@@ -1,823 +1,967 | |||
|
1 | 1 | import numpy |
|
2 | 2 | import time, datetime |
|
3 | 3 | from graphics.figure import * |
|
4 | 4 | |
|
5 | 5 | class CrossSpectraPlot(Figure): |
|
6 | 6 | |
|
7 | 7 | __isConfig = None |
|
8 | 8 | __nsubplots = None |
|
9 | 9 | |
|
10 | 10 | WIDTHPROF = None |
|
11 | 11 | HEIGHTPROF = None |
|
12 | 12 | PREFIX = 'cspc' |
|
13 | 13 | |
|
14 | 14 | def __init__(self): |
|
15 | 15 | |
|
16 | 16 | self.__isConfig = False |
|
17 | 17 | self.__nsubplots = 4 |
|
18 | 18 | |
|
19 | 19 | self.WIDTH = 300 |
|
20 | 20 | self.HEIGHT = 400 |
|
21 | 21 | self.WIDTHPROF = 0 |
|
22 | 22 | self.HEIGHTPROF = 0 |
|
23 | 23 | |
|
24 | 24 | def getSubplots(self): |
|
25 | 25 | |
|
26 | 26 | ncol = 4 |
|
27 | 27 | nrow = self.nplots |
|
28 | 28 | |
|
29 | 29 | return nrow, ncol |
|
30 | 30 | |
|
31 | 31 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
32 | 32 | |
|
33 | 33 | self.__showprofile = showprofile |
|
34 | 34 | self.nplots = nplots |
|
35 | 35 | |
|
36 | 36 | ncolspan = 1 |
|
37 | 37 | colspan = 1 |
|
38 | 38 | |
|
39 | 39 | self.createFigure(idfigure = idfigure, |
|
40 | 40 | wintitle = wintitle, |
|
41 | 41 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
42 | 42 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
43 | 43 | |
|
44 | 44 | nrow, ncol = self.getSubplots() |
|
45 | 45 | |
|
46 | 46 | counter = 0 |
|
47 | 47 | for y in range(nrow): |
|
48 | 48 | for x in range(ncol): |
|
49 | 49 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
50 | 50 | |
|
51 | 51 | counter += 1 |
|
52 | 52 | |
|
53 | 53 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
54 | 54 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
55 | 55 | save=False, figpath='./', figfile=None): |
|
56 | 56 | |
|
57 | 57 | """ |
|
58 | 58 | |
|
59 | 59 | Input: |
|
60 | 60 | dataOut : |
|
61 | 61 | idfigure : |
|
62 | 62 | wintitle : |
|
63 | 63 | channelList : |
|
64 | 64 | showProfile : |
|
65 | 65 | xmin : None, |
|
66 | 66 | xmax : None, |
|
67 | 67 | ymin : None, |
|
68 | 68 | ymax : None, |
|
69 | 69 | zmin : None, |
|
70 | 70 | zmax : None |
|
71 | 71 | """ |
|
72 | 72 | |
|
73 | 73 | if pairsList == None: |
|
74 | 74 | pairsIndexList = dataOut.pairsIndexList |
|
75 | 75 | else: |
|
76 | 76 | pairsIndexList = [] |
|
77 | 77 | for pair in pairsList: |
|
78 | 78 | if pair not in dataOut.pairsList: |
|
79 | 79 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
80 | 80 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
81 | 81 | |
|
82 | 82 | if pairsIndexList == []: |
|
83 | 83 | return |
|
84 | 84 | |
|
85 | 85 | if len(pairsIndexList) > 4: |
|
86 | 86 | pairsIndexList = pairsIndexList[0:4] |
|
87 | 87 | |
|
88 | 88 | x = dataOut.getFreqRange(1) |
|
89 | 89 | y = dataOut.getHeiRange() |
|
90 | 90 | z = 10.*numpy.log10(dataOut.data_spc[:,:,:]) |
|
91 | 91 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
92 | 92 | avg = numpy.average(numpy.abs(z), axis=1) |
|
93 | 93 | |
|
94 | 94 | noise = dataOut.getNoise() |
|
95 | 95 | |
|
96 | 96 | if not self.__isConfig: |
|
97 | 97 | |
|
98 | 98 | nplots = len(pairsIndexList) |
|
99 | 99 | |
|
100 | 100 | self.setup(idfigure=idfigure, |
|
101 | 101 | nplots=nplots, |
|
102 | 102 | wintitle=wintitle, |
|
103 | 103 | showprofile=showprofile) |
|
104 | 104 | |
|
105 | 105 | if xmin == None: xmin = numpy.nanmin(x) |
|
106 | 106 | if xmax == None: xmax = numpy.nanmax(x) |
|
107 | 107 | if ymin == None: ymin = numpy.nanmin(y) |
|
108 | 108 | if ymax == None: ymax = numpy.nanmax(y) |
|
109 | 109 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
110 | 110 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
111 | 111 | |
|
112 | 112 | self.__isConfig = True |
|
113 | 113 | |
|
114 | 114 | thisDatetime = dataOut.datatime |
|
115 | 115 | title = "Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
116 | 116 | xlabel = "Velocity (m/s)" |
|
117 | 117 | ylabel = "Range (Km)" |
|
118 | 118 | |
|
119 | 119 | self.setWinTitle(title) |
|
120 | 120 | |
|
121 | 121 | for i in range(self.nplots): |
|
122 | 122 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
123 | 123 | |
|
124 | 124 | title = "Channel %d: %4.2fdB" %(pair[0], noise[pair[0]]) |
|
125 | 125 | z = 10.*numpy.log10(dataOut.data_spc[pair[0],:,:]) |
|
126 | 126 | axes0 = self.axesList[i*self.__nsubplots] |
|
127 | 127 | axes0.pcolor(x, y, z, |
|
128 | 128 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
129 | 129 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
130 | 130 | ticksize=9, cblabel='') |
|
131 | 131 | |
|
132 | 132 | title = "Channel %d: %4.2fdB" %(pair[1], noise[pair[1]]) |
|
133 | 133 | z = 10.*numpy.log10(dataOut.data_spc[pair[1],:,:]) |
|
134 | 134 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
135 | 135 | axes0.pcolor(x, y, z, |
|
136 | 136 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
137 | 137 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
138 | 138 | ticksize=9, cblabel='') |
|
139 | 139 | |
|
140 | 140 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
141 | 141 | coherence = numpy.abs(coherenceComplex) |
|
142 | 142 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
143 | 143 | |
|
144 | 144 | |
|
145 | 145 | title = "Coherence %d%d" %(pair[0], pair[1]) |
|
146 | 146 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
147 | 147 | axes0.pcolor(x, y, coherence, |
|
148 | 148 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
149 | 149 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
150 | 150 | ticksize=9, cblabel='') |
|
151 | 151 | |
|
152 | 152 | title = "Phase %d%d" %(pair[0], pair[1]) |
|
153 | 153 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
154 | 154 | axes0.pcolor(x, y, phase, |
|
155 | 155 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
156 | 156 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
157 | 157 | ticksize=9, cblabel='', colormap='RdBu') |
|
158 | 158 | |
|
159 | 159 | |
|
160 | 160 | |
|
161 | 161 | self.draw() |
|
162 | 162 | |
|
163 | 163 | if save: |
|
164 | 164 | date = thisDatetime.strftime("%Y%m%d") |
|
165 | 165 | if figfile == None: |
|
166 | 166 | figfile = self.getFilename(name = date) |
|
167 | 167 | |
|
168 | 168 | self.saveFigure(figpath, figfile) |
|
169 | 169 | |
|
170 | 170 | |
|
171 | 171 | class RTIPlot(Figure): |
|
172 | 172 | |
|
173 | 173 | __isConfig = None |
|
174 | 174 | __nsubplots = None |
|
175 | 175 | |
|
176 | 176 | WIDTHPROF = None |
|
177 | 177 | HEIGHTPROF = None |
|
178 | 178 | PREFIX = 'rti' |
|
179 | 179 | |
|
180 | 180 | def __init__(self): |
|
181 | 181 | |
|
182 | 182 | self.timerange = 24*60*60 |
|
183 | 183 | self.__isConfig = False |
|
184 | 184 | self.__nsubplots = 1 |
|
185 | 185 | |
|
186 | 186 | self.WIDTH = 800 |
|
187 | 187 | self.HEIGHT = 200 |
|
188 | 188 | self.WIDTHPROF = 120 |
|
189 | 189 | self.HEIGHTPROF = 0 |
|
190 | 190 | |
|
191 | 191 | def getSubplots(self): |
|
192 | 192 | |
|
193 | 193 | ncol = 1 |
|
194 | 194 | nrow = self.nplots |
|
195 | 195 | |
|
196 | 196 | return nrow, ncol |
|
197 | 197 | |
|
198 | 198 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
199 | 199 | |
|
200 | 200 | self.__showprofile = showprofile |
|
201 | 201 | self.nplots = nplots |
|
202 | 202 | |
|
203 | 203 | ncolspan = 1 |
|
204 | 204 | colspan = 1 |
|
205 | 205 | if showprofile: |
|
206 | 206 | ncolspan = 7 |
|
207 | 207 | colspan = 6 |
|
208 | 208 | self.__nsubplots = 2 |
|
209 | 209 | |
|
210 | 210 | self.createFigure(idfigure = idfigure, |
|
211 | 211 | wintitle = wintitle, |
|
212 | 212 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
213 | 213 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
214 | 214 | |
|
215 | 215 | nrow, ncol = self.getSubplots() |
|
216 | 216 | |
|
217 | 217 | counter = 0 |
|
218 | 218 | for y in range(nrow): |
|
219 | 219 | for x in range(ncol): |
|
220 | 220 | |
|
221 | 221 | if counter >= self.nplots: |
|
222 | 222 | break |
|
223 | 223 | |
|
224 | 224 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
225 | 225 | |
|
226 | 226 | if showprofile: |
|
227 | 227 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
228 | 228 | |
|
229 | 229 | counter += 1 |
|
230 | 230 | |
|
231 | 231 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
232 | 232 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
233 | 233 | timerange=None, |
|
234 | 234 | save=False, figpath='./', figfile=None): |
|
235 | 235 | |
|
236 | 236 | """ |
|
237 | 237 | |
|
238 | 238 | Input: |
|
239 | 239 | dataOut : |
|
240 | 240 | idfigure : |
|
241 | 241 | wintitle : |
|
242 | 242 | channelList : |
|
243 | 243 | showProfile : |
|
244 | 244 | xmin : None, |
|
245 | 245 | xmax : None, |
|
246 | 246 | ymin : None, |
|
247 | 247 | ymax : None, |
|
248 | 248 | zmin : None, |
|
249 | 249 | zmax : None |
|
250 | 250 | """ |
|
251 | 251 | |
|
252 | 252 | if channelList == None: |
|
253 | 253 | channelIndexList = dataOut.channelIndexList |
|
254 | 254 | else: |
|
255 | 255 | channelIndexList = [] |
|
256 | 256 | for channel in channelList: |
|
257 | 257 | if channel not in dataOut.channelList: |
|
258 | 258 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
259 | 259 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
260 | 260 | |
|
261 | 261 | if timerange != None: |
|
262 | 262 | self.timerange = timerange |
|
263 | 263 | |
|
264 | 264 | tmin = None |
|
265 | 265 | tmax = None |
|
266 | 266 | x = dataOut.getTimeRange() |
|
267 | 267 | y = dataOut.getHeiRange() |
|
268 | 268 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
269 | 269 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
270 | 270 | avg = numpy.average(z, axis=1) |
|
