` for non-locking operations | |||
|
8 | * New plotting architecture with buffering/throttle capabilities to speed up plots | |||
|
9 | ||||
3 | ### 2.3 |
|
10 | ### 2.3 | |
4 | * Added support for Madrigal formats (reading/writing). |
|
11 | * Added support for Madrigal formats (reading/writing). | |
5 | * Added support for reading BLTR parameters (*.sswma). |
|
12 | * Added support for reading BLTR parameters (*.sswma). |
@@ -24,7 +24,7 from email.mime.multipart import MIMEMultipart | |||||
24 |
|
24 | |||
25 | import schainpy |
|
25 | import schainpy | |
26 | from schainpy.utils import log |
|
26 | from schainpy.utils import log | |
27 |
from schainpy.model.graphics.jroplot_ |
|
27 | from schainpy.model.graphics.jroplot_base import popup | |
28 |
|
28 | |||
29 | def get_path(): |
|
29 | def get_path(): | |
30 | ''' |
|
30 | ''' |
@@ -97,9 +97,7 def wait(context): | |||||
97 | receiver = c.socket(zmq.SUB) |
|
97 | receiver = c.socket(zmq.SUB) | |
98 | receiver.connect('ipc:///tmp/schain_{}_pub'.format(self.id)) |
|
98 | receiver.connect('ipc:///tmp/schain_{}_pub'.format(self.id)) | |
99 | receiver.setsockopt(zmq.SUBSCRIBE, self.id.encode()) |
|
99 | receiver.setsockopt(zmq.SUBSCRIBE, self.id.encode()) | |
100 | log.error('startinggg') |
|
|||
101 | msg = receiver.recv_multipart()[1] |
|
100 | msg = receiver.recv_multipart()[1] | |
102 | #log.error(msg) |
|
|||
103 | context.terminate() |
|
101 | context.terminate() | |
104 |
|
102 | |||
105 | class ParameterConf(): |
|
103 | class ParameterConf(): | |
@@ -1245,7 +1243,7 class Project(Process): | |||||
1245 |
|
1243 | |||
1246 | try: |
|
1244 | try: | |
1247 | zmq.proxy(xpub, xsub) |
|
1245 | zmq.proxy(xpub, xsub) | |
1248 | except zmq.ContextTerminated: |
|
1246 | except: # zmq.ContextTerminated: | |
1249 | xpub.close() |
|
1247 | xpub.close() | |
1250 | xsub.close() |
|
1248 | xsub.close() | |
1251 |
|
1249 | |||
@@ -1260,6 +1258,6 class Project(Process): | |||||
1260 |
|
1258 | |||
1261 | # Iniciar todos los procesos .start(), monitoreo de procesos. ELiminar lo de abajo |
|
1259 | # Iniciar todos los procesos .start(), monitoreo de procesos. ELiminar lo de abajo | |
1262 |
|
1260 | |||
1263 |
log.success('{} |
|
1261 | log.success('{} Done (time: {}s)'.format( | |
1264 | self.name, |
|
1262 | self.name, | |
1265 | time.time()-self.start_time)) |
|
1263 | time.time()-self.start_time)) |
@@ -7,7 +7,9 $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |||||
7 | import copy |
|
7 | import copy | |
8 | import numpy |
|
8 | import numpy | |
9 | import datetime |
|
9 | import datetime | |
|
10 | import json | |||
10 |
|
11 | |||
|
12 | from schainpy.utils import log | |||
11 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
13 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
12 |
|
14 | |||
13 |
|
15 | |||
@@ -79,7 +81,7 def hildebrand_sekhon(data, navg): | |||||
79 | j = 0 |
|
81 | j = 0 | |
80 | cont = 1 |
|
82 | cont = 1 | |
81 |
|
83 | |||
82 | while((cont==1)and(j<lenOfData)): |
|
84 | while((cont == 1)and(j < lenOfData)): | |
83 |
|
85 | |||
84 | sump += sortdata[j] |
|
86 | sump += sortdata[j] | |
85 | sumq += sortdata[j]**2 |
|
87 | sumq += sortdata[j]**2 | |
@@ -88,13 +90,13 def hildebrand_sekhon(data, navg): | |||||
88 | rtest = float(j)/(j-1) + 1.0/navg |
|
90 | rtest = float(j)/(j-1) + 1.0/navg | |
89 | if ((sumq*j) > (rtest*sump**2)): |
|
91 | if ((sumq*j) > (rtest*sump**2)): | |
90 | j = j - 1 |
|
92 | j = j - 1 | |
91 |
sump |
|
93 | sump = sump - sortdata[j] | |
92 |
sumq = |
|
94 | sumq = sumq - sortdata[j]**2 | |
93 | cont = 0 |
|
95 | cont = 0 | |
94 |
|
96 | |||
95 | j += 1 |
|
97 | j += 1 | |
96 |
|
98 | |||
97 | lnoise = sump /j |
|
99 | lnoise = sump / j | |
98 |
|
100 | |||
99 | return lnoise |
|
101 | return lnoise | |
100 |
|
102 | |||
@@ -147,85 +149,48 class JROData(GenericData): | |||||
147 | # m_ProcessingHeader = ProcessingHeader() |
|
149 | # m_ProcessingHeader = ProcessingHeader() | |
148 |
|
150 | |||
149 | systemHeaderObj = SystemHeader() |
|
151 | systemHeaderObj = SystemHeader() | |
150 |
|
||||
151 | radarControllerHeaderObj = RadarControllerHeader() |
|
152 | radarControllerHeaderObj = RadarControllerHeader() | |
152 |
|
||||
153 | # data = None |
|
153 | # data = None | |
154 |
|
||||
155 | type = None |
|
154 | type = None | |
156 |
|
||||
157 | datatype = None # dtype but in string |
|
155 | datatype = None # dtype but in string | |
158 |
|
||||
159 | # dtype = None |
|
156 | # dtype = None | |
160 |
|
||||
161 | # nChannels = None |
|
157 | # nChannels = None | |
162 |
|
||||
163 | # nHeights = None |
|
158 | # nHeights = None | |
164 |
|
||||
165 | nProfiles = None |
|
159 | nProfiles = None | |
166 |
|
||||
167 | heightList = None |
|
160 | heightList = None | |
168 |
|
||||
169 | channelList = None |
|
161 | channelList = None | |
170 |
|
||||
171 | flagDiscontinuousBlock = False |
|
162 | flagDiscontinuousBlock = False | |
172 |
|
||||
173 | useLocalTime = False |
|
163 | useLocalTime = False | |
174 |
|
||||
175 | utctime = None |
|
164 | utctime = None | |
176 |
|
||||
177 | timeZone = None |
|
165 | timeZone = None | |
178 |
|
||||
179 | dstFlag = None |
|
166 | dstFlag = None | |
180 |
|
||||
181 | errorCount = None |
|
167 | errorCount = None | |
182 |
|
||||
183 | blocksize = None |
|
168 | blocksize = None | |
184 |
|
||||
185 | # nCode = None |
|
169 | # nCode = None | |
186 | # |
|
|||
187 | # nBaud = None |
|
170 | # nBaud = None | |
188 | # |
|
|||
189 | # code = None |
|
171 | # code = None | |
190 |
|
||||
191 | flagDecodeData = False # asumo q la data no esta decodificada |
|
172 | flagDecodeData = False # asumo q la data no esta decodificada | |
192 |
|
||||
193 | flagDeflipData = False # asumo q la data no esta sin flip |
|
173 | flagDeflipData = False # asumo q la data no esta sin flip | |
194 |
|
||||
195 | flagShiftFFT = False |
|
174 | flagShiftFFT = False | |
196 |
|
||||
197 | # ippSeconds = None |
|
175 | # ippSeconds = None | |
198 |
|
||||
199 | # timeInterval = None |
|
176 | # timeInterval = None | |
200 |
|
||||
201 | nCohInt = None |
|
177 | nCohInt = None | |
202 |
|
||||
203 | # noise = None |
|
178 | # noise = None | |
204 |
|
||||
205 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
206 |
|
||||
207 | # Speed of ligth |
|
180 | # Speed of ligth | |
208 | C = 3e8 |
|
181 | C = 3e8 | |
209 |
|
||||
210 | frequency = 49.92e6 |
|
182 | frequency = 49.92e6 | |
211 |
|
||||
212 | realtime = False |
|
183 | realtime = False | |
213 |
|
||||
214 | beacon_heiIndexList = None |
|
184 | beacon_heiIndexList = None | |
215 |
|
||||
216 | last_block = None |
|
185 | last_block = None | |
217 |
|
||||
218 | blocknow = None |
|
186 | blocknow = None | |
219 |
|
||||
220 | azimuth = None |
|
187 | azimuth = None | |
221 |
|
||||
222 | zenith = None |
|
188 | zenith = None | |
223 |
|
||||
224 | beam = Beam() |
|
189 | beam = Beam() | |
225 |
|
||||
226 | profileIndex = None |
|
190 | profileIndex = None | |
227 |
|
191 | error = None | ||
228 | error = (0, '') |
|
192 | data = None | |
|
193 | nmodes = None | |||
229 |
|
194 | |||
230 | def __str__(self): |
|
195 | def __str__(self): | |
231 |
|
196 | |||
@@ -395,53 +360,29 class Voltage(JROData): | |||||
395 | ''' |
|
360 | ''' | |
396 |
|
361 | |||
397 | self.useLocalTime = True |
|
362 | self.useLocalTime = True | |
398 |
|
||||
399 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
363 | self.radarControllerHeaderObj = RadarControllerHeader() | |
400 |
|
||||
401 | self.systemHeaderObj = SystemHeader() |
|
364 | self.systemHeaderObj = SystemHeader() | |
402 |
|
||||
403 | self.type = "Voltage" |
|
365 | self.type = "Voltage" | |
404 |
|
||||
405 | self.data = None |
|
366 | self.data = None | |
406 |
|
||||
407 | # self.dtype = None |
|
367 | # self.dtype = None | |
408 |
|
||||
409 | # self.nChannels = 0 |
|
368 | # self.nChannels = 0 | |
410 |
|
||||
411 | # self.nHeights = 0 |
|
369 | # self.nHeights = 0 | |
412 |
|
||||
413 | self.nProfiles = None |
|
370 | self.nProfiles = None | |
414 |
|
371 | self.heightList = Non | ||
415 | self.heightList = None |
|
|||
416 |
|
||||
417 | self.channelList = None |
|
372 | self.channelList = None | |
418 |
|
||||
419 | # self.channelIndexList = None |
|
373 | # self.channelIndexList = None | |
420 |
|
||||
421 | self.flagNoData = True |
|
374 | self.flagNoData = True | |
422 |
|
||||
423 | self.flagDiscontinuousBlock = False |
|
375 | self.flagDiscontinuousBlock = False | |
424 |
|
||||
425 | self.utctime = None |
|
376 | self.utctime = None | |
426 |
|
||||
427 | self.timeZone = None |
|
377 | self.timeZone = None | |
428 |
|
||||
429 | self.dstFlag = None |
|
378 | self.dstFlag = None | |
430 |
|
||||
431 | self.errorCount = None |
|
379 | self.errorCount = None | |
432 |
|
||||
433 | self.nCohInt = None |
|
380 | self.nCohInt = None | |
434 |
|
||||
435 | self.blocksize = None |
|
381 | self.blocksize = None | |
436 |
|
||||
437 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
382 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
438 |
|
||||
439 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
383 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
440 |
|
||||
441 | self.flagShiftFFT = False |
|
384 | self.flagShiftFFT = False | |
442 |
|
||||
443 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
444 |
|
||||
445 | self.profileIndex = 0 |
|
386 | self.profileIndex = 0 | |
446 |
|
387 | |||
447 | def getNoisebyHildebrand(self, channel=None): |
|
388 | def getNoisebyHildebrand(self, channel=None): | |
@@ -505,32 +446,20 class Spectra(JROData): | |||||
505 |
|
446 | |||
506 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
507 | data_spc = None |
|
448 | data_spc = None | |
508 |
|
||||
509 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
510 | data_cspc = None |
|
450 | data_cspc = None | |
511 |
|
||||
512 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) | |
513 | data_dc = None |
|
452 | data_dc = None | |
514 |
|
||||
515 | # data power |
|
453 | # data power | |
516 | data_pwr = None |
|
454 | data_pwr = None | |
517 |
|
||||
518 | nFFTPoints = None |
|
455 | nFFTPoints = None | |
519 |
|
||||
520 | # nPairs = None |
|
456 | # nPairs = None | |
521 |
|
||||
522 | pairsList = None |
|
457 | pairsList = None | |
523 |
|
||||
524 | nIncohInt = None |
|
458 | nIncohInt = None | |
525 |
|
||||
526 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia | |
527 |
|
||||
528 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
460 | nCohInt = None # se requiere para determinar el valor de timeInterval | |
529 |
|
||||
530 | ippFactor = None |
|
461 | ippFactor = None | |
531 |
|
||||
532 | profileIndex = 0 |
|
462 | profileIndex = 0 | |
533 |
|
||||
534 | plotting = "spectra" |
|
463 | plotting = "spectra" | |
535 |
|
464 | |||
536 | def __init__(self): |
|
465 | def __init__(self): | |
@@ -539,59 +468,32 class Spectra(JROData): | |||||
539 | ''' |
|
468 | ''' | |
540 |
|
469 | |||
541 | self.useLocalTime = True |
|
470 | self.useLocalTime = True | |
542 |
|
||||
543 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
471 | self.radarControllerHeaderObj = RadarControllerHeader() | |
544 |
|
||||
545 | self.systemHeaderObj = SystemHeader() |
|
472 | self.systemHeaderObj = SystemHeader() | |
546 |
|
||||
547 | self.type = "Spectra" |
|
473 | self.type = "Spectra" | |
548 |
|
||||
549 | # self.data = None |
|
474 | # self.data = None | |
550 |
|
||||
551 | # self.dtype = None |
|
475 | # self.dtype = None | |
552 |
|
||||
553 | # self.nChannels = 0 |
|
476 | # self.nChannels = 0 | |
554 |
|
||||
555 | # self.nHeights = 0 |
|
477 | # self.nHeights = 0 | |
556 |
|
||||
557 | self.nProfiles = None |
|
478 | self.nProfiles = None | |
558 |
|
||||
559 | self.heightList = None |
|
479 | self.heightList = None | |
560 |
|
||||
561 | self.channelList = None |
|
480 | self.channelList = None | |
562 |
|
||||
563 | # self.channelIndexList = None |
|
481 | # self.channelIndexList = None | |
564 |
|
||||
565 | self.pairsList = None |
|
482 | self.pairsList = None | |
566 |
|
||||
567 | self.flagNoData = True |
|
483 | self.flagNoData = True | |
568 |
|
||||
569 | self.flagDiscontinuousBlock = False |
|
484 | self.flagDiscontinuousBlock = False | |
570 |
|
||||
571 | self.utctime = None |
|
485 | self.utctime = None | |
572 |
|
||||
573 | self.nCohInt = None |
|
486 | self.nCohInt = None | |
574 |
|
||||
575 | self.nIncohInt = None |
|
487 | self.nIncohInt = None | |
576 |
|
||||
577 | self.blocksize = None |
|
488 | self.blocksize = None | |
578 |
|
||||
579 | self.nFFTPoints = None |
|
489 | self.nFFTPoints = None | |
580 |
|
||||
581 | self.wavelength = None |
|
490 | self.wavelength = None | |
582 |
|
||||
583 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
491 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
584 |
|
||||
585 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
492 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
586 |
|
||||
587 | self.flagShiftFFT = False |
|
493 | self.flagShiftFFT = False | |
588 |
|
||||
589 | self.ippFactor = 1 |
|
494 | self.ippFactor = 1 | |
590 |
|
||||
591 | #self.noise = None |
|
495 | #self.noise = None | |
592 |
|
||||
593 | self.beacon_heiIndexList = [] |
|
496 | self.beacon_heiIndexList = [] | |
594 |
|
||||
595 | self.noise_estimation = None |
|
497 | self.noise_estimation = None | |
596 |
|
498 | |||
597 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
@@ -652,9 +554,12 class Spectra(JROData): | |||||
652 |
|
554 | |||
653 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
555 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
654 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
556 | velrange = deltav * (numpy.arange(self.nFFTPoints + | |
655 |
extrapoints) - self.nFFTPoints / 2.) |
|
557 | extrapoints) - self.nFFTPoints / 2.) | |
656 |
|
558 | |||
657 | return velrange |
|
559 | if self.nmodes: | |
|
560 | return velrange/self.nmodes | |||
|
561 | else: | |||
|
562 | return velrange | |||
658 |
|
563 | |||
659 | def getNPairs(self): |
|
564 | def getNPairs(self): | |
660 |
|
565 | |||
@@ -692,7 +597,8 class Spectra(JROData): | |||||
692 |
|
597 | |||
693 | def getTimeInterval(self): |
|
598 | def getTimeInterval(self): | |
694 |
|
599 | |||
695 |
timeInterval = self.ippSeconds * self.nCohInt * |
|
600 | timeInterval = self.ippSeconds * self.nCohInt * \ | |
|
601 | self.nIncohInt * self.nProfiles * self.ippFactor | |||
696 |
|
602 | |||
697 | return timeInterval |
|
603 | return timeInterval | |
698 |
|
604 | |||
@@ -755,19 +661,12 class Spectra(JROData): | |||||
755 | class SpectraHeis(Spectra): |
|
661 | class SpectraHeis(Spectra): | |
756 |
|
662 | |||
757 | data_spc = None |
|
663 | data_spc = None | |
758 |
|
||||
759 | data_cspc = None |
|
664 | data_cspc = None | |
760 |
|
||||
761 | data_dc = None |
|
665 | data_dc = None | |
762 |
|
||||
763 | nFFTPoints = None |
|
666 | nFFTPoints = None | |
764 |
|
||||
765 | # nPairs = None |
|
667 | # nPairs = None | |
766 |
|
||||
767 | pairsList = None |
|
668 | pairsList = None | |
768 |
|
||||
769 | nCohInt = None |
|
669 | nCohInt = None | |
770 |
|
||||
771 | nIncohInt = None |
|
670 | nIncohInt = None | |
772 |
|
671 | |||
773 | def __init__(self): |
|
672 | def __init__(self): | |
@@ -830,36 +729,21 class SpectraHeis(Spectra): | |||||
830 | class Fits(JROData): |
|
729 | class Fits(JROData): | |
831 |
|
730 | |||
832 | heightList = None |
|
731 | heightList = None | |
833 |
|
||||
834 | channelList = None |
|
732 | channelList = None | |
835 |
|
||||
836 | flagNoData = True |
|
733 | flagNoData = True | |
837 |
|
||||
838 | flagDiscontinuousBlock = False |
|
734 | flagDiscontinuousBlock = False | |
839 |
|
||||
840 | useLocalTime = False |
|
735 | useLocalTime = False | |
841 |
|
||||
842 | utctime = None |
|
736 | utctime = None | |
843 |
|
||||
844 | timeZone = None |
|
737 | timeZone = None | |
845 |
|
||||
846 | # ippSeconds = None |
|
738 | # ippSeconds = None | |
847 |
|
||||
848 | # timeInterval = None |
|
739 | # timeInterval = None | |
849 |
|
||||
850 | nCohInt = None |
|
740 | nCohInt = None | |
851 |
|
||||
852 | nIncohInt = None |
|
741 | nIncohInt = None | |
853 |
|
||||
854 | noise = None |
|
742 | noise = None | |
855 |
|
||||
856 | windowOfFilter = 1 |
|
743 | windowOfFilter = 1 | |
857 |
|
||||
858 | # Speed of ligth |
|
744 | # Speed of ligth | |
859 | C = 3e8 |
|
745 | C = 3e8 | |
860 |
|
||||
861 | frequency = 49.92e6 |
|
746 | frequency = 49.92e6 | |
862 |
|
||||
863 | realtime = False |
|
747 | realtime = False | |
864 |
|
748 | |||
865 | def __init__(self): |
|
749 | def __init__(self): | |
@@ -978,33 +862,19 class Fits(JROData): | |||||
978 | class Correlation(JROData): |
|
862 | class Correlation(JROData): | |
979 |
|
863 | |||
980 | noise = None |
|
864 | noise = None | |
981 |
|
||||
982 | SNR = None |
|
865 | SNR = None | |
983 |
|
||||
984 | #-------------------------------------------------- |
|
866 | #-------------------------------------------------- | |
985 |
|
||||
986 | mode = None |
|
867 | mode = None | |
987 |
|
||||
988 | split = False |
|
868 | split = False | |
989 |
|
||||
990 | data_cf = None |
|
869 | data_cf = None | |
991 |
|
||||
992 | lags = None |
|
870 | lags = None | |
993 |
|
||||
994 | lagRange = None |
|
871 | lagRange = None | |
995 |
|
||||
996 | pairsList = None |
|
872 | pairsList = None | |
997 |
|
||||
998 | normFactor = None |
|
873 | normFactor = None | |
999 |
|
||||
1000 | #-------------------------------------------------- |
|
874 | #-------------------------------------------------- | |
1001 |
|
||||
1002 | # calculateVelocity = None |
|
875 | # calculateVelocity = None | |
1003 |
|
||||
1004 | nLags = None |
|
876 | nLags = None | |
1005 |
|
||||
1006 | nPairs = None |
|
877 | nPairs = None | |
1007 |
|
||||
1008 | nAvg = None |
|
878 | nAvg = None | |
1009 |
|
879 | |||
1010 | def __init__(self): |
|
880 | def __init__(self): | |
@@ -1068,7 +938,8 class Correlation(JROData): | |||||
1068 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
938 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
1069 |
|
939 | |||
1070 | if ind_vel[0] < 0: |
|
940 | if ind_vel[0] < 0: | |
1071 |
ind_vel[list(range(0, 1))] = ind_vel[list( |
|
941 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
|
942 | range(0, 1))] + self.num_prof | |||
1072 |
|
943 | |||
1073 | if mode == 1: |
|
944 | if mode == 1: | |
1074 | jspectra[:, freq_dc, :] = ( |
|
945 | jspectra[:, freq_dc, :] = ( | |
@@ -1154,55 +1025,30 class Correlation(JROData): | |||||
1154 | class Parameters(Spectra): |
|
1025 | class Parameters(Spectra): | |
1155 |
|
1026 | |||
1156 | experimentInfo = None # Information about the experiment |
|
1027 | experimentInfo = None # Information about the experiment | |
1157 |
|
||||
1158 | # Information from previous data |
|
1028 | # Information from previous data | |
1159 |
|
||||
1160 | inputUnit = None # Type of data to be processed |
|
1029 | inputUnit = None # Type of data to be processed | |
1161 |
|
||||
1162 | operation = None # Type of operation to parametrize |
|
1030 | operation = None # Type of operation to parametrize | |
1163 |
|
||||
1164 | # normFactor = None #Normalization Factor |
|
1031 | # normFactor = None #Normalization Factor | |
1165 |
|
||||
1166 | groupList = None # List of Pairs, Groups, etc |
|
1032 | groupList = None # List of Pairs, Groups, etc | |
1167 |
|
||||
1168 | # Parameters |
|
1033 | # Parameters | |
1169 |
|
||||
1170 | data_param = None # Parameters obtained |
|
1034 | data_param = None # Parameters obtained | |
1171 |
|
||||
1172 | data_pre = None # Data Pre Parametrization |
|
1035 | data_pre = None # Data Pre Parametrization | |
1173 |
|
||||
1174 | data_SNR = None # Signal to Noise Ratio |
|
1036 | data_SNR = None # Signal to Noise Ratio | |
1175 |
|
||||
1176 | # heightRange = None #Heights |
|
1037 | # heightRange = None #Heights | |
1177 |
|
||||
1178 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1038 | abscissaList = None # Abscissa, can be velocities, lags or time | |
1179 |
|
||||
1180 | # noise = None #Noise Potency |
|
1039 | # noise = None #Noise Potency | |
1181 |
|
||||
1182 | utctimeInit = None # Initial UTC time |
|
1040 | utctimeInit = None # Initial UTC time | |
1183 |
|
||||
1184 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1041 | paramInterval = None # Time interval to calculate Parameters in seconds | |
1185 |
|
||||
1186 | useLocalTime = True |
|
1042 | useLocalTime = True | |
1187 |
|
||||
1188 | # Fitting |
|
1043 | # Fitting | |
1189 |
|
||||
1190 | data_error = None # Error of the estimation |
|
1044 | data_error = None # Error of the estimation | |
1191 |
|
||||
1192 | constants = None |
|
1045 | constants = None | |
1193 |
|
||||
1194 | library = None |
|
1046 | library = None | |
1195 |
|
||||
1196 | # Output signal |
|
1047 | # Output signal | |
1197 |
|
||||
1198 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1048 | outputInterval = None # Time interval to calculate output signal in seconds | |
1199 |
|
||||
1200 | data_output = None # Out signal |
|
1049 | data_output = None # Out signal | |
1201 |
|
||||
1202 | nAvg = None |
|
1050 | nAvg = None | |
1203 |
|
||||
1204 | noise_estimation = None |
|
1051 | noise_estimation = None | |
1205 |
|
||||
1206 | GauSPC = None # Fit gaussian SPC |
|
1052 | GauSPC = None # Fit gaussian SPC | |
1207 |
|
1053 | |||
1208 | def __init__(self): |
|
1054 | def __init__(self): | |
@@ -1248,4 +1094,252 class Parameters(Spectra): | |||||
1248 | return self.spc_noise |
|
1094 | return self.spc_noise | |
1249 |
|
1095 | |||
1250 | timeInterval = property(getTimeInterval) |
|
1096 | timeInterval = property(getTimeInterval) | |
1251 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") No newline at end of file |
|
1097 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
|
1098 | ||||
|
1099 | ||||
|
1100 | class PlotterData(object): | |||
|
1101 | ''' | |||
|
1102 | Object to hold data to be plotted | |||
|
1103 | ''' | |||
|
1104 | ||||
|
1105 | MAXNUMX = 100 | |||
|
1106 | MAXNUMY = 100 | |||
|
1107 | ||||
|
1108 | def __init__(self, code, throttle_value, exp_code, buffering=True): | |||
|
1109 | ||||
|
1110 | self.throttle = throttle_value | |||
|
1111 | self.exp_code = exp_code | |||
|
1112 | self.buffering = buffering | |||
|
1113 | self.ready = False | |||
|
1114 | self.localtime = False | |||
|
1115 | self.data = {} | |||
|
1116 | self.meta = {} | |||
|
1117 | self.__times = [] | |||
|
1118 | self.__heights = [] | |||
|
1119 | ||||
|
1120 | if 'snr' in code: | |||
|
1121 | self.plottypes = ['snr'] | |||
|
1122 | elif code == 'spc': | |||
|
1123 | self.plottypes = ['spc', 'noise', 'rti'] | |||
|
1124 | elif code == 'rti': | |||
|
1125 | self.plottypes = ['noise', 'rti'] | |||
|
1126 | else: | |||
|
1127 | self.plottypes = [code] | |||
|
1128 | ||||
|
1129 | for plot in self.plottypes: | |||
|
1130 | self.data[plot] = {} | |||
|
1131 | ||||
|
1132 | def __str__(self): | |||
|
1133 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |||
|
1134 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) | |||
|
1135 | ||||
|
1136 | def __len__(self): | |||
|
1137 | return len(self.__times) | |||
|
1138 | ||||
|
1139 | def __getitem__(self, key): | |||
|
1140 | ||||
|
1141 | if key not in self.data: | |||
|
1142 | raise KeyError(log.error('Missing key: {}'.format(key))) | |||
|
1143 | if 'spc' in key or not self.buffering: | |||
|
1144 | ret = self.data[key] | |||
|
1145 | else: | |||
|
1146 | ret = numpy.array([self.data[key][x] for x in self.times]) | |||
|
1147 | if ret.ndim > 1: | |||
|
1148 | ret = numpy.swapaxes(ret, 0, 1) | |||
|
1149 | return ret | |||
|
1150 | ||||
|
1151 | def __contains__(self, key): | |||
|
1152 | return key in self.data | |||
|
1153 | ||||
|
1154 | def setup(self): | |||
|
1155 | ''' | |||
|
1156 | Configure object | |||
|
1157 | ''' | |||
|
1158 | ||||
|
1159 | self.type = '' | |||
|
1160 | self.ready = False | |||
|
1161 | self.data = {} | |||
|
1162 | self.__times = [] | |||
|
1163 | self.__heights = [] | |||
|
1164 | self.__all_heights = set() | |||
|
1165 | for plot in self.plottypes: | |||
|
1166 | if 'snr' in plot: | |||
|
1167 | plot = 'snr' | |||
|
1168 | self.data[plot] = {} | |||
|
1169 | ||||
|
1170 | if 'spc' in self.data or 'rti' in self.data: | |||
|
1171 | self.data['noise'] = {} | |||
|
1172 | if 'noise' not in self.plottypes: | |||
|
1173 | self.plottypes.append('noise') | |||
|
1174 | ||||
|
1175 | def shape(self, key): | |||
|
1176 | ''' | |||
|
1177 | Get the shape of the one-element data for the given key | |||
|
1178 | ''' | |||
|
1179 | ||||
|
1180 | if len(self.data[key]): | |||
|
1181 | if 'spc' in key or not self.buffering: | |||
|
1182 | return self.data[key].shape | |||
|
1183 | return self.data[key][self.__times[0]].shape | |||
|
1184 | return (0,) | |||
|
1185 | ||||
|
1186 | def update(self, dataOut, tm): | |||
|
1187 | ''' | |||
|
1188 | Update data object with new dataOut | |||
|
1189 | ''' | |||
|
1190 | ||||
|
1191 | if tm in self.__times: | |||
|
1192 | return | |||
|
1193 | ||||
|
1194 | self.type = dataOut.type | |||
|
1195 | self.parameters = getattr(dataOut, 'parameters', []) | |||
|
1196 | if hasattr(dataOut, 'pairsList'): | |||
|
1197 | self.pairs = dataOut.pairsList | |||
|
1198 | if hasattr(dataOut, 'meta'): | |||
|
1199 | self.meta = dataOut.meta | |||
|
1200 | self.channels = dataOut.channelList | |||
|
1201 | self.interval = dataOut.getTimeInterval() | |||
|
1202 | self.localtime = dataOut.useLocalTime | |||
|
1203 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: | |||
|
1204 | self.xrange = (dataOut.getFreqRange(1)/1000., | |||
|
1205 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |||
|
1206 | self.__heights.append(dataOut.heightList) | |||
|
1207 | self.__all_heights.update(dataOut.heightList) | |||
|
1208 | self.__times.append(tm) | |||
|
1209 | ||||
|
1210 | for plot in self.plottypes: | |||
|
1211 | if plot == 'spc': | |||
|
1212 | z = dataOut.data_spc/dataOut.normFactor | |||
|
1213 | buffer = 10*numpy.log10(z) | |||
|
1214 | if plot == 'cspc': | |||
|
1215 | buffer = dataOut.data_cspc | |||
|
1216 | if plot == 'noise': | |||
|
1217 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |||
|
1218 | if plot == 'rti': | |||
|
1219 | buffer = dataOut.getPower() | |||
|
1220 | if plot == 'snr_db': | |||
|
1221 | buffer = dataOut.data_SNR | |||
|
1222 | if plot == 'snr': | |||
|
1223 | buffer = 10*numpy.log10(dataOut.data_SNR) | |||
|
1224 | if plot == 'dop': | |||
|
1225 | buffer = 10*numpy.log10(dataOut.data_DOP) | |||
|
1226 | if plot == 'mean': | |||
|
1227 | buffer = dataOut.data_MEAN | |||
|
1228 | if plot == 'std': | |||
|
1229 | buffer = dataOut.data_STD | |||
|
1230 | if plot == 'coh': | |||
|
1231 | buffer = dataOut.getCoherence() | |||
|
1232 | if plot == 'phase': | |||
|
1233 | buffer = dataOut.getCoherence(phase=True) | |||
|
1234 | if plot == 'output': | |||
|
1235 | buffer = dataOut.data_output | |||
|
1236 | if plot == 'param': | |||
|
1237 | buffer = dataOut.data_param | |||
|
1238 | ||||
|
1239 | if 'spc' in plot: | |||
|
1240 | self.data[plot] = buffer | |||
|
1241 | else: | |||
|
1242 | if self.buffering: | |||
|
1243 | self.data[plot][tm] = buffer | |||
|
1244 | else: | |||
|
1245 | self.data[plot] = buffer | |||
|
1246 | ||||
|
1247 | def normalize_heights(self): | |||
|
1248 | ''' | |||
|
1249 | Ensure same-dimension of the data for different heighList | |||
|
1250 | ''' | |||
|
1251 | ||||
|
1252 | H = numpy.array(list(self.__all_heights)) | |||
|
1253 | H.sort() | |||
|
1254 | for key in self.data: | |||
|
1255 | shape = self.shape(key)[:-1] + H.shape | |||
|
1256 | for tm, obj in list(self.data[key].items()): | |||
|
1257 | h = self.__heights[self.__times.index(tm)] | |||
|
1258 | if H.size == h.size: | |||
|
1259 | continue | |||
|
1260 | index = numpy.where(numpy.in1d(H, h))[0] | |||
|
1261 | dummy = numpy.zeros(shape) + numpy.nan | |||
|
1262 | if len(shape) == 2: | |||
|
1263 | dummy[:, index] = obj | |||
|
1264 | else: | |||
|
1265 | dummy[index] = obj | |||
|
1266 | self.data[key][tm] = dummy | |||
|
1267 | ||||
|
1268 | self.__heights = [H for tm in self.__times] | |||
|
1269 | ||||
|
1270 | def jsonify(self, decimate=False): | |||
|
1271 | ''' | |||
|
1272 | Convert data to json | |||
|
1273 | ''' | |||
|
1274 | ||||
|
1275 | data = {} | |||
|
1276 | tm = self.times[-1] | |||
|
1277 | dy = int(self.heights.size/self.MAXNUMY) + 1 | |||
|
1278 | for key in self.data: | |||
|
1279 | if key in ('spc', 'cspc') or not self.buffering: | |||
|
1280 | dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1 | |||
|
1281 | data[key] = self.roundFloats( | |||
|
1282 | self.data[key][::, ::dx, ::dy].tolist()) | |||
|
1283 | else: | |||
|
1284 | data[key] = self.roundFloats(self.data[key][tm].tolist()) | |||
|
1285 | ||||
|
1286 | ret = {'data': data} | |||
|
1287 | ret['exp_code'] = self.exp_code | |||
|
1288 | ret['time'] = float(tm) | |||
|
1289 | ret['interval'] = float(self.interval) | |||
|
1290 | ret['localtime'] = self.localtime | |||
|
1291 | ret['yrange'] = self.roundFloats(self.heights[::dy].tolist()) | |||
|
1292 | if 'spc' in self.data or 'cspc' in self.data: | |||
|
1293 | ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |||
|
1294 | else: | |||
|
1295 | ret['xrange'] = [] | |||
|
1296 | if hasattr(self, 'pairs'): | |||
|
1297 | ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs] | |||
|
1298 | else: | |||
|
1299 | ret['pairs'] = [] | |||
|
1300 | ||||
|
1301 | for key, value in list(self.meta.items()): | |||
|
1302 | ret[key] = value | |||
|
1303 | ||||
|
1304 | return json.dumps(ret) | |||
|
1305 | ||||
|
1306 | @property | |||
|
1307 | def times(self): | |||
|
1308 | ''' | |||
|
1309 | Return the list of times of the current data | |||
|
1310 | ''' | |||
|
1311 | ||||
|
1312 | ret = numpy.array(self.__times) | |||
|
1313 | ret.sort() | |||
|
1314 | return ret | |||
|
1315 | ||||
|
1316 | @property | |||
|
1317 | def min_time(self): | |||
|
1318 | ''' | |||
|
1319 | Return the minimun time value | |||
|
1320 | ''' | |||
|
1321 | ||||
|
1322 | return self.times[0] | |||
|
1323 | ||||
|
1324 | @property | |||
|
1325 | def max_time(self): | |||
|
1326 | ''' | |||
|
1327 | Return the maximun time value | |||
|
1328 | ''' | |||
|
1329 | ||||
|
1330 | return self.times[-1] | |||
|
1331 | ||||
|
1332 | @property | |||
|
1333 | def heights(self): | |||
|
1334 | ''' | |||
|
1335 | Return the list of heights of the current data | |||
|
1336 | ''' | |||
|
1337 | ||||
|
1338 | return numpy.array(self.__heights[-1]) | |||
|
1339 | ||||
|
1340 | @staticmethod | |||
|
1341 | def roundFloats(obj): | |||
|
1342 | if isinstance(obj, list): | |||
|
1343 | return list(map(PlotterData.roundFloats, obj)) | |||
|
1344 | elif isinstance(obj, float): | |||
|
1345 | return round(obj, 2) |
@@ -4,4 +4,3 from .jroplot_heispectra import * | |||||
4 | from .jroplot_correlation import * |
|
4 | from .jroplot_correlation import * | |
5 | from .jroplot_parameters import * |
|
5 | from .jroplot_parameters import * | |
6 | from .jroplot_data import * |
|
6 | from .jroplot_data import * | |
7 | from .jroplotter import * |
|
@@ -5,7 +5,7 import copy | |||||
5 | from schainpy.model import * |
|
5 | from schainpy.model import * | |
6 | from .figure import Figure, isRealtime |
|
6 | from .figure import Figure, isRealtime | |
7 |
|
7 | |||
8 | class CorrelationPlot(Figure): |
|
8 | class CorrelationPlot_(Figure): | |
9 | isConfig = None |
|
9 | isConfig = None | |
10 | __nsubplots = None |
|
10 | __nsubplots = None | |
11 |
|
11 |
This diff has been collapsed as it changes many lines, (685 lines changed) Show them Hide them | |||||
@@ -1,41 +1,32 | |||||
|
1 | ''' | |||
|
2 | New Plots Operations | |||
|
3 | ||||
|
4 | @author: juan.espinoza@jro.igp.gob.pe | |||
|
5 | ''' | |||
|
6 | ||||
1 |
|
7 | |||
2 | import os |
|
|||
3 | import time |
|
8 | import time | |
4 | import glob |
|
|||
5 | import datetime |
|
9 | import datetime | |
6 | from multiprocessing import Process |
|
|||
7 |
|
||||
8 | import zmq |
|
|||
9 | import numpy |
|
10 | import numpy | |
10 | import matplotlib |
|
|||
11 | import matplotlib.pyplot as plt |
|
|||
12 | from matplotlib.patches import Polygon |
|
|||
13 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
|||
14 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
|||
15 |
|
11 | |||
16 |
from schainpy.model. |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
17 | from schainpy.utils import log |
|
13 | from schainpy.utils import log | |
18 |
|
14 | |||
19 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
|||
20 | blu_values = matplotlib.pyplot.get_cmap( |
|
|||
21 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
|||
22 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
|||
23 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
|||
24 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
|||
25 |
|
||||
26 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
|||
27 |
|
||||
28 | EARTH_RADIUS = 6.3710e3 |
|
15 | EARTH_RADIUS = 6.3710e3 | |
29 |
|
16 | |||
|
17 | ||||
30 | def ll2xy(lat1, lon1, lat2, lon2): |
|
18 | def ll2xy(lat1, lon1, lat2, lon2): | |
31 |
|
19 | |||
32 | p = 0.017453292519943295 |
|
20 | p = 0.017453292519943295 | |
33 |
a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * |
|
21 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
|
22 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |||
34 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
23 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
35 |
theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
24 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
|
25 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |||
36 | theta = -theta + numpy.pi/2 |
|
26 | theta = -theta + numpy.pi/2 | |
37 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
27 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
38 |
|
28 | |||
|
29 | ||||
39 | def km2deg(km): |
|
30 | def km2deg(km): | |
40 | ''' |
|
31 | ''' | |
41 | Convert distance in km to degrees |
|
32 | Convert distance in km to degrees | |
@@ -43,536 +34,8 def km2deg(km): | |||||
43 |
|
34 | |||
44 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
35 | return numpy.rad2deg(km/EARTH_RADIUS) | |
45 |
|
36 | |||
46 | def figpause(interval): |
|
|||
47 | backend = plt.rcParams['backend'] |
|
|||
48 | if backend in matplotlib.rcsetup.interactive_bk: |
|
|||
49 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
|||
50 | if figManager is not None: |
|
|||
51 | canvas = figManager.canvas |
|
|||
52 | if canvas.figure.stale: |
|
