@@ -1,1356 +1,1363 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import copy |
|
7 | import copy | |
8 | import numpy |
|
8 | import numpy | |
9 | import datetime |
|
9 | import datetime | |
10 | import json |
|
10 | import json | |
11 |
|
11 | |||
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
13 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
14 |
|
14 | |||
15 |
|
15 | |||
16 | def getNumpyDtype(dataTypeCode): |
|
16 | def getNumpyDtype(dataTypeCode): | |
17 |
|
17 | |||
18 | if dataTypeCode == 0: |
|
18 | if dataTypeCode == 0: | |
19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
20 | elif dataTypeCode == 1: |
|
20 | elif dataTypeCode == 1: | |
21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
22 | elif dataTypeCode == 2: |
|
22 | elif dataTypeCode == 2: | |
23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
24 | elif dataTypeCode == 3: |
|
24 | elif dataTypeCode == 3: | |
25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
26 | elif dataTypeCode == 4: |
|
26 | elif dataTypeCode == 4: | |
27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
28 | elif dataTypeCode == 5: |
|
28 | elif dataTypeCode == 5: | |
29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
30 | else: |
|
30 | else: | |
31 | raise ValueError('dataTypeCode was not defined') |
|
31 | raise ValueError('dataTypeCode was not defined') | |
32 |
|
32 | |||
33 | return numpyDtype |
|
33 | return numpyDtype | |
34 |
|
34 | |||
35 |
|
35 | |||
36 | def getDataTypeCode(numpyDtype): |
|
36 | def getDataTypeCode(numpyDtype): | |
37 |
|
37 | |||
38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
39 | datatype = 0 |
|
39 | datatype = 0 | |
40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
41 | datatype = 1 |
|
41 | datatype = 1 | |
42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
43 | datatype = 2 |
|
43 | datatype = 2 | |
44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
45 | datatype = 3 |
|
45 | datatype = 3 | |
46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
47 | datatype = 4 |
|
47 | datatype = 4 | |
48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
49 | datatype = 5 |
|
49 | datatype = 5 | |
50 | else: |
|
50 | else: | |
51 | datatype = None |
|
51 | datatype = None | |
52 |
|
52 | |||
53 | return datatype |
|
53 | return datatype | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | def hildebrand_sekhon(data, navg): |
|
56 | def hildebrand_sekhon(data, navg): | |
57 | """ |
|
57 | """ | |
58 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
58 | This method is for the objective determination of the noise level in Doppler spectra. This | |
59 | implementation technique is based on the fact that the standard deviation of the spectral |
|
59 | implementation technique is based on the fact that the standard deviation of the spectral | |
60 | densities is equal to the mean spectral density for white Gaussian noise |
|
60 | densities is equal to the mean spectral density for white Gaussian noise | |
61 |
|
61 | |||
62 | Inputs: |
|
62 | Inputs: | |
63 | Data : heights |
|
63 | Data : heights | |
64 | navg : numbers of averages |
|
64 | navg : numbers of averages | |
65 |
|
65 | |||
66 | Return: |
|
66 | Return: | |
67 | mean : noise's level |
|
67 | mean : noise's level | |
68 | """ |
|
68 | """ | |
69 |
|
69 | |||
70 | sortdata = numpy.sort(data, axis=None) |
|
70 | sortdata = numpy.sort(data, axis=None) | |
71 | lenOfData = len(sortdata) |
|
71 | lenOfData = len(sortdata) | |
72 | nums_min = lenOfData*0.2 |
|
72 | nums_min = lenOfData*0.2 | |
73 |
|
73 | |||
74 | if nums_min <= 5: |
|
74 | if nums_min <= 5: | |
75 |
|
75 | |||
76 | nums_min = 5 |
|
76 | nums_min = 5 | |
77 |
|
77 | |||
78 | sump = 0. |
|
