##// END OF EJS Templates
Bug fixed: Seleccion de directorio al leer en linea
Miguel Valdez -
r294:1886dc09bbff
parent child
Show More
@@ -1,2584 +1,2601
1 1 '''
2 2
3 3 $Author: murco $
4 4 $Id: JRODataIO.py 169 2012-11-19 21:57:03Z murco $
5 5 '''
6 6
7 7 import os, sys
8 8 import glob
9 9 import time
10 10 import numpy
11 11 import fnmatch
12 12 import time, datetime
13 13
14 14 from jrodata import *
15 15 from jroheaderIO import *
16 16 from jroprocessing import *
17 17
18 18 LOCALTIME = -18000
19 19
20 20 def isNumber(str):
21 21 """
22 22 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
23 23
24 24 Excepciones:
25 25 Si un determinado string no puede ser convertido a numero
26 26 Input:
27 27 str, string al cual se le analiza para determinar si convertible a un numero o no
28 28
29 29 Return:
30 30 True : si el string es uno numerico
31 31 False : no es un string numerico
32 32 """
33 33 try:
34 34 float( str )
35 35 return True
36 36 except:
37 37 return False
38 38
39 39 def isThisFileinRange(filename, startUTSeconds, endUTSeconds):
40 40 """
41 41 Esta funcion determina si un archivo de datos se encuentra o no dentro del rango de fecha especificado.
42 42
43 43 Inputs:
44 44 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
45 45
46 46 startUTSeconds : fecha inicial del rango seleccionado. La fecha esta dada en
47 47 segundos contados desde 01/01/1970.
48 48 endUTSeconds : fecha final del rango seleccionado. La fecha esta dada en
49 49 segundos contados desde 01/01/1970.
50 50
51 51 Return:
52 52 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
53 53 fecha especificado, de lo contrario retorna False.
54 54
55 55 Excepciones:
56 56 Si el archivo no existe o no puede ser abierto
57 57 Si la cabecera no puede ser leida.
58 58
59 59 """
60 60 basicHeaderObj = BasicHeader(LOCALTIME)
61 61
62 62 try:
63 63 fp = open(filename,'rb')
64 64 except:
65 65 raise IOError, "The file %s can't be opened" %(filename)
66 66
67 67 sts = basicHeaderObj.read(fp)
68 68 fp.close()
69 69
70 70 if not(sts):
71 71 print "Skipping the file %s because it has not a valid header" %(filename)
72 72 return 0
73 73
74 74 if not ((startUTSeconds <= basicHeaderObj.utc) and (endUTSeconds > basicHeaderObj.utc)):
75 75 return 0
76 76
77 77 return 1
78 78
79 79 def isFileinThisTime(filename, startTime, endTime):
80 80 """
81 81 Retorna 1 si el archivo de datos se encuentra dentro del rango de horas especificado.
82 82
83 83 Inputs:
84 84 filename : nombre completo del archivo de datos en formato Jicamarca (.r)
85 85
86 86 startTime : tiempo inicial del rango seleccionado en formato datetime.time
87 87
88 88 endTime : tiempo final del rango seleccionado en formato datetime.time
89 89
90 90 Return:
91 91 Boolean : Retorna True si el archivo de datos contiene datos en el rango de
92 92 fecha especificado, de lo contrario retorna False.
93 93
94 94 Excepciones:
95 95 Si el archivo no existe o no puede ser abierto
96 96 Si la cabecera no puede ser leida.
97 97
98 98 """
99 99
100 100
101 101 try:
102 102 fp = open(filename,'rb')
103 103 except:
104 104 raise IOError, "The file %s can't be opened" %(filename)
105 105
106 106 basicHeaderObj = BasicHeader(LOCALTIME)
107 107 sts = basicHeaderObj.read(fp)
108 108 fp.close()
109 109
110 110 thisTime = basicHeaderObj.datatime.time()
111 111
112 112 if not(sts):
113 113 print "Skipping the file %s because it has not a valid header" %(filename)
114 114 return 0
115 115
116 116 if not ((startTime <= thisTime) and (endTime > thisTime)):
117 117 return 0
118 118
119 119 return 1
120 120
121 121 def getlastFileFromPath(path, ext):
122 122 """
123 123 Depura el fileList dejando solo los que cumplan el formato de "PYYYYDDDSSS.ext"
124 124 al final de la depuracion devuelve el ultimo file de la lista que quedo.
125 125
126 126 Input:
127 127 fileList : lista conteniendo todos los files (sin path) que componen una determinada carpeta
128 128 ext : extension de los files contenidos en una carpeta
129 129
130 130 Return:
131 131 El ultimo file de una determinada carpeta, no se considera el path.
132 132 """
133 133 validFilelist = []
134 134 fileList = os.listdir(path)
135 135
136 136 # 0 1234 567 89A BCDE
137 137 # H YYYY DDD SSS .ext
138 138
139 139 for file in fileList:
140 140 try:
141 141 year = int(file[1:5])
142 142 doy = int(file[5:8])
143 143
144 144
145 145 except:
146 146 continue
147 147
148 148 if (os.path.splitext(file)[-1].lower() != ext.lower()):
149 149 continue
150 150
151 151 validFilelist.append(file)
152 152
153 153 if validFilelist:
154 154 validFilelist = sorted( validFilelist, key=str.lower )
155 155 return validFilelist[-1]
156 156
157 157 return None
158 158
159 159 def checkForRealPath(path, year, doy, set, ext):
160 160 """
161 161 Por ser Linux Case Sensitive entonces checkForRealPath encuentra el nombre correcto de un path,
162 162 Prueba por varias combinaciones de nombres entre mayusculas y minusculas para determinar
163 163 el path exacto de un determinado file.
164 164
165 165 Example :
166 166 nombre correcto del file es .../.../D2009307/P2009307367.ext
167 167
168 168 Entonces la funcion prueba con las siguientes combinaciones
169 169 .../.../y2009307367.ext
170 170 .../.../Y2009307367.ext
171 171 .../.../x2009307/y2009307367.ext
172 172 .../.../x2009307/Y2009307367.ext
173 173 .../.../X2009307/y2009307367.ext
174 174 .../.../X2009307/Y2009307367.ext
175 175 siendo para este caso, la ultima combinacion de letras, identica al file buscado
176 176
177 177 Return:
178 178 Si encuentra la cobinacion adecuada devuelve el path completo y el nombre del file
179 179 caso contrario devuelve None como path y el la ultima combinacion de nombre en mayusculas
180 180 para el filename
181 181 """
182 182 fullfilename = None
183 183 find_flag = False
184 184 filename = None
185 185
186 186 prefixDirList = [None,'d','D']
187 187 if ext.lower() == ".r": #voltage
188 188 prefixFileList = ['d','D']
189 189 elif ext.lower() == ".pdata": #spectra
190 190 prefixFileList = ['p','P']
191 191 else:
192 192 return None, filename
193 193
194 194 #barrido por las combinaciones posibles
195 195 for prefixDir in prefixDirList:
196 196 thispath = path
197 197 if prefixDir != None:
198 198 #formo el nombre del directorio xYYYYDDD (x=d o x=D)
199 199 thispath = os.path.join(path, "%s%04d%03d" % ( prefixDir, year, doy ))
200 200
201 201 for prefixFile in prefixFileList: #barrido por las dos combinaciones posibles de "D"
202 202 filename = "%s%04d%03d%03d%s" % ( prefixFile, year, doy, set, ext ) #formo el nombre del file xYYYYDDDSSS.ext
203 203 fullfilename = os.path.join( thispath, filename ) #formo el path completo
204 204
205 205 if os.path.exists( fullfilename ): #verifico que exista
206 206 find_flag = True
207 207 break
208 208 if find_flag:
209 209 break
210 210
211 211 if not(find_flag):
212 212 return None, filename
213 213
214 214 return fullfilename, filename
215 215
216 def isDoyFolder(folder):
217
218 try:
219 year = int(folder[1:5])
220 except:
221 return 0
222
223 try:
224 doy = int(folder[5:8])
225 except:
226 return 0
227 return 1
228
216 229 class JRODataIO:
217 230
218 231 c = 3E8
219 232
220 233 isConfig = False
221 234
222 235 basicHeaderObj = BasicHeader(LOCALTIME)
223 236
224 237 systemHeaderObj = SystemHeader()
225 238
226 239 radarControllerHeaderObj = RadarControllerHeader()
227 240
228 241 processingHeaderObj = ProcessingHeader()
229 242
230 243 online = 0
231 244
232 245 dtype = None
233 246
234 247 pathList = []
235 248
236 249 filenameList = []
237 250
238 251 filename = None
239 252
240 253 ext = None
241 254
242 255 flagIsNewFile = 1
243 256
244 257 flagTimeBlock = 0
245 258
246 259 flagIsNewBlock = 0
247 260
248 261 fp = None
249 262
250 263 firstHeaderSize = 0
251 264
252 265 basicHeaderSize = 24
253 266
254 267 versionFile = 1103
255 268
256 269 fileSize = None
257 270
258 271 ippSeconds = None
259 272
260 273 fileSizeByHeader = None
261 274
262 275 fileIndex = None
263 276
264 277 profileIndex = None
265 278
266 279 blockIndex = None
267 280
268 281 nTotalBlocks = None
269 282
270 283 maxTimeStep = 30
271 284
272 285 lastUTTime = None
273 286
274 287 datablock = None
275 288
276 289 dataOut = None
277 290
278 291 blocksize = None
279 292
280 293 def __init__(self):
281 294
282 295 raise ValueError, "Not implemented"
283 296
284 297 def run(self):
285 298
286 299 raise ValueError, "Not implemented"
287 300
288 301 def getOutput(self):
289 302
290 303 return self.dataOut
291 304
292 305 class JRODataReader(JRODataIO, ProcessingUnit):
293 306
294 307 nReadBlocks = 0
295 308
296 309 delay = 10 #number of seconds waiting a new file
297 310
298 311 nTries = 3 #quantity tries
299 312
300 313 nFiles = 3 #number of files for searching
301 314
302 315 flagNoMoreFiles = 0
303 316
304 317 def __init__(self):
305 318
306 319 """
307 320
308 321 """
309 322
310 323 raise ValueError, "This method has not been implemented"
311 324
312 325
313 326 def createObjByDefault(self):
314 327 """
315 328
316 329 """
317 330 raise ValueError, "This method has not been implemented"
318 331
319 332 def getBlockDimension(self):
320 333
321 334 raise ValueError, "No implemented"
322 335
323 336 def __searchFilesOffLine(self,
324 337 path,
325 338 startDate,
326 339 endDate,
327 340 startTime=datetime.time(0,0,0),
328 341 endTime=datetime.time(23,59,59),
329 342 set=None,
330 343 expLabel='',
331 344 ext='.r',
332 345 walk=True):
333 346
334 347 pathList = []
335 348
336 349 if not walk:
337 350 pathList.append(path)
338 351
339 352 else:
340 353 dirList = []
341 354 for thisPath in os.listdir(path):
342 if os.path.isdir(os.path.join(path,thisPath)):
343 dirList.append(thisPath)
355 if not os.path.isdir(os.path.join(path,thisPath)):
356 continue
357 if not isDoyFolder(thisPath):
358 continue
359
360 dirList.append(thisPath)
344 361
345 362 if not(dirList):
346 363 return None, None
347 364
348 365 thisDate = startDate
349 366
350 367 while(thisDate <= endDate):
351 368 year = thisDate.timetuple().tm_year
352 369 doy = thisDate.timetuple().tm_yday
353 370
354 371 match = fnmatch.filter(dirList, '?' + '%4.4d%3.3d' % (year,doy))
355 372 if len(match) == 0:
356 373 thisDate += datetime.timedelta(1)
357 374 continue
358 375
359 376 pathList.append(os.path.join(path,match[0],expLabel))
360 377 thisDate += datetime.timedelta(1)
361 378
362 379 if pathList == []:
363 380 print "Any folder was found for the date range: %s-%s" %(startDate, endDate)
364 381 return None, None
365 382
366 383 print "%d folder(s) was(were) found for the date range: %s-%s" %(len(pathList), startDate, endDate)
367 384
368 385 filenameList = []
369 386 for thisPath in pathList:
370 387
371 388 fileList = glob.glob1(thisPath, "*%s" %ext)
372 389 fileList.sort()
373 390
374 391 for file in fileList:
375 392
376 393 filename = os.path.join(thisPath,file)
377 394
378 395 if isFileinThisTime(filename, startTime, endTime):
379 396 filenameList.append(filename)
380 397
381 398 if not(filenameList):
382 399 print "Any file was found for the time range %s - %s" %(startTime, endTime)
383 400 return None, None
384 401
385 402 print "%d file(s) was(were) found for the time range: %s - %s" %(len(filenameList), startTime, endTime)
386 403
387 404 self.filenameList = filenameList
388 405
389 406 return pathList, filenameList
390 407
391 408 def __searchFilesOnLine(self, path, expLabel = "", ext = None, walk=True):
392 409
393 410 """
394 411 Busca el ultimo archivo de la ultima carpeta (determinada o no por startDateTime) y
395 412 devuelve el archivo encontrado ademas de otros datos.