271 | 271 | |
|
272 | 272 | noise = dataOut.getNoise() |
|
273 | 273 | |
|
274 | 274 | if not self.__isConfig: |
|
275 | 275 | |
|
276 | 276 | nplots = len(channelIndexList) |
|
277 | 277 | |
|
278 | 278 | self.setup(idfigure=idfigure, |
|
279 | 279 | nplots=nplots, |
|
280 | 280 | wintitle=wintitle, |
|
281 | 281 | showprofile=showprofile) |
|
282 | 282 | |
|
283 | 283 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
284 | 284 | if ymin == None: ymin = numpy.nanmin(y) |
|
285 | 285 | if ymax == None: ymax = numpy.nanmax(y) |
|
286 | 286 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
287 | 287 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
288 | 288 | |
|
289 | 289 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
290 | 290 | self.__isConfig = True |
|
291 | 291 | |
|
292 | 292 | thisDatetime = dataOut.datatime |
|
293 | 293 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
294 | 294 | xlabel = "Velocity (m/s)" |
|
295 | 295 | ylabel = "Range (Km)" |
|
296 | 296 | |
|
297 | 297 | self.setWinTitle(title) |
|
298 | 298 | |
|
299 | 299 | for i in range(self.nplots): |
|
300 | 300 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
301 | 301 | axes = self.axesList[i*self.__nsubplots] |
|
302 | 302 | z = avg[i].reshape((1,-1)) |
|
303 | 303 | axes.pcolor(x, y, z, |
|
304 | 304 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
305 | 305 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
306 | 306 | ticksize=9, cblabel='', cbsize="1%") |
|
307 | 307 | |
|
308 | 308 | if self.__showprofile: |
|
309 | 309 | axes = self.axesList[i*self.__nsubplots +1] |
|
310 | 310 | axes.pline(avg[i], y, |
|
311 | 311 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
312 | 312 | xlabel='dB', ylabel='', title='', |
|
313 | 313 | ytick_visible=False, |
|
314 | 314 | grid='x') |
|
315 | 315 | |
|
316 | 316 | self.draw() |
|
317 | 317 | |
|
318 | 318 | if save: |
|
319 | 319 | |
|
320 | 320 | if figfile == None: |
|
321 | 321 | figfile = self.getFilename(name = self.name) |
|
322 | 322 | |
|
323 | 323 | self.saveFigure(figpath, figfile) |
|
324 | 324 | |
|
325 | 325 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
326 | 326 | self.__isConfig = False |
|
327 | 327 | |
|
328 | 328 | class SpectraPlot(Figure): |
|
329 | 329 | |
|
330 | 330 | __isConfig = None |
|
331 | 331 | __nsubplots = None |
|
332 | 332 | |
|
333 | 333 | WIDTHPROF = None |
|
334 | 334 | HEIGHTPROF = None |
|
335 | 335 | PREFIX = 'spc' |
|
336 | 336 | |
|
337 | 337 | def __init__(self): |
|
338 | 338 | |
|
339 | 339 | self.__isConfig = False |
|
340 | 340 | self.__nsubplots = 1 |
|
341 | 341 | |
|
342 | 342 | self.WIDTH = 300 |
|
343 | 343 | self.HEIGHT = 400 |
|
344 | 344 | self.WIDTHPROF = 120 |
|
345 | 345 | self.HEIGHTPROF = 0 |
|
346 | 346 | |
|
347 | 347 | def getSubplots(self): |
|
348 | 348 | |
|
349 | 349 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
350 | 350 | nrow = int(self.nplots*1./ncol + 0.9) |
|
351 | 351 | |
|
352 | 352 | return nrow, ncol |
|
353 | 353 | |
|
354 | 354 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
355 | 355 | |
|
356 | 356 | self.__showprofile = showprofile |
|
357 | 357 | self.nplots = nplots |
|
358 | 358 | |
|
359 | 359 | ncolspan = 1 |
|
360 | 360 | colspan = 1 |
|
361 | 361 | if showprofile: |
|
362 | 362 | ncolspan = 3 |
|
363 | 363 | colspan = 2 |
|
364 | 364 | self.__nsubplots = 2 |
|
365 | 365 | |
|
366 | 366 | self.createFigure(idfigure = idfigure, |
|
367 | 367 | wintitle = wintitle, |
|
368 | 368 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
369 | 369 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
370 | 370 | |
|
371 | 371 | nrow, ncol = self.getSubplots() |
|
372 | 372 | |
|
373 | 373 | counter = 0 |
|
374 | 374 | for y in range(nrow): |
|
375 | 375 | for x in range(ncol): |
|
376 | 376 | |
|
377 | 377 | if counter >= self.nplots: |
|
378 | 378 | break |
|
379 | 379 | |
|
380 | 380 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
381 | 381 | |
|
382 | 382 | if showprofile: |
|
383 | 383 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
384 | 384 | |
|
385 | 385 | counter += 1 |
|
386 | 386 | |
|
387 | 387 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', |
|
388 | 388 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
389 | 389 | save=False, figpath='./', figfile=None): |
|
390 | 390 | |
|
391 | 391 | """ |
|
392 | 392 | |
|
393 | 393 | Input: |
|
394 | 394 | dataOut : |
|
395 | 395 | idfigure : |
|
396 | 396 | wintitle : |
|
397 | 397 | channelList : |
|
398 | 398 | showProfile : |
|
399 | 399 | xmin : None, |
|
400 | 400 | xmax : None, |
|
401 | 401 | ymin : None, |
|
402 | 402 | ymax : None, |
|
403 | 403 | zmin : None, |
|
404 | 404 | zmax : None |
|
405 | 405 | """ |
|
406 | 406 | |
|
407 | 407 | if channelList == None: |
|
408 | 408 | channelIndexList = dataOut.channelIndexList |
|
409 | 409 | else: |
|
410 | 410 | channelIndexList = [] |
|
411 | 411 | for channel in channelList: |
|
412 | 412 | if channel not in dataOut.channelList: |
|
413 | 413 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
414 | 414 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
415 | 415 | |
|
416 | 416 | x = dataOut.getVelRange(1) |
|
417 | 417 | y = dataOut.getHeiRange() |
|
418 | 418 | |
|
419 | 419 | z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
420 | 420 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
421 | 421 | avg = numpy.average(z, axis=1) |
|
422 | 422 | |
|
423 | 423 | noise = dataOut.getNoise() |
|
424 | 424 | |
|
425 | 425 | if not self.__isConfig: |
|
426 | 426 | |
|
427 | 427 | nplots = len(channelIndexList) |
|
428 | 428 | |
|
429 | 429 | self.setup(idfigure=idfigure, |
|
430 | 430 | nplots=nplots, |
|
431 | 431 | wintitle=wintitle, |
|
432 | 432 | showprofile=showprofile) |
|
433 | 433 | |
|
434 | 434 | if xmin == None: xmin = numpy.nanmin(x) |
|
435 | 435 | if xmax == None: xmax = numpy.nanmax(x) |
|
436 | 436 | if ymin == None: ymin = numpy.nanmin(y) |
|
437 | 437 | if ymax == None: ymax = numpy.nanmax(y) |
|
438 | 438 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 |
|
439 | 439 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 |
|
440 | 440 | |
|
441 | 441 | self.__isConfig = True |
|
442 | 442 | |
|
443 | 443 | thisDatetime = dataOut.datatime |
|
444 | 444 | title = "Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
445 | 445 | xlabel = "Velocity (m/s)" |
|
446 | 446 | ylabel = "Range (Km)" |
|
447 | 447 | |
|
448 | 448 | self.setWinTitle(title) |
|
449 | 449 | |
|
450 | 450 | for i in range(self.nplots): |
|
451 | 451 | title = "Channel %d: %4.2fdB" %(dataOut.channelList[i], noise[i]) |
|
452 | 452 | axes = self.axesList[i*self.__nsubplots] |
|
453 | 453 | axes.pcolor(x, y, z[i,:,:], |
|
454 | 454 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
455 | 455 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
456 | 456 | ticksize=9, cblabel='') |
|
457 | 457 | |
|
458 | 458 | if self.__showprofile: |
|
459 | 459 | axes = self.axesList[i*self.__nsubplots +1] |
|
460 | 460 | axes.pline(avg[i], y, |
|
461 | 461 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
462 | 462 | xlabel='dB', ylabel='', title='', |
|
463 | 463 | ytick_visible=False, |
|
464 | 464 | grid='x') |
|
465 | 465 | |
|
466 | 466 | self.draw() |
|
467 | 467 | |
|
468 | 468 | if save: |
|
469 | 469 | date = thisDatetime.strftime("%Y%m%d") |
|
470 | 470 | if figfile == None: |
|
471 | 471 | figfile = self.getFilename(name = date) |
|
472 | 472 | |
|
473 | 473 | self.saveFigure(figpath, figfile) |
|
474 | 474 | |
|
475 | 475 | class Scope(Figure): |
|
476 | 476 | |
|
477 | 477 | __isConfig = None |
|
478 | 478 | |
|
479 | 479 | def __init__(self): |
|
480 | 480 | |
|
481 | 481 | self.__isConfig = False |
|
482 | 482 | self.WIDTH = 600 |
|
483 | 483 | self.HEIGHT = 200 |
|
484 | 484 | |
|
485 | 485 | def getSubplots(self): |
|
486 | 486 | |
|
487 | 487 | nrow = self.nplots |
|
488 | 488 | ncol = 3 |
|
489 | 489 | return nrow, ncol |
|
490 | 490 | |
|
491 | 491 | def setup(self, idfigure, nplots, wintitle): |
|
492 | 492 | |
|
493 | 493 | self.nplots = nplots |
|
494 | 494 | |
|
495 | 495 | self.createFigure(idfigure, wintitle) |
|
496 | 496 | |
|
497 | 497 | nrow,ncol = self.getSubplots() |
|
498 | 498 | colspan = 3 |
|
499 | 499 | rowspan = 1 |
|
500 | 500 | |
|
501 | 501 | for i in range(nplots): |
|
502 | 502 | self.addAxes(nrow, ncol, i, 0, colspan, rowspan) |
|
503 | 503 | |
|
504 | 504 | |
|
505 | 505 | |
|
506 | 506 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
507 | 507 | xmin=None, xmax=None, ymin=None, ymax=None, save=False, filename=None): |
|
508 | 508 | |
|
509 | 509 | """ |
|
510 | 510 | |
|
511 | 511 | Input: |
|
512 | 512 | dataOut : |
|
513 | 513 | idfigure : |
|
514 | 514 | wintitle : |
|
515 | 515 | channelList : |
|
516 | 516 | xmin : None, |
|
517 | 517 | xmax : None, |
|
518 | 518 | ymin : None, |
|
519 | 519 | ymax : None, |
|
520 | 520 | """ |
|
521 | 521 | |
|
522 | 522 | if channelList == None: |
|
523 | 523 | channelIndexList = dataOut.channelIndexList |
|
524 | 524 | else: |
|
525 | 525 | channelIndexList = [] |
|
526 | 526 | for channel in channelList: |
|
527 | 527 | if channel not in dataOut.channelList: |
|
528 | 528 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
529 | 529 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
530 | 530 | |
|
531 | 531 | x = dataOut.heightList |
|
532 | 532 | y = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
533 | 533 | y = y.real |
|
534 | 534 | |
|
535 | 535 | if not self.__isConfig: |
|
536 | 536 | nplots = len(channelIndexList) |
|