78 | sump = 0. | |
79 | sumq = 0. |
|
79 | sumq = 0. | |
80 |
|
80 | |||
81 | j = 0 |
|
81 | j = 0 | |
82 | cont = 1 |
|
82 | cont = 1 | |
83 |
|
83 | |||
84 | while((cont == 1)and(j < lenOfData)): |
|
84 | while((cont == 1)and(j < lenOfData)): | |
85 |
|
85 | |||
86 | sump += sortdata[j] |
|
86 | sump += sortdata[j] | |
87 | sumq += sortdata[j]**2 |
|
87 | sumq += sortdata[j]**2 | |
88 |
|
88 | |||
89 | if j > nums_min: |
|
89 | if j > nums_min: | |
90 | rtest = float(j)/(j-1) + 1.0/navg |
|
90 | rtest = float(j)/(j-1) + 1.0/navg | |
91 | if ((sumq*j) > (rtest*sump**2)): |
|
91 | if ((sumq*j) > (rtest*sump**2)): | |
92 | j = j - 1 |
|
92 | j = j - 1 | |
93 | sump = sump - sortdata[j] |
|
93 | sump = sump - sortdata[j] | |
94 | sumq = sumq - sortdata[j]**2 |
|
94 | sumq = sumq - sortdata[j]**2 | |
95 | cont = 0 |
|
95 | cont = 0 | |
96 |
|
96 | |||
97 | j += 1 |
|
97 | j += 1 | |
98 |
|
98 | |||
99 | lnoise = sump / j |
|
99 | lnoise = sump / j | |
100 |
|
100 | |||
101 | return lnoise |
|
101 | return lnoise | |
102 |
|
102 | |||
103 |
|
103 | |||
104 | class Beam: |
|
104 | class Beam: | |
105 |
|
105 | |||
106 | def __init__(self): |
|
106 | def __init__(self): | |
107 | self.codeList = [] |
|
107 | self.codeList = [] | |
108 | self.azimuthList = [] |
|
108 | self.azimuthList = [] | |
109 | self.zenithList = [] |
|
109 | self.zenithList = [] | |
110 |
|
110 | |||
111 |
|
111 | |||
112 | class GenericData(object): |
|
112 | class GenericData(object): | |
113 |
|
113 | |||
114 | flagNoData = True |
|
114 | flagNoData = True | |
115 |
|
115 | |||
116 | def copy(self, inputObj=None): |
|
116 | def copy(self, inputObj=None): | |
117 |
|
117 | |||
118 | if inputObj == None: |
|
118 | if inputObj == None: | |
119 | return copy.deepcopy(self) |
|
119 | return copy.deepcopy(self) | |
120 |
|
120 | |||
121 | for key in list(inputObj.__dict__.keys()): |
|
121 | for key in list(inputObj.__dict__.keys()): | |
122 |
|
122 | |||
123 | attribute = inputObj.__dict__[key] |
|
123 | attribute = inputObj.__dict__[key] | |
124 |
|
124 | |||
125 | # If this attribute is a tuple or list |
|
125 | # If this attribute is a tuple or list | |
126 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
126 | if type(inputObj.__dict__[key]) in (tuple, list): | |
127 | self.__dict__[key] = attribute[:] |
|
127 | self.__dict__[key] = attribute[:] | |
128 | continue |
|
128 | continue | |
129 |
|
129 | |||
130 | # If this attribute is another object or instance |
|
130 | # If this attribute is another object or instance | |
131 | if hasattr(attribute, '__dict__'): |
|
131 | if hasattr(attribute, '__dict__'): | |
132 | self.__dict__[key] = attribute.copy() |
|
132 | self.__dict__[key] = attribute.copy() | |
133 | continue |
|
133 | continue | |
134 |
|
134 | |||
135 | self.__dict__[key] = inputObj.__dict__[key] |
|
135 | self.__dict__[key] = inputObj.__dict__[key] | |
136 |
|
136 | |||
137 | def deepcopy(self): |
|
137 | def deepcopy(self): | |
138 |
|
138 | |||
139 | return copy.deepcopy(self) |
|
139 | return copy.deepcopy(self) | |
140 |
|
140 | |||
141 | def isEmpty(self): |
|
141 | def isEmpty(self): | |
142 |
|
142 | |||
143 | return self.flagNoData |
|
143 | return self.flagNoData | |
144 |
|
144 | |||
145 |
|
145 | |||
146 | class JROData(GenericData): |
|
146 | class JROData(GenericData): | |
147 |
|
147 | |||
148 | # m_BasicHeader = BasicHeader() |
|
148 | # m_BasicHeader = BasicHeader() | |
149 | # m_ProcessingHeader = ProcessingHeader() |
|
149 | # m_ProcessingHeader = ProcessingHeader() | |
150 |
|
150 | |||
151 | systemHeaderObj = SystemHeader() |
|
151 | systemHeaderObj = SystemHeader() | |
152 | radarControllerHeaderObj = RadarControllerHeader() |
|