396 413
397 414 Input:
398 415 path : carpeta donde estan contenidos los files que contiene data
399 416
400 417 expLabel : Nombre del subexperimento (subfolder)
401 418
402 419 ext : extension de los files
403 420
404 421 walk : Si es habilitado no realiza busquedas dentro de los ubdirectorios (doypath)
405 422
406 423 Return:
407 424 directory : eL directorio donde esta el file encontrado
408 425 filename : el ultimo file de una determinada carpeta
409 426 year : el anho
410 427 doy : el numero de dia del anho
411 428 set : el set del archivo
412 429
413 430
414 431 """
415 432 dirList = []
416 433
417 434 if walk:
418 435
419 436 #Filtra solo los directorios
420 437 for thisPath in os.listdir(path):
421 438 if os.path.isdir(os.path.join(path, thisPath)):
422 439 dirList.append(thisPath)
423 440
424 441 if not(dirList):
425 442 return None, None, None, None, None
426 443
427 444 dirList = sorted( dirList, key=str.lower )
428 445
429 446 doypath = dirList[-1]
430 447 fullpath = os.path.join(path, doypath, expLabel)
431 448
432 449 else:
433 450 fullpath = path
434 451
435 452 print "%s folder was found: " %(fullpath )
436 453
437 454 filename = getlastFileFromPath(fullpath, ext)
438 455
439 456 if not(filename):
440 457 return None, None, None, None, None
441 458
442 459 print "%s file was found" %(filename)
443 460
444 461 if not(self.__verifyFile(os.path.join(fullpath, filename))):
445 462 return None, None, None, None, None
446 463
447 464 year = int( filename[1:5] )
448 465 doy = int( filename[5:8] )
449 466 set = int( filename[8:11] )
450 467
451 468 return fullpath, filename, year, doy, set
452 469
453 470
454 471
455 472 def __setNextFileOffline(self):
456 473
457 474 idFile = self.fileIndex
458 475
459 476 while (True):
460 477 idFile += 1
461 478 if not(idFile < len(self.filenameList)):
462 479 self.flagNoMoreFiles = 1
463 480 print "No more Files"
464 481 return 0
465 482
466 483 filename = self.filenameList[idFile]
467 484
468 485 if not(self.__verifyFile(filename)):
469 486 continue
470 487
471 488 fileSize = os.path.getsize(filename)
472 489 fp = open(filename,'rb')
473 490 break
474 491
475 492 self.flagIsNewFile = 1
476 493 self.fileIndex = idFile
477 494 self.filename = filename
478 495 self.fileSize = fileSize
479 496 self.fp = fp
480 497
481 498 print "Setting the file: %s"%self.filename
482 499
483 500 return 1
484 501
485 502 def __setNextFileOnline(self):
486 503 """
487 504 Busca el siguiente file que tenga suficiente data para ser leida, dentro de un folder especifico, si
488 505 no encuentra un file valido espera un tiempo determinado y luego busca en los posibles n files
489 506 siguientes.
490 507
491 508 Affected:
492 509 self.flagIsNewFile
493 510 self.filename
494 511 self.fileSize
495 512 self.fp
496 513 self.set
497 514 self.flagNoMoreFiles
498 515
499 516 Return:
500 517 0 : si luego de una busqueda del siguiente file valido este no pudo ser encontrado
501 518 1 : si el file fue abierto con exito y esta listo a ser leido
502 519
503 520 Excepciones:
504 521 Si un determinado file no puede ser abierto
505 522 """
506 523 nFiles = 0
507 524 fileOk_flag = False
508 525 firstTime_flag = True
509 526
510 527 self.set += 1
511 528
512 529 #busca el 1er file disponible
513 530 fullfilename, filename = checkForRealPath( self.path, self.year, self.doy, self.set, self.ext )
514 531 if fullfilename:
515 532 if self.__verifyFile(fullfilename, False):
516 533 fileOk_flag = True
517 534
518 535 #si no encuentra un file entonces espera y vuelve a buscar
519 536 if not(fileOk_flag):
520 537 for nFiles in range(self.nFiles+1): #busco en los siguientes self.nFiles+1 files posibles
521 538
522 539 if firstTime_flag: #si es la 1era vez entonces hace el for self.nTries veces
523 540 tries = self.nTries
524 541 else:
525 542 tries = 1 #si no es la 1era vez entonces solo lo hace una vez
526 543
527 544 for nTries in range( tries ):
528 545 if firstTime_flag:
529 546 print "\tWaiting %0.2f sec for the file \"%s\" , try %03d ..." % ( self.delay, filename, nTries+1 )
530 547 time.sleep( self.delay )
531 548 else:
532 549 print "\tSearching next \"%s%04d%03d%03d%s\" file ..." % (self.optchar, self.year, self.doy, self.set, self.ext)
533 550
534 551 fullfilename, filename = checkForRealPath( self.path, self.year, self.doy, self.set, self.ext )
535 552 if fullfilename:
536 553 if self.__verifyFile(fullfilename):
537 554 fileOk_flag = True
538 555 break
539 556
540 557 if fileOk_flag:
541 558 break
542 559
543 560 firstTime_flag = False
544 561
545 562 print "\tSkipping the file \"%s\" due to this file doesn't exist" % filename
546 563 self.set += 1
547 564
548 565 if nFiles == (self.nFiles-1): #si no encuentro el file buscado cambio de carpeta y busco en la siguiente carpeta
549 566 self.set = 0
550 567 self.doy += 1
551 568
552 569 if fileOk_flag:
553 570 self.fileSize = os.path.getsize( fullfilename )
554 571 self.filename = fullfilename
555 572 self.flagIsNewFile = 1
556 573 if self.fp != None: self.fp.close()
557 574 self.fp = open(fullfilename, 'rb')
558 575 self.flagNoMoreFiles = 0
559 576 print 'Setting the file: %s' % fullfilename
560 577 else:
561 578 self.fileSize = 0
562 579 self.filename = None
563 580 self.flagIsNewFile = 0
564 581 self.fp = None
565 582 self.flagNoMoreFiles = 1
566 583 print 'No more Files'
567 584
568 585 return fileOk_flag
569 586
570 587
571 588 def setNextFile(self):
572 589 if self.fp != None:
573 590 self.fp.close()
574 591
575 592 if self.online:
576 593 newFile = self.__setNextFileOnline()
577 594 else:
578 595 newFile = self.__setNextFileOffline()
579 596
580 597 if not(newFile):
581 598 return 0
582 599
583 600 self.__readFirstHeader()
584 601 self.nReadBlocks = 0
585 602 return 1
586 603
587 604 def __waitNewBlock(self):
588 605 """
589 606 Return 1 si se encontro un nuevo bloque de datos, 0 de otra forma.
590 607
591 608 Si el modo de lectura es OffLine siempre retorn 0
592 609 """
593 610 if not self.online:
594 611 return 0
595 612
596 613 if (self.nReadBlocks >= self.processingHeaderObj.dataBlocksPerFile):
597 614 return 0
598 615
599 616 currentPointer = self.fp.tell()
600 617
601 618 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
602 619
603 620 for nTries in range( self.nTries ):
604 621
605 622 self.fp.close()
606 623 self.fp = open( self.filename, 'rb' )
607 624 self.fp.seek( currentPointer )
608 625
609 626 self.fileSize = os.path.getsize( self.filename )
610 627 currentSize = self.fileSize - currentPointer
611 628
612 629 if ( currentSize >= neededSize ):
613 630 self.__rdBasicHeader()
614 631 return 1
615 632
616 633 print "\tWaiting %0.2f seconds for the next block, try %03d ..." % (self.delay, nTries+1)
617 634 time.sleep( self.delay )
618 635
619 636
620 637 return 0
621 638
622 639 def __setNewBlock(self):
623 640
624 641 if self.fp == None:
625 642 return 0
626 643
627 644 if self.flagIsNewFile:
628 645 return 1
629 646
630 647 self.lastUTTime = self.basicHeaderObj.utc
631 648 currentSize = self.fileSize - self.fp.tell()
632 649 neededSize = self.processingHeaderObj.blockSize + self.basicHeaderSize
633 650
634 651 if (currentSize >= neededSize):
635 652 self.__rdBasicHeader()
636 653 return 1
637 654
638 655 if self.__waitNewBlock():
639 656 return 1
640 657
641 658 if not(self.setNextFile()):
642 659 return 0
643 660
644 661 deltaTime = self.basicHeaderObj.utc - self.lastUTTime #
645 662
646 663 self.flagTimeBlock = 0
647 664
648 665 if deltaTime > self.maxTimeStep:
649 666 self.flagTimeBlock = 1
650 667
651 668 return 1
652 669
653 670
654 671 def readNextBlock(self):
655 672 if not(self.__setNewBlock()):
656 673 return 0
657 674
658 675 if not(self.readBlock()):
659 676 return 0
660 677
661 678 return 1
662 679
663 680 def __rdProcessingHeader(self, fp=None):
664 681 if fp == None:
665 682 fp = self.fp
666 683
667 684 self.processingHeaderObj.read(fp)
668 685
669 686 def __rdRadarControllerHeader(self, fp=None):
670 687 if fp == None:
671 688 fp = self.fp
672 689
673 690 self.radarControllerHeaderObj.read(fp)
674 691
675 692 def __rdSystemHeader(self, fp=None):
676 693 if fp == None:
677 694 fp = self.fp
678 695
679 696 self.systemHeaderObj.read(fp)
680 697
681 698 def __rdBasicHeader(self, fp=None):
682 699 if fp == None:
683 700 fp = self.fp
684 701
685 702 self.basicHeaderObj.read(fp)
686 703
687 704
688 705 def __readFirstHeader(self):
689 706 self.__rdBasicHeader()
690 707 self.__rdSystemHeader()
691 708 self.__rdRadarControllerHeader()
692 709 self.__rdProcessingHeader()
693 710
694 711 self.firstHeaderSize = self.basicHeaderObj.size
695 712
696 713 datatype = int(numpy.log2((self.processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
697 714 if datatype == 0:
698 715 datatype_str = numpy.dtype([('real','<i1'),('imag','<i1')])
699 716 elif datatype == 1:
700 717 datatype_str = numpy.dtype([('real','<i2'),('imag','<i2')])
701 718 elif datatype == 2:
702 719 datatype_str = numpy.dtype([('real','<i4'),('imag','<i4')])
703 720 elif datatype == 3:
704 721 datatype_str = numpy.dtype([('real','<i8'),('imag','<i8')])
705 722 elif datatype == 4:
706 723 datatype_str = numpy.dtype([('real','<f4'),('imag','<f4')])
707 724 elif datatype == 5:
708 725 datatype_str = numpy.dtype([('real','<f8'),('imag','<f8')])
709 726 else:
710 727 raise ValueError, 'Data type was not defined'
711 728
712 729 self.dtype = datatype_str
713 730 self.ippSeconds = 2 * 1000 * self.radarControllerHeaderObj.ipp / self.c
714 731 self.fileSizeByHeader = self.processingHeaderObj.dataBlocksPerFile * self.processingHeaderObj.blockSize + self.firstHeaderSize + self.basicHeaderSize*(self.processingHeaderObj.dataBlocksPerFile - 1)
715 732 # self.dataOut.channelList = numpy.arange(self.systemHeaderObj.numChannels)
716 733 # self.dataOut.channelIndexList = numpy.arange(self.systemHeaderObj.numChannels)
717 734 self.getBlockDimension()
718 735
719 736
720 737 def __verifyFile(self, filename, msgFlag=True):
721 738 msg = None
722 739 try:
723 740 fp = open(filename, 'rb')
724 741 currentPosition = fp.tell()
725 742 except:
726 743 if msgFlag:
727 744 print "The file %s can't be opened" % (filename)
728 745 return False
729 746
730 747 neededSize = self.processingHeaderObj.blockSize + self.firstHeaderSize
731 748
732 749 if neededSize == 0:
733 750 basicHeaderObj = BasicHeader(LOCALTIME)
734 751 systemHeaderObj = SystemHeader()
735 752 radarControllerHeaderObj = RadarControllerHeader()
736 753 processingHeaderObj = ProcessingHeader()
737 754
738 755 try:
739 756 if not( basicHeaderObj.read(fp) ): raise IOError
740 757 if not( systemHeaderObj.read(fp) ): raise IOError
741 758 if not( radarControllerHeaderObj.read(fp) ): raise IOError
742 759 if not( processingHeaderObj.read(fp) ): raise IOError
743 760 data_type = int(numpy.log2((processingHeaderObj.processFlags & PROCFLAG.DATATYPE_MASK))-numpy.log2(PROCFLAG.DATATYPE_CHAR))
744 761
745 762 neededSize = processingHeaderObj.blockSize + basicHeaderObj.size
746 763
747 764 except:
748 765 if msgFlag:
749 766 print "\tThe file %s is empty or it hasn't enough data" % filename
750 767
751 768 fp.close()
752 769 return False
753 770 else:
754 771 msg = "\tSkipping the file %s due to it hasn't enough data" %filename
755 772
756 773 fp.close()
757 774 fileSize = os.path.getsize(filename)
758 775 currentSize = fileSize - currentPosition
759 776 if currentSize < neededSize:
760 777 if msgFlag and (msg != None):
761 778 print msg #print"\tSkipping the file %s due to it hasn't enough data" %filename
762 779 return False
763 780
764 781 return True
765 782
766 783 def setup(self,
767 784 path=None,
768 785 startDate=None,
769 786 endDate=None,
770 787 startTime=datetime.time(0,0,0),
771 788 endTime=datetime.time(23,59,59),
772 789 set=0,
773 790 expLabel = "",
774 791 ext = None,
775 792 online = False,
776 793 delay = 60,
777 794 walk = True):
778 795
779 796 if path == None:
780 797 raise ValueError, "The path is not valid"
781 798
782 799 if ext == None:
783 800 ext = self.ext
784 801
785 802 if online:
786 803 print "Searching files in online mode..."