537 | 537 | |
|
538 | 538 | self.setup(idfigure=idfigure, |
|
539 | 539 | nplots=nplots, |
|
540 | 540 | wintitle=wintitle) |
|
541 | 541 | |
|
542 | 542 | if xmin == None: xmin = numpy.nanmin(x) |
|
543 | 543 | if xmax == None: xmax = numpy.nanmax(x) |
|
544 | 544 | if ymin == None: ymin = numpy.nanmin(y) |
|
545 | 545 | if ymax == None: ymax = numpy.nanmax(y) |
|
546 | 546 | |
|
547 | 547 | self.__isConfig = True |
|
548 | 548 | |
|
549 | 549 | |
|
550 | 550 | thisDatetime = dataOut.datatime |
|
551 | 551 | title = "Scope: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
552 | 552 | xlabel = "Range (Km)" |
|
553 | 553 | ylabel = "Intensity" |
|
554 | 554 | |
|
555 | 555 | self.setWinTitle(title) |
|
556 | 556 | |
|
557 | 557 | for i in range(len(self.axesList)): |
|
558 | 558 | title = "Channel %d" %(i) |
|
559 | 559 | axes = self.axesList[i] |
|
560 | 560 | ychannel = y[i,:] |
|
561 | 561 | axes.pline(x, ychannel, |
|
562 | 562 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
563 | 563 | xlabel=xlabel, ylabel=ylabel, title=title) |
|
564 | 564 | |
|
565 | 565 | self.draw() |
|
566 | 566 | |
|
567 | 567 | if save: |
|
568 | 568 | self.saveFigure(filename) |
|
569 | 569 | |
|
570 | 570 | class ProfilePlot(Figure): |
|
571 | 571 | __isConfig = None |
|
572 | 572 | __nsubplots = None |
|
573 | 573 | |
|
574 | 574 | WIDTHPROF = None |
|
575 | 575 | HEIGHTPROF = None |
|
576 | 576 | PREFIX = 'spcprofile' |
|
577 | 577 | |
|
578 | 578 | def __init__(self): |
|
579 | 579 | self.__isConfig = False |
|
580 | 580 | self.__nsubplots = 1 |
|
581 | 581 | |
|
582 | 582 | self.WIDTH = 300 |
|
583 | 583 | self.HEIGHT = 500 |
|
584 | 584 | |
|
585 | 585 | def getSubplots(self): |
|
586 | 586 | ncol = 1 |
|
587 | 587 | nrow = 1 |
|
588 | 588 | |
|
589 | 589 | return nrow, ncol |
|
590 | 590 | |
|
591 | 591 | def setup(self, idfigure, nplots, wintitle): |
|
592 | 592 | |
|
593 | 593 | self.nplots = nplots |
|
594 | 594 | |
|
595 | 595 | ncolspan = 1 |
|
596 | 596 | colspan = 1 |
|
597 | 597 | |
|
598 | 598 | self.createFigure(idfigure = idfigure, |
|
599 | 599 | wintitle = wintitle, |
|
600 | 600 | widthplot = self.WIDTH, |
|
601 | 601 | heightplot = self.HEIGHT) |
|
602 | 602 | |
|
603 | 603 | nrow, ncol = self.getSubplots() |
|
604 | 604 | |
|
605 | 605 | counter = 0 |
|
606 | 606 | for y in range(nrow): |
|
607 | 607 | for x in range(ncol): |
|
608 | 608 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
609 | 609 | |
|
610 | 610 | def run(self, dataOut, idfigure, wintitle="", channelList=None, |
|
611 | 611 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
612 | 612 | save=False, figpath='./', figfile=None): |
|
613 | 613 | |
|
614 | 614 | if channelList == None: |
|
615 | 615 | channelIndexList = dataOut.channelIndexList |
|
616 | 616 | channelList = dataOut.channelList |
|
617 | 617 | else: |
|
618 | 618 | channelIndexList = [] |
|
619 | 619 | for channel in channelList: |
|
620 | 620 | if channel not in dataOut.channelList: |
|
621 | 621 | raise ValueError, "Channel %d is not in dataOut.channelList" |
|
622 | 622 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
623 | 623 | |
|
624 | 624 | |
|
625 | 625 | y = dataOut.getHeiRange() |
|
626 | 626 | x = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) |
|
627 | 627 | avg = numpy.average(x, axis=1) |
|
628 | 628 | |
|
629 | 629 | |
|
630 | 630 | if not self.__isConfig: |
|
631 | 631 | |
|
632 | 632 | nplots = 1 |
|
633 | 633 | |
|
634 | 634 | self.setup(idfigure=idfigure, |
|
635 | 635 | nplots=nplots, |
|
636 | 636 | wintitle=wintitle) |
|
637 | 637 | |
|
638 | 638 | if ymin == None: ymin = numpy.nanmin(y) |
|
639 | 639 | if ymax == None: ymax = numpy.nanmax(y) |
|
640 | 640 | if xmin == None: xmin = numpy.nanmin(avg)*0.9 |
|
641 | 641 | if xmax == None: xmax = numpy.nanmax(avg)*0.9 |
|
642 | 642 | |
|
643 | 643 | self.__isConfig = True |
|
644 | 644 | |
|
645 | 645 | thisDatetime = dataOut.datatime |
|
646 | 646 | title = "Power Profile" |
|
647 | 647 | xlabel = "dB" |
|
648 | 648 | ylabel = "Range (Km)" |
|
649 | 649 | |
|
650 | 650 | self.setWinTitle(title) |
|
651 | 651 | |
|
652 | 652 | |
|
653 | 653 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
654 | 654 | axes = self.axesList[0] |
|
655 | 655 | |
|
656 | 656 | legendlabels = ["channel %d"%x for x in channelList] |
|
657 | 657 | axes.pmultiline(avg, y, |
|
658 | 658 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
659 | 659 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
660 | 660 | ytick_visible=True, nxticks=5, |
|
661 | 661 | grid='x') |
|
662 | 662 | |
|
663 | 663 | self.draw() |
|
664 | 664 | |
|
665 | 665 | if save: |
|
666 | 666 | date = thisDatetime.strftime("%Y%m%d") |
|
667 | 667 | if figfile == None: |
|
668 | 668 | figfile = self.getFilename(name = date) |
|
669 | 669 | |
|
670 | 670 | self.saveFigure(figpath, figfile) |
|
671 | 671 | |
|
672 | 672 | class CoherencePlot(Figure): |
|
673 | 673 | __isConfig = None |
|
674 | 674 | __nsubplots = None |
|
675 | 675 | |
|
676 | 676 | WIDTHPROF = None |
|
677 | 677 | HEIGHTPROF = None |
|
678 | 678 | PREFIX = 'coherencemap' |
|
679 | 679 | |
|
680 | 680 | def __init__(self): |
|
681 | 681 | self.timerange = 24*60*60 |
|
682 | 682 | self.__isConfig = False |
|
683 | 683 | self.__nsubplots = 1 |
|
684 | 684 | |
|
685 | 685 | self.WIDTH = 800 |
|
686 | 686 | self.HEIGHT = 200 |
|
687 | 687 | self.WIDTHPROF = 120 |
|
688 | 688 | self.HEIGHTPROF = 0 |
|
689 | 689 | |
|
690 | 690 | def getSubplots(self): |
|
691 | 691 | ncol = 1 |
|
692 | 692 | nrow = self.nplots*2 |
|
693 | 693 | |
|
694 | 694 | return nrow, ncol |
|
695 | 695 | |
|
696 | 696 | def setup(self, idfigure, nplots, wintitle, showprofile=True): |
|
697 | 697 | self.__showprofile = showprofile |
|
698 | 698 | self.nplots = nplots |
|
699 | 699 | |
|
700 | 700 | ncolspan = 1 |
|
701 | 701 | colspan = 1 |
|
702 | 702 | if showprofile: |
|
703 | 703 | ncolspan = 7 |
|
704 | 704 | colspan = 6 |
|
705 | 705 | self.__nsubplots = 2 |
|
706 | 706 | |
|
707 | 707 | self.createFigure(idfigure = idfigure, |
|
708 | 708 | wintitle = wintitle, |
|
709 | 709 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
710 | 710 | heightplot = self.HEIGHT + self.HEIGHTPROF) |
|
711 | 711 | |
|
712 | 712 | nrow, ncol = self.getSubplots() |
|
713 | 713 | |
|
714 | 714 | for y in range(nrow): |
|
715 | 715 | for x in range(ncol): |
|
716 | 716 | |
|
717 | 717 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
718 | 718 | |
|
719 | 719 | if showprofile: |
|
720 | 720 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
721 | 721 | |
|
722 | 722 | def run(self, dataOut, idfigure, wintitle="", pairsList=None, showprofile='True', |
|
723 | 723 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
724 | 724 | timerange=None, |
|
725 | 725 | save=False, figpath='./', figfile=None): |
|
726 | 726 | |
|
727 | 727 | if pairsList == None: |
|
728 | 728 | pairsIndexList = dataOut.pairsIndexList |
|
729 | 729 | else: |
|
730 | 730 | pairsIndexList = [] |
|
731 | 731 | for pair in pairsList: |
|
732 | 732 | if pair not in dataOut.pairsList: |
|
733 | 733 | raise ValueError, "Pair %s is not in dataOut.pairsList" %(pair) |
|
734 | 734 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
735 | 735 | |
|
736 | 736 | if timerange != None: |
|
737 | 737 | self.timerange = timerange |
|
738 | 738 | |
|
739 | 739 | tmin = None |
|
740 | 740 | tmax = None |
|
741 | 741 | x = dataOut.getTimeRange() |
|
742 | 742 | y = dataOut.getHeiRange() |
|
743 | 743 | |
|
744 | 744 | if not self.__isConfig: |
|
745 | 745 | nplots = len(pairsIndexList) |
|
746 | 746 | self.setup(idfigure=idfigure, |
|
747 | 747 | nplots=nplots, |
|
748 | 748 | wintitle=wintitle, |
|
749 | 749 | showprofile=showprofile) |
|
750 | 750 | |
|
751 | 751 | tmin, tmax = self.getTimeLim(x, xmin, xmax) |
|
752 | 752 | if ymin == None: ymin = numpy.nanmin(y) |
|
753 | 753 | if ymax == None: ymax = numpy.nanmax(y) |
|
754 | 754 | |
|
755 | 755 | self.__isConfig = True |
|
756 | 756 | |
|
757 | 757 | thisDatetime = dataOut.datatime |
|
758 | 758 | title = "CoherenceMap: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
759 | 759 | xlabel = "" |
|
760 | 760 | ylabel = "Range (Km)" |
|
761 | 761 | |
|
762 | 762 | self.setWinTitle(title) |
|
763 | 763 | |
|
764 | 764 | for i in range(self.nplots): |
|
765 | 765 | |
|
766 | 766 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
767 | 767 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:]/numpy.sqrt(dataOut.data_spc[pair[0],:,:]*dataOut.data_spc[pair[1],:,:]) |
|
768 | 768 | coherence = numpy.abs(coherenceComplex) |
|
769 | 769 | avg = numpy.average(coherence, axis=0) |
|
770 | 770 | z = avg.reshape((1,-1)) |
|
771 | 771 | |
|
772 | 772 | counter = 0 |
|
773 | 773 | |
|
774 | 774 | title = "Coherence %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
775 | 775 | axes = self.axesList[i*self.__nsubplots*2] |
|
776 | 776 | axes.pcolor(x, y, z, |
|
777 | 777 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=0, zmax=1, |
|
778 | 778 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
779 | 779 | ticksize=9, cblabel='', cbsize="1%") |
|
780 | 780 | |
|
781 | 781 | if self.__showprofile: |
|
782 | 782 | counter += 1 |
|
783 | 783 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
784 | 784 | axes.pline(avg, y, |
|
785 | 785 | xmin=0, xmax=1, ymin=ymin, ymax=ymax, |
|
786 | 786 | xlabel='', ylabel='', title='', ticksize=7, |
|
787 | 787 | ytick_visible=False, nxticks=5, |
|
788 | 788 | grid='x') |
|
789 | 789 | |
|
790 | 790 | counter += 1 |
|
791 | 791 | phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