152 | radarControllerHeaderObj = RadarControllerHeader() | |
153 | # data = None |
|
153 | # data = None | |
154 | type = None |
|
154 | type = None | |
155 | datatype = None # dtype but in string |
|
155 | datatype = None # dtype but in string | |
156 | # dtype = None |
|
156 | # dtype = None | |
157 | # nChannels = None |
|
157 | # nChannels = None | |
158 | # nHeights = None |
|
158 | # nHeights = None | |
159 | nProfiles = None |
|
159 | nProfiles = None | |
160 | heightList = None |
|
160 | heightList = None | |
161 | channelList = None |
|
161 | channelList = None | |
162 | flagDiscontinuousBlock = False |
|
162 | flagDiscontinuousBlock = False | |
163 | useLocalTime = False |
|
163 | useLocalTime = False | |
164 | utctime = None |
|
164 | utctime = None | |
165 | timeZone = None |
|
165 | timeZone = None | |
166 | dstFlag = None |
|
166 | dstFlag = None | |
167 | errorCount = None |
|
167 | errorCount = None | |
168 | blocksize = None |
|
168 | blocksize = None | |
169 | # nCode = None |
|
169 | # nCode = None | |
170 | # nBaud = None |
|
170 | # nBaud = None | |
171 | # code = None |
|
171 | # code = None | |
172 | flagDecodeData = False # asumo q la data no esta decodificada |
|
172 | flagDecodeData = False # asumo q la data no esta decodificada | |
173 | flagDeflipData = False # asumo q la data no esta sin flip |
|
173 | flagDeflipData = False # asumo q la data no esta sin flip | |
174 | flagShiftFFT = False |
|
174 | flagShiftFFT = False | |
175 | # ippSeconds = None |
|
175 | # ippSeconds = None | |
176 | # timeInterval = None |
|
176 | # timeInterval = None | |
177 | nCohInt = None |
|
177 | nCohInt = None | |
178 | # noise = None |
|
178 | # noise = None | |
179 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
180 | # Speed of ligth |
|
180 | # Speed of ligth | |
181 | C = 3e8 |
|
181 | C = 3e8 | |
182 | frequency = 49.92e6 |
|
182 | frequency = 49.92e6 | |
183 | realtime = False |
|
183 | realtime = False | |
184 | beacon_heiIndexList = None |
|
184 | beacon_heiIndexList = None | |
185 | last_block = None |
|
185 | last_block = None | |
186 | blocknow = None |
|
186 | blocknow = None | |
187 | azimuth = None |
|
187 | azimuth = None | |
188 | zenith = None |
|
188 | zenith = None | |
189 | beam = Beam() |
|
189 | beam = Beam() | |
190 | profileIndex = None |
|
190 | profileIndex = None | |
191 | error = None |
|
191 | error = None | |
192 | data = None |
|
192 | data = None | |
193 | nmodes = None |
|
193 | nmodes = None | |
194 |
|
194 | |||
195 | def __str__(self): |
|
195 | def __str__(self): | |
196 |
|
196 | |||
197 | return '{} - {}'.format(self.type, self.getDatatime()) |
|
197 | return '{} - {}'.format(self.type, self.getDatatime()) | |
198 |
|
198 | |||
199 | def getNoise(self): |
|
199 | def getNoise(self): | |
200 |
|
200 | |||
201 | raise NotImplementedError |
|
201 | raise NotImplementedError | |
202 |
|
202 | |||
203 | def getNChannels(self): |
|
203 | def getNChannels(self): | |
204 |
|
204 | |||
205 | return len(self.channelList) |
|
205 | return len(self.channelList) | |
206 |
|
206 | |||
207 | def getChannelIndexList(self): |
|
207 | def getChannelIndexList(self): | |
208 |
|
208 | |||
209 | return list(range(self.nChannels)) |
|
209 | return list(range(self.nChannels)) | |
210 |
|
210 | |||
211 | def getNHeights(self): |
|
211 | def getNHeights(self): | |
212 |
|
212 | |||
213 | return len(self.heightList) |
|
213 | return len(self.heightList) | |
214 |
|
214 | |||
215 | def getHeiRange(self, extrapoints=0): |
|
215 | def getHeiRange(self, extrapoints=0): | |
216 |
|
216 | |||
217 | heis = self.heightList |
|
217 | heis = self.heightList | |
218 | # deltah = self.heightList[1] - self.heightList[0] |
|
218 | # deltah = self.heightList[1] - self.heightList[0] | |