|||
53 | canvas.draw() |
|
|||
54 | try: |
|
|||
55 | canvas.start_event_loop(interval) |
|
|||
56 | except: |
|
|||
57 | pass |
|
|||
58 | return |
|
|||
59 |
|
||||
60 | def popup(message): |
|
|||
61 | ''' |
|
|||
62 | ''' |
|
|||
63 |
|
||||
64 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
|||
65 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
|||
66 | fig.text(0.01, 0.5, text, ha='left', va='center', size='20', weight='heavy', color='w') |
|
|||
67 | fig.show() |
|
|||
68 | figpause(1000) |
|
|||
69 |
|
||||
70 |
|
||||
71 | class PlotData(Operation, Process): |
|
|||
72 | ''' |
|
|||
73 | Base class for Schain plotting operations |
|
|||
74 | ''' |
|
|||
75 |
|
||||
76 | CODE = 'Figure' |
|
|||
77 | colormap = 'jro' |
|
|||
78 | bgcolor = 'white' |
|
|||
79 | CONFLATE = False |
|
|||
80 | __missing = 1E30 |
|
|||
81 |
|
||||
82 | __attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax', |
|
|||
83 | 'zlimits', 'xlabel', 'ylabel', 'xaxis','cb_label', 'title', |
|
|||
84 | 'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure', |
|
|||
85 | 'showprofile', 'decimation', 'ftp'] |
|
|||
86 |
|
||||
87 | def __init__(self, **kwargs): |
|
|||
88 |
|
||||
89 | Operation.__init__(self, plot=True, **kwargs) |
|
|||
90 | Process.__init__(self) |
|
|||
91 |
|
||||
92 | self.kwargs['code'] = self.CODE |
|
|||
93 | self.mp = False |
|
|||
94 | self.data = None |
|
|||
95 | self.isConfig = False |
|
|||
96 | self.figures = [] |
|
|||
97 | self.axes = [] |
|
|||
98 | self.cb_axes = [] |
|
|||
99 | self.localtime = kwargs.pop('localtime', True) |
|
|||
100 | self.show = kwargs.get('show', True) |
|
|||
101 | self.save = kwargs.get('save', False) |
|
|||
102 | self.ftp = kwargs.get('ftp', False) |
|
|||
103 | self.colormap = kwargs.get('colormap', self.colormap) |
|
|||
104 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
|||
105 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
|||
106 | self.colormaps = kwargs.get('colormaps', None) |
|
|||
107 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
|||
108 | self.showprofile = kwargs.get('showprofile', False) |
|
|||
109 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
|||
110 | self.cb_label = kwargs.get('cb_label', None) |
|
|||
111 | self.cb_labels = kwargs.get('cb_labels', None) |
|
|||
112 | self.labels = kwargs.get('labels', None) |
|
|||
113 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
|||
114 | self.zmin = kwargs.get('zmin', None) |
|
|||
115 | self.zmax = kwargs.get('zmax', None) |
|
|||
116 | self.zlimits = kwargs.get('zlimits', None) |
|
|||
117 | self.xmin = kwargs.get('xmin', None) |
|
|||
118 | self.xmax = kwargs.get('xmax', None) |
|
|||
119 | self.xrange = kwargs.get('xrange', 24) |
|
|||
120 | self.xscale = kwargs.get('xscale', None) |
|
|||
121 | self.ymin = kwargs.get('ymin', None) |
|
|||
122 | self.ymax = kwargs.get('ymax', None) |
|
|||
123 | self.yscale = kwargs.get('yscale', None) |
|
|||
124 | self.xlabel = kwargs.get('xlabel', None) |
|
|||
125 | self.decimation = kwargs.get('decimation', None) |
|
|||
126 | self.showSNR = kwargs.get('showSNR', False) |
|
|||
127 | self.oneFigure = kwargs.get('oneFigure', True) |
|
|||
128 | self.width = kwargs.get('width', None) |
|
|||
129 | self.height = kwargs.get('height', None) |
|
|||
130 | self.colorbar = kwargs.get('colorbar', True) |
|
|||
131 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
|||
132 | self.channels = kwargs.get('channels', None) |
|
|||
133 | self.titles = kwargs.get('titles', []) |
|
|||
134 | self.polar = False |
|
|||
135 | self.grid = kwargs.get('grid', False) |
|
|||
136 |
|
||||
137 | def __fmtTime(self, x, pos): |
|
|||
138 | ''' |
|
|||
139 | ''' |
|
|||
140 |
|
||||
141 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
|||
142 |
|
||||
143 | def __setup(self): |
|
|||
144 | ''' |
|
|||
145 | Common setup for all figures, here figures and axes are created |
|
|||
146 | ''' |
|
|||
147 |
|
||||
148 | if self.CODE not in self.data: |
|
|||
149 | raise ValueError(log.error('Missing data for {}'.format(self.CODE), |
|
|||
150 | self.name)) |
|
|||
151 |
|
||||
152 | self.setup() |
|
|||
153 |
|
||||
154 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
|||
155 | if self.data.localtime: |
|
|||
156 | self.getDateTime = datetime.datetime.fromtimestamp |
|
|||
157 | else: |
|
|||
158 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
|||
159 |
|
||||
160 | if self.width is None: |
|
|||
161 | self.width = 8 |
|
|||
162 |
|
||||
163 | self.figures = [] |
|
|||
164 | self.axes = [] |
|
|||
165 | self.cb_axes = [] |
|
|||
166 | self.pf_axes = [] |
|
|||
167 | self.cmaps = [] |
|
|||
168 |
|
||||
169 | size = '15%' if self.ncols == 1 else '30%' |
|
|||
170 | pad = '4%' if self.ncols == 1 else '8%' |
|
|||
171 |
|
||||
172 | if self.oneFigure: |
|
|||
173 | if self.height is None: |
|
|||
174 | self.height = 1.4 * self.nrows + 1 |
|
|||
175 | fig = plt.figure(figsize=(self.width, self.height), |
|
|||
176 | edgecolor='k', |
|
|||
177 | facecolor='w') |
|
|||
178 | self.figures.append(fig) |
|
|||
179 | for n in range(self.nplots): |
|
|||
180 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
|||
181 | n + 1, polar=self.polar) |
|
|||
182 | ax.tick_params(labelsize=8) |
|
|||
183 | ax.firsttime = True |
|
|||
184 | ax.index = 0 |
|
|||
185 | ax.press = None |
|
|||
186 | self.axes.append(ax) |
|
|||
187 | if self.showprofile: |
|
|||
188 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
|||
189 | cax.tick_params(labelsize=8) |
|
|||
190 | self.pf_axes.append(cax) |
|
|||
191 | else: |
|
|||
192 | if self.height is None: |
|
|||
193 | self.height = 3 |
|
|||
194 | for n in range(self.nplots): |
|
|||
195 | fig = plt.figure(figsize=(self.width, self.height), |
|
|||
196 | edgecolor='k', |
|
|||
197 | facecolor='w') |
|
|||
198 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
|||
199 | ax.tick_params(labelsize=8) |
|
|||
200 | ax.firsttime = True |
|
|||
201 | ax.index = 0 |
|
|||
202 | ax.press = None |
|
|||
203 | self.figures.append(fig) |
|
|||
204 | self.axes.append(ax) |
|
|||
205 | if self.showprofile: |
|
|||
206 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
|||
207 | cax.tick_params(labelsize=8) |
|
|||
208 | self.pf_axes.append(cax) |
|
|||
209 |
|
||||
210 | for n in range(self.nrows): |
|
|||
211 | if self.colormaps is not None: |
|
|||
212 | cmap = plt.get_cmap(self.colormaps[n]) |
|
|||
213 | else: |
|
|||
214 | cmap = plt.get_cmap(self.colormap) |
|
|||
215 | cmap.set_bad(self.bgcolor, 1.) |
|
|||
216 | self.cmaps.append(cmap) |
|
|||
217 |
|
||||
218 | for fig in self.figures: |
|
|||
219 | fig.canvas.mpl_connect('key_press_event', self.OnKeyPress) |
|
|||
220 | fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll) |
|
|||
221 | fig.canvas.mpl_connect('button_press_event', self.onBtnPress) |
|
|||
222 | fig.canvas.mpl_connect('motion_notify_event', self.onMotion) |
|
|||
223 | fig.canvas.mpl_connect('button_release_event', self.onBtnRelease) |
|
|||
224 | if self.show: |
|
|||
225 | fig.show() |
|
|||
226 |
|
||||
227 | def OnKeyPress(self, event): |
|
|||
228 | ''' |
|
|||
229 | Event for pressing keys (up, down) change colormap |
|
|||
230 | ''' |
|
|||
231 | ax = event.inaxes |
|
|||
232 | if ax in self.axes: |
|
|||
233 | if event.key == 'down': |
|
|||
234 | ax.index += 1 |
|
|||
235 | elif event.key == 'up': |
|
|||
236 | ax.index -= 1 |
|
|||
237 | if ax.index < 0: |
|
|||
238 | ax.index = len(CMAPS) - 1 |
|
|||
239 | elif ax.index == len(CMAPS): |
|
|||
240 | ax.index = 0 |
|
|||
241 | cmap = CMAPS[ax.index] |
|
|||
242 | ax.cbar.set_cmap(cmap) |
|
|||
243 | ax.cbar.draw_all() |
|
|||
244 | ax.plt.set_cmap(cmap) |
|
|||
245 | ax.cbar.patch.figure.canvas.draw() |
|
|||
246 | self.colormap = cmap.name |
|
|||
247 |
|
||||
248 | def OnBtnScroll(self, event): |
|
|||
249 | ''' |
|
|||
250 | Event for scrolling, scale figure |
|
|||
251 | ''' |
|
|||
252 | cb_ax = event.inaxes |
|
|||
253 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
|||
254 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] |
|
|||
255 | pt = ax.cbar.ax.bbox.get_points()[:, 1] |
|
|||
256 | nrm = ax.cbar.norm |
|
|||
257 | vmin, vmax, p0, p1, pS = ( |
|
|||
258 | nrm.vmin, nrm.vmax, pt[0], pt[1], event.y) |
|
|||
259 | scale = 2 if event.step == 1 else 0.5 |
|
|||
260 | point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0) |
|
|||
261 | ax.cbar.norm.vmin = point - scale * (point - vmin) |
|
|||
262 | ax.cbar.norm.vmax = point - scale * (point - vmax) |
|
|||
263 | ax.plt.set_norm(ax.cbar.norm) |
|
|||
264 | ax.cbar.draw_all() |
|
|||
265 | ax.cbar.patch.figure.canvas.draw() |
|
|||
266 |
|
||||
267 | def onBtnPress(self, event): |
|
|||
268 | ''' |
|
|||
269 | Event for mouse button press |
|
|||
270 | ''' |
|
|||
271 | cb_ax = event.inaxes |
|
|||
272 | if cb_ax is None: |
|
|||
273 | return |
|
|||
274 |
|
||||
275 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
|||
276 | cb_ax.press = event.x, event.y |
|
|||
277 | else: |
|
|||
278 | cb_ax.press = None |
|
|||
279 |
|
||||
280 | def onMotion(self, event): |
|
|||
281 | ''' |
|
|||
282 | Event for move inside colorbar |
|
|||
283 | ''' |
|
|||
284 | cb_ax = event.inaxes |
|
|||
285 | if cb_ax is None: |
|
|||
286 | return |
|
|||
287 | if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
|||
288 | return |
|
|||
289 | if cb_ax.press is None: |
|
|||
290 | return |
|
|||
291 |
|
||||
292 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] |
|
|||
293 | xprev, yprev = cb_ax.press |
|
|||
294 | dx = event.x - xprev |
|
|||
295 | dy = event.y - yprev |
|
|||
296 | cb_ax.press = event.x, event.y |
|
|||
297 | scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin |
|
|||
298 | perc = 0.03 |
|
|||
299 |
|
||||
300 | if event.button == 1: |
|
|||
301 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) |
|
|||
302 | ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy) |
|
|||
303 | elif event.button == 3: |
|
|||
304 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) |
|
|||
305 | ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy) |
|
|||
306 |
|
||||
307 | ax.cbar.draw_all() |
|
|||
308 | ax.plt.set_norm(ax.cbar.norm) |
|
|||
309 | ax.cbar.patch.figure.canvas.draw() |
|
|||
310 |
|
||||
311 | def onBtnRelease(self, event): |
|
|||
312 | ''' |
|
|||
313 | Event for mouse button release |
|
|||
314 | ''' |
|
|||
315 | cb_ax = event.inaxes |
|
|||
316 | if cb_ax is not None: |
|
|||
317 | cb_ax.press = None |
|
|||
318 |
|
||||
319 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
|||
320 | ''' |
|
|||
321 | Add new axes to the given figure |
|
|||
322 | ''' |
|
|||
323 | divider = make_axes_locatable(ax) |
|
|||
324 | nax = divider.new_horizontal(size=size, pad=pad) |
|
|||
325 | ax.figure.add_axes(nax) |
|
|||
326 | return nax |
|
|||
327 |
|
||||
328 | self.setup() |
|
|||
329 |
|
||||
330 | def setup(self): |
|
|||
331 | ''' |
|
|||
332 | This method should be implemented in the child class, the following |
|
|||
333 | attributes should be set: |
|
|||
334 |
|
||||
335 | self.nrows: number of rows |
|
|||
336 | self.ncols: number of cols |
|
|||
337 | self.nplots: number of plots (channels or pairs) |
|
|||
338 | self.ylabel: label for Y axes |
|
|||
339 | self.titles: list of axes title |
|
|||
340 |
|
||||
341 | ''' |
|
|||
342 | raise NotImplementedError |
|
|||
343 |
|
||||
344 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
|||
345 | ''' |
|
|||
346 | Create a masked array for missing data |
|
|||
347 | ''' |
|
|||
348 | if x_buffer.shape[0] < 2: |
|
|||
349 | return x_buffer, y_buffer, z_buffer |
|
|||
350 |
|
||||
351 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
|||
352 | x_median = numpy.median(deltas) |
|
|||
353 |
|
||||
354 | index = numpy.where(deltas > 5 * x_median) |
|
|||
355 |
|
||||
356 | if len(index[0]) != 0: |
|
|||
357 | z_buffer[::, index[0], ::] = self.__missing |
|
|||
358 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
|||
359 | 0.99 * self.__missing, |
|
|||
360 | 1.01 * self.__missing) |
|
|||
361 |
|
||||
362 | return x_buffer, y_buffer, z_buffer |
|
|||
363 |
|
||||
364 | def decimate(self): |
|
|||
365 |
|
||||
366 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
|||
367 | dy = int(len(self.y) / self.decimation) + 1 |
|
|||
368 |
|
||||
369 | # x = self.x[::dx] |
|
|||
370 | x = self.x |
|
|||
371 | y = self.y[::dy] |
|
|||
372 | z = self.z[::, ::, ::dy] |
|
|||
373 |
|
||||
374 | return x, y, z |
|
|||
375 |
|
37 | |||
376 | def format(self): |
|
38 | class SpectraPlot(Plot): | |
377 | ''' |
|
|||
378 | Set min and max values, labels, ticks and titles |
|
|||
379 | ''' |
|
|||
380 |
|
||||
381 | if self.xmin is None: |
|
|||
382 | xmin = self.min_time |
|
|||
383 | else: |
|
|||
384 | if self.xaxis is 'time': |
|
|||
385 | dt = self.getDateTime(self.min_time) |
|
|||
386 | xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - |
|
|||
387 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
|||
388 | if self.data.localtime: |
|
|||
389 | xmin += time.timezone |
|
|||
390 | else: |
|
|||
391 | xmin = self.xmin |
|
|||
392 |
|
||||
393 | if self.xmax is None: |
|
|||
394 | xmax = xmin + self.xrange * 60 * 60 |
|
|||
395 | else: |
|
|||
396 | if self.xaxis is 'time': |
|
|||
397 | dt = self.getDateTime(self.max_time) |
|
|||
398 | xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) - |
|
|||
399 | datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() |
|
|||
400 | if self.data.localtime: |
|
|||
401 | xmax += time.timezone |
|
|||
402 | else: |
|
|||
403 | xmax = self.xmax |
|
|||
404 |
|
||||
405 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
|||
406 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
|||
407 |
|
||||
408 | Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000]) |
|
|||
409 | i = 1 if numpy.where(abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0] |
|
|||
410 | ystep = Y[i] / 10. |
|
|||
411 |
|
||||
412 | if self.xaxis is not 'time': |
|
|||
413 | X = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000])/2. |
|
|||
414 | i = 1 if numpy.where(abs(xmax-xmin) <= X)[0][0] < 0 else numpy.where(abs(xmax-xmin) <= X)[0][0] |
|
|||
415 | xstep = X[i] / 10. |
|
|||
416 |
|
||||
417 | for n, ax in enumerate(self.axes): |
|
|||
418 | if ax.firsttime: |
|
|||
419 | ax.set_facecolor(self.bgcolor) |
|
|||
420 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
|||
421 | if self.xscale: |
|
|||
422 | ax.xaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
|||
423 | if self.xscale: |
|
|||
424 | ax.yaxis.set_major_formatter(FuncFormatter(lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
|||
425 | if self.xaxis is 'time': |
|
|||
426 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
|||
427 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
|||
428 | else: |
|
|||
429 | ax.xaxis.set_major_locator(MultipleLocator(xstep)) |
|
|||
430 | if self.xlabel is not None: |
|
|||
431 | ax.set_xlabel(self.xlabel) |
|
|||
432 | ax.set_ylabel(self.ylabel) |
|
|||
433 | ax.firsttime = False |
|
|||
434 | if self.showprofile: |
|
|||
435 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
|||
436 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
|||
437 | self.pf_axes[n].set_xlabel('dB') |
|
|||
438 | self.pf_axes[n].grid(b=True, axis='x') |
|
|||
439 | [tick.set_visible(False) |
|
|||
440 | for tick in self.pf_axes[n].get_yticklabels()] |
|
|||
441 | if self.colorbar: |
|
|||
442 | ax.cbar = plt.colorbar( |
|
|||
443 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
|||
444 | ax.cbar.ax.tick_params(labelsize=8) |
|
|||
445 | ax.cbar.ax.press = None |
|
|||
446 | if self.cb_label: |
|
|||
447 | ax.cbar.set_label(self.cb_label, size=8) |
|
|||
448 | elif self.cb_labels: |
|
|||
449 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
|||
450 | else: |
|
|||
451 | ax.cbar = None |
|
|||
452 | if self.grid: |
|
|||
453 | ax.grid(True) |
|
|||
454 |
|
||||
455 | if not self.polar: |
|
|||
456 | ax.set_xlim(xmin, xmax) |
|
|||
457 | ax.set_ylim(ymin, ymax) |
|
|||
458 | ax.set_title('{} {} {}'.format( |
|
|||
459 | self.titles[n], |
|
|||
460 | self.getDateTime(self.max_time).strftime('%Y-%m-%dT%H:%M:%S'), |
|
|||
461 | self.time_label), |
|
|||
462 | size=8) |
|
|||
463 | else: |
|
|||
464 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
|||
465 | ax.set_ylim(0, 90) |
|
|||
466 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
|||
467 | ax.yaxis.labelpad = 40 |
|
|||
468 |
|
||||
469 | def __plot(self): |
|
|||
470 | ''' |
|
|||
471 | ''' |
|
|||
472 | log.log('Plotting', self.name) |
|
|||
473 |
|
||||
474 | try: |
|
|||
475 | self.plot() |
|
|||
476 | self.format() |
|
|||
477 | except Exception as e: |
|
|||
478 | log.warning('{} Plot could not be updated... check data'.format(self.CODE), self.name) |
|
|||
479 | log.error(str(e), '') |
|
|||
480 | return |
|
|||
481 |
|
||||
482 | for n, fig in enumerate(self.figures): |
|
|||
483 | if self.nrows == 0 or self.nplots == 0: |
|
|||
484 | log.warning('No data', self.name) |
|
|||
485 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
|||
486 | fig.canvas.manager.set_window_title(self.CODE) |
|
|||
487 | continue |
|
|||
488 |
|
||||
489 | fig.tight_layout() |
|
|||
490 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
|||
491 | self.getDateTime(self.max_time).strftime('%Y/%m/%d'))) |
|
|||
492 | fig.canvas.draw() |
|
|||
493 |
|
||||
494 | if self.save and (self.data.ended or not self.data.buffering): |
|
|||
495 |
|
||||
496 | if self.save_labels: |
|
|||
497 | labels = self.save_labels |
|
|||
498 | else: |
|
|||
499 | labels = list(range(self.nrows)) |
|
|||
500 |
|
||||
501 | if self.oneFigure: |
|
|||
502 | label = '' |
|
|||
503 | else: |
|
|||
504 | label = '-{}'.format(labels[n]) |
|
|||
505 | figname = os.path.join( |
|
|||
506 | self.save, |
|
|||
507 | self.CODE, |
|
|||
508 | '{}{}_{}.png'.format( |
|
|||
509 | self.CODE, |
|
|||
510 | label, |
|
|||
511 | self.getDateTime(self.saveTime).strftime( |
|
|||
512 | '%Y%m%d_%H%M%S'), |
|
|||
513 | ) |
|
|||
514 | ) |
|
|||
515 | log.log('Saving figure: {}'.format(figname), self.name) |
|
|||
516 | if not os.path.isdir(os.path.dirname(figname)): |
|
|||
517 | os.makedirs(os.path.dirname(figname)) |
|
|||
518 | fig.savefig(figname) |
|
|||
519 |
|
||||
520 | def plot(self): |
|
|||
521 | ''' |
|
|||
522 | ''' |
|
|||
523 | raise NotImplementedError |
|
|||
524 |
|
||||
525 | def run(self): |
|
|||
526 |
|
||||
527 | log.log('Starting', self.name) |
|
|||
528 |
|
||||
529 | context = zmq.Context() |
|
|||
530 | receiver = context.socket(zmq.SUB) |
|
|||
531 | receiver.setsockopt(zmq.SUBSCRIBE, '') |
|
|||
532 | receiver.setsockopt(zmq.CONFLATE, self.CONFLATE) |
|
|||
533 |
|
||||
534 | if 'server' in self.kwargs['parent']: |
|
|||
535 | receiver.connect( |
|
|||
536 | 'ipc:///tmp/{}.plots'.format(self.kwargs['parent']['server'])) |
|
|||
537 | else: |
|
|||
538 | receiver.connect("ipc:///tmp/zmq.plots") |
|
|||
539 |
|
||||
540 | while True: |
|
|||
541 | try: |
|
|||
542 | self.data = receiver.recv_pyobj(flags=zmq.NOBLOCK) |
|
|||
543 | if self.data.localtime and self.localtime: |
|
|||
544 | self.times = self.data.times |
|
|||
545 | elif self.data.localtime and not self.localtime: |
|
|||
546 | self.times = self.data.times + time.timezone |
|
|||
547 | elif not self.data.localtime and self.localtime: |
|
|||
548 | self.times = self.data.times - time.timezone |
|
|||
549 | else: |
|
|||
550 | self.times = self.data.times |
|
|||
551 |
|
||||
552 | self.min_time = self.times[0] |
|
|||
553 | self.max_time = self.times[-1] |
|
|||
554 |
|
||||
555 | if self.isConfig is False: |
|
|||
556 | self.__setup() |
|
|||
557 | self.isConfig = True |
|
|||
558 |
|
||||
559 | self.__plot() |
|
|||
560 |
|
||||
561 | except zmq.Again as e: |
|
|||
562 | if self.data and self.data.ended: |
|
|||
563 | break |
|
|||
564 | log.log('Waiting for data...') |
|
|||
565 | if self.data: |
|
|||
566 | figpause(self.data.throttle) |
|
|||
567 | else: |
|
|||
568 | time.sleep(2) |
|
|||
569 |
|
||||
570 | def close(self): |
|
|||
571 | if self.data: |
|
|||
572 | self.__plot() |
|
|||
573 |
|
||||
574 |
|
||||
575 | class PlotSpectraData(PlotData): |
|
|||
576 | ''' |
|
39 | ''' | |
577 | Plot for Spectra data |
|
40 | Plot for Spectra data | |
578 | ''' |
|
41 | ''' | |
@@ -644,10 +107,9 class PlotSpectraData(PlotData): | |||||
644 | ax.plt_mean.set_data(mean, y) |
|
107 | ax.plt_mean.set_data(mean, y) | |
645 |
|
108 | |||
646 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
109 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
647 | self.saveTime = self.max_time |
|
|||
648 |
|
110 | |||
649 |
|
111 | |||
650 |
class |
|
112 | class CrossSpectraPlot(Plot): | |
651 |
|
113 | |||
652 | CODE = 'cspc' |
|
114 | CODE = 'cspc' | |
653 | zmin_coh = None |
|
115 | zmin_coh = None | |
@@ -741,10 +203,8 class PlotCrossSpectraData(PlotData): | |||||
741 | ax.plt.set_array(phase.T.ravel()) |
|
203 | ax.plt.set_array(phase.T.ravel()) | |
742 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
204 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
743 |
|
205 | |||
744 | self.saveTime = self.max_time |
|
|||
745 |
|
||||
746 |
|
206 | |||
747 |
class |
|
207 | class SpectraMeanPlot(SpectraPlot): | |
748 | ''' |
|
208 | ''' | |
749 | Plot for Spectra and Mean |
|
209 | Plot for Spectra and Mean | |
750 | ''' |
|
210 | ''' | |
@@ -752,7 +212,7 class PlotSpectraMeanData(PlotSpectraData): | |||||
752 | colormap = 'jro' |
|
212 | colormap = 'jro' | |
753 |
|
213 | |||
754 |
|
214 | |||
755 |
class |
|
215 | class RTIPlot(Plot): | |
756 | ''' |
|
216 | ''' | |
757 | Plot for RTI data |
|
217 | Plot for RTI data | |
758 | ''' |
|
218 | ''' | |
@@ -771,7 +231,7 class PlotRTIData(PlotData): | |||||
771 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
231 | self.CODE.upper(), x) for x in range(self.nrows)] | |
772 |
|
232 | |||
773 | def plot(self): |
|
233 | def plot(self): | |
774 | self.x = self.times |
|
234 | self.x = self.data.times | |
775 | self.y = self.data.heights |
|
235 | self.y = self.data.heights | |
776 | self.z = self.data[self.CODE] |
|
236 | self.z = self.data[self.CODE] | |
777 | self.z = numpy.ma.masked_invalid(self.z) |
|
237 | self.z = numpy.ma.masked_invalid(self.z) | |
@@ -781,7 +241,7 class PlotRTIData(PlotData): | |||||
781 | else: |
|
241 | else: | |
782 | x, y, z = self.fill_gaps(*self.decimate()) |
|
242 | x, y, z = self.fill_gaps(*self.decimate()) | |
783 |
|
243 | |||
784 |
for n, ax in enumerate(self.axes): |
|
244 | for n, ax in enumerate(self.axes): | |
785 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
245 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
786 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
246 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
787 | if ax.firsttime: |
|
247 | if ax.firsttime: | |
@@ -807,10 +267,8 class PlotRTIData(PlotData): | |||||
807 | ax.plot_noise.set_data(numpy.repeat( |
|
267 | ax.plot_noise.set_data(numpy.repeat( | |
808 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
268 | self.data['noise'][n][-1], len(self.y)), self.y) | |
809 |
|
269 | |||
810 | self.saveTime = self.min_time |
|
|||
811 |
|
||||
812 |
|
270 | |||
813 | class PlotCOHData(PlotRTIData): |
|
271 | class CoherencePlot(RTIPlot): | |
814 | ''' |
|
272 | ''' | |
815 | Plot for Coherence data |
|
273 | Plot for Coherence data | |
816 | ''' |
|
274 | ''' | |
@@ -833,7 +291,7 class PlotCOHData(PlotRTIData): | |||||
833 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
291 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
834 |
|
292 | |||
835 |
|
293 | |||
836 | class PlotPHASEData(PlotCOHData): |
|
294 | class PhasePlot(CoherencePlot): | |
837 | ''' |
|
295 | ''' | |
838 | Plot for Phase map data |
|
296 | Plot for Phase map data | |
839 | ''' |
|
297 | ''' | |
@@ -842,7 +300,7 class PlotPHASEData(PlotCOHData): | |||||
842 | colormap = 'seismic' |
|
300 | colormap = 'seismic' | |
843 |
|
301 | |||
844 |
|
302 | |||
845 |
class |
|
303 | class NoisePlot(Plot): | |
846 | ''' |
|
304 | ''' | |
847 | Plot for noise |
|
305 | Plot for noise | |
848 | ''' |
|
306 | ''' | |
@@ -860,8 +318,8 class PlotNoiseData(PlotData): | |||||
860 |
|
318 | |||
861 | def plot(self): |
|
319 | def plot(self): | |
862 |
|
320 | |||
863 | x = self.times |
|
321 | x = self.data.times | |
864 | xmin = self.min_time |
|
322 | xmin = self.data.min_time | |
865 | xmax = xmin + self.xrange * 60 * 60 |
|
323 | xmax = xmin + self.xrange * 60 * 60 | |
866 | Y = self.data[self.CODE] |
|
324 | Y = self.data[self.CODE] | |
867 |
|
325 | |||
@@ -877,10 +335,9 class PlotNoiseData(PlotData): | |||||
877 |
|
335 | |||
878 | self.ymin = numpy.nanmin(Y) - 5 |
|
336 | self.ymin = numpy.nanmin(Y) - 5 | |
879 | self.ymax = numpy.nanmax(Y) + 5 |
|
337 | self.ymax = numpy.nanmax(Y) + 5 | |
880 | self.saveTime = self.min_time |
|
|||
881 |
|
338 | |||
882 |
|
339 | |||
883 |
class Plot |
|
340 | class SnrPlot(RTIPlot): | |
884 | ''' |
|
341 | ''' | |
885 | Plot for SNR Data |
|
342 | Plot for SNR Data | |
886 | ''' |
|
343 | ''' | |
@@ -889,7 +346,7 class PlotSNRData(PlotRTIData): | |||||
889 | colormap = 'jet' |
|
346 | colormap = 'jet' | |
890 |
|
347 | |||
891 |
|
348 | |||
892 | class PlotDOPData(PlotRTIData): |
|
349 | class DopplerPlot(RTIPlot): | |
893 | ''' |
|
350 | ''' | |
894 | Plot for DOPPLER Data |
|
351 | Plot for DOPPLER Data | |
895 | ''' |
|
352 | ''' | |
@@ -898,7 +355,7 class PlotDOPData(PlotRTIData): | |||||
898 | colormap = 'jet' |
|
355 | colormap = 'jet' | |
899 |
|
356 | |||
900 |
|
357 | |||
901 |
class |
|
358 | class SkyMapPlot(Plot): | |
902 | ''' |
|
359 | ''' | |
903 | Plot for meteors detection data |
|
360 | Plot for meteors detection data | |
904 | ''' |
|
361 | ''' | |
@@ -938,16 +395,15 class PlotSkyMapData(PlotData): | |||||
938 | else: |
|
395 | else: | |
939 | ax.plot.set_data(x, y) |
|
396 | ax.plot.set_data(x, y) | |
940 |
|
397 | |||
941 | dt1 = self.getDateTime(self.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
398 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
942 | dt2 = self.getDateTime(self.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
399 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
943 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
400 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
944 | dt2, |
|
401 | dt2, | |
945 | len(x)) |
|
402 | len(x)) | |
946 | self.titles[0] = title |
|
403 | self.titles[0] = title | |
947 | self.saveTime = self.max_time |
|
|||
948 |
|
404 | |||
949 |
|
405 | |||
950 |
class P |
|
406 | class ParametersPlot(RTIPlot): | |
951 | ''' |
|
407 | ''' | |
952 | Plot for data_param object |
|
408 | Plot for data_param object | |
953 | ''' |
|
409 | ''' | |
@@ -973,7 +429,7 class PlotParamData(PlotRTIData): | |||||
973 |
|
429 | |||
974 | def plot(self): |
|
430 | def plot(self): | |
975 | self.data.normalize_heights() |
|
431 | self.data.normalize_heights() | |
976 | self.x = self.times |
|
432 | self.x = self.data.times | |
977 | self.y = self.data.heights |
|
433 | self.y = self.data.heights | |
978 | if self.showSNR: |
|
434 | if self.showSNR: | |
979 | self.z = numpy.concatenate( |
|
435 | self.z = numpy.concatenate( | |
@@ -990,7 +446,7 class PlotParamData(PlotRTIData): | |||||
990 | x, y, z = self.fill_gaps(*self.decimate()) |
|
446 | x, y, z = self.fill_gaps(*self.decimate()) | |
991 |
|
447 | |||
992 | for n, ax in enumerate(self.axes): |
|
448 | for n, ax in enumerate(self.axes): | |
993 |
|
449 | |||
994 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
450 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
995 | self.z[n]) |
|
451 | self.z[n]) | |
996 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
452 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
@@ -1015,10 +471,8 class PlotParamData(PlotRTIData): | |||||
1015 | cmap=self.cmaps[n] |
|
471 | cmap=self.cmaps[n] | |
1016 | ) |
|
472 | ) | |
1017 |
|
473 | |||
1018 | self.saveTime = self.min_time |
|
|||
1019 |
|
||||
1020 |
|
474 | |||
1021 |
class |
|
475 | class OutputPlot(ParametersPlot): | |
1022 | ''' |
|
476 | ''' | |
1023 | Plot data_output object |
|
477 | Plot data_output object | |
1024 | ''' |
|
478 | ''' | |
@@ -1027,9 +481,9 class PlotOutputData(PlotParamData): | |||||
1027 | colormap = 'seismic' |
|
481 | colormap = 'seismic' | |
1028 |
|
482 | |||
1029 |
|
483 | |||
1030 |
class |
|
484 | class PolarMapPlot(Plot): | |
1031 | ''' |
|
485 | ''' | |
1032 |
Plot for |
|
486 | Plot for weather radar | |
1033 | ''' |
|
487 | ''' | |
1034 |
|
488 | |||
1035 | CODE = 'param' |
|
489 | CODE = 'param' | |
@@ -1058,20 +512,24 class PlotPolarMapData(PlotData): | |||||
1058 | self.cb_labels = self.data.meta['units'] |
|
512 | self.cb_labels = self.data.meta['units'] | |
1059 | self.lat = self.data.meta['latitude'] |
|
513 | self.lat = self.data.meta['latitude'] | |
1060 | self.lon = self.data.meta['longitude'] |
|
514 | self.lon = self.data.meta['longitude'] | |
1061 | self.xmin, self.xmax = float(km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
515 | self.xmin, self.xmax = float( | |
1062 |
|
|
516 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
|
517 | self.ymin, self.ymax = float( | |||
|
518 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |||
1063 | # self.polar = True |
|
519 | # self.polar = True | |
1064 |
|
520 | |||
1065 |
def plot(self): |
|
521 | def plot(self): | |
1066 |
|
522 | |||
1067 | for n, ax in enumerate(self.axes): |
|
523 | for n, ax in enumerate(self.axes): | |
1068 | data = self.data['param'][self.channels[n]] |
|
524 | data = self.data['param'][self.channels[n]] | |
1069 |
|
525 | |||
1070 |
zeniths = numpy.linspace( |
|
526 | zeniths = numpy.linspace( | |
1071 | if self.mode == 'E': |
|
527 | 0, self.data.meta['max_range'], data.shape[1]) | |
|
528 | if self.mode == 'E': | |||
1072 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 |
|
529 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 | |
1073 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
530 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
1074 |
x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
531 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
|
532 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |||
1075 | x = km2deg(x) + self.lon |
|
533 | x = km2deg(x) + self.lon | |
1076 | y = km2deg(y) + self.lat |
|
534 | y = km2deg(y) + self.lat | |
1077 | else: |
|
535 | else: | |
@@ -1083,35 +541,36 class PlotPolarMapData(PlotData): | |||||
1083 | if ax.firsttime: |
|
541 | if ax.firsttime: | |
1084 | if self.zlimits is not None: |
|
542 | if self.zlimits is not None: | |
1085 | self.zmin, self.zmax = self.zlimits[n] |
|
543 | self.zmin, self.zmax = self.zlimits[n] | |
1086 | ax.plt = ax.pcolormesh(#r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
544 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
1087 |
|
|
545 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
1088 |
|
|
546 | vmin=self.zmin, | |
1089 |
|
|
547 | vmax=self.zmax, | |
1090 |
|
|
548 | cmap=self.cmaps[n]) | |
1091 | else: |
|
549 | else: | |
1092 | if self.zlimits is not None: |
|
550 | if self.zlimits is not None: | |
1093 | self.zmin, self.zmax = self.zlimits[n] |
|
551 | self.zmin, self.zmax = self.zlimits[n] | |
1094 | ax.collections.remove(ax.collections[0]) |
|
552 | ax.collections.remove(ax.collections[0]) | |
1095 | ax.plt = ax.pcolormesh(# r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
553 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
1096 |
|
|
554 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
1097 |
|
|
555 | vmin=self.zmin, | |
1098 |
|
|
556 | vmax=self.zmax, | |
1099 |
|
|
557 | cmap=self.cmaps[n]) | |
1100 |
|
558 | |||
1101 | if self.mode == 'A': |
|
559 | if self.mode == 'A': | |
1102 | continue |
|
560 | continue | |
1103 |
|
561 | |||
1104 | # plot district names |
|
562 | # plot district names | |
1105 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
563 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
1106 | for line in f: |
|
564 | for line in f: | |
1107 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
565 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
1108 | lat = float(lat) |
|
566 | lat = float(lat) | |
1109 |
lon = float(lon) |
|
567 | lon = float(lon) | |
1110 | # ax.plot(lon, lat, '.b', ms=2) |
|
568 | # ax.plot(lon, lat, '.b', ms=2) | |
1111 |
ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
569 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
1112 |
|
570 | va='bottom', size='8', color='black') | ||
|
571 | ||||
1113 | # plot limites |
|
572 | # plot limites | |
1114 | limites =[] |
|
573 | limites = [] | |
1115 | tmp = [] |
|
574 | tmp = [] | |
1116 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
575 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
1117 | if '#' in line: |
|
576 | if '#' in line: | |
@@ -1122,7 +581,8 class PlotPolarMapData(PlotData): | |||||
1122 | values = line.strip().split(',') |
|
581 | values = line.strip().split(',') | |
1123 | tmp.append((float(values[0]), float(values[1]))) |
|
582 | tmp.append((float(values[0]), float(values[1]))) | |
1124 | for points in limites: |
|
583 | for points in limites: | |
1125 | ax.add_patch(Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
584 | ax.add_patch( | |
|
585 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |||
1126 |
|
586 | |||
1127 | # plot Cuencas |
|
587 | # plot Cuencas | |
1128 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
588 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
@@ -1133,22 +593,21 class PlotPolarMapData(PlotData): | |||||
1133 |
|
593 | |||
1134 | # plot grid |
|
594 | # plot grid | |
1135 | for r in (15, 30, 45, 60): |
|
595 | for r in (15, 30, 45, 60): | |
1136 |
ax.add_artist(plt.Circle((self.lon, self.lat), |
|
596 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
|
597 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |||
1137 | ax.text( |
|
598 | ax.text( | |
1138 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
599 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
1139 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
600 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
1140 |
'{}km'.format(r), |
|
601 | '{}km'.format(r), | |
1141 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
602 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
1142 |
|
603 | |||
1143 | if self.mode == 'E': |
|
604 | if self.mode == 'E': | |
1144 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
605 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