787 804
788 805 for nTries in range( self.nTries ):
789 806 fullpath, file, year, doy, set = self.__searchFilesOnLine(path=path, expLabel=expLabel, ext=ext, walk=walk)
790 807
791 808 if fullpath:
792 809 break
793 810
794 811 print '\tWaiting %0.2f sec for an valid file in %s: try %02d ...' % (self.delay, path, nTries+1)
795 812 time.sleep( self.delay )
796 813
797 814 if not(fullpath):
798 815 print "There 'isn't valied files in %s" % path
799 816 return None
800 817
801 818 self.year = year
802 819 self.doy = doy
803 820 self.set = set - 1
804 821 self.path = path
805 822
806 823 else:
807 824 print "Searching files in offline mode ..."
808 825 pathList, filenameList = self.__searchFilesOffLine(path, startDate=startDate, endDate=endDate,
809 826 startTime=startTime, endTime=endTime,
810 827 set=set, expLabel=expLabel, ext=ext,
811 828 walk=walk)
812 829
813 830 if not(pathList):
814 831 print "No *%s files into the folder %s \nfor the range: %s - %s"%(ext, path,
815 832 datetime.datetime.combine(startDate,startTime).ctime(),
816 833 datetime.datetime.combine(endDate,endTime).ctime())
817 834
818 835 sys.exit(-1)
819 836
820 837
821 838 self.fileIndex = -1
822 839 self.pathList = pathList
823 840 self.filenameList = filenameList
824 841
825 842 self.online = online
826 843 self.delay = delay
827 844 ext = ext.lower()
828 845 self.ext = ext
829 846
830 847 if not(self.setNextFile()):
831 848 if (startDate!=None) and (endDate!=None):
832 849 print "No files in range: %s - %s" %(datetime.datetime.combine(startDate,startTime).ctime(), datetime.datetime.combine(endDate,endTime).ctime())
833 850 elif startDate != None:
834 851 print "No files in range: %s" %(datetime.datetime.combine(startDate,startTime).ctime())
835 852 else:
836 853 print "No files"
837 854
838 855 sys.exit(-1)
839 856
840 857 # self.updateDataHeader()
841 858
842 859 return self.dataOut
843 860
844 861 def getData():
845 862
846 863 raise ValueError, "This method has not been implemented"
847 864
848 865 def hasNotDataInBuffer():
849 866
850 867 raise ValueError, "This method has not been implemented"
851 868
852 869 def readBlock():
853 870
854 871 raise ValueError, "This method has not been implemented"
855 872
856 873 def isEndProcess(self):
857 874
858 875 return self.flagNoMoreFiles
859 876
860 877 def printReadBlocks(self):
861 878
862 879 print "Number of read blocks per file %04d" %self.nReadBlocks
863 880
864 881 def printTotalBlocks(self):
865 882
866 883 print "Number of read blocks %04d" %self.nTotalBlocks
867 884
868 885 def printNumberOfBlock(self):
869 886
870 887 if self.flagIsNewBlock:
871 888 print "Block No. %04d, Total blocks %04d" %(self.basicHeaderObj.dataBlock, self.nTotalBlocks)
872 889
873 890 def printInfo(self):
874 891
875 892 print self.basicHeaderObj.printInfo()
876 893 print self.systemHeaderObj.printInfo()
877 894 print self.radarControllerHeaderObj.printInfo()
878 895 print self.processingHeaderObj.printInfo()
879 896
880 897
881 898 def run(self, **kwargs):
882 899
883 900 if not(self.isConfig):
884 901
885 902 # self.dataOut = dataOut
886 903 self.setup(**kwargs)
887 904 self.isConfig = True
888 905
889 906 self.getData()
890 907
891 908 class JRODataWriter(JRODataIO, Operation):
892 909
893 910 """
894 911 Esta clase permite escribir datos a archivos procesados (.r o ,pdata). La escritura
895 912 de los datos siempre se realiza por bloques.
896 913 """
897 914
898 915 blockIndex = 0
899 916
900 917 path = None
901 918
902 919 setFile = None
903 920
904 921 profilesPerBlock = None
905 922
906 923 blocksPerFile = None
907 924
908 925 nWriteBlocks = 0
909 926
910 927 def __init__(self, dataOut=None):
911 928 raise ValueError, "Not implemented"
912 929
913 930
914 931 def hasAllDataInBuffer(self):
915 932 raise ValueError, "Not implemented"
916 933
917 934
918 935 def setBlockDimension(self):
919 936 raise ValueError, "Not implemented"
920 937
921 938
922 939 def writeBlock(self):
923 940 raise ValueError, "No implemented"
924 941
925 942
926 943 def putData(self):
927 944 raise ValueError, "No implemented"
928 945
929 946 def getDataHeader(self):
930 947 """
931 948 Obtiene una copia del First Header
932 949
933 950 Affected:
934 951
935 952 self.basicHeaderObj
936 953 self.systemHeaderObj
937 954 self.radarControllerHeaderObj
938 955 self.processingHeaderObj self.
939 956
940 957 Return:
941 958 None
942 959 """
943 960
944 961 raise ValueError, "No implemented"
945 962
946 963 def getBasicHeader(self):
947 964
948 965 self.basicHeaderObj.size = self.basicHeaderSize #bytes
949 966 self.basicHeaderObj.version = self.versionFile
950 967 self.basicHeaderObj.dataBlock = self.nTotalBlocks
951 968
952 969 utc = numpy.floor(self.dataOut.utctime)
953 970 milisecond = (self.dataOut.utctime - utc)* 1000.0
954 971
955 972 self.basicHeaderObj.utc = utc
956 973 self.basicHeaderObj.miliSecond = milisecond
957 974 self.basicHeaderObj.timeZone = 0
958 975 self.basicHeaderObj.dstFlag = 0
959 976 self.basicHeaderObj.errorCount = 0
960 977
961 978 def __writeFirstHeader(self):
962 979 """
963 980 Escribe el primer header del file es decir el Basic header y el Long header (SystemHeader, RadarControllerHeader, ProcessingHeader)
964 981
965 982 Affected:
966 983 __dataType
967 984
968 985 Return:
969 986 None
970 987 """
971 988
972 989 # CALCULAR PARAMETROS
973 990
974 991 sizeLongHeader = self.systemHeaderObj.size + self.radarControllerHeaderObj.size + self.processingHeaderObj.size
975 992 self.basicHeaderObj.size = self.basicHeaderSize + sizeLongHeader
976 993
977 994 self.basicHeaderObj.write(self.fp)
978 995 self.systemHeaderObj.write(self.fp)
979 996 self.radarControllerHeaderObj.write(self.fp)
980 997 self.processingHeaderObj.write(self.fp)
981 998
982 999 self.dtype = self.dataOut.dtype
983 1000
984 1001 def __setNewBlock(self):
985 1002 """
986 1003 Si es un nuevo file escribe el First Header caso contrario escribe solo el Basic Header
987 1004
988 1005 Return:
989 1006 0 : si no pudo escribir nada
990 1007 1 : Si escribio el Basic el First Header
991 1008 """
992 1009 if self.fp == None:
993 1010 self.setNextFile()
994 1011
995 1012 if self.flagIsNewFile:
996 1013 return 1
997 1014
998 1015 if self.blockIndex < self.processingHeaderObj.dataBlocksPerFile:
999 1016 self.basicHeaderObj.write(self.fp)
1000 1017 return 1
1001 1018
1002 1019 if not( self.setNextFile() ):
1003 1020 return 0
1004 1021
1005 1022 return 1
1006 1023
1007 1024
1008 1025 def writeNextBlock(self):
1009 1026 """
1010 1027 Selecciona el bloque siguiente de datos y los escribe en un file
1011 1028
1012 1029 Return:
1013 1030 0 : Si no hizo pudo escribir el bloque de datos
1014 1031 1 : Si no pudo escribir el bloque de datos
1015 1032 """
1016 1033 if not( self.__setNewBlock() ):
1017 1034 return 0
1018 1035
1019 1036 self.writeBlock()
1020 1037
1021 1038 return 1
1022 1039
1023 1040 def setNextFile(self):
1024 1041 """
1025 1042 Determina el siguiente file que sera escrito
1026 1043
1027 1044 Affected:
1028 1045 self.filename
1029 1046 self.subfolder
1030 1047 self.fp
1031 1048 self.setFile
1032 1049 self.flagIsNewFile
1033 1050
1034 1051 Return:
1035 1052 0 : Si el archivo no puede ser escrito
1036 1053 1 : Si el archivo esta listo para ser escrito
1037 1054 """
1038 1055 ext = self.ext
1039 1056 path = self.path
1040 1057
1041 1058 if self.fp != None:
1042 1059 self.fp.close()
1043 1060
1044 1061 timeTuple = time.localtime( self.dataOut.utctime)
1045 1062 subfolder = 'd%4.4d%3.3d' % (timeTuple.tm_year,timeTuple.tm_yday)
1046 1063
1047 1064 fullpath = os.path.join( path, subfolder )
1048 1065 if not( os.path.exists(fullpath) ):
1049 1066 os.mkdir(fullpath)
1050 1067 self.setFile = -1 #inicializo mi contador de seteo
1051 1068 else:
1052 1069 filesList = os.listdir( fullpath )
1053 1070 if len( filesList ) > 0:
1054 1071 filesList = sorted( filesList, key=str.lower )
1055 1072 filen = filesList[-1]
1056 1073 # el filename debera tener el siguiente formato
1057 1074 # 0 1234 567 89A BCDE (hex)
1058 1075 # x YYYY DDD SSS .ext
1059 1076 if isNumber( filen[8:11] ):
1060 1077 self.setFile = int( filen[8:11] ) #inicializo mi contador de seteo al seteo del ultimo file
1061 1078 else:
1062 1079 self.setFile = -1
1063 1080 else:
1064 1081 self.setFile = -1 #inicializo mi contador de seteo
1065 1082
1066 1083 setFile = self.setFile
1067 1084 setFile += 1
1068 1085
1069 1086 file = '%s%4.4d%3.3d%3.3d%s' % (self.optchar,
1070 1087 timeTuple.tm_year,
1071 1088 timeTuple.tm_yday,
1072 1089 setFile,
1073 1090 ext )
1074 1091
1075 1092 filename = os.path.join( path, subfolder, file )
1076 1093
1077 1094 fp = open( filename,'wb' )
1078 1095
1079 1096 self.blockIndex = 0
1080 1097
1081 1098 #guardando atributos
1082 1099 self.filename = filename
1083 1100 self.subfolder = subfolder
1084 1101 self.fp = fp
1085 1102 self.setFile = setFile
1086 1103 self.flagIsNewFile = 1
1087 1104
1088 1105 self.getDataHeader()
1089 1106
1090 1107 print 'Writing the file: %s'%self.filename
1091 1108
1092 1109 self.__writeFirstHeader()
1093 1110
1094 1111 return 1
1095 1112
1096 1113 def setup(self, dataOut, path, blocksPerFile, profilesPerBlock=None, set=0, ext=None):
1097 1114 """
1098 1115 Setea el tipo de formato en la cual sera guardada la data y escribe el First Header
1099 1116
1100 1117 Inputs:
1101 1118 path : el path destino en el cual se escribiran los files a crear
1102 1119 format : formato en el cual sera salvado un file
1103 1120 set : el setebo del file
1104 1121
1105 1122 Return:
1106 1123 0 : Si no realizo un buen seteo
1107 1124 1 : Si realizo un buen seteo
1108 1125 """
1109 1126
1110 1127 if ext == None:
1111 1128 ext = self.ext
1112 1129
1113 1130 ext = ext.lower()
1114 1131
1115 1132 self.ext = ext
1116 1133
1117 1134 self.path = path
1118 1135
1119 1136 self.setFile = set - 1
1120 1137
1121 1138 self.blocksPerFile = blocksPerFile
1122 1139
1123 1140 self.profilesPerBlock = profilesPerBlock
1124 1141
1125 1142 self.dataOut = dataOut
1126 1143
1127 1144 if not(self.setNextFile()):
1128 1145 print "There isn't a next file"
1129 1146 return 0
1130 1147
1131 1148 self.setBlockDimension()
1132 1149
1133 1150 return 1
1134 1151
1135 1152 def run(self, dataOut, **kwargs):
1136 1153
1137 1154 if not(self.isConfig):
1138 1155
1139 1156 self.setup(dataOut, **kwargs)
1140 1157 self.isConfig = True
1141 1158
1142 1159 self.putData()
1143 1160
1144 1161 class VoltageReader(JRODataReader):
1145 1162 """
1146 1163 Esta clase permite leer datos de voltage desde archivos en formato rawdata (.r). La lectura
1147 1164 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones:
1148 1165 perfiles*alturas*canales) son almacenados en la variable "buffer".