219 | # |
|
219 | # | |
220 | # heis.append(self.heightList[-1]) |
|
220 | # heis.append(self.heightList[-1]) | |
221 |
|
221 | |||
222 | return heis |
|
222 | return heis | |
223 |
|
223 | |||
224 | def getDeltaH(self): |
|
224 | def getDeltaH(self): | |
225 |
|
225 | |||
226 | delta = self.heightList[1] - self.heightList[0] |
|
226 | delta = self.heightList[1] - self.heightList[0] | |
227 |
|
227 | |||
228 | return delta |
|
228 | return delta | |
229 |
|
229 | |||
230 | def getltctime(self): |
|
230 | def getltctime(self): | |
231 |
|
231 | |||
232 | if self.useLocalTime: |
|
232 | if self.useLocalTime: | |
233 | return self.utctime - self.timeZone * 60 |
|
233 | return self.utctime - self.timeZone * 60 | |
234 |
|
234 | |||
235 | return self.utctime |
|
235 | return self.utctime | |
236 |
|
236 | |||
237 | def getDatatime(self): |
|
237 | def getDatatime(self): | |
238 |
|
238 | |||
239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
240 | return datatimeValue |
|
240 | return datatimeValue | |
241 |
|
241 | |||
242 | def getTimeRange(self): |
|
242 | def getTimeRange(self): | |
243 |
|
243 | |||
244 | datatime = [] |
|
244 | datatime = [] | |
245 |
|
245 | |||
246 | datatime.append(self.ltctime) |
|
246 | datatime.append(self.ltctime) | |
247 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
247 | datatime.append(self.ltctime + self.timeInterval + 1) | |
248 |
|
248 | |||
249 | datatime = numpy.array(datatime) |
|
249 | datatime = numpy.array(datatime) | |
250 |
|
250 | |||
251 | return datatime |
|
251 | return datatime | |
252 |
|
252 | |||
253 | def getFmaxTimeResponse(self): |
|
253 | def getFmaxTimeResponse(self): | |
254 |
|
254 | |||
255 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
255 | period = (10**-6) * self.getDeltaH() / (0.15) | |
256 |
|
256 | |||
257 | PRF = 1. / (period * self.nCohInt) |
|
257 | PRF = 1. / (period * self.nCohInt) | |
258 |
|
258 | |||
259 | fmax = PRF |
|
259 | fmax = PRF | |
260 |
|
260 | |||
261 | return fmax |
|
261 | return fmax | |
262 |
|
262 | |||
263 | def getFmax(self): |
|
263 | def getFmax(self): | |
264 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
264 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
265 |
|
265 | |||
266 | fmax = PRF |
|
266 | fmax = PRF | |
267 | return fmax |
|
267 | return fmax | |
268 |
|
268 | |||
269 | def getVmax(self): |
|
269 | def getVmax(self): | |
270 |
|
270 | |||
271 | _lambda = self.C / self.frequency |
|
271 | _lambda = self.C / self.frequency | |
272 |
|
272 | |||
273 | vmax = self.getFmax() * _lambda / 2 |
|
273 | vmax = self.getFmax() * _lambda / 2 | |
274 |
|
274 | |||
275 | return vmax |
|
275 | return vmax | |
276 |
|
276 | |||
277 | def get_ippSeconds(self): |
|
277 | def get_ippSeconds(self): | |
278 | ''' |
|
278 | ''' | |
279 | ''' |
|
279 | ''' | |
280 | return self.radarControllerHeaderObj.ippSeconds |
|
280 | return self.radarControllerHeaderObj.ippSeconds | |
281 |
|
281 | |||
282 | def set_ippSeconds(self, ippSeconds): |
|
282 | def set_ippSeconds(self, ippSeconds): | |
283 | ''' |
|
283 | ''' | |
284 | ''' |
|
284 | ''' | |
285 |
|
285 | |||
286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
287 |
|
287 | |||
288 | return |
|
288 | return | |
289 |
|
289 | |||
290 | def get_dtype(self): |
|
290 | def get_dtype(self): | |
291 | ''' |
|
291 | ''' | |
292 | ''' |
|
292 | ''' | |
293 | return getNumpyDtype(self.datatype) |
|
293 | return getNumpyDtype(self.datatype) | |
294 |
|
294 | |||
295 | def set_dtype(self, numpyDtype): |
|
295 | def set_dtype(self, numpyDtype): | |
296 | ''' |
|
296 | ''' | |
297 | ''' |
|
297 | ''' | |
298 |
|
298 | |||
299 | self.datatype = getDataTypeCode(numpyDtype) |
|
