@@ -0,0 +1,6 | |||
|
1 | [Desktop Entry] | |
|
2 | Encoding=UTF-8 | |
|
3 | Name=Link to | |
|
4 | Type=Link | |
|
5 | URL=file:///home/nanosat/schain/schainpy/utils/parameters.txt | |
|
6 | Icon=text-plain |
This diff has been collapsed as it changes many lines, (1160 lines changed) Show them Hide them | |||
@@ -0,0 +1,1160 | |||
|
1 | You should install "digital_rf_hdf5" module if you want to read USRP data | |
|
2 | BeaconPhase | |
|
3 | parameters = { | |
|
4 | 'id': 'string', | |
|
5 | 'wintitle': 'string', | |
|
6 | 'pairsList': 'pairsList', | |
|
7 | 'showprofile': 'boolean', | |
|
8 | 'xmin': 'float', | |
|
9 | 'xmax': 'float', | |
|
10 | 'ymin': 'float', | |
|
11 | 'ymax': 'float', | |
|
12 | 'hmin': 'float', | |
|
13 | 'hmax': 'float', | |
|
14 | 'timerange': 'float', | |
|
15 | 'save': 'boolean', | |
|
16 | 'figpath': 'string', | |
|
17 | 'figfile': 'string', | |
|
18 | 'show': 'boolean', | |
|
19 | 'ftp': 'boolean', | |
|
20 | 'wr_period': 'int', | |
|
21 | 'server': 'string', | |
|
22 | 'folder': 'string', | |
|
23 | 'username': 'string', | |
|
24 | 'password': 'string', | |
|
25 | 'ftp_wei': 'int', | |
|
26 | 'exp_code': 'int', | |
|
27 | 'sub_exp_code': 'int', | |
|
28 | 'plot_pos': 'int', | |
|
29 | } | |
|
30 | ||
|
31 | ||
|
32 | BeamSelector | |
|
33 | parameters = { | |
|
34 | 'beam': 'string', | |
|
35 | } | |
|
36 | ||
|
37 | ||
|
38 | CohInt | |
|
39 | parameters = { | |
|
40 | 'n': 'int', | |
|
41 | 'timeInterval': 'float', | |
|
42 | 'overlapping': 'boolean', | |
|
43 | 'byblock': 'boolean' | |
|
44 | } | |
|
45 | ||
|
46 | ||
|
47 | CoherenceMap | |
|
48 | parameters = { | |
|
49 | 'id': 'string', | |
|
50 | 'wintitle': 'string', | |
|
51 | 'pairsList': 'pairsLists', | |
|
52 | 'showprofile': 'boolean', | |
|
53 | 'xmin': 'float', | |
|
54 | 'xmax': 'float', | |
|
55 | 'ymin': 'float', | |
|
56 | 'ymax': 'float', | |
|
57 | 'zmin': 'float', | |
|
58 | 'zmax': 'float', | |
|
59 | 'timerange': 'float', | |
|
60 | 'phase_min': 'float', | |
|
61 | 'phase_max': 'float', | |
|
62 | 'save': 'boolean', | |
|
63 | 'figpath': 'string', | |
|
64 | 'figfile': 'string', | |
|
65 | 'ftp': 'boolean', | |
|
66 | 'wr_period': 'int', | |
|
67 | 'coherence_cmap': 'colormap', | |
|
68 | 'phase_cmap': 'colormap', | |
|
69 | 'show': 'boolean', | |
|
70 | 'server': 'string', | |
|
71 | 'folder': 'string', | |
|
72 | 'username': 'string', | |
|
73 | 'password': 'string', | |
|
74 | 'ftp_wei': 'int', | |
|
75 | 'exp_code': 'int', | |
|
76 | 'sub_exp_code': 'int', | |
|
77 | 'plot_pos': 'int', | |
|
78 | } | |
|
79 | ||
|
80 | ||
|
81 | CombineProfiles | |
|
82 | parameters = { | |
|
83 | 'n': 'int', | |
|
84 | } | |
|
85 | ||
|
86 | ||
|
87 | CorrectSMPhases | |
|
88 | parameters = { | |
|
89 | 'phaseOffsets': 'pairsLists', | |
|
90 | 'hmin': 'float', | |
|
91 | 'hmax': 'float', | |
|
92 | 'azimuth': 'string', | |
|
93 | 'channelPositions': 'string', | |
|
94 | } | |
|
95 | ||
|
96 | ||
|
97 | CorrelationPlot | |
|
98 | parameters = { | |
|
99 | 'id': 'string', | |
|
100 | 'wintitle': 'string', | |
|
101 | 'channelList': 'string', | |
|
102 | 'showprofile': 'string', | |
|
103 | 'xmin': 'float', | |
|
104 | 'xmax': 'float', | |
|
105 | 'ymin': 'float', | |
|
106 | 'ymax': 'float', | |
|
107 | 'zmin': 'float', | |
|
108 | 'zmax': 'float', | |
|
109 | 'save': 'boolean', | |
|
110 | 'figpath': 'string', | |
|
111 | 'figfile': 'string', | |
|
112 | 'show': 'boolean', | |
|
113 | 'ftp': 'boolean', | |
|
114 | 'wr_period': 'int', | |
|
115 | 'server': 'string', | |
|
116 | 'folder': 'string', | |
|
117 | 'username': 'string', | |
|
118 | 'password': 'string', | |
|
119 | 'ftp_wei': 'string', | |
|
120 | 'exp_code': 'int', | |
|
121 | 'sub_exp_code': 'int', | |
|
122 | 'plot_pos': 'int', | |
|
123 | 'realtime': 'string', | |
|
124 | } | |
|
125 | ||
|
126 | ||
|
127 | CrossSpectraPlot | |
|
128 | parameters = { | |
|
129 | 'id': 'string', | |
|
130 | 'wintitle': 'string', | |
|
131 | 'pairsList': 'pairsLists', | |
|
132 | 'xmin': 'float', | |
|
133 | 'xmax': 'float', | |
|
134 | 'ymin': 'float', | |
|
135 | 'ymax': 'float', | |
|
136 | 'zmin': 'float', | |
|
137 | 'zmax': 'float', | |
|
138 | 'coh_min': 'string', | |
|
139 | 'coh_max': 'string', | |
|
140 | 'phase_min': 'string', | |
|
141 | 'phase_max': 'string', | |
|
142 | 'save': 'boolean', | |
|
143 | 'figpath': 'string', | |
|
144 | 'figfile': 'string', | |
|
145 | 'ftp': 'boolean', | |
|
146 | 'wr_period': 'int', | |
|
147 | 'power_cmap': 'string', | |
|
148 | 'coherence_cmap': 'string', | |
|
149 | 'phase_cmap': 'string', | |
|
150 | 'show': 'string', | |
|
151 | 'server': 'string', | |
|
152 | 'folder': 'string', | |
|
153 | 'username': 'string', | |
|
154 | 'password': 'string', | |
|
155 | 'ftp_wei': 'string', | |
|
156 | 'exp_code': 'int', | |
|
157 | 'sub_exp_code': 'int', | |
|
158 | 'plot_pos': 'int', | |
|
159 | 'xaxis': 'string', | |
|
160 | } | |
|
161 | ||
|
162 | ||
|
163 | Decoder | |
|
164 | parameters = { | |
|
165 | 'code': 'string', | |
|
166 | 'nCode': 'string', | |
|
167 | 'nBaud': 'string', | |
|
168 | 'mode': 'string', | |
|
169 | 'osamp': 'string', | |
|
170 | 'times': 'string', | |
|
171 | } | |
|
172 | ||
|
173 | ||
|
174 | EWDriftsEstimation | |
|
175 | parameters = { | |
|
176 | 'zenith': 'string', | |
|
177 | 'zenithCorrection': 'string', | |
|
178 | } | |
|
179 | ||
|
180 | ||
|
181 | EWDriftsPlot | |
|
182 | parameters = { | |
|
183 | 'id': 'string', | |
|
184 | 'wintitle': 'string', | |
|
185 | 'channelList': 'string', | |
|
186 | 'xmin': 'float', | |
|
187 | 'xmax': 'float', | |
|
188 | 'ymin': 'float', | |
|
189 | 'ymax': 'float', | |
|
190 | 'zmin': 'float', | |
|
191 | 'zmax': 'float', | |
|
192 | 'zmaxVertfloat 'string', | |
|
193 | 'zminVertfloat 'string', | |
|
194 | 'zmaxZonafloattring', | |
|
195 | 'zminZonafloattring', | |
|
196 | 'timerange': 'string', | |
|
197 | 'SNRthresh': 'string', | |
|
198 | 'SNRmin': 'string', | |
|
199 | 'SNRmax': 'string', | |
|
200 | 'SNR_1': 'string', | |
|
201 | 'save': 'boolean', | |
|
202 | 'figpath': 'string', | |
|
203 | 'lastone': 'string', | |
|
204 | 'figfile': 'string', | |
|
205 | 'ftp': 'string', | |
|
206 | 'wr_period': 'int', | |
|
207 | 'show': 'string', | |
|
208 | 'server': 'string', | |
|
209 | 'folder': 'string', | |
|
210 | 'username': 'string', | |
|
211 | 'password': 'string', | |
|
212 | 'ftp_wei': 'string', | |
|
213 | 'exp_code': 'int', | |
|
214 | 'sub_exp_code': 'int', | |
|
215 | 'plot_pos': 'int', | |
|
216 | } | |
|
217 | ||
|
218 | ||
|
219 | Figure | |
|
220 | parameters = { | |
|
221 | : 'string', | |
|
222 | } | |
|
223 | ||
|
224 | ||
|
225 | FitsWriter | |
|
226 | parameters = { | |
|
227 | : 'string', | |
|
228 | } | |
|
229 | ||
|
230 | ||
|
231 | IncohInt | |
|
232 | parameters = { | |
|
233 | 'n': 'string', | |
|
234 | 'timeInterval': 'string', | |
|
235 | 'overlapping': 'string', | |
|
236 | } | |
|
237 | ||
|
238 | ||
|
239 | IncohInt4SpectraHeis | |
|
240 | parameters = { | |
|
241 | : 'string', | |
|
242 | } | |
|
243 | ||
|
244 | ||
|
245 | MomentsPlot | |
|
246 | parameters = { | |
|
247 | 'id': 'string', | |
|
248 | 'wintitle': 'string', | |
|
249 | 'channelList': 'string', | |
|
250 | 'showprofile': 'string', | |
|
251 | 'xmin': 'float', | |
|
252 | 'xmax': 'float', | |
|
253 | 'ymin': 'float', | |
|
254 | 'ymax': 'float', | |
|
255 | 'zmin': 'float', | |
|
256 | 'zmax': 'float', | |
|
257 | 'save': 'boolean', | |
|
258 | 'figpath': 'string', | |
|
259 | 'figfile': 'string', | |
|
260 | 'show': 'string', | |
|
261 | 'ftp': 'string', | |
|
262 | 'wr_period': 'int', | |
|
263 | 'server': 'string', | |
|
264 | 'folder': 'string', | |
|
265 | 'username': 'string', | |
|
266 | 'password': 'string', | |
|
267 | 'ftp_wei': 'string', | |
|
268 | 'exp_code': 'int', | |
|
269 | 'sub_exp_code': 'int', | |
|
270 | 'plot_pos': 'int', | |
|
271 | 'realtime': 'string', | |
|
272 | } | |
|
273 | ||
|
274 | ||
|
275 | NSMeteorDetection1Plot | |
|
276 | parameters = { | |
|
277 | 'id': 'string', | |
|
278 | 'wintitle': 'string', | |
|
279 | 'channelList': 'string', | |
|
280 | 'showprofile': 'string', | |
|
281 | 'xmin': 'float', | |
|
282 | 'xmax': 'float', | |
|
283 | 'ymin': 'float', | |
|
284 | 'ymax': 'float', | |
|
285 | 'SNRmin': 'string', | |
|
286 | 'SNRmax': 'string', | |
|
287 | 'vmin': 'string', | |
|
288 | 'vmax': 'string', | |
|
289 | 'wmin': 'string', | |
|
290 | 'wmax': 'string', | |
|
291 | 'mode': 'string', | |
|
292 | 'save': 'boolean', | |
|
293 | 'figpath': 'string', | |
|
294 | 'figfile': 'string', | |
|
295 | 'show': 'string', | |
|
296 | 'ftp': 'string', | |
|
297 | 'wr_period': 'int', | |
|
298 | 'server': 'string', | |
|
299 | 'folder': 'string', | |
|
300 | 'username': 'string', | |
|
301 | 'password': 'string', | |
|
302 | 'ftp_wei': 'string', | |
|
303 | 'exp_code': 'int', | |
|
304 | 'sub_exp_code': 'int', | |
|
305 | 'plot_pos': 'int', | |
|
306 | 'realtime': 'string', | |
|
307 | 'xaxis': 'string', | |
|
308 | } | |
|
309 | ||
|
310 | ||
|
311 | NSMeteorDetection2Plot | |
|
312 | parameters = { | |
|
313 | 'id': 'string', | |
|
314 | 'wintitle': 'string', | |
|
315 | 'channelList': 'string', | |
|
316 | 'showprofile': 'string', | |
|
317 | 'xmin': 'float', | |
|
318 | 'xmax': 'float', | |
|
319 | 'ymin': 'float', | |
|
320 | 'ymax': 'float', | |
|
321 | 'SNRmin': 'string', | |
|
322 | 'SNRmax': 'string', | |
|
323 | 'vmin': 'string', | |
|
324 | 'vmax': 'string', | |
|
325 | 'wmin': 'string', | |
|
326 | 'wmax': 'string', | |
|
327 | 'mode': 'string', | |
|
328 | 'save': 'boolean', | |
|
329 | 'figpath': 'string', | |
|
330 | 'figfile': 'string', | |
|
331 | 'show': 'string', | |
|
332 | 'ftp': 'string', | |
|
333 | 'wr_period': 'int', | |
|
334 | 'server': 'string', | |
|
335 | 'folder': 'string', | |
|
336 | 'username': 'string', | |
|
337 | 'password': 'string', | |
|
338 | 'ftp_wei': 'string', | |
|
339 | 'exp_code': 'int', | |
|
340 | 'sub_exp_code': 'int', | |
|
341 | 'plot_pos': 'int', | |
|
342 | 'realtime': 'string', | |
|
343 | 'xaxis': 'string', | |
|
344 | } | |
|
345 | ||
|
346 | ||
|
347 | Noise | |
|
348 | parameters = { | |
|
349 | 'id': 'string', | |
|
350 | 'wintitle': 'string', | |
|
351 | 'channelList': 'string', | |
|
352 | 'showprofile': 'string', | |
|
353 | 'xmin': 'float', | |
|
354 | 'xmax': 'float', | |
|
355 | 'ymin': 'float', | |
|
356 | 'ymax': 'float', | |
|
357 | 'timerange': 'string', | |
|
358 | 'save': 'boolean', | |
|
359 | 'figpath': 'string', | |
|
360 | 'figfile': 'string', | |
|
361 | 'show': 'string', | |
|
362 | 'ftp': 'string', | |
|
363 | 'wr_period': 'int', | |
|
364 | 'server': 'string', | |
|
365 | 'folder': 'string', | |
|
366 | 'username': 'string', | |
|
367 | 'password': 'string', | |
|
368 | 'ftp_wei': 'string', | |
|
369 | 'exp_code': 'int', | |
|
370 | 'sub_exp_code': 'int', | |
|
371 | 'plot_pos': 'int', | |
|
372 | } | |
|
373 | ||
|
374 | ||
|
375 | NonSpecularMeteorDetection | |
|
376 | parameters = { | |
|
377 | 'mode': 'string', | |
|
378 | 'SNRthresh': 'string', | |
|
379 | 'phaseDerThresh': 'string', | |
|
380 | 'cohThresh': 'string', | |
|
381 | 'allData': 'string', | |
|
382 | } | |
|
383 | ||
|
384 | ||
|
385 | Operation | |
|
386 | parameters = { | |
|
387 | 'dataIn': 'string', | |
|
388 | } | |
|
389 | ||
|
390 | ||
|
391 | ParamWriter | |
|
392 | parameters = { | |
|
393 | : 'string', | |
|
394 | } | |
|
395 | ||
|
396 | ||
|
397 | Parameters1Plot | |
|
398 | parameters = { | |
|
399 | 'id': 'string', | |
|
400 | 'wintitle': 'string', | |
|
401 | 'channelList': 'string', | |
|
402 | 'showprofile': 'string', | |
|
403 | 'xmin': 'float', | |
|
404 | 'xmax': 'float', | |
|
405 | 'ymin': 'float', | |
|
406 | 'ymax': 'float', | |
|
407 | 'zmin': 'float', | |
|
408 | 'zmax': 'float', | |
|
409 | 'timerange': 'string', | |
|
410 | 'parameterIndex': 'string', | |
|
411 | 'onlyPositive': 'string', | |
|
412 | 'SNRthresh': 'string', | |
|
413 | 'SNR': 'string', | |
|
414 | 'SNRmin': 'string', | |
|
415 | 'SNRmax': 'string', | |
|
416 | 'onlySNR': 'string', | |
|
417 | 'DOP': 'string', | |
|
418 | 'zlabel': 'string', | |
|
419 | 'parameterName': 'string', | |
|
420 | 'parameterObject': 'string', | |
|
421 | 'save': 'boolean', | |
|
422 | 'figpath': 'string', | |
|
423 | 'lastone': 'string', | |
|
424 | 'figfile': 'string', | |
|
425 | 'ftp': 'string', | |
|
426 | 'wr_period': 'int', | |
|
427 | 'show': 'string', | |
|
428 | 'server': 'string', | |
|
429 | 'folder': 'string', | |
|
430 | 'username': 'string', | |
|
431 | 'password': 'string', | |
|
432 | 'ftp_wei': 'string', | |
|
433 | 'exp_code': 'int', | |
|
434 | 'sub_exp_code': 'int', | |
|
435 | 'plot_pos': 'int', | |
|
436 | } | |
|
437 | ||
|
438 | ||
|
439 | ParametersPlot | |
|
440 | parameters = { | |
|
441 | 'id': 'string', | |
|
442 | 'wintitle': 'string', | |
|
443 | 'channelList': 'string', | |
|
444 | 'paramIndex': 'string', | |
|
445 | 'colormap': 'string', | |
|
446 | 'xmin': 'float', | |
|
447 | 'xmax': 'float', | |
|
448 | 'ymin': 'float', | |
|
449 | 'ymax': 'float', | |
|
450 | 'zmin': 'float', | |
|
451 | 'zmax': 'float', | |
|
452 | 'timerange': 'string', | |
|
453 | 'showSNR': 'string', | |
|
454 | 'SNRthresh': 'string', | |
|
455 | 'SNRmin': 'string', | |
|
456 | 'SNRmax': 'string', | |
|
457 | 'save': 'boolean', | |
|
458 | 'figpath': 'string', | |
|
459 | 'lastone': 'string', | |
|
460 | 'figfile': 'string', | |
|
461 | 'ftp': 'string', | |
|
462 | 'wr_period': 'int', | |
|
463 | 'show': 'string', | |
|
464 | 'server': 'string', | |
|
465 | 'folder': 'string', | |
|
466 | 'username': 'string', | |
|
467 | 'password': 'string', | |
|
468 | 'ftp_wei': 'string', | |
|
469 | 'exp_code': 'int', | |
|
470 | 'sub_exp_code': 'int', | |
|
471 | 'plot_pos': 'int', | |
|
472 | } | |
|
473 | ||
|
474 | ||
|
475 | PhasePlot | |
|
476 | parameters = { | |
|
477 | 'id': 'string', | |
|
478 | 'wintitle': 'string', | |
|
479 | 'pairsList': 'pairsLists', | |
|
480 | 'showprofile': 'string', | |
|
481 | 'xmin': 'float', | |
|
482 | 'xmax': 'float', | |
|
483 | 'ymin': 'float', | |
|
484 | 'ymax': 'float', | |
|
485 | 'timerange': 'string', | |
|
486 | 'save': 'boolean', | |
|
487 | 'figpath': 'string', | |
|
488 | 'figfile': 'string', | |
|
489 | 'show': 'string', | |
|
490 | 'ftp': 'string', | |
|
491 | 'wr_period': 'int', | |
|
492 | 'server': 'string', | |
|
493 | 'folder': 'string', | |
|
494 | 'username': 'string', | |
|
495 | 'password': 'string', | |
|
496 | 'ftp_wei': 'string', | |
|
497 | 'exp_code': 'int', | |
|
498 | 'sub_exp_code': 'int', | |
|
499 | 'plot_pos': 'int', | |
|
500 | } | |
|
501 | ||
|
502 | ||
|
503 | PlotCOHData | |
|
504 | parameters = { | |
|
505 | : 'string', | |
|
506 | } | |
|
507 | ||
|
508 | ||
|
509 | PlotCrossSpectraData | |
|
510 | parameters = { | |
|
511 | : 'string', | |
|
512 | } | |
|
513 | ||
|
514 | ||
|
515 | PlotDOPData | |
|
516 | parameters = { | |
|
517 | : 'string', | |
|
518 | } | |
|
519 | ||
|
520 | ||
|
521 | PlotData | |
|
522 | parameters = { | |
|
523 | : 'string', | |
|
524 | } | |
|
525 | ||
|
526 | ||
|
527 | PlotNoiseData | |
|
528 | parameters = { | |
|
529 | : 'string', | |
|
530 | } | |
|
531 | ||
|
532 | ||
|
533 | PlotPHASEData | |
|
534 | parameters = { | |
|
535 | : 'string', | |
|
536 | } | |
|
537 | ||
|
538 | ||
|
539 | PlotRTIData | |
|
540 | parameters = { | |
|
541 | : 'string', | |
|
542 | } | |
|
543 | ||
|
544 | ||
|
545 | PlotSNRData | |
|
546 | parameters = { | |
|
547 | : 'string', | |
|
548 | } | |
|
549 | ||
|
550 | ||
|
551 | PlotSpectraData | |
|
552 | parameters = { | |
|
553 | : 'string', | |
|
554 | } | |
|
555 | ||
|
556 | ||
|
557 | PlotSpectraMeanData | |
|
558 | parameters = { | |
|
559 | : 'string', | |
|
560 | } | |
|
561 | ||
|
562 | ||
|
563 | PlotWindProfilerData | |
|
564 | parameters = { | |
|
565 | : 'string', | |
|
566 | } | |
|
567 | ||
|
568 | ||
|
569 | PowerProfilePlot | |
|
570 | parameters = { | |
|
571 | 'id': 'string', | |
|
572 | 'wintitle': 'string', | |
|
573 | 'channelList': 'string', | |
|
574 | 'xmin': 'float', | |
|
575 | 'xmax': 'float', | |
|
576 | 'ymin': 'float', | |
|
577 | 'ymax': 'float', | |
|
578 | 'save': 'boolean', | |
|
579 | 'figpath': 'string', | |
|
580 | 'figfile': 'string', | |
|
581 | 'show': 'string', | |
|
582 | 'ftp': 'string', | |
|
583 | 'wr_period': 'int', | |
|
584 | 'server': 'string', | |
|
585 | 'folder': 'string', | |
|
586 | 'username': 'string', | |
|
587 | 'password': 'string', | |
|
588 | } | |
|
589 | ||
|
590 | ||
|
591 | PrintInfo | |
|
592 | parameters = { | |
|
593 | : 'string', | |
|
594 | } | |
|
595 | ||
|
596 | ||
|
597 | ProfileConcat | |
|
598 | parameters = { | |
|
599 | 'm': 'string', | |
|
600 | } | |
|
601 | ||
|
602 | ||
|
603 | ProfileSelector | |
|
604 | parameters = { | |
|
605 | 'profileList': 'string', | |
|
606 | 'profileRangeList': 'string', | |
|
607 | 'beam': 'string', | |
|
608 | 'byblock': 'string', | |
|
609 | 'rangeList': 'string', | |
|
610 | 'nProfiles': 'string', | |
|
611 | } | |
|
612 | ||
|
613 | ||
|
614 | ProfileToChannels | |
|
615 | parameters = { | |
|
616 | : 'string', | |
|
617 | } | |
|
618 | ||
|
619 | ||
|
620 | PublishData | |
|
621 | parameters = { | |
|
622 | : 'string', | |
|
623 | } | |
|
624 | ||
|
625 | ||
|
626 | RTIPlot | |
|
627 | parameters = { | |
|
628 | 'id': 'string', | |
|
629 | 'wintitle': 'string', | |
|
630 | 'channelList': 'string', | |
|
631 | 'showprofile': 'string', | |
|
632 | 'xmin': 'float', | |
|
633 | 'xmax': 'float', | |
|
634 | 'ymin': 'float', | |
|
635 | 'ymax': 'float', | |
|
636 | 'zmin': 'float', | |
|
637 | 'zmax': 'float', | |
|
638 | 'timerange': 'string', | |
|
639 | 'save': 'boolean', | |
|
640 | 'figpath': 'string', | |
|
641 | 'lastone': 'string', | |
|
642 | 'figfile': 'string', | |
|
643 | 'ftp': 'string', | |
|
644 | 'wr_period': 'int', | |
|
645 | 'show': 'string', | |
|
646 | 'server': 'string', | |
|
647 | 'folder': 'string', | |
|
648 | 'username': 'string', | |
|
649 | 'password': 'string', | |
|
650 | 'ftp_wei': 'string', | |
|
651 | 'exp_code': 'int', | |
|
652 | 'sub_exp_code': 'int', | |
|
653 | 'plot_pos': 'int', | |
|
654 | } | |
|
655 | ||
|
656 | ||
|
657 | RTIfromSpectraHeis | |
|
658 | parameters = { | |
|
659 | 'id': 'string', | |
|
660 | 'wintitle': 'string', | |
|
661 | 'channelList': 'string', | |
|
662 | 'showprofile': 'string', | |
|
663 | 'xmin': 'float', | |
|
664 | 'xmax': 'float', | |
|
665 | 'ymin': 'float', | |
|
666 | 'ymax': 'float', | |
|
667 | 'timerange': 'string', | |
|
668 | 'save': 'boolean', | |
|
669 | 'figpath': 'string', | |
|
670 | 'figfile': 'string', | |
|
671 | 'ftp': 'string', | |
|
672 | 'wr_period': 'int', | |
|
673 | 'show': 'string', | |
|
674 | 'server': 'string', | |
|
675 | 'folder': 'string', | |
|
676 | 'username': 'string', | |
|
677 | 'password': 'string', | |
|
678 | 'ftp_wei': 'string', | |
|
679 | 'exp_code': 'int', | |
|
680 | 'sub_exp_code': 'int', | |
|
681 | 'plot_pos': 'int', | |
|
682 | } | |
|
683 | ||
|
684 | ||
|
685 | Reshaper | |
|
686 | parameters = { | |
|
687 | 'shape': 'string', | |
|
688 | 'nTxs': 'string', | |
|
689 | } | |
|
690 | ||
|
691 | ||
|
692 | SALags | |
|
693 | parameters = { | |
|
694 | : 'string', | |
|
695 | } | |
|
696 | ||
|
697 | ||
|
698 | SMDetection | |
|
699 | parameters = { | |
|
700 | 'hei_ref': 'string', | |
|
701 | 'tauindex': 'string', | |
|
702 | 'phaseOffsets': 'string', | |
|
703 | 'cohDetection': 'string', | |
|
704 | 'cohDet_timeStep': 'string', | |
|
705 | 'cohDet_thresh': 'string', | |
|
706 | 'noise_timeStep': 'string', | |
|
707 | 'noise_multiple': 'string', | |
|
708 | 'multDet_timeLimit': 'string', | |
|
709 | 'multDet_rangeLimit': 'string', | |
|
710 | 'phaseThresh': 'string', | |
|
711 | 'SNRThresh': 'string', | |
|
712 | 'hmin': 'string', | |
|
713 | 'hmax': 'string', | |
|
714 | 'azimuth': 'string', | |
|
715 | 'channelPositions': 'string', | |
|
716 | } | |
|
717 | ||
|
718 | ||
|
719 | SMPhaseCalibration | |
|
720 | parameters = { | |
|
721 | 'hmin': 'string', | |
|
722 | 'hmax': 'string', | |
|
723 | 'channelPositions': 'string', | |
|
724 | 'nHours': 'string', | |
|
725 | } | |
|
726 | ||
|
727 | ||
|
728 | Scope | |
|
729 | parameters = { | |
|
730 | 'id': 'string', | |
|
731 | 'wintitle': 'string', | |
|
732 | 'channelList': 'string', | |
|
733 | 'xmin': 'float', | |
|
734 | 'xmax': 'float', | |
|
735 | 'ymin': 'float', | |
|
736 | 'ymax': 'float', | |
|
737 | 'save': 'boolean', | |
|
738 | 'figpath': 'string', | |
|