1149 1166
1150 1167 perfiles * alturas * canales
1151 1168
1152 1169 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1153 1170 RadarControllerHeader y Voltage. Los tres primeros se usan para almacenar informacion de la
1154 1171 cabecera de datos (metadata), y el cuarto (Voltage) para obtener y almacenar un perfil de
1155 1172 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1156 1173
1157 1174 Example:
1158 1175
1159 1176 dpath = "/home/myuser/data"
1160 1177
1161 1178 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1162 1179
1163 1180 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1164 1181
1165 1182 readerObj = VoltageReader()
1166 1183
1167 1184 readerObj.setup(dpath, startTime, endTime)
1168 1185
1169 1186 while(True):
1170 1187
1171 1188 #to get one profile
1172 1189 profile = readerObj.getData()
1173 1190
1174 1191 #print the profile
1175 1192 print profile
1176 1193
1177 1194 #If you want to see all datablock
1178 1195 print readerObj.datablock
1179 1196
1180 1197 if readerObj.flagNoMoreFiles:
1181 1198 break
1182 1199
1183 1200 """
1184 1201
1185 1202 ext = ".r"
1186 1203
1187 1204 optchar = "D"
1188 1205 dataOut = None
1189 1206
1190 1207
1191 1208 def __init__(self):
1192 1209 """
1193 1210 Inicializador de la clase VoltageReader para la lectura de datos de voltage.
1194 1211
1195 1212 Input:
1196 1213 dataOut : Objeto de la clase Voltage. Este objeto sera utilizado para
1197 1214 almacenar un perfil de datos cada vez que se haga un requerimiento
1198 1215 (getData). El perfil sera obtenido a partir del buffer de datos,
1199 1216 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1200 1217 bloque de datos.
1201 1218 Si este parametro no es pasado se creara uno internamente.
1202 1219
1203 1220 Variables afectadas:
1204 1221 self.dataOut
1205 1222
1206 1223 Return:
1207 1224 None
1208 1225 """
1209 1226
1210 1227 self.isConfig = False
1211 1228
1212 1229 self.datablock = None
1213 1230
1214 1231 self.utc = 0
1215 1232
1216 1233 self.ext = ".r"
1217 1234
1218 1235 self.optchar = "D"
1219 1236
1220 1237 self.basicHeaderObj = BasicHeader(LOCALTIME)
1221 1238
1222 1239 self.systemHeaderObj = SystemHeader()
1223 1240
1224 1241 self.radarControllerHeaderObj = RadarControllerHeader()
1225 1242
1226 1243 self.processingHeaderObj = ProcessingHeader()
1227 1244
1228 1245 self.online = 0
1229 1246
1230 1247 self.fp = None
1231 1248
1232 1249 self.idFile = None
1233 1250
1234 1251 self.dtype = None
1235 1252
1236 1253 self.fileSizeByHeader = None
1237 1254
1238 1255 self.filenameList = []
1239 1256
1240 1257 self.filename = None
1241 1258
1242 1259 self.fileSize = None
1243 1260
1244 1261 self.firstHeaderSize = 0
1245 1262
1246 1263 self.basicHeaderSize = 24
1247 1264
1248 1265 self.pathList = []
1249 1266
1250 1267 self.filenameList = []
1251 1268
1252 1269 self.lastUTTime = 0
1253 1270
1254 1271 self.maxTimeStep = 30
1255 1272
1256 1273 self.flagNoMoreFiles = 0
1257 1274
1258 1275 self.set = 0
1259 1276
1260 1277 self.path = None
1261 1278
1262 1279 self.profileIndex = 9999
1263 1280
1264 1281 self.delay = 3 #seconds
1265 1282
1266 1283 self.nTries = 3 #quantity tries
1267 1284
1268 1285 self.nFiles = 3 #number of files for searching
1269 1286
1270 1287 self.nReadBlocks = 0
1271 1288
1272 1289 self.flagIsNewFile = 1
1273 1290
1274 1291 self.ippSeconds = 0
1275 1292
1276 1293 self.flagTimeBlock = 0
1277 1294
1278 1295 self.flagIsNewBlock = 0
1279 1296
1280 1297 self.nTotalBlocks = 0
1281 1298
1282 1299 self.blocksize = 0
1283 1300
1284 1301 self.dataOut = self.createObjByDefault()
1285 1302
1286 1303 def createObjByDefault(self):
1287 1304
1288 1305 dataObj = Voltage()
1289 1306
1290 1307 return dataObj
1291 1308
1292 1309 def __hasNotDataInBuffer(self):
1293 1310 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1294 1311 return 1
1295 1312 return 0
1296 1313
1297 1314
1298 1315 def getBlockDimension(self):
1299 1316 """
1300 1317 Obtiene la cantidad de puntos a leer por cada bloque de datos
1301 1318
1302 1319 Affected:
1303 1320 self.blocksize
1304 1321
1305 1322 Return:
1306 1323 None
1307 1324 """
1308 1325 pts2read = self.processingHeaderObj.profilesPerBlock * self.processingHeaderObj.nHeights * self.systemHeaderObj.nChannels
1309 1326 self.blocksize = pts2read
1310 1327
1311 1328
1312 1329 def readBlock(self):
1313 1330 """
1314 1331 readBlock lee el bloque de datos desde la posicion actual del puntero del archivo
1315 1332 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
1316 1333 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
1317 1334 es seteado a 0
1318 1335
1319 1336 Inputs:
1320 1337 None
1321 1338
1322 1339 Return:
1323 1340 None
1324 1341
1325 1342 Affected:
1326 1343 self.profileIndex
1327 1344 self.datablock
1328 1345 self.flagIsNewFile
1329 1346 self.flagIsNewBlock
1330 1347 self.nTotalBlocks
1331 1348
1332 1349 Exceptions:
1333 1350 Si un bloque leido no es un bloque valido
1334 1351 """
1335 1352
1336 1353 junk = numpy.fromfile( self.fp, self.dtype, self.blocksize )
1337 1354
1338 1355 try:
1339 1356 junk = junk.reshape( (self.processingHeaderObj.profilesPerBlock, self.processingHeaderObj.nHeights, self.systemHeaderObj.nChannels) )
1340 1357 except:
1341 1358 print "The read block (%3d) has not enough data" %self.nReadBlocks
1342 1359 return 0
1343 1360
1344 1361 junk = numpy.transpose(junk, (2,0,1))
1345 1362 self.datablock = junk['real'] + junk['imag']*1j
1346 1363
1347 1364 self.profileIndex = 0
1348 1365
1349 1366 self.flagIsNewFile = 0
1350 1367 self.flagIsNewBlock = 1
1351 1368
1352 1369 self.nTotalBlocks += 1
1353 1370 self.nReadBlocks += 1
1354 1371
1355 1372 return 1
1356 1373
1357 1374
1358 1375 def getData(self):
1359 1376 """
1360 1377 getData obtiene una unidad de datos del buffer de lectura y la copia a la clase "Voltage"
1361 1378 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
1362 1379 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
1363 1380
1364 1381 Ademas incrementa el contador del buffer en 1.
1365 1382
1366 1383 Return:
1367 1384 data : retorna un perfil de voltages (alturas * canales) copiados desde el
1368 1385 buffer. Si no hay mas archivos a leer retorna None.
1369 1386
1370 1387 Variables afectadas:
1371 1388 self.dataOut
1372 1389 self.profileIndex
1373 1390
1374 1391 Affected:
1375 1392 self.dataOut
1376 1393 self.profileIndex
1377 1394 self.flagTimeBlock
1378 1395 self.flagIsNewBlock
1379 1396 """
1380 1397
1381 1398 if self.flagNoMoreFiles:
1382 1399 self.dataOut.flagNoData = True
1383 1400 print 'Process finished'
1384 1401 return 0
1385 1402
1386 1403 self.flagTimeBlock = 0
1387 1404 self.flagIsNewBlock = 0
1388 1405
1389 1406 if self.__hasNotDataInBuffer():
1390 1407
1391 1408 if not( self.readNextBlock() ):
1392 1409 return 0
1393 1410
1394 1411 self.dataOut.dtype = self.dtype
1395 1412
1396 1413 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
1397 1414
1398 1415 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
1399 1416
1400 1417 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
1401 1418
1402 1419 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
1403 1420
1404 1421 self.dataOut.flagTimeBlock = self.flagTimeBlock
1405 1422
1406 1423 self.dataOut.ippSeconds = self.ippSeconds
1407 1424
1408 1425 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt
1409 1426
1410 1427 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
1411 1428
1412 1429 self.dataOut.flagShiftFFT = False
1413 1430
1414 1431 if self.radarControllerHeaderObj.code != None:
1415 1432
1416 1433 self.dataOut.nCode = self.radarControllerHeaderObj.nCode
1417 1434
1418 1435 self.dataOut.nBaud = self.radarControllerHeaderObj.nBaud
1419 1436
1420 1437 self.dataOut.code = self.radarControllerHeaderObj.code
1421 1438
1422 1439 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
1423 1440
1424 1441 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
1425 1442
1426 1443 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
1427 1444
1428 1445 self.dataOut.flagDeflipData = False #asumo q la data no esta sin flip
1429 1446
1430 1447 self.dataOut.flagShiftFFT = False
1431 1448
1432 1449
1433 1450 # self.updateDataHeader()
1434 1451
1435 1452 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
1436 1453
1437 1454 if self.datablock == None:
1438 1455 self.dataOut.flagNoData = True
1439 1456 return 0
1440 1457
1441 1458 self.dataOut.data = self.datablock[:,self.profileIndex,:]
1442 1459
1443 1460 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000. + self.profileIndex * self.ippSeconds
1444 1461
1445 1462 self.profileIndex += 1
1446 1463
1447 1464 self.dataOut.flagNoData = False
1448 1465
1449 1466 # print self.profileIndex, self.dataOut.utctime
1450 1467 # if self.profileIndex == 800:
1451 1468 # a=1
1452 1469
1453 1470
1454 1471 return self.dataOut.data
1455 1472
1456 1473
1457 1474 class VoltageWriter(JRODataWriter):
1458 1475 """
1459 1476 Esta clase permite escribir datos de voltajes a archivos procesados (.r). La escritura
1460 1477 de los datos siempre se realiza por bloques.