1145 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
606 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
1146 | else: |
|
607 | else: | |
1147 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
608 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
1148 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
609 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
1149 |
|
||||
1150 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
|||
1151 | self.titles = ['{} {}'.format(self.data.parameters[x], title) for x in self.channels] |
|
|||
1152 | self.saveTime = self.max_time |
|
|||
1153 |
|
610 | |||
1154 | No newline at end of file |
|
611 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
|
612 | self.titles = ['{} {}'.format( | |||
|
613 | self.data.parameters[x], title) for x in self.channels] |
@@ -10,7 +10,7 import numpy | |||||
10 | from .figure import Figure, isRealtime |
|
10 | from .figure import Figure, isRealtime | |
11 | from .plotting_codes import * |
|
11 | from .plotting_codes import * | |
12 |
|
12 | |||
13 | class SpectraHeisScope(Figure): |
|
13 | class SpectraHeisScope_(Figure): | |
14 |
|
14 | |||
15 |
|
15 | |||
16 | isConfig = None |
|
16 | isConfig = None | |
@@ -173,7 +173,7 class SpectraHeisScope(Figure): | |||||
173 | wr_period=wr_period, |
|
173 | wr_period=wr_period, | |
174 | thisDatetime=thisDatetime) |
|
174 | thisDatetime=thisDatetime) | |
175 |
|
175 | |||
176 | class RTIfromSpectraHeis(Figure): |
|
176 | class RTIfromSpectraHeis_(Figure): | |
177 |
|
177 | |||
178 | isConfig = None |
|
178 | isConfig = None | |
179 | __nsubplots = None |
|
179 | __nsubplots = None |
@@ -7,14 +7,190 from .plotting_codes import * | |||||
7 | from schainpy.model.proc.jroproc_base import MPDecorator |
|
7 | from schainpy.model.proc.jroproc_base import MPDecorator | |
8 | from schainpy.utils import log |
|
8 | from schainpy.utils import log | |
9 |
|
9 | |||
10 |
class |
|
10 | class ParamLine_(Figure): | |
|
11 | ||||
|
12 | isConfig = None | |||
|
13 | ||||
|
14 | def __init__(self): | |||
|
15 | ||||
|
16 | self.isConfig = False | |||
|
17 | self.WIDTH = 300 | |||
|
18 | self.HEIGHT = 200 | |||
|
19 | self.counter_imagwr = 0 | |||
|
20 | ||||
|
21 | def getSubplots(self): | |||
|
22 | ||||
|
23 | nrow = self.nplots | |||
|
24 | ncol = 3 | |||
|
25 | return nrow, ncol | |||
|
26 | ||||
|
27 | def setup(self, id, nplots, wintitle, show): | |||
|
28 | ||||
|
29 | self.nplots = nplots | |||
|
30 | ||||
|
31 | self.createFigure(id=id, | |||
|
32 | wintitle=wintitle, | |||
|
33 | show=show) | |||
|
34 | ||||
|
35 | nrow,ncol = self.getSubplots() | |||
|
36 | colspan = 3 | |||
|
37 | rowspan = 1 | |||
|
38 | ||||
|
39 | for i in range(nplots): | |||
|
40 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) | |||
|
41 | ||||
|
42 | def plot_iq(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |||
|
43 | yreal = y[channelIndexList,:].real | |||
|
44 | yimag = y[channelIndexList,:].imag | |||
|
45 | ||||
|
46 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
47 | xlabel = "Range (Km)" | |||
|
48 | ylabel = "Intensity - IQ" | |||
|
49 | ||||
|
50 | if not self.isConfig: | |||
|
51 | nplots = len(channelIndexList) | |||
|
52 | ||||
|
53 | self.setup(id=id, | |||
|
54 | nplots=nplots, | |||
|
55 | wintitle='', | |||
|
56 | show=show) | |||
|
57 | ||||
|
58 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
59 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
60 | if ymin == None: ymin = min(numpy.nanmin(yreal),numpy.nanmin(yimag)) | |||
|
61 | if ymax == None: ymax = max(numpy.nanmax(yreal),numpy.nanmax(yimag)) | |||
|
62 | ||||
|
63 | self.isConfig = True | |||
|
64 | ||||
|
65 | self.setWinTitle(title) | |||
|
66 | ||||
|
67 | for i in range(len(self.axesList)): | |||
|
68 | title = "Channel %d" %(i) | |||
|
69 | axes = self.axesList[i] | |||
|
70 | ||||
|
71 | axes.pline(x, yreal[i,:], | |||
|
72 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
73 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
74 | ||||
|
75 | axes.addpline(x, yimag[i,:], idline=1, color="red", linestyle="solid", lw=2) | |||
|
76 | ||||
|
77 | def plot_power(self, x, y, id, channelIndexList, thisDatetime, wintitle, show, xmin, xmax, ymin, ymax): | |||
|
78 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) | |||
|
79 | yreal = y.real | |||
|
80 | ||||
|
81 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
82 | xlabel = "Range (Km)" | |||
|
83 | ylabel = "Intensity" | |||
|
84 | ||||
|
85 | if not self.isConfig: | |||
|
86 | nplots = len(channelIndexList) | |||
|
87 | ||||
|
88 | self.setup(id=id, | |||
|
89 | nplots=nplots, | |||
|
90 | wintitle='', | |||
|
91 | show=show) | |||
|
92 | ||||
|
93 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
94 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
95 | if ymin == None: ymin = numpy.nanmin(yreal) | |||
|
96 | if ymax == None: ymax = numpy.nanmax(yreal) | |||
|
97 | ||||
|
98 | self.isConfig = True | |||
|
99 | ||||
|
100 | self.setWinTitle(title) | |||
|
101 | ||||
|
102 | for i in range(len(self.axesList)): | |||
|
103 | title = "Channel %d" %(i) | |||
|
104 | axes = self.axesList[i] | |||
|
105 | ychannel = yreal[i,:] | |||
|
106 | axes.pline(x, ychannel, | |||
|
107 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
108 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
109 | ||||
|
110 | ||||
|
111 | def run(self, dataOut, id, wintitle="", channelList=None, | |||
|
112 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, | |||
|
113 | figpath='./', figfile=None, show=True, wr_period=1, | |||
|
114 | ftp=False, server=None, folder=None, username=None, password=None): | |||
|
115 | ||||
|
116 | """ | |||
|
117 | ||||
|
118 | Input: | |||
|
119 | dataOut : | |||
|
120 | id : | |||
|
121 | wintitle : | |||
|
122 | channelList : | |||
|
123 | xmin : None, | |||
|
124 | xmax : None, | |||
|
125 | ymin : None, | |||
|
126 | ymax : None, | |||
|
127 | """ | |||
|
128 | ||||
|
129 | if channelList == None: | |||
|
130 | channelIndexList = dataOut.channelIndexList | |||
|
131 | else: | |||
|
132 | channelIndexList = [] | |||
|
133 | for channel in channelList: | |||
|
134 | if channel not in dataOut.channelList: | |||
|
135 | raise ValueError("Channel %d is not in dataOut.channelList" % channel) | |||
|
136 | channelIndexList.append(dataOut.channelList.index(channel)) | |||
|
137 | ||||
|
138 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |||
|
139 | ||||
|
140 | y = dataOut.RR | |||
|
141 | ||||
|
142 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |||
|
143 | xlabel = "Range (Km)" | |||
|
144 | ylabel = "Intensity" | |||
|
145 | ||||
|
146 | if not self.isConfig: | |||
|
147 | nplots = len(channelIndexList) | |||
|
148 | ||||
|
149 | self.setup(id=id, | |||
|
150 | nplots=nplots, | |||
|
151 | wintitle='', | |||
|
152 | show=show) | |||
|
153 | ||||
|
154 | if xmin == None: xmin = numpy.nanmin(x) | |||
|
155 | if xmax == None: xmax = numpy.nanmax(x) | |||
|
156 | if ymin == None: ymin = numpy.nanmin(y) | |||
|
157 | if ymax == None: ymax = numpy.nanmax(y) | |||
|
158 | ||||
|
159 | self.isConfig = True | |||
|
160 | ||||
|
161 | self.setWinTitle(title) | |||
|
162 | ||||
|
163 | for i in range(len(self.axesList)): | |||
|
164 | title = "Channel %d" %(i) | |||
|
165 | axes = self.axesList[i] | |||
|
166 | ychannel = y[i,:] | |||
|
167 | axes.pline(x, ychannel, | |||
|
168 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |||
|
169 | xlabel=xlabel, ylabel=ylabel, title=title) | |||
|
170 | ||||
|
171 | ||||
|
172 | self.draw() | |||
|
173 | ||||
|
174 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") + "_" + str(dataOut.profileIndex) | |||
|
175 | figfile = self.getFilename(name = str_datetime) | |||
|
176 | ||||
|
177 | self.save(figpath=figpath, | |||
|
178 | figfile=figfile, | |||
|
179 | save=save, | |||
|
180 | ftp=ftp, | |||
|
181 | wr_period=wr_period, | |||
|
182 | thisDatetime=thisDatetime) | |||
|
183 | ||||
|
184 | ||||
|
185 | ||||
|
186 | class SpcParamPlot_(Figure): | |||
11 |
|
187 | |||
12 | isConfig = None |
|
188 | isConfig = None | |
13 | __nsubplots = None |
|
189 | __nsubplots = None | |
14 |
|
190 | |||
15 | WIDTHPROF = None |
|
191 | WIDTHPROF = None | |
16 | HEIGHTPROF = None |
|
192 | HEIGHTPROF = None | |
17 |
PREFIX = ' |
|
193 | PREFIX = 'SpcParam' | |
18 |
|
194 | |||
19 | def __init__(self, **kwargs): |
|
195 | def __init__(self, **kwargs): | |
20 | Figure.__init__(self, **kwargs) |
|
196 | Figure.__init__(self, **kwargs) | |
@@ -83,7 +259,7 class FitGauPlot(Figure): | |||||
83 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
259 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
84 | server=None, folder=None, username=None, password=None, |
|
260 | server=None, folder=None, username=None, password=None, | |
85 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
261 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
86 |
xaxis="frequency", colormap='jet', normFactor=None , |
|
262 | xaxis="frequency", colormap='jet', normFactor=None , Selector = 0): | |
87 |
|
263 | |||
88 | """ |
|
264 | """ | |
89 |
|
265 | |||
@@ -119,23 +295,22 class FitGauPlot(Figure): | |||||
119 | # else: |
|
295 | # else: | |
120 | # factor = normFactor |
|
296 | # factor = normFactor | |
121 | if xaxis == "frequency": |
|
297 | if xaxis == "frequency": | |
122 | x = dataOut.spc_range[0] |
|
298 | x = dataOut.spcparam_range[0] | |
123 | xlabel = "Frequency (kHz)" |
|
299 | xlabel = "Frequency (kHz)" | |
124 |
|
300 | |||
125 | elif xaxis == "time": |
|
301 | elif xaxis == "time": | |
126 | x = dataOut.spc_range[1] |
|
302 | x = dataOut.spcparam_range[1] | |
127 | xlabel = "Time (ms)" |
|
303 | xlabel = "Time (ms)" | |
128 |
|
304 | |||
129 | else: |
|
305 | else: | |
130 | x = dataOut.spc_range[2] |
|
306 | x = dataOut.spcparam_range[2] | |
131 | xlabel = "Velocity (m/s)" |
|
307 | xlabel = "Velocity (m/s)" | |
132 |
|
308 | |||
133 |
ylabel = "Range ( |
|
309 | ylabel = "Range (km)" | |
134 |
|
310 | |||
135 | y = dataOut.getHeiRange() |
|
311 | y = dataOut.getHeiRange() | |
136 |
|
312 | |||
137 |
z = dataOut. |
|
313 | z = dataOut.SPCparam[Selector] /1966080.0#/ dataOut.normFactor#GauSelector] #dataOut.data_spc/factor | |
138 | print('GausSPC', z[0,32,10:40]) |
|
|||
139 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
314 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
140 | zdB = 10*numpy.log10(z) |
|
315 | zdB = 10*numpy.log10(z) | |
141 |
|
316 | |||
@@ -218,7 +393,7 class FitGauPlot(Figure): | |||||
218 |
|
393 | |||
219 |
|
394 | |||
220 |
|
395 | |||
221 | class MomentsPlot(Figure): |
|
396 | class MomentsPlot_(Figure): | |
222 |
|
397 | |||
223 | isConfig = None |
|
398 | isConfig = None | |
224 | __nsubplots = None |
|
399 | __nsubplots = None | |
@@ -405,7 +580,7 class MomentsPlot(Figure): | |||||
405 | thisDatetime=thisDatetime) |
|
580 | thisDatetime=thisDatetime) | |
406 |
|
581 | |||
407 |
|
582 | |||
408 | class SkyMapPlot(Figure): |
|
583 | class SkyMapPlot_(Figure): | |
409 |
|
584 | |||
410 | __isConfig = None |
|
585 | __isConfig = None | |
411 | __nsubplots = None |
|
586 | __nsubplots = None | |
@@ -561,7 +736,7 class SkyMapPlot(Figure): | |||||
561 |
|
736 | |||
562 |
|
737 | |||
563 |
|
738 | |||
564 | class WindProfilerPlot(Figure): |
|
739 | class WindProfilerPlot_(Figure): | |
565 |
|
740 | |||
566 | __isConfig = None |
|
741 | __isConfig = None | |
567 | __nsubplots = None |
|
742 | __nsubplots = None | |
@@ -657,7 +832,7 class WindProfilerPlot(Figure): | |||||
657 | # tmax = None |
|
832 | # tmax = None | |
658 |
|
833 | |||
659 | x = dataOut.getTimeRange1(dataOut.paramInterval) |
|
834 | x = dataOut.getTimeRange1(dataOut.paramInterval) | |
660 |
y = dataOut.heightList |
|
835 | y = dataOut.heightList | |
661 | z = dataOut.data_output.copy() |
|
836 | z = dataOut.data_output.copy() | |
662 | nplots = z.shape[0] #Number of wind dimensions estimated |
|
837 | nplots = z.shape[0] #Number of wind dimensions estimated | |
663 | nplotsw = nplots |
|
838 | nplotsw = nplots | |
@@ -666,13 +841,14 class WindProfilerPlot(Figure): | |||||
666 | #If there is a SNR function defined |
|
841 | #If there is a SNR function defined | |
667 | if dataOut.data_SNR is not None: |
|
842 | if dataOut.data_SNR is not None: | |
668 | nplots += 1 |
|
843 | nplots += 1 | |
669 | SNR = dataOut.data_SNR |
|
844 | SNR = dataOut.data_SNR[0] | |
670 |
SNRavg = |
|
845 | SNRavg = SNR#numpy.average(SNR, axis=0) | |
671 |
|
846 | |||
672 | SNRdB = 10*numpy.log10(SNR) |
|
847 | SNRdB = 10*numpy.log10(SNR) | |
673 | SNRavgdB = 10*numpy.log10(SNRavg) |
|
848 | SNRavgdB = 10*numpy.log10(SNRavg) | |
674 |
|
849 | |||
675 |
if SNRthresh == None: |
|
850 | if SNRthresh == None: | |
|
851 | SNRthresh = -5.0 | |||
676 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] |
|
852 | ind = numpy.where(SNRavg < 10**(SNRthresh/10))[0] | |
677 |
|
853 | |||
678 | for i in range(nplotsw): |
|
854 | for i in range(nplotsw): | |
@@ -741,8 +917,7 class WindProfilerPlot(Figure): | |||||
741 | axes = self.axesList[i*self.__nsubplots] |
|
917 | axes = self.axesList[i*self.__nsubplots] | |
742 |
|
918 | |||
743 | z1 = z[i,:].reshape((1,-1))*windFactor[i] |
|
919 | z1 = z[i,:].reshape((1,-1))*windFactor[i] | |
744 | #z1=numpy.ma.masked_where(z1==0.,z1) |
|
920 | ||
745 |
|
||||
746 | axes.pcolorbuffer(x, y, z1, |
|
921 | axes.pcolorbuffer(x, y, z1, | |
747 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], |
|
922 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zminVector[i], zmax=zmaxVector[i], | |
748 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
923 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
@@ -774,7 +949,7 class WindProfilerPlot(Figure): | |||||
774 | update_figfile = True |
|
949 | update_figfile = True | |
775 |
|
950 | |||
776 | @MPDecorator |
|
951 | @MPDecorator | |
777 | class ParametersPlot(Figure): |
|
952 | class ParametersPlot_(Figure): | |
778 |
|
953 | |||
779 | __isConfig = None |
|
954 | __isConfig = None | |
780 | __nsubplots = None |
|
955 | __nsubplots = None | |
@@ -792,8 +967,8 class ParametersPlot(Figure): | |||||
792 | self.isConfig = False |
|
967 | self.isConfig = False | |
793 | self.__nsubplots = 1 |
|
968 | self.__nsubplots = 1 | |
794 |
|
969 | |||
795 |
self.WIDTH = |
|
970 | self.WIDTH = 300 | |
796 |
self.HEIGHT = |
|
971 | self.HEIGHT = 550 | |
797 | self.WIDTHPROF = 120 |
|
972 | self.WIDTHPROF = 120 | |
798 | self.HEIGHTPROF = 0 |
|
973 | self.HEIGHTPROF = 0 | |
799 | self.counter_imagwr = 0 |
|
974 | self.counter_imagwr = 0 | |
@@ -905,7 +1080,7 class ParametersPlot(Figure): | |||||
905 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1080 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
906 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1081 | title = wintitle + " Parameters Plot" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
907 | xlabel = "" |
|
1082 | xlabel = "" | |
908 |
ylabel = "Range ( |
|
1083 | ylabel = "Range (km)" | |
909 |
|
1084 | |||
910 | update_figfile = False |
|
1085 | update_figfile = False | |
911 |
|
1086 | |||
@@ -949,24 +1124,81 class ParametersPlot(Figure): | |||||
949 |
|
1124 | |||
950 | self.setWinTitle(title) |
|
1125 | self.setWinTitle(title) | |
951 |
|
1126 | |||
952 | for i in range(self.nchan): |
|
1127 | # for i in range(self.nchan): | |
953 | index = channelIndexList[i] |
|
1128 | # index = channelIndexList[i] | |
954 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1129 | # title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
955 | axes = self.axesList[i*self.plotFact] |
|
1130 | # axes = self.axesList[i*self.plotFact] | |
956 | z1 = z[i,:].reshape((1,-1)) |
|
1131 | # z1 = z[i,:].reshape((1,-1)) | |
957 | axes.pcolorbuffer(x, y, z1, |
|
1132 | # axes.pcolorbuffer(x, y, z1, | |
958 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
1133 | # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
959 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1134 | # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
960 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) |
|
1135 | # ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |
961 |
|
1136 | # | ||
962 | if showSNR: |
|
1137 | # if showSNR: | |
963 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1138 | # title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
964 | axes = self.axesList[i*self.plotFact + 1] |
|
1139 | # axes = self.axesList[i*self.plotFact + 1] | |
965 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) |
|
1140 | # SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |
966 | axes.pcolorbuffer(x, y, SNRdB1, |
|
1141 | # axes.pcolorbuffer(x, y, SNRdB1, | |
967 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, |
|
1142 | # xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |
968 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
1143 | # xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
969 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') |
|
1144 | # ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |
|
1145 | ||||
|
1146 | i=0 | |||
|
1147 | index = channelIndexList[i] | |||
|
1148 | title = "Factor de reflectividad Z [dBZ]" | |||
|
1149 | axes = self.axesList[i*self.plotFact] | |||
|
1150 | z1 = z[i,:].reshape((1,-1)) | |||
|
1151 | axes.pcolorbuffer(x, y, z1, | |||
|
1152 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |||
|
1153 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1154 | ticksize=9, cblabel='', cbsize="1%",colormap=colormap) | |||
|
1155 | ||||
|
1156 | if showSNR: | |||
|
1157 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1158 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1159 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1160 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1161 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1162 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1163 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
|
1164 | ||||
|
1165 | i=1 | |||
|
1166 | index = channelIndexList[i] | |||
|
1167 | title = "Velocidad vertical Doppler [m/s]" | |||
|
1168 | axes = self.axesList[i*self.plotFact] | |||
|
1169 | z1 = z[i,:].reshape((1,-1)) | |||
|
1170 | axes.pcolorbuffer(x, y, z1, | |||
|
1171 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=-10, zmax=10, | |||
|
1172 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1173 | ticksize=9, cblabel='', cbsize="1%",colormap='seismic_r') | |||
|
1174 | ||||
|
1175 | if showSNR: | |||
|
1176 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1177 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1178 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1179 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1180 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1181 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1182 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
|
1183 | ||||
|
1184 | i=2 | |||
|
1185 | index = channelIndexList[i] | |||
|
1186 | title = "Intensidad de lluvia [mm/h]" | |||
|
1187 | axes = self.axesList[i*self.plotFact] | |||
|
1188 | z1 = z[i,:].reshape((1,-1)) | |||
|
1189 | axes.pcolorbuffer(x, y, z1, | |||
|
1190 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=40, | |||
|
1191 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1192 | ticksize=9, cblabel='', cbsize="1%",colormap='ocean_r') | |||
|
1193 | ||||
|
1194 | if showSNR: | |||
|
1195 | title = "Channel %d SNR: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |||
|
1196 | axes = self.axesList[i*self.plotFact + 1] | |||
|
1197 | SNRdB1 = SNRdB[i,:].reshape((1,-1)) | |||
|
1198 | axes.pcolorbuffer(x, y, SNRdB1, | |||
|
1199 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=SNRmin, zmax=SNRmax, | |||
|
1200 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |||
|
1201 | ticksize=9, cblabel='', cbsize="1%",colormap='jet') | |||
970 |
|
1202 | |||
971 |
|
1203 | |||
972 | self.draw() |
|
1204 | self.draw() | |
@@ -986,7 +1218,7 class ParametersPlot(Figure): | |||||
986 |
|
1218 | |||
987 | return dataOut |
|
1219 | return dataOut | |
988 | @MPDecorator |
|
1220 | @MPDecorator | |
989 | class Parameters1Plot(Figure): |
|
1221 | class Parameters1Plot_(Figure): | |
990 |
|
1222 | |||
991 | __isConfig = None |
|
1223 | __isConfig = None | |
992 | __nsubplots = None |
|
1224 | __nsubplots = None | |
@@ -1067,9 +1299,8 class Parameters1Plot(Figure): | |||||
1067 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
1299 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
1068 | server=None, folder=None, username=None, password=None, |
|
1300 | server=None, folder=None, username=None, password=None, | |
1069 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1301 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1070 | #print inspect.getargspec(self.run).args |
|
|||
1071 | """ |
|
|||
1072 |
|
1302 | |||
|
1303 | """ | |||
1073 | Input: |
|
1304 | Input: | |
1074 | dataOut : |
|
1305 | dataOut : | |
1075 | id : |
|
1306 | id : | |
@@ -1237,7 +1468,7 class Parameters1Plot(Figure): | |||||
1237 | update_figfile=False) |
|
1468 | update_figfile=False) | |
1238 | return dataOut |
|
1469 | return dataOut | |
1239 |
|
1470 | |||
1240 | class SpectralFittingPlot(Figure): |
|
1471 | class SpectralFittingPlot_(Figure): | |
1241 |
|
1472 | |||
1242 | __isConfig = None |
|
1473 | __isConfig = None | |
1243 | __nsubplots = None |
|
1474 | __nsubplots = None | |
@@ -1415,7 +1646,7 class SpectralFittingPlot(Figure): | |||||
1415 | thisDatetime=thisDatetime) |
|
1646 | thisDatetime=thisDatetime) | |
1416 |
|
1647 | |||
1417 |
|
1648 | |||
1418 | class EWDriftsPlot(Figure): |
|
1649 | class EWDriftsPlot_(Figure): | |
1419 |
|
1650 | |||
1420 | __isConfig = None |
|
1651 | __isConfig = None | |
1421 | __nsubplots = None |
|
1652 | __nsubplots = None | |
@@ -1621,7 +1852,7 class EWDriftsPlot(Figure): | |||||
1621 |
|
1852 | |||
1622 |
|
1853 | |||
1623 |
|
1854 | |||
1624 | class PhasePlot(Figure): |
|
1855 | class PhasePlot_(Figure): | |
1625 |
|
1856 | |||
1626 | __isConfig = None |
|
1857 | __isConfig = None | |
1627 | __nsubplots = None |
|
1858 | __nsubplots = None | |
@@ -1785,7 +2016,7 class PhasePlot(Figure): | |||||
1785 |
|
2016 | |||
1786 |
|
2017 | |||
1787 |
|
2018 | |||
1788 | class NSMeteorDetection1Plot(Figure): |
|
2019 | class NSMeteorDetection1Plot_(Figure): | |
1789 |
|
2020 | |||
1790 | isConfig = None |
|
2021 | isConfig = None | |
1791 | __nsubplots = None |
|
2022 | __nsubplots = None | |
@@ -1969,7 +2200,7 class NSMeteorDetection1Plot(Figure): | |||||
1969 | thisDatetime=thisDatetime) |
|
2200 | thisDatetime=thisDatetime) | |
1970 |
|
2201 | |||
1971 |
|
2202 | |||
1972 | class NSMeteorDetection2Plot(Figure): |
|
2203 | class NSMeteorDetection2Plot_(Figure): | |
1973 |
|
2204 | |||
1974 | isConfig = None |
|
2205 | isConfig = None | |
1975 | __nsubplots = None |
|
2206 | __nsubplots = None |
@@ -14,7 +14,7 from schainpy.model.proc.jroproc_base import MPDecorator | |||||
14 | from schainpy.utils import log |
|
14 | from schainpy.utils import log | |
15 |
|
15 | |||
16 | @MPDecorator |
|
16 | @MPDecorator | |
17 | class SpectraPlot(Figure): |
|
17 | class SpectraPlot_(Figure): | |
18 |
|
18 | |||
19 | isConfig = None |
|
19 | isConfig = None | |
20 | __nsubplots = None |
|
20 | __nsubplots = None | |
@@ -42,6 +42,8 class SpectraPlot(Figure): | |||||
42 |
|
42 | |||
43 | self.__xfilter_ena = False |
|
43 | self.__xfilter_ena = False | |
44 | self.__yfilter_ena = False |
|
44 | self.__yfilter_ena = False | |
|
45 | ||||
|
46 | self.indice=1 | |||
45 |
|
47 | |||
46 | def getSubplots(self): |
|
48 | def getSubplots(self): | |
47 |
|
49 | |||
@@ -139,10 +141,9 class SpectraPlot(Figure): | |||||
139 | x = dataOut.getVelRange(1) |
|
141 | x = dataOut.getVelRange(1) | |
140 | xlabel = "Velocity (m/s)" |
|
142 | xlabel = "Velocity (m/s)" | |
141 |
|
143 | |||
142 |
ylabel = "Range ( |
|
144 | ylabel = "Range (km)" | |
143 |
|
145 | |||
144 | y = dataOut.getHeiRange() |
|
146 | y = dataOut.getHeiRange() | |
145 |
|
||||
146 | z = dataOut.data_spc/factor |
|
147 | z = dataOut.data_spc/factor | |
147 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
148 | zdB = 10*numpy.log10(z) |
|
149 | zdB = 10*numpy.log10(z) | |
@@ -155,6 +156,7 class SpectraPlot(Figure): | |||||
155 |
|
156 | |||
156 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
157 | title = wintitle + " Spectra" |
|
158 | title = wintitle + " Spectra" | |
|
159 | ||||
158 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
159 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
160 |
|
162 | |||
@@ -223,10 +225,11 class SpectraPlot(Figure): | |||||
223 | ftp=ftp, |
|
225 | ftp=ftp, | |
224 | wr_period=wr_period, |
|
226 | wr_period=wr_period, | |
225 | thisDatetime=thisDatetime) |
|
227 | thisDatetime=thisDatetime) | |
|
228 | ||||
226 |
|
229 | |||
227 | return dataOut |
|
230 | return dataOut | |
228 | @MPDecorator |
|
231 | @MPDecorator | |
229 | class CrossSpectraPlot(Figure): |
|
232 | class CrossSpectraPlot_(Figure): | |
230 |
|
233 | |||
231 | isConfig = None |
|
234 | isConfig = None | |
232 | __nsubplots = None |
|
235 | __nsubplots = None | |
@@ -252,6 +255,8 class CrossSpectraPlot(Figure): | |||||
252 | self.EXP_CODE = None |
|
255 | self.EXP_CODE = None | |
253 | self.SUB_EXP_CODE = None |
|
256 | self.SUB_EXP_CODE = None | |
254 | self.PLOT_POS = None |
|
257 | self.PLOT_POS = None | |
|
258 | ||||
|
259 | self.indice=0 | |||
255 |
|
260 | |||
256 | def getSubplots(self): |
|
261 | def getSubplots(self): | |
257 |
|
262 | |||
@@ -396,6 +401,7 class CrossSpectraPlot(Figure): | |||||
396 | self.isConfig = True |
|
401 | self.isConfig = True | |
397 |
|
402 | |||
398 | self.setWinTitle(title) |
|
403 | self.setWinTitle(title) | |
|
404 | ||||
399 |
|
405 | |||
400 | for i in range(self.nplots): |
|
406 | for i in range(self.nplots): | |
401 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
407 | pair = dataOut.pairsList[pairsIndexList[i]] | |
@@ -420,7 +426,7 class CrossSpectraPlot(Figure): | |||||
420 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
426 | xlabel=xlabel, ylabel=ylabel, title=title, | |
421 | ticksize=9, colormap=power_cmap, cblabel='') |
|
427 | ticksize=9, colormap=power_cmap, cblabel='') | |
422 |
|
428 | |||
423 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
429 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) | |
424 | coherence = numpy.abs(coherenceComplex) |
|
430 | coherence = numpy.abs(coherenceComplex) | |
425 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
431 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
426 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
432 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi | |
@@ -439,8 +445,6 class CrossSpectraPlot(Figure): | |||||
439 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
445 | xlabel=xlabel, ylabel=ylabel, title=title, | |
440 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
446 | ticksize=9, colormap=phase_cmap, cblabel='') | |
441 |
|
447 | |||
442 |
|
||||
443 |
|
||||
444 | self.draw() |
|
448 | self.draw() | |
445 |
|
449 | |||
446 | self.save(figpath=figpath, |
|
450 | self.save(figpath=figpath, | |
@@ -453,7 +457,7 class CrossSpectraPlot(Figure): | |||||
453 | return dataOut |
|
457 | return dataOut | |
454 |
|
458 | |||
455 | @MPDecorator |
|
459 | @MPDecorator | |
456 | class RTIPlot(Figure): |
|
460 | class RTIPlot_(Figure): | |
457 |
|
461 | |||
458 | __isConfig = None |
|
462 | __isConfig = None | |
459 | __nsubplots = None |
|
463 | __nsubplots = None | |
@@ -470,7 +474,7 class RTIPlot(Figure): | |||||
470 | self.__nsubplots = 1 |
|
474 | self.__nsubplots = 1 | |
471 |
|
475 | |||
472 | self.WIDTH = 800 |
|
476 | self.WIDTH = 800 | |
473 |
self.HEIGHT = |
|
477 | self.HEIGHT = 250 | |
474 | self.WIDTHPROF = 120 |
|
478 | self.WIDTHPROF = 120 | |
475 | self.HEIGHTPROF = 0 |
|
479 | self.HEIGHTPROF = 0 | |
476 | self.counter_imagwr = 0 |
|
480 | self.counter_imagwr = 0 | |
@@ -667,7 +671,7 class RTIPlot(Figure): | |||||
667 | return dataOut |
|
671 | return dataOut | |
668 |
|
672 | |||
669 | @MPDecorator |
|
673 | @MPDecorator | |
670 | class CoherenceMap(Figure): |
|
674 | class CoherenceMap_(Figure): | |
671 | isConfig = None |
|
675 | isConfig = None | |
672 | __nsubplots = None |
|
676 | __nsubplots = None | |
673 |
|
677 | |||
@@ -878,7 +882,7 class CoherenceMap(Figure): | |||||
878 | return dataOut |
|
882 | return dataOut | |
879 |
|
883 | |||
880 | @MPDecorator |
|
884 | @MPDecorator | |
881 | class PowerProfilePlot(Figure): |
|
885 | class PowerProfilePlot_(Figure): | |
882 |
|
886 | |||
883 | isConfig = None |
|
887 | isConfig = None | |
884 | __nsubplots = None |
|
888 | __nsubplots = None | |
@@ -1008,7 +1012,7 class PowerProfilePlot(Figure): | |||||
1008 | return dataOut |
|
1012 | return dataOut | |
1009 |
|
1013 | |||
1010 | @MPDecorator |
|
1014 | @MPDecorator | |
1011 | class SpectraCutPlot(Figure): |
|
1015 | class SpectraCutPlot_(Figure): | |
1012 |
|
1016 | |||
1013 | isConfig = None |
|
1017 | isConfig = None | |
1014 | __nsubplots = None |
|
1018 | __nsubplots = None | |
@@ -1145,7 +1149,7 class SpectraCutPlot(Figure): | |||||
1145 | return dataOut |
|
1149 | return dataOut | |
1146 |
|
1150 | |||
1147 | @MPDecorator |
|
1151 | @MPDecorator | |
1148 | class Noise(Figure): |
|
1152 | class Noise_(Figure): | |
1149 |
|
1153 | |||
1150 | isConfig = None |
|
1154 | isConfig = None | |
1151 | __nsubplots = None |
|
1155 | __nsubplots = None | |
@@ -1352,7 +1356,7 class Noise(Figure): | |||||
1352 | return dataOut |
|
1356 | return dataOut | |
1353 |
|
1357 | |||
1354 | @MPDecorator |
|
1358 | @MPDecorator | |
1355 | class BeaconPhase(Figure): |
|
1359 | class BeaconPhase_(Figure): | |
1356 |
|
1360 | |||
1357 | __isConfig = None |
|
1361 | __isConfig = None | |
1358 | __nsubplots = None |
|
1362 | __nsubplots = None | |
@@ -1497,9 +1501,6 class BeaconPhase(Figure): | |||||
1497 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1501 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1498 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1502 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1499 |
|
1503 | |||
1500 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
|||
1501 | #print phase[dataOut.beacon_heiIndexList] |
|
|||
1502 |
|
||||
1503 | if dataOut.beacon_heiIndexList: |
|
1504 | if dataOut.beacon_heiIndexList: | |
1504 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1505 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1505 | else: |
|
1506 | else: |
@@ -12,7 +12,7 from .figure import Figure | |||||
12 |
|
12 | |||
13 |
|
13 | |||
14 | @MPDecorator |
|
14 | @MPDecorator | |
15 | class Scope(Figure): |
|
15 | class Scope_(Figure): | |
16 |
|
16 | |||
17 | isConfig = None |
|
17 | isConfig = None | |
18 |
|
18 |
@@ -434,7 +434,6 def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='' | |||||
434 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
434 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): | |
435 |
|
435 | |||
436 | ax = iplot.axes |
|
436 | ax = iplot.axes | |
437 |
|
||||
438 | printLabels(ax, xlabel, ylabel, title) |
|
437 | printLabels(ax, xlabel, ylabel, title) | |
439 |
|
438 | |||
440 | for i in range(len(ax.lines)): |
|
439 | for i in range(len(ax.lines)): |
@@ -13,7 +13,7 import datetime | |||||
13 |
|
13 | |||
14 | import numpy |
|
14 | import numpy | |
15 |
|
15 | |||
16 |
from schainpy.model.proc.jroproc_base import ProcessingUnit, |
|
16 | from schainpy.model.proc.jroproc_base import ProcessingUnit, MPDecorator | |
17 | from schainpy.model.data.jrodata import Parameters |
|
17 | from schainpy.model.data.jrodata import Parameters | |
18 | from schainpy.model.io.jroIO_base import JRODataReader, isNumber |
|
18 | from schainpy.model.io.jroIO_base import JRODataReader, isNumber | |
19 | from schainpy.utils import log |
|
19 | from schainpy.utils import log | |
@@ -111,7 +111,6 class BLTRParamReader(JRODataReader, ProcessingUnit): | |||||
111 | timezone=0, |
|
111 | timezone=0, | |
112 | status_value=0, |
|
112 | status_value=0, | |
113 | **kwargs): |
|
113 | **kwargs): | |
114 |
|
||||
115 | self.path = path |
|
114 | self.path = path | |
116 | self.startDate = startDate |
|
115 | self.startDate = startDate | |
117 | self.endDate = endDate |
|
116 | self.endDate = endDate | |
@@ -185,7 +184,6 class BLTRParamReader(JRODataReader, ProcessingUnit): | |||||
185 | file_id = self.fileIndex |
|
184 | file_id = self.fileIndex | |
186 |
|
185 | |||
187 | if file_id == len(self.fileList): |
|
186 | if file_id == len(self.fileList): | |
188 | log.success('No more files in the folder', 'BLTRParamReader') |
|
|||
189 | self.flagNoMoreFiles = 1 |
|
187 | self.flagNoMoreFiles = 1 | |
190 | return 0 |
|
188 | return 0 | |
191 |
|
189 | |||
@@ -240,7 +238,7 class BLTRParamReader(JRODataReader, ProcessingUnit): | |||||
240 |
|
238 | |||
241 | pointer = self.fp.tell() |
|
239 | pointer = self.fp.tell() | |
242 | header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1) |
|
240 | header_rec = numpy.fromfile(self.fp, REC_HEADER_STRUCTURE, 1) | |
243 | self.nchannels = header_rec['nchan'][0] / 2 |
|
241 | self.nchannels = int(header_rec['nchan'][0] / 2) | |
244 | self.kchan = header_rec['nrxs'][0] |
|
242 | self.kchan = header_rec['nrxs'][0] | |
245 | self.nmodes = header_rec['nmodes'][0] |
|
243 | self.nmodes = header_rec['nmodes'][0] | |
246 | self.nranges = header_rec['nranges'][0] |
|
244 | self.nranges = header_rec['nranges'][0] | |
@@ -358,8 +356,7 class BLTRParamReader(JRODataReader, ProcessingUnit): | |||||
358 | ''' |
|
356 | ''' | |
359 | if self.flagNoMoreFiles: |
|
357 | if self.flagNoMoreFiles: | |
360 | self.dataOut.flagNoData = True |
|
358 | self.dataOut.flagNoData = True | |
361 | log.success('No file left to process', 'BLTRParamReader') |
|
359 | self.dataOut.error = (1, 'No More files to read') | |
362 | return 0 |
|
|||
363 |
|
360 | |||
364 | if not self.readNextBlock(): |
|
361 | if not self.readNextBlock(): | |
365 | self.dataOut.flagNoData = True |
|
362 | self.dataOut.flagNoData = True |
@@ -1815,7 +1815,7 class JRODataWriter(JRODataIO): | |||||
1815 |
|
1815 | |||
1816 | return 1 |
|
1816 | return 1 | |
1817 |
|
1817 | |||
1818 | def run(self, dataOut, path, blocksPerFile, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): |
|
1818 | def run(self, dataOut, path, blocksPerFile=100, profilesPerBlock=64, set=None, ext=None, datatype=4, **kwargs): | |
1819 |
|
1819 | |||
1820 | if not(self.isConfig): |
|
1820 | if not(self.isConfig): | |
1821 |
|
1821 |