739 | 'figfile': 'string', | |
|
740 | 'show': 'string', | |
|
741 | 'wr_period': 'int', | |
|
742 | 'ftp': 'string', | |
|
743 | 'server': 'string', | |
|
744 | 'folder': 'string', | |
|
745 | 'username': 'string', | |
|
746 | 'password': 'string', | |
|
747 | 'type': 'string', | |
|
748 | } | |
|
749 | ||
|
750 | ||
|
751 | SendByFTP | |
|
752 | parameters = { | |
|
753 | 'ext': 'string', | |
|
754 | 'localfolder': 'string', | |
|
755 | 'remotefolder': 'string', | |
|
756 | 'server': 'string', | |
|
757 | 'username': 'string', | |
|
758 | 'password': 'string', | |
|
759 | 'period': 'string', | |
|
760 | } | |
|
761 | ||
|
762 | ||
|
763 | SkyMapPlot | |
|
764 | parameters = { | |
|
765 | 'id': 'string', | |
|
766 | 'wintitle': 'string', | |
|
767 | 'channelList': 'string', | |
|
768 | 'showprofile': 'string', | |
|
769 | 'tmin': 'string', | |
|
770 | 'tmax': 'string', | |
|
771 | 'timerange': 'string', | |
|
772 | 'save': 'boolean', | |
|
773 | 'figpath': 'string', | |
|
774 | 'figfile': 'string', | |
|
775 | 'show': 'string', | |
|
776 | 'ftp': 'string', | |
|
777 | 'wr_period': 'int', | |
|
778 | 'server': 'string', | |
|
779 | 'folder': 'string', | |
|
780 | 'username': 'string', | |
|
781 | 'password': 'string', | |
|
782 | 'ftp_wei': 'string', | |
|
783 | 'exp_code': 'int', | |
|
784 | 'sub_exp_code': 'int', | |
|
785 | 'plot_pos': 'int', | |
|
786 | 'realtime': 'string', | |
|
787 | } | |
|
788 | ||
|
789 | ||
|
790 | SpectraCutPlot | |
|
791 | parameters = { | |
|
792 | 'id': 'string', | |
|
793 | 'wintitle': 'string', | |
|
794 | 'channelList': 'string', | |
|
795 | 'xmin': 'float', | |
|
796 | 'xmax': 'float', | |
|
797 | 'ymin': 'float', | |
|
798 | 'ymax': 'float', | |
|
799 | 'save': 'boolean', | |
|
800 | 'figpath': 'string', | |
|
801 | 'figfile': 'string', | |
|
802 | 'show': 'string', | |
|
803 | 'ftp': 'string', | |
|
804 | 'wr_period': 'int', | |
|
805 | 'server': 'string', | |
|
806 | 'folder': 'string', | |
|
807 | 'username': 'string', | |
|
808 | 'password': 'string', | |
|
809 | 'xaxis': 'string', | |
|
810 | } | |
|
811 | ||
|
812 | ||
|
813 | SpectraHeisScope | |
|
814 | parameters = { | |
|
815 | 'id': 'string', | |
|
816 | 'wintitle': 'string', | |
|
817 | 'channelList': 'string', | |
|
818 | 'xmin': 'float', | |
|
819 | 'xmax': 'float', | |
|
820 | 'ymin': 'float', | |
|
821 | 'ymax': 'float', | |
|
822 | 'save': 'boolean', | |
|
823 | 'figpath': 'string', | |
|
824 | 'figfile': 'string', | |
|
825 | 'ftp': 'string', | |
|
826 | 'wr_period': 'int', | |
|
827 | 'show': 'string', | |
|
828 | 'server': 'string', | |
|
829 | 'folder': 'string', | |
|
830 | 'username': 'string', | |
|
831 | 'password': 'string', | |
|
832 | 'ftp_wei': 'string', | |
|
833 | 'exp_code': 'int', | |
|
834 | 'sub_exp_code': 'int', | |
|
835 | 'plot_pos': 'int', | |
|
836 | } | |
|
837 | ||
|
838 | ||
|
839 | SpectraHeisWriter | |
|
840 | parameters = { | |
|
841 | : 'string', | |
|
842 | } | |
|
843 | ||
|
844 | ||
|
845 | SpectraPlot | |
|
846 | parameters = { | |
|
847 | 'id': 'string', | |
|
848 | 'wintitle': 'string', | |
|
849 | 'channelList': 'string', | |
|
850 | 'showprofile': 'string', | |
|
851 | 'xmin': 'float', | |
|
852 | 'xmax': 'float', | |
|
853 | 'ymin': 'float', | |
|
854 | 'ymax': 'float', | |
|
855 | 'zmin': 'float', | |
|
856 | 'zmax': 'float', | |
|
857 | 'save': 'boolean', | |
|
858 | 'figpath': 'string', | |
|
859 | 'figfile': 'string', | |
|
860 | 'show': 'string', | |
|
861 | 'ftp': 'string', | |
|
862 | 'wr_period': 'int', | |
|
863 | 'server': 'string', | |
|
864 | 'folder': 'string', | |
|
865 | 'username': 'string', | |
|
866 | 'password': 'string', | |
|
867 | 'ftp_wei': 'string', | |
|
868 | 'exp_code': 'int', | |
|
869 | 'sub_exp_code': 'int', | |
|
870 | 'plot_pos': 'int', | |
|
871 | 'realtime': 'string', | |
|
872 | 'xaxis': 'string', | |
|
873 | } | |
|
874 | ||
|
875 | ||
|
876 | SpectraWriter | |
|
877 | parameters = { | |
|
878 | 'path': 'string', | |
|
879 | 'blocksPerFile': 'string', | |
|
880 | 'profilesPerBlock': 'string', | |
|
881 | 'set': 'string', | |
|
882 | 'ext': 'string', | |
|
883 | 'datatype': 'string', | |
|
884 | } | |
|
885 | ||
|
886 | ||
|
887 | SpectralFitting | |
|
888 | parameters = { | |
|
889 | 'getSNR': 'string', | |
|
890 | 'path': 'string', | |
|
891 | 'file': 'string', | |
|
892 | 'groupList': 'string', | |
|
893 | } | |
|
894 | ||
|
895 | ||
|
896 | SpectralFittingPlot | |
|
897 | parameters = { | |
|
898 | 'id': 'string', | |
|
899 | 'cutHeight': 'string', | |
|
900 | 'fit': 'string', | |
|
901 | 'wintitle': 'string', | |
|
902 | 'channelList': 'string', | |
|
903 | 'showprofile': 'string', | |
|
904 | 'xmin': 'float', | |
|
905 | 'xmax': 'float', | |
|
906 | 'ymin': 'float', | |
|
907 | 'ymax': 'float', | |
|
908 | 'save': 'boolean', | |
|
909 | 'figpath': 'string', | |
|
910 | 'figfile': 'string', | |
|
911 | 'show': 'string', | |
|
912 | } | |
|
913 | ||
|
914 | ||
|
915 | SpectralMoments | |
|
916 | parameters = { | |
|
917 | : 'string', | |
|
918 | } | |
|
919 | ||
|
920 | ||
|
921 | SplitProfiles | |
|
922 | parameters = { | |
|
923 | 'n': 'string', | |
|
924 | } | |
|
925 | ||
|
926 | ||
|
927 | USRPWriter | |
|
928 | parameters = { | |
|
929 | 'dataIn': 'string', | |
|
930 | } | |
|
931 | ||
|
932 | ||
|
933 | VoltageWriter | |
|
934 | parameters = { | |
|
935 | 'path': 'string', | |
|
936 | 'blocksPerFile': 'string', | |
|
937 | 'profilesPerBlock': 'string', | |
|
938 | 'set': 'string', | |
|
939 | 'ext': 'string', | |
|
940 | 'datatype': 'string', | |
|
941 | } | |
|
942 | ||
|
943 | ||
|
944 | WindProfiler | |
|
945 | parameters = { | |
|
946 | 'technique': 'string', | |
|
947 | } | |
|
948 | ||
|
949 | ||
|
950 | WindProfilerPlot | |
|
951 | parameters = { | |
|
952 | 'id': 'string', | |
|
953 | 'wintitle': 'string', | |
|
954 | 'channelList': 'string', | |
|
955 | 'showprofile': 'string', | |
|
956 | 'xmin': 'float', | |
|
957 | 'xmax': 'float', | |
|
958 | 'ymin': 'float', | |
|
959 | 'ymax': 'float', | |
|
960 | 'zmin': 'float', | |
|
961 | 'zmax': 'float', | |
|
962 | 'zmax_ver': 'string', | |
|
963 | 'zmin_ver': 'string', | |
|
964 | 'SNRmin': 'string', | |
|
965 | 'SNRmax': 'string', | |
|
966 | 'timerange': 'string', | |
|
967 | 'SNRthresh': 'string', | |
|
968 | 'save': 'boolean', | |
|
969 | 'figpath': 'string', | |
|
970 | 'lastone': 'string', | |
|
971 | 'figfile': 'string', | |
|
972 | 'ftp': 'string', | |
|
973 | 'wr_period': 'int', | |
|
974 | 'show': 'string', | |
|
975 | 'server': 'string', | |
|
976 | 'folder': 'string', | |
|
977 | 'username': 'string', | |
|
978 | 'password': 'string', | |
|
979 | 'ftp_wei': 'string', | |
|
980 | 'exp_code': 'int', | |
|
981 | 'sub_exp_code': 'int', | |
|
982 | 'plot_pos': 'int', | |
|
983 | } | |
|
984 | ||
|
985 | ||
|
986 | Writer | |
|
987 | parameters = { | |
|
988 | 'dataIn': 'string', | |
|
989 | } | |
|
990 | ||
|
991 | ||
|
992 | AMISRProc | |
|
993 | parameters = { | |
|
994 | : 'string', | |
|
995 | } | |
|
996 | ||
|
997 | ||
|
998 | AMISRReader | |
|
999 | parameters = { | |
|
1000 | : 'string', | |
|
1001 | } | |
|
1002 | ||
|
1003 | ||
|
1004 | CorrelationProc | |
|
1005 | parameters = { | |
|
1006 | 'lags': 'string', | |
|
1007 | 'mode': 'string', | |
|
1008 | 'pairsList': 'pairsLists', | |
|
1009 | 'fullBuffer': 'string', | |
|
1010 | 'nAvg': 'string', | |
|
1011 | 'removeDC': 'string', | |
|
1012 | 'splitCF': 'string', | |
|
1013 | } | |
|
1014 | ||
|
1015 | ||
|
1016 | FitsReader | |
|
1017 | parameters = { | |
|
1018 | : 'string', | |
|
1019 | } | |
|
1020 | ||
|
1021 | ||
|
1022 | HFReader | |
|
1023 | parameters = { | |
|
1024 | : 'string', | |
|
1025 | } | |
|
1026 | ||
|
1027 | ||
|
1028 | ParamReader | |
|
1029 | parameters = { | |
|
1030 | : 'string', | |
|
1031 | } | |
|
1032 | ||
|
1033 | ||
|
1034 | ParametersProc | |
|
1035 | parameters = { | |
|
1036 | : 'string', | |
|
1037 | } | |
|
1038 | ||
|
1039 | ||
|
1040 | ProcessingUnit | |
|
1041 | parameters = { | |
|
1042 | : 'string', | |
|
1043 | } | |
|
1044 | ||
|
1045 | ||
|
1046 | ReceiverData | |
|
1047 | parameters = { | |
|
1048 | : 'string', | |
|
1049 | } | |
|
1050 | ||
|
1051 | ||
|
1052 | SendToServer | |
|
1053 | parameters = { | |
|
1054 | : 'string', | |
|
1055 | } | |
|
1056 | ||
|
1057 | ||
|
1058 | SpectraAFCProc | |
|
1059 | parameters = { | |
|
1060 | 'nProfiles': 'string', | |
|
1061 | 'nFFTPoints': 'string', | |
|
1062 | 'pairsList': 'pairsLists', | |
|
1063 | 'code': 'string', | |
|
1064 | 'nCode': 'string', | |
|
1065 | 'nBaud': 'string', | |
|
1066 | } | |
|
1067 | ||
|
1068 | ||
|
1069 | SpectraHeisProc | |
|
1070 | parameters = { | |
|
1071 | : 'string', | |
|
1072 | } | |
|
1073 | ||
|
1074 | ||
|
1075 | SpectraLagsProc | |
|
1076 | parameters = { | |
|
1077 | 'nProfiles': 'string', | |
|
1078 | 'nFFTPoints': 'string', | |
|
1079 | 'pairsList': 'pairsLists', | |
|
1080 | 'code': 'string', | |
|
1081 | 'nCode': 'string', | |
|
1082 | 'nBaud': 'string', | |
|
1083 | 'codeFromHeader': 'string', | |
|
1084 | 'pulseIndex': 'string', | |
|
1085 | } | |
|
1086 | ||
|
1087 | ||
|
1088 | SpectraProc | |
|
1089 | parameters = { | |
|
1090 | 'nProfiles': 'string', | |
|
1091 | 'nFFTPoints': 'string', | |
|
1092 | 'pairsList': 'pairsLists', | |
|
1093 | 'ippFactor': 'string', | |
|
1094 | } | |
|
1095 | ||
|
1096 | ||
|
1097 | SpectraReader | |
|
1098 | parameters = { | |
|
1099 | 'path': 'string', | |
|
1100 | 'startDate': 'string', | |
|
1101 | 'endDate': 'string', | |
|
1102 | 'startTime': 'string', | |
|
1103 | 'endTime': 'string', | |
|
1104 | 'set': 'string', | |
|
1105 | 'expLabel': 'string', | |
|
1106 | 'ext': 'string', | |
|
1107 | 'online': 'string', | |
|
1108 | 'delay': 'string', | |
|
1109 | 'walk': 'string', | |
|
1110 | 'getblock': 'string', | |
|
1111 | 'nTxs': 'string', | |
|
1112 | 'realtime': 'string', | |
|
1113 | 'blocksize': 'string', | |
|
1114 | 'blocktime': 'string', | |
|
1115 | 'queue': 'string', | |
|
1116 | 'skip': 'string', | |
|
1117 | 'cursor': 'string', | |
|
1118 | 'warnings': 'string', | |
|
1119 | 'verbose': 'string', | |
|
1120 | } | |
|
1121 | ||
|
1122 | ||
|
1123 | USRPReader | |
|
1124 | parameters = { | |
|
1125 | : 'string', | |
|
1126 | } | |
|
1127 | ||
|
1128 | ||
|
1129 | VoltageProc | |
|
1130 | parameters = { | |
|
1131 | : 'string', | |
|
1132 | } | |
|
1133 | ||
|
1134 | ||
|
1135 | VoltageReader | |
|
1136 | parameters = { | |
|
1137 | 'path': 'string', | |
|
1138 | 'startDate': 'string', | |
|
1139 | 'endDate': 'string', | |
|
1140 | 'startTime': 'string', | |
|
1141 | 'endTime': 'string', | |
|
1142 | 'set': 'string', | |
|
1143 | 'expLabel': 'string', | |
|
1144 | 'ext': 'string', | |
|
1145 | 'online': 'string', | |
|
1146 | 'delay': 'string', | |
|
1147 | 'walk': 'string', | |
|
1148 | 'getblock': 'string', | |
|
1149 | 'nTxs': 'string', | |
|
1150 | 'realtime': 'string', | |
|
1151 | 'blocksize': 'string', | |
|
1152 | 'blocktime': 'string', | |
|
1153 | 'queue': 'string', | |
|
1154 | 'skip': 'string', | |
|
1155 | 'cursor': 'string', | |
|
1156 | 'warnings': 'string', | |
|
1157 | 'verbose': 'string', | |
|
1158 | } | |
|
1159 | ||
|
1160 |
@@ -0,0 +1,81 | |||
|
1 | import schainpy | |
|
2 | from schainpy.model import Operation, ProcessingUnit | |
|
3 | from importlib import import_module | |
|
4 | from pydoc import locate | |
|
5 | ||
|
6 | def clean_modules(module): | |
|
7 | noEndsUnder = [x for x in module if not x.endswith('__')] | |
|
8 | noStartUnder = [x for x in noEndsUnder if not x.startswith('__')] | |
|
9 | noFullUpper = [x for x in noStartUnder if not x.isupper()] | |
|
10 | return noFullUpper | |
|
11 | ||
|
12 | def check_module(possible, instance): | |
|
13 | def check(x): | |
|
14 | try: | |
|
15 | instancia = locate('schainpy.model.{}'.format(x)) | |
|
16 | return isinstance(instancia(), instance) | |
|
17 | except Exception as e: | |
|
18 | return False | |
|
19 | clean = clean_modules(possible) | |
|
20 | return [x for x in clean if check(x)] | |
|
21 | ||
|
22 | ||
|
23 | def getProcs(): | |
|
24 | module = dir(import_module('schainpy.model')) | |
|
25 | procs = check_module(module, ProcessingUnit) | |
|
26 | try: | |
|
27 | procs.remove('ProcessingUnit') | |
|
28 | except Exception as e: | |
|
29 | pass | |
|
30 | return procs | |
|
31 | ||
|
32 | def getOperations(): | |
|
33 | module = dir(import_module('schainpy.model')) | |
|
34 | noProcs = [x for x in module if not x.endswith('Proc')] | |
|
35 | operations = check_module(noProcs, Operation) | |
|
36 | try: | |
|
37 | operations.remove('Operation') | |
|
38 | except Exception as e: | |
|
39 | pass | |
|
40 | return operations | |
|
41 | ||
|
42 | def getArgs(op): | |
|
43 | module = locate('schainpy.model.{}'.format(op)) | |
|
44 | args = module().getAllowedArgs() | |
|
45 | try: | |
|
46 | args.remove('self') | |
|
47 | except Exception as e: | |
|
48 | pass | |
|
49 | try: | |
|
50 | args.remove('dataOut') | |
|
51 | except Exception as e: | |
|
52 | pass | |
|
53 | return args | |
|
54 | ||
|
55 | def getAll(): | |
|
56 | allModules = dir(import_module('schainpy.model')) | |
|
57 | modules = check_module(allModules, Operation) | |
|
58 | modules.extend(check_module(allModules, ProcessingUnit)) | |
|
59 | return modules | |
|
60 | ||
|
61 | def formatArgs(op): | |
|
62 | args = getArgs(op) | |
|
63 | ||
|
64 | argsAsKey = ["\t'{}'".format(x) for x in args] | |
|
65 | argsFormatted = ": 'string',\n".join(argsAsKey) | |
|
66 | ||
|
67 | print op | |
|
68 | print "parameters = { \n" + argsFormatted + ": 'string',\n }" | |
|
69 | print '\n' | |
|
70 | ||
|
71 | ||
|
72 | if __name__ == "__main__": | |
|
73 | getAll() | |
|
74 | [formatArgs(x) for x in getAll()] | |
|
75 | ||
|
76 | ''' | |
|
77 | parameters = { | |
|
78 | 'id': , | |
|
79 | 'wintitle': , | |
|
80 | } | |
|
81 | ''' No newline at end of file |
@@ -0,0 +1,1 | |||
|
1 | You should install "digital_rf_hdf5" module if you want to read USRP data |
@@ -1,188 +1,167 | |||
|
1 | 1 | import click |
|
2 | 2 | import schainpy |
|
3 | 3 | import subprocess |
|
4 | 4 | import os |
|
5 | 5 | import sys |
|
6 | 6 | import glob |
|
7 | 7 | save_stdout = sys.stdout |
|
8 | 8 | sys.stdout = open('trash', 'w') |
|
9 | 9 | from multiprocessing import cpu_count |
|
10 | 10 | from schaincli import templates |
|
11 | 11 | from schainpy import controller_api |
|
12 | 12 | from schainpy.model import Operation, ProcessingUnit |
|
13 | 13 | from schainpy.utils import log |
|
14 | 14 | from importlib import import_module |
|
15 | 15 | from pydoc import locate |
|
16 | 16 | from fuzzywuzzy import process |
|
17 | from schainpy.utils import paramsFinder | |
|
17 | 18 | sys.stdout = save_stdout |
|
18 | 19 | |
|
19 | 20 | |
|
20 | 21 | def print_version(ctx, param, value): |
|
21 | 22 | if not value or ctx.resilient_parsing: |
|
22 | 23 | return |
|
23 | 24 | click.echo(schainpy.__version__) |
|
24 | 25 | ctx.exit() |
|
25 | 26 | |
|
26 | 27 | |
|
27 | 28 | cliLogger = log.makelogger('schain cli') |
|
28 | 29 | PREFIX = 'experiment' |
|
29 | 30 | |
|
30 | 31 | |
|
31 | 32 | @click.command() |
|
32 | 33 | @click.option('--version', '-v', is_flag=True, callback=print_version, help='SChain version', type=str) |
|
33 | 34 | @click.option('--xml', '-x', default=None, help='run an XML file', type=click.Path(exists=True, resolve_path=True)) |
|
34 | 35 | @click.argument('command', default='run', required=True) |
|
35 | 36 | @click.argument('nextcommand', default=None, required=False, type=str) |
|
36 | 37 | def main(command, nextcommand, version, xml): |
|
37 | 38 | """COMMAND LINE INTERFACE FOR SIGNAL CHAIN - JICAMARCA RADIO OBSERVATORY \n |
|
38 | 39 | Available commands.\n |
|
39 | 40 | --xml: runs a schain XML generated file\n |
|
40 | 41 | run: runs any python script starting 'experiment_'\n |
|
41 | 42 | generate: generates a template schain script\n |
|
42 | 43 | search: return avilable operations, procs or arguments of the give operation/proc\n""" |
|
43 | 44 | if xml is not None: |
|
44 | 45 | runFromXML(xml) |
|
45 | 46 | elif command == 'generate': |
|
46 | 47 | generate() |
|
47 | 48 | elif command == 'test': |
|
48 | 49 | test() |
|
49 | 50 | elif command == 'run': |
|
50 | 51 | runschain(nextcommand) |
|
51 | 52 | elif command == 'search': |
|
52 | 53 | search(nextcommand) |
|
53 | 54 | else: |
|
54 | 55 | log.error('Command {} is not defined'.format(command)) |
|
55 | 56 | |
|
56 | 57 | def check_module(possible, instance): |
|
57 | 58 | def check(x): |
|
58 | 59 | try: |
|
59 | 60 | instancia = locate('schainpy.model.{}'.format(x)) |
|
60 | 61 | return isinstance(instancia(), instance) |
|
61 | 62 | except Exception as e: |
|
62 | 63 | return False |
|
63 | 64 | clean = clean_modules(possible) |
|
64 | 65 | return [x for x in clean if check(x)] |
|
65 | 66 | |
|
66 | 67 | |
|
67 | 68 | def clean_modules(module): |
|
68 | 69 | noEndsUnder = [x for x in module if not x.endswith('__')] |
|
69 | 70 | noStartUnder = [x for x in noEndsUnder if not x.startswith('__')] |
|
70 | 71 | noFullUpper = [x for x in noStartUnder if not x.isupper()] |
|
71 | 72 | return noFullUpper |
|
72 | 73 | |
|
73 | 74 | |
|
74 | 75 | def search(nextcommand): |
|
75 | 76 | if nextcommand is None: |
|
76 | 77 | log.error('There is no Operation/ProcessingUnit to search') |
|
77 | 78 | elif nextcommand == 'procs': |
|
78 | module = dir(import_module('schainpy.model')) | |
|
79 | procs = check_module(module, ProcessingUnit) | |
|
80 | try: | |
|
81 | procs.remove('ProcessingUnit') | |
|
82 | except Exception as e: | |
|
83 | pass | |
|
79 | procs = paramsFinder.getProcs() | |
|
84 | 80 | log.success('Current ProcessingUnits are:\n\033[1m{}\033[0m'.format('\n'.join(procs))) |
|
85 | 81 | |
|
86 | 82 | elif nextcommand == 'operations': |
|
87 | module = dir(import_module('schainpy.model')) | |
|
88 | noProcs = [x for x in module if not x.endswith('Proc')] | |
|
89 | operations = check_module(noProcs, Operation) | |
|
90 | try: | |
|
91 | operations.remove('Operation') | |
|
92 | except Exception as e: | |
|
93 | pass | |
|
83 | operations = paramsFinder.getOperations() | |
|
94 | 84 | log.success('Current Operations are:\n\033[1m{}\033[0m'.format('\n'.join(operations))) |
|
95 | 85 | else: |
|
96 | 86 | try: |
|
97 |
|
|
|
98 | args = module().getAllowedArgs() | |
|
87 | args = paramsFinder.getArgs(nextcommand) | |
|
99 | 88 | log.warning('Use this feature with caution. It may not return all the allowed arguments') |
|
100 | try: | |
|
101 | args.remove('self') | |
|
102 | except Exception as e: | |
|
103 | pass | |
|
104 | try: | |
|
105 | args.remove('dataOut') | |
|
106 | except Exception as e: | |
|
107 | pass | |
|
108 | 89 | if len(args) == 0: |
|
109 | 90 | log.success('{} has no arguments'.format(nextcommand)) |
|
110 | 91 | else: |
|
111 | 92 | log.success('Showing arguments of {} are:\n\033[1m{}\033[0m'.format(nextcommand, '\n'.join(args))) |
|
112 | 93 | except Exception as e: |
|
113 | 94 | log.error('Module {} does not exists'.format(nextcommand)) |
|
114 |
allModules = |
|
|
115 | module = check_module(allModules, Operation) | |
|
116 | module.extend(check_module(allModules, ProcessingUnit)) | |
|
117 | similar = process.extractOne(nextcommand, module)[0] | |
|
118 | log.success('Searching {} instead'.format(similar)) | |
|
95 | allModules = paramsFinder.getAll() | |
|
96 | similar = process.extractOne(nextcommand, allModules)[0] | |
|
97 | log.success('Showing {} instead'.format(similar)) | |
|
119 | 98 | search(similar) |
|
120 | 99 | |
|
121 | 100 | |
|
122 | 101 | def runschain(nextcommand): |
|
123 | 102 | if nextcommand is None: |
|
124 | 103 | currentfiles = glob.glob('./{}_*.py'.format(PREFIX)) |
|
125 | 104 | numberfiles = len(currentfiles) |
|
126 | 105 | if numberfiles > 1: |
|
127 | 106 | log.error('There is more than one file to run') |
|
128 | 107 | elif numberfiles == 1: |
|
129 | 108 | subprocess.call(['python ' + currentfiles[0]], shell=True) |
|
130 | 109 | else: |
|
131 | 110 | log.error('There is no file to run') |
|
132 | 111 | else: |
|
133 | 112 | try: |
|
134 | 113 | subprocess.call(['python ' + nextcommand], shell=True) |
|
135 | 114 | except Exception as e: |
|
136 | 115 | log.error("I cannot run the file. Does it exists?") |
|
137 | 116 | |
|
138 | 117 | |
|
139 | 118 | def basicInputs(): |
|
140 | 119 | inputs = {} |
|
141 | 120 | inputs['desc'] = click.prompt('Enter a description', default="A schain project", type=str) |
|