1461 1478 """
1462 1479
1463 1480 ext = ".r"
1464 1481
1465 1482 optchar = "D"
1466 1483
1467 1484 shapeBuffer = None
1468 1485
1469 1486
1470 1487 def __init__(self):
1471 1488 """
1472 1489 Inicializador de la clase VoltageWriter para la escritura de datos de espectros.
1473 1490
1474 1491 Affected:
1475 1492 self.dataOut
1476 1493
1477 1494 Return: None
1478 1495 """
1479 1496
1480 1497 self.nTotalBlocks = 0
1481 1498
1482 1499 self.profileIndex = 0
1483 1500
1484 1501 self.isConfig = False
1485 1502
1486 1503 self.fp = None
1487 1504
1488 1505 self.flagIsNewFile = 1
1489 1506
1490 1507 self.nTotalBlocks = 0
1491 1508
1492 1509 self.flagIsNewBlock = 0
1493 1510
1494 1511 self.setFile = None
1495 1512
1496 1513 self.dtype = None
1497 1514
1498 1515 self.path = None
1499 1516
1500 1517 self.filename = None
1501 1518
1502 1519 self.basicHeaderObj = BasicHeader(LOCALTIME)
1503 1520
1504 1521 self.systemHeaderObj = SystemHeader()
1505 1522
1506 1523 self.radarControllerHeaderObj = RadarControllerHeader()
1507 1524
1508 1525 self.processingHeaderObj = ProcessingHeader()
1509 1526
1510 1527 def hasAllDataInBuffer(self):
1511 1528 if self.profileIndex >= self.processingHeaderObj.profilesPerBlock:
1512 1529 return 1
1513 1530 return 0
1514 1531
1515 1532
1516 1533 def setBlockDimension(self):
1517 1534 """
1518 1535 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
1519 1536
1520 1537 Affected:
1521 1538 self.shape_spc_Buffer
1522 1539 self.shape_cspc_Buffer
1523 1540 self.shape_dc_Buffer
1524 1541
1525 1542 Return: None
1526 1543 """
1527 1544 self.shapeBuffer = (self.processingHeaderObj.profilesPerBlock,
1528 1545 self.processingHeaderObj.nHeights,
1529 1546 self.systemHeaderObj.nChannels)
1530 1547
1531 1548 self.datablock = numpy.zeros((self.systemHeaderObj.nChannels,
1532 1549 self.processingHeaderObj.profilesPerBlock,
1533 1550 self.processingHeaderObj.nHeights),
1534 1551 dtype=numpy.dtype('complex64'))
1535 1552
1536 1553
1537 1554 def writeBlock(self):
1538 1555 """
1539 1556 Escribe el buffer en el file designado
1540 1557
1541 1558 Affected:
1542 1559 self.profileIndex
1543 1560 self.flagIsNewFile
1544 1561 self.flagIsNewBlock
1545 1562 self.nTotalBlocks
1546 1563 self.blockIndex
1547 1564
1548 1565 Return: None
1549 1566 """
1550 1567 data = numpy.zeros( self.shapeBuffer, self.dtype )
1551 1568
1552 1569 junk = numpy.transpose(self.datablock, (1,2,0))
1553 1570
1554 1571 data['real'] = junk.real
1555 1572 data['imag'] = junk.imag
1556 1573
1557 1574 data = data.reshape( (-1) )
1558 1575
1559 1576 data.tofile( self.fp )
1560 1577
1561 1578 self.datablock.fill(0)
1562 1579
1563 1580 self.profileIndex = 0
1564 1581 self.flagIsNewFile = 0
1565 1582 self.flagIsNewBlock = 1
1566 1583
1567 1584 self.blockIndex += 1
1568 1585 self.nTotalBlocks += 1
1569 1586
1570 1587 def putData(self):
1571 1588 """
1572 1589 Setea un bloque de datos y luego los escribe en un file
1573 1590
1574 1591 Affected:
1575 1592 self.flagIsNewBlock
1576 1593 self.profileIndex
1577 1594
1578 1595 Return:
1579 1596 0 : Si no hay data o no hay mas files que puedan escribirse
1580 1597 1 : Si se escribio la data de un bloque en un file
1581 1598 """
1582 1599 if self.dataOut.flagNoData:
1583 1600 return 0
1584 1601
1585 1602 self.flagIsNewBlock = 0
1586 1603
1587 1604 if self.dataOut.flagTimeBlock:
1588 1605
1589 1606 self.datablock.fill(0)
1590 1607 self.profileIndex = 0
1591 1608 self.setNextFile()
1592 1609
1593 1610 if self.profileIndex == 0:
1594 1611 self.getBasicHeader()
1595 1612
1596 1613 self.datablock[:,self.profileIndex,:] = self.dataOut.data
1597 1614
1598 1615 self.profileIndex += 1
1599 1616
1600 1617 if self.hasAllDataInBuffer():
1601 1618 #if self.flagIsNewFile:
1602 1619 self.writeNextBlock()
1603 1620 # self.getDataHeader()
1604 1621
1605 1622 return 1
1606 1623
1607 1624 def __getProcessFlags(self):
1608 1625
1609 1626 processFlags = 0
1610 1627
1611 1628 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1612 1629 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1613 1630 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1614 1631 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1615 1632 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1616 1633 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1617 1634
1618 1635 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1619 1636
1620 1637
1621 1638
1622 1639 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
1623 1640 PROCFLAG.DATATYPE_SHORT,
1624 1641 PROCFLAG.DATATYPE_LONG,
1625 1642 PROCFLAG.DATATYPE_INT64,
1626 1643 PROCFLAG.DATATYPE_FLOAT,
1627 1644 PROCFLAG.DATATYPE_DOUBLE]
1628 1645
1629 1646
1630 1647 for index in range(len(dtypeList)):
1631 1648 if self.dataOut.dtype == dtypeList[index]:
1632 1649 dtypeValue = datatypeValueList[index]
1633 1650 break
1634 1651
1635 1652 processFlags += dtypeValue
1636 1653
1637 1654 if self.dataOut.flagDecodeData:
1638 1655 processFlags += PROCFLAG.DECODE_DATA
1639 1656
1640 1657 if self.dataOut.flagDeflipData:
1641 1658 processFlags += PROCFLAG.DEFLIP_DATA
1642 1659
1643 1660 if self.dataOut.code != None:
1644 1661 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
1645 1662
1646 1663 if self.dataOut.nCohInt > 1:
1647 1664 processFlags += PROCFLAG.COHERENT_INTEGRATION
1648 1665
1649 1666 return processFlags
1650 1667
1651 1668
1652 1669 def __getBlockSize(self):
1653 1670 '''
1654 1671 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Voltage
1655 1672 '''
1656 1673
1657 1674 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
1658 1675 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
1659 1676 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
1660 1677 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
1661 1678 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
1662 1679 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
1663 1680
1664 1681 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
1665 1682 datatypeValueList = [1,2,4,8,4,8]
1666 1683 for index in range(len(dtypeList)):
1667 1684 if self.dataOut.dtype == dtypeList[index]:
1668 1685 datatypeValue = datatypeValueList[index]
1669 1686 break
1670 1687
1671 1688 blocksize = int(self.dataOut.nHeights * self.dataOut.nChannels * self.dataOut.nProfiles * datatypeValue * 2)
1672 1689
1673 1690 return blocksize
1674 1691
1675 1692 def getDataHeader(self):
1676 1693
1677 1694 """
1678 1695 Obtiene una copia del First Header
1679 1696
1680 1697 Affected:
1681 1698 self.systemHeaderObj
1682 1699 self.radarControllerHeaderObj
1683 1700 self.dtype
1684 1701
1685 1702 Return:
1686 1703 None
1687 1704 """
1688 1705
1689 1706 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
1690 1707 self.systemHeaderObj.nChannels = self.dataOut.nChannels
1691 1708 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
1692 1709
1693 1710 self.getBasicHeader()
1694 1711
1695 1712 processingHeaderSize = 40 # bytes
1696 1713 self.processingHeaderObj.dtype = 0 # Voltage
1697 1714 self.processingHeaderObj.blockSize = self.__getBlockSize()
1698 1715 self.processingHeaderObj.profilesPerBlock = self.profilesPerBlock
1699 1716 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
1700 1717 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
1701 1718 self.processingHeaderObj.processFlags = self.__getProcessFlags()
1702 1719 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt
1703 1720 self.processingHeaderObj.nIncohInt = 1 # Cuando la data de origen es de tipo Voltage
1704 1721 self.processingHeaderObj.totalSpectra = 0 # Cuando la data de origen es de tipo Voltage
1705 1722
1706 1723 if self.dataOut.code != None:
1707 1724 self.processingHeaderObj.code = self.dataOut.code
1708 1725 self.processingHeaderObj.nCode = self.dataOut.nCode
1709 1726 self.processingHeaderObj.nBaud = self.dataOut.nBaud
1710 1727 codesize = int(8 + 4 * self.dataOut.nCode * self.dataOut.nBaud)
1711 1728 processingHeaderSize += codesize
1712 1729
1713 1730 if self.processingHeaderObj.nWindows != 0:
1714 1731 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
1715 1732 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
1716 1733 self.processingHeaderObj.nHeights = self.dataOut.nHeights
1717 1734 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
1718 1735 processingHeaderSize += 12
1719 1736
1720 1737 self.processingHeaderObj.size = processingHeaderSize
1721 1738
1722 1739 class SpectraReader(JRODataReader):
1723 1740 """
1724 1741 Esta clase permite leer datos de espectros desde archivos procesados (.pdata). La lectura
1725 1742 de los datos siempre se realiza por bloques. Los datos leidos (array de 3 dimensiones)
1726 1743 son almacenados en tres buffer's para el Self Spectra, el Cross Spectra y el DC Channel.
1727 1744
1728 1745 paresCanalesIguales * alturas * perfiles (Self Spectra)
1729 1746 paresCanalesDiferentes * alturas * perfiles (Cross Spectra)
1730 1747 canales * alturas (DC Channels)
1731 1748
1732 1749 Esta clase contiene instancias (objetos) de las clases BasicHeader, SystemHeader,
1733 1750 RadarControllerHeader y Spectra. Los tres primeros se usan para almacenar informacion de la
1734 1751 cabecera de datos (metadata), y el cuarto (Spectra) para obtener y almacenar un bloque de
1735 1752 datos desde el "buffer" cada vez que se ejecute el metodo "getData".