This diff has been collapsed as it changes many lines, (607 lines changed) Show them Hide them | |||||
@@ -63,9 +63,6 class Header(object): | |||||
63 | if attr: |
|
63 | if attr: | |
64 | message += "%s = %s" % ("size", attr) + "\n" |
|
64 | message += "%s = %s" % ("size", attr) + "\n" | |
65 |
|
65 | |||
66 | # print message |
|
|||
67 |
|
||||
68 |
|
||||
69 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes |
|
66 | FILE_STRUCTURE = numpy.dtype([ # HEADER 48bytes | |
70 | ('FileMgcNumber', '<u4'), # 0x23020100 |
|
67 | ('FileMgcNumber', '<u4'), # 0x23020100 | |
71 | # No Of FDT data records in this file (0 or more) |
|
68 | # No Of FDT data records in this file (0 or more) | |
@@ -94,29 +91,6 class FileHeaderBLTR(Header): | |||||
94 |
|
91 | |||
95 | header = numpy.fromfile(startFp, FILE_STRUCTURE, 1) |
|
92 | header = numpy.fromfile(startFp, FILE_STRUCTURE, 1) | |
96 |
|
93 | |||
97 | print(' ') |
|
|||
98 | print('puntero file header', startFp.tell()) |
|
|||
99 | print(' ') |
|
|||
100 |
|
||||
101 | ''' numpy.fromfile(file, dtype, count, sep='') |
|
|||
102 | file : file or str |
|
|||
103 | Open file object or filename. |
|
|||
104 |
|
||||
105 | dtype : data-type |
|
|||
106 | Data type of the returned array. For binary files, it is used to determine |
|
|||
107 | the size and byte-order of the items in the file. |
|
|||
108 |
|
||||
109 | count : int |
|
|||
110 | Number of items to read. -1 means all items (i.e., the complete file). |
|
|||
111 |
|
||||
112 | sep : str |
|
|||
113 | Separator between items if file is a text file. Empty ("") separator means |
|
|||
114 | the file should be treated as binary. Spaces (" ") in the separator match zero |
|
|||
115 | or more whitespace characters. A separator consisting only of spaces must match |
|
|||
116 | at least one whitespace. |
|
|||
117 |
|
||||
118 | ''' |
|
|||
119 |
|
||||
120 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) |
|
94 | self.FileMgcNumber = hex(header['FileMgcNumber'][0]) | |
121 | # No Of FDT data records in this file (0 or more) |
|
95 | # No Of FDT data records in this file (0 or more) | |
122 | self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) |
|
96 | self.nFDTdataRecors = int(header['nFDTdataRecors'][0]) | |
@@ -124,8 +98,6 class FileHeaderBLTR(Header): | |||||
124 | self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) |
|
98 | self.OffsetStartHeader = int(header['OffsetStartHeader'][0]) | |
125 | self.SiteName = str(header['SiteName'][0]) |
|
99 | self.SiteName = str(header['SiteName'][0]) | |
126 |
|
100 | |||
127 | # print 'Numero de bloques', self.nFDTdataRecors |
|
|||
128 |
|
||||
129 | if self.size < 48: |
|
101 | if self.size < 48: | |
130 | return 0 |
|
102 | return 0 | |
131 |
|
103 | |||
@@ -316,36 +288,10 class RecordHeaderBLTR(Header): | |||||
316 | self.OffsetStartHeader = 48 |
|
288 | self.OffsetStartHeader = 48 | |
317 |
|
289 | |||
318 | def RHread(self, fp): |
|
290 | def RHread(self, fp): | |
319 | # print fp |
|
|||
320 | # startFp = open('/home/erick/Documents/Data/huancayo.20161019.22.fdt',"rb") #The method tell() returns the current position of the file read/write pointer within the file. |
|
|||
321 | # The method tell() returns the current position of the file read/write pointer within the file. |
|
|||
322 | startFp = open(fp, "rb") |
|
291 | startFp = open(fp, "rb") | |
323 | # RecCounter=0 |
|
|||
324 | # Off2StartNxtRec=811248 |
|
|||
325 | OffRHeader = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec |
|
292 | OffRHeader = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | |
326 | print(' ') |
|
|||
327 | print('puntero Record Header', startFp.tell()) |
|
|||
328 | print(' ') |
|
|||
329 |
|
||||
330 | startFp.seek(OffRHeader, os.SEEK_SET) |
|
293 | startFp.seek(OffRHeader, os.SEEK_SET) | |
331 |
|
||||
332 | print(' ') |
|
|||
333 | print('puntero Record Header con seek', startFp.tell()) |
|
|||
334 | print(' ') |
|
|||
335 |
|
||||
336 | # print 'Posicion del bloque: ',OffRHeader |
|
|||
337 |
|
||||
338 | header = numpy.fromfile(startFp, RECORD_STRUCTURE, 1) |
|
294 | header = numpy.fromfile(startFp, RECORD_STRUCTURE, 1) | |
339 |
|
||||
340 | print(' ') |
|
|||
341 | print('puntero Record Header con seek', startFp.tell()) |
|
|||
342 | print(' ') |
|
|||
343 |
|
||||
344 | print(' ') |
|
|||
345 | # |
|
|||
346 | # print 'puntero Record Header despues de seek', header.tell() |
|
|||
347 | print(' ') |
|
|||
348 |
|
||||
349 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 |
|
295 | self.RecMgcNumber = hex(header['RecMgcNumber'][0]) # 0x23030001 | |
350 | self.RecCounter = int(header['RecCounter'][0]) |
|
296 | self.RecCounter = int(header['RecCounter'][0]) | |
351 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) |
|
297 | self.Off2StartNxtRec = int(header['Off2StartNxtRec'][0]) | |
@@ -397,52 +343,9 class RecordHeaderBLTR(Header): | |||||
397 |
|
343 | |||
398 | self.RHsize = 180 + 20 * self.nChannels |
|
344 | self.RHsize = 180 + 20 * self.nChannels | |
399 | self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 |
|
345 | self.Datasize = self.nProfiles * self.nChannels * self.nHeights * 2 * 4 | |
400 | # print 'Datasize',self.Datasize |
|
|||
401 | endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec |
|
346 | endFp = self.OffsetStartHeader + self.RecCounter * self.Off2StartNxtRec | |
402 |
|
347 | |||
403 | print('==============================================') |
|
348 | ||
404 | print('RecMgcNumber ', self.RecMgcNumber) |
|
|||
405 | print('RecCounter ', self.RecCounter) |
|
|||
406 | print('Off2StartNxtRec ', self.Off2StartNxtRec) |
|
|||
407 | print('Off2StartData ', self.Off2StartData) |
|
|||
408 | print('Range Resolution ', self.SampResolution) |
|
|||
409 | print('First Height ', self.StartRangeSamp) |
|
|||
410 | print('PRF (Hz) ', self.PRFhz) |
|
|||
411 | print('Heights (K) ', self.nHeights) |
|
|||
412 | print('Channels (N) ', self.nChannels) |
|
|||
413 | print('Profiles (J) ', self.nProfiles) |
|
|||
414 | print('iCoh ', self.nCohInt) |
|
|||
415 | print('iInCoh ', self.nIncohInt) |
|
|||
416 | print('BeamAngleAzim ', self.BeamAngleAzim) |
|
|||
417 | print('BeamAngleZen ', self.BeamAngleZen) |
|
|||
418 |
|
||||
419 | # print 'ModoEnUso ',self.DualModeIndex |
|
|||
420 | # print 'UtcTime ',self.nUtime |
|
|||
421 | # print 'MiliSec ',self.nMilisec |
|
|||
422 | # print 'Exp TagName ',self.ExpTagName |
|
|||
423 | # print 'Exp Comment ',self.ExpComment |
|
|||
424 | # print 'FFT Window Index ',self.FFTwindowingInd |
|
|||
425 | # print 'N Dig. Channels ',self.nDigChannels |
|
|||
426 | print('Size de bloque ', self.RHsize) |
|
|||
427 | print('DataSize ', self.Datasize) |
|
|||
428 | print('BeamAngleAzim ', self.BeamAngleAzim) |
|
|||
429 | # print 'AntennaCoord0 ',self.AntennaCoord0 |
|
|||
430 | # print 'AntennaAngl0 ',self.AntennaAngl0 |
|
|||
431 | # print 'AntennaCoord1 ',self.AntennaCoord1 |
|
|||
432 | # print 'AntennaAngl1 ',self.AntennaAngl1 |
|
|||
433 | # print 'AntennaCoord2 ',self.AntennaCoord2 |
|
|||
434 | # print 'AntennaAngl2 ',self.AntennaAngl2 |
|
|||
435 | print('RecPhaseCalibr0 ', self.RecPhaseCalibr0) |
|
|||
436 | print('RecPhaseCalibr1 ', self.RecPhaseCalibr1) |
|
|||
437 | print('RecPhaseCalibr2 ', self.RecPhaseCalibr2) |
|
|||
438 | print('RecAmpCalibr0 ', self.RecAmpCalibr0) |
|
|||
439 | print('RecAmpCalibr1 ', self.RecAmpCalibr1) |
|
|||
440 | print('RecAmpCalibr2 ', self.RecAmpCalibr2) |
|
|||
441 | print('ReceiverGaindB0 ', self.ReceiverGaindB0) |
|
|||
442 | print('ReceiverGaindB1 ', self.ReceiverGaindB1) |
|
|||
443 | print('ReceiverGaindB2 ', self.ReceiverGaindB2) |
|
|||
444 | print('==============================================') |
|
|||
445 |
|
||||
446 | if OffRHeader > endFp: |
|
349 | if OffRHeader > endFp: | |
447 | sys.stderr.write( |
|
350 | sys.stderr.write( | |
448 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp) |
|
351 | "Warning %s: Size value read from System Header is lower than it has to be\n" % fp) | |
@@ -537,9 +440,6 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
537 | FileList.append(IndexFile) |
|
440 | FileList.append(IndexFile) | |
538 | nFiles += 1 |
|
441 | nFiles += 1 | |
539 |
|
442 | |||
540 | # print 'Files2Read' |
|
|||
541 | # print 'Existen '+str(nFiles)+' archivos .fdt' |
|
|||
542 |
|
||||
543 | self.filenameList = FileList # List of files from least to largest by names |
|
443 | self.filenameList = FileList # List of files from least to largest by names | |
544 |
|
444 | |||
545 | def run(self, **kwargs): |
|
445 | def run(self, **kwargs): | |
@@ -553,7 +453,6 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
553 | self.isConfig = True |
|
453 | self.isConfig = True | |
554 |
|
454 | |||
555 | self.getData() |
|
455 | self.getData() | |
556 | # print 'running' |
|
|||
557 |
|
456 | |||
558 | def setup(self, path=None, |
|
457 | def setup(self, path=None, | |
559 | startDate=None, |
|
458 | startDate=None, | |
@@ -590,22 +489,19 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
590 |
|
489 | |||
591 | if self.flagNoMoreFiles: |
|
490 | if self.flagNoMoreFiles: | |
592 | self.dataOut.flagNoData = True |
|
491 | self.dataOut.flagNoData = True | |
593 | print('NoData se vuelve true') |
|
|||
594 | return 0 |
|
492 | return 0 | |
595 |
|
493 | |||
596 | self.fp = self.path |
|
494 | self.fp = self.path | |
597 | self.Files2Read(self.fp) |
|
495 | self.Files2Read(self.fp) | |
598 | self.readFile(self.fp) |
|
496 | self.readFile(self.fp) | |
599 | self.dataOut.data_spc = self.data_spc |
|
497 | self.dataOut.data_spc = self.data_spc | |
600 |
self.dataOut.data_cspc = |
|
498 | self.dataOut.data_cspc =self.data_cspc | |
601 |
self.dataOut.data_output |
|
499 | self.dataOut.data_output=self.data_output | |
602 |
|
500 | |||
603 | print('self.dataOut.data_output', shape(self.dataOut.data_output)) |
|
501 | return self.dataOut.data_spc | |
604 |
|
502 | |||
605 | # self.removeDC() |
|
503 | ||
606 | return self.dataOut.data_spc |
|
504 | def readFile(self,fp): | |
607 |
|
||||
608 | def readFile(self, fp): |
|
|||
609 | ''' |
|
505 | ''' | |
610 | You must indicate if you are reading in Online or Offline mode and load the |
|
506 | You must indicate if you are reading in Online or Offline mode and load the | |
611 | The parameters for this file reading mode. |
|
507 | The parameters for this file reading mode. | |
@@ -615,23 +511,18 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
615 | 1. Get the BLTR FileHeader. |
|
511 | 1. Get the BLTR FileHeader. | |
616 | 2. Start reading the first block. |
|
512 | 2. Start reading the first block. | |
617 | ''' |
|
513 | ''' | |
618 |
|
514 | |||
619 | # The address of the folder is generated the name of the .fdt file that will be read |
|
|||
620 | print("File: ", self.fileSelector + 1) |
|
|||
621 |
|
||||
622 | if self.fileSelector < len(self.filenameList): |
|
515 | if self.fileSelector < len(self.filenameList): | |
623 |
|
516 | |||
624 | self.fpFile = str(fp) + '/' + \ |
|
517 | self.fpFile = str(fp) + '/' + \ | |
625 | str(self.filenameList[self.fileSelector]) |
|
518 | str(self.filenameList[self.fileSelector]) | |
626 | # print self.fpFile |
|
|||
627 | fheader = FileHeaderBLTR() |
|
519 | fheader = FileHeaderBLTR() | |
628 | fheader.FHread(self.fpFile) # Bltr FileHeader Reading |
|
520 | fheader.FHread(self.fpFile) # Bltr FileHeader Reading | |
629 | self.nFDTdataRecors = fheader.nFDTdataRecors |
|
521 | self.nFDTdataRecors = fheader.nFDTdataRecors | |
630 |
|
522 | |||
631 | self.readBlock() # Block reading |
|
523 | self.readBlock() # Block reading | |
632 | else: |
|
524 | else: | |
633 | print('readFile FlagNoData becomes true') |
|
525 | self.flagNoMoreFiles=True | |
634 | self.flagNoMoreFiles = True |
|
|||
635 | self.dataOut.flagNoData = True |
|
526 | self.dataOut.flagNoData = True | |
636 | return 0 |
|
527 | return 0 | |
637 |
|
528 | |||
@@ -658,12 +549,11 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
658 | 2. Fill the buffer with the current block number. |
|
549 | 2. Fill the buffer with the current block number. | |
659 |
|
550 | |||
660 | ''' |
|
551 | ''' | |
661 |
|
552 | |||
662 |
if self.BlockCounter < self.nFDTdataRecors |
|
553 | if self.BlockCounter < self.nFDTdataRecors-1: | |
663 | print(self.nFDTdataRecors, 'CONDICION!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!') |
|
554 | if self.ReadMode==1: | |
664 | if self.ReadMode == 1: |
|
555 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter+1) | |
665 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter + 1) |
|
556 | elif self.ReadMode==0: | |
666 | elif self.ReadMode == 0: |
|
|||
667 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) |
|
557 | rheader = RecordHeaderBLTR(RecCounter=self.BlockCounter) | |
668 |
|
558 | |||
669 | rheader.RHread(self.fpFile) # Bltr FileHeader Reading |
|
559 | rheader.RHread(self.fpFile) # Bltr FileHeader Reading | |
@@ -683,31 +573,26 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
683 |
|
573 | |||
684 | self.nRdPairs = len(self.dataOut.pairsList) |
|
574 | self.nRdPairs = len(self.dataOut.pairsList) | |
685 | self.dataOut.nRdPairs = self.nRdPairs |
|
575 | self.dataOut.nRdPairs = self.nRdPairs | |
686 |
|
576 | self.__firstHeigth=rheader.StartRangeSamp | ||
687 |
self.__ |
|
577 | self.__deltaHeigth=rheader.SampResolution | |
688 | self.__deltaHeigth = rheader.SampResolution |
|
578 | self.dataOut.heightList= self.__firstHeigth + numpy.array(range(self.nHeights))*self.__deltaHeigth | |
689 |
self.dataOut. |
|
579 | self.dataOut.channelList = range(self.nChannels) | |
690 | numpy.array(list(range(self.nHeights))) * self.__deltaHeigth |
|
580 | self.dataOut.nProfiles=rheader.nProfiles | |
691 | self.dataOut.channelList = list(range(self.nChannels)) |
|
581 | self.dataOut.nIncohInt=rheader.nIncohInt | |
692 |
self.dataOut.n |
|
582 | self.dataOut.nCohInt=rheader.nCohInt | |
693 |
self.dataOut. |
|
583 | self.dataOut.ippSeconds= 1/float(rheader.PRFhz) | |
694 |
self.dataOut. |
|
584 | self.dataOut.PRF=rheader.PRFhz | |
695 |
self.dataOut. |
|
585 | self.dataOut.nFFTPoints=rheader.nProfiles | |
696 |
self.dataOut. |
|
586 | self.dataOut.utctime=rheader.nUtime | |
697 |
self.dataOut. |
|
587 | self.dataOut.timeZone=0 | |
698 | self.dataOut.utctime = rheader.nUtime |
|
588 | self.dataOut.normFactor= self.dataOut.nProfiles*self.dataOut.nIncohInt*self.dataOut.nCohInt | |
699 | self.dataOut.timeZone = 0 |
|
589 | self.dataOut.outputInterval= self.dataOut.ippSeconds * self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles | |
700 | self.dataOut.normFactor = self.dataOut.nProfiles * \ |
|
590 | ||
701 | self.dataOut.nIncohInt * self.dataOut.nCohInt |
|
591 | self.data_output=numpy.ones([3,rheader.nHeights])*numpy.NaN | |
702 | self.dataOut.outputInterval = self.dataOut.ippSeconds * \ |
|
592 | self.dataOut.velocityX=[] | |
703 | self.dataOut.nCohInt * self.dataOut.nIncohInt * self.nProfiles |
|
593 | self.dataOut.velocityY=[] | |
704 |
|
594 | self.dataOut.velocityV=[] | ||
705 | self.data_output = numpy.ones([3, rheader.nHeights]) * numpy.NaN |
|
595 | ||
706 | print('self.data_output', shape(self.data_output)) |
|
|||
707 | self.dataOut.velocityX = [] |
|
|||
708 | self.dataOut.velocityY = [] |
|
|||
709 | self.dataOut.velocityV = [] |
|
|||
710 |
|
||||
711 |
|
|
596 | '''Block Reading, the Block Data is received and Reshape is used to give it | |
712 | shape. |
|
597 | shape. | |
713 | ''' |
|
598 | ''' | |
@@ -734,18 +619,17 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
734 | y = rho * numpy.sin(phi) |
|
619 | y = rho * numpy.sin(phi) | |
735 | return(x, y) |
|
620 | return(x, y) | |
736 |
|
621 | |||
737 |
if self.DualModeIndex |
|
622 | if self.DualModeIndex==self.ReadMode: | |
738 |
|
623 | |||
739 | self.data_fft = numpy.fromfile( |
|
624 | self.data_fft = numpy.fromfile( startDATA, [('complex','<c8')],self.nProfiles*self.nChannels*self.nHeights ) | |
740 | startDATA, [('complex', '<c8')], self.nProfiles * self.nChannels * self.nHeights) |
|
625 | self.data_fft = numpy.empty(101376) | |
741 |
|
626 | |||
742 |
self.data_fft |
|
627 | self.data_fft=self.data_fft.astype(numpy.dtype('complex')) | |
743 |
|
628 | |||
744 | self.data_block = numpy.reshape( |
|
629 | self.data_block=numpy.reshape(self.data_fft,(self.nHeights, self.nChannels, self.nProfiles )) | |
745 | self.data_fft, (self.nHeights, self.nChannels, self.nProfiles)) |
|
630 | ||
746 |
|
631 | self.data_block = numpy.transpose(self.data_block, (1,2,0)) | ||
747 | self.data_block = numpy.transpose(self.data_block, (1, 2, 0)) |
|
632 | ||
748 |
|
||||
749 | copy = self.data_block.copy() |
|
633 | copy = self.data_block.copy() | |
750 | spc = copy * numpy.conjugate(copy) |
|
634 | spc = copy * numpy.conjugate(copy) | |
751 |
|
635 | |||
@@ -756,18 +640,8 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
756 |
|
640 | |||
757 | z = self.data_spc.copy() # /factor |
|
641 | z = self.data_spc.copy() # /factor | |
758 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
642 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
759 | #zdB = 10*numpy.log10(z) |
|
643 | self.dataOut.data_spc=self.data_spc | |
760 | print(' ') |
|
644 | self.noise = self.dataOut.getNoise(ymin_index=80, ymax_index=132)#/factor | |
761 | print('Z: ') |
|
|||
762 | print(shape(z)) |
|
|||
763 | print(' ') |
|
|||
764 | print(' ') |
|
|||
765 |
|
||||
766 | self.dataOut.data_spc = self.data_spc |
|
|||
767 |
|
||||
768 | self.noise = self.dataOut.getNoise( |
|
|||
769 | ymin_index=80, ymax_index=132) # /factor |
|
|||
770 | #noisedB = 10*numpy.log10(self.noise) |
|
|||
771 |
|
645 | |||
772 | ySamples = numpy.ones([3, self.nProfiles]) |
|
646 | ySamples = numpy.ones([3, self.nProfiles]) | |
773 | phase = numpy.ones([3, self.nProfiles]) |
|
647 | phase = numpy.ones([3, self.nProfiles]) | |
@@ -778,20 +652,16 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
778 | PhaseInter = numpy.ones(3) |
|
652 | PhaseInter = numpy.ones(3) | |
779 |
|
653 | |||
780 | '''****** Getting CrossSpectra ******''' |
|
654 | '''****** Getting CrossSpectra ******''' | |
781 |
cspc |
|
655 | cspc=self.data_block.copy() | |
782 |
self.data_cspc |
|
656 | self.data_cspc=self.data_block.copy() | |
783 |
|
657 | |||
784 |
xFrec |
|
658 | xFrec=self.getVelRange(1) | |
785 |
VelRange |
|
659 | VelRange=self.getVelRange(1) | |
786 |
self.dataOut.VelRange |
|
660 | self.dataOut.VelRange=VelRange | |
787 |
|
|
661 | ||
788 |
|
|
662 | ||
789 | # print 'xFrec',xFrec |
|
663 | for i in range(self.nRdPairs): | |
790 |
|
|
664 | ||
791 | # print ' ' |
|
|||
792 | # Height=35 |
|
|||
793 | for i in range(self.nRdPairs): |
|
|||
794 |
|
||||
795 | chan_index0 = self.dataOut.pairsList[i][0] |
|
665 | chan_index0 = self.dataOut.pairsList[i][0] | |
796 | chan_index1 = self.dataOut.pairsList[i][1] |
|
666 | chan_index1 = self.dataOut.pairsList[i][1] | |
797 |
|
667 | |||
@@ -820,361 +690,8 class BLTRSpectraReader (ProcessingUnit, FileHeaderBLTR, RecordHeaderBLTR, JRODa | |||||
820 |
|
690 | |||
821 | self.dataOut.ChanDist = self.ChanDist |
|
691 | self.dataOut.ChanDist = self.ChanDist | |
822 |
|
692 | |||
823 |
|
693 | self.BlockCounter+=2 | ||
824 | # for Height in range(self.nHeights): |
|
694 | ||
825 | # |
|
|||
826 | # for i in range(self.nRdPairs): |
|
|||
827 | # |
|
|||
828 | # '''****** Line of Data SPC ******''' |
|
|||
829 | # zline=z[i,:,Height] |
|
|||
830 | # |
|
|||
831 | # '''****** DC is removed ******''' |
|
|||
832 | # DC=Find(zline,numpy.amax(zline)) |
|
|||
833 | # zline[DC]=(zline[DC-1]+zline[DC+1])/2 |
|
|||
834 | # |
|
|||
835 | # |
|
|||
836 | # '''****** SPC is normalized ******''' |
|
|||
837 | # FactNorm= zline.copy() / numpy.sum(zline.copy()) |
|
|||
838 | # FactNorm= FactNorm/numpy.sum(FactNorm) |
|
|||
839 | # |
|
|||
840 | # SmoothSPC=moving_average(FactNorm,N=3) |
|
|||
841 | # |
|
|||
842 | # xSamples = ar(range(len(SmoothSPC))) |
|
|||
843 | # ySamples[i] = SmoothSPC-self.noise[i] |
|
|||
844 | # |
|
|||
845 | # for i in range(self.nRdPairs): |
|
|||
846 | # |
|
|||
847 | # '''****** Line of Data CSPC ******''' |
|
|||
848 | # cspcLine=self.data_cspc[i,:,Height].copy() |
|
|||
849 | # |
|
|||
850 | # |
|
|||
851 | # |
|
|||
852 | # '''****** CSPC is normalized ******''' |
|
|||
853 | # chan_index0 = self.dataOut.pairsList[i][0] |
|
|||
854 | # chan_index1 = self.dataOut.pairsList[i][1] |
|
|||
855 | # CSPCFactor= numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1]) |
|
|||
856 | # |
|
|||
857 | # |
|
|||
858 | # CSPCNorm= cspcLine.copy() / numpy.sqrt(CSPCFactor) |
|
|||
859 | # |
|
|||
860 | # |
|
|||
861 | # CSPCSamples[i] = CSPCNorm-self.noise[i] |
|
|||
862 | # coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
|||
863 | # |
|
|||
864 | # '''****** DC is removed ******''' |
|
|||
865 | # DC=Find(coherence[i],numpy.amax(coherence[i])) |
|
|||
866 | # coherence[i][DC]=(coherence[i][DC-1]+coherence[i][DC+1])/2 |
|
|||
867 | # coherence[i]= moving_average(coherence[i],N=2) |
|
|||
868 | # |
|
|||
869 | # phase[i] = moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
|||
870 | # |
|
|||
871 | # |
|
|||
872 | # '''****** Getting fij width ******''' |
|
|||
873 | # |
|
|||
874 | # yMean=[] |
|
|||
875 | # yMean2=[] |
|
|||
876 | # |
|
|||
877 | # for j in range(len(ySamples[1])): |
|
|||
878 | # yMean=numpy.append(yMean,numpy.average([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
|||
879 | # |
|
|||
880 | # '''******* Getting fitting Gaussian ******''' |
|
|||
881 | # meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
|||
882 | # sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
|||
883 | # #print 'Height',Height,'SNR', meanGauss/sigma**2 |
|
|||
884 | # |
|
|||
885 | # if (abs(meanGauss/sigma**2) > 0.0001) : |
|
|||
886 | # |
|
|||
887 | # try: |
|
|||
888 | # popt,pcov = curve_fit(gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
|||
889 | # |
|
|||
890 | # if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
|||
891 | # FitGauss=gaus(xSamples,*popt) |
|
|||
892 | # |
|
|||
893 | # else: |
|
|||
894 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
895 | # print 'Verificador: Dentro', Height |
|
|||
896 | # except RuntimeError: |
|
|||
897 | # |
|
|||
898 | # try: |
|
|||
899 | # for j in range(len(ySamples[1])): |
|
|||
900 | # yMean2=numpy.append(yMean2,numpy.average([ySamples[1,j],ySamples[2,j]])) |
|
|||
901 | # popt,pcov = curve_fit(gaus,xSamples,yMean2,p0=[1,meanGauss,sigma]) |
|
|||
902 | # FitGauss=gaus(xSamples,*popt) |
|
|||
903 | # print 'Verificador: Exepcion1', Height |
|
|||
904 | # except RuntimeError: |
|
|||
905 | # |
|
|||
906 | # try: |
|
|||
907 | # popt,pcov = curve_fit(gaus,xSamples,ySamples[1],p0=[1,meanGauss,sigma]) |
|
|||
908 | # FitGauss=gaus(xSamples,*popt) |
|
|||
909 | # print 'Verificador: Exepcion2', Height |
|
|||
910 | # except RuntimeError: |
|
|||
911 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
912 | # print 'Verificador: Exepcion3', Height |
|
|||
913 | # else: |
|
|||
914 | # FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
915 | # #print 'Verificador: Fuera', Height |
|
|||
916 | # |
|
|||
917 | # |
|
|||
918 | # |
|
|||
919 | # Maximun=numpy.amax(yMean) |
|
|||
920 | # eMinus1=Maximun*numpy.exp(-1) |
|
|||
921 | # |
|
|||
922 | # HWpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
|||
923 | # HalfWidth= xFrec[HWpos] |
|
|||
924 | # GCpos=Find(FitGauss, numpy.amax(FitGauss)) |
|
|||
925 | # Vpos=Find(FactNorm, numpy.amax(FactNorm)) |
|
|||
926 | # #Vpos=numpy.sum(FactNorm)/len(FactNorm) |
|
|||
927 | # #Vpos=Find(FactNorm, min(FactNorm, key=lambda value:abs(value- numpy.mean(FactNorm) ))) |
|
|||
928 | # #print 'GCpos',GCpos, numpy.amax(FitGauss), 'HWpos',HWpos |
|
|||
929 | # '''****** Getting Fij ******''' |
|
|||
930 | # |
|
|||
931 | # GaussCenter=xFrec[GCpos] |
|
|||
932 | # if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
|||
933 | # Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
|||
934 | # else: |
|
|||
935 | # Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
|||
936 | # |
|
|||
937 | # '''****** Getting Frecuency range of significant data ******''' |
|
|||
938 | # |
|
|||
939 | # Rangpos=Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
|||
940 | # |
|
|||
941 | # if Rangpos<GCpos: |
|
|||
942 | # Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
|||
943 | # else: |
|
|||
944 | # Range=numpy.array([2*GCpos-Rangpos,Rangpos]) |
|
|||
945 | # |
|
|||
946 | # FrecRange=xFrec[Range[0]:Range[1]] |
|
|||
947 | # |
|
|||
948 | # #print 'FrecRange', FrecRange |
|
|||
949 | # '''****** Getting SCPC Slope ******''' |
|
|||
950 | # |
|
|||
951 | # for i in range(self.nRdPairs): |
|
|||
952 | # |
|
|||
953 | # if len(FrecRange)>5 and len(FrecRange)<self.nProfiles*0.5: |
|
|||
954 | # PhaseRange=moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
|||
955 | # |
|
|||
956 | # slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
|||
957 | # PhaseSlope[i]=slope |
|
|||
958 | # PhaseInter[i]=intercept |
|
|||
959 | # else: |
|
|||
960 | # PhaseSlope[i]=0 |
|
|||
961 | # PhaseInter[i]=0 |
|
|||
962 | # |
|
|||
963 | # # plt.figure(i+15) |
|
|||
964 | # # plt.title('FASE ( CH%s*CH%s )' %(self.dataOut.pairsList[i][0],self.dataOut.pairsList[i][1])) |
|
|||
965 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
966 | # # plt.ylabel('Magnitud') |
|
|||
967 | # # #plt.subplot(311+i) |
|
|||
968 | # # plt.plot(FrecRange,PhaseRange,'b') |
|
|||
969 | # # plt.plot(FrecRange,FrecRange*PhaseSlope[i]+PhaseInter[i],'r') |
|
|||
970 | # |
|
|||
971 | # #plt.axis([-0.6, 0.2, -3.2, 3.2]) |
|
|||
972 | # |
|
|||
973 | # |
|
|||
974 | # '''Getting constant C''' |
|
|||
975 | # cC=(Fij*numpy.pi)**2 |
|
|||
976 | # |
|
|||
977 | # # '''Getting Eij and Nij''' |
|
|||
978 | # # (AntennaX0,AntennaY0)=pol2cart(rheader.AntennaCoord0, rheader.AntennaAngl0*numpy.pi/180) |
|
|||
979 | # # (AntennaX1,AntennaY1)=pol2cart(rheader.AntennaCoord1, rheader.AntennaAngl1*numpy.pi/180) |
|
|||
980 | # # (AntennaX2,AntennaY2)=pol2cart(rheader.AntennaCoord2, rheader.AntennaAngl2*numpy.pi/180) |
|
|||
981 | # # |
|
|||
982 | # # E01=AntennaX0-AntennaX1 |
|
|||
983 | # # N01=AntennaY0-AntennaY1 |
|
|||
984 | # # |
|
|||
985 | # # E02=AntennaX0-AntennaX2 |
|
|||
986 | # # N02=AntennaY0-AntennaY2 |
|
|||
987 | # # |
|
|||
988 | # # E12=AntennaX1-AntennaX2 |
|
|||
989 | # # N12=AntennaY1-AntennaY2 |
|
|||
990 | # |
|
|||
991 | # '''****** Getting constants F and G ******''' |
|
|||
992 | # MijEijNij=numpy.array([[E02,N02], [E12,N12]]) |
|
|||
993 | # MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
|||
994 | # MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
|||
995 | # MijResults=numpy.array([MijResult0,MijResult1]) |
|
|||
996 | # (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
|||
997 | # |
|
|||
998 | # '''****** Getting constants A, B and H ******''' |
|
|||
999 | # W01=numpy.amax(coherence[0]) |
|
|||
1000 | # W02=numpy.amax(coherence[1]) |
|
|||
1001 | # W12=numpy.amax(coherence[2]) |
|
|||
1002 | # |
|
|||
1003 | # WijResult0=((cF*E01+cG*N01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1004 | # WijResult1=((cF*E02+cG*N02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1005 | # WijResult2=((cF*E12+cG*N12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) |
|
|||
1006 | # |
|
|||
1007 | # WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
|||
1008 | # |
|
|||
1009 | # WijEijNij=numpy.array([ [E01**2, N01**2, 2*E01*N01] , [E02**2, N02**2, 2*E02*N02] , [E12**2, N12**2, 2*E12*N12] ]) |
|
|||
1010 | # (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
|||
1011 | # |
|
|||
1012 | # VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
|||
1013 | # |
|
|||
1014 | # VxVyResults=numpy.array([-cF,-cG]) |
|
|||
1015 | # (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
|||
1016 | # Vzon = Vy |
|
|||
1017 | # Vmer = Vx |
|
|||
1018 | # Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
|||
1019 | # Vang=numpy.arctan2(Vmer,Vzon) |
|
|||
1020 | # |
|
|||
1021 | # if abs(Vy)<100 and abs(Vy)> 0.: |
|
|||
1022 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, Vzon) #Vmag |
|
|||
1023 | # #print 'Vmag',Vmag |
|
|||
1024 | # else: |
|
|||
1025 | # self.dataOut.velocityX=numpy.append(self.dataOut.velocityX, NaN) |
|
|||
1026 | # |
|
|||
1027 | # if abs(Vx)<100 and abs(Vx) > 0.: |
|
|||
1028 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, Vmer) #Vang |
|
|||
1029 | # #print 'Vang',Vang |
|
|||
1030 | # else: |
|
|||
1031 | # self.dataOut.velocityY=numpy.append(self.dataOut.velocityY, NaN) |
|
|||
1032 | # |
|
|||
1033 | # if abs(GaussCenter)<2: |
|
|||
1034 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, xFrec[Vpos]) |
|
|||
1035 | # |
|
|||
1036 | # else: |
|
|||
1037 | # self.dataOut.velocityV=numpy.append(self.dataOut.velocityV, NaN) |
|
|||
1038 | # |
|
|||
1039 | # |
|
|||
1040 | # # print '********************************************' |
|
|||
1041 | # # print 'HalfWidth ', HalfWidth |
|
|||
1042 | # # print 'Maximun ', Maximun |
|
|||
1043 | # # print 'eMinus1 ', eMinus1 |
|
|||
1044 | # # print 'Rangpos ', Rangpos |
|
|||
1045 | # # print 'GaussCenter ',GaussCenter |
|
|||
1046 | # # print 'E01 ',E01 |
|
|||
1047 | # # print 'N01 ',N01 |
|
|||
1048 | # # print 'E02 ',E02 |
|
|||
1049 | # # print 'N02 ',N02 |
|
|||
1050 | # # print 'E12 ',E12 |
|
|||
1051 | # # print 'N12 ',N12 |
|
|||
1052 | # #print 'self.dataOut.velocityX ', self.dataOut.velocityX |
|
|||
1053 | # # print 'Fij ', Fij |
|
|||
1054 | # # print 'cC ', cC |
|
|||
1055 | # # print 'cF ', cF |
|
|||
1056 | # # print 'cG ', cG |
|
|||
1057 | # # print 'cA ', cA |
|
|||
1058 | # # print 'cB ', cB |
|
|||
1059 | # # print 'cH ', cH |
|
|||
1060 | # # print 'Vx ', Vx |
|
|||
1061 | # # print 'Vy ', Vy |
|
|||
1062 | # # print 'Vmag ', Vmag |
|
|||
1063 | # # print 'Vang ', Vang*180/numpy.pi |
|
|||
1064 | # # print 'PhaseSlope ',PhaseSlope[0] |
|
|||
1065 | # # print 'PhaseSlope ',PhaseSlope[1] |
|
|||
1066 | # # print 'PhaseSlope ',PhaseSlope[2] |
|
|||
1067 | # # print '********************************************' |
|
|||
1068 | # #print 'data_output',shape(self.dataOut.velocityX), shape(self.dataOut.velocityY) |
|
|||
1069 | # |
|
|||
1070 | # #print 'self.dataOut.velocityX', len(self.dataOut.velocityX) |
|
|||
1071 | # #print 'self.dataOut.velocityY', len(self.dataOut.velocityY) |
|
|||
1072 | # #print 'self.dataOut.velocityV', self.dataOut.velocityV |
|
|||
1073 | # |
|
|||
1074 | # self.data_output[0]=numpy.array(self.dataOut.velocityX) |
|
|||
1075 | # self.data_output[1]=numpy.array(self.dataOut.velocityY) |
|
|||
1076 | # self.data_output[2]=numpy.array(self.dataOut.velocityV) |
|
|||
1077 | # |
|
|||
1078 | # prin= self.data_output[0][~numpy.isnan(self.data_output[0])] |
|
|||
1079 | # print ' ' |
|
|||
1080 | # print 'VmagAverage',numpy.mean(prin) |
|
|||
1081 | # print ' ' |
|
|||
1082 | # # plt.figure(5) |
|
|||
1083 | # # plt.subplot(211) |
|
|||
1084 | # # plt.plot(self.dataOut.velocityX,'yo:') |
|
|||
1085 | # # plt.subplot(212) |
|
|||
1086 | # # plt.plot(self.dataOut.velocityY,'yo:') |
|
|||
1087 | # |
|
|||
1088 | # # plt.figure(1) |
|
|||
1089 | # # # plt.subplot(121) |
|
|||
1090 | # # # plt.plot(xFrec,ySamples[0],'k',label='Ch0') |
|
|||
1091 | # # # plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
1092 | # # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
1093 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
1094 | # # # plt.legend() |
|
|||
1095 | # # plt.title('DATOS A ALTURA DE 2850 METROS') |
|
|||
1096 | # # |
|
|||
1097 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1098 | # # plt.ylabel('Magnitud') |
|
|||
1099 | # # # plt.subplot(122) |
|
|||
1100 | # # # plt.title('Fit for Time Constant') |
|
|||
1101 | # # #plt.plot(xFrec,zline) |
|
|||
1102 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1103 | # # plt.plot(xFrec,FactNorm) |
|
|||
1104 | # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1105 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1106 | # # |
|
|||
1107 | # # plt.figure(10) |
|
|||
1108 | # # # plt.subplot(121) |
|
|||
1109 | # # plt.plot(xFrec,ySamples[0],'b',label='Ch0') |
|
|||
1110 | # # plt.plot(xFrec,ySamples[1],'y',label='Ch1') |
|
|||
1111 | # # plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
1112 | # # # plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
1113 | # # plt.legend() |
|
|||
1114 | # # plt.title('SELFSPECTRA EN CANALES') |
|
|||
1115 | # # |
|
|||
1116 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1117 | # # plt.ylabel('Magnitud') |
|
|||
1118 | # # # plt.subplot(122) |
|
|||
1119 | # # # plt.title('Fit for Time Constant') |
|
|||
1120 | # # #plt.plot(xFrec,zline) |
|
|||
1121 | # # #plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1122 | # # # plt.plot(xFrec,FactNorm) |
|
|||
1123 | # # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1124 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1125 | # # |
|
|||
1126 | # # plt.figure(9) |
|
|||
1127 | # # |
|
|||
1128 | # # |
|
|||
1129 | # # plt.title('DATOS SUAVIZADOS') |
|
|||
1130 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1131 | # # plt.ylabel('Magnitud') |
|
|||
1132 | # # plt.plot(xFrec,SmoothSPC,'g') |
|
|||
1133 | # # |
|
|||
1134 | # # #plt.plot(xFrec,FactNorm) |
|
|||
1135 | # # plt.axis([-4, 4, 0, 0.15]) |
|
|||
1136 | # # # plt.xlabel('SelfSpectra KHz') |
|
|||
1137 | # # # |
|
|||
1138 | # # plt.figure(2) |
|
|||
1139 | # # # #plt.subplot(121) |
|
|||
1140 | # # plt.plot(xFrec,yMean,'r',label='Mean SelfSpectra') |
|
|||
1141 | # # plt.plot(xFrec,FitGauss,'yo:',label='Ajuste Gaussiano') |
|
|||
1142 | # # # plt.plot(xFrec[Rangpos],FitGauss[Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.1)))],'bo') |
|
|||
1143 | # # # #plt.plot(xFrec,phase) |
|
|||
1144 | # # # plt.xlabel('Suavizado, promediado KHz') |
|
|||
1145 | # # plt.title('SELFSPECTRA PROMEDIADO') |
|
|||
1146 | # # # #plt.subplot(122) |
|
|||
1147 | # # # #plt.plot(xSamples,zline) |
|
|||
1148 | # # plt.xlabel('Frecuencia (KHz)') |
|
|||
1149 | # # plt.ylabel('Magnitud') |
|
|||
1150 | # # plt.legend() |
|
|||
1151 | # # # |
|
|||
1152 | # # # plt.figure(3) |
|
|||
1153 | # # # plt.subplot(311) |
|
|||
1154 | # # # #plt.plot(xFrec,phase[0]) |
|
|||
1155 | # # # plt.plot(xFrec,phase[0],'g') |
|
|||
1156 | # # # plt.subplot(312) |
|
|||
1157 | # # # plt.plot(xFrec,phase[1],'g') |
|
|||
1158 | # # # plt.subplot(313) |
|
|||
1159 | # # # plt.plot(xFrec,phase[2],'g') |
|
|||
1160 | # # # #plt.plot(xFrec,phase[2]) |
|
|||
1161 | # # # |
|
|||
1162 | # # # plt.figure(4) |
|
|||
1163 | # # # |
|
|||