142 | 121 | inputs['name'] = click.prompt('Name of the project', default="project", type=str) |
|
143 | 122 | inputs['path'] = click.prompt('Data path', default=os.getcwd(), type=click.Path(exists=True, resolve_path=True)) |
|
144 | 123 | inputs['startDate'] = click.prompt('Start date', default='1970/01/01', type=str) |
|
145 | 124 | inputs['endDate'] = click.prompt('End date', default='2017/12/31', type=str) |
|
146 | 125 | inputs['startHour'] = click.prompt('Start hour', default='00:00:00', type=str) |
|
147 | 126 | inputs['endHour'] = click.prompt('End hour', default='23:59:59', type=str) |
|
148 | 127 | inputs['figpath'] = inputs['path'] + '/figs' |
|
149 | 128 | return inputs |
|
150 | 129 | |
|
151 | 130 | |
|
152 | 131 | def generate(): |
|
153 | 132 | inputs = basicInputs() |
|
154 | 133 | inputs['multiprocess'] = click.confirm('Is this a multiprocess script?') |
|
155 | 134 | if inputs['multiprocess']: |
|
156 | 135 | inputs['nProcess'] = click.prompt('How many process?', default=cpu_count(), type=int) |
|
157 | 136 | current = templates.multiprocess.format(**inputs) |
|
158 | 137 | else: |
|
159 | 138 | current = templates.basic.format(**inputs) |
|
160 | 139 | scriptname = '{}_{}.py'.format(PREFIX, inputs['name']) |
|
161 | 140 | script = open(scriptname, 'w') |
|
162 | 141 | try: |
|
163 | 142 | script.write(current) |
|
164 | 143 | log.success('Script {} generated'.format(scriptname)) |
|
165 | 144 | except Exception as e: |
|
166 | 145 | log.error('I cannot create the file. Do you have writing permissions?') |
|
167 | 146 | |
|
168 | 147 | |
|
169 | 148 | def test(): |
|
170 | 149 | log.warning('testing') |
|
171 | 150 | |
|
172 | 151 | |
|
173 | 152 | def runFromXML(filename): |
|
174 | 153 | controller = controller_api.ControllerThread() |
|
175 | 154 | if not controller.readXml(filename): |
|
176 | 155 | return |
|
177 | 156 | |
|
178 | 157 | plotterObj = controller.useExternalPlotter() |
|
179 | 158 | |
|
180 | 159 | controller.start() |
|
181 | 160 | plotterObj.start() |
|
182 | 161 | |
|
183 | 162 | cliLogger("Finishing all processes") |
|
184 | 163 | |
|
185 | 164 | controller.join(5) |
|
186 | 165 | |
|
187 | 166 | cliLogger("End of script") |
|
188 | 167 | return |
@@ -1,1534 +1,1595 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 9, 2014 |
|
3 | 3 | |
|
4 | 4 | @author: roj-idl71 |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import datetime |
|
8 | 8 | import numpy |
|
9 | 9 | |
|
10 | 10 | from figure import Figure, isRealtime, isTimeInHourRange |
|
11 | 11 | from plotting_codes import * |
|
12 | 12 | |
|
13 | ||
|
13 | 14 | class SpectraPlot(Figure): |
|
14 | 15 | |
|
15 | 16 | isConfig = None |
|
16 | 17 | __nsubplots = None |
|
17 | 18 | |
|
18 | 19 | WIDTHPROF = None |
|
19 | 20 | HEIGHTPROF = None |
|
20 | 21 | PREFIX = 'spc' |
|
21 | 22 | |
|
22 | 23 | def __init__(self, **kwargs): |
|
23 | 24 | Figure.__init__(self, **kwargs) |
|
24 | 25 | self.isConfig = False |
|
25 | 26 | self.__nsubplots = 1 |
|
26 | 27 | |
|
27 | 28 | self.WIDTH = 250 |
|
28 | 29 | self.HEIGHT = 250 |
|
29 | 30 | self.WIDTHPROF = 120 |
|
30 | 31 | self.HEIGHTPROF = 0 |
|
31 | 32 | self.counter_imagwr = 0 |
|
32 | 33 | |
|
33 | 34 | self.PLOT_CODE = SPEC_CODE |
|
34 | 35 | |
|
35 | 36 | self.FTP_WEI = None |
|
36 | 37 | self.EXP_CODE = None |
|
37 | 38 | self.SUB_EXP_CODE = None |
|
38 | 39 | self.PLOT_POS = None |
|
39 | 40 | |
|
40 | 41 | self.__xfilter_ena = False |
|
41 | 42 | self.__yfilter_ena = False |
|
42 | 43 | |
|
43 | 44 | def getSubplots(self): |
|
44 | 45 | |
|
45 | 46 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
46 | 47 | nrow = int(self.nplots*1./ncol + 0.9) |
|
47 | 48 | |
|
48 | 49 | return nrow, ncol |
|
49 | 50 | |
|
50 | 51 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
51 | 52 | |
|
52 | 53 | self.__showprofile = showprofile |
|
53 | 54 | self.nplots = nplots |
|
54 | 55 | |
|
55 | 56 | ncolspan = 1 |
|
56 | 57 | colspan = 1 |
|
57 | 58 | if showprofile: |
|
58 | 59 | ncolspan = 3 |
|
59 | 60 | colspan = 2 |
|
60 | 61 | self.__nsubplots = 2 |
|
61 | 62 | |
|
62 | 63 | self.createFigure(id = id, |
|
63 | 64 | wintitle = wintitle, |
|
64 | 65 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
65 | 66 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
66 | 67 | show=show) |
|
67 | 68 | |
|
68 | 69 | nrow, ncol = self.getSubplots() |
|
69 | 70 | |
|
70 | 71 | counter = 0 |
|
71 | 72 | for y in range(nrow): |
|
72 | 73 | for x in range(ncol): |
|
73 | 74 | |
|
74 | 75 | if counter >= self.nplots: |
|
75 | 76 | break |
|
76 | 77 | |
|
77 | 78 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
78 | 79 | |
|
79 | 80 | if showprofile: |
|
80 | 81 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
81 | 82 | |
|
82 | 83 | counter += 1 |
|
83 | 84 | |
|
84 | 85 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
85 | 86 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
86 | 87 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
87 | 88 | server=None, folder=None, username=None, password=None, |
|
88 | 89 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
89 | 90 | xaxis="velocity", **kwargs): |
|
90 | 91 | |
|
91 | 92 | """ |
|
92 | 93 | |
|
93 | 94 | Input: |
|
94 | 95 | dataOut : |
|
95 | 96 | id : |
|
96 | 97 | wintitle : |
|
97 | 98 | channelList : |
|
98 | 99 | showProfile : |
|
99 | 100 | xmin : None, |
|
100 | 101 | xmax : None, |
|
101 | 102 | ymin : None, |
|
102 | 103 | ymax : None, |
|
103 | 104 | zmin : None, |
|
104 | 105 | zmax : None |
|
105 | 106 | """ |
|
106 | 107 | |
|
107 | 108 | colormap = kwargs.get('colormap','jet') |
|
108 | 109 | |
|
109 | 110 | if realtime: |
|
110 | 111 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
111 | 112 | print 'Skipping this plot function' |
|
112 | 113 | return |
|
113 | 114 | |
|
114 | 115 | if channelList == None: |
|
115 | 116 | channelIndexList = dataOut.channelIndexList |
|
116 | 117 | else: |
|
117 | 118 | channelIndexList = [] |
|
118 | 119 | for channel in channelList: |
|
119 | 120 | if channel not in dataOut.channelList: |
|
120 | 121 | raise ValueError, "Channel %d is not in dataOut.channelList" %channel |
|
121 | 122 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
122 | 123 | |
|
123 | 124 | factor = dataOut.normFactor |
|
124 | 125 | |
|
125 | 126 | if xaxis == "frequency": |
|
126 | 127 | x = dataOut.getFreqRange(1)/1000. |
|
127 | 128 | xlabel = "Frequency (kHz)" |
|
128 | 129 | |
|
129 | 130 | elif xaxis == "time": |
|
130 | 131 | x = dataOut.getAcfRange(1) |
|
131 | 132 | xlabel = "Time (ms)" |
|
132 | 133 | |
|
133 | 134 | else: |
|
134 | 135 | x = dataOut.getVelRange(1) |
|
135 | 136 | xlabel = "Velocity (m/s)" |
|
136 | 137 | |
|
137 | 138 | ylabel = "Range (Km)" |
|
138 | 139 | |
|
139 | 140 | y = dataOut.getHeiRange() |
|
140 | 141 | |
|
141 | 142 | z = dataOut.data_spc/factor |
|
142 | 143 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
143 | 144 | zdB = 10*numpy.log10(z) |
|
144 | 145 | |
|
145 | 146 | avg = numpy.average(z, axis=1) |
|
146 | 147 | avgdB = 10*numpy.log10(avg) |
|
147 | 148 | |
|
148 | 149 | noise = dataOut.getNoise()/factor |
|
149 | 150 | noisedB = 10*numpy.log10(noise) |
|
150 | 151 | |
|
151 | 152 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
152 | 153 | title = wintitle + " Spectra" |
|
153 | 154 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
154 | 155 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
155 | 156 | |
|
156 | 157 | if not self.isConfig: |
|
157 | 158 | |
|
158 | 159 | nplots = len(channelIndexList) |
|
159 | 160 | |
|
160 | 161 | self.setup(id=id, |
|
161 | 162 | nplots=nplots, |
|
162 | 163 | wintitle=wintitle, |
|
163 | 164 | showprofile=showprofile, |
|
164 | 165 | show=show) |
|
165 | 166 | |
|
166 | 167 | if xmin == None: xmin = numpy.nanmin(x) |
|
167 | 168 | if xmax == None: xmax = numpy.nanmax(x) |
|
168 | 169 | if ymin == None: ymin = numpy.nanmin(y) |
|
169 | 170 | if ymax == None: ymax = numpy.nanmax(y) |
|
170 | 171 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
171 | 172 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
172 | 173 | |
|
173 | 174 | self.FTP_WEI = ftp_wei |
|
174 | 175 | self.EXP_CODE = exp_code |
|
175 | 176 | self.SUB_EXP_CODE = sub_exp_code |
|
176 | 177 | self.PLOT_POS = plot_pos |
|
177 | 178 | |
|
178 | 179 | self.isConfig = True |
|
179 | 180 | |
|
180 | 181 | self.setWinTitle(title) |
|
181 | 182 | |
|
182 | 183 | for i in range(self.nplots): |
|
183 | 184 | index = channelIndexList[i] |
|
184 | 185 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
185 | 186 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
186 | 187 | if len(dataOut.beam.codeList) != 0: |
|
187 | 188 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
188 | 189 | |
|
189 | 190 | axes = self.axesList[i*self.__nsubplots] |
|
190 | 191 | axes.pcolor(x, y, zdB[index,:,:], |
|
191 | 192 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
192 | 193 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
193 | 194 | ticksize=9, cblabel='') |
|
194 | 195 | |
|
195 | 196 | if self.__showprofile: |
|
196 | 197 | axes = self.axesList[i*self.__nsubplots +1] |
|
197 | 198 | axes.pline(avgdB[index,:], y, |
|
198 | 199 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
199 | 200 | xlabel='dB', ylabel='', title='', |
|
200 | 201 | ytick_visible=False, |
|
201 | 202 | grid='x') |
|
202 | 203 | |
|
203 | 204 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
204 | 205 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
205 | 206 | |
|
206 | 207 | self.draw() |
|
207 | 208 | |
|
208 | 209 | if figfile == None: |
|
209 | 210 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
210 | 211 | name = str_datetime |
|
211 | 212 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
212 | 213 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
213 | 214 | figfile = self.getFilename(name) |
|
214 | 215 | |
|
215 | 216 | self.save(figpath=figpath, |
|
216 | 217 | figfile=figfile, |
|
217 | 218 | save=save, |
|
218 | 219 | ftp=ftp, |
|
219 | 220 | wr_period=wr_period, |
|
220 | 221 | thisDatetime=thisDatetime) |
|
221 | 222 | |
|
222 | 223 | class CrossSpectraPlot(Figure): |
|
223 | 224 | |
|
224 | 225 | isConfig = None |
|
225 | 226 | __nsubplots = None |
|
226 | 227 | |
|
227 | 228 | WIDTH = None |
|
228 | 229 | HEIGHT = None |
|
229 | 230 | WIDTHPROF = None |
|
230 | 231 | HEIGHTPROF = None |
|
231 | 232 | PREFIX = 'cspc' |
|
232 | 233 | |
|
233 | 234 | def __init__(self, **kwargs): |
|
234 | 235 | Figure.__init__(self, **kwargs) |
|
235 | 236 | self.isConfig = False |
|
236 | 237 | self.__nsubplots = 4 |
|
237 | 238 | self.counter_imagwr = 0 |
|
238 | 239 | self.WIDTH = 250 |
|
239 | 240 | self.HEIGHT = 250 |
|
240 | 241 | self.WIDTHPROF = 0 |
|
241 | 242 | self.HEIGHTPROF = 0 |
|
242 | 243 | |
|
243 | 244 | self.PLOT_CODE = CROSS_CODE |
|
244 | 245 | self.FTP_WEI = None |
|
245 | 246 | self.EXP_CODE = None |
|
246 | 247 | self.SUB_EXP_CODE = None |
|
247 | 248 | self.PLOT_POS = None |
|
248 | 249 | |
|
249 | 250 | def getSubplots(self): |
|
250 | 251 | |
|
251 | 252 | ncol = 4 |
|
252 | 253 | nrow = self.nplots |
|
253 | 254 | |
|
254 | 255 | return nrow, ncol |
|
255 | 256 | |
|
256 | 257 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
257 | 258 | |
|
258 | 259 | self.__showprofile = showprofile |
|
259 | 260 | self.nplots = nplots |
|
260 | 261 | |
|
261 | 262 | ncolspan = 1 |
|
262 | 263 | colspan = 1 |
|
263 | 264 | |
|
264 | 265 | self.createFigure(id = id, |
|
265 | 266 | wintitle = wintitle, |
|
266 | 267 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
267 | 268 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
268 | 269 | show=True) |
|
269 | 270 | |
|
270 | 271 | nrow, ncol = self.getSubplots() |
|
271 | 272 | |
|
272 | 273 | counter = 0 |
|
273 | 274 | for y in range(nrow): |
|
274 | 275 | for x in range(ncol): |
|
275 | 276 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
276 | 277 | |
|
277 | 278 | counter += 1 |
|
278 | 279 | |
|
279 | 280 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
280 | 281 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
281 | 282 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
282 | 283 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
283 | 284 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
284 | 285 | server=None, folder=None, username=None, password=None, |
|
285 | 286 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, |
|
286 | 287 | xaxis='frequency'): |
|
287 | 288 | |
|
288 | 289 | """ |
|
289 | 290 | |
|
290 | 291 | Input: |
|
291 | 292 | dataOut : |
|
292 | 293 | id : |
|
293 | 294 | wintitle : |
|
294 | 295 | channelList : |
|
295 | 296 | showProfile : |
|
296 | 297 | xmin : None, |
|
297 | 298 | xmax : None, |
|
298 | 299 | ymin : None, |
|
299 | 300 | ymax : None, |
|
300 | 301 | zmin : None, |
|
301 | 302 | zmax : None |
|
302 | 303 | """ |
|
303 | 304 | |
|
304 | 305 | if pairsList == None: |
|
305 | 306 | pairsIndexList = dataOut.pairsIndexList |
|
306 | 307 | else: |
|
307 | 308 | pairsIndexList = [] |
|
308 | 309 | for pair in pairsList: |
|
309 | 310 | if pair not in dataOut.pairsList: |
|
310 | 311 | raise ValueError, "Pair %s is not in dataOut.pairsList" %str(pair) |
|
311 | 312 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
312 | 313 | |
|
313 | 314 | if not pairsIndexList: |
|
314 | 315 | return |
|
315 | 316 | |
|
316 | 317 | if len(pairsIndexList) > 4: |
|
317 | 318 | pairsIndexList = pairsIndexList[0:4] |
|
318 | 319 | |
|
319 | 320 | factor = dataOut.normFactor |
|
320 | 321 | x = dataOut.getVelRange(1) |
|
321 | 322 | y = dataOut.getHeiRange() |
|
322 | 323 | z = dataOut.data_spc[:,:,:]/factor |
|
323 | 324 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
324 | 325 | |
|
325 | 326 | noise = dataOut.noise/factor |
|
326 | 327 | |
|
327 | 328 | zdB = 10*numpy.log10(z) |
|
328 | 329 | noisedB = 10*numpy.log10(noise) |
|
329 | 330 | |
|
330 | 331 | if coh_min == None: |
|
331 | 332 | coh_min = 0.0 |
|
332 | 333 | if coh_max == None: |
|
333 | 334 | coh_max = 1.0 |
|
334 | 335 | |
|
335 | 336 | if phase_min == None: |
|
336 | 337 | phase_min = -180 |
|
337 | 338 | if phase_max == None: |
|
338 | 339 | phase_max = 180 |
|
339 | 340 | |
|
340 | 341 | #thisDatetime = dataOut.datatime |
|
341 | 342 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
342 | 343 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
343 | 344 | # xlabel = "Velocity (m/s)" |
|
344 | 345 | ylabel = "Range (Km)" |
|
345 | 346 | |
|
346 | 347 | if xaxis == "frequency": |
|
347 | 348 | x = dataOut.getFreqRange(1)/1000. |
|
348 | 349 | xlabel = "Frequency (kHz)" |
|
349 | 350 | |
|
350 | 351 | elif xaxis == "time": |
|
351 | 352 | x = dataOut.getAcfRange(1) |
|
352 | 353 | xlabel = "Time (ms)" |
|
353 | 354 | |
|
354 | 355 | else: |
|
355 | 356 | x = dataOut.getVelRange(1) |
|
356 | 357 | xlabel = "Velocity (m/s)" |
|
357 | 358 | |
|
358 | 359 | if not self.isConfig: |
|
359 | 360 | |
|
360 | 361 | nplots = len(pairsIndexList) |
|
361 | 362 | |
|
362 | 363 | self.setup(id=id, |
|
363 | 364 | nplots=nplots, |
|
364 | 365 | wintitle=wintitle, |
|
365 | 366 | showprofile=False, |
|
366 | 367 | show=show) |
|
367 | 368 | |
|
368 | 369 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
369 | 370 | avgdB = 10*numpy.log10(avg) |
|
370 | 371 | |
|
371 | 372 | if xmin == None: xmin = numpy.nanmin(x) |
|
372 | 373 | if xmax == None: xmax = numpy.nanmax(x) |
|
373 | 374 | if ymin == None: ymin = numpy.nanmin(y) |
|
374 | 375 | if ymax == None: ymax = numpy.nanmax(y) |
|
375 | 376 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
376 | 377 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
377 | 378 | |
|
378 | 379 | self.FTP_WEI = ftp_wei |
|
379 | 380 | self.EXP_CODE = exp_code |
|
380 | 381 | self.SUB_EXP_CODE = sub_exp_code |
|
381 | 382 | self.PLOT_POS = plot_pos |
|
382 | 383 | |
|
383 | 384 | self.isConfig = True |
|
384 | 385 | |
|
385 | 386 | self.setWinTitle(title) |
|
386 | 387 | |
|
387 | 388 | for i in range(self.nplots): |
|
388 | 389 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
389 | 390 | |
|
390 | 391 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
391 | 392 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
392 | 393 | |
|
393 | 394 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
394 | 395 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
395 | 396 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
396 | 397 | axes0 = self.axesList[i*self.__nsubplots] |
|
397 | 398 | axes0.pcolor(x, y, zdB, |
|
398 | 399 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
399 | 400 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
400 | 401 | ticksize=9, colormap=power_cmap, cblabel='') |
|
401 | 402 | |
|
402 | 403 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
403 | 404 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
404 | 405 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
405 | 406 | axes0.pcolor(x, y, zdB, |
|
406 | 407 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
407 | 408 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
408 | 409 | ticksize=9, colormap=power_cmap, cblabel='') |
|
409 | 410 | |
|
410 | 411 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:]) |
|
411 | 412 | coherence = numpy.abs(coherenceComplex) |
|
412 | 413 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
413 | 414 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
414 | 415 | |
|
415 | 416 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
416 | 417 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
417 | 418 | axes0.pcolor(x, y, coherence, |
|
418 | 419 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
419 | 420 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
420 | 421 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
421 | 422 | |
|
422 | 423 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
423 | 424 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
424 | 425 | axes0.pcolor(x, y, phase, |
|
425 | 426 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
426 | 427 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
427 | 428 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
428 | 429 | |
|
429 | 430 | |
|
430 | 431 | |
|
431 | 432 | self.draw() |
|
432 | 433 | |
|
433 | 434 | self.save(figpath=figpath, |
|
434 | 435 | figfile=figfile, |
|
435 | 436 | save=save, |
|
436 | 437 | ftp=ftp, |
|
437 | 438 | wr_period=wr_period, |
|
438 | 439 | thisDatetime=thisDatetime) |
|
439 | 440 | |
|
440 | 441 | |
|
441 | 442 | class RTIPlot(Figure): |
|
442 | 443 | |
|
443 | 444 | __isConfig = None |
|
444 | 445 | __nsubplots = None |
|
445 | 446 | |
|
446 | 447 | WIDTHPROF = None |
|
447 | 448 | HEIGHTPROF = None |
|
448 | 449 | PREFIX = 'rti' |
|
449 | 450 | |
|
450 | 451 | def __init__(self, **kwargs): |
|
451 | 452 | |
|
452 | 453 | Figure.__init__(self, **kwargs) |
|
453 | 454 | self.timerange = None |
|
454 | 455 | self.isConfig = False |
|
455 | 456 | self.__nsubplots = 1 |
|
456 | 457 | |
|
457 | 458 | self.WIDTH = 800 |
|
458 | 459 | self.HEIGHT = 180 |
|
459 | 460 | self.WIDTHPROF = 120 |
|
460 | 461 | self.HEIGHTPROF = 0 |
|
461 | 462 | self.counter_imagwr = 0 |
|
462 | 463 | |
|
463 | 464 | self.PLOT_CODE = RTI_CODE |
|
464 | 465 | |
|
465 | 466 | self.FTP_WEI = None |
|
466 | 467 | self.EXP_CODE = None |
|
467 | 468 | self.SUB_EXP_CODE = None |
|
468 | 469 | self.PLOT_POS = None |
|
469 | 470 | self.tmin = None |
|
470 | 471 | self.tmax = None |
|
471 | 472 | |
|
472 | 473 | self.xmin = None |
|
473 | 474 | self.xmax = None |
|
474 | 475 | |
|
475 | 476 | self.figfile = None |
|
476 | 477 | |
|
477 | 478 | def getSubplots(self): |
|
478 | 479 | |
|
479 | 480 | ncol = 1 |
|
480 | 481 | nrow = self.nplots |
|
481 | 482 | |
|
482 | 483 | return nrow, ncol |
|
483 | 484 | |
|
484 | 485 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
485 | 486 | |
|
486 | 487 | self.__showprofile = showprofile |
|
487 | 488 | self.nplots = nplots |
|
488 | 489 | |
|
489 | 490 | ncolspan = 1 |
|
490 | 491 | colspan = 1 |
|
491 | 492 | if showprofile: |
|
492 | 493 | ncolspan = 7 |
|
493 | 494 | colspan = 6 |
|
494 | 495 | self.__nsubplots = 2 |
|
495 | 496 | |
|
496 | 497 | self.createFigure(id = id, |
|
497 | 498 | wintitle = wintitle, |
|
498 | 499 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
499 | 500 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
500 | 501 | show=show) |
|
501 | 502 | |
|