792 | 792 | avg = numpy.average(phase, axis=0) |
|
793 | 793 | z = avg.reshape((1,-1)) |
|
794 | 794 | |
|
795 | 795 | title = "Phase %d%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
796 | 796 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
797 | 797 | axes.pcolor(x, y, z, |
|
798 | 798 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=-180, zmax=180, |
|
799 | 799 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
800 | 800 | ticksize=9, cblabel='', colormap='RdBu', cbsize="1%") |
|
801 | 801 | |
|
802 | 802 | if self.__showprofile: |
|
803 | 803 | counter += 1 |
|
804 | 804 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
805 | 805 | axes.pline(avg, y, |
|
806 | 806 | xmin=-180, xmax=180, ymin=ymin, ymax=ymax, |
|
807 | 807 | xlabel='', ylabel='', title='', ticksize=7, |
|
808 | 808 | ytick_visible=False, nxticks=4, |
|
809 | 809 | grid='x') |
|
810 | 810 | |
|
811 | 811 | self.draw() |
|
812 | 812 | |
|
813 | 813 | if save: |
|
814 | 814 | date = thisDatetime.strftime("%Y%m%d") |
|
815 | 815 | if figfile == None: |
|
816 | 816 | figfile = self.getFilename(name = date) |
|
817 | 817 | |
|
818 | 818 | self.saveFigure(figpath, figfile) |
|
819 | 819 | |
|
820 | 820 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: |
|
821 | 821 | self.__isConfig = False |
|
822 | 822 | |
|
823 | No newline at end of file | |
|
823 | class RTIfromNoise(Figure): | |
|
824 | ||
|
825 | __isConfig = None | |
|
826 | __nsubplots = None | |
|
827 | ||
|
828 | WIDTHPROF = None | |
|
829 | HEIGHTPROF = None | |
|
830 | PREFIX = 'rti' | |
|
831 | ||
|
832 | def __init__(self): | |
|
833 | ||
|
834 | self.__timerange = 24*60*60 | |
|
835 | self.__isConfig = False | |
|
836 | self.__nsubplots = 1 | |
|
837 | ||
|
838 | self.WIDTH = 800 | |
|
839 | self.HEIGHT = 200 | |
|
840 | ||
|
841 | def getSubplots(self): | |
|
842 | ||
|
843 | ncol = 1 | |
|
844 | nrow = self.nplots | |
|
845 | ||
|
846 | return nrow, ncol | |
|
847 | ||
|
848 | def setup(self, idfigure, nplots, wintitle, showprofile=True): | |
|
849 | ||
|
850 | self.__showprofile = showprofile | |
|
851 | self.nplots = nplots | |
|
852 | ||
|
853 | ncolspan = 1 | |
|
854 | colspan = 1 | |
|
855 | ||
|
856 | self.createFigure(idfigure = idfigure, | |
|
857 | wintitle = wintitle, | |
|
858 | widthplot = self.WIDTH + self.WIDTHPROF, | |
|
859 | heightplot = self.HEIGHT + self.HEIGHTPROF) | |
|
860 | ||
|
861 | nrow, ncol = self.getSubplots() | |
|
862 | ||
|
863 | self.addAxes(nrow, ncol, 0, 0, 1, 1) | |
|
864 | ||
|
865 | ||
|
866 | ||
|
867 | def __getTimeLim(self, x, xmin, xmax): | |
|
868 | ||
|
869 | thisdatetime = datetime.datetime.fromtimestamp(numpy.min(x)) | |
|
870 | thisdate = datetime.datetime.combine(thisdatetime.date(), datetime.time(0,0,0)) | |
|
871 | ||
|
872 | #################################################### | |
|
873 | #If the x is out of xrange | |
|
874 | if xmax < (thisdatetime - thisdate).seconds/(60*60.): | |
|
875 | xmin = None | |
|
876 | xmax = None | |
|
877 | ||
|
878 | if xmin == None: | |
|
879 | td = thisdatetime - thisdate | |
|
880 | xmin = td.seconds/(60*60.) | |
|
881 | ||
|
882 | if xmax == None: | |
|
883 | xmax = xmin + self.__timerange/(60*60.) | |
|
884 | ||
|
885 | mindt = thisdate + datetime.timedelta(0,0,0,0,0, xmin) | |
|
886 | tmin = time.mktime(mindt.timetuple()) | |
|
887 | ||
|
888 | maxdt = thisdate + datetime.timedelta(0,0,0,0,0, xmax) | |
|
889 | tmax = time.mktime(maxdt.timetuple()) | |
|
890 | ||
|
891 | self.__timerange = tmax - tmin | |
|
892 | ||
|
893 | return tmin, tmax | |
|
894 | ||
|
895 | def run(self, dataOut, idfigure, wintitle="", channelList=None, showprofile='True', | |
|
896 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
|
897 | timerange=None, | |
|
898 | save=False, figpath='./', figfile=None): | |
|
899 | ||
|
900 | if channelList == None: | |
|
901 | channelIndexList = dataOut.channelIndexList | |
|
902 | else: | |
|
903 | channelIndexList = [] | |
|
904 | for channel in channelList: | |
|
905 | if channel not in dataOut.channelList: | |
|
906 | raise ValueError, "Channel %d is not in dataOut.channelList" | |
|
907 | channelIndexList.append(dataOut.channelList.index(channel)) | |
|
908 | ||
|
909 | if timerange != None: | |
|
910 | self.__timerange = timerange | |
|
911 | ||
|
912 | tmin = None | |
|
913 | tmax = None | |
|
914 | x = dataOut.getTimeRange() | |
|
915 | y = dataOut.getHeiRange() | |
|
916 | x1 = dataOut.datatime | |
|
917 | # z = 10.*numpy.log10(dataOut.data_spc[channelIndexList,:,:]) | |
|
918 | # avg = numpy.average(z, axis=1) | |
|
919 | ||
|
920 | noise = dataOut.getNoise() | |
|
921 | ||
|
922 | if not self.__isConfig: | |
|
923 | ||
|
924 | nplots = len(channelIndexList) | |
|
925 | ||
|
926 | self.setup(idfigure=idfigure, | |
|
927 | nplots=nplots, | |
|
928 | wintitle=wintitle, | |
|
929 | showprofile=showprofile) | |
|
930 | ||
|
931 | tmin, tmax = self.__getTimeLim(x, xmin, xmax) | |
|
932 | if ymin == None: ymin = numpy.nanmin(y) | |
|
933 | if ymax == None: ymax = numpy.nanmax(y) | |
|
934 | if zmin == None: zmin = numpy.nanmin(avg)*0.9 | |
|
935 | if zmax == None: zmax = numpy.nanmax(avg)*0.9 | |
|
936 | ||
|
937 | self.__isConfig = True | |
|
938 | ||
|
939 | thisDatetime = dataOut.datatime | |
|
940 | title = "RTI: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
|
941 | xlabel = "Velocity (m/s)" | |
|
942 | ylabel = "Range (Km)" | |
|
943 | ||
|
944 | self.setWinTitle(title) | |
|
945 | ||
|
946 | for i in range(self.nplots): | |
|
947 | title = "Channel %d: %s" %(dataOut.channelList[i], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
|
948 | axes = self.axesList[i*self.__nsubplots] | |
|
949 | z = avg[i].reshape((1,-1)) | |
|
950 | axes.pcolor(x, y, z, | |
|
951 | xmin=tmin, xmax=tmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
|
952 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
|
953 | ticksize=9, cblabel='', cbsize="1%") | |
|
954 | ||
|
955 | ||
|
956 | self.draw() | |
|
957 | ||
|
958 | if save: | |
|
959 | date = thisDatetime.strftime("%Y%m%d") | |
|
960 | if figfile == None: | |
|
961 | figfile = self.getFilename(name = date) | |
|
962 | ||
|
963 | self.saveFigure(figpath, figfile) | |
|
964 | ||
|
965 | if x[1] + (x[1]-x[0]) >= self.axesList[0].xmax: | |
|
966 | self.__isConfig = False | |
|
967 | No newline at end of file |
@@ -1,1074 +1,1150 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: dsuarez $ |
|
4 | 4 | $Id: Processor.py 1 2012-11-12 18:56:07Z dsuarez $ |
|
5 | 5 | ''' |
|
6 | 6 | import os |
|
7 | 7 | import numpy |
|
8 | 8 | import datetime |
|
9 | 9 | import time |
|
10 | 10 | |
|
11 | 11 | from jrodata import * |
|
12 | 12 | from jrodataIO import * |
|
13 | 13 | from jroplot import * |
|
14 | 14 | |
|
15 | 15 | class ProcessingUnit: |
|
16 | 16 | |
|
17 | 17 | """ |
|
18 | 18 | Esta es la clase base para el procesamiento de datos. |
|
19 | 19 | |
|
20 | 20 | Contiene el metodo "call" para llamar operaciones. Las operaciones pueden ser: |
|
21 | 21 | - Metodos internos (callMethod) |
|
22 | 22 | - Objetos del tipo Operation (callObject). Antes de ser llamados, estos objetos |
|
23 | 23 | tienen que ser agreagados con el metodo "add". |
|
24 | 24 | |
|
25 | 25 | """ |
|
26 | 26 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
27 | 27 | dataIn = None |
|
28 | 28 | |
|
29 | 29 | # objeto de datos de entrada (Voltage, Spectra o Correlation) |
|
30 | 30 | dataOut = None |
|
31 | 31 | |
|
32 | 32 | |
|
33 | 33 | objectDict = None |
|
34 | 34 | |
|
35 | 35 | def __init__(self): |
|
36 | 36 | |
|
37 | 37 | self.objectDict = {} |
|
38 | 38 | |
|
39 | 39 | def init(self): |
|
40 | 40 | |
|
41 | 41 | raise ValueError, "Not implemented" |
|
42 | 42 | |
|
43 | 43 | def addOperation(self, object, objId): |
|
44 | 44 | |
|
45 | 45 | """ |
|
46 | 46 | Agrega el objeto "object" a la lista de objetos "self.objectList" y retorna el |
|
47 | 47 | identificador asociado a este objeto. |
|
48 | 48 | |
|
49 | 49 | Input: |
|
50 | 50 | |
|
51 | 51 | object : objeto de la clase "Operation" |
|
52 | 52 | |
|
53 | 53 | Return: |
|
54 | 54 | |
|
55 | 55 | objId : identificador del objeto, necesario para ejecutar la operacion |
|
56 | 56 | """ |
|
57 | 57 | |
|
58 | 58 | self.objectDict[objId] = object |
|
59 | 59 | |
|
60 | 60 | return objId |
|
61 | 61 | |
|
62 | 62 | def operation(self, **kwargs): |
|
63 | 63 | |
|
64 | 64 | """ |
|
65 | 65 | Operacion directa sobre la data (dataOut.data). Es necesario actualizar los valores de los |
|
66 | 66 | atributos del objeto dataOut |
|
67 | 67 | |
|
68 | 68 | Input: |
|
69 | 69 | |
|
70 | 70 | **kwargs : Diccionario de argumentos de la funcion a ejecutar |
|
71 | 71 | """ |
|
72 | 72 | |
|
73 | 73 | raise ValueError, "ImplementedError" |
|
74 | 74 | |
|
75 | 75 | def callMethod(self, name, **kwargs): |
|
76 | 76 | |
|
77 | 77 | """ |
|
78 | 78 | Ejecuta el metodo con el nombre "name" y con argumentos **kwargs de la propia clase. |
|
79 | 79 | |
|
80 | 80 | Input: |
|
81 | 81 | name : nombre del metodo a ejecutar |
|
82 | 82 | |
|
83 | 83 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
84 | 84 | |
|
85 | 85 | """ |
|
86 | 86 | if name != 'run': |
|
87 | 87 | |
|
88 | 88 | if name == 'init' and self.dataIn.isEmpty(): |
|
89 | 89 | self.dataOut.flagNoData = True |
|
90 | 90 | return False |
|
91 | 91 | |
|
92 | 92 | if name != 'init' and self.dataOut.isEmpty(): |
|
93 | 93 | return False |
|
94 | 94 | |
|
95 | 95 | methodToCall = getattr(self, name) |
|
96 | 96 | |
|
97 | 97 | methodToCall(**kwargs) |
|
98 | 98 | |
|
99 | 99 | if name != 'run': |