1164 | # # # plt.plot(xSamples,coherence[0],'b') |
|
|||
1165 | # # # plt.plot(xSamples,coherence[1],'r') |
|
|||
1166 | # # # plt.plot(xSamples,coherence[2],'g') |
|
|||
1167 | # # plt.show() |
|
|||
1168 | # # # |
|
|||
1169 | # # # plt.clf() |
|
|||
1170 | # # # plt.cla() |
|
|||
1171 | # # # plt.close() |
|
|||
1172 | # |
|
|||
1173 | # print ' ' |
|
|||
1174 |
|
||||
1175 | self.BlockCounter += 2 |
|
|||
1176 |
|
||||
1177 | else: |
|
695 | else: | |
1178 |
self.fileSelector |
|
696 | self.fileSelector+=1 | |
1179 |
self.BlockCounter |
|
697 | self.BlockCounter=0 | |
1180 | print("Next File") No newline at end of file |
|
@@ -179,9 +179,6 class ParamReader(JRODataReader,ProcessingUnit): | |||||
179 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) |
|
179 | print("[Reading] %d file(s) was(were) found in time range: %s - %s" %(len(filenameList), startTime, endTime)) | |
180 | print() |
|
180 | print() | |
181 |
|
181 | |||
182 | # for i in range(len(filenameList)): |
|
|||
183 | # print "[Reading] %s -> [%s]" %(filenameList[i], datetimeList[i].ctime()) |
|
|||
184 |
|
||||
185 | self.filenameList = filenameList |
|
182 | self.filenameList = filenameList | |
186 | self.datetimeList = datetimeList |
|
183 | self.datetimeList = datetimeList | |
187 |
|
184 | |||
@@ -504,20 +501,11 class ParamReader(JRODataReader,ProcessingUnit): | |||||
504 |
|
501 | |||
505 | def getData(self): |
|
502 | def getData(self): | |
506 |
|
503 | |||
507 | # if self.flagNoMoreFiles: |
|
|||
508 | # self.dataOut.flagNoData = True |
|
|||
509 | # print 'Process finished' |
|
|||
510 | # return 0 |
|
|||
511 | # |
|
|||
512 | if self.blockIndex==self.blocksPerFile: |
|
504 | if self.blockIndex==self.blocksPerFile: | |
513 | if not( self.__setNextFileOffline() ): |
|
505 | if not( self.__setNextFileOffline() ): | |
514 | self.dataOut.flagNoData = True |
|
506 | self.dataOut.flagNoData = True | |
515 | return 0 |
|
507 | return 0 | |
516 |
|
508 | |||
517 | # if self.datablock == None: # setear esta condicion cuando no hayan datos por leers |
|
|||
518 | # self.dataOut.flagNoData = True |
|
|||
519 | # return 0 |
|
|||
520 | # self.__readData() |
|
|||
521 | self.__setDataOut() |
|
509 | self.__setDataOut() | |
522 | self.dataOut.flagNoData = False |
|
510 | self.dataOut.flagNoData = False | |
523 |
|
511 | |||
@@ -637,7 +625,10 class ParamWriter(Operation): | |||||
637 | dsDict['variable'] = self.dataList[i] |
|
625 | dsDict['variable'] = self.dataList[i] | |
638 | #--------------------- Conditionals ------------------------ |
|
626 | #--------------------- Conditionals ------------------------ | |
639 | #There is no data |
|
627 | #There is no data | |
|
628 | ||||
|
629 | ||||
640 | if dataAux is None: |
|
630 | if dataAux is None: | |
|
631 | ||||
641 | return 0 |
|
632 | return 0 | |
642 |
|
633 | |||
643 | #Not array, just a number |
|
634 | #Not array, just a number | |
@@ -821,7 +812,7 class ParamWriter(Operation): | |||||
821 | return False |
|
812 | return False | |
822 |
|
813 | |||
823 | def setNextFile(self): |
|
814 | def setNextFile(self): | |
824 |
|
815 | |||
825 | ext = self.ext |
|
816 | ext = self.ext | |
826 | path = self.path |
|
817 | path = self.path | |
827 | setFile = self.setFile |
|
818 | setFile = self.setFile | |
@@ -1095,7 +1086,6 class ParamWriter(Operation): | |||||
1095 | return |
|
1086 | return | |
1096 |
|
1087 | |||
1097 | self.isConfig = True |
|
1088 | self.isConfig = True | |
1098 | # self.putMetadata() |
|
|||
1099 | self.setNextFile() |
|
1089 | self.setNextFile() | |
1100 |
|
1090 | |||
1101 | self.putData() |
|
1091 | self.putData() |
@@ -413,9 +413,7 class SpectraWriter(JRODataWriter, Operation): | |||||
413 |
|
413 | |||
414 | data_dc = None |
|
414 | data_dc = None | |
415 |
|
415 | |||
416 | # dataOut = None |
|
416 | def __init__(self): | |
417 |
|
||||
418 | def __init__(self):#, **kwargs): |
|
|||
419 | """ |
|
417 | """ | |
420 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. |
|
418 | Inicializador de la clase SpectraWriter para la escritura de datos de espectros. | |
421 |
|
419 | |||
@@ -429,9 +427,7 class SpectraWriter(JRODataWriter, Operation): | |||||
429 | Return: None |
|
427 | Return: None | |
430 | """ |
|
428 | """ | |
431 |
|
429 | |||
432 |
Operation.__init__(self) |
|
430 | Operation.__init__(self) | |
433 |
|
||||
434 | #self.isConfig = False |
|
|||
435 |
|
431 | |||
436 | self.nTotalBlocks = 0 |
|
432 | self.nTotalBlocks = 0 | |
437 |
|
433 | |||
@@ -496,7 +492,7 class SpectraWriter(JRODataWriter, Operation): | |||||
496 |
|
492 | |||
497 |
|
493 | |||
498 | def writeBlock(self): |
|
494 | def writeBlock(self): | |
499 | """ |
|
495 | """processingHeaderObj | |
500 | Escribe el buffer en el file designado |
|
496 | Escribe el buffer en el file designado | |
501 |
|
497 | |||
502 | Affected: |
|
498 | Affected: | |
@@ -519,8 +515,10 class SpectraWriter(JRODataWriter, Operation): | |||||
519 | data.tofile(self.fp) |
|
515 | data.tofile(self.fp) | |
520 |
|
516 | |||
521 | if self.data_cspc is not None: |
|
517 | if self.data_cspc is not None: | |
522 | data = numpy.zeros( self.shape_cspc_Buffer, self.dtype ) |
|
518 | ||
523 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) |
|
519 | cspc = numpy.transpose( self.data_cspc, (0,2,1) ) | |
|
520 | #data = numpy.zeros( numpy.shape(cspc), self.dtype ) | |||
|
521 | #print 'data.shape', self.shape_cspc_Buffer | |||
524 | if not self.processingHeaderObj.shif_fft: |
|
522 | if not self.processingHeaderObj.shif_fft: | |
525 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones |
|
523 | cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones | |
526 | data['real'] = cspc.real |
|
524 | data['real'] = cspc.real | |
@@ -529,8 +527,9 class SpectraWriter(JRODataWriter, Operation): | |||||
529 | data.tofile(self.fp) |
|
527 | data.tofile(self.fp) | |
530 |
|
528 | |||
531 | if self.data_dc is not None: |
|
529 | if self.data_dc is not None: | |
532 | data = numpy.zeros( self.shape_dc_Buffer, self.dtype ) |
|
530 | ||
533 | dc = self.data_dc |
|
531 | dc = self.data_dc | |
|
532 | data = numpy.zeros( numpy.shape(dc), self.dtype ) | |||
534 | data['real'] = dc.real |
|
533 | data['real'] = dc.real | |
535 | data['imag'] = dc.imag |
|
534 | data['imag'] = dc.imag | |
536 | data = data.reshape((-1)) |
|
535 | data = data.reshape((-1)) |
@@ -12,13 +12,11 from time import gmtime | |||||
12 |
|
12 | |||
13 | from numpy import transpose |
|
13 | from numpy import transpose | |
14 |
|
14 | |||
15 |
from .jroproc_base import ProcessingUnit, |
|
15 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
16 | from schainpy.model.data.jrodata import Parameters |
|
16 | from schainpy.model.data.jrodata import Parameters | |
17 |
|
17 | |||
18 | @MPDecorator |
|
18 | @MPDecorator | |
19 | class BLTRParametersProc(ProcessingUnit): |
|
19 | class BLTRParametersProc(ProcessingUnit): | |
20 |
|
||||
21 | METHODS = {} |
|
|||
22 | ''' |
|
20 | ''' | |
23 | Processing unit for BLTR parameters data (winds) |
|
21 | Processing unit for BLTR parameters data (winds) | |
24 |
|
22 | |||
@@ -46,9 +44,7 class BLTRParametersProc(ProcessingUnit): | |||||
46 | Inputs: None |
|
44 | Inputs: None | |
47 | ''' |
|
45 | ''' | |
48 | ProcessingUnit.__init__(self) |
|
46 | ProcessingUnit.__init__(self) | |
49 | self.setupReq = False |
|
|||
50 | self.dataOut = Parameters() |
|
47 | self.dataOut = Parameters() | |
51 | self.isConfig = False |
|
|||
52 |
|
48 | |||
53 | def setup(self, mode): |
|
49 | def setup(self, mode): | |
54 | ''' |
|
50 | ''' |
@@ -11,13 +11,15 Based on: | |||||
11 | $Author: murco $ |
|
11 | $Author: murco $ | |
12 | $Id: jroproc_base.py 1 2012-11-12 18:56:07Z murco $ |
|
12 | $Id: jroproc_base.py 1 2012-11-12 18:56:07Z murco $ | |
13 | ''' |
|
13 | ''' | |
14 | from platform import python_version |
|
14 | ||
15 | import inspect |
|
15 | import inspect | |
16 | import zmq |
|
16 | import zmq | |
17 | import time |
|
17 | import time | |
18 | import pickle |
|
18 | import pickle | |
19 | import os |
|
19 | import os | |
20 | from multiprocessing import Process |
|
20 | from multiprocessing import Process | |
|
21 | from zmq.utils.monitor import recv_monitor_message | |||
|
22 | ||||
21 | from schainpy.utils import log |
|
23 | from schainpy.utils import log | |
22 |
|
24 | |||
23 |
|
25 | |||
@@ -35,15 +37,6 class ProcessingUnit(object): | |||||
35 |
|
37 | |||
36 |
|
38 | |||
37 | """ |
|
39 | """ | |
38 |
|
||||
39 | METHODS = {} |
|
|||
40 | dataIn = None |
|
|||
41 | dataInList = [] |
|
|||
42 | id = None |
|
|||
43 | inputId = None |
|
|||
44 | dataOut = None |
|
|||
45 | dictProcs = None |
|
|||
46 | isConfig = False |
|
|||
47 |
|
40 | |||
48 | def __init__(self): |
|
41 | def __init__(self): | |
49 |
|
42 | |||
@@ -51,15 +44,15 class ProcessingUnit(object): | |||||
51 | self.dataOut = None |
|
44 | self.dataOut = None | |
52 | self.isConfig = False |
|
45 | self.isConfig = False | |
53 | self.operations = [] |
|
46 | self.operations = [] | |
|
47 | self.plots = [] | |||
54 |
|
48 | |||
55 | def getAllowedArgs(self): |
|
49 | def getAllowedArgs(self): | |
56 | if hasattr(self, '__attrs__'): |
|
50 | if hasattr(self, '__attrs__'): | |
57 | return self.__attrs__ |
|
51 | return self.__attrs__ | |
58 | else: |
|
52 | else: | |
59 | return inspect.getargspec(self.run).args |
|
53 | return inspect.getargspec(self.run).args | |
60 |
|
||||
61 | def addOperation(self, conf, operation): |
|
|||
62 |
|
54 | |||
|
55 | def addOperation(self, conf, operation): | |||
63 | """ |
|
56 | """ | |
64 | This method is used in the controller, and update the dictionary containing the operations to execute. The dict |
|
57 | This method is used in the controller, and update the dictionary containing the operations to execute. The dict | |
65 | posses the id of the operation process (IPC purposes) |
|
58 | posses the id of the operation process (IPC purposes) | |
@@ -76,7 +69,11 class ProcessingUnit(object): | |||||
76 | objId : identificador del objeto, necesario para comunicar con master(procUnit) |
|
69 | objId : identificador del objeto, necesario para comunicar con master(procUnit) | |
77 | """ |
|
70 | """ | |
78 |
|
71 | |||
79 | self.operations.append((operation, conf.type, conf.id, conf.getKwargs())) |
|
72 | self.operations.append( | |
|
73 | (operation, conf.type, conf.id, conf.getKwargs())) | |||
|
74 | ||||
|
75 | if 'plot' in self.name.lower(): | |||
|
76 | self.plots.append(operation.CODE) | |||
80 |
|
77 | |||
81 | def getOperationObj(self, objId): |
|
78 | def getOperationObj(self, objId): | |
82 |
|
79 | |||
@@ -86,7 +83,6 class ProcessingUnit(object): | |||||
86 | return self.operations[objId] |
|
83 | return self.operations[objId] | |
87 |
|
84 | |||
88 | def operation(self, **kwargs): |
|
85 | def operation(self, **kwargs): | |
89 |
|
||||
90 | """ |
|
86 | """ | |
91 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
87 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los | |
92 | atributos del objeto dataOut |
|
88 | atributos del objeto dataOut | |
@@ -96,7 +92,7 class ProcessingUnit(object): | |||||
96 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
92 | **kwargs : Diccionario de argumentos de la funcion a ejecutar | |
97 | """ |
|
93 | """ | |
98 |
|
94 | |||
99 |
raise NotImplementedError |
|
95 | raise NotImplementedError | |
100 |
|
96 | |||
101 | def setup(self): |
|
97 | def setup(self): | |
102 |
|
98 | |||
@@ -107,9 +103,10 class ProcessingUnit(object): | |||||
107 | raise NotImplementedError |
|
103 | raise NotImplementedError | |
108 |
|
104 | |||
109 | def close(self): |
|
105 | def close(self): | |
110 | #Close every thread, queue or any other object here is it is neccesary. |
|
106 | ||
111 | return |
|
107 | return | |
112 |
|
108 | |||
|
109 | ||||
113 | class Operation(object): |
|
110 | class Operation(object): | |
114 |
|
111 | |||
115 | """ |
|
112 | """ | |
@@ -126,22 +123,15 class Operation(object): | |||||
126 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
123 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) | |
127 |
|
124 | |||
128 | """ |
|
125 | """ | |
129 | id = None |
|
|||
130 | __buffer = None |
|
|||
131 | dest = None |
|
|||
132 | isConfig = False |
|
|||
133 | readyFlag = None |
|
|||
134 |
|
126 | |||
135 | def __init__(self): |
|
127 | def __init__(self): | |
136 |
|
128 | |||
137 |
self. |
|
129 | self.id = None | |
138 | self.dest = None |
|
|||
139 | self.isConfig = False |
|
130 | self.isConfig = False | |
140 | self.readyFlag = False |
|
|||
141 |
|
131 | |||
142 | if not hasattr(self, 'name'): |
|
132 | if not hasattr(self, 'name'): | |
143 | self.name = self.__class__.__name__ |
|
133 | self.name = self.__class__.__name__ | |
144 |
|
134 | |||
145 | def getAllowedArgs(self): |
|
135 | def getAllowedArgs(self): | |
146 | if hasattr(self, '__attrs__'): |
|
136 | if hasattr(self, '__attrs__'): | |
147 | return self.__attrs__ |
|
137 | return self.__attrs__ | |
@@ -154,9 +144,7 class Operation(object): | |||||
154 |
|
144 | |||
155 | raise NotImplementedError |
|
145 | raise NotImplementedError | |
156 |
|
146 | |||
157 |
|
||||
158 | def run(self, dataIn, **kwargs): |
|
147 | def run(self, dataIn, **kwargs): | |
159 |
|
||||
160 | """ |
|
148 | """ | |
161 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los |
|
149 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los | |
162 | atributos del objeto dataIn. |
|
150 | atributos del objeto dataIn. | |
@@ -180,18 +168,17 class Operation(object): | |||||
180 |
|
168 | |||
181 | def close(self): |
|
169 | def close(self): | |
182 |
|
170 | |||
183 |
|
|
171 | return | |
184 |
|
172 | |||
185 |
|
173 | |||
186 | def MPDecorator(BaseClass): |
|
174 | def MPDecorator(BaseClass): | |
187 |
|
||||
188 | """ |
|
175 | """ | |
189 | Multiprocessing class decorator |
|
176 | Multiprocessing class decorator | |
190 |
|
177 | |||
191 | This function add multiprocessing features to a BaseClass. Also, it handle |
|
178 | This function add multiprocessing features to a BaseClass. Also, it handle | |
192 | the communication beetween processes (readers, procUnits and operations). |
|
179 | the communication beetween processes (readers, procUnits and operations). | |
193 | """ |
|
180 | """ | |
194 |
|
181 | |||
195 | class MPClass(BaseClass, Process): |
|
182 | class MPClass(BaseClass, Process): | |
196 |
|
183 | |||
197 | def __init__(self, *args, **kwargs): |
|
184 | def __init__(self, *args, **kwargs): | |
@@ -203,42 +190,38 def MPDecorator(BaseClass): | |||||
203 | self.sender = None |
|
190 | self.sender = None | |
204 | self.receiver = None |
|
191 | self.receiver = None | |
205 | self.name = BaseClass.__name__ |
|
192 | self.name = BaseClass.__name__ | |
|
193 | self.start_time = time.time() | |||
206 |
|
194 | |||
207 | if len(self.args) is 3: |
|
195 | if len(self.args) is 3: | |
208 | self.typeProc = "ProcUnit" |
|
196 | self.typeProc = "ProcUnit" | |
209 |
self.id = args[0] |
|
197 | self.id = args[0] | |
210 |
self.inputId = args[1] |
|
198 | self.inputId = args[1] | |
211 |
self.project_id = args[2] |
|
199 | self.project_id = args[2] | |
212 | else: |
|
200 | elif len(self.args) is 2: | |
213 | self.id = args[0] |
|
201 | self.id = args[0] | |
214 | self.inputId = args[0] |
|
202 | self.inputId = args[0] | |
215 | self.project_id = args[1] |
|
203 | self.project_id = args[1] | |
216 | self.typeProc = "Operation" |
|
204 | self.typeProc = "Operation" | |
217 |
|
205 | |||
218 | def getAllowedArgs(self): |
|
|||
219 |
|
||||
220 | if hasattr(self, '__attrs__'): |
|
|||
221 | return self.__attrs__ |
|
|||
222 | else: |
|
|||
223 | return inspect.getargspec(BaseClass.run).args |
|
|||
224 |
|
||||
225 | def subscribe(self): |
|
206 | def subscribe(self): | |
226 | ''' |
|
207 | ''' | |
227 | This function create a socket to receive objects from the |
|
208 | This function create a socket to receive objects from the | |
228 | topic `inputId`. |
|
209 | topic `inputId`. | |
229 | ''' |
|
210 | ''' | |
230 |
|
211 | |||
231 | c = zmq.Context() |
|
212 | c = zmq.Context() | |
232 | self.receiver = c.socket(zmq.SUB) |
|
213 | self.receiver = c.socket(zmq.SUB) | |
233 | self.receiver.connect('ipc:///tmp/schain/{}_pub'.format(self.project_id)) |
|
214 | self.receiver.connect( | |
|
215 | 'ipc:///tmp/schain/{}_pub'.format(self.project_id)) | |||
234 | self.receiver.setsockopt(zmq.SUBSCRIBE, self.inputId.encode()) |
|
216 | self.receiver.setsockopt(zmq.SUBSCRIBE, self.inputId.encode()) | |
235 |
|
217 | |||
236 | def listen(self): |
|
218 | def listen(self): | |
237 | ''' |
|
219 | ''' | |
238 | This function waits for objects and deserialize using pickle |
|
220 | This function waits for objects and deserialize using pickle | |
239 | ''' |
|
221 | ''' | |
240 |
|
222 | |||
241 |
data = |
|
223 | data = pickle.loads(self.receiver.recv_multipart()[1]) | |
|
224 | ||||
242 | return data |
|
225 | return data | |
243 |
|
226 | |||
244 | def set_publisher(self): |
|
227 | def set_publisher(self): | |
@@ -248,14 +231,14 def MPDecorator(BaseClass): | |||||
248 |
|
231 | |||
249 | time.sleep(1) |
|
232 | time.sleep(1) | |
250 | c = zmq.Context() |
|
233 | c = zmq.Context() | |
251 |
self.sender = c.socket(zmq.PUB) |
|
234 | self.sender = c.socket(zmq.PUB) | |
252 | self.sender.connect('ipc:///tmp/schain/{}_sub'.format(self.project_id)) |
|
235 | self.sender.connect( | |
|
236 | 'ipc:///tmp/schain/{}_sub'.format(self.project_id)) | |||
253 |
|
237 | |||
254 |
def publish(self, data, id): |
|
238 | def publish(self, data, id): | |
255 | ''' |
|
239 | ''' | |
256 | This function publish an object, to a specific topic. |
|
240 | This function publish an object, to a specific topic. | |
257 | ''' |
|
241 | ''' | |
258 |
|
||||
259 | self.sender.send_multipart([str(id).encode(), pickle.dumps(data)]) |
|
242 | self.sender.send_multipart([str(id).encode(), pickle.dumps(data)]) | |
260 |
|
243 | |||
261 | def runReader(self): |
|
244 | def runReader(self): | |
@@ -263,28 +246,32 def MPDecorator(BaseClass): | |||||
263 | Run fuction for read units |
|
246 | Run fuction for read units | |
264 | ''' |
|
247 | ''' | |
265 | while True: |
|
248 | while True: | |
266 |
|
||||
267 | BaseClass.run(self, **self.kwargs) |
|
|||
268 |
|
249 | |||
269 | if self.dataOut.error[0] == -1: |
|
250 | BaseClass.run(self, **self.kwargs) | |
270 | log.error(self.dataOut.error[1]) |
|
|||
271 | self.publish('end', self.id) |
|
|||
272 | #self.sender.send_multipart([str(self.project_id).encode(), 'end'.encode()]) |
|
|||
273 | break |
|
|||
274 |
|
251 | |||
275 |
for op, optype, |
|
252 | for op, optype, opId, kwargs in self.operations: | |
276 | if optype=='self': |
|
253 | if optype == 'self': | |
277 | op(**kwargs) |
|
254 | op(**kwargs) | |
278 |
elif optype=='other': |
|
255 | elif optype == 'other': | |
279 | self.dataOut = op.run(self.dataOut, **self.kwargs) |
|
256 | self.dataOut = op.run(self.dataOut, **self.kwargs) | |
280 | elif optype=='external': |
|
257 | elif optype == 'external': | |
281 | self.publish(self.dataOut, opId) |
|
258 | self.publish(self.dataOut, opId) | |
282 |
|
259 | |||
283 | if self.dataOut.flagNoData: |
|
260 | if self.dataOut.flagNoData and self.dataOut.error is None: | |
284 | continue |
|
261 | continue | |
285 |
|
262 | |||
286 |
self.publish(self.dataOut, self.id) |
|
263 | self.publish(self.dataOut, self.id) | |
287 |
|
264 | |||
|
265 | if self.dataOut.error: | |||
|
266 | if self.dataOut.error[0] == -1: | |||
|
267 | log.error(self.dataOut.error[1], self.name) | |||
|
268 | if self.dataOut.error[0] == 1: | |||
|
269 | log.success(self.dataOut.error[1], self.name) | |||
|
270 | # self.sender.send_multipart([str(self.project_id).encode(), 'end'.encode()]) | |||
|
271 | break | |||
|
272 | ||||
|
273 | time.sleep(1) | |||
|
274 | ||||
288 | def runProc(self): |
|
275 | def runProc(self): | |
289 | ''' |
|
276 | ''' | |
290 | Run function for proccessing units |
|
277 | Run function for proccessing units | |
@@ -293,49 +280,45 def MPDecorator(BaseClass): | |||||
293 | while True: |
|
280 | while True: | |
294 | self.dataIn = self.listen() |
|
281 | self.dataIn = self.listen() | |
295 |
|
282 | |||
296 |
if self.dataIn |
|
283 | if self.dataIn.flagNoData and self.dataIn.error is None: | |
297 | self.publish('end', self.id) |
|
|||
298 | for op, optype, opId, kwargs in self.operations: |
|
|||
299 | if optype == 'external': |
|
|||
300 | self.publish('end', opId) |
|
|||
301 | break |
|
|||
302 |
|
||||
303 | if self.dataIn.flagNoData: |
|
|||
304 | continue |
|
284 | continue | |
305 |
|
285 | |||
306 | BaseClass.run(self, **self.kwargs) |
|
286 | BaseClass.run(self, **self.kwargs) | |
307 |
|
287 | |||
308 | for op, optype, opId, kwargs in self.operations: |
|
288 | for op, optype, opId, kwargs in self.operations: | |
309 | if optype=='self': |
|
289 | if optype == 'self': | |
310 | op(**kwargs) |
|
290 | op(**kwargs) | |
311 | elif optype=='other': |
|
291 | elif optype == 'other': | |
312 | self.dataOut = op.run(self.dataOut, **kwargs) |
|
292 | self.dataOut = op.run(self.dataOut, **kwargs) | |
313 | elif optype=='external': |
|
293 | elif optype == 'external': | |
314 | self.publish(self.dataOut, opId) |
|
294 | self.publish(self.dataOut, opId) | |
315 |
|
295 | |||
316 | if self.dataOut.flagNoData: |
|
|||
317 | continue |
|
|||
318 |
|
||||
319 | self.publish(self.dataOut, self.id) |
|
296 | self.publish(self.dataOut, self.id) | |
|
297 | if self.dataIn.error: | |||
|
298 | break | |||
|
299 | ||||
|
300 | time.sleep(1) | |||
320 |
|
301 | |||
321 | def runOp(self): |
|
302 | def runOp(self): | |
322 | ''' |
|
303 | ''' | |
323 | Run function for operations |
|
304 | Run function for external operations (this operations just receive data | |
|
305 | ex: plots, writers, publishers) | |||
324 | ''' |
|
306 | ''' | |
325 |
|
307 | |||
326 | while True: |
|
308 | while True: | |
327 |
|
309 | |||
328 | dataOut = self.listen() |
|
310 | dataOut = self.listen() | |
329 |
|
311 | |||
330 | if dataOut == 'end': |
|
|||
331 | break |
|
|||
332 |
|
||||
333 | BaseClass.run(self, dataOut, **self.kwargs) |
|
312 | BaseClass.run(self, dataOut, **self.kwargs) | |
334 |
|
313 | |||
|
314 | if dataOut.error: | |||
|
315 | break | |||
|
316 | time.sleep(1) | |||
|
317 | ||||
335 | def run(self): |
|
318 | def run(self): | |
336 |
|
319 | |||
337 | if self.typeProc is "ProcUnit": |
|
320 | if self.typeProc is "ProcUnit": | |
338 |
|
321 | |||
339 | if self.inputId is not None: |
|
322 | if self.inputId is not None: | |
340 | self.subscribe() |
|
323 | self.subscribe() | |
341 | self.set_publisher() |
|
324 | self.set_publisher() | |
@@ -346,22 +329,48 def MPDecorator(BaseClass): | |||||
346 | self.runReader() |
|
329 | self.runReader() | |
347 |
|
330 | |||
348 | elif self.typeProc is "Operation": |
|
331 | elif self.typeProc is "Operation": | |
349 |
|
332 | |||
350 | self.subscribe() |
|
333 | self.subscribe() | |
351 | self.runOp() |
|
334 | self.runOp() | |
352 |
|
335 | |||
353 | else: |
|
336 | else: | |
354 | raise ValueError("Unknown type") |
|
337 | raise ValueError("Unknown type") | |
355 |
|
338 | |||
356 | print("%s done" % BaseClass.__name__) |
|
|||
357 | self.close() |
|
339 | self.close() | |
358 |
|
340 | |||
|
341 | def event_monitor(self, monitor): | |||
|
342 | ||||
|
343 | events = {} | |||
|
344 | ||||
|
345 | for name in dir(zmq): | |||
|
346 | if name.startswith('EVENT_'): | |||
|
347 | value = getattr(zmq, name) | |||
|
348 | events[value] = name | |||
|
349 | ||||
|
350 | while monitor.poll(): | |||
|
351 | evt = recv_monitor_message(monitor) | |||
|
352 | if evt['event'] == 32: | |||
|
353 | self.connections += 1 | |||
|
354 | if evt['event'] == 512: | |||
|
355 | pass | |||
|
356 | ||||
|
357 | evt.update({'description': events[evt['event']]}) | |||
|
358 | ||||
|
359 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: | |||
|
360 | break | |||
|
361 | monitor.close() | |||
|
362 | print('event monitor thread done!') | |||
|
363 | ||||
359 | def close(self): |
|
364 | def close(self): | |
360 |
|
365 | |||
|
366 | BaseClass.close(self) | |||
|
367 | ||||
361 | if self.sender: |
|
368 | if self.sender: | |
362 | self.sender.close() |
|
369 | self.sender.close() | |
363 |
|
370 | |||
364 | if self.receiver: |
|
371 | if self.receiver: | |
365 | self.receiver.close() |
|
372 | self.receiver.close() | |
366 |
|
373 | |||
367 | return MPClass No newline at end of file |
|
374 | log.success('Done...(Time:{:4.2f} secs)'.format(time.time()-self.start_time), self.name) | |
|
375 | ||||
|
376 | return MPClass |
This diff has been collapsed as it changes many lines, (1209 lines changed) Show them Hide them | |||||
@@ -10,11 +10,7 import importlib | |||||
10 | import itertools |
|
10 | import itertools | |
11 | from multiprocessing import Pool, TimeoutError |
|
11 | from multiprocessing import Pool, TimeoutError | |
12 | from multiprocessing.pool import ThreadPool |
|
12 | from multiprocessing.pool import ThreadPool | |
13 | import types |
|
|||
14 | from functools import partial |
|
|||
15 | import time |
|
13 | import time | |
16 | #from sklearn.cluster import KMeans |
|
|||
17 |
|
||||
18 |
|
14 | |||
19 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters |
|
15 | from scipy.optimize import fmin_l_bfgs_b #optimize with bounds on state papameters | |
20 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
16 | from .jroproc_base import ProcessingUnit, Operation, MPDecorator | |
@@ -128,6 +124,7 class ParametersProc(ProcessingUnit): | |||||
128 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) |
|
124 | self.dataOut.abscissaList = self.dataIn.getVelRange(1) | |
129 | self.dataOut.spc_noise = self.dataIn.getNoise() |
|
125 | self.dataOut.spc_noise = self.dataIn.getNoise() | |
130 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) |
|
126 | self.dataOut.spc_range = (self.dataIn.getFreqRange(1)/1000. , self.dataIn.getAcfRange(1) , self.dataIn.getVelRange(1)) | |
|
127 | # self.dataOut.normFactor = self.dataIn.normFactor | |||
131 | self.dataOut.pairsList = self.dataIn.pairsList |
|
128 | self.dataOut.pairsList = self.dataIn.pairsList | |
132 | self.dataOut.groupList = self.dataIn.pairsList |
|
129 | self.dataOut.groupList = self.dataIn.pairsList | |
133 | self.dataOut.flagNoData = False |
|
130 | self.dataOut.flagNoData = False | |
@@ -136,9 +133,9 class ParametersProc(ProcessingUnit): | |||||
136 | self.dataOut.ChanDist = self.dataIn.ChanDist |
|
133 | self.dataOut.ChanDist = self.dataIn.ChanDist | |
137 | else: self.dataOut.ChanDist = None |
|
134 | else: self.dataOut.ChanDist = None | |
138 |
|
135 | |||
139 | if hasattr(self.dataIn, 'VelRange'): #Velocities range |
|
136 | #if hasattr(self.dataIn, 'VelRange'): #Velocities range | |
140 | self.dataOut.VelRange = self.dataIn.VelRange |
|
137 | # self.dataOut.VelRange = self.dataIn.VelRange | |
141 | else: self.dataOut.VelRange = None |
|
138 | #else: self.dataOut.VelRange = None | |
142 |
|
139 | |||
143 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant |
|
140 | if hasattr(self.dataIn, 'RadarConst'): #Radar Constant | |
144 | self.dataOut.RadarConst = self.dataIn.RadarConst |
|
141 | self.dataOut.RadarConst = self.dataIn.RadarConst | |
@@ -184,9 +181,112 class ParametersProc(ProcessingUnit): | |||||
184 | def target(tups): |
|
181 | def target(tups): | |
185 |
|
182 | |||
186 | obj, args = tups |
|
183 | obj, args = tups | |
187 | #print 'TARGETTT', obj, args |
|
184 | ||
188 | return obj.FitGau(args) |
|
185 | return obj.FitGau(args) | |
189 |
|
186 | |||
|
187 | ||||
|
188 | class SpectralFilters(Operation): | |||
|
189 | ||||
|
190 | '''This class allows the Rainfall / Wind Selection for CLAIRE RADAR | |||
|
191 | ||||
|
192 | LimitR : It is the limit in m/s of Rainfall | |||
|
193 | LimitW : It is the limit in m/s for Winds | |||
|
194 | ||||
|
195 | Input: | |||
|
196 | ||||
|
197 | self.dataOut.data_pre : SPC and CSPC | |||
|
198 | self.dataOut.spc_range : To select wind and rainfall velocities | |||
|
199 | ||||
|
200 | Affected: | |||
|
201 | ||||
|
202 | self.dataOut.data_pre : It is used for the new SPC and CSPC ranges of wind | |||
|
203 | self.dataOut.spcparam_range : Used in SpcParamPlot | |||
|
204 | self.dataOut.SPCparam : Used in PrecipitationProc | |||
|
205 | ||||
|
206 | ||||
|
207 | ''' | |||
|
208 | ||||
|
209 | def __init__(self): | |||
|
210 | Operation.__init__(self) | |||
|
211 | self.i=0 | |||
|
212 | ||||
|
213 | def run(self, dataOut, PositiveLimit=1.5, NegativeLimit=2.5): | |||
|
214 | ||||
|
215 | ||||
|
216 | #Limite de vientos | |||
|
217 | LimitR = PositiveLimit | |||
|
218 | LimitN = NegativeLimit | |||
|
219 | ||||
|
220 | self.spc = dataOut.data_pre[0].copy() | |||
|
221 | self.cspc = dataOut.data_pre[1].copy() | |||
|
222 | ||||
|
223 | self.Num_Hei = self.spc.shape[2] | |||
|
224 | self.Num_Bin = self.spc.shape[1] | |||
|
225 | self.Num_Chn = self.spc.shape[0] | |||
|
226 | ||||
|
227 | VelRange = dataOut.spc_range[2] | |||
|
228 | TimeRange = dataOut.spc_range[1] | |||
|
229 | FrecRange = dataOut.spc_range[0] | |||
|
230 | ||||
|
231 | Vmax= 2*numpy.max(dataOut.spc_range[2]) | |||
|
232 | Tmax= 2*numpy.max(dataOut.spc_range[1]) | |||
|
233 | Fmax= 2*numpy.max(dataOut.spc_range[0]) | |||
|
234 | ||||
|
235 | Breaker1R=VelRange[numpy.abs(VelRange-(-LimitN)).argmin()] | |||
|
236 | Breaker1R=numpy.where(VelRange == Breaker1R) | |||
|
237 | ||||
|
238 | Delta = self.Num_Bin/2 - Breaker1R[0] | |||
|
239 | ||||
|
240 | ||||
|
241 | '''Reacomodando SPCrange''' | |||
|
242 | ||||
|
243 | VelRange=numpy.roll(VelRange,-(self.Num_Bin/2) ,axis=0) | |||
|
244 | ||||
|
245 | VelRange[-(self.Num_Bin/2):]+= Vmax | |||
|
246 | ||||
|
247 | FrecRange=numpy.roll(FrecRange,-(self.Num_Bin/2),axis=0) | |||
|
248 | ||||
|
249 | FrecRange[-(self.Num_Bin/2):]+= Fmax | |||
|
250 | ||||
|
251 | TimeRange=numpy.roll(TimeRange,-(self.Num_Bin/2),axis=0) | |||
|
252 | ||||
|
253 | TimeRange[-(self.Num_Bin/2):]+= Tmax | |||
|
254 | ||||
|
255 | ''' ------------------ ''' | |||
|
256 | ||||
|
257 | Breaker2R=VelRange[numpy.abs(VelRange-(LimitR)).argmin()] | |||
|
258 | Breaker2R=numpy.where(VelRange == Breaker2R) | |||
|
259 | ||||
|
260 | ||||
|
261 | SPCroll = numpy.roll(self.spc,-(self.Num_Bin/2) ,axis=1) | |||
|
262 | ||||
|
263 | SPCcut = SPCroll.copy() | |||
|
264 | for i in range(self.Num_Chn): | |||
|
265 | ||||
|
266 | SPCcut[i,0:int(Breaker2R[0]),:] = dataOut.noise[i] | |||
|
267 | SPCcut[i,-int(Delta):,:] = dataOut.noise[i] | |||
|
268 | ||||
|
269 | SPCcut[i]=SPCcut[i]- dataOut.noise[i] | |||
|
270 | SPCcut[ numpy.where( SPCcut<0 ) ] = 1e-20 | |||
|
271 | ||||
|
272 | SPCroll[i]=SPCroll[i]-dataOut.noise[i] | |||
|
273 | SPCroll[ numpy.where( SPCroll<0 ) ] = 1e-20 | |||
|
274 | ||||
|
275 | SPC_ch1 = SPCroll | |||
|
276 | ||||
|
277 | SPC_ch2 = SPCcut | |||
|
278 | ||||
|
279 | SPCparam = (SPC_ch1, SPC_ch2, self.spc) | |||
|
280 | dataOut.SPCparam = numpy.asarray(SPCparam) | |||
|
281 | ||||
|
282 | ||||
|
283 | dataOut.spcparam_range=numpy.zeros([self.Num_Chn,self.Num_Bin+1]) | |||
|
284 | ||||
|
285 | dataOut.spcparam_range[2]=VelRange | |||
|
286 | dataOut.spcparam_range[1]=TimeRange | |||
|
287 | dataOut.spcparam_range[0]=FrecRange | |||
|
288 | ||||
|
289 | ||||
190 | class GaussianFit(Operation): |
|
290 | class GaussianFit(Operation): | |
191 |
|
291 | |||
192 | ''' |
|
292 | ''' | |
@@ -198,15 +298,15 class GaussianFit(Operation): | |||||
198 | self.dataOut.data_pre : SelfSpectra |
|
298 | self.dataOut.data_pre : SelfSpectra | |
199 |
|
299 | |||
200 | Output: |
|
300 | Output: | |
201 |
self.dataOut. |
|
301 | self.dataOut.SPCparam : SPC_ch1, SPC_ch2 | |
202 |
|
302 | |||
203 | ''' |
|
303 | ''' | |
204 |
def __init__(self |
|
304 | def __init__(self): | |
205 |
Operation.__init__(self |
|
305 | Operation.__init__(self) | |
206 | self.i=0 |
|
306 | self.i=0 | |
207 |
|
307 | |||
208 |
|
308 | |||
209 |
def run(self, dataOut, num_intg=7, pnoise=1., |
|
309 | def run(self, dataOut, num_intg=7, pnoise=1., SNRlimit=-9): #num_intg: Incoherent integrations, pnoise: Noise, vel_arr: range of velocities, similar to the ftt points | |
210 | """This routine will find a couple of generalized Gaussians to a power spectrum |
|
310 | """This routine will find a couple of generalized Gaussians to a power spectrum | |
211 | input: spc |
|
311 | input: spc | |
212 | output: |
|
312 | output: | |
@@ -214,31 +314,12 class GaussianFit(Operation): | |||||
214 | """ |
|
314 | """ | |
215 |
|
315 | |||
216 | self.spc = dataOut.data_pre[0].copy() |
|
316 | self.spc = dataOut.data_pre[0].copy() | |
217 |
|
||||
218 |
|
||||
219 | print('SelfSpectra Shape', numpy.asarray(self.spc).shape) |
|
|||
220 |
|
||||
221 |
|
||||
222 | #plt.figure(50) |
|
|||
223 | #plt.subplot(121) |
|
|||
224 | #plt.plot(self.spc,'k',label='spc(66)') |
|
|||
225 | #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
226 | #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
227 | #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
228 | #plt.legend() |
|
|||
229 | #plt.title('DATOS A ALTURA DE 7500 METROS') |
|
|||
230 | #plt.show() |
|
|||
231 |
|
||||
232 | self.Num_Hei = self.spc.shape[2] |
|
317 | self.Num_Hei = self.spc.shape[2] | |
233 | #self.Num_Bin = len(self.spc) |
|
|||
234 | self.Num_Bin = self.spc.shape[1] |
|
318 | self.Num_Bin = self.spc.shape[1] | |
235 | self.Num_Chn = self.spc.shape[0] |
|
319 | self.Num_Chn = self.spc.shape[0] | |
236 |
|
||||
237 | Vrange = dataOut.abscissaList |
|
320 | Vrange = dataOut.abscissaList | |
238 |
|
321 | |||
239 | #print 'self.spc2', numpy.asarray(self.spc).shape |
|
322 | GauSPC = numpy.empty([self.Num_Chn,self.Num_Bin,self.Num_Hei]) | |
240 |
|
||||
241 | GauSPC = numpy.empty([2,self.Num_Bin,self.Num_Hei]) |
|
|||
242 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
323 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
243 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
324 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
244 | SPC_ch1[:] = numpy.NaN |
|
325 | SPC_ch1[:] = numpy.NaN | |
@@ -250,272 +331,12 class GaussianFit(Operation): | |||||
250 | noise_ = dataOut.spc_noise[0].copy() |
|
331 | noise_ = dataOut.spc_noise[0].copy() | |
251 |
|
332 | |||
252 |
|
333 | |||
253 |
|
||||
254 | pool = Pool(processes=self.Num_Chn) |
|
334 | pool = Pool(processes=self.Num_Chn) | |
255 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] |
|
335 | args = [(Vrange, Ch, pnoise, noise_, num_intg, SNRlimit) for Ch in range(self.Num_Chn)] | |
256 | objs = [self for __ in range(self.Num_Chn)] |
|
336 | objs = [self for __ in range(self.Num_Chn)] | |
257 | attrs = list(zip(objs, args)) |