502 | 503 | nrow, ncol = self.getSubplots() |
|
503 | 504 | |
|
504 | 505 | counter = 0 |
|
505 | 506 | for y in range(nrow): |
|
506 | 507 | for x in range(ncol): |
|
507 | 508 | |
|
508 | 509 | if counter >= self.nplots: |
|
509 | 510 | break |
|
510 | 511 | |
|
511 | 512 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
512 | 513 | |
|
513 | 514 | if showprofile: |
|
514 | 515 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
515 | 516 | |
|
516 | 517 | counter += 1 |
|
517 | 518 | |
|
518 | 519 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
519 | 520 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
520 | 521 | timerange=None, |
|
521 | 522 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
522 | 523 | server=None, folder=None, username=None, password=None, |
|
523 | 524 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, **kwargs): |
|
524 | 525 | |
|
525 | 526 | """ |
|
526 | 527 | |
|
527 | 528 | Input: |
|
528 | 529 | dataOut : |
|
529 | 530 | id : |
|
530 | 531 | wintitle : |
|
531 | 532 | channelList : |
|
532 | 533 | showProfile : |
|
533 | 534 | xmin : None, |
|
534 | 535 | xmax : None, |
|
535 | 536 | ymin : None, |
|
536 | 537 | ymax : None, |
|
537 | 538 | zmin : None, |
|
538 | 539 | zmax : None |
|
539 | 540 | """ |
|
540 | 541 | |
|
541 | 542 | colormap = kwargs.get('colormap', 'jet') |
|
542 | 543 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
543 | 544 | return |
|
544 | 545 | |
|
545 | 546 | if channelList == None: |
|
546 | 547 | channelIndexList = dataOut.channelIndexList |
|
547 | 548 | else: |
|
548 | 549 | channelIndexList = [] |
|
549 | 550 | for channel in channelList: |
|
550 | 551 | if channel not in dataOut.channelList: |
|
551 | 552 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
552 | 553 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
553 | 554 | |
|
554 | 555 | if hasattr(dataOut, 'normFactor'): |
|
555 | 556 | factor = dataOut.normFactor |
|
556 | 557 | else: |
|
557 | 558 | factor = 1 |
|
558 | 559 | |
|
559 | 560 | # factor = dataOut.normFactor |
|
560 | 561 | x = dataOut.getTimeRange() |
|
561 | 562 | y = dataOut.getHeiRange() |
|
562 | 563 | |
|
563 | 564 | # z = dataOut.data_spc/factor |
|
564 | 565 | # z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
565 | 566 | # avg = numpy.average(z, axis=1) |
|
566 | 567 | # avgdB = 10.*numpy.log10(avg) |
|
567 | 568 | avgdB = dataOut.getPower() |
|
568 | 569 | |
|
569 | 570 | thisDatetime = dataOut.datatime |
|
570 | 571 | # thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
571 | 572 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
572 | 573 | xlabel = "" |
|
573 | 574 | ylabel = "Range (Km)" |
|
574 | 575 | |
|
575 | 576 | update_figfile = False |
|
576 | 577 | |
|
577 | 578 | if dataOut.ltctime >= self.xmax: |
|
578 | 579 | self.counter_imagwr = wr_period |
|
579 | 580 | self.isConfig = False |
|
580 | 581 | update_figfile = True |
|
581 | 582 | |
|
582 | 583 | if not self.isConfig: |
|
583 | 584 | |
|
584 | 585 | nplots = len(channelIndexList) |
|
585 | 586 | |
|
586 | 587 | self.setup(id=id, |
|
587 | 588 | nplots=nplots, |
|
588 | 589 | wintitle=wintitle, |
|
589 | 590 | showprofile=showprofile, |
|
590 | 591 | show=show) |
|
591 | 592 | |
|
592 | 593 | if timerange != None: |
|
593 | 594 | self.timerange = timerange |
|
594 | 595 | |
|
595 | 596 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
596 | 597 | |
|
597 | 598 | noise = dataOut.noise/factor |
|
598 | 599 | noisedB = 10*numpy.log10(noise) |
|
599 | 600 | |
|
600 | 601 | if ymin == None: ymin = numpy.nanmin(y) |
|
601 | 602 | if ymax == None: ymax = numpy.nanmax(y) |
|
602 | 603 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
603 | 604 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
604 | 605 | |
|
605 | 606 | self.FTP_WEI = ftp_wei |
|
606 | 607 | self.EXP_CODE = exp_code |
|
607 | 608 | self.SUB_EXP_CODE = sub_exp_code |
|
608 | 609 | self.PLOT_POS = plot_pos |
|
609 | 610 | |
|
610 | 611 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
611 | 612 | self.isConfig = True |
|
612 | 613 | self.figfile = figfile |
|
613 | 614 | update_figfile = True |
|
614 | 615 | |
|
615 | 616 | self.setWinTitle(title) |
|
616 | 617 | |
|
617 | 618 | for i in range(self.nplots): |
|
618 | 619 | index = channelIndexList[i] |
|
619 | 620 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
620 | 621 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
621 | 622 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
622 | 623 | axes = self.axesList[i*self.__nsubplots] |
|
623 | 624 | zdB = avgdB[index].reshape((1,-1)) |
|
624 | 625 | axes.pcolorbuffer(x, y, zdB, |
|
625 | 626 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
626 | 627 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
627 | 628 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
628 | 629 | |
|
629 | 630 | if self.__showprofile: |
|
630 | 631 | axes = self.axesList[i*self.__nsubplots +1] |
|
631 | 632 | axes.pline(avgdB[index], y, |
|
632 | 633 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
633 | 634 | xlabel='dB', ylabel='', title='', |
|
634 | 635 | ytick_visible=False, |
|
635 | 636 | grid='x') |
|
636 | 637 | |
|
637 | 638 | self.draw() |
|
638 | 639 | |
|
639 | 640 | self.save(figpath=figpath, |
|
640 | 641 | figfile=figfile, |
|
641 | 642 | save=save, |
|
642 | 643 | ftp=ftp, |
|
643 | 644 | wr_period=wr_period, |
|
644 | 645 | thisDatetime=thisDatetime, |
|
645 | 646 | update_figfile=update_figfile) |
|
646 | 647 | |
|
647 | 648 | class CoherenceMap(Figure): |
|
648 | 649 | isConfig = None |
|
649 | 650 | __nsubplots = None |
|
650 | 651 | |
|
651 | 652 | WIDTHPROF = None |
|
652 | 653 | HEIGHTPROF = None |
|
653 | 654 | PREFIX = 'cmap' |
|
654 | 655 | |
|
656 | parameters = { | |
|
657 | 'id': 'string', | |
|
658 | 'wintitle': 'string', | |
|
659 | 'pairsList': 'pairsLists', | |
|
660 | 'showprofile': 'boolean', | |
|
661 | 'xmin': 'float', | |
|
662 | 'xmax': 'float', | |
|
663 | 'ymin': 'float', | |
|
664 | 'ymax': 'float', | |
|
665 | 'zmin': 'float', | |
|
666 | 'zmax': 'float', | |
|
667 | 'timerange': 'float', | |
|
668 | 'phase_min': 'float', | |
|
669 | 'phase_max': 'float', | |
|
670 | 'save': 'boolean', | |
|
671 | 'figpath': 'string', | |
|
672 | 'figfile': 'string', | |
|
673 | 'ftp': 'boolean', | |
|
674 | 'wr_period': 'int', | |
|
675 | 'coherence_cmap': 'colormap', | |
|
676 | 'phase_cmap': 'colormap', | |
|
677 | 'show': 'boolean', | |
|
678 | 'server': 'string', | |
|
679 | 'folder': 'string', | |
|
680 | 'username': 'string', | |
|
681 | 'password': 'string', | |
|
682 | 'ftp_wei': 'int', | |
|
683 | 'exp_code': 'int', | |
|
684 | 'sub_exp_code': 'int', | |
|
685 | 'plot_pos': 'int', | |
|
686 | } | |
|
687 | ||
|
655 | 688 | def __init__(self, **kwargs): |
|
656 | 689 | Figure.__init__(self, **kwargs) |
|
657 | 690 | self.timerange = 2*60*60 |
|
658 | 691 | self.isConfig = False |
|
659 | 692 | self.__nsubplots = 1 |
|
660 | 693 | |
|
661 | 694 | self.WIDTH = 800 |
|
662 | 695 | self.HEIGHT = 180 |
|
663 | 696 | self.WIDTHPROF = 120 |
|
664 | 697 | self.HEIGHTPROF = 0 |
|
665 | 698 | self.counter_imagwr = 0 |
|
666 | 699 | |
|
667 | 700 | self.PLOT_CODE = COH_CODE |
|
668 | 701 | |
|
669 | 702 | self.FTP_WEI = None |
|
670 | 703 | self.EXP_CODE = None |
|
671 | 704 | self.SUB_EXP_CODE = None |
|
672 | 705 | self.PLOT_POS = None |
|
673 | 706 | self.counter_imagwr = 0 |
|
674 | 707 | |
|
675 | 708 | self.xmin = None |
|
676 | 709 | self.xmax = None |
|
677 | 710 | |
|
678 | 711 | def getSubplots(self): |
|
679 | 712 | ncol = 1 |
|
680 | 713 | nrow = self.nplots*2 |
|
681 | 714 | |
|
682 | 715 | return nrow, ncol |
|
683 | 716 | |
|
684 | 717 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
685 | 718 | self.__showprofile = showprofile |
|
686 | 719 | self.nplots = nplots |
|
687 | 720 | |
|
688 | 721 | ncolspan = 1 |
|
689 | 722 | colspan = 1 |
|
690 | 723 | if showprofile: |
|
691 | 724 | ncolspan = 7 |
|
692 | 725 | colspan = 6 |
|
693 | 726 | self.__nsubplots = 2 |
|
694 | 727 | |
|
695 | 728 | self.createFigure(id = id, |
|
696 | 729 | wintitle = wintitle, |
|
697 | 730 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
698 | 731 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
699 | 732 | show=True) |
|
700 | 733 | |
|
701 | 734 | nrow, ncol = self.getSubplots() |
|
702 | 735 | |
|
703 | 736 | for y in range(nrow): |
|
704 | 737 | for x in range(ncol): |
|
705 | 738 | |
|
706 | 739 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
707 | 740 | |
|
708 | 741 | if showprofile: |
|
709 | 742 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
710 | 743 | |
|
711 | 744 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
712 | 745 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
713 | 746 | timerange=None, phase_min=None, phase_max=None, |
|
714 | 747 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
715 | 748 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
716 | 749 | server=None, folder=None, username=None, password=None, |
|
717 | 750 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
718 | 751 | |
|
719 | 752 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
720 | 753 | return |
|
721 | 754 | |
|
722 | 755 | if pairsList == None: |
|
723 | 756 | pairsIndexList = dataOut.pairsIndexList |
|
724 | 757 | else: |
|
725 | 758 | pairsIndexList = [] |
|
726 | 759 | for pair in pairsList: |
|
727 | 760 | if pair not in dataOut.pairsList: |
|
728 | 761 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
729 | 762 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
730 | 763 | |
|
731 | 764 | if pairsIndexList == []: |
|
732 | 765 | return |
|
733 | 766 | |
|
734 | 767 | if len(pairsIndexList) > 4: |
|
735 | 768 | pairsIndexList = pairsIndexList[0:4] |
|
736 | 769 | |
|
737 | 770 | if phase_min == None: |
|
738 | 771 | phase_min = -180 |
|
739 | 772 | if phase_max == None: |
|
740 | 773 | phase_max = 180 |
|
741 | 774 | |
|
742 | 775 | x = dataOut.getTimeRange() |
|
743 | 776 | y = dataOut.getHeiRange() |
|
744 | 777 | |
|
745 | 778 | thisDatetime = dataOut.datatime |
|
746 | 779 | |
|
747 | 780 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
748 | 781 | xlabel = "" |
|
749 | 782 | ylabel = "Range (Km)" |
|
750 | 783 | update_figfile = False |
|
751 | 784 | |
|
752 | 785 | if not self.isConfig: |
|
753 | 786 | nplots = len(pairsIndexList) |
|
754 | 787 | self.setup(id=id, |
|
755 | 788 | nplots=nplots, |
|
756 | 789 | wintitle=wintitle, |
|
757 | 790 | showprofile=showprofile, |
|
758 | 791 | show=show) |
|
759 | 792 | |
|
760 | 793 | if timerange != None: |
|
761 | 794 | self.timerange = timerange |
|
762 | 795 | |
|
763 | 796 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
764 | 797 | |
|
765 | 798 | if ymin == None: ymin = numpy.nanmin(y) |
|
766 | 799 | if ymax == None: ymax = numpy.nanmax(y) |
|
767 | 800 | if zmin == None: zmin = 0. |
|
768 | 801 | if zmax == None: zmax = 1. |
|
769 | 802 | |
|
770 | 803 | self.FTP_WEI = ftp_wei |
|
771 | 804 | self.EXP_CODE = exp_code |
|
772 | 805 | self.SUB_EXP_CODE = sub_exp_code |
|
773 | 806 | self.PLOT_POS = plot_pos |
|
774 | 807 | |
|
775 | 808 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
776 | 809 | |
|
777 | 810 | self.isConfig = True |
|
778 | 811 | update_figfile = True |
|
779 | 812 | |
|
780 | 813 | self.setWinTitle(title) |
|
781 | 814 | |
|
782 | 815 | for i in range(self.nplots): |
|
783 | 816 | |
|
784 | 817 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
785 | 818 | |
|
786 | 819 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
787 | 820 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
788 | 821 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
789 | 822 | |
|
790 | 823 | |
|
791 | 824 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
792 | 825 | coherence = numpy.abs(avgcoherenceComplex) |
|
793 | 826 | |
|
794 | 827 | z = coherence.reshape((1,-1)) |
|
795 | 828 | |
|
796 | 829 | counter = 0 |
|
797 | 830 | |
|
798 | 831 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
799 | 832 | axes = self.axesList[i*self.__nsubplots*2] |
|
800 | 833 | axes.pcolorbuffer(x, y, z, |
|
801 | 834 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
802 | 835 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
803 | 836 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
804 | 837 | |
|
805 | 838 | if self.__showprofile: |
|
806 | 839 | counter += 1 |
|
807 | 840 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
808 | 841 | axes.pline(coherence, y, |
|
809 | 842 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
810 | 843 | xlabel='', ylabel='', title='', ticksize=7, |
|
811 | 844 | ytick_visible=False, nxticks=5, |
|
812 | 845 | grid='x') |
|
813 | 846 | |
|
814 | 847 | counter += 1 |
|
815 | 848 | |
|
816 | 849 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
817 | 850 | |
|
818 | 851 | z = phase.reshape((1,-1)) |
|
819 | 852 | |
|
820 | 853 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
821 | 854 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
822 | 855 | axes.pcolorbuffer(x, y, z, |
|
823 | 856 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
824 | 857 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
825 | 858 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
826 | 859 | |
|
827 | 860 | if self.__showprofile: |
|
828 | 861 | counter += 1 |
|
829 | 862 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
830 | 863 | axes.pline(phase, y, |
|
831 | 864 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
832 | 865 | xlabel='', ylabel='', title='', ticksize=7, |
|
833 | 866 | ytick_visible=False, nxticks=4, |
|
834 | 867 | grid='x') |
|
835 | 868 | |
|
836 | 869 | self.draw() |
|
837 | 870 | |
|
838 | 871 | if dataOut.ltctime >= self.xmax: |
|
839 | 872 | self.counter_imagwr = wr_period |
|
840 | 873 | self.isConfig = False |
|
841 | 874 | update_figfile = True |
|
842 | 875 | |
|
843 | 876 | self.save(figpath=figpath, |
|
844 | 877 | figfile=figfile, |
|
845 | 878 | save=save, |
|
846 | 879 | ftp=ftp, |
|
847 | 880 | wr_period=wr_period, |
|
848 | 881 | thisDatetime=thisDatetime, |
|
849 | 882 | update_figfile=update_figfile) |
|
850 | 883 | |
|
851 | 884 | class PowerProfilePlot(Figure): |
|
852 | 885 | |
|
853 | 886 | isConfig = None |
|
854 | 887 | __nsubplots = None |
|
855 | 888 | |
|
856 | 889 | WIDTHPROF = None |
|
857 | 890 | HEIGHTPROF = None |
|
858 | 891 | PREFIX = 'spcprofile' |
|
859 | 892 | |
|
860 | 893 | def __init__(self, **kwargs): |
|
861 | 894 | Figure.__init__(self, **kwargs) |
|
862 | 895 | self.isConfig = False |
|
863 | 896 | self.__nsubplots = 1 |
|
864 | 897 | |
|
865 | 898 | self.PLOT_CODE = POWER_CODE |
|
866 | 899 | |
|
867 | 900 | self.WIDTH = 300 |
|
868 | 901 | self.HEIGHT = 500 |
|
869 | 902 | self.counter_imagwr = 0 |
|
870 | 903 | |
|
871 | 904 | def getSubplots(self): |
|
872 | 905 | ncol = 1 |
|
873 | 906 | nrow = 1 |
|
874 | 907 | |
|
875 | 908 | return nrow, ncol |
|
876 | 909 | |
|
877 | 910 | def setup(self, id, nplots, wintitle, show): |
|
878 | 911 | |
|
879 | 912 | self.nplots = nplots |
|
880 | 913 | |
|
881 | 914 | ncolspan = 1 |
|
882 | 915 | colspan = 1 |
|
883 | 916 | |
|
884 | 917 | self.createFigure(id = id, |
|
885 | 918 | wintitle = wintitle, |
|
886 | 919 | widthplot = self.WIDTH, |
|
887 | 920 | heightplot = self.HEIGHT, |
|
888 | 921 | show=show) |
|
889 | 922 | |
|
890 | 923 | nrow, ncol = self.getSubplots() |
|
891 | 924 | |
|
892 | 925 | counter = 0 |
|
893 | 926 | for y in range(nrow): |
|
894 | 927 | for x in range(ncol): |
|
895 | 928 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
896 | 929 | |
|
897 | 930 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
898 | 931 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
899 | 932 | save=False, figpath='./', figfile=None, show=True, |
|
900 | 933 | ftp=False, wr_period=1, server=None, |
|
901 | 934 | folder=None, username=None, password=None): |
|
902 | 935 | |
|
903 | 936 | |
|
904 | 937 | if channelList == None: |
|
905 | 938 | channelIndexList = dataOut.channelIndexList |
|
906 | 939 | channelList = dataOut.channelList |
|
907 | 940 | else: |
|
908 | 941 | channelIndexList = [] |
|
909 | 942 | for channel in channelList: |
|
910 | 943 | if channel not in dataOut.channelList: |
|
911 | 944 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
912 | 945 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
913 | 946 | |
|
914 | 947 | factor = dataOut.normFactor |
|
915 | 948 | |
|
916 | 949 | y = dataOut.getHeiRange() |
|
917 | 950 | |
|
918 | 951 | #for voltage |
|
919 | 952 | if dataOut.type == 'Voltage': |
|
920 | 953 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
921 | 954 | x = x.real |
|
922 | 955 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
923 | 956 | |
|
924 | 957 | #for spectra |
|
925 | 958 | if dataOut.type == 'Spectra': |
|
926 | 959 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
927 | 960 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
928 | 961 | x = numpy.average(x, axis=1) |
|
929 | 962 | |
|
930 | 963 | |
|
931 | 964 | xdB = 10*numpy.log10(x) |
|
932 | 965 | |
|
933 | 966 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
934 | 967 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
935 | 968 | xlabel = "dB" |
|
936 | 969 | ylabel = "Range (Km)" |
|
937 | 970 | |
|
938 | 971 | if not self.isConfig: |
|
939 | 972 | |
|
940 | 973 | nplots = 1 |
|
941 | 974 | |
|
942 | 975 | self.setup(id=id, |
|
943 | 976 | nplots=nplots, |
|
944 | 977 | wintitle=wintitle, |
|
945 | 978 | show=show) |
|
946 | 979 | |
|
947 | 980 | if ymin == None: ymin = numpy.nanmin(y) |
|
948 | 981 | if ymax == None: ymax = numpy.nanmax(y) |
|
949 | 982 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
950 | 983 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
951 | 984 | |
|
952 | 985 | self.isConfig = True |
|
953 | 986 | |
|
954 | 987 | self.setWinTitle(title) |
|
955 | 988 | |
|
956 | 989 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
957 | 990 | axes = self.axesList[0] |
|
958 | 991 | |
|
959 | 992 | legendlabels = ["channel %d"%x for x in channelList] |
|
960 | 993 | axes.pmultiline(xdB, y, |
|
961 | 994 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
962 | 995 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
963 | 996 | ytick_visible=True, nxticks=5, |
|
964 | 997 | grid='x') |
|
965 | 998 | |
|
966 | 999 | self.draw() |
|
967 | 1000 | |
|
968 | 1001 | self.save(figpath=figpath, |
|
969 | 1002 | figfile=figfile, |
|
970 | 1003 | save=save, |
|
971 | 1004 | ftp=ftp, |
|
972 | 1005 | wr_period=wr_period, |
|
973 | 1006 | thisDatetime=thisDatetime) |
|
974 | 1007 | |
|
975 | 1008 | class SpectraCutPlot(Figure): |
|
976 | 1009 | |
|
977 | 1010 | isConfig = None |
|
978 | 1011 | __nsubplots = None |
|
979 | 1012 | |
|
980 | 1013 | WIDTHPROF = None |
|
981 | 1014 | HEIGHTPROF = None |
|
982 | 1015 | PREFIX = 'spc_cut' |
|
983 | 1016 | |
|
984 | 1017 | def __init__(self, **kwargs): |
|
985 | 1018 | Figure.__init__(self, **kwargs) |
|
986 | 1019 | self.isConfig = False |
|
987 | 1020 | self.__nsubplots = 1 |
|
988 | 1021 | |
|
989 | 1022 | self.PLOT_CODE = POWER_CODE |
|
990 | 1023 | |
|
991 | 1024 | self.WIDTH = 700 |
|
992 | 1025 | self.HEIGHT = 500 |
|
993 | 1026 | self.counter_imagwr = 0 |
|
994 | 1027 | |
|
995 | 1028 | def getSubplots(self): |
|
996 | 1029 | ncol = 1 |
|
997 | 1030 | nrow = 1 |
|
998 | 1031 | |
|
999 | 1032 | return nrow, ncol |
|
1000 | 1033 | |
|
1001 | 1034 | def setup(self, id, nplots, wintitle, show): |
|
1002 | 1035 | |
|
1003 | 1036 | self.nplots = nplots |
|
1004 | 1037 | |
|
1005 | 1038 | ncolspan = 1 |
|
1006 | 1039 | colspan = 1 |
|
1007 | 1040 | |
|
1008 | 1041 | self.createFigure(id = id, |
|
1009 | 1042 | wintitle = wintitle, |
|
1010 | 1043 | widthplot = self.WIDTH, |
|
1011 | 1044 | heightplot = self.HEIGHT, |
|
1012 | 1045 | show=show) |
|
1013 | 1046 | |
|
1014 | 1047 | nrow, ncol = self.getSubplots() |
|
1015 | 1048 | |
|
1016 | 1049 | counter = 0 |
|
1017 | 1050 | for y in range(nrow): |
|
1018 | 1051 | for x in range(ncol): |
|
1019 | 1052 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1020 | 1053 | |
|
1021 | 1054 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1022 | 1055 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1023 | 1056 | save=False, figpath='./', figfile=None, show=True, |
|
1024 | 1057 | ftp=False, wr_period=1, server=None, |
|
1025 | 1058 | folder=None, username=None, password=None, |