|
100 | 100 | return True |
|
101 | 101 | |
|
102 | 102 | if self.dataOut.isEmpty(): |
|
103 | 103 | return False |
|
104 | 104 | |
|
105 | 105 | return True |
|
106 | 106 | |
|
107 | 107 | def callObject(self, objId, **kwargs): |
|
108 | 108 | |
|
109 | 109 | """ |
|
110 | 110 | Ejecuta la operacion asociada al identificador del objeto "objId" |
|
111 | 111 | |
|
112 | 112 | Input: |
|
113 | 113 | |
|
114 | 114 | objId : identificador del objeto a ejecutar |
|
115 | 115 | |
|
116 | 116 | **kwargs : diccionario con los nombres y valores de la funcion a ejecutar. |
|
117 | 117 | |
|
118 | 118 | Return: |
|
119 | 119 | |
|
120 | 120 | None |
|
121 | 121 | """ |
|
122 | 122 | |
|
123 | 123 | if self.dataOut.isEmpty(): |
|
124 | 124 | return False |
|
125 | 125 | |
|
126 | 126 | object = self.objectDict[objId] |
|
127 | 127 | |
|
128 | 128 | object.run(self.dataOut, **kwargs) |
|
129 | 129 | |
|
130 | 130 | return True |
|
131 | 131 | |
|
132 | 132 | def call(self, operationConf, **kwargs): |
|
133 | 133 | |
|
134 | 134 | """ |
|
135 | 135 | Return True si ejecuta la operacion "operationConf.name" con los |
|
136 | 136 | argumentos "**kwargs". False si la operacion no se ha ejecutado. |
|
137 | 137 | La operacion puede ser de dos tipos: |
|
138 | 138 | |
|
139 | 139 | 1. Un metodo propio de esta clase: |
|
140 | 140 | |
|
141 | 141 | operation.type = "self" |
|
142 | 142 | |
|
143 | 143 | 2. El metodo "run" de un objeto del tipo Operation o de un derivado de ella: |
|
144 | 144 | operation.type = "other". |
|
145 | 145 | |
|
146 | 146 | Este objeto de tipo Operation debe de haber sido agregado antes con el metodo: |
|
147 | 147 | "addOperation" e identificado con el operation.id |
|
148 | 148 | |
|
149 | 149 | |
|
150 | 150 | con el id de la operacion. |
|
151 | 151 | |
|
152 | 152 | Input: |
|
153 | 153 | |
|
154 | 154 | Operation : Objeto del tipo operacion con los atributos: name, type y id. |
|
155 | 155 | |
|
156 | 156 | """ |
|
157 | 157 | |
|
158 | 158 | if operationConf.type == 'self': |
|
159 | 159 | sts = self.callMethod(operationConf.name, **kwargs) |
|
160 | 160 | |
|
161 | 161 | if operationConf.type == 'other': |
|
162 | 162 | sts = self.callObject(operationConf.id, **kwargs) |
|
163 | 163 | |
|
164 | 164 | return sts |
|
165 | 165 | |
|
166 | 166 | def setInput(self, dataIn): |
|
167 | 167 | |
|
168 | 168 | self.dataIn = dataIn |
|
169 | 169 | |
|
170 | 170 | def getOutput(self): |
|
171 | 171 | |
|
172 | 172 | return self.dataOut |
|
173 | 173 | |
|
174 | 174 | class Operation(): |
|
175 | 175 | |
|
176 | 176 | """ |
|
177 | 177 | Clase base para definir las operaciones adicionales que se pueden agregar a la clase ProcessingUnit |
|
178 | 178 | y necesiten acumular informacion previa de los datos a procesar. De preferencia usar un buffer de |
|
179 | 179 | acumulacion dentro de esta clase |
|
180 | 180 | |
|
181 | 181 | Ejemplo: Integraciones coherentes, necesita la informacion previa de los n perfiles anteriores (bufffer) |
|
182 | 182 | |
|
183 | 183 | """ |
|
184 | 184 | |
|
185 | 185 | __buffer = None |
|
186 | 186 | __isConfig = False |
|
187 | 187 | |
|
188 | 188 | def __init__(self): |
|
189 | 189 | |
|
190 | 190 | pass |
|
191 | 191 | |
|
192 | 192 | def run(self, dataIn, **kwargs): |
|
193 | 193 | |
|
194 | 194 | """ |
|
195 | 195 | Realiza las operaciones necesarias sobre la dataIn.data y actualiza los atributos del objeto dataIn. |
|
196 | 196 | |
|
197 | 197 | Input: |
|
198 | 198 | |
|
199 | 199 | dataIn : objeto del tipo JROData |
|
200 | 200 | |
|
201 | 201 | Return: |
|
202 | 202 | |
|
203 | 203 | None |
|
204 | 204 | |
|
205 | 205 | Affected: |
|
206 | 206 | __buffer : buffer de recepcion de datos. |
|
207 | 207 | |
|
208 | 208 | """ |
|
209 | 209 | |
|
210 | 210 | raise ValueError, "ImplementedError" |
|
211 | 211 | |
|
212 | 212 | class VoltageProc(ProcessingUnit): |
|
213 | 213 | |
|
214 | 214 | |
|
215 | 215 | def __init__(self): |
|
216 | 216 | |
|
217 | 217 | self.objectDict = {} |
|
218 | 218 | self.dataOut = Voltage() |
|
219 | 219 | |
|
220 | 220 | def init(self): |
|
221 | 221 | |
|
222 | 222 | self.dataOut.copy(self.dataIn) |
|
223 | 223 | # No necesita copiar en cada init() los atributos de dataIn |
|
224 | 224 | # la copia deberia hacerse por cada nuevo bloque de datos |
|
225 | 225 | |
|
226 | 226 | def selectChannels(self, channelList): |
|
227 | 227 | |
|
228 | 228 | channelIndexList = [] |
|
229 | 229 | |
|
230 | 230 | for channel in channelList: |
|
231 | 231 | index = self.dataOut.channelList.index(channel) |
|
232 | 232 | channelIndexList.append(index) |
|
233 | 233 | |
|
234 | 234 | self.selectChannelsByIndex(channelIndexList) |
|
235 | 235 | |
|
236 | 236 | def selectChannelsByIndex(self, channelIndexList): |
|
237 | 237 | """ |
|
238 | 238 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
239 | 239 | |
|
240 | 240 | Input: |
|
241 | 241 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
242 | 242 | |
|
243 | 243 | Affected: |
|
244 | 244 | self.dataOut.data |
|
245 | 245 | self.dataOut.channelIndexList |
|
246 | 246 | self.dataOut.nChannels |
|
247 | 247 | self.dataOut.m_ProcessingHeader.totalSpectra |
|
248 | 248 | self.dataOut.systemHeaderObj.numChannels |
|
249 | 249 | self.dataOut.m_ProcessingHeader.blockSize |
|
250 | 250 | |
|
251 | 251 | Return: |
|
252 | 252 | None |
|
253 | 253 | """ |
|
254 | 254 | |
|
255 | 255 | for channelIndex in channelIndexList: |
|
256 | 256 | if channelIndex not in self.dataOut.channelIndexList: |
|
257 | 257 | print channelIndexList |
|
258 | 258 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
259 | 259 | |
|
260 | 260 | nChannels = len(channelIndexList) |
|
261 | 261 | |
|
262 | 262 | data = self.dataOut.data[channelIndexList,:] |
|
263 | 263 | |
|
264 | 264 | self.dataOut.data = data |
|
265 | 265 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
266 | 266 | # self.dataOut.nChannels = nChannels |
|
267 | 267 | |
|
268 | 268 | return 1 |
|
269 | 269 | |
|
270 | 270 | def selectHeights(self, minHei, maxHei): |
|
271 | 271 | """ |
|
272 | 272 | Selecciona un bloque de datos en base a un grupo de valores de alturas segun el rango |
|
273 | 273 | minHei <= height <= maxHei |
|
274 | 274 | |
|
275 | 275 | Input: |
|
276 | 276 | minHei : valor minimo de altura a considerar |
|
277 | 277 | maxHei : valor maximo de altura a considerar |
|
278 | 278 | |
|
279 | 279 | Affected: |
|
280 | 280 | Indirectamente son cambiados varios valores a travez del metodo selectHeightsByIndex |
|
281 | 281 | |
|
282 | 282 | Return: |
|
283 | 283 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
284 | 284 | """ |
|
285 | 285 | if (minHei < self.dataOut.heightList[0]) or (minHei > maxHei): |
|
286 | 286 | raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
287 | 287 | |
|
288 | 288 | if (maxHei > self.dataOut.heightList[-1]): |
|
289 | 289 | maxHei = self.dataOut.heightList[-1] |
|
290 | 290 | # raise ValueError, "some value in (%d,%d) is not valid" % (minHei, maxHei) |
|
291 | 291 | |
|
292 | 292 | minIndex = 0 |
|
293 | 293 | maxIndex = 0 |
|
294 | 294 | data = self.dataOut.heightList |
|
295 | 295 | |
|
296 | 296 | for i,val in enumerate(data): |
|
297 | 297 | if val < minHei: |
|
298 | 298 | continue |
|
299 | 299 | else: |
|
300 | 300 | minIndex = i; |
|
301 | 301 | break |
|
302 | 302 | |
|
303 | 303 | for i,val in enumerate(data): |
|
304 | 304 | if val <= maxHei: |
|
305 | 305 | maxIndex = i; |
|
306 | 306 | else: |
|
307 | 307 | break |
|
308 | 308 | |
|
309 | 309 | self.selectHeightsByIndex(minIndex, maxIndex) |
|
310 | 310 | |
|
311 | 311 | return 1 |
|
312 | 312 | |
|
313 | 313 | |
|
314 | 314 | def selectHeightsByIndex(self, minIndex, maxIndex): |
|
315 | 315 | """ |
|
316 | 316 | Selecciona un bloque de datos en base a un grupo indices de alturas segun el rango |
|
317 | 317 | minIndex <= index <= maxIndex |
|
318 | 318 | |
|
319 | 319 | Input: |
|
320 | 320 | minIndex : valor de indice minimo de altura a considerar |
|
321 | 321 | maxIndex : valor de indice maximo de altura a considerar |
|
322 | 322 | |
|
323 | 323 | Affected: |
|
324 | 324 | self.dataOut.data |
|
325 | 325 | self.dataOut.heightList |
|
326 | 326 | |
|
327 | 327 | Return: |
|
328 | 328 | 1 si el metodo se ejecuto con exito caso contrario devuelve 0 |
|
329 | 329 | """ |
|
330 | 330 | |
|
331 | 331 | if (minIndex < 0) or (minIndex > maxIndex): |
|
332 | 332 | raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
333 | 333 | |
|
334 | 334 | if (maxIndex >= self.dataOut.nHeights): |
|
335 | 335 | maxIndex = self.dataOut.nHeights-1 |
|
336 | 336 | # raise ValueError, "some value in (%d,%d) is not valid" % (minIndex, maxIndex) |
|
337 | 337 | |
|
338 | 338 | nHeights = maxIndex - minIndex + 1 |
|
339 | 339 | |
|
340 | 340 | #voltage |
|
341 | 341 | data = self.dataOut.data[:,minIndex:maxIndex+1] |
|
342 | 342 | |
|
343 | 343 | firstHeight = self.dataOut.heightList[minIndex] |
|
344 | 344 | |
|
345 | 345 | self.dataOut.data = data |
|
346 | 346 | self.dataOut.heightList = self.dataOut.heightList[minIndex:maxIndex+1] |
|
347 | 347 | |
|
348 | 348 | return 1 |
|
349 | 349 | |
|
350 | ||
|
351 | def filterByHeights(self, window): | |
|
352 | deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0] | |
|
353 | ||
|
354 | if window == None: | |
|
355 | window = self.dataOut.radarControllerHeaderObj.txA / deltaHeight | |
|
356 | ||
|
357 | newdelta = deltaHeight * window | |
|
358 | r = self.dataOut.data.shape[1] % window | |
|
359 | buffer = self.dataOut.data[:,0:self.dataOut.data.shape[1]-r] | |
|