299 | self.datatype = getDataTypeCode(numpyDtype) | |
300 |
|
300 | |||
301 | def get_code(self): |
|
301 | def get_code(self): | |
302 | ''' |
|
302 | ''' | |
303 | ''' |
|
303 | ''' | |
304 | return self.radarControllerHeaderObj.code |
|
304 | return self.radarControllerHeaderObj.code | |
305 |
|
305 | |||
306 | def set_code(self, code): |
|
306 | def set_code(self, code): | |
307 | ''' |
|
307 | ''' | |
308 | ''' |
|
308 | ''' | |
309 | self.radarControllerHeaderObj.code = code |
|
309 | self.radarControllerHeaderObj.code = code | |
310 |
|
310 | |||
311 | return |
|
311 | return | |
312 |
|
312 | |||
313 | def get_ncode(self): |
|
313 | def get_ncode(self): | |
314 | ''' |
|
314 | ''' | |
315 | ''' |
|
315 | ''' | |
316 | return self.radarControllerHeaderObj.nCode |
|
316 | return self.radarControllerHeaderObj.nCode | |
317 |
|
317 | |||
318 | def set_ncode(self, nCode): |
|
318 | def set_ncode(self, nCode): | |
319 | ''' |
|
319 | ''' | |
320 | ''' |
|
320 | ''' | |
321 | self.radarControllerHeaderObj.nCode = nCode |
|
321 | self.radarControllerHeaderObj.nCode = nCode | |
322 |
|
322 | |||
323 | return |
|
323 | return | |
324 |
|
324 | |||
325 | def get_nbaud(self): |
|
325 | def get_nbaud(self): | |
326 | ''' |
|
326 | ''' | |
327 | ''' |
|
327 | ''' | |
328 | return self.radarControllerHeaderObj.nBaud |
|
328 | return self.radarControllerHeaderObj.nBaud | |
329 |
|
329 | |||
330 | def set_nbaud(self, nBaud): |
|
330 | def set_nbaud(self, nBaud): | |
331 | ''' |
|
331 | ''' | |
332 | ''' |
|
332 | ''' | |
333 | self.radarControllerHeaderObj.nBaud = nBaud |
|
333 | self.radarControllerHeaderObj.nBaud = nBaud | |
334 |
|
334 | |||
335 | return |
|
335 | return | |
336 |
|
336 | |||
337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
338 | channelIndexList = property( |
|
338 | channelIndexList = property( | |
339 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
339 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
341 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
341 | #noise = property(getNoise, "I'm the 'nHeights' property.") | |
342 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
342 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
343 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
343 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) | |
345 | dtype = property(get_dtype, set_dtype) |
|
345 | dtype = property(get_dtype, set_dtype) | |
346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
347 | code = property(get_code, set_code) |
|
347 | code = property(get_code, set_code) | |
348 | nCode = property(get_ncode, set_ncode) |
|
348 | nCode = property(get_ncode, set_ncode) | |
349 | nBaud = property(get_nbaud, set_nbaud) |
|
349 | nBaud = property(get_nbaud, set_nbaud) | |
350 |
|
350 | |||
351 |
|
351 | |||
352 | class Voltage(JROData): |
|
352 | class Voltage(JROData): | |
353 |
|
353 | |||
354 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
354 | # data es un numpy array de 2 dmensiones (canales, alturas) | |
355 | data = None |
|
355 | data = None | |
356 |
|
356 | |||
357 | def __init__(self): |
|
357 | def __init__(self): | |
358 | ''' |
|
358 | ''' | |
359 | Constructor |
|
359 | Constructor | |
360 | ''' |
|
360 | ''' | |
361 |
|
361 | |||
362 | self.useLocalTime = True |
|
362 | self.useLocalTime = True | |
363 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
363 | self.radarControllerHeaderObj = RadarControllerHeader() | |
364 | self.systemHeaderObj = SystemHeader() |
|
364 | self.systemHeaderObj = SystemHeader() | |
365 | self.type = "Voltage" |
|
365 | self.type = "Voltage" | |
366 | self.data = None |
|
366 | self.data = None | |
367 | # self.dtype = None |
|
367 | # self.dtype = None | |