|
1026 | 1059 | xaxis="frequency"): |
|
1027 | 1060 | |
|
1028 | 1061 | |
|
1029 | 1062 | if channelList == None: |
|
1030 | 1063 | channelIndexList = dataOut.channelIndexList |
|
1031 | 1064 | channelList = dataOut.channelList |
|
1032 | 1065 | else: |
|
1033 | 1066 | channelIndexList = [] |
|
1034 | 1067 | for channel in channelList: |
|
1035 | 1068 | if channel not in dataOut.channelList: |
|
1036 | 1069 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1037 | 1070 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1038 | 1071 | |
|
1039 | 1072 | factor = dataOut.normFactor |
|
1040 | 1073 | |
|
1041 | 1074 | y = dataOut.getHeiRange() |
|
1042 | 1075 | |
|
1043 | 1076 | z = dataOut.data_spc/factor |
|
1044 | 1077 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1045 | 1078 | |
|
1046 | 1079 | hei_index = numpy.arange(25)*3 + 20 |
|
1047 | 1080 | |
|
1048 | 1081 | if xaxis == "frequency": |
|
1049 | 1082 | x = dataOut.getFreqRange()/1000. |
|
1050 | 1083 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1051 | 1084 | xlabel = "Frequency (kHz)" |
|
1052 | 1085 | ylabel = "Power (dB)" |
|
1053 | 1086 | |
|
1054 | 1087 | elif xaxis == "time": |
|
1055 | 1088 | x = dataOut.getAcfRange() |
|
1056 | 1089 | zdB = z[0,:,hei_index] |
|
1057 | 1090 | xlabel = "Time (ms)" |
|
1058 | 1091 | ylabel = "ACF" |
|
1059 | 1092 | |
|
1060 | 1093 | else: |
|
1061 | 1094 | x = dataOut.getVelRange() |
|
1062 | 1095 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1063 | 1096 | xlabel = "Velocity (m/s)" |
|
1064 | 1097 | ylabel = "Power (dB)" |
|
1065 | 1098 | |
|
1066 | 1099 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1067 | 1100 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1068 | 1101 | |
|
1069 | 1102 | if not self.isConfig: |
|
1070 | 1103 | |
|
1071 | 1104 | nplots = 1 |
|
1072 | 1105 | |
|
1073 | 1106 | self.setup(id=id, |
|
1074 | 1107 | nplots=nplots, |
|
1075 | 1108 | wintitle=wintitle, |
|
1076 | 1109 | show=show) |
|
1077 | 1110 | |
|
1078 | 1111 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1079 | 1112 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1080 | 1113 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1081 | 1114 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1082 | 1115 | |
|
1083 | 1116 | self.isConfig = True |
|
1084 | 1117 | |
|
1085 | 1118 | self.setWinTitle(title) |
|
1086 | 1119 | |
|
1087 | 1120 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1088 | 1121 | axes = self.axesList[0] |
|
1089 | 1122 | |
|
1090 | 1123 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1091 | 1124 | |
|
1092 | 1125 | axes.pmultilineyaxis( x, zdB, |
|
1093 | 1126 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1094 | 1127 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1095 | 1128 | ytick_visible=True, nxticks=5, |
|
1096 | 1129 | grid='x') |
|
1097 | 1130 | |
|
1098 | 1131 | self.draw() |
|
1099 | 1132 | |
|
1100 | 1133 | self.save(figpath=figpath, |
|
1101 | 1134 | figfile=figfile, |
|
1102 | 1135 | save=save, |
|
1103 | 1136 | ftp=ftp, |
|
1104 | 1137 | wr_period=wr_period, |
|
1105 | 1138 | thisDatetime=thisDatetime) |
|
1106 | 1139 | |
|
1107 | 1140 | class Noise(Figure): |
|
1108 | 1141 | |
|
1109 | 1142 | isConfig = None |
|
1110 | 1143 | __nsubplots = None |
|
1111 | 1144 | |
|
1112 | 1145 | PREFIX = 'noise' |
|
1113 | 1146 | |
|
1114 | 1147 | def __init__(self, **kwargs): |
|
1115 | 1148 | Figure.__init__(self, **kwargs) |
|
1116 | 1149 | self.timerange = 24*60*60 |
|
1117 | 1150 | self.isConfig = False |
|
1118 | 1151 | self.__nsubplots = 1 |
|
1119 | 1152 | self.counter_imagwr = 0 |
|
1120 | 1153 | self.WIDTH = 800 |
|
1121 | 1154 | self.HEIGHT = 400 |
|
1122 | 1155 | self.WIDTHPROF = 120 |
|
1123 | 1156 | self.HEIGHTPROF = 0 |
|
1124 | 1157 | self.xdata = None |
|
1125 | 1158 | self.ydata = None |
|
1126 | 1159 | |
|
1127 | 1160 | self.PLOT_CODE = NOISE_CODE |
|
1128 | 1161 | |
|
1129 | 1162 | self.FTP_WEI = None |
|
1130 | 1163 | self.EXP_CODE = None |
|
1131 | 1164 | self.SUB_EXP_CODE = None |
|
1132 | 1165 | self.PLOT_POS = None |
|
1133 | 1166 | self.figfile = None |
|
1134 | 1167 | |
|
1135 | 1168 | self.xmin = None |
|
1136 | 1169 | self.xmax = None |
|
1137 | 1170 | |
|
1138 | 1171 | def getSubplots(self): |
|
1139 | 1172 | |
|
1140 | 1173 | ncol = 1 |
|
1141 | 1174 | nrow = 1 |
|
1142 | 1175 | |
|
1143 | 1176 | return nrow, ncol |
|
1144 | 1177 | |
|
1145 | 1178 | def openfile(self, filename): |
|
1146 | 1179 | dirname = os.path.dirname(filename) |
|
1147 | 1180 | |
|
1148 | 1181 | if not os.path.exists(dirname): |
|
1149 | 1182 | os.mkdir(dirname) |
|
1150 | 1183 | |
|
1151 | 1184 | f = open(filename,'w+') |
|
1152 | 1185 | f.write('\n\n') |
|
1153 | 1186 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1154 | 1187 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1155 | 1188 | f.close() |
|
1156 | 1189 | |
|
1157 | 1190 | def save_data(self, filename_phase, data, data_datetime): |
|
1158 | 1191 | |
|
1159 | 1192 | f=open(filename_phase,'a') |
|
1160 | 1193 | |
|
1161 | 1194 | timetuple_data = data_datetime.timetuple() |
|
1162 | 1195 | day = str(timetuple_data.tm_mday) |
|
1163 | 1196 | month = str(timetuple_data.tm_mon) |
|
1164 | 1197 | year = str(timetuple_data.tm_year) |
|
1165 | 1198 | hour = str(timetuple_data.tm_hour) |
|
1166 | 1199 | minute = str(timetuple_data.tm_min) |
|
1167 | 1200 | second = str(timetuple_data.tm_sec) |
|
1168 | 1201 | |
|
1169 | 1202 | data_msg = '' |
|
1170 | 1203 | for i in range(len(data)): |
|
1171 | 1204 | data_msg += str(data[i]) + ' ' |
|
1172 | 1205 | |
|
1173 | 1206 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1174 | 1207 | f.close() |
|
1175 | 1208 | |
|
1176 | 1209 | |
|
1177 | 1210 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1178 | 1211 | |
|
1179 | 1212 | self.__showprofile = showprofile |
|
1180 | 1213 | self.nplots = nplots |
|
1181 | 1214 | |
|
1182 | 1215 | ncolspan = 7 |
|
1183 | 1216 | colspan = 6 |
|
1184 | 1217 | self.__nsubplots = 2 |
|
1185 | 1218 | |
|
1186 | 1219 | self.createFigure(id = id, |
|
1187 | 1220 | wintitle = wintitle, |
|
1188 | 1221 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1189 | 1222 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1190 | 1223 | show=show) |
|
1191 | 1224 | |
|
1192 | 1225 | nrow, ncol = self.getSubplots() |
|
1193 | 1226 | |
|
1194 | 1227 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1195 | 1228 | |
|
1196 | 1229 | |
|
1197 | 1230 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1198 | 1231 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1199 | 1232 | timerange=None, |
|
1200 | 1233 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1201 | 1234 | server=None, folder=None, username=None, password=None, |
|
1202 | 1235 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1203 | 1236 | |
|
1204 | 1237 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1205 | 1238 | return |
|
1206 | 1239 | |
|
1207 | 1240 | if channelList == None: |
|
1208 | 1241 | channelIndexList = dataOut.channelIndexList |
|
1209 | 1242 | channelList = dataOut.channelList |
|
1210 | 1243 | else: |
|
1211 | 1244 | channelIndexList = [] |
|
1212 | 1245 | for channel in channelList: |
|
1213 | 1246 | if channel not in dataOut.channelList: |
|
1214 | 1247 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
1215 | 1248 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1216 | 1249 | |
|
1217 | 1250 | x = dataOut.getTimeRange() |
|
1218 | 1251 | #y = dataOut.getHeiRange() |
|
1219 | 1252 | factor = dataOut.normFactor |
|
1220 | 1253 | noise = dataOut.noise[channelIndexList]/factor |
|
1221 | 1254 | noisedB = 10*numpy.log10(noise) |
|
1222 | 1255 | |
|
1223 | 1256 | thisDatetime = dataOut.datatime |
|
1224 | 1257 | |
|
1225 | 1258 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1226 | 1259 | xlabel = "" |
|
1227 | 1260 | ylabel = "Intensity (dB)" |
|
1228 | 1261 | update_figfile = False |
|
1229 | 1262 | |
|
1230 | 1263 | if not self.isConfig: |
|
1231 | 1264 | |
|
1232 | 1265 | nplots = 1 |
|
1233 | 1266 | |
|
1234 | 1267 | self.setup(id=id, |
|
1235 | 1268 | nplots=nplots, |
|
1236 | 1269 | wintitle=wintitle, |
|
1237 | 1270 | showprofile=showprofile, |
|
1238 | 1271 | show=show) |
|
1239 | 1272 | |
|
1240 | 1273 | if timerange != None: |
|
1241 | 1274 | self.timerange = timerange |
|
1242 | 1275 | |
|
1243 | 1276 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1244 | 1277 | |
|
1245 | 1278 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1246 | 1279 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1247 | 1280 | |
|
1248 | 1281 | self.FTP_WEI = ftp_wei |
|
1249 | 1282 | self.EXP_CODE = exp_code |
|
1250 | 1283 | self.SUB_EXP_CODE = sub_exp_code |
|
1251 | 1284 | self.PLOT_POS = plot_pos |
|
1252 | 1285 | |
|
1253 | 1286 | |
|
1254 | 1287 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1255 | 1288 | self.isConfig = True |
|
1256 | 1289 | self.figfile = figfile |
|
1257 | 1290 | self.xdata = numpy.array([]) |
|
1258 | 1291 | self.ydata = numpy.array([]) |
|
1259 | 1292 | |
|
1260 | 1293 | update_figfile = True |
|
1261 | 1294 | |
|
1262 | 1295 | #open file beacon phase |
|
1263 | 1296 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1264 | 1297 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1265 | 1298 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1266 | 1299 | |
|
1267 | 1300 | self.setWinTitle(title) |
|
1268 | 1301 | |
|
1269 | 1302 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1270 | 1303 | |
|
1271 | 1304 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1272 | 1305 | axes = self.axesList[0] |
|
1273 | 1306 | |
|
1274 | 1307 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1275 | 1308 | |
|
1276 | 1309 | if len(self.ydata)==0: |
|
1277 | 1310 | self.ydata = noisedB.reshape(-1,1) |
|
1278 | 1311 | else: |
|
1279 | 1312 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1280 | 1313 | |
|
1281 | 1314 | |
|
1282 | 1315 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1283 | 1316 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1284 | 1317 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1285 | 1318 | XAxisAsTime=True, grid='both' |
|
1286 | 1319 | ) |
|
1287 | 1320 | |
|
1288 | 1321 | self.draw() |
|
1289 | 1322 | |
|
1290 | 1323 | if dataOut.ltctime >= self.xmax: |
|
1291 | 1324 | self.counter_imagwr = wr_period |
|
1292 | 1325 | self.isConfig = False |
|
1293 | 1326 | update_figfile = True |
|
1294 | 1327 | |
|
1295 | 1328 | self.save(figpath=figpath, |
|
1296 | 1329 | figfile=figfile, |
|
1297 | 1330 | save=save, |
|
1298 | 1331 | ftp=ftp, |
|
1299 | 1332 | wr_period=wr_period, |
|
1300 | 1333 | thisDatetime=thisDatetime, |
|
1301 | 1334 | update_figfile=update_figfile) |
|
1302 | 1335 | |
|
1303 | 1336 | #store data beacon phase |
|
1304 | 1337 | if save: |
|
1305 | 1338 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1306 | 1339 | |
|
1307 | 1340 | class BeaconPhase(Figure): |
|
1308 | 1341 | |
|
1309 | 1342 | __isConfig = None |
|
1310 | 1343 | __nsubplots = None |
|
1311 | 1344 | |
|
1312 | 1345 | PREFIX = 'beacon_phase' |
|
1346 | ||
|
1347 | parameters = { | |
|
1348 | 'id': 'string', | |
|
1349 | 'wintitle': 'string', | |
|
1350 | 'pairsList': 'pairsList', | |
|
1351 | 'showprofile': 'boolean', | |
|
1352 | 'xmin': 'float', | |
|
1353 | 'xmax': 'float', | |
|
1354 | 'ymin': 'float', | |
|
1355 | 'ymax': 'float', | |
|
1356 | 'hmin': 'float', | |
|
1357 | 'hmax': 'float', | |
|
1358 | 'timerange': 'float', | |
|
1359 | 'save': 'boolean', | |
|
1360 | 'figpath': 'string', | |
|
1361 | 'figfile': 'string', | |
|
1362 | 'show': 'boolean', | |
|
1363 | 'ftp': 'string', | |
|
1364 | 'wr_period': 'int', | |
|
1365 | 'server': 'string', | |
|
1366 | 'folder': 'string', | |
|
1367 | 'username': 'string', | |
|
1368 | 'password': 'string', | |
|
1369 | 'ftp_wei': 'int', | |
|
1370 | 'exp_code': 'int', | |
|
1371 | 'sub_exp_code': 'int', | |
|
1372 | 'plot_pos': 'int', | |
|
1373 | } | |
|
1313 | 1374 | |
|
1314 | 1375 | def __init__(self, **kwargs): |
|
1315 | 1376 | Figure.__init__(self, **kwargs) |
|
1316 | 1377 | self.timerange = 24*60*60 |
|
1317 | 1378 | self.isConfig = False |
|
1318 | 1379 | self.__nsubplots = 1 |
|
1319 | 1380 | self.counter_imagwr = 0 |
|
1320 | 1381 | self.WIDTH = 800 |
|
1321 | 1382 | self.HEIGHT = 400 |
|
1322 | 1383 | self.WIDTHPROF = 120 |
|
1323 | 1384 | self.HEIGHTPROF = 0 |
|
1324 | 1385 | self.xdata = None |
|
1325 | 1386 | self.ydata = None |
|
1326 | 1387 | |
|
1327 | 1388 | self.PLOT_CODE = BEACON_CODE |
|
1328 | 1389 | |
|
1329 | 1390 | self.FTP_WEI = None |
|
1330 | 1391 | self.EXP_CODE = None |
|
1331 | 1392 | self.SUB_EXP_CODE = None |
|
1332 | 1393 | self.PLOT_POS = None |
|
1333 | 1394 | |
|
1334 | 1395 | self.filename_phase = None |
|
1335 | 1396 | |
|
1336 | 1397 | self.figfile = None |
|
1337 | 1398 | |
|
1338 | 1399 | self.xmin = None |
|
1339 | 1400 | self.xmax = None |
|
1340 | 1401 | |
|
1341 | 1402 | def getSubplots(self): |
|
1342 | 1403 | |
|
1343 | 1404 | ncol = 1 |
|
1344 | 1405 | nrow = 1 |
|
1345 | 1406 | |
|
1346 | 1407 | return nrow, ncol |
|
1347 | 1408 | |
|
1348 | 1409 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1349 | 1410 | |
|
1350 | 1411 | self.__showprofile = showprofile |
|
1351 | 1412 | self.nplots = nplots |
|
1352 | 1413 | |
|
1353 | 1414 | ncolspan = 7 |
|
1354 | 1415 | colspan = 6 |
|
1355 | 1416 | self.__nsubplots = 2 |
|
1356 | 1417 | |
|
1357 | 1418 | self.createFigure(id = id, |
|
1358 | 1419 | wintitle = wintitle, |
|
1359 | 1420 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1360 | 1421 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1361 | 1422 | show=show) |
|
1362 | 1423 | |
|
1363 | 1424 | nrow, ncol = self.getSubplots() |
|
1364 | 1425 | |
|
1365 | 1426 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1366 | 1427 | |
|
1367 | 1428 | def save_phase(self, filename_phase): |
|
1368 | 1429 | f = open(filename_phase,'w+') |
|
1369 | 1430 | f.write('\n\n') |
|
1370 | 1431 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1371 | 1432 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1372 | 1433 | f.close() |
|
1373 | 1434 | |
|
1374 | 1435 | def save_data(self, filename_phase, data, data_datetime): |
|
1375 | 1436 | f=open(filename_phase,'a') |
|
1376 | 1437 | timetuple_data = data_datetime.timetuple() |
|
1377 | 1438 | day = str(timetuple_data.tm_mday) |
|
1378 | 1439 | month = str(timetuple_data.tm_mon) |
|
1379 | 1440 | year = str(timetuple_data.tm_year) |
|
1380 | 1441 | hour = str(timetuple_data.tm_hour) |
|
1381 | 1442 | minute = str(timetuple_data.tm_min) |
|
1382 | 1443 | second = str(timetuple_data.tm_sec) |
|
1383 | 1444 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1384 | 1445 | f.close() |
|
1385 | 1446 | |
|
1386 | 1447 | |
|
1387 | 1448 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1388 | 1449 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1389 | 1450 | timerange=None, |
|
1390 | 1451 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1391 | 1452 | server=None, folder=None, username=None, password=None, |
|
1392 | 1453 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1393 | 1454 | |
|
1394 | 1455 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1395 | 1456 | return |
|
1396 | 1457 | |
|
1397 | 1458 | if pairsList == None: |
|
1398 | 1459 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1399 | 1460 | else: |
|
1400 | 1461 | pairsIndexList = [] |
|
1401 | 1462 | for pair in pairsList: |
|
1402 | 1463 | if pair not in dataOut.pairsList: |
|
1403 | 1464 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
1404 | 1465 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1405 | 1466 | |
|
1406 | 1467 | if pairsIndexList == []: |
|
1407 | 1468 | return |
|
1408 | 1469 | |
|
1409 | 1470 | # if len(pairsIndexList) > 4: |
|
1410 | 1471 | # pairsIndexList = pairsIndexList[0:4] |
|
1411 | 1472 | |
|
1412 | 1473 | hmin_index = None |
|
1413 | 1474 | hmax_index = None |
|
1414 | 1475 | |
|
1415 | 1476 | if hmin != None and hmax != None: |
|
1416 | 1477 | indexes = numpy.arange(dataOut.nHeights) |
|
1417 | 1478 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1418 | 1479 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1419 | 1480 | |
|
1420 | 1481 | if hmin_list.any(): |
|
1421 | 1482 | hmin_index = hmin_list[0] |
|
1422 | 1483 | |
|
1423 | 1484 | if hmax_list.any(): |
|
1424 | 1485 | hmax_index = hmax_list[-1]+1 |
|
1425 | 1486 | |
|
1426 | 1487 | x = dataOut.getTimeRange() |
|
1427 | 1488 | #y = dataOut.getHeiRange() |
|
1428 | 1489 | |
|
1429 | 1490 | |
|
1430 | 1491 | thisDatetime = dataOut.datatime |
|
1431 | 1492 | |
|
1432 | 1493 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1433 | 1494 | xlabel = "Local Time" |
|
1434 | 1495 | ylabel = "Phase (degrees)" |
|
1435 | 1496 | |
|
1436 | 1497 | update_figfile = False |
|
1437 | 1498 | |
|
1438 | 1499 | nplots = len(pairsIndexList) |
|
1439 | 1500 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1440 | 1501 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1441 | 1502 | for i in range(nplots): |
|
1442 | 1503 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1443 | 1504 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1444 | 1505 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1445 | 1506 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1446 | 1507 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1447 | 1508 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1448 | 1509 | |
|
1449 | 1510 | #print "Phase %d%d" %(pair[0], pair[1]) |
|
1450 | 1511 | #print phase[dataOut.beacon_heiIndexList] |
|
1451 | 1512 | |
|
1452 | 1513 | if dataOut.beacon_heiIndexList: |
|
1453 | 1514 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1454 | 1515 | else: |
|
1455 | 1516 | phase_beacon[i] = numpy.average(phase) |
|
1456 | 1517 | |
|
1457 | 1518 | if not self.isConfig: |
|
1458 | 1519 | |
|
1459 | 1520 | nplots = len(pairsIndexList) |
|
1460 | 1521 | |
|
1461 | 1522 | self.setup(id=id, |
|
1462 | 1523 | nplots=nplots, |
|
1463 | 1524 | wintitle=wintitle, |
|
1464 | 1525 | showprofile=showprofile, |
|
1465 | 1526 | show=show) |
|
1466 | 1527 | |
|
1467 | 1528 | if timerange != None: |
|
1468 | 1529 | self.timerange = timerange |
|
1469 | 1530 | |
|
1470 | 1531 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1471 | 1532 | |
|
1472 | 1533 | if ymin == None: ymin = 0 |
|
1473 | 1534 | if ymax == None: ymax = 360 |
|
1474 | 1535 | |
|
1475 | 1536 | self.FTP_WEI = ftp_wei |
|
1476 | 1537 | self.EXP_CODE = exp_code |
|
1477 | 1538 | self.SUB_EXP_CODE = sub_exp_code |
|
1478 | 1539 | self.PLOT_POS = plot_pos |
|
1479 | 1540 | |
|
1480 | 1541 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1481 | 1542 | self.isConfig = True |
|
1482 | 1543 | self.figfile = figfile |
|
1483 | 1544 | self.xdata = numpy.array([]) |
|
1484 | 1545 | self.ydata = numpy.array([]) |
|
1485 | 1546 | |
|
1486 | 1547 | update_figfile = True |
|
1487 | 1548 | |
|
1488 | 1549 | #open file beacon phase |
|
1489 | 1550 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1490 | 1551 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1491 | 1552 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1492 | 1553 | #self.save_phase(self.filename_phase) |
|
1493 | 1554 | |
|
1494 | 1555 | |
|
1495 | 1556 | #store data beacon phase |
|
1496 | 1557 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1497 | 1558 | |
|
1498 | 1559 | self.setWinTitle(title) |
|
1499 | 1560 | |
|
1500 | 1561 | |
|
1501 | 1562 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1502 | 1563 | |
|
1503 | 1564 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1504 | 1565 | |
|
1505 | 1566 | axes = self.axesList[0] |
|
1506 | 1567 | |
|
1507 | 1568 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1508 | 1569 | |
|
1509 | 1570 | if len(self.ydata)==0: |
|
1510 | 1571 | self.ydata = phase_beacon.reshape(-1,1) |
|
1511 | 1572 | else: |
|
1512 | 1573 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1513 | 1574 | |
|
1514 | 1575 | |
|
1515 | 1576 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1516 | 1577 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1517 | 1578 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1518 | 1579 | XAxisAsTime=True, grid='both' |
|
1519 | 1580 | ) |
|
1520 | 1581 | |
|
1521 | 1582 | self.draw() |
|
1522 | 1583 | |
|
1523 | 1584 | if dataOut.ltctime >= self.xmax: |
|