1736 1753
1737 1754 Example:
1738 1755 dpath = "/home/myuser/data"
1739 1756
1740 1757 startTime = datetime.datetime(2010,1,20,0,0,0,0,0,0)
1741 1758
1742 1759 endTime = datetime.datetime(2010,1,21,23,59,59,0,0,0)
1743 1760
1744 1761 readerObj = SpectraReader()
1745 1762
1746 1763 readerObj.setup(dpath, startTime, endTime)
1747 1764
1748 1765 while(True):
1749 1766
1750 1767 readerObj.getData()
1751 1768
1752 1769 print readerObj.data_spc
1753 1770
1754 1771 print readerObj.data_cspc
1755 1772
1756 1773 print readerObj.data_dc
1757 1774
1758 1775 if readerObj.flagNoMoreFiles:
1759 1776 break
1760 1777
1761 1778 """
1762 1779
1763 1780 pts2read_SelfSpectra = 0
1764 1781
1765 1782 pts2read_CrossSpectra = 0
1766 1783
1767 1784 pts2read_DCchannels = 0
1768 1785
1769 1786 ext = ".pdata"
1770 1787
1771 1788 optchar = "P"
1772 1789
1773 1790 dataOut = None
1774 1791
1775 1792 nRdChannels = None
1776 1793
1777 1794 nRdPairs = None
1778 1795
1779 1796 rdPairList = []
1780 1797
1781 1798
1782 1799 def __init__(self):
1783 1800 """
1784 1801 Inicializador de la clase SpectraReader para la lectura de datos de espectros.
1785 1802
1786 1803 Inputs:
1787 1804 dataOut : Objeto de la clase Spectra. Este objeto sera utilizado para
1788 1805 almacenar un perfil de datos cada vez que se haga un requerimiento
1789 1806 (getData). El perfil sera obtenido a partir del buffer de datos,
1790 1807 si el buffer esta vacio se hara un nuevo proceso de lectura de un
1791 1808 bloque de datos.
1792 1809 Si este parametro no es pasado se creara uno internamente.
1793 1810
1794 1811 Affected:
1795 1812 self.dataOut
1796 1813
1797 1814 Return : None
1798 1815 """
1799 1816
1800 1817 self.isConfig = False
1801 1818
1802 1819 self.pts2read_SelfSpectra = 0
1803 1820
1804 1821 self.pts2read_CrossSpectra = 0
1805 1822
1806 1823 self.pts2read_DCchannels = 0
1807 1824
1808 1825 self.datablock = None
1809 1826
1810 1827 self.utc = None
1811 1828
1812 1829 self.ext = ".pdata"
1813 1830
1814 1831 self.optchar = "P"
1815 1832
1816 1833 self.basicHeaderObj = BasicHeader(LOCALTIME)
1817 1834
1818 1835 self.systemHeaderObj = SystemHeader()
1819 1836
1820 1837 self.radarControllerHeaderObj = RadarControllerHeader()
1821 1838
1822 1839 self.processingHeaderObj = ProcessingHeader()
1823 1840
1824 1841 self.online = 0
1825 1842
1826 1843 self.fp = None
1827 1844
1828 1845 self.idFile = None
1829 1846
1830 1847 self.dtype = None
1831 1848
1832 1849 self.fileSizeByHeader = None
1833 1850
1834 1851 self.filenameList = []
1835 1852
1836 1853 self.filename = None
1837 1854
1838 1855 self.fileSize = None
1839 1856
1840 1857 self.firstHeaderSize = 0
1841 1858
1842 1859 self.basicHeaderSize = 24
1843 1860
1844 1861 self.pathList = []
1845 1862
1846 1863 self.lastUTTime = 0
1847 1864
1848 1865 self.maxTimeStep = 30
1849 1866
1850 1867 self.flagNoMoreFiles = 0
1851 1868
1852 1869 self.set = 0
1853 1870
1854 1871 self.path = None
1855 1872
1856 1873 self.delay = 60 #seconds
1857 1874
1858 1875 self.nTries = 3 #quantity tries
1859 1876
1860 1877 self.nFiles = 3 #number of files for searching
1861 1878
1862 1879 self.nReadBlocks = 0
1863 1880
1864 1881 self.flagIsNewFile = 1
1865 1882
1866 1883 self.ippSeconds = 0
1867 1884
1868 1885 self.flagTimeBlock = 0
1869 1886
1870 1887 self.flagIsNewBlock = 0
1871 1888
1872 1889 self.nTotalBlocks = 0
1873 1890
1874 1891 self.blocksize = 0
1875 1892
1876 1893 self.dataOut = self.createObjByDefault()
1877 1894
1878 1895
1879 1896 def createObjByDefault(self):
1880 1897
1881 1898 dataObj = Spectra()
1882 1899
1883 1900 return dataObj
1884 1901
1885 1902 def __hasNotDataInBuffer(self):
1886 1903 return 1
1887 1904
1888 1905
1889 1906 def getBlockDimension(self):
1890 1907 """
1891 1908 Obtiene la cantidad de puntos a leer por cada bloque de datos
1892 1909
1893 1910 Affected:
1894 1911 self.nRdChannels
1895 1912 self.nRdPairs
1896 1913 self.pts2read_SelfSpectra
1897 1914 self.pts2read_CrossSpectra
1898 1915 self.pts2read_DCchannels
1899 1916 self.blocksize
1900 1917 self.dataOut.nChannels
1901 1918 self.dataOut.nPairs
1902 1919
1903 1920 Return:
1904 1921 None
1905 1922 """
1906 1923 self.nRdChannels = 0
1907 1924 self.nRdPairs = 0
1908 1925 self.rdPairList = []
1909 1926
1910 1927 for i in range(0, self.processingHeaderObj.totalSpectra*2, 2):
1911 1928 if self.processingHeaderObj.spectraComb[i] == self.processingHeaderObj.spectraComb[i+1]:
1912 1929 self.nRdChannels = self.nRdChannels + 1 #par de canales iguales
1913 1930 else:
1914 1931 self.nRdPairs = self.nRdPairs + 1 #par de canales diferentes
1915 1932 self.rdPairList.append((self.processingHeaderObj.spectraComb[i], self.processingHeaderObj.spectraComb[i+1]))
1916 1933
1917 1934 pts2read = self.processingHeaderObj.nHeights * self.processingHeaderObj.profilesPerBlock
1918 1935
1919 1936 self.pts2read_SelfSpectra = int(self.nRdChannels * pts2read)
1920 1937 self.blocksize = self.pts2read_SelfSpectra
1921 1938
1922 1939 if self.processingHeaderObj.flag_cspc:
1923 1940 self.pts2read_CrossSpectra = int(self.nRdPairs * pts2read)
1924 1941 self.blocksize += self.pts2read_CrossSpectra
1925 1942
1926 1943 if self.processingHeaderObj.flag_dc:
1927 1944 self.pts2read_DCchannels = int(self.systemHeaderObj.nChannels * self.processingHeaderObj.nHeights)
1928 1945 self.blocksize += self.pts2read_DCchannels
1929 1946
1930 1947 # self.blocksize = self.pts2read_SelfSpectra + self.pts2read_CrossSpectra + self.pts2read_DCchannels
1931 1948
1932 1949
1933 1950 def readBlock(self):
1934 1951 """
1935 1952 Lee el bloque de datos desde la posicion actual del puntero del archivo
1936 1953 (self.fp) y actualiza todos los parametros relacionados al bloque de datos
1937 1954 (metadata + data). La data leida es almacenada en el buffer y el contador del buffer
1938 1955 es seteado a 0
1939 1956
1940 1957 Return: None
1941 1958
1942 1959 Variables afectadas:
1943 1960
1944 1961 self.flagIsNewFile
1945 1962 self.flagIsNewBlock
1946 1963 self.nTotalBlocks
1947 1964 self.data_spc
1948 1965 self.data_cspc
1949 1966 self.data_dc
1950 1967
1951 1968 Exceptions:
1952 1969 Si un bloque leido no es un bloque valido
1953 1970 """
1954 1971 blockOk_flag = False
1955 1972 fpointer = self.fp.tell()
1956 1973
1957 1974 spc = numpy.fromfile( self.fp, self.dtype[0], self.pts2read_SelfSpectra )
1958 1975 spc = spc.reshape( (self.nRdChannels, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
1959 1976
1960 1977 if self.processingHeaderObj.flag_cspc:
1961 1978 cspc = numpy.fromfile( self.fp, self.dtype, self.pts2read_CrossSpectra )
1962 1979 cspc = cspc.reshape( (self.nRdPairs, self.processingHeaderObj.nHeights, self.processingHeaderObj.profilesPerBlock) ) #transforma a un arreglo 3D
1963 1980
1964 1981 if self.processingHeaderObj.flag_dc:
1965 1982 dc = numpy.fromfile( self.fp, self.dtype, self.pts2read_DCchannels ) #int(self.processingHeaderObj.nHeights*self.systemHeaderObj.nChannels) )
1966 1983 dc = dc.reshape( (self.systemHeaderObj.nChannels, self.processingHeaderObj.nHeights) ) #transforma a un arreglo 2D
1967 1984
1968 1985
1969 1986 if not(self.processingHeaderObj.shif_fft):
1970 1987 #desplaza a la derecha en el eje 2 determinadas posiciones
1971 1988 shift = int(self.processingHeaderObj.profilesPerBlock/2)
1972 1989 spc = numpy.roll( spc, shift , axis=2 )
1973 1990
1974 1991 if self.processingHeaderObj.flag_cspc:
1975 1992 #desplaza a la derecha en el eje 2 determinadas posiciones
1976 1993 cspc = numpy.roll( cspc, shift, axis=2 )
1977 1994
1978 1995 # self.processingHeaderObj.shif_fft = True
1979 1996
1980 1997 spc = numpy.transpose( spc, (0,2,1) )
1981 1998 self.data_spc = spc
1982 1999
1983 2000 if self.processingHeaderObj.flag_cspc:
1984 2001 cspc = numpy.transpose( cspc, (0,2,1) )
1985 2002 self.data_cspc = cspc['real'] + cspc['imag']*1j
1986 2003 else:
1987 2004 self.data_cspc = None
1988 2005
1989 2006 if self.processingHeaderObj.flag_dc:
1990 2007 self.data_dc = dc['real'] + dc['imag']*1j
1991 2008 else:
1992 2009 self.data_dc = None
1993 2010
1994 2011 self.flagIsNewFile = 0
1995 2012 self.flagIsNewBlock = 1
1996 2013
1997 2014 self.nTotalBlocks += 1
1998 2015 self.nReadBlocks += 1
1999 2016
2000 2017 return 1
2001 2018
2002 2019
2003 2020 def getData(self):
2004 2021 """
2005 2022 Copia el buffer de lectura a la clase "Spectra",
2006 2023 con todos los parametros asociados a este (metadata). cuando no hay datos en el buffer de
2007 2024 lectura es necesario hacer una nueva lectura de los bloques de datos usando "readNextBlock"
2008 2025
2009 2026 Return:
2010 2027 0 : Si no hay mas archivos disponibles
2011 2028 1 : Si hizo una buena copia del buffer
2012 2029
2013 2030 Affected:
2014 2031 self.dataOut
2015 2032
2016 2033 self.flagTimeBlock
2017 2034 self.flagIsNewBlock
2018 2035 """
2019 2036
2020 2037 if self.flagNoMoreFiles:
2021 2038 self.dataOut.flagNoData = True
2022 2039 print 'Process finished'
2023 2040 return 0
2024 2041
2025 2042 self.flagTimeBlock = 0
2026 2043 self.flagIsNewBlock = 0
2027 2044
2028 2045 if self.__hasNotDataInBuffer():
2029 2046
2030 2047 if not( self.readNextBlock() ):
2031 2048 self.dataOut.flagNoData = True
2032 2049 return 0
2033 2050
2034 2051 # self.updateDataHeader()
2035 2052
2036 2053 #data es un numpy array de 3 dmensiones (perfiles, alturas y canales)
2037 2054
2038 2055 if self.data_dc == None:
2039 2056 self.dataOut.flagNoData = True
2040 2057 return 0
2041 2058
2042 2059 self.dataOut.data_spc = self.data_spc
2043 2060
2044 2061 self.dataOut.data_cspc = self.data_cspc
2045 2062
2046 2063 self.dataOut.data_dc = self.data_dc
2047 2064
2048 2065 self.dataOut.flagTimeBlock = self.flagTimeBlock
2049 2066
2050 2067 self.dataOut.flagNoData = False
2051 2068
2052 2069 self.dataOut.dtype = self.dtype
2053 2070
2054 2071 # self.dataOut.nChannels = self.nRdChannels
2055 2072
2056 2073 self.dataOut.nPairs = self.nRdPairs
2057 2074
2058 2075 self.dataOut.pairsList = self.rdPairList
2059 2076
2060 2077 # self.dataOut.nHeights = self.processingHeaderObj.nHeights
2061 2078
2062 2079 self.dataOut.nProfiles = self.processingHeaderObj.profilesPerBlock
2063 2080
2064 2081 self.dataOut.nFFTPoints = self.processingHeaderObj.profilesPerBlock
2065 2082
2066 2083 self.dataOut.nCohInt = self.processingHeaderObj.nCohInt
2067 2084
2068 2085 self.dataOut.nIncohInt = self.processingHeaderObj.nIncohInt
2069 2086
2070 2087 xf = self.processingHeaderObj.firstHeight + self.processingHeaderObj.nHeights*self.processingHeaderObj.deltaHeight
2071 2088
2072 2089 self.dataOut.heightList = numpy.arange(self.processingHeaderObj.firstHeight, xf, self.processingHeaderObj.deltaHeight)
2073 2090
2074 2091 self.dataOut.channelList = range(self.systemHeaderObj.nChannels)
2075 2092
2076 2093 # self.dataOut.channelIndexList = range(self.systemHeaderObj.nChannels)
2077 2094
2078 2095 self.dataOut.utctime = self.basicHeaderObj.utc + self.basicHeaderObj.miliSecond/1000.#+ self.profileIndex * self.ippSeconds
2079 2096
2080 2097 self.dataOut.ippSeconds = self.ippSeconds
2081 2098
2082 2099 self.dataOut.timeInterval = self.ippSeconds * self.processingHeaderObj.nCohInt * self.processingHeaderObj.nIncohInt * self.dataOut.nFFTPoints
2083 2100
2084 2101 # self.profileIndex += 1
2085 2102
2086 2103 self.dataOut.systemHeaderObj = self.systemHeaderObj.copy()
2087 2104
2088 2105 self.dataOut.radarControllerHeaderObj = self.radarControllerHeaderObj.copy()
2089 2106
2090 2107 self.dataOut.flagShiftFFT = self.processingHeaderObj.shif_fft
2091 2108
2092 2109 self.dataOut.flagDecodeData = False #asumo q la data no esta decodificada
2093 2110
2094 2111 self.dataOut.flagDeflipData = True #asumo q la data no esta sin flip
2095 2112
2096 2113 if self.processingHeaderObj.code != None:
2097 2114
2098 2115 self.dataOut.nCode = self.processingHeaderObj.nCode
2099 2116
2100 2117 self.dataOut.nBaud = self.processingHeaderObj.nBaud
2101 2118
2102 2119 self.dataOut.code = self.processingHeaderObj.code
2103 2120
2104 2121 self.dataOut.flagDecodeData = True
2105 2122
2106 2123 return self.dataOut.data_spc
2107 2124
2108 2125
2109 2126 class SpectraWriter(JRODataWriter):
2110 2127
2111 2128 """
2112 2129 Esta clase permite escribir datos de espectros a archivos procesados (.pdata). La escritura
2113 2130 de los datos siempre se realiza por bloques.