368 | # self.nChannels = 0 |
|
368 | # self.nChannels = 0 | |
369 | # self.nHeights = 0 |
|
369 | # self.nHeights = 0 | |
370 | self.nProfiles = None |
|
370 | self.nProfiles = None | |
371 | self.heightList = None |
|
371 | self.heightList = None | |
372 | self.channelList = None |
|
372 | self.channelList = None | |
373 | # self.channelIndexList = None |
|
373 | # self.channelIndexList = None | |
374 | self.flagNoData = True |
|
374 | self.flagNoData = True | |
375 | self.flagDiscontinuousBlock = False |
|
375 | self.flagDiscontinuousBlock = False | |
376 | self.utctime = None |
|
376 | self.utctime = None | |
377 | self.timeZone = None |
|
377 | self.timeZone = None | |
378 | self.dstFlag = None |
|
378 | self.dstFlag = None | |
379 | self.errorCount = None |
|
379 | self.errorCount = None | |
380 | self.nCohInt = None |
|
380 | self.nCohInt = None | |
381 | self.blocksize = None |
|
381 | self.blocksize = None | |
382 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
382 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
383 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
383 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
384 | self.flagShiftFFT = False |
|
384 | self.flagShiftFFT = False | |
385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
386 | self.profileIndex = 0 |
|
386 | self.profileIndex = 0 | |
387 |
|
387 | |||
388 | def getNoisebyHildebrand(self, channel=None): |
|
388 | def getNoisebyHildebrand(self, channel=None): | |
389 | """ |
|
389 | """ | |
390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
391 |
|
391 | |||
392 | Return: |
|
392 | Return: | |
393 | noiselevel |
|
393 | noiselevel | |
394 | """ |
|
394 | """ | |
395 |
|
395 | |||
396 | if channel != None: |
|
396 | if channel != None: | |
397 | data = self.data[channel] |
|
397 | data = self.data[channel] | |
398 | nChannels = 1 |
|
398 | nChannels = 1 | |
399 | else: |
|
399 | else: | |
400 | data = self.data |
|
400 | data = self.data | |
401 | nChannels = self.nChannels |
|
401 | nChannels = self.nChannels | |
402 |
|
402 | |||
403 | noise = numpy.zeros(nChannels) |
|
403 | noise = numpy.zeros(nChannels) | |
404 | power = data * numpy.conjugate(data) |
|
404 | power = data * numpy.conjugate(data) | |
405 |
|
405 | |||
406 | for thisChannel in range(nChannels): |
|
406 | for thisChannel in range(nChannels): | |
407 | if nChannels == 1: |
|
407 | if nChannels == 1: | |
408 | daux = power[:].real |
|
408 | daux = power[:].real | |
409 | else: |
|
409 | else: | |
410 | daux = power[thisChannel, :].real |
|
410 | daux = power[thisChannel, :].real | |
411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
412 |
|
412 | |||
413 | return noise |
|
413 | return noise | |
414 |
|
414 | |||
415 | def getNoise(self, type=1, channel=None): |
|
415 | def getNoise(self, type=1, channel=None): | |
416 |
|
416 | |||
417 | if type == 1: |
|
417 | if type == 1: | |
418 | noise = self.getNoisebyHildebrand(channel) |
|
418 | noise = self.getNoisebyHildebrand(channel) | |
419 |
|
419 | |||
420 | return noise |
|
420 | return noise | |
421 |
|
421 | |||
422 | def getPower(self, channel=None): |
|
422 | def getPower(self, channel=None): | |
423 |
|
423 | |||
424 | if channel != None: |
|
424 | if channel != None: | |
425 | data = self.data[channel] |
|
425 | data = self.data[channel] | |
426 | else: |
|
426 | else: | |
427 | data = self.data |
|
427 | data = self.data | |
428 |
|
428 | |||
429 | power = data * numpy.conjugate(data) |
|
429 | power = data * numpy.conjugate(data) | |
430 | powerdB = 10 * numpy.log10(power.real) |
|
430 | powerdB = 10 * numpy.log10(power.real) | |
431 | powerdB = numpy.squeeze(powerdB) |
|
431 | powerdB = numpy.squeeze(powerdB) | |
432 |
|
432 | |||