|
337 | attrs = list(zip(objs, args)) | |
258 | gauSPC = pool.map(target, attrs) |
|
338 | gauSPC = pool.map(target, attrs) | |
259 |
dataOut. |
|
339 | dataOut.SPCparam = numpy.asarray(SPCparam) | |
260 | # ret = [] |
|
|||
261 | # for n in range(self.Num_Chn): |
|
|||
262 | # self.FitGau(args[n]) |
|
|||
263 | # dataOut.GauSPC = ret |
|
|||
264 |
|
||||
265 |
|
||||
266 |
|
||||
267 | # for ch in range(self.Num_Chn): |
|
|||
268 | # |
|
|||
269 | # for ht in range(self.Num_Hei): |
|
|||
270 | # #print (numpy.asarray(self.spc).shape) |
|
|||
271 | # spc = numpy.asarray(self.spc)[ch,:,ht] |
|
|||
272 | # |
|
|||
273 | # ############################################# |
|
|||
274 | # # normalizing spc and noise |
|
|||
275 | # # This part differs from gg1 |
|
|||
276 | # spc_norm_max = max(spc) |
|
|||
277 | # spc = spc / spc_norm_max |
|
|||
278 | # pnoise = pnoise / spc_norm_max |
|
|||
279 | # ############################################# |
|
|||
280 | # |
|
|||
281 | # if abs(vel_arr[0])<15.0: # this switch is for spectra collected with different length IPP's |
|
|||
282 | # fatspectra=1.0 |
|
|||
283 | # else: |
|
|||
284 | # fatspectra=0.5 |
|
|||
285 | # |
|
|||
286 | # wnoise = noise_ / spc_norm_max |
|
|||
287 | # #print 'wnoise', noise_, dataOut.spc_noise[0], wnoise |
|
|||
288 | # #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
|||
289 | # #if wnoise>1.1*pnoise: # to be tested later |
|
|||
290 | # # wnoise=pnoise |
|
|||
291 | # noisebl=wnoise*0.9; noisebh=wnoise*1.1 |
|
|||
292 | # spc=spc-wnoise |
|
|||
293 | # |
|
|||
294 | # minx=numpy.argmin(spc) |
|
|||
295 | # spcs=numpy.roll(spc,-minx) |
|
|||
296 | # cum=numpy.cumsum(spcs) |
|
|||
297 | # tot_noise=wnoise * self.Num_Bin #64; |
|
|||
298 | # #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
|||
299 | # #snr=tot_signal/tot_noise |
|
|||
300 | # #snr=cum[-1]/tot_noise |
|
|||
301 | # |
|
|||
302 | # #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
|||
303 | # |
|
|||
304 | # snr = sum(spcs)/tot_noise |
|
|||
305 | # snrdB=10.*numpy.log10(snr) |
|
|||
306 | # |
|
|||
307 | # #if snrdB < -9 : |
|
|||
308 | # # snrdB = numpy.NaN |
|
|||
309 | # # continue |
|
|||
310 | # |
|
|||
311 | # #print 'snr',snrdB # , sum(spcs) , tot_noise |
|
|||
312 | # |
|
|||
313 | # |
|
|||
314 | # #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
|||
315 | # # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
316 | # |
|
|||
317 | # cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
|||
318 | # cumlo=cummax*epsi; |
|
|||
319 | # cumhi=cummax*(1-epsi) |
|
|||
320 | # powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
|||
321 | # |
|
|||
322 | # #if len(powerindex)==1: |
|
|||
323 | # ##return [numpy.mod(powerindex[0]+minx,64),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
324 | # #return [numpy.mod(powerindex[0]+minx, self.Num_Bin ),None,None,None,],[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
325 | # #elif len(powerindex)<4*fatspectra: |
|
|||
326 | # #return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
|||
327 | # |
|
|||
328 | # if len(powerindex) < 1:# case for powerindex 0 |
|
|||
329 | # continue |
|
|||
330 | # powerlo=powerindex[0] |
|
|||
331 | # powerhi=powerindex[-1] |
|
|||
332 | # powerwidth=powerhi-powerlo |
|
|||
333 | # |
|
|||
334 | # firstpeak=powerlo+powerwidth/10.# first gaussian energy location |
|
|||
335 | # secondpeak=powerhi-powerwidth/10.#second gaussian energy location |
|
|||
336 | # midpeak=(firstpeak+secondpeak)/2. |
|
|||
337 | # firstamp=spcs[int(firstpeak)] |
|
|||
338 | # secondamp=spcs[int(secondpeak)] |
|
|||
339 | # midamp=spcs[int(midpeak)] |
|
|||
340 | # #x=numpy.spc.shape[1] |
|
|||
341 | # |
|
|||
342 | # #x=numpy.arange(64) |
|
|||
343 | # x=numpy.arange( self.Num_Bin ) |
|
|||
344 | # y_data=spc+wnoise |
|
|||
345 | # |
|
|||
346 | # # single gaussian |
|
|||
347 | # #shift0=numpy.mod(midpeak+minx,64) |
|
|||
348 | # shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
|||
349 | # width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
|||
350 | # power0=2. |
|
|||
351 | # amplitude0=midamp |
|
|||
352 | # state0=[shift0,width0,amplitude0,power0,wnoise] |
|
|||
353 | # #bnds=((0,63),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
354 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
355 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth),(0,None),(0.5,3.),(0.1,0.5)) |
|
|||
356 | # # bnds = range of fft, power width, amplitude, power, noise |
|
|||
357 | # lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
|||
358 | # |
|
|||
359 | # chiSq1=lsq1[1]; |
|
|||
360 | # jack1= self.y_jacobian1(x,lsq1[0]) |
|
|||
361 | # |
|
|||
362 | # |
|
|||
363 | # try: |
|
|||
364 | # sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
|||
365 | # except: |
|
|||
366 | # std1=32.; sigmas1=numpy.ones(5) |
|
|||
367 | # else: |
|
|||
368 | # std1=sigmas1[0] |
|
|||
369 | # |
|
|||
370 | # |
|
|||
371 | # if fatspectra<1.0 and powerwidth<4: |
|
|||
372 | # choice=0 |
|
|||
373 | # Amplitude0=lsq1[0][2] |
|
|||
374 | # shift0=lsq1[0][0] |
|
|||
375 | # width0=lsq1[0][1] |
|
|||
376 | # p0=lsq1[0][3] |
|
|||
377 | # Amplitude1=0. |
|
|||
378 | # shift1=0. |
|
|||
379 | # width1=0. |
|
|||
380 | # p1=0. |
|
|||
381 | # noise=lsq1[0][4] |
|
|||
382 | # #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
|||
383 | # # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
|||
384 | # |
|
|||
385 | # # two gaussians |
|
|||
386 | # #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
|||
387 | # shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
|||
388 | # shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
|||
389 | # width0=powerwidth/6.; |
|
|||
390 | # width1=width0 |
|
|||
391 | # power0=2.; |
|
|||
392 | # power1=power0 |
|
|||
393 | # amplitude0=firstamp; |
|
|||
394 | # amplitude1=secondamp |
|
|||
395 | # state0=[shift0,width0,amplitude0,power0,shift1,width1,amplitude1,power1,wnoise] |
|
|||
396 | # #bnds=((0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(0,63),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
397 | # bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
|||
398 | # #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
|||
399 | # |
|
|||
400 | # lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
|||
401 | # |
|
|||
402 | # |
|
|||
403 | # chiSq2=lsq2[1]; jack2=self.y_jacobian2(x,lsq2[0]) |
|
|||
404 | # |
|
|||
405 | # |
|
|||
406 | # try: |
|
|||
407 | # sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
|||
408 | # except: |
|
|||
409 | # std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
|||
410 | # else: |
|
|||
411 | # std2a=sigmas2[0]; std2b=sigmas2[4] |
|
|||
412 | # |
|
|||
413 | # |
|
|||
414 | # |
|
|||
415 | # oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
|||
416 | # |
|
|||
417 | # if snrdB>-9: # when SNR is strong pick the peak with least shift (LOS velocity) error |
|
|||
418 | # if oneG: |
|
|||
419 | # choice=0 |
|
|||
420 | # else: |
|
|||
421 | # w1=lsq2[0][1]; w2=lsq2[0][5] |
|
|||
422 | # a1=lsq2[0][2]; a2=lsq2[0][6] |
|
|||
423 | # p1=lsq2[0][3]; p2=lsq2[0][7] |
|
|||
424 | # s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
|||
425 | # gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
|||
426 | # |
|
|||
427 | # if gp1>gp2: |
|
|||
428 | # if a1>0.7*a2: |
|
|||
429 | # choice=1 |
|
|||
430 | # else: |
|
|||
431 | # choice=2 |
|
|||
432 | # elif gp2>gp1: |
|
|||
433 | # if a2>0.7*a1: |
|
|||
434 | # choice=2 |
|
|||
435 | # else: |
|
|||
436 | # choice=1 |
|
|||
437 | # else: |
|
|||
438 | # choice=numpy.argmax([a1,a2])+1 |
|
|||
439 | # #else: |
|
|||
440 | # #choice=argmin([std2a,std2b])+1 |
|
|||
441 | # |
|
|||
442 | # else: # with low SNR go to the most energetic peak |
|
|||
443 | # choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
|||
444 | # |
|
|||
445 | # #print 'choice',choice |
|
|||
446 | # |
|
|||
447 | # if choice==0: # pick the single gaussian fit |
|
|||
448 | # Amplitude0=lsq1[0][2] |
|
|||
449 | # shift0=lsq1[0][0] |
|
|||
450 | # width0=lsq1[0][1] |
|
|||
451 | # p0=lsq1[0][3] |
|
|||
452 | # Amplitude1=0. |
|
|||
453 | # shift1=0. |
|
|||
454 | # width1=0. |
|
|||
455 | # p1=0. |
|
|||
456 | # noise=lsq1[0][4] |
|
|||
457 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
|||
458 | # Amplitude0 = lsq2[0][2] |
|
|||
459 | # shift0 = lsq2[0][0] |
|
|||
460 | # width0 = lsq2[0][1] |
|
|||
461 | # p0 = lsq2[0][3] |
|
|||
462 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
|||
463 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
|||
464 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
|||
465 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
|||
466 | # noise = lsq2[0][8] |
|
|||
467 | # else: # the second one |
|
|||
468 | # Amplitude0 = lsq2[0][6] |
|
|||
469 | # shift0 = lsq2[0][4] |
|
|||
470 | # width0 = lsq2[0][5] |
|
|||
471 | # p0 = lsq2[0][7] |
|
|||
472 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
|||
473 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
|||
474 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
|||
475 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
|||
476 | # noise = lsq2[0][8] |
|
|||
477 | # |
|
|||
478 | # #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
|||
479 | # SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
|||
480 | # SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
|||
481 | # #print 'SPC_ch1.shape',SPC_ch1.shape |
|
|||
482 | # #print 'SPC_ch2.shape',SPC_ch2.shape |
|
|||
483 | # #dataOut.data_param = SPC_ch1 |
|
|||
484 | # GauSPC[0] = SPC_ch1 |
|
|||
485 | # GauSPC[1] = SPC_ch2 |
|
|||
486 |
|
||||
487 | # #plt.gcf().clear() |
|
|||
488 | # plt.figure(50+self.i) |
|
|||
489 | # self.i=self.i+1 |
|
|||
490 | # #plt.subplot(121) |
|
|||
491 | # plt.plot(self.spc,'k')#,label='spc(66)') |
|
|||
492 | # plt.plot(SPC_ch1[ch,ht],'b')#,label='gg1') |
|
|||
493 | # #plt.plot(SPC_ch2,'r')#,label='gg2') |
|
|||
494 | # #plt.plot(xFrec,ySamples[1],'g',label='Ch1') |
|
|||
495 | # #plt.plot(xFrec,ySamples[2],'r',label='Ch2') |
|
|||
496 | # #plt.plot(xFrec,FitGauss,'yo:',label='fit') |
|
|||
497 | # plt.legend() |
|
|||
498 | # plt.title('DATOS A ALTURA DE 7500 METROS') |
|
|||
499 | # plt.show() |
|
|||
500 | # print 'shift0', shift0 |
|
|||
501 | # print 'Amplitude0', Amplitude0 |
|
|||
502 | # print 'width0', width0 |
|
|||
503 | # print 'p0', p0 |
|
|||
504 | # print '========================' |
|
|||
505 | # print 'shift1', shift1 |
|
|||
506 | # print 'Amplitude1', Amplitude1 |
|
|||
507 | # print 'width1', width1 |
|
|||
508 | # print 'p1', p1 |
|
|||
509 | # print 'noise', noise |
|
|||
510 | # print 's_noise', wnoise |
|
|||
511 |
|
||||
512 | print('========================================================') |
|
|||
513 | print('total_time: ', time.time()-start_time) |
|
|||
514 |
|
||||
515 | # re-normalizing spc and noise |
|
|||
516 | # This part differs from gg1 |
|
|||
517 |
|
||||
518 |
|
||||
519 |
|
340 | |||
520 | ''' Parameters: |
|
341 | ''' Parameters: | |
521 | 1. Amplitude |
|
342 | 1. Amplitude | |
@@ -524,16 +345,11 class GaussianFit(Operation): | |||||
524 | 4. Power |
|
345 | 4. Power | |
525 | ''' |
|
346 | ''' | |
526 |
|
347 | |||
527 |
|
||||
528 | ############################################################################### |
|
|||
529 | def FitGau(self, X): |
|
348 | def FitGau(self, X): | |
530 |
|
349 | |||
531 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X |
|
350 | Vrange, ch, pnoise, noise_, num_intg, SNRlimit = X | |
532 | #print 'VARSSSS', ch, pnoise, noise, num_intg |
|
351 | ||
533 |
|
352 | SPCparam = [] | ||
534 | #print 'HEIGHTS', self.Num_Hei |
|
|||
535 |
|
||||
536 | GauSPC = [] |
|
|||
537 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
353 | SPC_ch1 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
538 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) |
|
354 | SPC_ch2 = numpy.empty([self.Num_Bin,self.Num_Hei]) | |
539 | SPC_ch1[:] = 0#numpy.NaN |
|
355 | SPC_ch1[:] = 0#numpy.NaN | |
@@ -542,10 +358,6 class GaussianFit(Operation): | |||||
542 |
|
358 | |||
543 |
|
359 | |||
544 | for ht in range(self.Num_Hei): |
|
360 | for ht in range(self.Num_Hei): | |
545 | #print (numpy.asarray(self.spc).shape) |
|
|||
546 |
|
||||
547 | #print 'TTTTT', ch , ht |
|
|||
548 | #print self.spc.shape |
|
|||
549 |
|
361 | |||
550 |
|
362 | |||
551 | spc = numpy.asarray(self.spc)[ch,:,ht] |
|
363 | spc = numpy.asarray(self.spc)[ch,:,ht] | |
@@ -554,27 +366,26 class GaussianFit(Operation): | |||||
554 | # normalizing spc and noise |
|
366 | # normalizing spc and noise | |
555 | # This part differs from gg1 |
|
367 | # This part differs from gg1 | |
556 | spc_norm_max = max(spc) |
|
368 | spc_norm_max = max(spc) | |
557 | spc = spc / spc_norm_max |
|
369 | #spc = spc / spc_norm_max | |
558 | pnoise = pnoise / spc_norm_max |
|
370 | pnoise = pnoise #/ spc_norm_max | |
559 | ############################################# |
|
371 | ############################################# | |
560 |
|
|
372 | ||
561 | fatspectra=1.0 |
|
373 | fatspectra=1.0 | |
562 |
|
374 | |||
563 | wnoise = noise_ / spc_norm_max |
|
375 | wnoise = noise_ #/ spc_norm_max | |
564 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used |
|
376 | #wnoise,stdv,i_max,index =enoise(spc,num_intg) #noise estimate using Hildebrand Sekhon, only wnoise is used | |
565 | #if wnoise>1.1*pnoise: # to be tested later |
|
377 | #if wnoise>1.1*pnoise: # to be tested later | |
566 | # wnoise=pnoise |
|
378 | # wnoise=pnoise | |
567 |
noisebl=wnoise*0.9; |
|
379 | noisebl=wnoise*0.9; | |
|
380 | noisebh=wnoise*1.1 | |||
568 | spc=spc-wnoise |
|
381 | spc=spc-wnoise | |
569 | # print 'wnoise', noise_[0], spc_norm_max, wnoise |
|
382 | ||
570 | minx=numpy.argmin(spc) |
|
383 | minx=numpy.argmin(spc) | |
|
384 | #spcs=spc.copy() | |||
571 | spcs=numpy.roll(spc,-minx) |
|
385 | spcs=numpy.roll(spc,-minx) | |
572 | cum=numpy.cumsum(spcs) |
|
386 | cum=numpy.cumsum(spcs) | |
573 | tot_noise=wnoise * self.Num_Bin #64; |
|
387 | tot_noise=wnoise * self.Num_Bin #64; | |
574 | #print 'spc' , spcs[5:8] , 'tot_noise', tot_noise |
|
388 | ||
575 | #tot_signal=sum(cum[-5:])/5.; ''' How does this line work? ''' |
|
|||
576 | #snr=tot_signal/tot_noise |
|
|||
577 | #snr=cum[-1]/tot_noise |
|
|||
578 | snr = sum(spcs)/tot_noise |
|
389 | snr = sum(spcs)/tot_noise | |
579 | snrdB=10.*numpy.log10(snr) |
|
390 | snrdB=10.*numpy.log10(snr) | |
580 |
|
391 | |||
@@ -582,16 +393,15 class GaussianFit(Operation): | |||||
582 | snr = numpy.NaN |
|
393 | snr = numpy.NaN | |
583 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
394 | SPC_ch1[:,ht] = 0#numpy.NaN | |
584 | SPC_ch1[:,ht] = 0#numpy.NaN |
|
395 | SPC_ch1[:,ht] = 0#numpy.NaN | |
585 |
|
|
396 | SPCparam = (SPC_ch1,SPC_ch2) | |
586 | continue |
|
397 | continue | |
587 | #print 'snr',snrdB #, sum(spcs) , tot_noise |
|
|||
588 |
|
||||
589 |
|
398 | |||
590 |
|
399 | |||
591 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: |
|
400 | #if snrdB<-18 or numpy.isnan(snrdB) or num_intg<4: | |
592 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None |
|
401 | # return [None,]*4,[None,]*4,None,snrdB,None,None,[None,]*5,[None,]*9,None | |
593 |
|
402 | |||
594 | cummax=max(cum); epsi=0.08*fatspectra # cumsum to narrow down the energy region |
|
403 | cummax=max(cum); | |
|
404 | epsi=0.08*fatspectra # cumsum to narrow down the energy region | |||
595 | cumlo=cummax*epsi; |
|
405 | cumlo=cummax*epsi; | |
596 | cumhi=cummax*(1-epsi) |
|
406 | cumhi=cummax*(1-epsi) | |
597 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) |
|
407 | powerindex=numpy.array(numpy.where(numpy.logical_and(cum>cumlo, cum<cumhi))[0]) | |
@@ -613,7 +423,7 class GaussianFit(Operation): | |||||
613 | x=numpy.arange( self.Num_Bin ) |
|
423 | x=numpy.arange( self.Num_Bin ) | |
614 | y_data=spc+wnoise |
|
424 | y_data=spc+wnoise | |
615 |
|
425 | |||
616 |
|
|
426 | ''' single Gaussian ''' | |
617 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) |
|
427 | shift0=numpy.mod(midpeak+minx, self.Num_Bin ) | |
618 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 |
|
428 | width0=powerwidth/4.#Initialization entire power of spectrum divided by 4 | |
619 | power0=2. |
|
429 | power0=2. | |
@@ -623,16 +433,7 class GaussianFit(Operation): | |||||
623 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
433 | lsq1=fmin_l_bfgs_b(self.misfit1,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) | |
624 |
|
434 | |||
625 | chiSq1=lsq1[1]; |
|
435 | chiSq1=lsq1[1]; | |
626 | jack1= self.y_jacobian1(x,lsq1[0]) |
|
436 | ||
627 |
|
||||
628 |
|
||||
629 | try: |
|
|||
630 | sigmas1=numpy.sqrt(chiSq1*numpy.diag(numpy.linalg.inv(numpy.dot(jack1.T,jack1)))) |
|
|||
631 | except: |
|
|||
632 | std1=32.; sigmas1=numpy.ones(5) |
|
|||
633 | else: |
|
|||
634 | std1=sigmas1[0] |
|
|||
635 |
|
||||
636 |
|
437 | |||
637 | if fatspectra<1.0 and powerwidth<4: |
|
438 | if fatspectra<1.0 and powerwidth<4: | |
638 | choice=0 |
|
439 | choice=0 | |
@@ -648,7 +449,7 class GaussianFit(Operation): | |||||
648 | #return (numpy.array([shift0,width0,Amplitude0,p0]), |
|
449 | #return (numpy.array([shift0,width0,Amplitude0,p0]), | |
649 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) |
|
450 | # numpy.array([shift1,width1,Amplitude1,p1]),noise,snrdB,chiSq1,6.,sigmas1,[None,]*9,choice) | |
650 |
|
451 | |||
651 |
|
|
452 | ''' two gaussians ''' | |
652 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) |
|
453 | #shift0=numpy.mod(firstpeak+minx,64); shift1=numpy.mod(secondpeak+minx,64) | |
653 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); |
|
454 | shift0=numpy.mod(firstpeak+minx, self.Num_Bin ); | |
654 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) |
|
455 | shift1=numpy.mod(secondpeak+minx, self.Num_Bin ) | |
@@ -663,24 +464,16 class GaussianFit(Operation): | |||||
663 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) |
|
464 | bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(noisebl,noisebh)) | |
664 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) |
|
465 | #bnds=(( 0,(self.Num_Bin-1) ),(1,powerwidth/2.),(0,None),(0.5,3.),( 0,(self.Num_Bin-1)),(1,powerwidth/2.),(0,None),(0.5,3.),(0.1,0.5)) | |
665 |
|
466 | |||
666 | lsq2=fmin_l_bfgs_b(self.misfit2,state0,args=(y_data,x,num_intg),bounds=bnds,approx_grad=True) |
|
467 | lsq2 = fmin_l_bfgs_b( self.misfit2 , state0 , args=(y_data,x,num_intg) , bounds=bnds , approx_grad=True ) | |
667 |
|
468 | |||
668 |
|
469 | |||
669 |
chiSq2=lsq2[1]; |
|
470 | chiSq2=lsq2[1]; | |
|
471 | ||||
670 |
|
472 | |||
671 |
|
473 | |||
672 | try: |
|
|||
673 | sigmas2=numpy.sqrt(chiSq2*numpy.diag(numpy.linalg.inv(numpy.dot(jack2.T,jack2)))) |
|
|||
674 | except: |
|
|||
675 | std2a=32.; std2b=32.; sigmas2=numpy.ones(9) |
|
|||
676 | else: |
|
|||
677 | std2a=sigmas2[0]; std2b=sigmas2[4] |
|
|||
678 |
|
||||
679 |
|
||||
680 |
|
||||
681 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) |
|
474 | oneG=(chiSq1<5 and chiSq1/chiSq2<2.0) and (abs(lsq2[0][0]-lsq2[0][4])<(lsq2[0][1]+lsq2[0][5])/3. or abs(lsq2[0][0]-lsq2[0][4])<10) | |
682 |
|
475 | |||
683 |
if snrdB>- |
|
476 | if snrdB>-12: # when SNR is strong pick the peak with least shift (LOS velocity) error | |
684 | if oneG: |
|
477 | if oneG: | |
685 | choice=0 |
|
478 | choice=0 | |
686 | else: |
|
479 | else: | |
@@ -690,7 +483,7 class GaussianFit(Operation): | |||||
690 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; |
|
483 | s1=(2**(1+1./p1))*scipy.special.gamma(1./p1)/p1; | |
691 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; |
|
484 | s2=(2**(1+1./p2))*scipy.special.gamma(1./p2)/p2; | |
692 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling |
|
485 | gp1=a1*w1*s1; gp2=a2*w2*s2 # power content of each ggaussian with proper p scaling | |
693 |
|
486 | |||
694 | if gp1>gp2: |
|
487 | if gp1>gp2: | |
695 | if a1>0.7*a2: |
|
488 | if a1>0.7*a2: | |
696 | choice=1 |
|
489 | choice=1 | |
@@ -710,13 +503,15 class GaussianFit(Operation): | |||||
710 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) |
|
503 | choice=numpy.argmax([lsq1[0][2]*lsq1[0][1],lsq2[0][2]*lsq2[0][1],lsq2[0][6]*lsq2[0][5]]) | |
711 |
|
504 | |||
712 |
|
505 | |||
713 | shift0=lsq2[0][0]; vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) |
|
506 | shift0=lsq2[0][0]; | |
714 |
|
|
507 | vel0=Vrange[0] + shift0*(Vrange[1]-Vrange[0]) | |
|
508 | shift1=lsq2[0][4]; | |||
|
509 | vel1=Vrange[0] + shift1*(Vrange[1]-Vrange[0]) | |||
715 |
|
510 | |||
716 |
max_vel = |
|
511 | max_vel = 1.0 | |
717 |
|
512 | |||
718 | #first peak will be 0, second peak will be 1 |
|
513 | #first peak will be 0, second peak will be 1 | |
719 | if vel0 > 0 and vel0 < max_vel : #first peak is in the correct range |
|
514 | if vel0 > -1.0 and vel0 < max_vel : #first peak is in the correct range | |
720 | shift0=lsq2[0][0] |
|
515 | shift0=lsq2[0][0] | |
721 | width0=lsq2[0][1] |
|
516 | width0=lsq2[0][1] | |
722 | Amplitude0=lsq2[0][2] |
|
517 | Amplitude0=lsq2[0][2] | |
@@ -739,120 +534,18 class GaussianFit(Operation): | |||||
739 | p0=lsq2[0][7] |
|
534 | p0=lsq2[0][7] | |
740 | noise=lsq2[0][8] |
|
535 | noise=lsq2[0][8] | |
741 |
|
536 | |||
742 |
if Amplitude0<0. |
|
537 | if Amplitude0<0.05: # in case the peak is noise | |
743 |
shift0,width0,Amplitude0,p0 = |
|
538 | shift0,width0,Amplitude0,p0 = [0,0,0,0]#4*[numpy.NaN] | |
744 |
if Amplitude1<0. |
|
539 | if Amplitude1<0.05: | |
745 |
shift1,width1,Amplitude1,p1 = |
|
540 | shift1,width1,Amplitude1,p1 = [0,0,0,0]#4*[numpy.NaN] | |
746 |
|
|
541 | ||
747 |
|
|
542 | ||
748 | # if choice==0: # pick the single gaussian fit |
|
|||
749 | # Amplitude0=lsq1[0][2] |
|
|||
750 | # shift0=lsq1[0][0] |
|
|||
751 | # width0=lsq1[0][1] |
|
|||
752 | # p0=lsq1[0][3] |
|
|||
753 | # Amplitude1=0. |
|
|||
754 | # shift1=0. |
|
|||
755 | # width1=0. |
|
|||
756 | # p1=0. |
|
|||
757 | # noise=lsq1[0][4] |
|
|||
758 | # elif choice==1: # take the first one of the 2 gaussians fitted |
|
|||
759 | # Amplitude0 = lsq2[0][2] |
|
|||
760 | # shift0 = lsq2[0][0] |
|
|||
761 | # width0 = lsq2[0][1] |
|
|||
762 | # p0 = lsq2[0][3] |
|
|||
763 | # Amplitude1 = lsq2[0][6] # This is 0 in gg1 |
|
|||
764 | # shift1 = lsq2[0][4] # This is 0 in gg1 |
|
|||
765 | # width1 = lsq2[0][5] # This is 0 in gg1 |
|
|||
766 | # p1 = lsq2[0][7] # This is 0 in gg1 |
|
|||
767 | # noise = lsq2[0][8] |
|
|||
768 | # else: # the second one |
|
|||
769 | # Amplitude0 = lsq2[0][6] |
|
|||
770 | # shift0 = lsq2[0][4] |
|
|||
771 | # width0 = lsq2[0][5] |
|
|||
772 | # p0 = lsq2[0][7] |
|
|||
773 | # Amplitude1 = lsq2[0][2] # This is 0 in gg1 |
|
|||
774 | # shift1 = lsq2[0][0] # This is 0 in gg1 |
|
|||
775 | # width1 = lsq2[0][1] # This is 0 in gg1 |
|
|||
776 | # p1 = lsq2[0][3] # This is 0 in gg1 |
|
|||
777 | # noise = lsq2[0][8] |
|
|||
778 |
|
||||
779 | #print len(noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0) |
|
|||
780 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 |
|
543 | SPC_ch1[:,ht] = noise + Amplitude0*numpy.exp(-0.5*(abs(x-shift0))/width0)**p0 | |
781 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 |
|
544 | SPC_ch2[:,ht] = noise + Amplitude1*numpy.exp(-0.5*(abs(x-shift1))/width1)**p1 | |
782 |
|
|
545 | SPCparam = (SPC_ch1,SPC_ch2) | |
783 | #print 'SPC_ch2.shape',SPC_ch2.shape |
|
|||
784 | #dataOut.data_param = SPC_ch1 |
|
|||
785 | GauSPC = (SPC_ch1,SPC_ch2) |
|
|||
786 | #GauSPC[1] = SPC_ch2 |
|
|||
787 |
|
||||
788 | # print 'shift0', shift0 |
|
|||
789 | # print 'Amplitude0', Amplitude0 |
|
|||
790 | # print 'width0', width0 |
|
|||
791 | # print 'p0', p0 |
|
|||
792 | # print '========================' |
|
|||
793 | # print 'shift1', shift1 |
|
|||
794 | # print 'Amplitude1', Amplitude1 |
|
|||
795 | # print 'width1', width1 |
|
|||
796 | # print 'p1', p1 |
|
|||
797 | # print 'noise', noise |
|
|||
798 | # print 's_noise', wnoise |
|
|||
799 |
|
546 | |||
800 | return GauSPC |
|
|||
801 |
|
||||
802 |
|
||||
803 | def y_jacobian1(self,x,state): # This function is for further analysis of generalized Gaussians, it is not too importan for the signal discrimination. |
|
|||
804 | y_model=self.y_model1(x,state) |
|
|||
805 | s0,w0,a0,p0,n=state |
|
|||
806 | e0=((x-s0)/w0)**2; |
|
|||
807 |
|
||||
808 | e0u=((x-s0-self.Num_Bin)/w0)**2; |
|
|||
809 |
|
||||
810 | e0d=((x-s0+self.Num_Bin)/w0)**2 |
|
|||
811 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
|||
812 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
|||
813 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
|||
814 | JA=m0+m0u+m0d |
|
|||
815 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
|||
816 |
|
||||
817 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
|||
818 |
|
||||
819 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
820 | jack1=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,1./y_model]) |
|
|||
821 | return jack1.T |
|
|||
822 |
|
||||
823 | def y_jacobian2(self,x,state): |
|
|||
824 | y_model=self.y_model2(x,state) |
|
|||
825 | s0,w0,a0,p0,s1,w1,a1,p1,n=state |
|
|||
826 | e0=((x-s0)/w0)**2; |
|
|||
827 |
|
||||
828 | e0u=((x-s0- self.Num_Bin )/w0)**2; |
|
|||
829 |
|
||||
830 | e0d=((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
831 | e1=((x-s1)/w1)**2; |
|
|||
832 |
|
547 | |||
833 | e1u=((x-s1- self.Num_Bin )/w1)**2; |
|
548 | return GauSPC | |
834 |
|
||||
835 | e1d=((x-s1+ self.Num_Bin )/w1)**2 |
|
|||
836 | m0=numpy.exp(-0.5*e0**(p0/2.)); |
|
|||
837 | m0u=numpy.exp(-0.5*e0u**(p0/2.)); |
|
|||
838 | m0d=numpy.exp(-0.5*e0d**(p0/2.)) |
|
|||
839 | m1=numpy.exp(-0.5*e1**(p1/2.)); |
|
|||
840 | m1u=numpy.exp(-0.5*e1u**(p1/2.)); |
|
|||
841 | m1d=numpy.exp(-0.5*e1d**(p1/2.)) |
|
|||
842 | JA=m0+m0u+m0d |
|
|||
843 | JA1=m1+m1u+m1d |
|
|||
844 | JP=(-1/4.)*a0*m0*e0**(p0/2.)*numpy.log(e0)+(-1/4.)*a0*m0u*e0u**(p0/2.)*numpy.log(e0u)+(-1/4.)*a0*m0d*e0d**(p0/2.)*numpy.log(e0d) |
|
|||
845 | JP1=(-1/4.)*a1*m1*e1**(p1/2.)*numpy.log(e1)+(-1/4.)*a1*m1u*e1u**(p1/2.)*numpy.log(e1u)+(-1/4.)*a1*m1d*e1d**(p1/2.)*numpy.log(e1d) |
|
|||
846 |
|
||||
847 | JS=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0) |
|
|||
848 |
|
||||
849 | JS1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1) |
|
|||
850 |
|
||||
851 | JW=(p0/w0/2.)*a0*m0*e0**(p0/2.-1)*((x-s0)/w0)**2+(p0/w0/2.)*a0*m0u*e0u**(p0/2.-1)*((x-s0- self.Num_Bin )/w0)**2+(p0/w0/2.)*a0*m0d*e0d**(p0/2.-1)*((x-s0+ self.Num_Bin )/w0)**2 |
|
|||
852 |
|
||||
853 | JW1=(p1/w1/2.)*a1*m1*e1**(p1/2.-1)*((x-s1)/w1)**2+(p1/w1/2.)*a1*m1u*e1u**(p1/2.-1)*((x-s1- self.Num_Bin )/w1)**2+(p1/w1/2.)*a1*m1d*e1d**(p1/2.-1)*((x-s1+ self.Num_Bin )/w1)**2 |
|
|||
854 | jack2=numpy.sqrt(7)*numpy.array([JS/y_model,JW/y_model,JA/y_model,JP/y_model,JS1/y_model,JW1/y_model,JA1/y_model,JP1/y_model,1./y_model]) |
|
|||
855 | return jack2.T |
|
|||
856 |
|
549 | |||
857 | def y_model1(self,x,state): |
|
550 | def y_model1(self,x,state): | |
858 | shift0,width0,amplitude0,power0,noise=state |
|
551 | shift0,width0,amplitude0,power0,noise=state | |
@@ -884,6 +577,7 class GaussianFit(Operation): | |||||
884 | def misfit2(self,state,y_data,x,num_intg): |
|
577 | def misfit2(self,state,y_data,x,num_intg): | |
885 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) |
|
578 | return num_intg*sum((numpy.log(y_data)-numpy.log(self.y_model2(x,state)))**2)#/(64-9.) | |
886 |
|
579 | |||
|
580 | ||||
887 |
|
581 | |||
888 | class PrecipitationProc(Operation): |
|
582 | class PrecipitationProc(Operation): | |
889 |
|
583 | |||
@@ -900,24 +594,61 class PrecipitationProc(Operation): | |||||
900 |
|
594 | |||
901 | Parameters affected: |
|
595 | Parameters affected: | |
902 | ''' |
|
596 | ''' | |
903 |
|
||||
904 |
|
597 | |||
905 | def run(self, dataOut, radar=None, Pt=None, Gt=None, Gr=None, Lambda=None, aL=None, |
|
598 | def __init__(self): | |
906 | tauW=None, ThetaT=None, ThetaR=None, Km = 0.93, Altitude=None): |
|
599 | Operation.__init__(self) | |
|
600 | self.i=0 | |||
|
601 | ||||
|
602 | ||||
|
603 | def gaus(self,xSamples,Amp,Mu,Sigma): | |||
|
604 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |||
|
605 | ||||
|
606 | ||||
|
607 | ||||
|
608 | def Moments(self, ySamples, xSamples): | |||
|
609 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |||
|
610 | yNorm = ySamples / Pot | |||
|
611 | ||||
|
612 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |||
|
613 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |||
|
614 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |||
|
615 | ||||
|
616 | return numpy.array([Pot, Vr, Desv]) | |||
|
617 | ||||
|
618 | def run(self, dataOut, radar=None, Pt=5000, Gt=295.1209, Gr=70.7945, Lambda=0.6741, aL=2.5118, | |||
|
619 | tauW=4e-06, ThetaT=0.1656317, ThetaR=0.36774087, Km = 0.93, Altitude=3350): | |||
907 |
|
620 | |||
908 | self.spc = dataOut.data_pre[0].copy() |
|
|||
909 | self.Num_Hei = self.spc.shape[2] |
|
|||
910 | self.Num_Bin = self.spc.shape[1] |
|
|||
911 | self.Num_Chn = self.spc.shape[0] |
|
|||
912 |
|
621 | |||
913 |
Velrange = dataOut. |
|
622 | Velrange = dataOut.spcparam_range[2] | |
|
623 | FrecRange = dataOut.spcparam_range[0] | |||
|
624 | ||||
|
625 | dV= Velrange[1]-Velrange[0] | |||
|
626 | dF= FrecRange[1]-FrecRange[0] | |||
914 |
|
627 | |||
915 | if radar == "MIRA35C" : |
|
628 | if radar == "MIRA35C" : | |
916 |
|
629 | |||
|
630 | self.spc = dataOut.data_pre[0].copy() | |||
|
631 | self.Num_Hei = self.spc.shape[2] | |||
|
632 | self.Num_Bin = self.spc.shape[1] | |||
|
633 | self.Num_Chn = self.spc.shape[0] | |||
917 | Ze = self.dBZeMODE2(dataOut) |
|
634 | Ze = self.dBZeMODE2(dataOut) | |
918 |
|
635 | |||
919 | else: |
|
636 | else: | |
920 |
|
637 | |||
|
638 | self.spc = dataOut.SPCparam[1].copy() #dataOut.data_pre[0].copy() # | |||
|
639 | ||||
|
640 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |||
|
641 | ||||
|
642 | self.spc[:,:,0:7]= numpy.NaN | |||
|
643 | ||||
|
644 | """##########################################""" | |||
|
645 | ||||
|
646 | self.Num_Hei = self.spc.shape[2] | |||
|
647 | self.Num_Bin = self.spc.shape[1] | |||
|
648 | self.Num_Chn = self.spc.shape[0] | |||
|
649 | ||||
|
650 | ''' Se obtiene la constante del RADAR ''' | |||
|
651 | ||||
921 | self.Pt = Pt |
|
652 | self.Pt = Pt | |
922 | self.Gt = Gt |
|
653 | self.Gt = Gt | |
923 | self.Gr = Gr |
|
654 | self.Gr = Gr | |
@@ -927,48 +658,101 class PrecipitationProc(Operation): | |||||
927 | self.ThetaT = ThetaT |
|
658 | self.ThetaT = ThetaT | |
928 | self.ThetaR = ThetaR |
|
659 | self.ThetaR = ThetaR | |
929 |
|
660 | |||
930 | RadarConstant = GetRadarConstant() |
|
661 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
931 | SPCmean = numpy.mean(self.spc,0) |
|
662 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * tauW * numpy.pi * ThetaT * ThetaR) | |
932 | ETA = numpy.zeros(self.Num_Hei) |
|
663 | RadarConstant = 5e-26 * Numerator / Denominator # | |
933 | Pr = numpy.sum(SPCmean,0) |
|
|||
934 |
|
664 | |||
935 | #for R in range(self.Num_Hei): |
|
665 | ''' ============================= ''' | |
936 | # ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
666 | ||
937 |
|
667 | self.spc[0] = (self.spc[0]-dataOut.noise[0]) | ||
938 | D_range = numpy.zeros(self.Num_Hei) |
|
668 | self.spc[1] = (self.spc[1]-dataOut.noise[1]) | |
939 | EqSec = numpy.zeros(self.Num_Hei) |
|
669 | self.spc[2] = (self.spc[2]-dataOut.noise[2]) | |
|
670 | ||||
|
671 | self.spc[ numpy.where(self.spc < 0)] = 0 | |||
|
672 | ||||
|
673 | SPCmean = (numpy.mean(self.spc,0) - numpy.mean(dataOut.noise)) | |||
|
674 | SPCmean[ numpy.where(SPCmean < 0)] = 0 | |||
|
675 | ||||
|
676 | ETAn = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
677 | ETAv = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
678 | ETAd = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
679 | ||||
|
680 | Pr = SPCmean[:,:] | |||
|
681 | ||||
|
682 | VelMeteoro = numpy.mean(SPCmean,axis=0) | |||
|
683 | ||||
|
684 | D_range = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
685 | SIGMA = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
686 | N_dist = numpy.zeros([self.Num_Bin,self.Num_Hei]) | |||
|
687 | V_mean = numpy.zeros(self.Num_Hei) | |||
940 | del_V = numpy.zeros(self.Num_Hei) |
|
688 | del_V = numpy.zeros(self.Num_Hei) | |
|
689 | Z = numpy.zeros(self.Num_Hei) | |||
|
690 | Ze = numpy.zeros(self.Num_Hei) | |||
|
691 | RR = numpy.zeros(self.Num_Hei) | |||
|
692 | ||||
|
693 | Range = dataOut.heightList*1000. | |||
941 |
|
694 | |||
942 | for R in range(self.Num_Hei): |
|
695 | for R in range(self.Num_Hei): | |
943 | ETA[R] = RadarConstant * Pr[R] * R**2 #Reflectivity (ETA) |
|
|||
944 |
|
696 | |||
945 | h = R + Altitude #Range from ground to radar pulse altitude |
|
697 | h = Range[R] + Altitude #Range from ground to radar pulse altitude | |
946 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity |
|
698 | del_V[R] = 1 + 3.68 * 10**-5 * h + 1.71 * 10**-9 * h**2 #Density change correction for velocity | |
947 |
|
699 | |||
948 |
D_range[R] = numpy.log( (9.65 - (Velrange[ |
|
700 | D_range[:,R] = numpy.log( (9.65 - (Velrange[0:self.Num_Bin] / del_V[R])) / 10.3 ) / -0.6 #Diameter range [m]x10**-3 | |
949 | SIGMA[R] = numpy.pi**5 / Lambda**4 * Km * D_range[R]**6 #Equivalent Section of drops (sigma) |
|
701 | ||
|
702 | '''NOTA: ETA(n) dn = ETA(f) df | |||
|
703 | ||||
|
704 | dn = 1 Diferencial de muestreo | |||
|
705 | df = ETA(n) / ETA(f) | |||
|
706 | ||||
|
707 | ''' | |||
|
708 | ||||
|
709 | ETAn[:,R] = RadarConstant * Pr[:,R] * (Range[R] )**2 #Reflectivity (ETA) | |||
|
710 | ||||
|
711 | ETAv[:,R]=ETAn[:,R]/dV | |||
|
712 | ||||
|
713 | ETAd[:,R]=ETAv[:,R]*6.18*exp(-0.6*D_range[:,R]) | |||
|
714 | ||||
|
715 | SIGMA[:,R] = Km * (D_range[:,R] * 1e-3 )**6 * numpy.pi**5 / Lambda**4 #Equivalent Section of drops (sigma) | |||
|
716 | ||||
|
717 | N_dist[:,R] = ETAn[:,R] / SIGMA[:,R] | |||
|
718 | ||||
|
719 | DMoments = self.Moments(Pr[:,R], Velrange[0:self.Num_Bin]) | |||
|
720 | ||||
|
721 | try: | |||
|
722 | popt01,pcov = curve_fit(self.gaus, Velrange[0:self.Num_Bin] , Pr[:,R] , p0=DMoments) | |||
|
723 | except: | |||
|
724 | popt01=numpy.zeros(3) | |||
|
725 | popt01[1]= DMoments[1] | |||
|
726 | ||||
|
727 | if popt01[1]<0 or popt01[1]>20: | |||
|
728 | popt01[1]=numpy.NaN | |||
|
729 | ||||
|
730 | ||||
|
731 | V_mean[R]=popt01[1] | |||
|
732 | ||||
|
733 | Z[R] = numpy.nansum( N_dist[:,R] * (D_range[:,R])**6 )#*10**-18 | |||
|
734 | ||||
|
735 | RR[R] = 0.0006*numpy.pi * numpy.nansum( D_range[:,R]**3 * N_dist[:,R] * Velrange[0:self.Num_Bin] ) #Rainfall rate | |||
|
736 | ||||
|
737 | Ze[R] = (numpy.nansum( ETAn[:,R]) * Lambda**4) / ( 10**-18*numpy.pi**5 * Km) | |||