360 | buffer = buffer.reshape(self.dataOut.data.shape[0],self.dataOut.data.shape[1]/window,window) | |
|
361 | buffer = numpy.average(buffer,2) | |
|
362 | self.dataOut.data = buffer | |
|
363 | self.dataOut.heightList = numpy.arange(self.dataOut.heightList[0],newdelta*self.dataOut.nHeights/window,newdelta) | |
|
364 | ||
|
365 | ||
|
350 | 366 | |
|
351 | 367 | class CohInt(Operation): |
|
352 | 368 | |
|
353 | 369 | __isConfig = False |
|
354 | 370 | |
|
355 | 371 | __profIndex = 0 |
|
356 | 372 | __withOverapping = False |
|
357 | 373 | |
|
358 | 374 | __byTime = False |
|
359 | 375 | __initime = None |
|
360 | 376 | __lastdatatime = None |
|
361 | 377 | __integrationtime = None |
|
362 | 378 | |
|
363 | 379 | __buffer = None |
|
364 | 380 | |
|
365 | 381 | __dataReady = False |
|
366 | 382 | |
|
367 | 383 | n = None |
|
368 | 384 | |
|
369 | 385 | |
|
370 | 386 | def __init__(self): |
|
371 | 387 | |
|
372 | 388 | self.__isConfig = False |
|
373 | 389 | |
|
374 | 390 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
375 | 391 | """ |
|
376 | 392 | Set the parameters of the integration class. |
|
377 | 393 | |
|
378 | 394 | Inputs: |
|
379 | 395 | |
|
380 | 396 | n : Number of coherent integrations |
|
381 | 397 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
382 | 398 | overlapping : |
|
383 | 399 | |
|
384 | 400 | """ |
|
385 | 401 | |
|
386 | 402 | self.__initime = None |
|
387 | 403 | self.__lastdatatime = 0 |
|
388 | 404 | self.__buffer = None |
|
389 | 405 | self.__dataReady = False |
|
390 | 406 | |
|
391 | 407 | |
|
392 | 408 | if n == None and timeInterval == None: |
|
393 | 409 | raise ValueError, "n or timeInterval should be specified ..." |
|
394 | 410 | |
|
395 | 411 | if n != None: |
|
396 | 412 | self.n = n |
|
397 | 413 | self.__byTime = False |
|
398 | 414 | else: |
|
399 | 415 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
400 | 416 | self.n = 9999 |
|
401 | 417 | self.__byTime = True |
|
402 | 418 | |
|
403 | 419 | if overlapping: |
|
404 | 420 | self.__withOverapping = True |
|
405 | 421 | self.__buffer = None |
|
406 | 422 | else: |
|
407 | 423 | self.__withOverapping = False |
|
408 | 424 | self.__buffer = 0 |
|
409 | 425 | |
|
410 | 426 | self.__profIndex = 0 |
|
411 | 427 | |
|
412 | 428 | def putData(self, data): |
|
413 | 429 | |
|
414 | 430 | """ |
|
415 | 431 | Add a profile to the __buffer and increase in one the __profileIndex |
|
416 | 432 | |
|
417 | 433 | """ |
|
418 | 434 | |
|
419 | 435 | if not self.__withOverapping: |
|
420 | 436 | self.__buffer += data.copy() |
|
421 | 437 | self.__profIndex += 1 |
|
422 | 438 | return |
|
423 | 439 | |
|
424 | 440 | #Overlapping data |
|
425 | 441 | nChannels, nHeis = data.shape |
|
426 | 442 | data = numpy.reshape(data, (1, nChannels, nHeis)) |
|
427 | 443 | |
|
428 | 444 | #If the buffer is empty then it takes the data value |
|
429 | 445 | if self.__buffer == None: |
|
430 | 446 | self.__buffer = data |
|
431 | 447 | self.__profIndex += 1 |
|
432 | 448 | return |
|
433 | 449 | |
|
434 | 450 | #If the buffer length is lower than n then stakcing the data value |
|
435 | 451 | if self.__profIndex < self.n: |
|
436 | 452 | self.__buffer = numpy.vstack((self.__buffer, data)) |
|
437 | 453 | self.__profIndex += 1 |
|
438 | 454 | return |
|
439 | 455 | |
|
440 | 456 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
441 | 457 | self.__buffer = numpy.roll(self.__buffer, -1, axis=0) |
|
442 | 458 | self.__buffer[self.n-1] = data |
|
443 | 459 | self.__profIndex = self.n |
|
444 | 460 | return |
|
445 | 461 | |
|
446 | 462 | |
|
447 | 463 | def pushData(self): |
|
448 | 464 | """ |
|
449 | 465 | Return the sum of the last profiles and the profiles used in the sum. |
|
450 | 466 | |
|
451 | 467 | Affected: |
|
452 | 468 | |
|
453 | 469 | self.__profileIndex |
|
454 | 470 | |
|
455 | 471 | """ |
|
456 | 472 | |
|
457 | 473 | if not self.__withOverapping: |
|
458 | 474 | data = self.__buffer |
|
459 | 475 | n = self.__profIndex |
|
460 | 476 | |
|
461 | 477 | self.__buffer = 0 |
|
462 | 478 | self.__profIndex = 0 |
|
463 | 479 | |
|
464 | 480 | return data, n |
|
465 | 481 | |
|
466 | 482 | #Integration with Overlapping |
|
467 | 483 | data = numpy.sum(self.__buffer, axis=0) |
|
468 | 484 | n = self.__profIndex |
|
469 | 485 | |
|
470 | 486 | return data, n |
|
471 | 487 | |
|
472 | 488 | def byProfiles(self, data): |
|
473 | 489 | |
|
474 | 490 | self.__dataReady = False |
|
475 | 491 | avgdata = None |
|
476 | 492 | n = None |
|
477 | 493 | |
|
478 | 494 | self.putData(data) |
|
479 | 495 | |
|
480 | 496 | if self.__profIndex == self.n: |
|
481 | 497 | |
|
482 | 498 | avgdata, n = self.pushData() |
|
483 | 499 | self.__dataReady = True |
|
484 | 500 | |
|
485 | 501 | return avgdata |
|
486 | 502 | |
|
487 | 503 | def byTime(self, data, datatime): |
|
488 | 504 | |
|
489 | 505 | self.__dataReady = False |
|
490 | 506 | avgdata = None |
|
491 | 507 | n = None |
|
492 | 508 | |
|
493 | 509 | self.putData(data) |
|
494 | 510 | |
|
495 | 511 | if (datatime - self.__initime) >= self.__integrationtime: |
|
496 | 512 | avgdata, n = self.pushData() |
|
497 | 513 | self.n = n |
|
498 | 514 | self.__dataReady = True |
|
499 | 515 | |
|
500 | 516 | return avgdata |
|
501 | 517 | |
|
502 | 518 | def integrate(self, data, datatime=None): |
|
503 | 519 | |
|
504 | 520 | if self.__initime == None: |
|
505 | 521 | self.__initime = datatime |
|
506 | 522 | |
|
507 | 523 | if self.__byTime: |
|
508 | 524 | avgdata = self.byTime(data, datatime) |
|
509 | 525 | else: |
|
510 | 526 | avgdata = self.byProfiles(data) |
|
511 | 527 | |
|
512 | 528 | |
|
513 | 529 | self.__lastdatatime = datatime |
|
514 | 530 | |
|
515 | 531 | if avgdata == None: |
|
516 | 532 | return None, None |
|
517 | 533 | |
|
518 | 534 | avgdatatime = self.__initime |
|
519 | 535 | |
|
520 | 536 | deltatime = datatime -self.__lastdatatime |
|
521 | 537 | |
|
522 | 538 | if not self.__withOverapping: |
|
523 | 539 | self.__initime = datatime |
|
524 | 540 | else: |
|
525 | 541 | self.__initime += deltatime |
|
526 | 542 | |
|
527 | 543 | return avgdata, avgdatatime |
|
528 | 544 | |
|
529 | 545 | def run(self, dataOut, **kwargs): |
|
530 | 546 | |
|
531 | 547 | if not self.__isConfig: |
|
532 | 548 | self.setup(**kwargs) |
|
533 | 549 | self.__isConfig = True |
|
534 | 550 | |
|
535 | 551 | avgdata, avgdatatime = self.integrate(dataOut.data, dataOut.utctime) |
|
536 | 552 | |
|
537 | 553 | # dataOut.timeInterval *= n |
|
538 | 554 | dataOut.flagNoData = True |
|
539 | 555 | |
|
540 | 556 | if self.__dataReady: |
|
541 | 557 | dataOut.data = avgdata |
|
542 | 558 | dataOut.nCohInt *= self.n |
|
543 | 559 | dataOut.utctime = avgdatatime |
|
544 | 560 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt |
|
545 | 561 | dataOut.flagNoData = False |
|
546 | 562 | |
|
563 | ||
|
547 | 564 | class Decoder(Operation): |
|
548 | 565 | |
|
549 | 566 | __isConfig = False |
|
550 | 567 | __profIndex = 0 |
|
551 | 568 | |
|
552 | 569 | code = None |
|
553 | 570 | |
|
554 | 571 | nCode = None |
|
555 | 572 | nBaud = None |
|
556 | 573 | |
|
557 | 574 | def __init__(self): |
|
558 | 575 | |
|
559 | 576 | self.__isConfig = False |
|
560 | 577 | |
|
561 | 578 | def setup(self, code): |
|
562 | 579 | |
|
563 | 580 | self.__profIndex = 0 |
|
564 | 581 | |
|
565 | 582 | self.code = code |
|
566 | 583 | |
|
567 | 584 | self.nCode = len(code) |
|
568 | 585 | self.nBaud = len(code[0]) |
|
569 | 586 | |
|
570 | 587 | def convolutionInFreq(self, data): |
|
571 | 588 | |
|
572 | 589 | ndata = data.shape[1] |
|
573 | 590 | newcode = numpy.zeros(ndata) |
|
574 | 591 | newcode[0:self.nBaud] = self.code[self.__profIndex] |
|
575 | 592 | |
|
576 | 593 | fft_data = numpy.fft.fft(data, axis=1) |
|
577 | 594 | fft_code = numpy.conj(numpy.fft.fft(newcode)) |
|
578 | 595 | fft_code = fft_code.reshape(1,len(fft_code)) |
|
579 | 596 | |
|
580 | 597 | # conv = fft_data.copy() |
|
581 | 598 | # conv.fill(0) |
|
582 | 599 | |
|
583 | 600 | conv = fft_data*fft_code |
|
584 | 601 | |
|
585 | 602 | data = numpy.fft.ifft(conv,axis=1) |
|
586 | 603 | |
|
587 | 604 | datadec = data[:,:-self.nBaud+1] |
|
588 | 605 | ndatadec = ndata - self.nBaud + 1 |
|
589 | 606 | |
|
590 | 607 | if self.__profIndex == self.nCode: |
|
591 | 608 | self.__profIndex = 0 |
|
592 | 609 | |
|
593 | 610 | self.__profIndex += 1 |
|
594 | 611 | |
|
595 | 612 | return ndatadec, datadec |
|
596 | 613 | |
|
597 | 614 | |
|
598 | 615 | def convolutionInTime(self, data): |
|
599 | 616 | |
|
600 | 617 | nchannel = data.shape[1] |
|
601 | 618 | newcode = self.code[self.__profIndex] |
|
602 | 619 | |
|
603 | 620 | datadec = data.copy() |
|
604 | 621 | |
|
605 | 622 | for i in range(nchannel): |
|
606 | 623 | datadec[i,:] = numpy.correlate(data[i,:], newcode) |
|
607 | 624 | |
|
608 | 625 | ndatadec = ndata - self.nBaud + 1 |
|
609 | 626 | |
|
610 | 627 | if self.__profIndex == self.nCode: |
|
611 | 628 | self.__profIndex = 0 |
|
612 | 629 | |
|
613 | 630 | self.__profIndex += 1 |
|
614 | 631 | |
|
615 | 632 | return ndatadec, datadec |
|
616 | 633 | |
|
617 | 634 | def run(self, dataOut, code=None, mode = 0): |
|
618 | 635 | |
|
619 | 636 | if not self.__isConfig: |
|
620 | 637 | |
|
621 | 638 | if code == None: |
|
622 | 639 | code = dataOut.code |
|
623 | 640 | |
|
624 | 641 | self.setup(code) |
|
625 | 642 | self.__isConfig = True |
|
626 | 643 | |
|
627 | 644 | if mode == 0: |
|
628 | 645 | ndatadec, datadec = self.convolutionInFreq(data) |
|
629 | 646 | |
|
630 | 647 | if mode == 1: |
|
631 | 648 | ndatadec, datadec = self.convolutionInTime(data) |
|
632 | ||
|
649 | ||
|