2114 2131 """
2115 2132
2116 2133 ext = ".pdata"
2117 2134
2118 2135 optchar = "P"
2119 2136
2120 2137 shape_spc_Buffer = None
2121 2138
2122 2139 shape_cspc_Buffer = None
2123 2140
2124 2141 shape_dc_Buffer = None
2125 2142
2126 2143 data_spc = None
2127 2144
2128 2145 data_cspc = None
2129 2146
2130 2147 data_dc = None
2131 2148
2132 2149 # dataOut = None
2133 2150
2134 2151 def __init__(self):
2135 2152 """
2136 2153 Inicializador de la clase SpectraWriter para la escritura de datos de espectros.
2137 2154
2138 2155 Affected:
2139 2156 self.dataOut
2140 2157 self.basicHeaderObj
2141 2158 self.systemHeaderObj
2142 2159 self.radarControllerHeaderObj
2143 2160 self.processingHeaderObj
2144 2161
2145 2162 Return: None
2146 2163 """
2147 2164
2148 2165 self.isConfig = False
2149 2166
2150 2167 self.nTotalBlocks = 0
2151 2168
2152 2169 self.data_spc = None
2153 2170
2154 2171 self.data_cspc = None
2155 2172
2156 2173 self.data_dc = None
2157 2174
2158 2175 self.fp = None
2159 2176
2160 2177 self.flagIsNewFile = 1
2161 2178
2162 2179 self.nTotalBlocks = 0
2163 2180
2164 2181 self.flagIsNewBlock = 0
2165 2182
2166 2183 self.setFile = None
2167 2184
2168 2185 self.dtype = None
2169 2186
2170 2187 self.path = None
2171 2188
2172 2189 self.noMoreFiles = 0
2173 2190
2174 2191 self.filename = None
2175 2192
2176 2193 self.basicHeaderObj = BasicHeader(LOCALTIME)
2177 2194
2178 2195 self.systemHeaderObj = SystemHeader()
2179 2196
2180 2197 self.radarControllerHeaderObj = RadarControllerHeader()
2181 2198
2182 2199 self.processingHeaderObj = ProcessingHeader()
2183 2200
2184 2201
2185 2202 def hasAllDataInBuffer(self):
2186 2203 return 1
2187 2204
2188 2205
2189 2206 def setBlockDimension(self):
2190 2207 """
2191 2208 Obtiene las formas dimensionales del los subbloques de datos que componen un bloque
2192 2209
2193 2210 Affected:
2194 2211 self.shape_spc_Buffer
2195 2212 self.shape_cspc_Buffer
2196 2213 self.shape_dc_Buffer
2197 2214
2198 2215 Return: None
2199 2216 """
2200 2217 self.shape_spc_Buffer = (self.dataOut.nChannels,
2201 2218 self.processingHeaderObj.nHeights,
2202 2219 self.processingHeaderObj.profilesPerBlock)
2203 2220
2204 2221 self.shape_cspc_Buffer = (self.dataOut.nPairs,
2205 2222 self.processingHeaderObj.nHeights,
2206 2223 self.processingHeaderObj.profilesPerBlock)
2207 2224
2208 2225 self.shape_dc_Buffer = (self.dataOut.nChannels,
2209 2226 self.processingHeaderObj.nHeights)
2210 2227
2211 2228
2212 2229 def writeBlock(self):
2213 2230 """
2214 2231 Escribe el buffer en el file designado
2215 2232
2216 2233 Affected:
2217 2234 self.data_spc
2218 2235 self.data_cspc
2219 2236 self.data_dc
2220 2237 self.flagIsNewFile
2221 2238 self.flagIsNewBlock
2222 2239 self.nTotalBlocks
2223 2240 self.nWriteBlocks
2224 2241
2225 2242 Return: None
2226 2243 """
2227 2244
2228 2245 spc = numpy.transpose( self.data_spc, (0,2,1) )
2229 2246 if not( self.processingHeaderObj.shif_fft ):
2230 2247 spc = numpy.roll( spc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2231 2248 data = spc.reshape((-1))
2232 2249 data = data.astype(self.dtype[0])
2233 2250 data.tofile(self.fp)
2234 2251
2235 2252 if self.data_cspc != None:
2236 2253 data = numpy.zeros( self.shape_cspc_Buffer, self.dtype )
2237 2254 cspc = numpy.transpose( self.data_cspc, (0,2,1) )
2238 2255 if not( self.processingHeaderObj.shif_fft ):
2239 2256 cspc = numpy.roll( cspc, self.processingHeaderObj.profilesPerBlock/2, axis=2 ) #desplaza a la derecha en el eje 2 determinadas posiciones
2240 2257 data['real'] = cspc.real
2241 2258 data['imag'] = cspc.imag
2242 2259 data = data.reshape((-1))
2243 2260 data.tofile(self.fp)
2244 2261
2245 2262 if self.data_dc != None:
2246 2263 data = numpy.zeros( self.shape_dc_Buffer, self.dtype )
2247 2264 dc = self.data_dc
2248 2265 data['real'] = dc.real
2249 2266 data['imag'] = dc.imag
2250 2267 data = data.reshape((-1))
2251 2268 data.tofile(self.fp)
2252 2269
2253 2270 self.data_spc.fill(0)
2254 2271 self.data_dc.fill(0)
2255 2272 if self.data_cspc != None:
2256 2273 self.data_cspc.fill(0)
2257 2274
2258 2275 self.flagIsNewFile = 0
2259 2276 self.flagIsNewBlock = 1
2260 2277 self.nTotalBlocks += 1
2261 2278 self.nWriteBlocks += 1
2262 2279 self.blockIndex += 1
2263 2280
2264 2281
2265 2282 def putData(self):
2266 2283 """
2267 2284 Setea un bloque de datos y luego los escribe en un file
2268 2285
2269 2286 Affected:
2270 2287 self.data_spc
2271 2288 self.data_cspc
2272 2289 self.data_dc
2273 2290
2274 2291 Return:
2275 2292 0 : Si no hay data o no hay mas files que puedan escribirse
2276 2293 1 : Si se escribio la data de un bloque en un file
2277 2294 """
2278 2295
2279 2296 if self.dataOut.flagNoData:
2280 2297 return 0
2281 2298
2282 2299 self.flagIsNewBlock = 0
2283 2300
2284 2301 if self.dataOut.flagTimeBlock:
2285 2302 self.data_spc.fill(0)
2286 2303 self.data_cspc.fill(0)
2287 2304 self.data_dc.fill(0)
2288 2305 self.setNextFile()
2289 2306
2290 2307 if self.flagIsNewFile == 0:
2291 2308 self.getBasicHeader()
2292 2309
2293 2310 self.data_spc = self.dataOut.data_spc.copy()
2294 2311 self.data_cspc = self.dataOut.data_cspc.copy()
2295 2312 self.data_dc = self.dataOut.data_dc.copy()
2296 2313
2297 2314 # #self.processingHeaderObj.dataBlocksPerFile)
2298 2315 if self.hasAllDataInBuffer():
2299 2316 # self.getDataHeader()
2300 2317 self.writeNextBlock()
2301 2318
2302 2319 return 1
2303 2320
2304 2321
2305 2322 def __getProcessFlags(self):
2306 2323
2307 2324 processFlags = 0
2308 2325
2309 2326 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2310 2327 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2311 2328 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2312 2329 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2313 2330 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2314 2331 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2315 2332
2316 2333 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2317 2334
2318 2335
2319 2336
2320 2337 datatypeValueList = [PROCFLAG.DATATYPE_CHAR,
2321 2338 PROCFLAG.DATATYPE_SHORT,
2322 2339 PROCFLAG.DATATYPE_LONG,
2323 2340 PROCFLAG.DATATYPE_INT64,
2324 2341 PROCFLAG.DATATYPE_FLOAT,
2325 2342 PROCFLAG.DATATYPE_DOUBLE]
2326 2343
2327 2344
2328 2345 for index in range(len(dtypeList)):
2329 2346 if self.dataOut.dtype == dtypeList[index]:
2330 2347 dtypeValue = datatypeValueList[index]
2331 2348 break
2332 2349
2333 2350 processFlags += dtypeValue
2334 2351
2335 2352 if self.dataOut.flagDecodeData:
2336 2353 processFlags += PROCFLAG.DECODE_DATA
2337 2354
2338 2355 if self.dataOut.flagDeflipData:
2339 2356 processFlags += PROCFLAG.DEFLIP_DATA
2340 2357
2341 2358 if self.dataOut.code != None:
2342 2359 processFlags += PROCFLAG.DEFINE_PROCESS_CODE
2343 2360
2344 2361 if self.dataOut.nIncohInt > 1:
2345 2362 processFlags += PROCFLAG.INCOHERENT_INTEGRATION
2346 2363
2347 2364 if self.dataOut.data_dc != None:
2348 2365 processFlags += PROCFLAG.SAVE_CHANNELS_DC
2349 2366
2350 2367 return processFlags
2351 2368
2352 2369
2353 2370 def __getBlockSize(self):
2354 2371 '''
2355 2372 Este metodos determina el cantidad de bytes para un bloque de datos de tipo Spectra
2356 2373 '''
2357 2374
2358 2375 dtype0 = numpy.dtype([('real','<i1'),('imag','<i1')])
2359 2376 dtype1 = numpy.dtype([('real','<i2'),('imag','<i2')])
2360 2377 dtype2 = numpy.dtype([('real','<i4'),('imag','<i4')])
2361 2378 dtype3 = numpy.dtype([('real','<i8'),('imag','<i8')])
2362 2379 dtype4 = numpy.dtype([('real','<f4'),('imag','<f4')])
2363 2380 dtype5 = numpy.dtype([('real','<f8'),('imag','<f8')])
2364 2381
2365 2382 dtypeList = [dtype0, dtype1, dtype2, dtype3, dtype4, dtype5]
2366 2383 datatypeValueList = [1,2,4,8,4,8]
2367 2384 for index in range(len(dtypeList)):
2368 2385 if self.dataOut.dtype == dtypeList[index]:
2369 2386 datatypeValue = datatypeValueList[index]
2370 2387 break
2371 2388
2372 2389
2373 2390 pts2write = self.dataOut.nHeights * self.dataOut.nFFTPoints
2374 2391
2375 2392 pts2write_SelfSpectra = int(self.dataOut.nChannels * pts2write)
2376 2393 blocksize = (pts2write_SelfSpectra*datatypeValue)
2377 2394
2378 2395 if self.dataOut.data_cspc != None:
2379 2396 pts2write_CrossSpectra = int(self.dataOut.nPairs * pts2write)
2380 2397 blocksize += (pts2write_CrossSpectra*datatypeValue*2)
2381 2398
2382 2399 if self.dataOut.data_dc != None:
2383 2400 pts2write_DCchannels = int(self.dataOut.nChannels * self.dataOut.nHeights)