950 |
|
738 | |||
951 | N_dist[R] = ETA[R] / SIGMA[R] |
|
|||
952 |
|
||||
953 | Ze = (ETA * Lambda**4) / (numpy.pi * Km) |
|
|||
954 | Z = numpy.sum( N_dist * D_range**6 ) |
|
|||
955 | RR = 6*10**-4*numpy.pi * numpy.sum( D_range**3 * N_dist * Velrange ) #Rainfall rate |
|
|||
956 |
|
739 | |||
957 |
|
740 | |||
958 |
RR = (Z |
|
741 | RR2 = (Z/200)**(1/1.6) | |
959 | dBRR = 10*numpy.log10(RR) |
|
742 | dBRR = 10*numpy.log10(RR) | |
|
743 | dBRR2 = 10*numpy.log10(RR2) | |||
960 |
|
744 | |||
961 | dBZe = 10*numpy.log10(Ze) |
|
745 | dBZe = 10*numpy.log10(Ze) | |
962 | dataOut.data_output = Ze |
|
746 | dBZ = 10*numpy.log10(Z) | |
963 | dataOut.data_param = numpy.ones([2,self.Num_Hei]) |
|
747 | ||
964 |
dataOut. |
|
748 | dataOut.data_output = RR[8] | |
965 | print('channelList', dataOut.channelList) |
|
749 | dataOut.data_param = numpy.ones([3,self.Num_Hei]) | |
966 |
dataOut. |
|
750 | dataOut.channelList = [0,1,2] | |
967 | dataOut.data_param[1]=dBRR |
|
751 | ||
968 | print('RR SHAPE', dBRR.shape) |
|
752 | dataOut.data_param[0]=dBZ | |
969 | print('Ze SHAPE', dBZe.shape) |
|
753 | dataOut.data_param[1]=V_mean | |
970 | print('dataOut.data_param SHAPE', dataOut.data_param.shape) |
|
754 | dataOut.data_param[2]=RR | |
971 |
|
755 | |||
972 |
|
756 | |||
973 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C |
|
757 | def dBZeMODE2(self, dataOut): # Processing for MIRA35C | |
974 |
|
758 | |||
@@ -983,7 +767,7 class PrecipitationProc(Operation): | |||||
983 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN |
|
767 | data_output = numpy.ones([self.Num_Chn , self.Num_Hei])*numpy.NaN | |
984 |
|
768 | |||
985 | ETA = numpy.sum(SNR,1) |
|
769 | ETA = numpy.sum(SNR,1) | |
986 | print('ETA' , ETA) |
|
770 | ||
987 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) |
|
771 | ETA = numpy.where(ETA is not 0. , ETA, numpy.NaN) | |
988 |
|
772 | |||
989 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) |
|
773 | Ze = numpy.ones([self.Num_Chn, self.Num_Hei] ) | |
@@ -995,26 +779,27 class PrecipitationProc(Operation): | |||||
995 |
|
779 | |||
996 | return Ze |
|
780 | return Ze | |
997 |
|
781 | |||
998 | def GetRadarConstant(self): |
|
782 | # def GetRadarConstant(self): | |
999 |
|
783 | # | ||
1000 | """ |
|
784 | # """ | |
1001 | Constants: |
|
785 | # Constants: | |
1002 |
|
786 | # | ||
1003 | Pt: Transmission Power dB |
|
787 | # Pt: Transmission Power dB 5kW 5000 | |
1004 | Gt: Transmission Gain dB |
|
788 | # Gt: Transmission Gain dB 24.7 dB 295.1209 | |
1005 | Gr: Reception Gain dB |
|
789 | # Gr: Reception Gain dB 18.5 dB 70.7945 | |
1006 | Lambda: Wavelenght m |
|
790 | # Lambda: Wavelenght m 0.6741 m 0.6741 | |
1007 |
aL: |
|
791 | # aL: Attenuation loses dB 4dB 2.5118 | |
1008 | tauW: Width of transmission pulse s |
|
792 | # tauW: Width of transmission pulse s 4us 4e-6 | |
1009 | ThetaT: Transmission antenna bean angle rad |
|
793 | # ThetaT: Transmission antenna bean angle rad 0.1656317 rad 0.1656317 | |
1010 | ThetaR: Reception antenna beam angle rad |
|
794 | # ThetaR: Reception antenna beam angle rad 0.36774087 rad 0.36774087 | |
1011 |
|
795 | # | ||
1012 | """ |
|
796 | # """ | |
1013 | Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) |
|
797 | # | |
1014 | Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) |
|
798 | # Numerator = ( (4*numpy.pi)**3 * aL**2 * 16 * numpy.log(2) ) | |
1015 | RadarConstant = Numerator / Denominator |
|
799 | # Denominator = ( Pt * Gt * Gr * Lambda**2 * SPEED_OF_LIGHT * TauW * numpy.pi * ThetaT * TheraR) | |
1016 |
|
800 | # RadarConstant = Numerator / Denominator | ||
1017 | return RadarConstant |
|
801 | # | |
|
802 | # return RadarConstant | |||
1018 |
|
803 | |||
1019 |
|
804 | |||
1020 |
|
805 | |||
@@ -1037,10 +822,20 class FullSpectralAnalysis(Operation): | |||||
1037 | Parameters affected: Winds, height range, SNR |
|
822 | Parameters affected: Winds, height range, SNR | |
1038 |
|
823 | |||
1039 | """ |
|
824 | """ | |
1040 |
def run(self, dataOut, |
|
825 | def run(self, dataOut, Xi01=None, Xi02=None, Xi12=None, Eta01=None, Eta02=None, Eta12=None, SNRlimit=7): | |
|
826 | ||||
|
827 | self.indice=int(numpy.random.rand()*1000) | |||
1041 |
|
828 | |||
1042 | spc = dataOut.data_pre[0].copy() |
|
829 | spc = dataOut.data_pre[0].copy() | |
1043 |
cspc = dataOut.data_pre[1] |
|
830 | cspc = dataOut.data_pre[1] | |
|
831 | ||||
|
832 | """NOTA SE DEBE REMOVER EL RANGO DEL PULSO TX""" | |||
|
833 | ||||
|
834 | SNRspc = spc.copy() | |||
|
835 | SNRspc[:,:,0:7]= numpy.NaN | |||
|
836 | ||||
|
837 | """##########################################""" | |||
|
838 | ||||
1044 |
|
839 | |||
1045 | nChannel = spc.shape[0] |
|
840 | nChannel = spc.shape[0] | |
1046 | nProfiles = spc.shape[1] |
|
841 | nProfiles = spc.shape[1] | |
@@ -1050,14 +845,9 class FullSpectralAnalysis(Operation): | |||||
1050 | if dataOut.ChanDist is not None : |
|
845 | if dataOut.ChanDist is not None : | |
1051 | ChanDist = dataOut.ChanDist |
|
846 | ChanDist = dataOut.ChanDist | |
1052 | else: |
|
847 | else: | |
1053 |
ChanDist = numpy.array([[ |
|
848 | ChanDist = numpy.array([[Xi01, Eta01],[Xi02,Eta02],[Xi12,Eta12]]) | |
1054 |
|
||||
1055 | #print 'ChanDist', ChanDist |
|
|||
1056 |
|
849 | |||
1057 | if dataOut.VelRange is not None: |
|
850 | FrecRange = dataOut.spc_range[0] | |
1058 | VelRange= dataOut.VelRange |
|
|||
1059 | else: |
|
|||
1060 | VelRange= dataOut.abscissaList |
|
|||
1061 |
|
851 | |||
1062 | ySamples=numpy.ones([nChannel,nProfiles]) |
|
852 | ySamples=numpy.ones([nChannel,nProfiles]) | |
1063 | phase=numpy.ones([nChannel,nProfiles]) |
|
853 | phase=numpy.ones([nChannel,nProfiles]) | |
@@ -1065,113 +855,108 class FullSpectralAnalysis(Operation): | |||||
1065 | coherence=numpy.ones([nChannel,nProfiles]) |
|
855 | coherence=numpy.ones([nChannel,nProfiles]) | |
1066 | PhaseSlope=numpy.ones(nChannel) |
|
856 | PhaseSlope=numpy.ones(nChannel) | |
1067 | PhaseInter=numpy.ones(nChannel) |
|
857 | PhaseInter=numpy.ones(nChannel) | |
1068 | dataSNR = dataOut.data_SNR |
|
858 | data_SNR=numpy.zeros([nProfiles]) | |
1069 |
|
||||
1070 |
|
||||
1071 |
|
859 | |||
1072 | data = dataOut.data_pre |
|
860 | data = dataOut.data_pre | |
1073 | noise = dataOut.noise |
|
861 | noise = dataOut.noise | |
1074 | print('noise',noise) |
|
|||
1075 | #SNRdB = 10*numpy.log10(dataOut.data_SNR) |
|
|||
1076 |
|
862 | |||
1077 | FirstMoment = numpy.average(dataOut.data_param[:,1,:],0) |
|
863 | dataOut.data_SNR = (numpy.mean(SNRspc,axis=1)- noise[0]) / noise[0] | |
1078 | #SNRdBMean = [] |
|
|||
1079 |
|
||||
1080 |
|
864 | |||
1081 | #for j in range(nHeights): |
|
865 | dataOut.data_SNR[numpy.where( dataOut.data_SNR <0 )] = 1e-20 | |
1082 | # FirstMoment = numpy.append(FirstMoment,numpy.mean([dataOut.data_param[0,1,j],dataOut.data_param[1,1,j],dataOut.data_param[2,1,j]])) |
|
866 | ||
1083 | # SNRdBMean = numpy.append(SNRdBMean,numpy.mean([SNRdB[0,j],SNRdB[1,j],SNRdB[2,j]])) |
|
867 | ||
1084 |
|
868 | data_output=numpy.ones([spc.shape[0],spc.shape[2]])*numpy.NaN | ||
1085 | data_output=numpy.ones([3,spc.shape[2]])*numpy.NaN |
|
|||
1086 |
|
869 | |||
1087 | velocityX=[] |
|
870 | velocityX=[] | |
1088 | velocityY=[] |
|
871 | velocityY=[] | |
1089 | velocityV=[] |
|
872 | velocityV=[] | |
|
873 | PhaseLine=[] | |||
1090 |
|
874 | |||
1091 | dbSNR = 10*numpy.log10(dataSNR) |
|
875 | dbSNR = 10*numpy.log10(dataOut.data_SNR) | |
1092 | dbSNR = numpy.average(dbSNR,0) |
|
876 | dbSNR = numpy.average(dbSNR,0) | |
|
877 | ||||
1093 | for Height in range(nHeights): |
|
878 | for Height in range(nHeights): | |
1094 |
|
879 | |||
1095 |
[Vzon,Vmer,Vver, GaussCenter]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, |
|
880 | [Vzon,Vmer,Vver, GaussCenter, PhaseSlope, FitGaussCSPC]= self.WindEstimation(spc, cspc, pairsList, ChanDist, Height, noise, dataOut.spc_range.copy(), dbSNR[Height], SNRlimit) | |
|
881 | PhaseLine = numpy.append(PhaseLine, PhaseSlope) | |||
1096 |
|
882 | |||
1097 | if abs(Vzon)<100. and abs(Vzon)> 0.: |
|
883 | if abs(Vzon)<100. and abs(Vzon)> 0.: | |
1098 | velocityX=numpy.append(velocityX, Vzon)#Vmag |
|
884 | velocityX=numpy.append(velocityX, Vzon)#Vmag | |
1099 |
|
885 | |||
1100 | else: |
|
886 | else: | |
1101 | print('Vzon',Vzon) |
|
|||
1102 | velocityX=numpy.append(velocityX, numpy.NaN) |
|
887 | velocityX=numpy.append(velocityX, numpy.NaN) | |
1103 |
|
888 | |||
1104 | if abs(Vmer)<100. and abs(Vmer) > 0.: |
|
889 | if abs(Vmer)<100. and abs(Vmer) > 0.: | |
1105 | velocityY=numpy.append(velocityY, Vmer)#Vang |
|
890 | velocityY=numpy.append(velocityY, -Vmer)#Vang | |
1106 |
|
891 | |||
1107 | else: |
|
892 | else: | |
1108 | print('Vmer',Vmer) |
|
|||
1109 | velocityY=numpy.append(velocityY, numpy.NaN) |
|
893 | velocityY=numpy.append(velocityY, numpy.NaN) | |
1110 |
|
894 | |||
1111 | if dbSNR[Height] > SNRlimit: |
|
895 | if dbSNR[Height] > SNRlimit: | |
1112 |
velocityV=numpy.append(velocityV, |
|
896 | velocityV=numpy.append(velocityV, -Vver)#FirstMoment[Height]) | |
1113 | else: |
|
897 | else: | |
1114 | velocityV=numpy.append(velocityV, numpy.NaN) |
|
898 | velocityV=numpy.append(velocityV, numpy.NaN) | |
1115 | #FirstMoment[Height]= numpy.NaN |
|
899 | ||
1116 | # if SNRdBMean[Height] <12: |
|
900 | ||
1117 | # FirstMoment[Height] = numpy.NaN |
|
|||
1118 | # velocityX[Height] = numpy.NaN |
|
|||
1119 | # velocityY[Height] = numpy.NaN |
|
|||
1120 |
|
||||
1121 |
|
||||
1122 | data_output[0]=numpy.array(velocityX) |
|
|||
1123 | data_output[1]=numpy.array(velocityY) |
|
|||
1124 | data_output[2]=-velocityV#FirstMoment |
|
|||
1125 |
|
||||
1126 | print(' ') |
|
|||
1127 | #print 'FirstMoment' |
|
|||
1128 | #print FirstMoment |
|
|||
1129 | print('velocityX',data_output[0]) |
|
|||
1130 | print(' ') |
|
|||
1131 | print('velocityY',data_output[1]) |
|
|||
1132 | #print numpy.array(velocityY) |
|
|||
1133 | print(' ') |
|
|||
1134 | #print 'SNR' |
|
|||
1135 | #print 10*numpy.log10(dataOut.data_SNR) |
|
|||
1136 | #print numpy.shape(10*numpy.log10(dataOut.data_SNR)) |
|
|||
1137 | print(' ') |
|
|||
1138 |
|
901 | |||
|
902 | '''Nota: Cambiar el signo de numpy.array(velocityX) cuando se intente procesar datos de BLTR''' | |||
|
903 | data_output[0] = numpy.array(velocityX) #self.moving_average(numpy.array(velocityX) , N=1) | |||
|
904 | data_output[1] = numpy.array(velocityY) #self.moving_average(numpy.array(velocityY) , N=1) | |||
|
905 | data_output[2] = velocityV#FirstMoment | |||
|
906 | ||||
|
907 | xFrec=FrecRange[0:spc.shape[1]] | |||
1139 |
|
908 | |||
1140 | dataOut.data_output=data_output |
|
909 | dataOut.data_output=data_output | |
|
910 | ||||
1141 | return |
|
911 | return | |
1142 |
|
912 | |||
1143 |
|
913 | |||
1144 | def moving_average(self,x, N=2): |
|
914 | def moving_average(self,x, N=2): | |
1145 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] |
|
915 | return numpy.convolve(x, numpy.ones((N,))/N)[(N-1):] | |
1146 |
|
916 | |||
1147 |
def gaus(self,xSamples, |
|
917 | def gaus(self,xSamples,Amp,Mu,Sigma): | |
1148 |
return |
|
918 | return ( Amp / ((2*numpy.pi)**0.5 * Sigma) ) * numpy.exp( -( xSamples - Mu )**2 / ( 2 * (Sigma**2) )) | |
|
919 | ||||
|
920 | ||||
1149 |
|
921 | |||
1150 |
def |
|
922 | def Moments(self, ySamples, xSamples): | |
1151 | for index in range(len(x)): |
|
923 | Pot = numpy.nansum( ySamples ) # Potencia, momento 0 | |
1152 | if x[index]==value: |
|
924 | yNorm = ySamples / Pot | |
1153 | return index |
|
925 | Vr = numpy.nansum( yNorm * xSamples ) # Velocidad radial, mu, corrimiento doppler, primer momento | |
|
926 | Sigma2 = abs(numpy.nansum( yNorm * ( xSamples - Vr )**2 )) # Segundo Momento | |||
|
927 | Desv = Sigma2**0.5 # Desv. Estandar, Ancho espectral | |||
|
928 | ||||
|
929 | return numpy.array([Pot, Vr, Desv]) | |||
1154 |
|
930 | |||
1155 |
def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, |
|
931 | def WindEstimation(self, spc, cspc, pairsList, ChanDist, Height, noise, AbbsisaRange, dbSNR, SNRlimit): | |
|
932 | ||||
|
933 | ||||
1156 |
|
934 | |||
1157 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
935 | ySamples=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1158 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
936 | phase=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1159 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) |
|
937 | CSPCSamples=numpy.ones([spc.shape[0],spc.shape[1]],dtype=numpy.complex_) | |
1160 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) |
|
938 | coherence=numpy.ones([spc.shape[0],spc.shape[1]]) | |
1161 |
PhaseSlope=numpy.o |
|
939 | PhaseSlope=numpy.zeros(spc.shape[0]) | |
1162 | PhaseInter=numpy.ones(spc.shape[0]) |
|
940 | PhaseInter=numpy.ones(spc.shape[0]) | |
1163 | xFrec=VelRange |
|
941 | xFrec=AbbsisaRange[0][0:spc.shape[1]] | |
|
942 | xVel =AbbsisaRange[2][0:spc.shape[1]] | |||
|
943 | Vv=numpy.empty(spc.shape[2])*0 | |||
|
944 | SPCav = numpy.average(spc, axis=0)-numpy.average(noise) #spc[0]-noise[0]# | |||
|
945 | ||||
|
946 | SPCmoments = self.Moments(SPCav[:,Height], xVel ) | |||
|
947 | CSPCmoments = [] | |||
|
948 | cspcNoise = numpy.empty(3) | |||
1164 |
|
949 | |||
1165 | '''Getting Eij and Nij''' |
|
950 | '''Getting Eij and Nij''' | |
1166 |
|
951 | |||
1167 |
|
|
952 | Xi01=ChanDist[0][0] | |
1168 |
|
|
953 | Eta01=ChanDist[0][1] | |
1169 |
|
954 | |||
1170 |
|
|
955 | Xi02=ChanDist[1][0] | |
1171 |
|
|
956 | Eta02=ChanDist[1][1] | |
1172 |
|
957 | |||
1173 |
|
|
958 | Xi12=ChanDist[2][0] | |
1174 |
|
|
959 | Eta12=ChanDist[2][1] | |
1175 |
|
960 | |||
1176 | z = spc.copy() |
|
961 | z = spc.copy() | |
1177 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
962 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
@@ -1179,176 +964,197 class FullSpectralAnalysis(Operation): | |||||
1179 | for i in range(spc.shape[0]): |
|
964 | for i in range(spc.shape[0]): | |
1180 |
|
965 | |||
1181 | '''****** Line of Data SPC ******''' |
|
966 | '''****** Line of Data SPC ******''' | |
1182 | zline=z[i,:,Height] |
|
967 | zline=z[i,:,Height].copy() - noise[i] # Se resta ruido | |
1183 |
|
968 | |||
1184 | '''****** SPC is normalized ******''' |
|
969 | '''****** SPC is normalized ******''' | |
1185 | FactNorm= (zline.copy()-noise[i]) / numpy.sum(zline.copy()) |
|
970 | SmoothSPC =self.moving_average(zline.copy(),N=1) # Se suaviza el ruido | |
1186 | FactNorm= FactNorm/numpy.sum(FactNorm) |
|
971 | FactNorm = SmoothSPC/numpy.nansum(SmoothSPC) # SPC Normalizado y suavizado | |
1187 |
|
972 | |||
1188 | SmoothSPC=self.moving_average(FactNorm,N=3) |
|
973 | xSamples = xFrec # Se toma el rango de frecuncias | |
1189 |
|
974 | ySamples[i] = FactNorm # Se toman los valores de SPC normalizado | ||
1190 | xSamples = ar(list(range(len(SmoothSPC)))) |
|
|||
1191 | ySamples[i] = SmoothSPC |
|
|||
1192 |
|
||||
1193 | #dbSNR=10*numpy.log10(dataSNR) |
|
|||
1194 | print(' ') |
|
|||
1195 | print(' ') |
|
|||
1196 | print(' ') |
|
|||
1197 |
|
||||
1198 | #print 'dataSNR', dbSNR.shape, dbSNR[0,40:120] |
|
|||
1199 | print('SmoothSPC', SmoothSPC.shape, SmoothSPC[0:20]) |
|
|||
1200 | print('noise',noise) |
|
|||
1201 | print('zline',zline.shape, zline[0:20]) |
|
|||
1202 | print('FactNorm',FactNorm.shape, FactNorm[0:20]) |
|
|||
1203 | print('FactNorm suma', numpy.sum(FactNorm)) |
|
|||
1204 |
|
975 | |||
1205 | for i in range(spc.shape[0]): |
|
976 | for i in range(spc.shape[0]): | |
1206 |
|
977 | |||
1207 | '''****** Line of Data CSPC ******''' |
|
978 | '''****** Line of Data CSPC ******''' | |
1208 | cspcLine=cspc[i,:,Height].copy() |
|
979 | cspcLine = ( cspc[i,:,Height].copy())# - noise[i] ) # no! Se resta el ruido | |
|
980 | SmoothCSPC =self.moving_average(cspcLine,N=1) # Se suaviza el ruido | |||
|
981 | cspcNorm = SmoothCSPC/numpy.nansum(SmoothCSPC) # CSPC normalizado y suavizado | |||
1209 |
|
982 | |||
1210 | '''****** CSPC is normalized ******''' |
|
983 | '''****** CSPC is normalized with respect to Briggs and Vincent ******''' | |
1211 | chan_index0 = pairsList[i][0] |
|
984 | chan_index0 = pairsList[i][0] | |
1212 | chan_index1 = pairsList[i][1] |
|
985 | chan_index1 = pairsList[i][1] | |
1213 | CSPCFactor= abs(numpy.sum(ySamples[chan_index0]) * numpy.sum(ySamples[chan_index1])) # |
|
|||
1214 |
|
986 | |||
1215 | CSPCNorm = (cspcLine.copy() -noise[i]) / numpy.sqrt(CSPCFactor) |
|
987 | CSPCFactor= numpy.abs(numpy.nansum(ySamples[chan_index0]))**2 * numpy.abs(numpy.nansum(ySamples[chan_index1]))**2 | |
|
988 | CSPCNorm = cspcNorm / numpy.sqrt(CSPCFactor) | |||
1216 |
|
989 | |||
1217 | CSPCSamples[i] = CSPCNorm |
|
990 | CSPCSamples[i] = CSPCNorm | |
|
991 | ||||
1218 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) |
|
992 | coherence[i] = numpy.abs(CSPCSamples[i]) / numpy.sqrt(CSPCFactor) | |
1219 |
|
993 | |||
1220 |
coherence[i]= self.moving_average(coherence[i],N= |
|
994 | #coherence[i]= self.moving_average(coherence[i],N=1) | |
1221 |
|
995 | |||
1222 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi |
|
996 | phase[i] = self.moving_average( numpy.arctan2(CSPCSamples[i].imag, CSPCSamples[i].real),N=1)#*180/numpy.pi | |
1223 |
|
997 | |||
1224 | print('cspcLine', cspcLine.shape, cspcLine[0:20]) |
|
998 | CSPCmoments = numpy.vstack([self.Moments(numpy.abs(CSPCSamples[0]), xSamples), | |
1225 | print('CSPCFactor', CSPCFactor)#, CSPCFactor[0:20] |
|
999 | self.Moments(numpy.abs(CSPCSamples[1]), xSamples), | |
1226 | print(numpy.sum(ySamples[chan_index0]), numpy.sum(ySamples[chan_index1]), -noise[i]) |
|
1000 | self.Moments(numpy.abs(CSPCSamples[2]), xSamples)]) | |
1227 | print('CSPCNorm', CSPCNorm.shape, CSPCNorm[0:20]) |
|
|||
1228 | print('CSPCNorm suma', numpy.sum(CSPCNorm)) |
|
|||
1229 | print('CSPCSamples', CSPCSamples.shape, CSPCSamples[0,0:20]) |
|
|||
1230 |
|
1001 | |||
1231 | '''****** Getting fij width ******''' |
|
1002 | ||
|
1003 | popt=[1e-10,0,1e-10] | |||
|
1004 | popt01, popt02, popt12 = [1e-10,1e-10,1e-10], [1e-10,1e-10,1e-10] ,[1e-10,1e-10,1e-10] | |||
|
1005 | FitGauss01, FitGauss02, FitGauss12 = numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0, numpy.empty(len(xSamples))*0 | |||
|
1006 | ||||
|
1007 | CSPCMask01 = numpy.abs(CSPCSamples[0]) | |||
|
1008 | CSPCMask02 = numpy.abs(CSPCSamples[1]) | |||
|
1009 | CSPCMask12 = numpy.abs(CSPCSamples[2]) | |||
|
1010 | ||||
|
1011 | mask01 = ~numpy.isnan(CSPCMask01) | |||
|
1012 | mask02 = ~numpy.isnan(CSPCMask02) | |||
|
1013 | mask12 = ~numpy.isnan(CSPCMask12) | |||
1232 |
|
1014 | |||
1233 | yMean=[] |
|
1015 | #mask = ~numpy.isnan(CSPCMask01) | |
1234 | yMean2=[] |
|
1016 | CSPCMask01 = CSPCMask01[mask01] | |
|
1017 | CSPCMask02 = CSPCMask02[mask02] | |||
|
1018 | CSPCMask12 = CSPCMask12[mask12] | |||
|
1019 | #CSPCMask01 = numpy.ma.masked_invalid(CSPCMask01) | |||
1235 |
|
1020 | |||
1236 | for j in range(len(ySamples[1])): |
|
|||
1237 | yMean=numpy.append(yMean,numpy.mean([ySamples[0,j],ySamples[1,j],ySamples[2,j]])) |
|
|||
1238 |
|
1021 | |||
1239 | '''******* Getting fitting Gaussian ******''' |
|
|||
1240 | meanGauss=sum(xSamples*yMean) / len(xSamples) |
|
|||
1241 | sigma=sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) |
|
|||
1242 |
|
1022 | |||
1243 | print('****************************') |
|
1023 | '''***Fit Gauss CSPC01***''' | |
1244 | print('len(xSamples): ',len(xSamples)) |
|
1024 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3 : | |
1245 | print('yMean: ', yMean.shape, yMean[0:20]) |
|
1025 | try: | |
1246 | print('ySamples', ySamples.shape, ySamples[0,0:20]) |
|
1026 | popt01,pcov = curve_fit(self.gaus,xSamples[mask01],numpy.abs(CSPCMask01),p0=CSPCmoments[0]) | |
1247 | print('xSamples: ',xSamples.shape, xSamples[0:20]) |
|
1027 | popt02,pcov = curve_fit(self.gaus,xSamples[mask02],numpy.abs(CSPCMask02),p0=CSPCmoments[1]) | |
|
1028 | popt12,pcov = curve_fit(self.gaus,xSamples[mask12],numpy.abs(CSPCMask12),p0=CSPCmoments[2]) | |||
|
1029 | FitGauss01 = self.gaus(xSamples,*popt01) | |||
|
1030 | FitGauss02 = self.gaus(xSamples,*popt02) | |||
|
1031 | FitGauss12 = self.gaus(xSamples,*popt12) | |||
|
1032 | except: | |||
|
1033 | FitGauss01=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[0])) | |||
|
1034 | FitGauss02=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[1])) | |||
|
1035 | FitGauss12=numpy.ones(len(xSamples))*numpy.mean(numpy.abs(CSPCSamples[2])) | |||
|
1036 | ||||
|
1037 | ||||
|
1038 | CSPCopt = numpy.vstack([popt01,popt02,popt12]) | |||
|
1039 | ||||
|
1040 | '''****** Getting fij width ******''' | |||
|
1041 | ||||
|
1042 | yMean = numpy.average(ySamples, axis=0) # ySamples[0] | |||
|
1043 | ||||
|
1044 | '''******* Getting fitting Gaussian *******''' | |||
|
1045 | meanGauss = sum(xSamples*yMean) / len(xSamples) # Mu, velocidad radial (frecuencia) | |||
|
1046 | sigma2 = sum(yMean*(xSamples-meanGauss)**2) / len(xSamples) # Varianza, Ancho espectral (frecuencia) | |||
1248 |
|
1047 | |||
1249 | print('meanGauss',meanGauss) |
|
1048 | yMoments = self.Moments(yMean, xSamples) | |
1250 | print('sigma',sigma) |
|
|||
1251 |
|
1049 | |||
1252 | #if (abs(meanGauss/sigma**2) > 0.0001) : #0.000000001): |
|
1050 | if dbSNR > SNRlimit and numpy.abs(SPCmoments[1])<3: # and abs(meanGauss/sigma2) > 0.00001: | |
1253 | if dbSNR > SNRlimit : |
|
1051 | try: | |
1254 | try: |
|
1052 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=yMoments) | |
1255 | popt,pcov = curve_fit(self.gaus,xSamples,yMean,p0=[1,meanGauss,sigma]) |
|
1053 | FitGauss=self.gaus(xSamples,*popt) | |
1256 |
|
1054 | |||
1257 | if numpy.amax(popt)>numpy.amax(yMean)*0.3: |
|
|||
1258 | FitGauss=self.gaus(xSamples,*popt) |
|
|||
1259 |
|
||||
1260 | else: |
|
|||
1261 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
|||
1262 | print('Verificador: Dentro', Height) |
|
|||
1263 | except :#RuntimeError: |
|
1055 | except :#RuntimeError: | |
1264 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1056 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1265 |
|
1057 | |||
1266 |
|
1058 | |||
1267 | else: |
|
1059 | else: | |
1268 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) |
|
1060 | FitGauss=numpy.ones(len(xSamples))*numpy.mean(yMean) | |
1269 |
|
1061 | |||
1270 | Maximun=numpy.amax(yMean) |
|
|||
1271 | eMinus1=Maximun*numpy.exp(-1)#*0.8 |
|
|||
1272 |
|
1062 | |||
1273 | HWpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-eMinus1))) |
|
|||
1274 | HalfWidth= xFrec[HWpos] |
|
|||
1275 | GCpos=self.Find(FitGauss, numpy.amax(FitGauss)) |
|
|||
1276 | Vpos=self.Find(FactNorm, numpy.amax(FactNorm)) |
|
|||
1277 |
|
||||
1278 | #Vpos=FirstMoment[] |
|
|||
1279 |
|
1063 | |||
1280 | '''****** Getting Fij ******''' |
|
1064 | '''****** Getting Fij ******''' | |
|
1065 | Fijcspc = CSPCopt[:,2]/2*3 | |||
|
1066 | ||||
|
1067 | ||||
|
1068 | GaussCenter = popt[1] #xFrec[GCpos] | |||
|
1069 | #Punto en Eje X de la Gaussiana donde se encuentra el centro | |||
|
1070 | ClosestCenter = xSamples[numpy.abs(xSamples-GaussCenter).argmin()] | |||
|
1071 | PointGauCenter = numpy.where(xSamples==ClosestCenter)[0][0] | |||
|
1072 | ||||
|
1073 | #Punto e^-1 hubicado en la Gaussiana | |||
|
1074 | PeMinus1 = numpy.max(FitGauss)* numpy.exp(-1) | |||
|
1075 | FijClosest = FitGauss[numpy.abs(FitGauss-PeMinus1).argmin()] # El punto mas cercano a "Peminus1" dentro de "FitGauss" | |||
|
1076 | PointFij = numpy.where(FitGauss==FijClosest)[0][0] | |||
1281 |
|
1077 | |||
1282 | GaussCenter=xFrec[GCpos] |
|
1078 | if xSamples[PointFij] > xSamples[PointGauCenter]: | |
1283 | if (GaussCenter<0 and HalfWidth>0) or (GaussCenter>0 and HalfWidth<0): |
|
1079 | Fij = xSamples[PointFij] - xSamples[PointGauCenter] | |
1284 | Fij=abs(GaussCenter)+abs(HalfWidth)+0.0000001 |
|
1080 | ||
1285 | else: |
|
1081 | else: | |
1286 | Fij=abs(GaussCenter-HalfWidth)+0.0000001 |
|
1082 | Fij = xSamples[PointGauCenter] - xSamples[PointFij] | |
|
1083 | ||||
|
1084 | ||||
|
1085 | '''****** Taking frequency ranges from SPCs ******''' | |||
1287 |
|
1086 | |||
1288 | '''****** Getting Frecuency range of significant data ******''' |
|
|||
1289 |
|
1087 | |||
1290 | Rangpos=self.Find(FitGauss,min(FitGauss, key=lambda value:abs(value-Maximun*0.10))) |
|
1088 | #GaussCenter = popt[1] #Primer momento 01 | |
|
1089 | GauWidth = popt[2] *3/2 #Ancho de banda de Gau01 | |||
|
1090 | Range = numpy.empty(2) | |||
|
1091 | Range[0] = GaussCenter - GauWidth | |||
|
1092 | Range[1] = GaussCenter + GauWidth | |||
|
1093 | #Punto en Eje X de la Gaussiana donde se encuentra ancho de banda (min:max) | |||
|
1094 | ClosRangeMin = xSamples[numpy.abs(xSamples-Range[0]).argmin()] | |||
|
1095 | ClosRangeMax = xSamples[numpy.abs(xSamples-Range[1]).argmin()] | |||
1291 |
|
1096 | |||
1292 | if Rangpos<GCpos: |
|
1097 | PointRangeMin = numpy.where(xSamples==ClosRangeMin)[0][0] | |
1293 | Range=numpy.array([Rangpos,2*GCpos-Rangpos]) |
|
1098 | PointRangeMax = numpy.where(xSamples==ClosRangeMax)[0][0] | |
1294 | elif Rangpos< ( len(xFrec)- len(xFrec)*0.1): |
|
1099 | ||
1295 |
|
|
1100 | Range=numpy.array([ PointRangeMin, PointRangeMax ]) | |
1296 |
|
|
1101 | ||
1297 | Range = numpy.array([0,0]) |
|
1102 | FrecRange = xFrec[ Range[0] : Range[1] ] | |
|
1103 | VelRange = xVel[ Range[0] : Range[1] ] | |||
1298 |
|
1104 | |||
1299 | print(' ') |
|
|||
1300 | print('GCpos',GCpos, ( len(xFrec)- len(xFrec)*0.1)) |
|
|||
1301 | print('Rangpos',Rangpos) |
|
|||
1302 | print('RANGE: ', Range) |
|
|||
1303 | FrecRange=xFrec[Range[0]:Range[1]] |
|
|||
1304 |
|
1105 | |||
1305 | '''****** Getting SCPC Slope ******''' |
|
1106 | '''****** Getting SCPC Slope ******''' | |
1306 |
|
1107 | |||
1307 | for i in range(spc.shape[0]): |
|
1108 | for i in range(spc.shape[0]): | |
1308 |
|
1109 | |||
1309 |
if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0. |
|
1110 | if len(FrecRange)>5 and len(FrecRange)<spc.shape[1]*0.3: | |
1310 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) |
|
1111 | PhaseRange=self.moving_average(phase[i,Range[0]:Range[1]],N=3) | |
|
1112 | ||||
|
1113 | '''***********************VelRange******************''' | |||
|
1114 | ||||
|
1115 | mask = ~numpy.isnan(FrecRange) & ~numpy.isnan(PhaseRange) | |||
1311 |
|
1116 | |||
1312 | print('FrecRange', len(FrecRange) , FrecRange) |
|
|||
1313 | print('PhaseRange', len(PhaseRange), PhaseRange) |
|
|||
1314 | print(' ') |
|
|||
1315 | if len(FrecRange) == len(PhaseRange): |
|
1117 | if len(FrecRange) == len(PhaseRange): | |
1316 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange,PhaseRange) |
|
1118 | try: | |
1317 | PhaseSlope[i]=slope |
|
1119 | slope, intercept, r_value, p_value, std_err = stats.linregress(FrecRange[mask], PhaseRange[mask]) | |
1318 |
|
|
1120 | PhaseSlope[i]=slope | |
|
1121 | PhaseInter[i]=intercept | |||
|
1122 | except: | |||
|
1123 | PhaseSlope[i]=0 | |||
|
1124 | PhaseInter[i]=0 | |||
1319 | else: |
|
1125 | else: | |
1320 | PhaseSlope[i]=0 |
|
1126 | PhaseSlope[i]=0 | |
1321 | PhaseInter[i]=0 |
|
1127 | PhaseInter[i]=0 | |
1322 | else: |
|
1128 | else: | |
1323 | PhaseSlope[i]=0 |
|
1129 | PhaseSlope[i]=0 | |
1324 | PhaseInter[i]=0 |
|
1130 | PhaseInter[i]=0 | |
1325 |
|
1131 | |||
|
1132 | ||||
1326 | '''Getting constant C''' |
|
1133 | '''Getting constant C''' | |
1327 | cC=(Fij*numpy.pi)**2 |
|
1134 | cC=(Fij*numpy.pi)**2 | |
1328 |
|
1135 | |||
1329 | '''****** Getting constants F and G ******''' |
|
1136 | '''****** Getting constants F and G ******''' | |
1330 |
MijEijNij=numpy.array([[ |
|
1137 | MijEijNij=numpy.array([[Xi02,Eta02], [Xi12,Eta12]]) | |
1331 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) |
|
1138 | MijResult0=(-PhaseSlope[1]*cC) / (2*numpy.pi) | |
1332 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) |
|
1139 | MijResult1=(-PhaseSlope[2]*cC) / (2*numpy.pi) | |
1333 | MijResults=numpy.array([MijResult0,MijResult1]) |
|
1140 | MijResults=numpy.array([MijResult0,MijResult1]) | |
1334 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) |
|
1141 | (cF,cG) = numpy.linalg.solve(MijEijNij, MijResults) | |
1335 |
|
1142 | |||
1336 | '''****** Getting constants A, B and H ******''' |
|
1143 | '''****** Getting constants A, B and H ******''' | |
1337 | W01=numpy.amax(coherence[0]) |
|
1144 | W01=numpy.nanmax( FitGauss01 ) #numpy.abs(CSPCSamples[0])) | |
1338 | W02=numpy.amax(coherence[1]) |
|
1145 | W02=numpy.nanmax( FitGauss02 ) #numpy.abs(CSPCSamples[1])) | |
1339 | W12=numpy.amax(coherence[2]) |
|
1146 | W12=numpy.nanmax( FitGauss12 ) #numpy.abs(CSPCSamples[2])) | |
1340 |
|
1147 | |||
1341 |
WijResult0=((cF* |
|
1148 | WijResult0=((cF*Xi01+cG*Eta01)**2)/cC - numpy.log(W01 / numpy.sqrt(numpy.pi/cC)) | |
1342 |
WijResult1=((cF* |
|
1149 | WijResult1=((cF*Xi02+cG*Eta02)**2)/cC - numpy.log(W02 / numpy.sqrt(numpy.pi/cC)) | |
1343 |
WijResult2=((cF* |
|
1150 | WijResult2=((cF*Xi12+cG*Eta12)**2)/cC - numpy.log(W12 / numpy.sqrt(numpy.pi/cC)) | |
1344 |
|
1151 | |||
1345 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) |
|
1152 | WijResults=numpy.array([WijResult0, WijResult1, WijResult2]) | |
1346 |
|
1153 | |||
1347 |
WijEijNij=numpy.array([ [ |
|
1154 | WijEijNij=numpy.array([ [Xi01**2, Eta01**2, 2*Xi01*Eta01] , [Xi02**2, Eta02**2, 2*Xi02*Eta02] , [Xi12**2, Eta12**2, 2*Xi12*Eta12] ]) | |
1348 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) |
|
1155 | (cA,cB,cH) = numpy.linalg.solve(WijEijNij, WijResults) | |
1349 |
|
1156 | |||
1350 | VxVy=numpy.array([[cA,cH],[cH,cB]]) |
|
1157 | VxVy=numpy.array([[cA,cH],[cH,cB]]) | |
1351 |
|
||||
1352 | VxVyResults=numpy.array([-cF,-cG]) |
|
1158 | VxVyResults=numpy.array([-cF,-cG]) | |
1353 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) |
|
1159 | (Vx,Vy) = numpy.linalg.solve(VxVy, VxVyResults) | |
1354 |
|
1160 | |||
@@ -1356,10 +1162,15 class FullSpectralAnalysis(Operation): | |||||
1356 | Vmer = Vx |
|
1162 | Vmer = Vx | |
1357 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) |
|
1163 | Vmag=numpy.sqrt(Vzon**2+Vmer**2) | |
1358 | Vang=numpy.arctan2(Vmer,Vzon) |
|
1164 | Vang=numpy.arctan2(Vmer,Vzon) | |
1359 | Vver=xFrec[Vpos] |
|
1165 | if numpy.abs( popt[1] ) < 3.5 and len(FrecRange)>4: | |
1360 | print('vzon y vmer', Vzon, Vmer) |
|
1166 | Vver=popt[1] | |
1361 | return Vzon, Vmer, Vver, GaussCenter |
|
1167 | else: | |
1362 |
|
1168 | Vver=numpy.NaN | ||
|
1169 | FitGaussCSPC = numpy.array([FitGauss01,FitGauss02,FitGauss12]) | |||
|
1170 | ||||
|
1171 | ||||
|
1172 | return Vzon, Vmer, Vver, GaussCenter, PhaseSlope, FitGaussCSPC | |||
|
1173 | ||||
1363 | class SpectralMoments(Operation): |
|
1174 | class SpectralMoments(Operation): | |
1364 |
|
1175 | |||
1365 | ''' |
|
1176 | ''' | |
@@ -1384,7 +1195,7 class SpectralMoments(Operation): | |||||
1384 | self.dataOut.noise : Noise level per channel |
|
1195 | self.dataOut.noise : Noise level per channel | |
1385 |
|
1196 | |||
1386 | Affected: |
|
1197 | Affected: | |
1387 |
self.dataOut. |
|
1198 | self.dataOut.moments : Parameters per channel | |
1388 | self.dataOut.data_SNR : SNR per channel |
|
1199 | self.dataOut.data_SNR : SNR per channel | |
1389 |
|
1200 | |||
1390 | ''' |
|
1201 | ''' | |
@@ -1401,7 +1212,7 class SpectralMoments(Operation): | |||||
1401 | for ind in range(nChannel): |
|
1212 | for ind in range(nChannel): | |
1402 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) |
|
1213 | data_param[ind,:,:] = self.__calculateMoments( data[ind,:,:] , absc , noise[ind] ) | |
1403 |
|
1214 | |||
1404 |
dataOut. |
|
1215 | dataOut.moments = data_param[:,1:,:] | |
1405 | dataOut.data_SNR = data_param[:,0] |
|
1216 | dataOut.data_SNR = data_param[:,0] | |
1406 | dataOut.data_DOP = data_param[:,1] |
|
1217 | dataOut.data_DOP = data_param[:,1] | |
1407 | dataOut.data_MEAN = data_param[:,2] |
|
1218 | dataOut.data_MEAN = data_param[:,2] | |
@@ -1431,6 +1242,8 class SpectralMoments(Operation): | |||||
1431 | vec_fd = numpy.zeros(oldspec.shape[1]) |
|
1242 | vec_fd = numpy.zeros(oldspec.shape[1]) | |
1432 | vec_w = numpy.zeros(oldspec.shape[1]) |
|
1243 | vec_w = numpy.zeros(oldspec.shape[1]) | |
1433 | vec_snr = numpy.zeros(oldspec.shape[1]) |
|
1244 | vec_snr = numpy.zeros(oldspec.shape[1]) | |
|
1245 | ||||
|
1246 | oldspec = numpy.ma.masked_invalid(oldspec) | |||
1434 |
|
1247 | |||
1435 | for ind in range(oldspec.shape[1]): |
|
1248 | for ind in range(oldspec.shape[1]): | |
1436 |
|
1249 | |||
@@ -1469,7 +1282,7 class SpectralMoments(Operation): | |||||
1469 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power |
|
1282 | fd = ((spec2[valid]- n0)*freq[valid]*fwindow[valid]).sum()/power | |
1470 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) |
|
1283 | w = math.sqrt(((spec2[valid] - n0)*fwindow[valid]*(freq[valid]- fd)**2).sum()/power) | |
1471 | snr = (spec2.mean()-n0)/n0 |
|
1284 | snr = (spec2.mean()-n0)/n0 | |
1472 |
|
|
1285 | ||
1473 | if (snr < 1.e-20) : |
|
1286 | if (snr < 1.e-20) : | |
1474 | snr = 1.e-20 |
|
1287 | snr = 1.e-20 | |
1475 |
|
1288 | |||
@@ -1477,7 +1290,7 class SpectralMoments(Operation): | |||||
1477 | vec_fd[ind] = fd |
|
1290 | vec_fd[ind] = fd | |
1478 | vec_w[ind] = w |
|
1291 | vec_w[ind] = w | |
1479 | vec_snr[ind] = snr |
|
1292 | vec_snr[ind] = snr | |
1480 |
|
|
1293 | ||
1481 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) |
|
1294 | moments = numpy.vstack((vec_snr, vec_power, vec_fd, vec_w)) | |
1482 | return moments |
|
1295 | return moments | |
1483 |
|
1296 | |||
@@ -1675,7 +1488,6 class SpectralFitting(Operation): | |||||
1675 | dataCross = dataCross**2/K |
|
1488 | dataCross = dataCross**2/K | |
1676 |
|
1489 | |||
1677 | for h in range(nHeights): |
|
1490 | for h in range(nHeights): | |
1678 | # print self.dataOut.heightList[h] |
|
|||
1679 |
|
1491 | |||
1680 | #Input |
|
1492 | #Input | |
1681 | d = data[:,h] |
|
1493 | d = data[:,h] | |
@@ -1734,7 +1546,7 class SpectralFitting(Operation): | |||||
1734 |
|
1546 | |||
1735 | fm = self.dataOut.library.modelFunction(p, constants) |
|
1547 | fm = self.dataOut.library.modelFunction(p, constants) | |
1736 | fmp=numpy.dot(LT,fm) |
|
1548 | fmp=numpy.dot(LT,fm) | |
1737 |
|
|
1549 | ||
1738 | return dp-fmp |
|
1550 | return dp-fmp | |
1739 |
|
1551 | |||
1740 | def __getSNR(self, z, noise): |
|
1552 | def __getSNR(self, z, noise): | |
@@ -1768,8 +1580,8 class WindProfiler(Operation): | |||||
1768 |
|
1580 | |||
1769 | n = None |
|
1581 | n = None | |
1770 |
|
1582 | |||
1771 |
def __init__(self |
|
1583 | def __init__(self): | |
1772 |
Operation.__init__(self |
|
1584 | Operation.__init__(self) | |
1773 |
|
1585 | |||
1774 | def __calculateCosDir(self, elev, azim): |
|
1586 | def __calculateCosDir(self, elev, azim): | |
1775 | zen = (90 - elev)*numpy.pi/180 |
|
1587 | zen = (90 - elev)*numpy.pi/180 | |
@@ -2071,12 +1883,9 class WindProfiler(Operation): | |||||