633 | 650 | dataOut.data = datadec |
|
634 | 651 | |
|
635 | 652 | dataOut.heightList = dataOut.heightList[0:ndatadec+1] |
|
636 | 653 | |
|
637 | 654 | dataOut.flagDecodeData = True #asumo q la data no esta decodificada |
|
638 | 655 | |
|
639 | 656 | # dataOut.flagDeflipData = True #asumo q la data no esta sin flip |
|
640 | 657 | |
|
641 | ||
|
642 | 658 | |
|
643 | 659 | class SpectraProc(ProcessingUnit): |
|
644 | 660 | |
|
645 | 661 | def __init__(self): |
|
646 | 662 | |
|
647 | 663 | self.objectDict = {} |
|
648 | 664 | self.buffer = None |
|
649 | 665 | self.firstdatatime = None |
|
650 | 666 | self.profIndex = 0 |
|
651 | 667 | self.dataOut = Spectra() |
|
652 | 668 | |
|
653 | 669 | def __updateObjFromInput(self): |
|
654 | 670 | |
|
655 | 671 | self.dataOut.radarControllerHeaderObj = self.dataIn.radarControllerHeaderObj.copy() |
|
656 | 672 | self.dataOut.systemHeaderObj = self.dataIn.systemHeaderObj.copy() |
|
657 | 673 | self.dataOut.channelList = self.dataIn.channelList |
|
658 | 674 | self.dataOut.heightList = self.dataIn.heightList |
|
659 | 675 | self.dataOut.dtype = self.dataIn.dtype |
|
660 | 676 | # self.dataOut.nHeights = self.dataIn.nHeights |
|
661 | 677 | # self.dataOut.nChannels = self.dataIn.nChannels |
|
662 | 678 | self.dataOut.nBaud = self.dataIn.nBaud |
|
663 | 679 | self.dataOut.nCode = self.dataIn.nCode |
|
664 | 680 | self.dataOut.code = self.dataIn.code |
|
665 | 681 | self.dataOut.nProfiles = self.dataOut.nFFTPoints |
|
666 | 682 | # self.dataOut.channelIndexList = self.dataIn.channelIndexList |
|
667 | 683 | self.dataOut.flagTimeBlock = self.dataIn.flagTimeBlock |
|
668 | 684 | self.dataOut.utctime = self.firstdatatime |
|
669 | 685 | self.dataOut.flagDecodeData = self.dataIn.flagDecodeData #asumo q la data esta decodificada |
|
670 | 686 | self.dataOut.flagDeflipData = self.dataIn.flagDeflipData #asumo q la data esta sin flip |
|
671 | 687 | self.dataOut.flagShiftFFT = self.dataIn.flagShiftFFT |
|
672 | 688 | self.dataOut.nCohInt = self.dataIn.nCohInt |
|
673 | 689 | self.dataOut.nIncohInt = 1 |
|
674 | 690 | self.dataOut.ippSeconds = self.dataIn.ippSeconds |
|
675 | 691 | |
|
676 | 692 | self.dataOut.timeInterval = self.dataIn.timeInterval*self.dataOut.nFFTPoints*self.dataOut.nIncohInt |
|
677 | 693 | |
|
678 | 694 | def __getFft(self): |
|
679 | 695 | """ |
|
680 | 696 | Convierte valores de Voltaje a Spectra |
|
681 | 697 | |
|
682 | 698 | Affected: |
|
683 | 699 | self.dataOut.data_spc |
|
684 | 700 | self.dataOut.data_cspc |
|
685 | 701 | self.dataOut.data_dc |
|
686 | 702 | self.dataOut.heightList |
|
687 | 703 | self.profIndex |
|
688 | 704 | self.buffer |
|
689 | 705 | self.dataOut.flagNoData |
|
690 | 706 | """ |
|
691 | 707 | fft_volt = numpy.fft.fft(self.buffer,axis=1) |
|
692 | 708 | dc = fft_volt[:,0,:] |
|
693 | 709 | |
|
694 | 710 | #calculo de self-spectra |
|
695 | 711 | fft_volt = numpy.fft.fftshift(fft_volt,axes=(1,)) |
|
696 | 712 | spc = fft_volt * numpy.conjugate(fft_volt) |
|
697 | 713 | spc = spc.real |
|
698 | 714 | |
|
699 | 715 | blocksize = 0 |
|
700 | 716 | blocksize += dc.size |
|
701 | 717 | blocksize += spc.size |
|
702 | 718 | |
|
703 | 719 | cspc = None |
|
704 | 720 | pairIndex = 0 |
|
705 | 721 | if self.dataOut.pairsList != None: |
|
706 | 722 | #calculo de cross-spectra |
|
707 | 723 | cspc = numpy.zeros((self.dataOut.nPairs, self.dataOut.nFFTPoints, self.dataOut.nHeights), dtype='complex') |
|
708 | 724 | for pair in self.dataOut.pairsList: |
|
709 | 725 | cspc[pairIndex,:,:] = fft_volt[pair[0],:,:] * numpy.conjugate(fft_volt[pair[1],:,:]) |
|
710 | 726 | pairIndex += 1 |
|
711 | 727 | blocksize += cspc.size |
|
712 | 728 | |
|
713 | 729 | self.dataOut.data_spc = spc |
|
714 | 730 | self.dataOut.data_cspc = cspc |
|
715 | 731 | self.dataOut.data_dc = dc |
|
716 | 732 | self.dataOut.blockSize = blocksize |
|
717 | 733 | |
|
718 | 734 | def init(self, nFFTPoints=None, pairsList=None): |
|
719 | 735 | |
|
720 | 736 | self.dataOut.flagNoData = True |
|
721 | 737 | |
|
722 | 738 | if self.dataIn.type == "Spectra": |
|
723 | 739 | self.dataOut.copy(self.dataIn) |
|
724 | 740 | return |
|
725 | 741 | |
|
726 | 742 | if self.dataIn.type == "Voltage": |
|
727 | 743 | |
|
728 | 744 | if nFFTPoints == None: |
|
729 | 745 | raise ValueError, "This SpectraProc.init() need nFFTPoints input variable" |
|
730 | 746 | |
|
731 | 747 | if pairsList == None: |
|
732 | 748 | nPairs = 0 |
|
733 | 749 | else: |
|
734 | 750 | nPairs = len(pairsList) |
|
735 | 751 | |
|
736 | 752 | self.dataOut.nFFTPoints = nFFTPoints |
|
737 | 753 | self.dataOut.pairsList = pairsList |
|
738 | 754 | self.dataOut.nPairs = nPairs |
|
739 | 755 | |
|
740 | 756 | if self.buffer == None: |
|
741 | 757 | self.buffer = numpy.zeros((self.dataIn.nChannels, |
|
742 | 758 | self.dataOut.nFFTPoints, |
|
743 | 759 | self.dataIn.nHeights), |
|
744 | 760 | dtype='complex') |
|
745 | 761 | |
|
746 | 762 | |
|
747 | 763 | self.buffer[:,self.profIndex,:] = self.dataIn.data.copy() |
|
748 | 764 | self.profIndex += 1 |
|
749 | 765 | |
|
750 | 766 | if self.firstdatatime == None: |
|
751 | 767 | self.firstdatatime = self.dataIn.utctime |
|
752 | 768 | |
|
753 | 769 | if self.profIndex == self.dataOut.nFFTPoints: |
|
754 | 770 | self.__updateObjFromInput() |
|
755 | 771 | self.__getFft() |
|
756 | 772 | |
|
757 | 773 | self.dataOut.flagNoData = False |
|
758 | 774 | |
|
759 | 775 | self.buffer = None |
|
760 | 776 | self.firstdatatime = None |
|
761 | 777 | self.profIndex = 0 |
|
762 | 778 | |
|
763 | 779 | return |
|
764 | 780 | |
|
765 | 781 | raise ValuError, "The type object %s is not valid"%(self.dataIn.type) |
|
766 | 782 | |
|
767 | 783 | def selectChannels(self, channelList): |
|
768 | 784 | |
|
769 | 785 | channelIndexList = [] |
|
770 | 786 | |
|
771 | 787 | for channel in channelList: |
|
772 | 788 | index = self.dataOut.channelList.index(channel) |
|
773 | 789 | channelIndexList.append(index) |
|
774 | 790 | |
|
775 | 791 | self.selectChannelsByIndex(channelIndexList) |
|
776 | 792 | |
|
777 | 793 | def selectChannelsByIndex(self, channelIndexList): |
|
778 | 794 | """ |
|
779 | 795 | Selecciona un bloque de datos en base a canales segun el channelIndexList |
|
780 | 796 | |
|
781 | 797 | Input: |
|
782 | 798 | channelIndexList : lista sencilla de canales a seleccionar por ej. [2,3,7] |
|
783 | 799 | |
|
784 | 800 | Affected: |
|
785 | 801 | self.dataOut.data_spc |
|
786 | 802 | self.dataOut.channelIndexList |
|
787 | 803 | self.dataOut.nChannels |
|
788 | 804 | |
|
789 | 805 | Return: |
|
790 | 806 | None |
|
791 | 807 | """ |
|
792 | 808 | |
|
793 | 809 | for channelIndex in channelIndexList: |
|
794 | 810 | if channelIndex not in self.dataOut.channelIndexList: |
|
795 | 811 | print channelIndexList |
|
796 | 812 | raise ValueError, "The value %d in channelIndexList is not valid" %channelIndex |
|
797 | 813 | |
|
798 | 814 | nChannels = len(channelIndexList) |
|
799 | 815 | |
|
800 | 816 | data_spc = self.dataOut.data_spc[channelIndexList,:] |
|
801 | 817 | |
|
802 | 818 | self.dataOut.data_spc = data_spc |
|
803 | 819 | self.dataOut.channelList = [self.dataOut.channelList[i] for i in channelIndexList] |
|
804 | 820 | # self.dataOut.nChannels = nChannels |
|
805 | 821 | |
|
806 | 822 | return 1 |
|
807 | 823 | |
|
808 | 824 | |
|
809 | 825 | class IncohInt(Operation): |
|
810 | 826 | |
|
811 | 827 | |
|
812 | 828 | __profIndex = 0 |
|
813 | 829 | __withOverapping = False |
|
814 | 830 | |
|
815 | 831 | __byTime = False |
|
816 | 832 | __initime = None |
|
817 | 833 | __lastdatatime = None |
|
818 | 834 | __integrationtime = None |
|
819 | 835 | |
|
820 | 836 | __buffer_spc = None |
|
821 | 837 | __buffer_cspc = None |
|
822 | 838 | __buffer_dc = None |
|
823 | 839 | |
|
824 | 840 | __dataReady = False |
|
825 | 841 | |
|
826 | 842 | n = None |
|
827 | 843 | |
|
828 | 844 | |
|
829 | 845 | def __init__(self): |
|
830 | 846 | |
|
831 | 847 | self.__isConfig = False |
|
832 | 848 | |
|
833 | 849 | def setup(self, n=None, timeInterval=None, overlapping=False): |
|
834 | 850 | """ |
|
835 | 851 | Set the parameters of the integration class. |
|
836 | 852 | |
|
837 | 853 | Inputs: |
|
838 | 854 | |
|
839 | 855 | n : Number of coherent integrations |
|
840 | 856 | timeInterval : Time of integration. If the parameter "n" is selected this one does not work |
|
841 | 857 | overlapping : |
|
842 | 858 | |
|
843 | 859 | """ |
|
844 | 860 | |
|
845 | 861 | self.__initime = None |
|
846 | 862 | self.__lastdatatime = 0 |
|
847 | 863 | self.__buffer_spc = None |
|
848 | 864 | self.__buffer_cspc = None |
|
849 | 865 | self.__buffer_dc = None |
|
850 | 866 | self.__dataReady = False |
|
851 | 867 | |
|
852 | 868 | |
|
853 | 869 | if n == None and timeInterval == None: |
|
854 | 870 | raise ValueError, "n or timeInterval should be specified ..." |
|
855 | 871 | |
|
856 | 872 | if n != None: |
|
857 | 873 | self.n = n |
|
858 | 874 | self.__byTime = False |
|
859 | 875 | else: |
|
860 | 876 | self.__integrationtime = timeInterval * 60. #if (type(timeInterval)!=integer) -> change this line |
|
861 | 877 | self.n = 9999 |
|
862 | 878 | self.__byTime = True |
|
863 | 879 | |
|
864 | 880 | if overlapping: |
|
865 | 881 | self.__withOverapping = True |
|
866 | 882 | else: |
|
867 | 883 | self.__withOverapping = False |
|
868 | 884 | self.__buffer_spc = 0 |
|
869 | 885 | self.__buffer_cspc = 0 |
|
870 | 886 | self.__buffer_dc = 0 |
|
871 | 887 | |
|
872 | 888 | self.__profIndex = 0 |
|
873 | 889 | |
|
874 | 890 | def putData(self, data_spc, data_cspc, data_dc): |
|
875 | 891 | |
|
876 | 892 | """ |
|