1524 | 1585 | self.counter_imagwr = wr_period |
|
1525 | 1586 | self.isConfig = False |
|
1526 | 1587 | update_figfile = True |
|
1527 | 1588 | |
|
1528 | 1589 | self.save(figpath=figpath, |
|
1529 | 1590 | figfile=figfile, |
|
1530 | 1591 | save=save, |
|
1531 | 1592 | ftp=ftp, |
|
1532 | 1593 | wr_period=wr_period, |
|
1533 | 1594 | thisDatetime=thisDatetime, |
|
1534 | 1595 | update_figfile=update_figfile) |
@@ -1,141 +1,144 | |||
|
1 | 1 | ''' |
|
2 | 2 | @author: Daniel Suarez |
|
3 | 3 | ''' |
|
4 | 4 | import numpy |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jroamisr import AMISR |
|
7 | 7 | |
|
8 | 8 | class AMISRProc(ProcessingUnit): |
|
9 | 9 | def __init__(self): |
|
10 | 10 | ProcessingUnit.__init__(self) |
|
11 | 11 | self.objectDict = {} |
|
12 | 12 | self.dataOut = AMISR() |
|
13 | 13 | |
|
14 | 14 | def run(self): |
|
15 | 15 | if self.dataIn.type == 'AMISR': |
|
16 | 16 | self.dataOut.copy(self.dataIn) |
|
17 | 17 | |
|
18 | 18 | |
|
19 | 19 | class PrintInfo(Operation): |
|
20 | 20 | def __init__(self): |
|
21 | 21 | self.__isPrinted = False |
|
22 | 22 | |
|
23 | 23 | def run(self, dataOut): |
|
24 | 24 | |
|
25 | 25 | if not self.__isPrinted: |
|
26 | 26 | print 'Number of Records by File: %d'%dataOut.nRecords |
|
27 | 27 | print 'Number of Pulses: %d'%dataOut.nProfiles |
|
28 | 28 | print 'Number of Pulses by Frame: %d'%dataOut.npulseByFrame |
|
29 | 29 | print 'Number of Samples by Pulse: %d'%len(dataOut.heightList) |
|
30 | 30 | print 'Ipp Seconds: %f'%dataOut.ippSeconds |
|
31 | 31 | print 'Number of Beams: %d'%dataOut.nBeams |
|
32 | 32 | print 'BeamCodes:' |
|
33 | 33 | beamStrList = ['Beam %d -> Code=%d, azimuth=%2.2f, zenith=%2.2f, gain=%2.2f'%(k,v[0],v[1],v[2],v[3]) for k,v in dataOut.beamCodeDict.items()] |
|
34 | 34 | for b in beamStrList: |
|
35 | 35 | print b |
|
36 | 36 | self.__isPrinted = True |
|
37 | 37 | |
|
38 | 38 | return |
|
39 | 39 | |
|
40 | 40 | |
|
41 | 41 | class BeamSelector(Operation): |
|
42 | 42 | profileIndex = None |
|
43 | 43 | nProfiles = None |
|
44 | parameters = { | |
|
45 | 'beam': 'string', | |
|
46 | } | |
|
44 | 47 | |
|
45 | 48 | def __init__(self): |
|
46 | 49 | |
|
47 | 50 | self.profileIndex = 0 |
|
48 | 51 | self.__isConfig = False |
|
49 | 52 | |
|
50 | 53 | def incIndex(self): |
|
51 | 54 | self.profileIndex += 1 |
|
52 | 55 | |
|
53 | 56 | if self.profileIndex >= self.nProfiles: |
|
54 | 57 | self.profileIndex = 0 |
|
55 | 58 | |
|
56 | 59 | def isProfileInRange(self, minIndex, maxIndex): |
|
57 | 60 | |
|
58 | 61 | if self.profileIndex < minIndex: |
|
59 | 62 | return False |
|
60 | 63 | |
|
61 | 64 | if self.profileIndex > maxIndex: |
|
62 | 65 | return False |
|
63 | 66 | |
|
64 | 67 | return True |
|
65 | 68 | |
|
66 | 69 | def isProfileInList(self, profileList): |
|
67 | 70 | |
|
68 | 71 | if self.profileIndex not in profileList: |
|
69 | 72 | return False |
|
70 | 73 | |
|
71 | 74 | return True |
|
72 | 75 | |
|
73 | 76 | def run(self, dataOut, beam=None): |
|
74 | 77 | |
|
75 | 78 | dataOut.flagNoData = True |
|
76 | 79 | |
|
77 | 80 | if not(self.__isConfig): |
|
78 | 81 | |
|
79 | 82 | self.nProfiles = dataOut.nProfiles |
|
80 | 83 | self.profileIndex = dataOut.profileIndex |
|
81 | 84 | self.__isConfig = True |
|
82 | 85 | |
|
83 | 86 | if beam != None: |
|
84 | 87 | if self.isProfileInList(dataOut.beamRangeDict[beam]): |
|
85 | 88 | beamInfo = dataOut.beamCodeDict[beam] |
|
86 | 89 | dataOut.azimuth = beamInfo[1] |
|
87 | 90 | dataOut.zenith = beamInfo[2] |
|
88 | 91 | dataOut.gain = beamInfo[3] |
|
89 | 92 | dataOut.flagNoData = False |
|
90 | 93 | |
|
91 | 94 | self.incIndex() |
|
92 | 95 | return 1 |
|
93 | 96 | |
|
94 | 97 | else: |
|
95 | 98 | raise ValueError, "BeamSelector needs beam value" |
|
96 | 99 | |
|
97 | 100 | return 0 |
|
98 | 101 | |
|
99 | 102 | class ProfileToChannels(Operation): |
|
100 | 103 | |
|
101 | 104 | def __init__(self): |
|
102 | 105 | self.__isConfig = False |
|
103 | 106 | self.__counter_chan = 0 |
|
104 | 107 | self.buffer = None |
|
105 | 108 | |
|
106 | 109 | def isProfileInList(self, profileList): |
|
107 | 110 | |
|
108 | 111 | if self.profileIndex not in profileList: |
|
109 | 112 | return False |
|
110 | 113 | |
|
111 | 114 | return True |
|
112 | 115 | |
|
113 | 116 | def run(self, dataOut): |
|
114 | 117 | |
|
115 | 118 | dataOut.flagNoData = True |
|
116 | 119 | |
|
117 | 120 | if not(self.__isConfig): |
|
118 | 121 | nchannels = len(dataOut.beamRangeDict.keys()) |
|
119 | 122 | nsamples = dataOut.nHeights |
|
120 | 123 | self.buffer = numpy.zeros((nchannels, nsamples), dtype = 'complex128') |
|
121 | 124 | dataOut.beam.codeList = [dataOut.beamCodeDict[x][0] for x in range(nchannels)] |
|
122 | 125 | dataOut.beam.azimuthList = [dataOut.beamCodeDict[x][1] for x in range(nchannels)] |
|
123 | 126 | dataOut.beam.zenithList = [dataOut.beamCodeDict[x][2] for x in range(nchannels)] |
|
124 | 127 | self.__isConfig = True |
|
125 | 128 | |
|
126 | 129 | for i in range(self.buffer.shape[0]): |
|
127 | 130 | if dataOut.profileIndex in dataOut.beamRangeDict[i]: |
|
128 | 131 | self.buffer[i,:] = dataOut.data |
|
129 | 132 | break |
|
130 | 133 | |
|
131 | 134 | |
|
132 | 135 | self.__counter_chan += 1 |
|
133 | 136 | |
|
134 | 137 | if self.__counter_chan >= self.buffer.shape[0]: |
|
135 | 138 | self.__counter_chan = 0 |
|
136 | 139 | dataOut.data = self.buffer.copy() |
|
137 | 140 | dataOut.channelList = range(self.buffer.shape[0]) |
|
138 | 141 | self.__isConfig = False |
|
139 | 142 | dataOut.flagNoData = False |
|
140 | 143 | pass |
|
141 | 144 | No newline at end of file |
@@ -1,1283 +1,1290 | |||
|
1 | 1 | import sys |
|
2 | 2 | import numpy |
|
3 | 3 | from scipy import interpolate |
|
4 | 4 | |
|
5 | 5 | from jroproc_base import ProcessingUnit, Operation |
|
6 | 6 | from schainpy.model.data.jrodata import Voltage |
|
7 | 7 | |
|
8 | 8 | class VoltageProc(ProcessingUnit): |
|
9 | 9 | |
|
10 | 10 | |
|
11 | 11 | def __init__(self, **kwargs): |
|
12 | 12 | |
|
13 | 13 | ProcessingUnit.__init__(self, **kwargs) |
|
14 | 14 | |
|
15 | 15 | # self.objectDict = {} |
|
16 | 16 | self.dataOut = Voltage() |
|
17 | 17 | self.flip = 1 |
|
18 | 18 | |
|
19 | 19 | def run(self): |
|
20 | 20 | if self.dataIn.type == 'AMISR': |
|
21 | 21 | self.__updateObjFromAmisrInput() |
|
22 | 22 | |
|
23 | 23 | if self.dataIn.type == 'Voltage': |
|
24 | 24 | self.dataOut.copy(self.dataIn) |
|
25 | 25 | |
|
26 | 26 | # self.dataOut.copy(self.dataIn) |
|
27 | 27 | |
|
28 | 28 | def __updateObjFromAmisrInput(self): |
|
29 | 29 | |
|
30 | 30 | self.dataOut.timeZone = self.dataIn.timeZone |
|
31 | 31 | self.dataOut.dstFlag = self.dataIn.dstFlag |
|
32 | 32 | self.dataOut.errorCount = self.dataIn.errorCount |
|
33 | 33 | self.dataOut.useLocalTime = self.dataIn.useLocalTime |
|
34 | 34 | |
|
35 | 35 | self.dataOut.flagNoData = self.dataIn.flagNoData |
|
36 | 36 | self.dataOut.data = self.dataIn.data |
|
37 | 37 | self.dataOut.utctime = self.dataIn.utctime |
|
38 | 38 | self.dataOut.channelList = self.dataIn.channelList |
|
39 | 39 | # self.dataOut.timeInterval = self.dataIn.timeInterval |
|
40 | 40 | self.dataOut.heightList = self.dataIn.heightList |
|
41 | 41 | self.dataOut.nProfiles = self.dataIn.nProfiles |
|
42 | 42 | |
|
43 | 43 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
44 | 44 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
45 | 45 | self.dataOut.frequency = self.dataIn.frequency |
|
46 | 46 | |
|
47 | 47 | self.dataOut.azimuth = self.dataIn.azimuth |
|
48 | 48 | self.dataOut.zenith = self.dataIn.zenith |
|
49 | 49 | |
|
50 | 50 | self.dataOut.beam.codeList = self.dataIn.beam.codeList |
|
51 | 51 | self.dataOut.beam.azimuthList = self.dataIn.beam.azimuthList |
|
52 | 52 | self.dataOut.beam.zenithList = self.dataIn.beam.zenithList |
|
53 | 53 | # |
|
54 | 54 | # pass# |
|
55 | 55 | # |
|
56 | 56 | # def init(self): |
|
57 | 57 | # |
|
58 | 58 | # |
|
59 | 59 | # if self.dataIn.type == 'AMISR': |
|
60 | 60 | # self.__updateObjFromAmisrInput() |
|
61 | 61 | # |
|
62 | 62 | # if self.dataIn.type == 'Voltage': |
|
63 | 63 | # self.dataOut.copy(self.dataIn) |
|
64 | 64 | # # No necesita copiar en cada init() los atributos de dataIn |
|
65 | 65 | # # la copia deberia hacerse por cada nuevo bloque de datos |
|
66 | 66 | |
|
67 | 67 | def selectChannels(self, channelList): |
|
68 | 68 | |
|
69 | 69 | channelIndexList = [] |
|
70 | 70 | |
|
71 | 71 | for channel in channelList: |
|
72 | 72 | if channel not in self.dataOut.channelList: |
|
73 | 73 | raise ValueError, "Channel %d is not in %s" %(channel, str(self.dataOut.channelList)) |
|
74 | 74 | |
|
75 | 75 | index = self.dataOut.channelList.index(channel) |
|
76 | 76 | channelIndexList.append(index) |
|
77 | 77 | |
|
78 | 78 | self.selectChannelsByIndex(channelIndexList) |
|
79 | 79 | |
|
80 | 80 | def selectChannelsByIndex(self, channelIndexList): |
|
81 | 81 | """ |
|
82 | 82 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
83 | 83 | |
|
84 | 84 | Input: |
|
85 | 85 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
86 | 86 | |
|
87 | 87 | Affected: |
|
88 | 88 | self.dataOut.data |
|
89 | 89 | self.dataOut.channelIndexList |
|
90 | 90 | self.dataOut.nChannels |
|
91 | 91 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
92 | 92 | self.dataOut.systemHeaderObj.numChannels |
|
93 | 93 | self.dataOut.m_ProcessingHeader.blockSize |
|
94 | 94 | |
|
95 | 95 | Return: |
|
96 | 96 | None |
|
97 | 97 | """ |
|
98 | 98 | |
|
99 | 99 | for channelIndex in channelIndexList: |
|
100 | 100 | if channelIndex not in self.dataOut.channelIndexList: |
|
101 | 101 | print channelIndexList |
|
102 | 102 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
103 | 103 | |
|
104 | 104 | if self.dataOut.flagDataAsBlock: |
|
105 | 105 | """ |
|
106 | 106 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
107 | 107 | """ |
|
108 | 108 | data = self.dataOut.data[channelIndexList,:,:] |
|
109 | 109 | else: |
|
110 | 110 | data = self.dataOut.data[channelIndexList,:] |
|
111 | 111 | |
|
112 | 112 | self.dataOut.data = data |
|
113 | 113 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
114 | 114 | # self.dataOut.nChannels = nChannels |
|
115 | 115 | |
|
116 | 116 | return 1 |
|
117 | 117 | |
|
118 | 118 | def selectHeights(self, minHei=None, maxHei=None): |
|
119 | 119 | """ |
|
120 | 120 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
121 | 121 | minHei <= height <= maxHei |
|
122 | 122 | |
|
123 | 123 | Input: |
|
124 | 124 | minHei : valor minimo de altura a considerar |
|
125 | 125 | maxHei : valor maximo de altura a considerar |
|
126 | 126 | |
|
127 | 127 | Affected: |
|
128 | 128 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
129 | 129 | |
|
130 | 130 | Return: |
|
131 | 131 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
132 | 132 | """ |
|
133 | 133 | |
|
134 | 134 | if minHei == None: |
|
135 | 135 | minHei = self.dataOut.heightList[0] |
|
136 | 136 | |
|
137 | 137 | if maxHei == None: |
|
138 | 138 | maxHei = self.dataOut.heightList[-1] |
|
139 | 139 | |
|
140 | 140 | if (minHei < self.dataOut.heightList[0]): |
|
141 | 141 | minHei = self.dataOut.heightList[0] |
|
142 | 142 | |
|
143 | 143 | if (maxHei > self.dataOut.heightList[-1]): |
|
144 | 144 | maxHei = self.dataOut.heightList[-1] |
|
145 | 145 | |
|
146 | 146 | minIndex = 0 |
|
147 | 147 | maxIndex = 0 |
|
148 | 148 | heights = self.dataOut.heightList |
|
149 | 149 | |
|
150 | 150 | inda = numpy.where(heights >= minHei) |
|
151 | 151 | indb = numpy.where(heights <= maxHei) |
|
152 | 152 | |
|
153 | 153 | try: |
|
154 | 154 | minIndex = inda[0][0] |
|
155 | 155 | except: |
|
156 | 156 | minIndex = 0 |
|
157 | 157 | |
|
158 | 158 | try: |
|
159 | 159 | maxIndex = indb[0][-1] |
|
160 | 160 | except: |
|
161 | 161 | maxIndex = len(heights) |
|
162 | 162 | |
|
163 | 163 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
164 | 164 | |
|
165 | 165 | return 1 |
|
166 | 166 | |
|
167 | 167 | |
|
168 | 168 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
169 | 169 | """ |
|
170 | 170 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
171 | 171 | minIndex <= index <= maxIndex |
|
172 | 172 | |
|
173 | 173 | Input: |
|
174 | 174 | minIndex : valor de indice minimo de altura a considerar |
|
175 | 175 | maxIndex : valor de indice maximo de altura a considerar |
|
176 | 176 | |
|
177 | 177 | Affected: |
|
178 | 178 | self.dataOut.data |
|
179 | 179 | self.dataOut.heightList |
|
180 | 180 | |
|
181 | 181 | Return: |
|
182 | 182 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
183 | 183 | """ |
|
184 | 184 | |
|
185 | 185 | if (minIndex < 0) or (minIndex > maxIndex): |
|
186 | 186 | raise ValueError, "Height index range (%d,%d) is not valid" % (minIndex, maxIndex) |
|
187 | 187 | |
|
188 | 188 | if (maxIndex >= self.dataOut.nHeights): |
|
189 | 189 | maxIndex = self.dataOut.nHeights |
|
190 | 190 | |
|
191 | 191 | #voltage |
|
192 | 192 | if self.dataOut.flagDataAsBlock: |
|
193 | 193 | """ |
|
194 | 194 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
195 | 195 | """ |
|
196 | 196 | data = self.dataOut.data[:,:, minIndex:maxIndex] |
|
197 | 197 | else: |
|
198 | 198 | data = self.dataOut.data[:, minIndex:maxIndex] |
|
199 | 199 | |
|
200 | 200 | # firstHeight = self.dataOut.heightList[minIndex] |
|
201 | 201 | |
|
202 | 202 | self.dataOut.data = data |
|
203 | 203 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex] |
|
204 | 204 | |
|
205 | 205 | if self.dataOut.nHeights <= 1: |
|
206 | 206 | raise ValueError, "selectHeights: Too few heights. Current number of heights is %d" %(self.dataOut.nHeights) |
|
207 | 207 | |
|
208 | 208 | return 1 |
|
209 | 209 | |
|
210 | 210 | |
|
211 | 211 | def filterByHeights(self, window): |
|
212 | 212 | |
|
213 | 213 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
214 | 214 | |
|
215 | 215 | if window == None: |
|
216 | 216 | window = (self.dataOut.radarControllerHeaderObj.txA/self.dataOut.radarControllerHeaderObj.nBaud) / deltaHeight |
|
217 | 217 | |
|
218 | 218 | newdelta = deltaHeight * window |
|
219 | 219 | r = self.dataOut.nHeights % window |
|
220 | 220 | newheights = (self.dataOut.nHeights-r)/window |
|
221 | 221 | |
|
222 | 222 | if newheights <= 1: |
|
223 | 223 | raise ValueError, "filterByHeights: Too few heights. Current number of heights is %d and window is %d" %(self.dataOut.nHeights, window) |
|
224 | 224 | |
|
225 | 225 | if self.dataOut.flagDataAsBlock: |
|
226 | 226 | """ |
|
227 | 227 | Si la data es obtenida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
228 | 228 | """ |
|
229 | 229 | buffer = self.dataOut.data[:, :, 0:self.dataOut.nHeights-r] |
|
230 | 230 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nProfiles,self.dataOut.nHeights/window,window) |
|
231 | 231 | buffer = numpy.sum(buffer,3) |
|
232 | 232 | |
|
233 | 233 | else: |
|
234 | 234 | buffer = self.dataOut.data[:,0:self.dataOut.nHeights-r] |
|
235 | 235 | buffer = buffer.reshape(self.dataOut.nChannels,self.dataOut.nHeights/window,window) |
|
236 | 236 | buffer = numpy.sum(buffer,2) |
|
237 | 237 | |
|
238 | 238 | self.dataOut.data = buffer |
|
239 | 239 | self.dataOut.heightList = self.dataOut.heightList[0] + numpy.arange( newheights )*newdelta |
|
240 | 240 | self.dataOut.windowOfFilter = window |
|
241 | 241 | |
|
242 | 242 | def setH0(self, h0, deltaHeight = None): |
|
243 | 243 | |
|
244 | 244 | if not deltaHeight: |
|
245 | 245 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] |
|
246 | 246 | |
|
247 | 247 | nHeights = self.dataOut.nHeights |
|
248 | 248 | |
|
249 | 249 | newHeiRange = h0 + numpy.arange(nHeights)*deltaHeight |
|
250 | 250 | |
|
251 | 251 | self.dataOut.heightList = newHeiRange |
|
252 | 252 | |
|
253 | 253 | def deFlip(self, channelList = []): |
|
254 | 254 | |
|
255 | 255 | data = self.dataOut.data.copy() |
|
256 | 256 | |
|
257 | 257 | if self.dataOut.flagDataAsBlock: |
|
258 | 258 | flip = self.flip |
|
259 | 259 | profileList = range(self.dataOut.nProfiles) |
|
260 | 260 | |
|
261 | 261 | if not channelList: |
|
262 | 262 | for thisProfile in profileList: |
|
263 | 263 | data[:,thisProfile,:] = data[:,thisProfile,:]*flip |
|
264 | 264 | flip *= -1.0 |
|
265 | 265 | else: |
|
266 | 266 | for thisChannel in channelList: |
|
267 | 267 | if thisChannel not in self.dataOut.channelList: |
|
268 | 268 | continue |
|
269 | 269 | |
|
270 | 270 | for thisProfile in profileList: |
|
271 | 271 | data[thisChannel,thisProfile,:] = data[thisChannel,thisProfile,:]*flip |
|
272 | 272 | flip *= -1.0 |
|
273 | 273 | |
|
274 | 274 | self.flip = flip |
|
275 | 275 | |
|
276 | 276 | else: |
|
277 | 277 | if not channelList: |
|
278 | 278 | data[:,:] = data[:,:]*self.flip |
|
279 | 279 | else: |
|
280 | 280 | for thisChannel in channelList: |
|
281 | 281 | if thisChannel not in self.dataOut.channelList: |
|
282 | 282 | continue |
|
283 | 283 | |
|
284 | 284 | data[thisChannel,:] = data[thisChannel,:]*self.flip |
|
285 | 285 | |
|
286 | 286 | self.flip *= -1. |
|
287 | 287 | |
|
288 | 288 | self.dataOut.data = data |
|
289 | 289 | |
|
290 | 290 | def setRadarFrequency(self, frequency=None): |
|
291 | 291 | |
|
292 | 292 | if frequency != None: |
|
293 | 293 | self.dataOut.frequency = frequency |
|
294 | 294 | |
|
295 | 295 | return 1 |
|
296 | 296 | |
|
297 | 297 | def interpolateHeights(self, topLim, botLim): |
|
298 | 298 | #69 al 72 para julia |
|
299 | 299 | #82-84 para meteoros |
|
300 | 300 | if len(numpy.shape(self.dataOut.data))==2: |
|
301 | 301 | sampInterp = (self.dataOut.data[:,botLim-1] + self.dataOut.data[:,topLim+1])/2 |
|
302 | 302 | sampInterp = numpy.transpose(numpy.tile(sampInterp,(topLim-botLim + 1,1))) |
|
303 | 303 | #self.dataOut.data[:,botLim:limSup+1] = sampInterp |
|
304 | 304 | self.dataOut.data[:,botLim:topLim+1] = sampInterp |
|
305 | 305 | else: |
|
306 | 306 | nHeights = self.dataOut.data.shape[2] |
|
307 | 307 | x = numpy.hstack((numpy.arange(botLim),numpy.arange(topLim+1,nHeights))) |
|
308 | 308 | y = self.dataOut.data[:,:,range(botLim)+range(topLim+1,nHeights)] |
|
309 | 309 | f = interpolate.interp1d(x, y, axis = 2) |
|
310 | 310 | xnew = numpy.arange(botLim,topLim+1) |
|
311 | 311 | ynew = f(xnew) |
|
312 | 312 | |
|
313 | 313 | self.dataOut.data[:,:,botLim:topLim+1] = ynew |
|
314 | 314 | |
|
315 | 315 | # import collections |
|
316 | 316 | |
|
317 | 317 | class CohInt(Operation): |
|
318 | 318 | |
|
319 | 319 | isConfig = False |
|
320 | 320 | |
|
321 | 321 | __profIndex = 0 |
|
322 | 322 | __withOverapping = False |
|
323 | 323 | |
|
324 | 324 | __byTime = False |
|
325 | 325 | __initime = None |
|
326 | 326 | __lastdatatime = None |
|
327 | 327 | __integrationtime = None |
|
328 | 328 | |
|
329 | 329 | __buffer = None |
|
330 | 330 | |
|
331 | 331 | __dataReady = False |
|
332 | 332 | |
|
333 | 333 | n = None |
|
334 | 334 | |
|
335 | parameters = { | |
|
336 | 'n': 'int', | |
|
337 | 'timeInterval':'float', | |
|
338 | 'overlapping': 'boolean', | |
|
339 | 'byblock': 'boolean' | |
|
340 | } | |
|
335 | 341 | |
|
336 | 342 | def __init__(self, **kwargs): |
|
337 | 343 | |
|
338 | 344 | Operation.__init__(self, **kwargs) |
|
339 | 345 | |
|
340 | 346 | # self.isConfig = False |
|
341 | 347 | |
|
342 | 348 | def setup(self, n=None, timeInterval=None, overlapping=False, byblock=False): |
|
343 | 349 | """ |
|
344 | 350 | Set the parameters of the integration class. |
|
345 | 351 | |
|
346 | 352 | Inputs: |
|
347 | 353 | |
|
348 | n : Number of coherent integrations | |
|
349 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
|
350 | overlapping : | |
|
351 | ||
|
354 | n : Number of coherent integrations | |
|
355 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work | |
|
356 | overlapping : | |
|
352 | 357 | """ |
|
353 | 358 | |
|
354 | 359 | self.__initime = None |
|
355 | 360 | self.__lastdatatime = 0 |
|
356 | 361 | self.__buffer = None |
|
357 | 362 | self.__dataReady = False |
|
358 | 363 | self.byblock = byblock |
|
359 | 364 | |
|
360 | 365 | if n == None and timeInterval == None: |
|
361 | 366 | raise ValueError, "n or timeInterval should be specified ..." |
|
362 | 367 | |
|
363 | 368 | if n != None: |
|
364 | 369 | self.n = n |
|
365 | 370 | self.__byTime = False |
|
366 | 371 | else: |
|
367 | 372 | self.__integrationtime = timeInterval #* 60. #if (type(timeInterval)!=integer) -> change this line |
|
368 | 373 | self.n = 9999 |
|
369 | 374 | self.__byTime = True |
|
370 | 375 | |
|
371 | 376 | if overlapping: |
|