2384 2401 blocksize += (pts2write_DCchannels*datatypeValue*2)
2385 2402
2386 2403 blocksize = blocksize #* datatypeValue * 2 #CORREGIR ESTO
2387 2404
2388 2405 return blocksize
2389 2406
2390 2407 def getDataHeader(self):
2391 2408
2392 2409 """
2393 2410 Obtiene una copia del First Header
2394 2411
2395 2412 Affected:
2396 2413 self.systemHeaderObj
2397 2414 self.radarControllerHeaderObj
2398 2415 self.dtype
2399 2416
2400 2417 Return:
2401 2418 None
2402 2419 """
2403 2420
2404 2421 self.systemHeaderObj = self.dataOut.systemHeaderObj.copy()
2405 2422 self.systemHeaderObj.nChannels = self.dataOut.nChannels
2406 2423 self.radarControllerHeaderObj = self.dataOut.radarControllerHeaderObj.copy()
2407 2424
2408 2425 self.getBasicHeader()
2409 2426
2410 2427 processingHeaderSize = 40 # bytes
2411 2428 self.processingHeaderObj.dtype = 0 # Voltage
2412 2429 self.processingHeaderObj.blockSize = self.__getBlockSize()
2413 2430 self.processingHeaderObj.profilesPerBlock = self.dataOut.nFFTPoints
2414 2431 self.processingHeaderObj.dataBlocksPerFile = self.blocksPerFile
2415 2432 self.processingHeaderObj.nWindows = 1 #podria ser 1 o self.dataOut.processingHeaderObj.nWindows
2416 2433 self.processingHeaderObj.processFlags = self.__getProcessFlags()
2417 2434 self.processingHeaderObj.nCohInt = self.dataOut.nCohInt# Se requiere para determinar el valor de timeInterval
2418 2435 self.processingHeaderObj.nIncohInt = self.dataOut.nIncohInt
2419 2436 self.processingHeaderObj.totalSpectra = self.dataOut.nPairs + self.dataOut.nChannels
2420 2437
2421 2438 if self.processingHeaderObj.totalSpectra > 0:
2422 2439 channelList = []
2423 2440 for channel in range(self.dataOut.nChannels):
2424 2441 channelList.append(channel)
2425 2442 channelList.append(channel)
2426 2443
2427 2444 pairsList = []
2428 2445 for pair in self.dataOut.pairsList:
2429 2446 pairsList.append(pair[0])
2430 2447 pairsList.append(pair[1])
2431 2448 spectraComb = channelList + pairsList
2432 2449 spectraComb = numpy.array(spectraComb,dtype="u1")
2433 2450 self.processingHeaderObj.spectraComb = spectraComb
2434 2451 sizeOfSpcComb = len(spectraComb)
2435 2452 processingHeaderSize += sizeOfSpcComb
2436 2453
2437 2454 if self.dataOut.code != None:
2438 2455 self.processingHeaderObj.code = self.dataOut.code
2439 2456 self.processingHeaderObj.nCode = self.dataOut.nCode
2440 2457 self.processingHeaderObj.nBaud = self.dataOut.nBaud
2441 2458 nCodeSize = 4 # bytes
2442 2459 nBaudSize = 4 # bytes
2443 2460 codeSize = 4 # bytes
2444 2461 sizeOfCode = int(nCodeSize + nBaudSize + codeSize * self.dataOut.nCode * self.dataOut.nBaud)
2445 2462 processingHeaderSize += sizeOfCode
2446 2463
2447 2464 if self.processingHeaderObj.nWindows != 0:
2448 2465 self.processingHeaderObj.firstHeight = self.dataOut.heightList[0]
2449 2466 self.processingHeaderObj.deltaHeight = self.dataOut.heightList[1] - self.dataOut.heightList[0]
2450 2467 self.processingHeaderObj.nHeights = self.dataOut.nHeights
2451 2468 self.processingHeaderObj.samplesWin = self.dataOut.nHeights
2452 2469 sizeOfFirstHeight = 4
2453 2470 sizeOfdeltaHeight = 4
2454 2471 sizeOfnHeights = 4
2455 2472 sizeOfWindows = (sizeOfFirstHeight + sizeOfdeltaHeight + sizeOfnHeights)*self.processingHeaderObj.nWindows
2456 2473 processingHeaderSize += sizeOfWindows
2457 2474
2458 2475 self.processingHeaderObj.size = processingHeaderSize
2459 2476
2460 2477 class SpectraHeisWriter():
2461 2478
2462 2479 i=0
2463 2480
2464 2481 def __init__(self, dataOut):
2465 2482
2466 2483 self.wrObj = FITS()
2467 2484 self.dataOut = dataOut
2468 2485
2469 2486 def isNumber(str):
2470 2487 """
2471 2488 Chequea si el conjunto de caracteres que componen un string puede ser convertidos a un numero.
2472 2489
2473 2490 Excepciones:
2474 2491 Si un determinado string no puede ser convertido a numero
2475 2492 Input:
2476 2493 str, string al cual se le analiza para determinar si convertible a un numero o no
2477 2494
2478 2495 Return:
2479 2496 True : si el string es uno numerico
2480 2497 False : no es un string numerico
2481 2498 """
2482 2499 try:
2483 2500 float( str )
2484 2501 return True
2485 2502 except:
2486 2503 return False
2487 2504
2488 2505 def setup(self, wrpath,):
2489 2506
2490 2507 if not(os.path.exists(wrpath)):
2491 2508 os.mkdir(wrpath)
2492 2509
2493 2510 self.wrpath = wrpath
2494 2511 self.setFile = 0
2495 2512
2496 2513 def putData(self):
2497 2514 # self.wrObj.writeHeader(nChannels=self.dataOut.nChannels, nFFTPoints=self.dataOut.nFFTPoints)
2498 2515 #name = self.dataOut.utctime
2499 2516 name= time.localtime( self.dataOut.utctime)
2500 2517 ext=".fits"
2501 2518 #folder='D%4.4d%3.3d'%(name.tm_year,name.tm_yday)
2502 2519 subfolder = 'D%4.4d%3.3d' % (name.tm_year,name.tm_yday)
2503 2520
2504 2521 fullpath = os.path.join( self.wrpath, subfolder )
2505 2522 if not( os.path.exists(fullpath) ):
2506 2523 os.mkdir(fullpath)
2507 2524 self.setFile += 1
2508 2525 file = 'D%4.4d%3.3d%3.3d%s' % (name.tm_year,name.tm_yday,self.setFile,ext)
2509 2526
2510 2527 filename = os.path.join(self.wrpath,subfolder, file)
2511 2528
2512 2529 # print self.dataOut.ippSeconds
2513 2530 freq=numpy.arange(-1*self.dataOut.nHeights/2.,self.dataOut.nHeights/2.)/(2*self.dataOut.ippSeconds)
2514 2531
2515 2532 col1=self.wrObj.setColF(name="freq", format=str(self.dataOut.nFFTPoints)+'E', array=freq)
2516 2533 col2=self.wrObj.writeData(name="P_Ch1",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[0,:]))
2517 2534 col3=self.wrObj.writeData(name="P_Ch2",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[1,:]))
2518 2535 col4=self.wrObj.writeData(name="P_Ch3",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[2,:]))
2519 2536 col5=self.wrObj.writeData(name="P_Ch4",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[3,:]))
2520 2537 col6=self.wrObj.writeData(name="P_Ch5",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[4,:]))
2521 2538 col7=self.wrObj.writeData(name="P_Ch6",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[5,:]))
2522 2539 col8=self.wrObj.writeData(name="P_Ch7",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[6,:]))
2523 2540 col9=self.wrObj.writeData(name="P_Ch8",format=str(self.dataOut.nFFTPoints)+'E',data=10*numpy.log10(self.dataOut.data_spc[7,:]))
2524 2541 #n=numpy.arange((100))
2525 2542 n=self.dataOut.data_spc[6,:]
2526 2543 a=self.wrObj.cFImage(n)
2527 2544 b=self.wrObj.Ctable(col1,col2,col3,col4,col5,col6,col7,col8,col9)
2528 2545 self.wrObj.CFile(a,b)
2529 2546 self.wrObj.wFile(filename)
2530 2547 return 1
2531 2548
2532 2549 class FITS:
2533 2550
2534 2551 name=None
2535 2552 format=None
2536 2553 array =None
2537 2554 data =None
2538 2555 thdulist=None
2539 2556
2540 2557 def __init__(self):
2541 2558
2542 2559 pass
2543 2560
2544 2561 def setColF(self,name,format,array):
2545 2562 self.name=name
2546 2563 self.format=format
2547 2564 self.array=array
2548 2565 a1=numpy.array([self.array],dtype=numpy.float32)
2549 2566 self.col1 = pyfits.Column(name=self.name, format=self.format, array=a1)
2550 2567 return self.col1
2551 2568
2552 2569 # def setColP(self,name,format,data):
2553 2570 # self.name=name
2554 2571 # self.format=format
2555 2572 # self.data=data
2556 2573 # a2=numpy.array([self.data],dtype=numpy.float32)
2557 2574 # self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2558 2575 # return self.col2
2559 2576
2560 2577 def writeHeader(self,):
2561 2578 pass
2562 2579
2563 2580 def writeData(self,name,format,data):
2564 2581 self.name=name
2565 2582 self.format=format
2566 2583 self.data=data
2567 2584 a2=numpy.array([self.data],dtype=numpy.float32)
2568 2585 self.col2 = pyfits.Column(name=self.name, format=self.format, array=a2)
2569 2586 return self.col2
2570 2587
2571 2588 def cFImage(self,n):
2572 2589 self.hdu= pyfits.PrimaryHDU(n)
2573 2590 return self.hdu
2574 2591
2575 2592 def Ctable(self,col1,col2,col3,col4,col5,col6,col7,col8,col9):
2576 2593 self.cols=pyfits.ColDefs( [col1,col2,col3,col4,col5,col6,col7,col8,col9])
2577 2594 self.tbhdu = pyfits.new_table(self.cols)
2578 2595 return self.tbhdu
2579 2596
2580 2597 def CFile(self,hdu,tbhdu):
2581 2598 self.thdulist=pyfits.HDUList([hdu,tbhdu])
2582 2599
2583 2600 def wFile(self,filename):
2584 2601 self.thdulist.writeto(filename) No newline at end of file
General Comments 0
You need to be logged in to leave comments. Login now