877 | 893 | Add a profile to the __buffer_spc and increase in one the __profileIndex |
|
878 | 894 | |
|
879 | 895 | """ |
|
880 | 896 | |
|
881 | 897 | if not self.__withOverapping: |
|
882 | 898 | self.__buffer_spc += data_spc |
|
883 | 899 | |
|
884 | 900 | if data_cspc == None: |
|
885 | 901 | self.__buffer_cspc = None |
|
886 | 902 | else: |
|
887 | 903 | self.__buffer_cspc += data_cspc |
|
888 | 904 | |
|
889 | 905 | if data_dc == None: |
|
890 | 906 | self.__buffer_dc = None |
|
891 | 907 | else: |
|
892 | 908 | self.__buffer_dc += data_dc |
|
893 | 909 | |
|
894 | 910 | self.__profIndex += 1 |
|
895 | 911 | return |
|
896 | 912 | |
|
897 | 913 | #Overlapping data |
|
898 | 914 | nChannels, nFFTPoints, nHeis = data_spc.shape |
|
899 | 915 | data_spc = numpy.reshape(data_spc, (1, nChannels, nFFTPoints, nHeis)) |
|
900 | 916 | if data_cspc != None: |
|
901 | 917 | data_cspc = numpy.reshape(data_cspc, (1, -1, nFFTPoints, nHeis)) |
|
902 | 918 | if data_dc != None: |
|
903 | 919 | data_dc = numpy.reshape(data_dc, (1, -1, nHeis)) |
|
904 | 920 | |
|
905 | 921 | #If the buffer is empty then it takes the data value |
|
906 | 922 | if self.__buffer_spc == None: |
|
907 | 923 | self.__buffer_spc = data_spc |
|
908 | 924 | |
|
909 | 925 | if data_cspc == None: |
|
910 | 926 | self.__buffer_cspc = None |
|
911 | 927 | else: |
|
912 | 928 | self.__buffer_cspc += data_cspc |
|
913 | 929 | |
|
914 | 930 | if data_dc == None: |
|
915 | 931 | self.__buffer_dc = None |
|
916 | 932 | else: |
|
917 | 933 | self.__buffer_dc += data_dc |
|
918 | 934 | |
|
919 | 935 | self.__profIndex += 1 |
|
920 | 936 | return |
|
921 | 937 | |
|
922 | 938 | #If the buffer length is lower than n then stakcing the data value |
|
923 | 939 | if self.__profIndex < self.n: |
|
924 | 940 | self.__buffer_spc = numpy.vstack((self.__buffer_spc, data_spc)) |
|
925 | 941 | |
|
926 | 942 | if data_cspc != None: |
|
927 | 943 | self.__buffer_cspc = numpy.vstack((self.__buffer_cspc, data_cspc)) |
|
928 | 944 | |
|
929 | 945 | if data_dc != None: |
|
930 | 946 | self.__buffer_dc = numpy.vstack((self.__buffer_dc, data_dc)) |
|
931 | 947 | |
|
932 | 948 | self.__profIndex += 1 |
|
933 | 949 | return |
|
934 | 950 | |
|
935 | 951 | #If the buffer length is equal to n then replacing the last buffer value with the data value |
|
936 | 952 | self.__buffer_spc = numpy.roll(self.__buffer_spc, -1, axis=0) |
|
937 | 953 | self.__buffer_spc[self.n-1] = data_spc |
|
938 | 954 | |
|
939 | 955 | if data_cspc != None: |
|
940 | 956 | self.__buffer_cspc = numpy.roll(self.__buffer_cspc, -1, axis=0) |
|
941 | 957 | self.__buffer_cspc[self.n-1] = data_cspc |
|
942 | 958 | |
|
943 | 959 | if data_dc != None: |
|
944 | 960 | self.__buffer_dc = numpy.roll(self.__buffer_dc, -1, axis=0) |
|
945 | 961 | self.__buffer_dc[self.n-1] = data_dc |
|
946 | 962 | |
|
947 | 963 | self.__profIndex = self.n |
|
948 | 964 | return |
|
949 | 965 | |
|
950 | 966 | |
|
951 | 967 | def pushData(self): |
|
952 | 968 | """ |
|
953 | 969 | Return the sum of the last profiles and the profiles used in the sum. |
|
954 | 970 | |
|
955 | 971 | Affected: |
|
956 | 972 | |
|
957 | 973 | self.__profileIndex |
|
958 | 974 | |
|
959 | 975 | """ |
|
960 | 976 | data_spc = None |
|
961 | 977 | data_cspc = None |
|
962 | 978 | data_dc = None |
|
963 | 979 | |
|
964 | 980 | if not self.__withOverapping: |
|
965 | 981 | data_spc = self.__buffer_spc |
|
966 | 982 | data_cspc = self.__buffer_cspc |
|
967 | 983 | data_dc = self.__buffer_dc |
|
968 | 984 | |
|
969 | 985 | n = self.__profIndex |
|
970 | 986 | |
|
971 | 987 | self.__buffer_spc = 0 |
|
972 | 988 | self.__buffer_cspc = 0 |
|
973 | 989 | self.__buffer_dc = 0 |
|
974 | 990 | self.__profIndex = 0 |
|
975 | 991 | |
|
976 | 992 | return data_spc, data_cspc, data_dc, n |
|
977 | 993 | |
|
978 | 994 | #Integration with Overlapping |
|
979 | 995 | data_spc = numpy.sum(self.__buffer_spc, axis=0) |
|
980 | 996 | |
|
981 | 997 | if self.__buffer_cspc != None: |
|
982 | 998 | data_cspc = numpy.sum(self.__buffer_cspc, axis=0) |
|
983 | 999 | |
|
984 | 1000 | if self.__buffer_dc != None: |
|
985 | 1001 | data_dc = numpy.sum(self.__buffer_dc, axis=0) |
|
986 | 1002 | |
|
987 | 1003 | n = self.__profIndex |
|
988 | 1004 | |
|
989 | 1005 | return data_spc, data_cspc, data_dc, n |
|
990 | 1006 | |
|
991 | 1007 | def byProfiles(self, *args): |
|
992 | 1008 | |
|
993 | 1009 | self.__dataReady = False |
|
994 | 1010 | avgdata_spc = None |
|
995 | 1011 | avgdata_cspc = None |
|
996 | 1012 | avgdata_dc = None |
|
997 | 1013 | n = None |
|
998 | 1014 | |
|
999 | 1015 | self.putData(*args) |
|
1000 | 1016 | |
|
1001 | 1017 | if self.__profIndex == self.n: |
|
1002 | 1018 | |
|
1003 | 1019 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1004 | 1020 | self.__dataReady = True |
|
1005 | 1021 | |
|
1006 | 1022 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1007 | 1023 | |
|
1008 | 1024 | def byTime(self, datatime, *args): |
|
1009 | 1025 | |
|
1010 | 1026 | self.__dataReady = False |
|
1011 | 1027 | avgdata_spc = None |
|
1012 | 1028 | avgdata_cspc = None |
|
1013 | 1029 | avgdata_dc = None |
|
1014 | 1030 | n = None |
|
1015 | 1031 | |
|
1016 | 1032 | self.putData(*args) |
|
1017 | 1033 | |
|
1018 | 1034 | if (datatime - self.__initime) >= self.__integrationtime: |
|
1019 | 1035 | avgdata_spc, avgdata_cspc, avgdata_dc, n = self.pushData() |
|
1020 | 1036 | self.n = n |
|
1021 | 1037 | self.__dataReady = True |
|
1022 | 1038 | |
|
1023 | 1039 | return avgdata_spc, avgdata_cspc, avgdata_dc |
|
1024 | 1040 | |
|
1025 | 1041 | def integrate(self, datatime, *args): |
|
1026 | 1042 | |
|
1027 | 1043 | if self.__initime == None: |
|
1028 | 1044 | self.__initime = datatime |
|
1029 | 1045 | |
|
1030 | 1046 | if self.__byTime: |
|
1031 | 1047 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byTime(datatime, *args) |
|
1032 | 1048 | else: |
|
1033 | 1049 | avgdata_spc, avgdata_cspc, avgdata_dc = self.byProfiles(*args) |
|
1034 | 1050 | |
|
1035 | 1051 | self.__lastdatatime = datatime |
|
1036 | 1052 | |
|
1037 | 1053 | if avgdata_spc == None: |
|
1038 | 1054 | return None, None, None, None |
|
1039 | 1055 | |
|
1040 | 1056 | avgdatatime = self.__initime |
|
1041 | 1057 | |
|
1042 | 1058 | deltatime = datatime -self.__lastdatatime |
|
1043 | 1059 | |
|
1044 | 1060 | if not self.__withOverapping: |
|
1045 | 1061 | self.__initime = datatime |
|
1046 | 1062 | else: |
|
1047 | 1063 | self.__initime += deltatime |
|
1048 | 1064 | |
|
1049 | 1065 | return avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc |
|
1050 | 1066 | |
|
1051 | 1067 | def run(self, dataOut, n=None, timeInterval=None, overlapping=False): |
|
1052 | 1068 | |
|
1053 | 1069 | if not self.__isConfig: |
|
1054 | 1070 | self.setup(n, timeInterval, overlapping) |
|
1055 | 1071 | self.__isConfig = True |
|
1056 | 1072 | |
|
1057 | 1073 | avgdatatime, avgdata_spc, avgdata_cspc, avgdata_dc = self.integrate(dataOut.utctime, |
|
1058 | 1074 | dataOut.data_spc, |
|
1059 | 1075 | dataOut.data_cspc, |
|
1060 | 1076 | dataOut.data_dc) |
|
1061 | 1077 | |
|
1062 | 1078 | # dataOut.timeInterval *= n |
|
1063 | 1079 | dataOut.flagNoData = True |
|
1064 | 1080 | |
|
1065 | 1081 | if self.__dataReady: |
|
1066 | 1082 | dataOut.data_spc = avgdata_spc |
|
1067 | 1083 | dataOut.data_cspc = avgdata_cspc |
|
1068 | 1084 | dataOut.data_dc = avgdata_dc |
|
1069 | 1085 | |
|
1070 | 1086 | dataOut.nIncohInt *= self.n |
|
1071 | 1087 | dataOut.utctime = avgdatatime |
|
1072 | 1088 | dataOut.timeInterval = dataOut.ippSeconds * dataOut.nCohInt * dataOut.nIncohInt * dataOut.nFFTPoints |
|
1073 | 1089 | dataOut.flagNoData = False |
|
1074 | No newline at end of file | |
|
1090 | ||
|
1091 | class ProfileSelector(Operation): | |
|
1092 | ||
|
1093 | profileIndex = None | |
|
1094 | # Tamanho total de los perfiles | |
|
1095 | nProfiles = None | |
|
1096 | ||
|
1097 | def __init__(self): | |
|
1098 | ||
|
1099 | self.profileIndex = 0 | |
|
1100 | ||
|
1101 | def incIndex(self): | |
|
1102 | self.profileIndex += 1 | |
|
1103 | ||
|
1104 | if self.profileIndex >= self.nProfiles: | |
|
1105 | self.profileIndex = 0 | |
|
1106 | ||
|
1107 | def isProfileInRange(self, minIndex, maxIndex): | |
|
1108 | ||
|
1109 | if self.profileIndex < minIndex: | |
|
1110 | return False | |
|
1111 | ||
|
1112 | if self.profileIndex > maxIndex: | |
|
1113 | return False | |
|
1114 | ||
|
1115 | return True | |
|
1116 | ||
|
1117 | def isProfileInList(self, profileList): | |
|
1118 | ||
|
1119 | if self.profileIndex not in profileList: | |
|
1120 | return False | |
|
1121 | ||
|
1122 | return True | |
|
1123 | ||
|
1124 | def run(self, dataOut, profileList=None, profileRangeList=None): | |
|
1125 | ||
|
1126 | self.nProfiles = dataOut.nProfiles | |
|
1127 | ||
|
1128 | if profileList != None: | |
|
1129 | if not(self.isProfileInList(profileList)): | |
|
1130 | dataOut.flagNoData = True | |
|
1131 | else: | |
|
1132 | dataOut.flagNoData = False | |
|
1133 | self.incIndex() | |
|
1134 | return 1 | |
|
1135 | ||
|
1136 | ||
|
1137 | elif profileRangeList != None: | |
|
1138 | minIndex = profileRangeList[0] | |
|
1139 | maxIndex = profileRangeList[1] | |
|
1140 | if not(self.isProfileInRange(minIndex, maxIndex)): | |
|
1141 | dataOut.flagNoData = True | |
|
1142 | else: | |
|
1143 | dataOut.flagNoData = False | |
|
1144 | self.incIndex() | |
|
1145 | return 1 | |
|
1146 | else: | |
|
1147 | raise ValueError, "ProfileSelector needs profileList or profileRangeList" | |
|
1148 | ||
|
1149 | return 0 | |
|
1150 |
General Comments 0
You need to be logged in to leave comments.
Login now