372 | 377 | self.__withOverapping = True |
|
373 | 378 | self.__buffer = None |
|
374 | 379 | else: |
|
375 | 380 | self.__withOverapping = False |
|
376 | 381 | self.__buffer = 0 |
|
377 | 382 | |
|
378 | 383 | self.__profIndex = 0 |
|
379 | 384 | |
|
380 | 385 | def putData(self, data): |
|
381 | 386 | |
|
382 | 387 | """ |
|
383 | 388 | Add a profile to the __buffer and increase in one the __profileIndex |
|
384 | 389 | |
|
385 | 390 | """ |
|
386 | 391 | |
|
387 | 392 | if not self.__withOverapping: |
|
388 | 393 | self.__buffer += data.copy() |
|
389 | 394 | self.__profIndex += 1 |
|
390 | 395 | return |
|
391 | 396 | |
|
392 | 397 | #Overlapping data |
|
393 | 398 | nChannels, nHeis = data.shape |
|
394 | 399 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
395 | 400 | |
|
396 | 401 | #If the buffer is empty then it takes the data value |
|
397 | 402 | if self.__buffer is None: |
|
398 | 403 | self.__buffer = data |
|
399 | 404 | self.__profIndex += 1 |
|
400 | 405 | return |
|
401 | 406 | |
|
402 | 407 | #If the buffer length is lower than n then stakcing the data value |
|
403 | 408 | if self.__profIndex < self.n: |
|
404 | 409 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
405 | 410 | self.__profIndex += 1 |
|
406 | 411 | return |
|
407 | 412 | |
|
408 | 413 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
409 | 414 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
410 | 415 | self.__buffer[self.n-1] = data |
|
411 | 416 | self.__profIndex = self.n |
|
412 | 417 | return |
|
413 | 418 | |
|
414 | 419 | |
|
415 | 420 | def pushData(self): |
|
416 | 421 | """ |
|
417 | 422 | Return the sum of the last profiles and the profiles used in the sum. |
|
418 | 423 | |
|
419 | 424 | Affected: |
|
420 | 425 | |
|
421 | 426 | self.__profileIndex |
|
422 | 427 | |
|
423 | 428 | """ |
|
424 | 429 | |
|
425 | 430 | if not self.__withOverapping: |
|
426 | 431 | data = self.__buffer |
|
427 | 432 | n = self.__profIndex |
|
428 | 433 | |
|
429 | 434 | self.__buffer = 0 |
|
430 | 435 | self.__profIndex = 0 |
|
431 | 436 | |
|
432 | 437 | return data, n |
|
433 | 438 | |
|
434 | 439 | #Integration with Overlapping |
|
435 | 440 | data = numpy.sum(self.__buffer, axis=0) |
|
436 | 441 | n = self.__profIndex |
|
437 | 442 | |
|
438 | 443 | return data, n |
|
439 | 444 | |
|
440 | 445 | def byProfiles(self, data): |
|
441 | 446 | |
|
442 | 447 | self.__dataReady = False |
|
443 | 448 | avgdata = None |
|
444 | 449 | # n = None |
|
445 | 450 | |
|
446 | 451 | self.putData(data) |
|
447 | 452 | |
|
448 | 453 | if self.__profIndex == self.n: |
|
449 | 454 | |
|
450 | 455 | avgdata, n = self.pushData() |
|
451 | 456 | self.__dataReady = True |
|
452 | 457 | |
|
453 | 458 | return avgdata |
|
454 | 459 | |
|
455 | 460 | def byTime(self, data, datatime): |
|
456 | 461 | |
|
457 | 462 | self.__dataReady = False |
|
458 | 463 | avgdata = None |
|
459 | 464 | n = None |
|
460 | 465 | |
|
461 | 466 | self.putData(data) |
|
462 | 467 | |
|
463 | 468 | if (datatime - self.__initime) >= self.__integrationtime: |
|
464 | 469 | avgdata, n = self.pushData() |
|
465 | 470 | self.n = n |
|
466 | 471 | self.__dataReady = True |
|
467 | 472 | |
|
468 | 473 | return avgdata |
|
469 | 474 | |
|
470 | 475 | def integrate(self, data, datatime=None): |
|
471 | 476 | |
|
472 | 477 | if self.__initime == None: |
|
473 | 478 | self.__initime = datatime |
|
474 | 479 | |
|
475 | 480 | if self.__byTime: |
|
476 | 481 | avgdata = self.byTime(data, datatime) |
|
477 | 482 | else: |
|
478 | 483 | avgdata = self.byProfiles(data) |
|
479 | 484 | |
|
480 | 485 | |
|
481 | 486 | self.__lastdatatime = datatime |
|
482 | 487 | |
|
483 | 488 | if avgdata is None: |
|
484 | 489 | return None, None |
|
485 | 490 | |
|
486 | 491 | avgdatatime = self.__initime |
|
487 | 492 | |
|
488 | 493 | deltatime = datatime -self.__lastdatatime |
|
489 | 494 | |
|
490 | 495 | if not self.__withOverapping: |
|
491 | 496 | self.__initime = datatime |
|
492 | 497 | else: |
|
493 | 498 | self.__initime += deltatime |
|
494 | 499 | |
|
495 | 500 | return avgdata, avgdatatime |
|
496 | 501 | |
|
497 | 502 | def integrateByBlock(self, dataOut): |
|
498 | 503 | |
|
499 | 504 | times = int(dataOut.data.shape[1]/self.n) |
|
500 | 505 | avgdata = numpy.zeros((dataOut.nChannels, times, dataOut.nHeights), dtype=numpy.complex) |
|
501 | 506 | |
|
502 | 507 | id_min = 0 |
|
503 | 508 | id_max = self.n |
|
504 | 509 | |
|
505 | 510 | for i in range(times): |
|
506 | 511 | junk = dataOut.data[:,id_min:id_max,:] |
|
507 | 512 | avgdata[:,i,:] = junk.sum(axis=1) |
|
508 | 513 | id_min += self.n |
|
509 | 514 | id_max += self.n |
|
510 | 515 | |
|
511 | 516 | timeInterval = dataOut.ippSeconds*self.n |
|
512 | 517 | avgdatatime = (times - 1) * timeInterval + dataOut.utctime |
|
513 | 518 | self.__dataReady = True |
|
514 | 519 | return avgdata, avgdatatime |
|
515 | 520 | |
|
516 | def run(self, dataOut, **kwargs): | |
|
521 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False, byblock=False): | |
|
517 | 522 | |
|
518 | 523 | if not self.isConfig: |
|
519 | self.setup(**kwargs) | |
|
524 | self.setup(n=n, timeInterval=timeInterval, overlapping=overlapping, byblock=byblock) | |
|
520 | 525 | self.isConfig = True |
|
521 | 526 | |
|
522 | 527 | if dataOut.flagDataAsBlock: |
|
523 | 528 | """ |
|
524 | 529 | Si la data es leida por bloques, dimension = [nChannels, nProfiles, nHeis] |
|
525 | 530 | """ |
|
526 | 531 | avgdata, avgdatatime = self.integrateByBlock(dataOut) |
|
527 | 532 | dataOut.nProfiles /= self.n |
|
528 | 533 | else: |
|
529 | 534 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
530 | 535 | |
|
531 | 536 | # dataOut.timeInterval *= n |
|
532 | 537 | dataOut.flagNoData = True |
|
533 | 538 | |
|
534 | 539 | if self.__dataReady: |
|
535 | 540 | dataOut.data = avgdata |
|
536 | 541 | dataOut.nCohInt *= self.n |
|
537 | 542 | dataOut.utctime = avgdatatime |
|
538 | 543 | # dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
539 | 544 | dataOut.flagNoData = False |
|
540 | 545 | |
|
541 | 546 | class Decoder(Operation): |
|
542 | 547 | |
|
543 | 548 | isConfig = False |
|
544 | 549 | __profIndex = 0 |
|
545 | 550 | |
|
546 | 551 | code = None |
|
547 | 552 | |
|
548 | 553 | nCode = None |
|
549 | 554 | nBaud = None |
|
550 | 555 | |
|
551 | 556 | |
|
552 | 557 | def __init__(self, **kwargs): |
|
553 | 558 | |
|
554 | 559 | Operation.__init__(self, **kwargs) |
|
555 | 560 | |
|
556 | 561 | self.times = None |
|
557 | 562 | self.osamp = None |
|
558 | 563 | # self.__setValues = False |
|
559 | 564 | self.isConfig = False |
|
560 | 565 | |
|
561 | 566 | def setup(self, code, osamp, dataOut): |
|
562 | 567 | |
|
563 | 568 | self.__profIndex = 0 |
|
564 | 569 | |
|
565 | 570 | self.code = code |
|
566 | 571 | |
|
567 | 572 | self.nCode = len(code) |
|
568 | 573 | self.nBaud = len(code[0]) |
|
569 | 574 | |
|
570 | 575 | if (osamp != None) and (osamp >1): |
|
571 | 576 | self.osamp = osamp |
|
572 | 577 | self.code = numpy.repeat(code, repeats=self.osamp, axis=1) |
|
573 | 578 | self.nBaud = self.nBaud*self.osamp |
|
574 | 579 | |
|
575 | 580 | self.__nChannels = dataOut.nChannels |
|
576 | 581 | self.__nProfiles = dataOut.nProfiles |
|
577 | 582 | self.__nHeis = dataOut.nHeights |
|
578 | 583 | |
|
579 | 584 | if self.__nHeis < self.nBaud: |
|
580 | 585 | raise ValueError, 'Number of heights (%d) should be greater than number of bauds (%d)' %(self.__nHeis, self.nBaud) |
|
581 | 586 | |
|
582 | 587 | #Frequency |
|
583 | 588 | __codeBuffer = numpy.zeros((self.nCode, self.__nHeis), dtype=numpy.complex) |
|
584 | 589 | |
|
585 | 590 | __codeBuffer[:,0:self.nBaud] = self.code |
|
586 | 591 | |
|
587 | 592 | self.fft_code = numpy.conj(numpy.fft.fft(__codeBuffer, axis=1)) |
|
588 | 593 | |
|
589 | 594 | if dataOut.flagDataAsBlock: |
|
590 | 595 | |
|
591 | 596 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
592 | 597 | |
|
593 | 598 | self.datadecTime = numpy.zeros((self.__nChannels, self.__nProfiles, self.ndatadec), dtype=numpy.complex) |
|
594 | 599 | |
|
595 | 600 | else: |
|
596 | 601 | |
|
597 | 602 | #Time |
|
598 | 603 | self.ndatadec = self.__nHeis #- self.nBaud + 1 |
|
599 | 604 | |
|
600 | 605 | self.datadecTime = numpy.zeros((self.__nChannels, self.ndatadec), dtype=numpy.complex) |
|
601 | 606 | |
|
602 | 607 | def __convolutionInFreq(self, data): |
|
603 | 608 | |
|
604 | 609 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
605 | 610 | |
|
606 | 611 | fft_data = numpy.fft.fft(data, axis=1) |
|
607 | 612 | |
|
608 | 613 | conv = fft_data*fft_code |
|
609 | 614 | |
|
610 | 615 | data = numpy.fft.ifft(conv,axis=1) |
|
611 | 616 | |
|
612 | 617 | return data |
|
613 | 618 | |
|
614 | 619 | def __convolutionInFreqOpt(self, data): |
|
615 | 620 | |
|
616 | 621 | raise NotImplementedError |
|
617 | 622 | |
|
618 | 623 | def __convolutionInTime(self, data): |
|
619 | 624 | |
|
620 | 625 | code = self.code[self.__profIndex] |
|
621 | 626 | |
|
622 | 627 | for i in range(self.__nChannels): |
|
623 | 628 | self.datadecTime[i,:] = numpy.correlate(data[i,:], code, mode='full')[self.nBaud-1:] |
|
624 | 629 | |
|
625 | 630 | return self.datadecTime |
|
626 | 631 | |
|
627 | 632 | def __convolutionByBlockInTime(self, data): |
|
628 | 633 | |
|
629 | 634 | repetitions = self.__nProfiles / self.nCode |
|
630 | 635 | |
|
631 | 636 | junk = numpy.lib.stride_tricks.as_strided(self.code, (repetitions, self.code.size), (0, self.code.itemsize)) |
|
632 | 637 | junk = junk.flatten() |
|
633 | 638 | code_block = numpy.reshape(junk, (self.nCode*repetitions, self.nBaud)) |
|
634 | 639 | |
|
635 | 640 | for i in range(self.__nChannels): |
|
636 | 641 | for j in range(self.__nProfiles): |
|
637 | 642 | self.datadecTime[i,j,:] = numpy.correlate(data[i,j,:], code_block[j,:], mode='full')[self.nBaud-1:] |
|
638 | 643 | |
|
639 | 644 | return self.datadecTime |
|
640 | 645 | |
|
641 | 646 | def __convolutionByBlockInFreq(self, data): |
|
642 | 647 | |
|
643 | 648 | raise NotImplementedError, "Decoder by frequency fro Blocks not implemented" |
|
644 | 649 | |
|
645 | 650 | |
|
646 | 651 | fft_code = self.fft_code[self.__profIndex].reshape(1,-1) |
|
647 | 652 | |
|
648 | 653 | fft_data = numpy.fft.fft(data, axis=2) |
|
649 | 654 | |
|
650 | 655 | conv = fft_data*fft_code |
|
651 | 656 | |
|
652 | 657 | data = numpy.fft.ifft(conv,axis=2) |
|
653 | 658 | |
|
654 | 659 | return data |
|
655 | 660 | |
|
656 | 661 | def run(self, dataOut, code=None, nCode=None, nBaud=None, mode = 0, osamp=None, times=None): |
|
657 | 662 | |
|
658 | 663 | if dataOut.flagDecodeData: |
|
659 | 664 | print "This data is already decoded, recoding again ..." |
|
660 | 665 | |
|
661 | 666 | if not self.isConfig: |
|
662 | 667 | |
|
663 | 668 | if code is None: |
|
664 | 669 | if dataOut.code is None: |
|
665 | 670 | raise ValueError, "Code could not be read from %s instance. Enter a value in Code parameter" %dataOut.type |
|
666 | 671 | |
|
667 | 672 | code = dataOut.code |
|
668 | 673 | else: |
|
669 | 674 | code = numpy.array(code).reshape(nCode,nBaud) |
|
670 | 675 | |
|
671 | 676 | self.setup(code, osamp, dataOut) |
|
672 | 677 | |
|
673 | 678 | self.isConfig = True |
|
674 | 679 | |
|
675 | 680 | if mode == 3: |
|
676 | 681 | sys.stderr.write("Decoder Warning: mode=%d is not valid, using mode=0\n" %mode) |
|
677 | 682 | |
|
678 | 683 | if times != None: |
|
679 | 684 | sys.stderr.write("Decoder Warning: Argument 'times' in not used anymore\n") |
|
680 | 685 | |
|
681 | 686 | if self.code is None: |
|
682 | 687 | print "Fail decoding: Code is not defined." |
|
683 | 688 | return |
|
684 | 689 | |
|
685 | 690 | datadec = None |
|
686 | 691 | if mode == 3: |
|
687 | 692 | mode = 0 |
|
688 | 693 | |
|
689 | 694 | if dataOut.flagDataAsBlock: |
|
690 | 695 | """ |
|
691 | 696 | Decoding when data have been read as block, |
|
692 | 697 | """ |
|
693 | 698 | |
|
694 | 699 | if mode == 0: |
|
695 | 700 | datadec = self.__convolutionByBlockInTime(dataOut.data) |
|
696 | 701 | if mode == 1: |
|
697 | 702 | datadec = self.__convolutionByBlockInFreq(dataOut.data) |
|
698 | 703 | else: |
|
699 | 704 | """ |
|
700 | 705 | Decoding when data have been read profile by profile |
|
701 | 706 | """ |
|
702 | 707 | if mode == 0: |
|
703 | 708 | datadec = self.__convolutionInTime(dataOut.data) |
|
704 | 709 | |
|
705 | 710 | if mode == 1: |
|
706 | 711 | datadec = self.__convolutionInFreq(dataOut.data) |
|
707 | 712 | |
|
708 | 713 | if mode == 2: |
|
709 | 714 | datadec = self.__convolutionInFreqOpt(dataOut.data) |
|
710 | 715 | |
|
711 | 716 | if datadec is None: |
|
712 | 717 | raise ValueError, "Codification mode selected is not valid: mode=%d. Try selecting 0 or 1" %mode |
|
713 | 718 | |
|
714 | 719 | dataOut.code = self.code |
|
715 | 720 | dataOut.nCode = self.nCode |
|
716 | 721 | dataOut.nBaud = self.nBaud |
|
717 | 722 | |
|
718 | 723 | dataOut.data = datadec |
|
719 | 724 | |
|
720 | 725 | dataOut.heightList = dataOut.heightList[0:datadec.shape[-1]] |
|
721 | 726 | |
|
722 | 727 | dataOut.flagDecodeData = True #asumo q la data esta decodificada |
|
723 | 728 | |
|
724 | 729 | if self.__profIndex == self.nCode-1: |
|
725 | 730 | self.__profIndex = 0 |
|
726 | 731 | return 1 |
|
727 | 732 | |
|
728 | 733 | self.__profIndex += 1 |
|
729 | 734 | |
|
730 | 735 | return 1 |
|
731 | 736 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
732 | 737 | |
|
733 | 738 | |
|
734 | 739 | class ProfileConcat(Operation): |
|
735 | 740 | |
|
736 | 741 | isConfig = False |
|
737 | 742 | buffer = None |
|
738 | 743 | |
|
739 | 744 | def __init__(self, **kwargs): |
|
740 | 745 | |
|
741 | 746 | Operation.__init__(self, **kwargs) |
|
742 | 747 | self.profileIndex = 0 |
|
743 | 748 | |
|
744 | 749 | def reset(self): |
|
745 | 750 | self.buffer = numpy.zeros_like(self.buffer) |
|
746 | 751 | self.start_index = 0 |
|
747 | 752 | self.times = 1 |
|
748 | 753 | |
|
749 | 754 | def setup(self, data, m, n=1): |
|
750 | 755 | self.buffer = numpy.zeros((data.shape[0],data.shape[1]*m),dtype=type(data[0,0])) |
|
751 | 756 | self.nHeights = data.shape[1]#.nHeights |
|
752 | 757 | self.start_index = 0 |
|
753 | 758 | self.times = 1 |
|
754 | 759 | |
|
755 | 760 | def concat(self, data): |
|
756 | 761 | |
|
757 | 762 | self.buffer[:,self.start_index:self.nHeights*self.times] = data.copy() |
|
758 | 763 | self.start_index = self.start_index + self.nHeights |
|
759 | 764 | |
|
760 | 765 | def run(self, dataOut, m): |
|
761 | 766 | |
|
762 | 767 | dataOut.flagNoData = True |
|
763 | 768 | |
|
764 | 769 | if not self.isConfig: |
|
765 | 770 | self.setup(dataOut.data, m, 1) |
|
766 | 771 | self.isConfig = True |
|
767 | 772 | |
|
768 | 773 | if dataOut.flagDataAsBlock: |
|
769 | 774 | raise ValueError, "ProfileConcat can only be used when voltage have been read profile by profile, getBlock = False" |
|
770 | 775 | |
|
771 | 776 | else: |
|
772 | 777 | self.concat(dataOut.data) |
|
773 | 778 | self.times += 1 |
|
774 | 779 | if self.times > m: |
|
775 | 780 | dataOut.data = self.buffer |
|
776 | 781 | self.reset() |
|
777 | 782 | dataOut.flagNoData = False |
|
778 | 783 | # se deben actualizar mas propiedades del header y del objeto dataOut, por ejemplo, las alturas |
|
779 | 784 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
780 | 785 | xf = dataOut.heightList[0] + dataOut.nHeights * deltaHeight * m |
|
781 | 786 | dataOut.heightList = numpy.arange(dataOut.heightList[0], xf, deltaHeight) |
|
782 | 787 | dataOut.ippSeconds *= m |
|
783 | 788 | |
|
784 | 789 | class ProfileSelector(Operation): |
|
785 | 790 | |
|
786 | 791 | profileIndex = None |
|
787 | 792 | # Tamanho total de los perfiles |
|
788 | 793 | nProfiles = None |
|
789 | 794 | |
|
790 | 795 | def __init__(self, **kwargs): |
|
791 | 796 | |
|
792 | 797 | Operation.__init__(self, **kwargs) |
|
793 | 798 | self.profileIndex = 0 |
|
794 | 799 | |
|
795 | 800 | def incProfileIndex(self): |
|
796 | 801 | |
|
797 | 802 | self.profileIndex += 1 |
|
798 | 803 | |
|
799 | 804 | if self.profileIndex >= self.nProfiles: |
|
800 | 805 | self.profileIndex = 0 |
|
801 | 806 | |
|
802 | 807 | def isThisProfileInRange(self, profileIndex, minIndex, maxIndex): |
|
803 | 808 | |
|
804 | 809 | if profileIndex < minIndex: |
|
805 | 810 | return False |
|
806 | 811 | |
|
807 | 812 | if profileIndex > maxIndex: |
|
808 | 813 | return False |
|
809 | 814 | |
|
810 | 815 | return True |
|
811 | 816 | |
|
812 | 817 | def isThisProfileInList(self, profileIndex, profileList): |
|
813 | 818 | |
|
814 | 819 | if profileIndex not in profileList: |
|
815 | 820 | return False |
|
816 | 821 | |
|
817 | 822 | return True |
|
818 | 823 | |
|
819 | 824 | def run(self, dataOut, profileList=None, profileRangeList=None, beam=None, byblock=False, rangeList = None, nProfiles=None): |
|
820 | 825 | |
|
821 | 826 | """ |
|
822 | 827 | ProfileSelector: |
|
823 | 828 | |
|
824 | 829 | Inputs: |
|
825 | 830 | profileList : Index of profiles selected. Example: profileList = (0,1,2,7,8) |
|
826 | 831 | |
|
827 | 832 | profileRangeList : Minimum and maximum profile indexes. Example: profileRangeList = (4, 30) |
|
828 | 833 | |
|
829 | 834 | rangeList : List of profile ranges. Example: rangeList = ((4, 30), (32, 64), (128, 256)) |
|
830 | 835 | |
|
831 | 836 | """ |
|
832 | 837 | |
|
833 | 838 | if rangeList is not None: |
|
834 | 839 | if type(rangeList[0]) not in (tuple, list): |
|
835 | 840 | rangeList = [rangeList] |
|
836 | 841 | |
|
837 | 842 | dataOut.flagNoData = True |
|
838 | 843 | |
|
839 | 844 | if dataOut.flagDataAsBlock: |
|
840 | 845 | """ |
|
841 | 846 | data dimension = [nChannels, nProfiles, nHeis] |
|
842 | 847 | """ |
|
843 | 848 | if profileList != None: |
|
844 | 849 | dataOut.data = dataOut.data[:,profileList,:] |
|
845 | 850 | |
|
846 | 851 | if profileRangeList != None: |
|
847 | 852 | minIndex = profileRangeList[0] |
|
848 | 853 | maxIndex = profileRangeList[1] |
|
849 | 854 | profileList = range(minIndex, maxIndex+1) |
|
850 | 855 | |
|
851 | 856 | dataOut.data = dataOut.data[:,minIndex:maxIndex+1,:] |
|
852 | 857 | |
|
853 | 858 | if rangeList != None: |
|
854 | 859 | |
|
855 | 860 | profileList = [] |
|
856 | 861 | |
|
857 | 862 | for thisRange in rangeList: |
|
858 | 863 | minIndex = thisRange[0] |
|
859 | 864 | maxIndex = thisRange[1] |
|
860 | 865 | |
|
861 | 866 | profileList.extend(range(minIndex, maxIndex+1)) |
|
862 | 867 | |
|
863 | 868 | dataOut.data = dataOut.data[:,profileList,:] |
|
864 | 869 | |
|
865 | 870 | dataOut.nProfiles = len(profileList) |
|
866 | 871 | dataOut.profileIndex = dataOut.nProfiles - 1 |
|
867 | 872 | dataOut.flagNoData = False |
|
868 | 873 | |
|
869 | 874 | return True |
|
870 | 875 | |
|
871 | 876 | """ |
|
872 | 877 | data dimension = [nChannels, nHeis] |
|
873 | 878 | """ |
|
874 | 879 | |
|
875 | 880 | if profileList != None: |
|
876 | 881 | |
|
877 | 882 | if self.isThisProfileInList(dataOut.profileIndex, profileList): |
|
878 | 883 | |
|
879 | 884 | self.nProfiles = len(profileList) |
|
880 | 885 | dataOut.nProfiles = self.nProfiles |
|
881 | 886 | dataOut.profileIndex = self.profileIndex |
|
882 | 887 | dataOut.flagNoData = False |
|
883 | 888 | |
|
884 | 889 | self.incProfileIndex() |
|
885 | 890 | return True |
|
886 | 891 | |
|
887 | 892 | if profileRangeList != None: |
|
888 | 893 | |
|
889 | 894 | minIndex = profileRangeList[0] |
|
890 | 895 | maxIndex = profileRangeList[1] |
|
891 | 896 | |
|
892 | 897 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
893 | 898 | |
|
894 | 899 | self.nProfiles = maxIndex - minIndex + 1 |
|
895 | 900 | dataOut.nProfiles = self.nProfiles |
|
896 | 901 | dataOut.profileIndex = self.profileIndex |
|
897 | 902 | dataOut.flagNoData = False |
|
898 | 903 | |
|
899 | 904 | self.incProfileIndex() |
|
900 | 905 | return True |
|
901 | 906 | |
|
902 | 907 | if rangeList != None: |
|
903 | 908 | |
|
904 | 909 | nProfiles = 0 |
|
905 | 910 | |
|
906 | 911 | for thisRange in rangeList: |
|
907 | 912 | minIndex = thisRange[0] |
|
908 | 913 | maxIndex = thisRange[1] |
|
909 | 914 | |
|
910 | 915 | nProfiles += maxIndex - minIndex + 1 |
|
911 | 916 | |
|
912 | 917 | for thisRange in rangeList: |
|
913 | 918 | |
|
914 | 919 | minIndex = thisRange[0] |
|
915 | 920 | maxIndex = thisRange[1] |
|
916 | 921 | |
|
917 | 922 | if self.isThisProfileInRange(dataOut.profileIndex, minIndex, maxIndex): |
|
918 | 923 | |
|
919 | 924 | self.nProfiles = nProfiles |
|
920 | 925 | dataOut.nProfiles = self.nProfiles |
|