2071 |
|
1883 | |||
2072 | Parameters affected: Winds |
|
1884 | Parameters affected: Winds | |
2073 | ''' |
|
1885 | ''' | |
2074 | # print arrayMeteor.shape |
|
|||
2075 | #Settings |
|
1886 | #Settings | |
2076 | nInt = (heightMax - heightMin)/2 |
|
1887 | nInt = (heightMax - heightMin)/2 | |
2077 | # print nInt |
|
|||
2078 | nInt = int(nInt) |
|
1888 | nInt = int(nInt) | |
2079 | # print nInt |
|
|||
2080 | winds = numpy.zeros((2,nInt))*numpy.nan |
|
1889 | winds = numpy.zeros((2,nInt))*numpy.nan | |
2081 |
|
1890 | |||
2082 | #Filter errors |
|
1891 | #Filter errors | |
@@ -2475,8 +2284,8 class WindProfiler(Operation): | |||||
2475 |
|
2284 | |||
2476 | class EWDriftsEstimation(Operation): |
|
2285 | class EWDriftsEstimation(Operation): | |
2477 |
|
2286 | |||
2478 |
def __init__(self |
|
2287 | def __init__(self): | |
2479 |
Operation.__init__(self |
|
2288 | Operation.__init__(self) | |
2480 |
|
2289 | |||
2481 | def __correctValues(self, heiRang, phi, velRadial, SNR): |
|
2290 | def __correctValues(self, heiRang, phi, velRadial, SNR): | |
2482 | listPhi = phi.tolist() |
|
2291 | listPhi = phi.tolist() |
@@ -159,9 +159,7 class SpectraProc(ProcessingUnit): | |||||
159 | dtype='complex') |
|
159 | dtype='complex') | |
160 |
|
160 | |||
161 | if self.dataIn.flagDataAsBlock: |
|
161 | if self.dataIn.flagDataAsBlock: | |
162 | # data dimension: [nChannels, nProfiles, nSamples] |
|
|||
163 | nVoltProfiles = self.dataIn.data.shape[1] |
|
162 | nVoltProfiles = self.dataIn.data.shape[1] | |
164 | # nVoltProfiles = self.dataIn.nProfiles |
|
|||
165 |
|
163 | |||
166 | if nVoltProfiles == nProfiles: |
|
164 | if nVoltProfiles == nProfiles: | |
167 | self.buffer = self.dataIn.data.copy() |
|
165 | self.buffer = self.dataIn.data.copy() | |
@@ -299,7 +297,57 class SpectraProc(ProcessingUnit): | |||||
299 | self.__selectPairsByChannel(self.dataOut.channelList) |
|
297 | self.__selectPairsByChannel(self.dataOut.channelList) | |
300 |
|
298 | |||
301 | return 1 |
|
299 | return 1 | |
|
300 | ||||
|
301 | ||||
|
302 | def selectFFTs(self, minFFT, maxFFT ): | |||
|
303 | """ | |||
|
304 | Selecciona un bloque de datos en base a un grupo de valores de puntos FFTs segun el rango | |||
|
305 | minFFT<= FFT <= maxFFT | |||
|
306 | """ | |||
|
307 | ||||
|
308 | if (minFFT > maxFFT): | |||
|
309 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minFFT, maxFFT)) | |||
|
310 | ||||
|
311 | if (minFFT < self.dataOut.getFreqRange()[0]): | |||
|
312 | minFFT = self.dataOut.getFreqRange()[0] | |||
|
313 | ||||
|
314 | if (maxFFT > self.dataOut.getFreqRange()[-1]): | |||
|
315 | maxFFT = self.dataOut.getFreqRange()[-1] | |||
|
316 | ||||
|
317 | minIndex = 0 | |||
|
318 | maxIndex = 0 | |||
|
319 | FFTs = self.dataOut.getFreqRange() | |||
|
320 | ||||
|
321 | inda = numpy.where(FFTs >= minFFT) | |||
|
322 | indb = numpy.where(FFTs <= maxFFT) | |||
|
323 | ||||
|
324 | try: | |||
|
325 | minIndex = inda[0][0] | |||
|
326 | except: | |||
|
327 | minIndex = 0 | |||
|
328 | ||||
|
329 | try: | |||
|
330 | maxIndex = indb[0][-1] | |||
|
331 | except: | |||
|
332 | maxIndex = len(FFTs) | |||
|
333 | ||||
|
334 | self.selectFFTsByIndex(minIndex, maxIndex) | |||
302 |
|
335 | |||
|
336 | return 1 | |||
|
337 | ||||
|
338 | ||||
|
339 | def setH0(self, h0, deltaHeight = None): | |||
|
340 | ||||
|
341 | if not deltaHeight: | |||
|
342 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |||
|
343 | ||||
|
344 | nHeights = self.dataOut.nHeights | |||
|
345 | ||||
|
346 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight | |||
|
347 | ||||
|
348 | self.dataOut.heightList = newHeiRange | |||
|
349 | ||||
|
350 | ||||
303 | def selectHeights(self, minHei, maxHei): |
|
351 | def selectHeights(self, minHei, maxHei): | |
304 | """ |
|
352 | """ | |
305 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
353 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango | |
@@ -316,9 +364,9 class SpectraProc(ProcessingUnit): | |||||
316 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
364 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 | |
317 | """ |
|
365 | """ | |
318 |
|
366 | |||
|
367 | ||||
319 | if (minHei > maxHei): |
|
368 | if (minHei > maxHei): | |
320 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % ( |
|
369 | raise ValueError("Error selecting heights: Height range (%d,%d) is not valid" % (minHei, maxHei)) | |
321 | minHei, maxHei)) |
|
|||
322 |
|
370 | |||
323 | if (minHei < self.dataOut.heightList[0]): |
|
371 | if (minHei < self.dataOut.heightList[0]): | |
324 | minHei = self.dataOut.heightList[0] |
|
372 | minHei = self.dataOut.heightList[0] | |
@@ -344,6 +392,7 class SpectraProc(ProcessingUnit): | |||||
344 | maxIndex = len(heights) |
|
392 | maxIndex = len(heights) | |
345 |
|
393 | |||
346 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
394 | self.selectHeightsByIndex(minIndex, maxIndex) | |
|
395 | ||||
347 |
|
396 | |||
348 | return 1 |
|
397 | return 1 | |
349 |
|
398 | |||
@@ -389,6 +438,40 class SpectraProc(ProcessingUnit): | |||||
389 |
|
438 | |||
390 | return 1 |
|
439 | return 1 | |
391 |
|
440 | |||
|
441 | def selectFFTsByIndex(self, minIndex, maxIndex): | |||
|
442 | """ | |||
|
443 | ||||
|
444 | """ | |||
|
445 | ||||
|
446 | if (minIndex < 0) or (minIndex > maxIndex): | |||
|
447 | raise ValueError("Error selecting heights: Index range (%d,%d) is not valid" % (minIndex, maxIndex)) | |||
|
448 | ||||
|
449 | if (maxIndex >= self.dataOut.nProfiles): | |||
|
450 | maxIndex = self.dataOut.nProfiles-1 | |||
|
451 | ||||
|
452 | #Spectra | |||
|
453 | data_spc = self.dataOut.data_spc[:,minIndex:maxIndex+1,:] | |||
|
454 | ||||
|
455 | data_cspc = None | |||
|
456 | if self.dataOut.data_cspc is not None: | |||
|
457 | data_cspc = self.dataOut.data_cspc[:,minIndex:maxIndex+1,:] | |||
|
458 | ||||
|
459 | data_dc = None | |||
|
460 | if self.dataOut.data_dc is not None: | |||
|
461 | data_dc = self.dataOut.data_dc[minIndex:maxIndex+1,:] | |||
|
462 | ||||
|
463 | self.dataOut.data_spc = data_spc | |||
|
464 | self.dataOut.data_cspc = data_cspc | |||
|
465 | self.dataOut.data_dc = data_dc | |||
|
466 | ||||
|
467 | self.dataOut.ippSeconds = self.dataOut.ippSeconds*(self.dataOut.nFFTPoints / numpy.shape(data_cspc)[1]) | |||
|
468 | self.dataOut.nFFTPoints = numpy.shape(data_cspc)[1] | |||
|
469 | self.dataOut.profilesPerBlock = numpy.shape(data_cspc)[1] | |||
|
470 | ||||
|
471 | return 1 | |||
|
472 | ||||
|
473 | ||||
|
474 | ||||
392 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
475 | def selectHeightsByIndex(self, minIndex, maxIndex): | |
393 | """ |
|
476 | """ | |
394 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
477 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango | |
@@ -494,7 +577,32 class SpectraProc(ProcessingUnit): | |||||
494 |
|
577 | |||
495 | return 1 |
|
578 | return 1 | |
496 |
|
579 | |||
497 | def removeInterference(self, interf=2, hei_interf=None, nhei_interf=None, offhei_interf=None): |
|
580 | def removeInterference2(self): | |
|
581 | ||||
|
582 | cspc = self.dataOut.data_cspc | |||
|
583 | spc = self.dataOut.data_spc | |||
|
584 | Heights = numpy.arange(cspc.shape[2]) | |||
|
585 | realCspc = numpy.abs(cspc) | |||
|
586 | ||||
|
587 | for i in range(cspc.shape[0]): | |||
|
588 | LinePower= numpy.sum(realCspc[i], axis=0) | |||
|
589 | Threshold = numpy.amax(LinePower)-numpy.sort(LinePower)[len(Heights)-int(len(Heights)*0.1)] | |||
|
590 | SelectedHeights = Heights[ numpy.where( LinePower < Threshold ) ] | |||
|
591 | InterferenceSum = numpy.sum( realCspc[i,:,SelectedHeights], axis=0 ) | |||
|
592 | InterferenceThresholdMin = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.98)] | |||
|
593 | InterferenceThresholdMax = numpy.sort(InterferenceSum)[int(len(InterferenceSum)*0.99)] | |||
|
594 | ||||
|
595 | ||||
|
596 | InterferenceRange = numpy.where( ([InterferenceSum > InterferenceThresholdMin]))# , InterferenceSum < InterferenceThresholdMax]) ) | |||
|
597 | #InterferenceRange = numpy.where( ([InterferenceRange < InterferenceThresholdMax])) | |||
|
598 | if len(InterferenceRange)<int(cspc.shape[1]*0.3): | |||
|
599 | cspc[i,InterferenceRange,:] = numpy.NaN | |||
|
600 | ||||
|
601 | ||||
|
602 | ||||
|
603 | self.dataOut.data_cspc = cspc | |||
|
604 | ||||
|
605 | def removeInterference(self, interf = 2,hei_interf = None, nhei_interf = None, offhei_interf = None): | |||
498 |
|
606 | |||
499 | jspectra = self.dataOut.data_spc |
|
607 | jspectra = self.dataOut.data_spc | |
500 | jcspectra = self.dataOut.data_cspc |
|
608 | jcspectra = self.dataOut.data_cspc |
This diff has been collapsed as it changes many lines, (612 lines changed) Show them Hide them | |||||
@@ -7,11 +7,9 import glob | |||||
7 | import time |
|
7 | import time | |
8 | import json |
|
8 | import json | |
9 | import numpy |
|
9 | import numpy | |
10 | import paho.mqtt.client as mqtt |
|
|||
11 | import zmq |
|
10 | import zmq | |
12 | import datetime |
|
11 | import datetime | |
13 | import ftplib |
|
12 | import ftplib | |
14 | from zmq.utils.monitor import recv_monitor_message |
|
|||
15 | from functools import wraps |
|
13 | from functools import wraps | |
16 | from threading import Thread |
|
14 | from threading import Thread | |
17 | from multiprocessing import Process |
|
15 | from multiprocessing import Process | |
@@ -54,428 +52,52 def get_plot_code(s): | |||||
54 | else: |
|
52 | else: | |
55 | return 24 |
|
53 | return 24 | |
56 |
|
54 | |||
57 | def roundFloats(obj): |
|
|||
58 | if isinstance(obj, list): |
|
|||
59 | return list(map(roundFloats, obj)) |
|
|||
60 | elif isinstance(obj, float): |
|
|||
61 | return round(obj, 2) |
|
|||
62 |
|
||||
63 | def decimate(z, MAXNUMY): |
|
55 | def decimate(z, MAXNUMY): | |
64 | dy = int(len(z[0])/MAXNUMY) + 1 |
|
56 | dy = int(len(z[0])/MAXNUMY) + 1 | |
65 |
|
57 | |||
66 | return z[::, ::dy] |
|
58 | return z[::, ::dy] | |
67 |
|
59 | |||
68 | class throttle(object): |
|
|||
69 | ''' |
|
|||
70 | Decorator that prevents a function from being called more than once every |
|
|||
71 | time period. |
|
|||
72 | To create a function that cannot be called more than once a minute, but |
|
|||
73 | will sleep until it can be called: |
|
|||
74 | @throttle(minutes=1) |
|
|||
75 | def foo(): |
|
|||
76 | pass |
|
|||
77 |
|
||||
78 | for i in range(10): |
|
|||
79 | foo() |
|
|||
80 | print "This function has run %s times." % i |
|
|||
81 | ''' |
|
|||
82 |
|
||||
83 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
|||
84 | self.throttle_period = datetime.timedelta( |
|
|||
85 | seconds=seconds, minutes=minutes, hours=hours |
|
|||
86 | ) |
|
|||
87 |
|
||||
88 | self.time_of_last_call = datetime.datetime.min |
|
|||
89 |
|
||||
90 | def __call__(self, fn): |
|
|||
91 | @wraps(fn) |
|
|||
92 | def wrapper(*args, **kwargs): |
|
|||
93 | coerce = kwargs.pop('coerce', None) |
|
|||
94 | if coerce: |
|
|||
95 | self.time_of_last_call = datetime.datetime.now() |
|
|||
96 | return fn(*args, **kwargs) |
|
|||
97 | else: |
|
|||
98 | now = datetime.datetime.now() |
|
|||
99 | time_since_last_call = now - self.time_of_last_call |
|
|||
100 | time_left = self.throttle_period - time_since_last_call |
|
|||
101 |
|
||||
102 | if time_left > datetime.timedelta(seconds=0): |
|
|||
103 | return |
|
|||
104 |
|
||||
105 | self.time_of_last_call = datetime.datetime.now() |
|
|||
106 | return fn(*args, **kwargs) |
|
|||
107 |
|
||||
108 | return wrapper |
|
|||
109 |
|
||||
110 | class Data(object): |
|
|||
111 | ''' |
|
|||
112 | Object to hold data to be plotted |
|
|||
113 | ''' |
|
|||
114 |
|
||||
115 | def __init__(self, plottypes, throttle_value, exp_code, buffering=True): |
|
|||
116 | self.plottypes = plottypes |
|
|||
117 | self.throttle = throttle_value |
|
|||
118 | self.exp_code = exp_code |
|
|||
119 | self.buffering = buffering |
|
|||
120 | self.ended = False |
|
|||
121 | self.localtime = False |
|
|||
122 | self.meta = {} |
|
|||
123 | self.__times = [] |
|
|||
124 | self.__heights = [] |
|
|||
125 |
|
||||
126 | def __str__(self): |
|
|||
127 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
|||
128 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
|||
129 |
|
||||
130 | def __len__(self): |
|
|||
131 | return len(self.__times) |
|
|||
132 |
|
||||
133 | def __getitem__(self, key): |
|
|||
134 | if key not in self.data: |
|
|||
135 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
|||
136 |
|
||||
137 | if 'spc' in key or not self.buffering: |
|
|||
138 | ret = self.data[key] |
|
|||
139 | else: |
|
|||
140 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
|||
141 | if ret.ndim > 1: |
|
|||
142 | ret = numpy.swapaxes(ret, 0, 1) |
|
|||
143 | return ret |
|
|||
144 |
|
||||
145 | def __contains__(self, key): |
|
|||
146 | return key in self.data |
|
|||
147 |
|
||||
148 | def setup(self): |
|
|||
149 | ''' |
|
|||
150 | Configure object |
|
|||
151 | ''' |
|
|||
152 |
|
||||
153 | self.type = '' |
|
|||
154 | self.ended = False |
|
|||
155 | self.data = {} |
|
|||
156 | self.__times = [] |
|
|||
157 | self.__heights = [] |
|
|||
158 | self.__all_heights = set() |
|
|||
159 | for plot in self.plottypes: |
|
|||
160 | if 'snr' in plot: |
|
|||
161 | plot = 'snr' |
|
|||
162 | self.data[plot] = {} |
|
|||
163 |
|
||||
164 | def shape(self, key): |
|
|||
165 | ''' |
|
|||
166 | Get the shape of the one-element data for the given key |
|
|||
167 | ''' |
|
|||
168 |
|
||||
169 | if len(self.data[key]): |
|
|||
170 | if 'spc' in key or not self.buffering: |
|
|||
171 | return self.data[key].shape |
|
|||
172 | return self.data[key][self.__times[0]].shape |
|
|||
173 | return (0,) |
|
|||
174 |
|
||||
175 | def update(self, dataOut, tm): |
|
|||
176 | ''' |
|
|||
177 | Update data object with new dataOut |
|
|||
178 | ''' |
|
|||
179 |
|
||||
180 | if tm in self.__times: |
|
|||
181 | return |
|
|||
182 |
|
||||
183 | self.type = dataOut.type |
|
|||
184 | self.parameters = getattr(dataOut, 'parameters', []) |
|
|||
185 | if hasattr(dataOut, 'pairsList'): |
|
|||
186 | self.pairs = dataOut.pairsList |
|
|||
187 | if hasattr(dataOut, 'meta'): |
|
|||
188 | self.meta = dataOut.meta |
|
|||
189 | self.channels = dataOut.channelList |
|
|||
190 | self.interval = dataOut.getTimeInterval() |
|
|||
191 | self.localtime = dataOut.useLocalTime |
|
|||
192 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: |
|
|||
193 | self.xrange = (dataOut.getFreqRange(1)/1000., dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
|||
194 | self.__heights.append(dataOut.heightList) |
|
|||
195 | self.__all_heights.update(dataOut.heightList) |
|
|||
196 | self.__times.append(tm) |
|
|||
197 |
|
||||
198 | for plot in self.plottypes: |
|
|||
199 | if plot == 'spc': |
|
|||
200 | z = dataOut.data_spc/dataOut.normFactor |
|
|||
201 | buffer = 10*numpy.log10(z) |
|
|||
202 | if plot == 'cspc': |
|
|||
203 | buffer = dataOut.data_cspc |
|
|||
204 | if plot == 'noise': |
|
|||
205 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
|||
206 | if plot == 'rti': |
|
|||
207 | buffer = dataOut.getPower() |
|
|||
208 | if plot == 'snr_db': |
|
|||
209 | buffer = dataOut.data_SNR |
|
|||
210 | if plot == 'snr': |
|
|||
211 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
|||
212 | if plot == 'dop': |
|
|||
213 | buffer = 10*numpy.log10(dataOut.data_DOP) |
|
|||
214 | if plot == 'mean': |
|
|||
215 | buffer = dataOut.data_MEAN |
|
|||
216 | if plot == 'std': |
|
|||
217 | buffer = dataOut.data_STD |
|
|||
218 | if plot == 'coh': |
|
|||
219 | buffer = dataOut.getCoherence() |
|
|||
220 | if plot == 'phase': |
|
|||
221 | buffer = dataOut.getCoherence(phase=True) |
|
|||
222 | if plot == 'output': |
|
|||
223 | buffer = dataOut.data_output |
|
|||
224 | if plot == 'param': |
|
|||
225 | buffer = dataOut.data_param |
|
|||
226 |
|
||||
227 | if 'spc' in plot: |
|
|||
228 | self.data[plot] = buffer |
|
|||
229 | else: |
|
|||
230 | if self.buffering: |
|
|||
231 | self.data[plot][tm] = buffer |
|
|||
232 | else: |
|
|||
233 | self.data[plot] = buffer |
|
|||
234 |
|
||||
235 | def normalize_heights(self): |
|
|||
236 | ''' |
|
|||
237 | Ensure same-dimension of the data for different heighList |
|
|||
238 | ''' |
|
|||
239 |
|
||||
240 | H = numpy.array(list(self.__all_heights)) |
|
|||
241 | H.sort() |
|
|||
242 | for key in self.data: |
|
|||
243 | shape = self.shape(key)[:-1] + H.shape |
|
|||
244 | for tm, obj in list(self.data[key].items()): |
|
|||
245 | h = self.__heights[self.__times.index(tm)] |
|
|||
246 | if H.size == h.size: |
|
|||
247 | continue |
|
|||
248 | index = numpy.where(numpy.in1d(H, h))[0] |
|
|||
249 | dummy = numpy.zeros(shape) + numpy.nan |
|
|||
250 | if len(shape) == 2: |
|
|||
251 | dummy[:, index] = obj |
|
|||
252 | else: |
|
|||
253 | dummy[index] = obj |
|
|||
254 | self.data[key][tm] = dummy |
|
|||
255 |
|
||||
256 | self.__heights = [H for tm in self.__times] |
|
|||
257 |
|
||||
258 | def jsonify(self, decimate=False): |
|
|||
259 | ''' |
|
|||
260 | Convert data to json |
|
|||
261 | ''' |
|
|||
262 |
|
||||
263 | data = {} |
|
|||
264 | tm = self.times[-1] |
|
|||
265 | dy = int(self.heights.size/MAXNUMY) + 1 |
|
|||
266 | for key in self.data: |
|
|||
267 | if key in ('spc', 'cspc') or not self.buffering: |
|
|||
268 | dx = int(self.data[key].shape[1]/MAXNUMX) + 1 |
|
|||
269 | data[key] = roundFloats(self.data[key][::, ::dx, ::dy].tolist()) |
|
|||
270 | else: |
|
|||
271 | data[key] = roundFloats(self.data[key][tm].tolist()) |
|
|||
272 |
|
||||
273 | ret = {'data': data} |
|
|||
274 | ret['exp_code'] = self.exp_code |
|
|||
275 | ret['time'] = tm |
|
|||
276 | ret['interval'] = self.interval |
|
|||
277 | ret['localtime'] = self.localtime |
|
|||
278 | ret['yrange'] = roundFloats(self.heights[::dy].tolist()) |
|
|||
279 | if 'spc' in self.data or 'cspc' in self.data: |
|
|||
280 | ret['xrange'] = roundFloats(self.xrange[2][::dx].tolist()) |
|
|||
281 | else: |
|
|||
282 | ret['xrange'] = [] |
|
|||
283 | if hasattr(self, 'pairs'): |
|
|||
284 | ret['pairs'] = self.pairs |
|
|||
285 | else: |
|
|||
286 | ret['pairs'] = [] |
|
|||
287 |
|
||||
288 | for key, value in list(self.meta.items()): |
|
|||
289 | ret[key] = value |
|
|||
290 |
|
||||
291 | return json.dumps(ret) |
|
|||
292 |
|
||||
293 | @property |
|
|||
294 | def times(self): |
|
|||
295 | ''' |
|
|||
296 | Return the list of times of the current data |
|
|||
297 | ''' |
|
|||
298 |
|
||||
299 | ret = numpy.array(self.__times) |
|
|||
300 | ret.sort() |
|
|||
301 | return ret |
|
|||
302 |
|
||||
303 | @property |
|
|||
304 | def heights(self): |
|
|||
305 | ''' |
|
|||
306 | Return the list of heights of the current data |
|
|||
307 | ''' |
|
|||
308 |
|
||||
309 | return numpy.array(self.__heights[-1]) |
|
|||
310 |
|
60 | |||
311 | class PublishData(Operation): |
|
61 | class PublishData(Operation): | |
312 | ''' |
|
62 | ''' | |
313 | Operation to send data over zmq. |
|
63 | Operation to send data over zmq. | |
314 | ''' |
|
64 | ''' | |
315 |
|
65 | |||
316 |
__attrs__ = ['host', 'port', 'delay', ' |
|
66 | __attrs__ = ['host', 'port', 'delay', 'verbose'] | |
317 |
|
67 | |||
318 | def __init__(self, **kwargs): |
|
68 | def __init__(self, **kwargs): | |
319 | """Inicio.""" |
|
69 | """Inicio.""" | |
320 | Operation.__init__(self, **kwargs) |
|
70 | Operation.__init__(self, **kwargs) | |
321 | self.isConfig = False |
|
71 | self.isConfig = False | |
322 | self.client = None |
|
|||
323 | self.zeromq = None |
|
|||
324 | self.mqtt = None |
|
|||
325 |
|
72 | |||
326 | def on_disconnect(self, client, userdata, rc): |
|
73 | def setup(self, server='zmq.pipe', delay=0, verbose=True, **kwargs): | |
327 | if rc != 0: |
|
|||
328 | log.warning('Unexpected disconnection.') |
|
|||
329 | self.connect() |
|
|||
330 |
|
||||
331 | def connect(self): |
|
|||
332 | log.warning('trying to connect') |
|
|||
333 | try: |
|
|||
334 | self.client.connect( |
|
|||
335 | host=self.host, |
|
|||
336 | port=self.port, |
|
|||
337 | keepalive=60*10, |
|
|||
338 | bind_address='') |
|
|||
339 | self.client.loop_start() |
|
|||
340 | # self.client.publish( |
|
|||
341 | # self.topic + 'SETUP', |
|
|||
342 | # json.dumps(setup), |
|
|||
343 | # retain=True |
|
|||
344 | # ) |
|
|||
345 | except: |
|
|||
346 | log.error('MQTT Conection error.') |
|
|||
347 | self.client = False |
|
|||
348 |
|
||||
349 | def setup(self, port=1883, username=None, password=None, clientId="user", zeromq=1, verbose=True, **kwargs): |
|
|||
350 | self.counter = 0 |
|
74 | self.counter = 0 | |
351 | self.topic = kwargs.get('topic', 'schain') |
|
|||
352 | self.delay = kwargs.get('delay', 0) |
|
75 | self.delay = kwargs.get('delay', 0) | |
353 | self.plottype = kwargs.get('plottype', 'spectra') |
|
|||
354 | self.host = kwargs.get('host', "10.10.10.82") |
|
|||
355 | self.port = kwargs.get('port', 3000) |
|
|||
356 | self.clientId = clientId |
|
|||
357 | self.cnt = 0 |
|
76 | self.cnt = 0 | |
358 | self.zeromq = zeromq |
|
|||
359 | self.mqtt = kwargs.get('plottype', 0) |
|
|||
360 | self.client = None |
|
|||
361 | self.verbose = verbose |
|
77 | self.verbose = verbose | |
362 | setup = [] |
|
78 | setup = [] | |
363 | if mqtt is 1: |
|
79 | context = zmq.Context() | |
364 | self.client = mqtt.Client( |
|
80 | self.zmq_socket = context.socket(zmq.PUSH) | |
365 | client_id=self.clientId + self.topic + 'SCHAIN', |
|
81 | server = kwargs.get('server', 'zmq.pipe') | |
366 | clean_session=True) |
|
82 | ||
367 | self.client.on_disconnect = self.on_disconnect |
|
83 | if 'tcp://' in server: | |
368 | self.connect() |
|
84 | address = server | |
369 | for plot in self.plottype: |
|
85 | else: | |
370 | setup.append({ |
|
86 | address = 'ipc:///tmp/%s' % server | |
371 | 'plot': plot, |
|
87 | ||
372 | 'topic': self.topic + plot, |
|
88 | self.zmq_socket.connect(address) | |
373 | 'title': getattr(self, plot + '_' + 'title', False), |
|
89 | time.sleep(1) | |
374 | 'xlabel': getattr(self, plot + '_' + 'xlabel', False), |
|
|||
375 | 'ylabel': getattr(self, plot + '_' + 'ylabel', False), |
|
|||
376 | 'xrange': getattr(self, plot + '_' + 'xrange', False), |
|
|||
377 | 'yrange': getattr(self, plot + '_' + 'yrange', False), |
|
|||
378 | 'zrange': getattr(self, plot + '_' + 'zrange', False), |
|
|||
379 | }) |
|
|||
380 | if zeromq is 1: |
|
|||
381 | context = zmq.Context() |
|
|||
382 | self.zmq_socket = context.socket(zmq.PUSH) |
|
|||
383 | server = kwargs.get('server', 'zmq.pipe') |
|
|||
384 |
|
||||
385 | if 'tcp://' in server: |
|
|||
386 | address = server |
|
|||
387 | else: |
|
|||
388 | address = 'ipc:///tmp/%s' % server |
|
|||
389 |
|
||||
390 | self.zmq_socket.connect(address) |
|
|||
391 | time.sleep(1) |
|
|||
392 |
|
90 | |||
393 |
|
91 | |||
394 | def publish_data(self): |
|
92 | def publish_data(self): | |
395 | self.dataOut.finished = False |
|
93 | self.dataOut.finished = False | |
396 | if self.mqtt is 1: |
|
94 | ||
397 | yData = self.dataOut.heightList[:2].tolist() |
|
95 | if self.verbose: | |
398 | if self.plottype == 'spectra': |
|
96 | log.log( | |
399 | data = getattr(self.dataOut, 'data_spc') |
|
97 | 'Sending {} - {}'.format(self.dataOut.type, self.dataOut.datatime), | |
400 |
|
|
98 | self.name | |
401 | zdB = 10*numpy.log10(z) |
|
99 | ) | |
402 | xlen, ylen = zdB[0].shape |
|
100 | self.zmq_socket.send_pyobj(self.dataOut) | |
403 | dx = int(xlen/MAXNUMX) + 1 |
|
|||
404 | dy = int(ylen/MAXNUMY) + 1 |
|
|||
405 | Z = [0 for i in self.dataOut.channelList] |
|
|||
406 | for i in self.dataOut.channelList: |
|
|||
407 | Z[i] = zdB[i][::dx, ::dy].tolist() |
|
|||
408 | payload = { |
|
|||
409 | 'timestamp': self.dataOut.utctime, |
|
|||
410 | 'data': roundFloats(Z), |
|
|||
411 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
|||
412 | 'interval': self.dataOut.getTimeInterval(), |
|
|||
413 | 'type': self.plottype, |
|
|||
414 | 'yData': yData |
|
|||
415 | } |
|
|||
416 |
|
||||
417 | elif self.plottype in ('rti', 'power'): |
|
|||
418 | data = getattr(self.dataOut, 'data_spc') |
|
|||
419 | z = data/self.dataOut.normFactor |
|
|||
420 | avg = numpy.average(z, axis=1) |
|
|||
421 | avgdB = 10*numpy.log10(avg) |
|
|||
422 | xlen, ylen = z[0].shape |
|
|||
423 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
|||
424 | AVG = [0 for i in self.dataOut.channelList] |
|
|||
425 | for i in self.dataOut.channelList: |
|
|||
426 | AVG[i] = avgdB[i][::dy].tolist() |
|
|||
427 | payload = { |
|
|||
428 | 'timestamp': self.dataOut.utctime, |
|
|||
429 | 'data': roundFloats(AVG), |
|
|||
430 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
|||
431 | 'interval': self.dataOut.getTimeInterval(), |
|
|||
432 | 'type': self.plottype, |
|
|||
433 | 'yData': yData |
|
|||
434 | } |
|
|||
435 | elif self.plottype == 'noise': |
|
|||
436 | noise = self.dataOut.getNoise()/self.dataOut.normFactor |
|
|||
437 | noisedB = 10*numpy.log10(noise) |
|
|||
438 | payload = { |
|
|||
439 | 'timestamp': self.dataOut.utctime, |
|
|||
440 | 'data': roundFloats(noisedB.reshape(-1, 1).tolist()), |
|
|||
441 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
|||
442 | 'interval': self.dataOut.getTimeInterval(), |
|
|||
443 | 'type': self.plottype, |
|
|||
444 | 'yData': yData |
|
|||
445 | } |
|
|||
446 | elif self.plottype == 'snr': |
|
|||
447 | data = getattr(self.dataOut, 'data_SNR') |
|
|||
448 | avgdB = 10*numpy.log10(data) |
|
|||
449 |
|
||||
450 | ylen = data[0].size |
|
|||
451 | dy = numpy.floor(ylen/self.__MAXNUMY) + 1 |
|
|||
452 | AVG = [0 for i in self.dataOut.channelList] |
|
|||
453 | for i in self.dataOut.channelList: |
|
|||
454 | AVG[i] = avgdB[i][::dy].tolist() |
|
|||
455 | payload = { |
|
|||
456 | 'timestamp': self.dataOut.utctime, |
|
|||
457 | 'data': roundFloats(AVG), |
|
|||
458 | 'channels': ['Ch %s' % ch for ch in self.dataOut.channelList], |
|
|||
459 | 'type': self.plottype, |
|
|||
460 | 'yData': yData |
|
|||
461 | } |
|
|||
462 | else: |
|
|||
463 | print("Tipo de grafico invalido") |
|
|||
464 | payload = { |
|
|||
465 | 'data': 'None', |
|
|||
466 | 'timestamp': 'None', |
|
|||
467 | 'type': None |
|
|||
468 | } |
|
|||
469 |
|
||||
470 | self.client.publish(self.topic + self.plottype, json.dumps(payload), qos=0) |
|
|||
471 |
|
||||
472 | if self.zeromq is 1: |
|
|||
473 | if self.verbose: |
|
|||
474 | log.log( |
|
|||
475 | 'Sending {} - {}'.format(self.dataOut.type, self.dataOut.datatime), |
|
|||
476 | self.name |
|
|||
477 | ) |
|
|||
478 | self.zmq_socket.send_pyobj(self.dataOut) |
|
|||
479 |
|
101 | |||
480 | def run(self, dataOut, **kwargs): |
|
102 | def run(self, dataOut, **kwargs): | |
481 | self.dataOut = dataOut |
|
103 | self.dataOut = dataOut | |
@@ -487,15 +109,12 class PublishData(Operation): | |||||
487 | time.sleep(self.delay) |
|
109 | time.sleep(self.delay) | |
488 |
|
110 | |||
489 | def close(self): |
|
111 | def close(self): | |
490 | if self.zeromq is 1: |
|
112 | ||
491 |
|
|
113 | self.dataOut.finished = True | |
492 |
|
|
114 | self.zmq_socket.send_pyobj(self.dataOut) | |
493 |
|
|
115 | time.sleep(0.1) | |
494 |
|
|
116 | self.zmq_socket.close() | |
495 | if self.client: |
|
117 | ||
496 | self.client.loop_stop() |
|
|||
497 | self.client.disconnect() |
|
|||
498 |
|
||||
499 |
|
118 | |||
500 | class ReceiverData(ProcessingUnit): |
|
119 | class ReceiverData(ProcessingUnit): | |
501 |
|
120 | |||
@@ -536,185 +155,6 class ReceiverData(ProcessingUnit): | |||||
536 | 'Receiving') |
|
155 | 'Receiving') | |
537 |
|
156 | |||
538 |
|
157 | |||
539 | class PlotterReceiver(ProcessingUnit, Process): |
|
|||
540 |
|
||||
541 | throttle_value = 5 |
|
|||
542 | __attrs__ = ['server', 'plottypes', 'realtime', 'localtime', 'throttle', |
|
|||
543 | 'exp_code', 'web_server', 'buffering'] |
|
|||
544 |
|
||||
545 | def __init__(self, **kwargs): |
|
|||
546 |
|
||||
547 | ProcessingUnit.__init__(self, **kwargs) |
|
|||
548 | Process.__init__(self) |
|
|||
549 | self.mp = False |
|
|||
550 | self.isConfig = False |
|
|||
551 | self.isWebConfig = False |
|
|||
552 | self.connections = 0 |
|
|||
553 | server = kwargs.get('server', 'zmq.pipe') |
|
|||
554 | web_server = kwargs.get('web_server', None) |
|
|||
555 | if 'tcp://' in server: |
|
|||
556 | address = server |
|
|||
557 | else: |
|
|||
558 | address = 'ipc:///tmp/%s' % server |
|
|||
559 | self.address = address |
|
|||
560 | self.web_address = web_server |
|
|||
561 | self.plottypes = [s.strip() for s in kwargs.get('plottypes', 'rti').split(',')] |
|
|||
562 | self.realtime = kwargs.get('realtime', False) |
|
|||
563 | self.localtime = kwargs.get('localtime', True) |
|
|||
564 | self.buffering = kwargs.get('buffering', True) |
|
|||
565 | self.throttle_value = kwargs.get('throttle', 5) |
|
|||
566 | self.exp_code = kwargs.get('exp_code', None) |
|
|||
567 | self.sendData = self.initThrottle(self.throttle_value) |
|
|||
568 | self.dates = [] |
|
|||
569 | self.setup() |
|
|||
570 |
|
||||
571 | def setup(self): |
|
|||
572 |
|
||||
573 | self.data = Data(self.plottypes, self.throttle_value, self.exp_code, self.buffering) |
|
|||
574 | self.isConfig = True |
|
|||
575 |
|
||||
576 | def event_monitor(self, monitor): |
|
|||
577 |
|
||||
578 | events = {} |
|
|||
579 |
|
||||
580 | for name in dir(zmq): |
|
|||
581 | if name.startswith('EVENT_'): |
|
|||
582 | value = getattr(zmq, name) |
|
|||
583 | events[value] = name |
|
|||
584 |
|
||||
585 | while monitor.poll(): |
|
|||
586 | evt = recv_monitor_message(monitor) |
|
|||
587 | if evt['event'] == 32: |
|
|||
588 | self.connections += 1 |
|
|||
589 | if evt['event'] == 512: |
|
|||
590 | pass |
|
|||
591 |
|
||||
592 | evt.update({'description': events[evt['event']]}) |
|
|||
593 |
|
||||
594 | if evt['event'] == zmq.EVENT_MONITOR_STOPPED: |
|
|||
595 | break |
|
|||
596 | monitor.close() |
|
|||
597 | print('event monitor thread done!') |
|
|||
598 |
|
||||
599 | def initThrottle(self, throttle_value): |
|
|||
600 |
|
||||
601 | @throttle(seconds=throttle_value) |
|
|||
602 | def sendDataThrottled(fn_sender, data): |
|
|||
603 | fn_sender(data) |
|
|||
604 |
|
||||
605 | return sendDataThrottled |
|
|||
606 |
|
||||
607 | def send(self, data): |
|
|||
608 | log.log('Sending {}'.format(data), self.name) |
|
|||
609 | self.sender.send_pyobj(data) |
|
|||
610 |
|
||||
611 | def run(self): |
|
|||
612 |
|
||||
613 | log.log( |
|
|||
614 | 'Starting from {}'.format(self.address), |
|
|||
615 | self.name |
|
|||
616 | ) |
|
|||
617 |
|
||||
618 | self.context = zmq.Context() |
|
|||
619 | self.receiver = self.context.socket(zmq.PULL) |
|
|||
620 | self.receiver.bind(self.address) |
|
|||
621 | monitor = self.receiver.get_monitor_socket() |
|
|||
622 | self.sender = self.context.socket(zmq.PUB) |
|
|||
623 | if self.web_address: |
|
|||
624 | log.success( |
|
|||
625 | 'Sending to web: {}'.format(self.web_address), |
|
|||
626 | self.name |
|
|||
627 | ) |
|
|||
628 | self.sender_web = self.context.socket(zmq.REQ) |
|
|||
629 | self.sender_web.connect(self.web_address) |
|
|||
630 | self.poll = zmq.Poller() |
|
|||
631 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
|||
632 | time.sleep(1) |
|
|||
633 |
|
||||
634 | if 'server' in self.kwargs: |
|
|||
635 | self.sender.bind("ipc:///tmp/{}.plots".format(self.kwargs['server'])) |
|
|||
636 | else: |
|
|||
637 | self.sender.bind("ipc:///tmp/zmq.plots") |
|
|||
638 |
|
||||
639 | time.sleep(2) |
|
|||
640 |
|
||||
641 | t = Thread(target=self.event_monitor, args=(monitor,)) |
|
|||
642 | t.start() |
|
|||
643 |
|
||||
644 | while True: |
|
|||
645 | dataOut = self.receiver.recv_pyobj() |
|
|||
646 | if not dataOut.flagNoData: |
|
|||
647 | if dataOut.type == 'Parameters': |
|
|||
648 | tm = dataOut.utctimeInit |
|
|||
649 | else: |
|
|||
650 | tm = dataOut.utctime |
|
|||
651 | if dataOut.useLocalTime: |
|
|||
652 | if not self.localtime: |
|
|||
653 | tm += time.timezone |
|
|||
654 | dt = datetime.datetime.fromtimestamp(tm).date() |
|
|||
655 | else: |
|
|||
656 | if self.localtime: |
|
|||
657 | tm -= time.timezone |
|
|||
658 | dt = datetime.datetime.utcfromtimestamp(tm).date() |
|
|||
659 | coerce = False |
|
|||
660 | if dt not in self.dates: |
|
|||
661 | if self.data: |
|
|||
662 | self.data.ended = True |
|
|||
663 | self.send(self.data) |
|
|||
664 | coerce = True |
|
|||
665 | self.data.setup() |
|
|||
666 | self.dates.append(dt) |
|
|||
667 |
|
||||
668 | self.data.update(dataOut, tm) |
|
|||
669 |
|
||||
670 | if dataOut.finished is True: |
|
|||
671 | self.connections -= 1 |
|
|||
672 | if self.connections == 0 and dt in self.dates: |
|
|||
673 | self.data.ended = True |
|
|||
674 | self.send(self.data) |
|
|||
675 | # self.data.setup() |
|
|||
676 | time.sleep(1) |
|
|||
677 | break |
|
|||
678 | else: |
|
|||
679 | if self.realtime: |
|
|||
680 | self.send(self.data) |
|
|||
681 | if self.web_address: |
|
|||
682 | retries = 5 |
|
|||
683 | while True: |
|
|||
684 | self.sender_web.send(self.data.jsonify()) |
|
|||
685 | socks = dict(self.poll.poll(5000)) |
|
|||
686 | if socks.get(self.sender_web) == zmq.POLLIN: |
|
|||
687 | reply = self.sender_web.recv_string() |
|
|||
688 | if reply == 'ok': |
|
|||
689 | log.log("Response from server ok", self.name) |
|
|||
690 | break |
|
|||
691 | else: |
|
|||
692 | log.warning("Malformed reply from server: {}".format(reply), self.name) |
|
|||
693 |
|
||||
694 | else: |
|
|||
695 | log.warning("No response from server, retrying...", self.name) |
|
|||
696 | self.sender_web.setsockopt(zmq.LINGER, 0) |
|
|||
697 | self.sender_web.close() |
|
|||
698 | self.poll.unregister(self.sender_web) |
|
|||
699 | retries -= 1 |
|
|||
700 | if retries == 0: |
|
|||
701 | log.error("Server seems to be offline, abandoning", self.name) |
|
|||
702 | self.sender_web = self.context.socket(zmq.REQ) |
|
|||
703 | self.sender_web.connect(self.web_address) |
|
|||
704 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
|||
705 | time.sleep(1) |
|
|||
706 | break |
|
|||
707 | self.sender_web = self.context.socket(zmq.REQ) |
|
|||
708 | self.sender_web.connect(self.web_address) |
|
|||
709 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
|||
710 | time.sleep(1) |
|
|||
711 | else: |
|
|||
712 | self.sendData(self.send, self.data, coerce=coerce) |
|
|||
713 | coerce = False |
|
|||
714 |
|
||||
715 | return |
|
|||
716 |
|
||||
717 |
|
||||
718 | class SendToFTP(Operation, Process): |
|
158 | class SendToFTP(Operation, Process): | |
719 |
|
159 | |||
720 | ''' |
|
160 | ''' |
1 | NO CONTENT: file was removed |
|
NO CONTENT: file was removed |
1 | NO CONTENT: file was removed |
|
NO CONTENT: file was removed |
General Comments 0
You need to be logged in to leave comments.
Login now