921 | 926 | dataOut.profileIndex = self.profileIndex |
|
922 | 927 | dataOut.flagNoData = False |
|
923 | 928 | |
|
924 | 929 | self.incProfileIndex() |
|
925 | 930 | |
|
926 | 931 | break |
|
927 | 932 | |
|
928 | 933 | return True |
|
929 | 934 | |
|
930 | 935 | |
|
931 | 936 | if beam != None: #beam is only for AMISR data |
|
932 | 937 | if self.isThisProfileInList(dataOut.profileIndex, dataOut.beamRangeDict[beam]): |
|
933 | 938 | dataOut.flagNoData = False |
|
934 | 939 | dataOut.profileIndex = self.profileIndex |
|
935 | 940 | |
|
936 | 941 | self.incProfileIndex() |
|
937 | 942 | |
|
938 | 943 | return True |
|
939 | 944 | |
|
940 | 945 | raise ValueError, "ProfileSelector needs profileList, profileRangeList or rangeList parameter" |
|
941 | 946 | |
|
942 | 947 | return False |
|
943 | 948 | |
|
944 | 949 | class Reshaper(Operation): |
|
945 | 950 | |
|
946 | 951 | def __init__(self, **kwargs): |
|
947 | 952 | |
|
948 | 953 | Operation.__init__(self, **kwargs) |
|
949 | 954 | |
|
950 | 955 | self.__buffer = None |
|
951 | 956 | self.__nitems = 0 |
|
952 | 957 | |
|
953 | 958 | def __appendProfile(self, dataOut, nTxs): |
|
954 | 959 | |
|
955 | 960 | if self.__buffer is None: |
|
956 | 961 | shape = (dataOut.nChannels, int(dataOut.nHeights/nTxs) ) |
|
957 | 962 | self.__buffer = numpy.empty(shape, dtype = dataOut.data.dtype) |
|
958 | 963 | |
|
959 | 964 | ini = dataOut.nHeights * self.__nitems |
|
960 | 965 | end = ini + dataOut.nHeights |
|
961 | 966 | |
|
962 | 967 | self.__buffer[:, ini:end] = dataOut.data |
|
963 | 968 | |
|
964 | 969 | self.__nitems += 1 |
|
965 | 970 | |
|
966 | 971 | return int(self.__nitems*nTxs) |
|
967 | 972 | |
|
968 | 973 | def __getBuffer(self): |
|
969 | 974 | |
|
970 | 975 | if self.__nitems == int(1./self.__nTxs): |
|
971 | 976 | |
|
972 | 977 | self.__nitems = 0 |
|
973 | 978 | |
|
974 | 979 | return self.__buffer.copy() |
|
975 | 980 | |
|
976 | 981 | return None |
|
977 | 982 | |
|
978 | 983 | def __checkInputs(self, dataOut, shape, nTxs): |
|
979 | 984 | |
|
980 | 985 | if shape is None and nTxs is None: |
|
981 | 986 | raise ValueError, "Reshaper: shape of factor should be defined" |
|
982 | 987 | |
|
983 | 988 | if nTxs: |
|
984 | 989 | if nTxs < 0: |
|
985 | 990 | raise ValueError, "nTxs should be greater than 0" |
|
986 | 991 | |
|
987 | 992 | if nTxs < 1 and dataOut.nProfiles % (1./nTxs) != 0: |
|
988 | 993 | raise ValueError, "nProfiles= %d is not divisibled by (1./nTxs) = %f" %(dataOut.nProfiles, (1./nTxs)) |
|
989 | 994 | |
|
990 | 995 | shape = [dataOut.nChannels, dataOut.nProfiles*nTxs, dataOut.nHeights/nTxs] |
|
991 | 996 | |
|
992 | 997 | return shape, nTxs |
|
993 | 998 | |
|
994 | 999 | if len(shape) != 2 and len(shape) != 3: |
|
995 | 1000 | raise ValueError, "shape dimension should be equal to 2 or 3. shape = (nProfiles, nHeis) or (nChannels, nProfiles, nHeis). Actually shape = (%d, %d, %d)" %(dataOut.nChannels, dataOut.nProfiles, dataOut.nHeights) |
|
996 | 1001 | |
|
997 | 1002 | if len(shape) == 2: |
|
998 | 1003 | shape_tuple = [dataOut.nChannels] |
|
999 | 1004 | shape_tuple.extend(shape) |
|
1000 | 1005 | else: |
|
1001 | 1006 | shape_tuple = list(shape) |
|
1002 | 1007 | |
|
1003 | 1008 | nTxs = 1.0*shape_tuple[1]/dataOut.nProfiles |
|
1004 | 1009 | |
|
1005 | 1010 | return shape_tuple, nTxs |
|
1006 | 1011 | |
|
1007 | 1012 | def run(self, dataOut, shape=None, nTxs=None): |
|
1008 | 1013 | |
|
1009 | 1014 | shape_tuple, self.__nTxs = self.__checkInputs(dataOut, shape, nTxs) |
|
1010 | 1015 | |
|
1011 | 1016 | dataOut.flagNoData = True |
|
1012 | 1017 | profileIndex = None |
|
1013 | 1018 | |
|
1014 | 1019 | if dataOut.flagDataAsBlock: |
|
1015 | 1020 | |
|
1016 | 1021 | dataOut.data = numpy.reshape(dataOut.data, shape_tuple) |
|
1017 | 1022 | dataOut.flagNoData = False |
|
1018 | 1023 | |
|
1019 | 1024 | profileIndex = int(dataOut.nProfiles*self.__nTxs) - 1 |
|
1020 | 1025 | |
|
1021 | 1026 | else: |
|
1022 | 1027 | |
|
1023 | 1028 | if self.__nTxs < 1: |
|
1024 | 1029 | |
|
1025 | 1030 | self.__appendProfile(dataOut, self.__nTxs) |
|
1026 | 1031 | new_data = self.__getBuffer() |
|
1027 | 1032 | |
|
1028 | 1033 | if new_data is not None: |
|
1029 | 1034 | dataOut.data = new_data |
|
1030 | 1035 | dataOut.flagNoData = False |
|
1031 | 1036 | |
|
1032 | 1037 | profileIndex = dataOut.profileIndex*nTxs |
|
1033 | 1038 | |
|
1034 | 1039 | else: |
|
1035 | 1040 | raise ValueError, "nTxs should be greater than 0 and lower than 1, or use VoltageReader(..., getblock=True)" |
|
1036 | 1041 | |
|
1037 | 1042 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1038 | 1043 | |
|
1039 | 1044 | dataOut.heightList = numpy.arange(dataOut.nHeights/self.__nTxs) * deltaHeight + dataOut.heightList[0] |
|
1040 | 1045 | |
|
1041 | 1046 | dataOut.nProfiles = int(dataOut.nProfiles*self.__nTxs) |
|
1042 | 1047 | |
|
1043 | 1048 | dataOut.profileIndex = profileIndex |
|
1044 | 1049 | |
|
1045 | 1050 | dataOut.ippSeconds /= self.__nTxs |
|
1046 | 1051 | |
|
1047 | 1052 | class SplitProfiles(Operation): |
|
1048 | 1053 | |
|
1049 | 1054 | def __init__(self, **kwargs): |
|
1050 | 1055 | |
|
1051 | 1056 | Operation.__init__(self, **kwargs) |
|
1052 | 1057 | |
|
1053 | 1058 | def run(self, dataOut, n): |
|
1054 | 1059 | |
|
1055 | 1060 | dataOut.flagNoData = True |
|
1056 | 1061 | profileIndex = None |
|
1057 | 1062 | |
|
1058 | 1063 | if dataOut.flagDataAsBlock: |
|
1059 | 1064 | |
|
1060 | 1065 | #nchannels, nprofiles, nsamples |
|
1061 | 1066 | shape = dataOut.data.shape |
|
1062 | 1067 | |
|
1063 | 1068 | if shape[2] % n != 0: |
|
1064 | 1069 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[2]) |
|
1065 | 1070 | |
|
1066 | 1071 | new_shape = shape[0], shape[1]*n, shape[2]/n |
|
1067 | 1072 | |
|
1068 | 1073 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1069 | 1074 | dataOut.flagNoData = False |
|
1070 | 1075 | |
|
1071 | 1076 | profileIndex = int(dataOut.nProfiles/n) - 1 |
|
1072 | 1077 | |
|
1073 | 1078 | else: |
|
1074 | 1079 | |
|
1075 | 1080 | raise ValueError, "Could not split the data when is read Profile by Profile. Use VoltageReader(..., getblock=True)" |
|
1076 | 1081 | |
|
1077 | 1082 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1078 | 1083 | |
|
1079 | 1084 | dataOut.heightList = numpy.arange(dataOut.nHeights/n) * deltaHeight + dataOut.heightList[0] |
|
1080 | 1085 | |
|
1081 | 1086 | dataOut.nProfiles = int(dataOut.nProfiles*n) |
|
1082 | 1087 | |
|
1083 | 1088 | dataOut.profileIndex = profileIndex |
|
1084 | 1089 | |
|
1085 | 1090 | dataOut.ippSeconds /= n |
|
1086 | 1091 | |
|
1087 | 1092 | class CombineProfiles(Operation): |
|
1088 | ||
|
1093 | parameters = { | |
|
1094 | 'n': 'int', | |
|
1095 | } | |
|
1089 | 1096 | def __init__(self, **kwargs): |
|
1090 | 1097 | |
|
1091 | 1098 | Operation.__init__(self, **kwargs) |
|
1092 | 1099 | |
|
1093 | 1100 | self.__remData = None |
|
1094 | 1101 | self.__profileIndex = 0 |
|
1095 | 1102 | |
|
1096 | 1103 | def run(self, dataOut, n): |
|
1097 | 1104 | |
|
1098 | 1105 | dataOut.flagNoData = True |
|
1099 | 1106 | profileIndex = None |
|
1100 | 1107 | |
|
1101 | 1108 | if dataOut.flagDataAsBlock: |
|
1102 | 1109 | |
|
1103 | 1110 | #nchannels, nprofiles, nsamples |
|
1104 | 1111 | shape = dataOut.data.shape |
|
1105 | 1112 | new_shape = shape[0], shape[1]/n, shape[2]*n |
|
1106 | 1113 | |
|
1107 | 1114 | if shape[1] % n != 0: |
|
1108 | 1115 | raise ValueError, "Could not split the data, n=%d has to be multiple of %d" %(n, shape[1]) |
|
1109 | 1116 | |
|
1110 | 1117 | dataOut.data = numpy.reshape(dataOut.data, new_shape) |
|
1111 | 1118 | dataOut.flagNoData = False |
|
1112 | 1119 | |
|
1113 | 1120 | profileIndex = int(dataOut.nProfiles*n) - 1 |
|
1114 | 1121 | |
|
1115 | 1122 | else: |
|
1116 | 1123 | |
|
1117 | 1124 | #nchannels, nsamples |
|
1118 | 1125 | if self.__remData is None: |
|
1119 | 1126 | newData = dataOut.data |
|
1120 | 1127 | else: |
|
1121 | 1128 | newData = numpy.concatenate((self.__remData, dataOut.data), axis=1) |
|
1122 | 1129 | |
|
1123 | 1130 | self.__profileIndex += 1 |
|
1124 | 1131 | |
|
1125 | 1132 | if self.__profileIndex < n: |
|
1126 | 1133 | self.__remData = newData |
|
1127 | 1134 | #continue |
|
1128 | 1135 | return |
|
1129 | 1136 | |
|
1130 | 1137 | self.__profileIndex = 0 |
|
1131 | 1138 | self.__remData = None |
|
1132 | 1139 | |
|
1133 | 1140 | dataOut.data = newData |
|
1134 | 1141 | dataOut.flagNoData = False |
|
1135 | 1142 | |
|
1136 | 1143 | profileIndex = dataOut.profileIndex/n |
|
1137 | 1144 | |
|
1138 | 1145 | |
|
1139 | 1146 | deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1140 | 1147 | |
|
1141 | 1148 | dataOut.heightList = numpy.arange(dataOut.nHeights*n) * deltaHeight + dataOut.heightList[0] |
|
1142 | 1149 | |
|
1143 | 1150 | dataOut.nProfiles = int(dataOut.nProfiles/n) |
|
1144 | 1151 | |
|
1145 | 1152 | dataOut.profileIndex = profileIndex |
|
1146 | 1153 | |
|
1147 | 1154 | dataOut.ippSeconds *= n |
|
1148 | 1155 | |
|
1149 | 1156 | # import collections |
|
1150 | 1157 | # from scipy.stats import mode |
|
1151 | 1158 | # |
|
1152 | 1159 | # class Synchronize(Operation): |
|
1153 | 1160 | # |
|
1154 | 1161 | # isConfig = False |
|
1155 | 1162 | # __profIndex = 0 |
|
1156 | 1163 | # |
|
1157 | 1164 | # def __init__(self, **kwargs): |
|
1158 | 1165 | # |
|
1159 | 1166 | # Operation.__init__(self, **kwargs) |
|
1160 | 1167 | # # self.isConfig = False |
|
1161 | 1168 | # self.__powBuffer = None |
|
1162 | 1169 | # self.__startIndex = 0 |
|
1163 | 1170 | # self.__pulseFound = False |
|
1164 | 1171 | # |
|
1165 | 1172 | # def __findTxPulse(self, dataOut, channel=0, pulse_with = None): |
|
1166 | 1173 | # |
|
1167 | 1174 | # #Read data |
|
1168 | 1175 | # |
|
1169 | 1176 | # powerdB = dataOut.getPower(channel = channel) |
|
1170 | 1177 | # noisedB = dataOut.getNoise(channel = channel)[0] |
|
1171 | 1178 | # |
|
1172 | 1179 | # self.__powBuffer.extend(powerdB.flatten()) |
|
1173 | 1180 | # |
|
1174 | 1181 | # dataArray = numpy.array(self.__powBuffer) |
|
1175 | 1182 | # |
|
1176 | 1183 | # filteredPower = numpy.correlate(dataArray, dataArray[0:self.__nSamples], "same") |
|
1177 | 1184 | # |
|
1178 | 1185 | # maxValue = numpy.nanmax(filteredPower) |
|
1179 | 1186 | # |
|
1180 | 1187 | # if maxValue < noisedB + 10: |
|
1181 | 1188 | # #No se encuentra ningun pulso de transmision |
|
1182 | 1189 | # return None |
|
1183 | 1190 | # |
|
1184 | 1191 | # maxValuesIndex = numpy.where(filteredPower > maxValue - 0.1*abs(maxValue))[0] |
|
1185 | 1192 | # |
|
1186 | 1193 | # if len(maxValuesIndex) < 2: |
|
1187 | 1194 | # #Solo se encontro un solo pulso de transmision de un baudio, esperando por el siguiente TX |
|
1188 | 1195 | # return None |
|
1189 | 1196 | # |
|
1190 | 1197 | # phasedMaxValuesIndex = maxValuesIndex - self.__nSamples |
|
1191 | 1198 | # |
|
1192 | 1199 | # #Seleccionar solo valores con un espaciamiento de nSamples |
|
1193 | 1200 | # pulseIndex = numpy.intersect1d(maxValuesIndex, phasedMaxValuesIndex) |
|
1194 | 1201 | # |
|
1195 | 1202 | # if len(pulseIndex) < 2: |
|
1196 | 1203 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1197 | 1204 | # return None |
|
1198 | 1205 | # |
|
1199 | 1206 | # spacing = pulseIndex[1:] - pulseIndex[:-1] |
|
1200 | 1207 | # |
|
1201 | 1208 | # #remover senales que se distancien menos de 10 unidades o muestras |
|
1202 | 1209 | # #(No deberian existir IPP menor a 10 unidades) |
|
1203 | 1210 | # |
|
1204 | 1211 | # realIndex = numpy.where(spacing > 10 )[0] |
|
1205 | 1212 | # |
|
1206 | 1213 | # if len(realIndex) < 2: |
|
1207 | 1214 | # #Solo se encontro un pulso de transmision con ancho mayor a 1 |
|
1208 | 1215 | # return None |
|
1209 | 1216 | # |
|
1210 | 1217 | # #Eliminar pulsos anchos (deja solo la diferencia entre IPPs) |
|
1211 | 1218 | # realPulseIndex = pulseIndex[realIndex] |
|
1212 | 1219 | # |
|
1213 | 1220 | # period = mode(realPulseIndex[1:] - realPulseIndex[:-1])[0][0] |
|
1214 | 1221 | # |
|
1215 | 1222 | # print "IPP = %d samples" %period |
|
1216 | 1223 | # |
|
1217 | 1224 | # self.__newNSamples = dataOut.nHeights #int(period) |
|
1218 | 1225 | # self.__startIndex = int(realPulseIndex[0]) |
|
1219 | 1226 | # |
|
1220 | 1227 | # return 1 |
|
1221 | 1228 | # |
|
1222 | 1229 | # |
|
1223 | 1230 | # def setup(self, nSamples, nChannels, buffer_size = 4): |
|
1224 | 1231 | # |
|
1225 | 1232 | # self.__powBuffer = collections.deque(numpy.zeros( buffer_size*nSamples,dtype=numpy.float), |
|
1226 | 1233 | # maxlen = buffer_size*nSamples) |
|
1227 | 1234 | # |
|
1228 | 1235 | # bufferList = [] |
|
1229 | 1236 | # |
|
1230 | 1237 | # for i in range(nChannels): |
|
1231 | 1238 | # bufferByChannel = collections.deque(numpy.zeros( buffer_size*nSamples, dtype=numpy.complex) + numpy.NAN, |
|
1232 | 1239 | # maxlen = buffer_size*nSamples) |
|
1233 | 1240 | # |
|
1234 | 1241 | # bufferList.append(bufferByChannel) |
|
1235 | 1242 | # |
|
1236 | 1243 | # self.__nSamples = nSamples |
|
1237 | 1244 | # self.__nChannels = nChannels |
|
1238 | 1245 | # self.__bufferList = bufferList |
|
1239 | 1246 | # |
|
1240 | 1247 | # def run(self, dataOut, channel = 0): |
|
1241 | 1248 | # |
|
1242 | 1249 | # if not self.isConfig: |
|
1243 | 1250 | # nSamples = dataOut.nHeights |
|
1244 | 1251 | # nChannels = dataOut.nChannels |
|
1245 | 1252 | # self.setup(nSamples, nChannels) |
|
1246 | 1253 | # self.isConfig = True |
|
1247 | 1254 | # |
|
1248 | 1255 | # #Append new data to internal buffer |
|
1249 | 1256 | # for thisChannel in range(self.__nChannels): |
|
1250 | 1257 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1251 | 1258 | # bufferByChannel.extend(dataOut.data[thisChannel]) |
|
1252 | 1259 | # |
|
1253 | 1260 | # if self.__pulseFound: |
|
1254 | 1261 | # self.__startIndex -= self.__nSamples |
|
1255 | 1262 | # |
|
1256 | 1263 | # #Finding Tx Pulse |
|
1257 | 1264 | # if not self.__pulseFound: |
|
1258 | 1265 | # indexFound = self.__findTxPulse(dataOut, channel) |
|
1259 | 1266 | # |
|
1260 | 1267 | # if indexFound == None: |
|
1261 | 1268 | # dataOut.flagNoData = True |
|
1262 | 1269 | # return |
|
1263 | 1270 | # |
|
1264 | 1271 | # self.__arrayBuffer = numpy.zeros((self.__nChannels, self.__newNSamples), dtype = numpy.complex) |
|
1265 | 1272 | # self.__pulseFound = True |
|
1266 | 1273 | # self.__startIndex = indexFound |
|
1267 | 1274 | # |
|
1268 | 1275 | # #If pulse was found ... |
|
1269 | 1276 | # for thisChannel in range(self.__nChannels): |
|
1270 | 1277 | # bufferByChannel = self.__bufferList[thisChannel] |
|
1271 | 1278 | # #print self.__startIndex |
|
1272 | 1279 | # x = numpy.array(bufferByChannel) |
|
1273 | 1280 | # self.__arrayBuffer[thisChannel] = x[self.__startIndex:self.__startIndex+self.__newNSamples] |
|
1274 | 1281 | # |
|
1275 | 1282 | # deltaHeight = dataOut.heightList[1] - dataOut.heightList[0] |
|
1276 | 1283 | # dataOut.heightList = numpy.arange(self.__newNSamples)*deltaHeight |
|
1277 | 1284 | # # dataOut.ippSeconds = (self.__newNSamples / deltaHeight)/1e6 |
|
1278 | 1285 | # |
|
1279 | 1286 | # dataOut.data = self.__arrayBuffer |
|
1280 | 1287 | # |
|
1281 | 1288 | # self.__startIndex += self.__newNSamples |
|
1282 | 1289 | # |
|
1283 | 1290 | # return |
@@ -1,97 +1,94 | |||
|
1 | 1 | import argparse |
|
2 | 2 | |
|
3 | 3 | from schainpy.controller import Project, multiSchain |
|
4 | 4 | |
|
5 | 5 | desc = "HF_EXAMPLE" |
|
6 | 6 | |
|
7 | 7 | def fiber(cursor, skip, q, dt): |
|
8 | 8 | |
|
9 | 9 | controllerObj = Project() |
|
10 | 10 | |
|
11 | 11 | controllerObj.setup(id='191', name='test01', description=desc) |
|
12 | 12 | |
|
13 | 13 | readUnitConfObj = controllerObj.addReadUnit(datatype='SpectraReader', |
|
14 | 14 | path='/home/nanosat/data/julia', |
|
15 | 15 | startDate=dt, |
|
16 | 16 | endDate=dt, |
|
17 | 17 | startTime="00:00:00", |
|
18 | 18 | endTime="23:59:59", |
|
19 | 19 | online=0, |
|
20 | 20 | #set=1426485881, |
|
21 | 21 | delay=10, |
|
22 | 22 | walk=1, |
|
23 | 23 | queue=q, |
|
24 | 24 | cursor=cursor, |
|
25 | 25 | skip=skip, |
|
26 | 26 | #timezone=-5*3600 |
|
27 | 27 | ) |
|
28 | 28 | |
|
29 | 29 | # #opObj11 = readUnitConfObj.addOperation(name='printNumberOfBlock') |
|
30 | 30 | # |
|
31 | 31 | procUnitConfObj2 = controllerObj.addProcUnit(datatype='Spectra', inputId=readUnitConfObj.getId()) |
|
32 | 32 | # procUnitConfObj2.addParameter(name='nipp', value='5', format='int') |
|
33 | 33 | |
|
34 | 34 | # procUnitConfObj3 = controllerObj.addProcUnit(datatype='ParametersProc', inputId=readUnitConfObj.getId()) |
|
35 | 35 | # opObj11 = procUnitConfObj3.addOperation(name='SpectralMoments', optype='other') |
|
36 | 36 | |
|
37 | 37 | # |
|
38 |
|
|
|
39 |
|
|
|
40 |
|
|
|
41 |
|
|
|
42 |
|
|
|
43 | # opObj11.addParameter(name='zmax', value='-70', format='float') | |
|
44 | # opObj11.addParameter(name='save', value='1', format='int') | |
|
45 | # opObj11.addParameter(name='figpath', value=figpath, format='str') | |
|
38 | opObj11 = procUnitConfObj2.addOperation(name='RTIPlot', optype='other') | |
|
39 | opObj11.addParameter(name='id', value='1000', format='int') | |
|
40 | opObj11.addParameter(name='wintitle', value='HF_Jicamarca_Spc', format='str') | |
|
41 | opObj11.addParameter(name='xmin', value='0', format='int') | |
|
42 | opObj11.addParameter(name='xmax', value='24', format='int') | |
|
46 | 43 | |
|
47 | 44 | # opObj11 = procUnitConfObj3.addOperation(name='Parameters1Plot', optype='other') |
|
48 | 45 | # opObj11.addParameter(name='channelList', value='0', format='intList') |
|
49 | 46 | # |
|
50 | 47 | # opObj11.addParameter(name='id', value='2000', format='int') |
|
51 | 48 | # # opObj11.addParameter(name='colormap', value='0', format='bool') |
|
52 | 49 | # opObj11.addParameter(name='onlySNR', value='1', format='bool') |
|
53 | 50 | # opObj11.addParameter(name='DOP', value='0', format='bool') |
|
54 | 51 | # opObj11.addParameter(name='showSNR', value='1', format='bool') |
|
55 | 52 | # opObj11.addParameter(name='SNRthresh', value='0', format='int') |
|
56 | 53 | # opObj11.addParameter(name='SNRmin', value='-10', format='int') |
|
57 | 54 | # opObj11.addParameter(name='SNRmax', value='30', format='int') |
|
58 | 55 | |
|
59 | 56 | # opObj11.addParameter(name='showSNR', value='1', format='int') |
|
60 | 57 | # # opObj11.addParameter(name='channelList', value='0', format='intlist') |
|
61 | 58 | # # opObj11.addParameter(name='xmin', value='0', format='float') |
|
62 | 59 | # opObj11.addParameter(name='xmin', value='0', format='float') |
|
63 | 60 | # opObj11.addParameter(name='xmax', value='24', format='float') |
|
64 | 61 | |
|
65 | 62 | # opObj11.addParameter(name='zmin', value='-110', format='float') |
|
66 | 63 | # opObj11.addParameter(name='zmax', value='-70', format='float') |
|
67 | 64 | # opObj11.addParameter(name='save', value='0', format='int') |
|
68 | 65 | # # opObj11.addParameter(name='figpath', value='/tmp/', format='str') |
|
69 | 66 | # |
|
70 | opObj12 = procUnitConfObj2.addOperation(name='PublishData', optype='other') | |
|
71 | opObj12.addParameter(name='zeromq', value=1, format='int') | |
|
67 | # opObj12 = procUnitConfObj2.addOperation(name='PublishData', optype='other') | |
|
68 | # opObj12.addParameter(name='zeromq', value=1, format='int') | |
|
72 | 69 | # opObj12.addParameter(name='server', value='tcp://10.10.10.82:7000', format='str') |
|
73 | 70 | |
|
74 | 71 | |
|
75 | 72 | # opObj13 = procUnitConfObj3.addOperation(name='PublishData', optype='other') |
|
76 | 73 | # opObj13.addParameter(name='zeromq', value=1, format='int') |
|
77 | 74 | # opObj13.addParameter(name='server', value="juanca", format='str') |
|
78 | 75 | |
|
79 | 76 | # opObj12.addParameter(name='delay', value=1, format='int') |
|
80 | 77 | |
|
81 | 78 | |
|
82 | 79 | # print "Escribiendo el archivo XML" |
|
83 | 80 | # controllerObj.writeXml(filename) |
|
84 | 81 | # print "Leyendo el archivo XML" |
|
85 | 82 | # controllerObj.readXml(filename) |
|
86 | 83 | |
|
87 | 84 | |
|
88 | 85 | # timeit.timeit('controllerObj.run()', number=2) |
|
89 | 86 | |
|
90 | 87 | controllerObj.start() |
|
91 | 88 | |
|
92 | 89 | |
|
93 | 90 | if __name__ == '__main__': |
|
94 | 91 | parser = argparse.ArgumentParser(description='Set number of parallel processes') |
|
95 | 92 | parser.add_argument('--nProcess', default=1, type=int) |
|
96 | 93 | args = parser.parse_args() |
|
97 | 94 | multiSchain(fiber, nProcess=args.nProcess, startDate='2016/08/19', endDate='2016/08/19') |
General Comments 0
You need to be logged in to leave comments.
Login now