433 | return powerdB |
|
433 | return powerdB | |
434 |
|
434 | |||
435 | def getTimeInterval(self): |
|
435 | def getTimeInterval(self): | |
436 |
|
436 | |||
437 | timeInterval = self.ippSeconds * self.nCohInt |
|
437 | timeInterval = self.ippSeconds * self.nCohInt | |
438 |
|
438 | |||
439 | return timeInterval |
|
439 | return timeInterval | |
440 |
|
440 | |||
441 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
441 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
443 |
|
443 | |||
444 |
|
444 | |||
445 | class Spectra(JROData): |
|
445 | class Spectra(JROData): | |
446 |
|
446 | |||
447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
448 | data_spc = None |
|
448 | data_spc = None | |
449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
450 | data_cspc = None |
|
450 | data_cspc = None | |
451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) | |
452 | data_dc = None |
|
452 | data_dc = None | |
453 | # data power |
|
453 | # data power | |
454 | data_pwr = None |
|
454 | data_pwr = None | |
455 | nFFTPoints = None |
|
455 | nFFTPoints = None | |
456 | # nPairs = None |
|
456 | # nPairs = None | |
457 | pairsList = None |
|
457 | pairsList = None | |
458 | nIncohInt = None |
|
458 | nIncohInt = None | |
459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia | |
460 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
460 | nCohInt = None # se requiere para determinar el valor de timeInterval | |
461 | ippFactor = None |
|
461 | ippFactor = None | |
462 | profileIndex = 0 |
|
462 | profileIndex = 0 | |
463 | plotting = "spectra" |
|
463 | plotting = "spectra" | |
464 |
|
464 | |||
465 | def __init__(self): |
|
465 | def __init__(self): | |
466 | ''' |
|
466 | ''' | |
467 | Constructor |
|
467 | Constructor | |
468 | ''' |
|
468 | ''' | |
469 |
|
469 | |||
470 | self.useLocalTime = True |
|
470 | self.useLocalTime = True | |
471 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
471 | self.radarControllerHeaderObj = RadarControllerHeader() | |
472 | self.systemHeaderObj = SystemHeader() |
|
472 | self.systemHeaderObj = SystemHeader() | |
473 | self.type = "Spectra" |
|
473 | self.type = "Spectra" | |
474 | # self.data = None |
|
474 | # self.data = None | |
475 | # self.dtype = None |
|
475 | # self.dtype = None | |
476 | # self.nChannels = 0 |
|
476 | # self.nChannels = 0 | |
477 | # self.nHeights = 0 |
|
477 | # self.nHeights = 0 | |
478 | self.nProfiles = None |
|
478 | self.nProfiles = None | |
479 | self.heightList = None |
|
479 | self.heightList = None | |
480 | self.channelList = None |
|
480 | self.channelList = None | |
481 | # self.channelIndexList = None |
|
481 | # self.channelIndexList = None | |
482 | self.pairsList = None |
|
482 | self.pairsList = None | |
483 | self.flagNoData = True |
|
483 | self.flagNoData = True | |
484 | self.flagDiscontinuousBlock = False |
|
484 | self.flagDiscontinuousBlock = False | |
485 | self.utctime = None |
|
485 | self.utctime = None | |
486 | self.nCohInt = None |
|
486 | self.nCohInt = None | |
487 | self.nIncohInt = None |
|
487 | self.nIncohInt = None | |
488 | self.blocksize = None |
|
488 | self.blocksize = None | |
489 | self.nFFTPoints = None |
|
489 | self.nFFTPoints = None | |
490 | self.wavelength = None |
|
490 | self.wavelength = None | |
491 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
491 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
492 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
492 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
493 | self.flagShiftFFT = False |
|
493 | self.flagShiftFFT = False | |
494 | self.ippFactor = 1 |
|
494 | self.ippFactor = 1 | |
495 | #self.noise = None |
|
495 | #self.noise = None | |
496 | self.beacon_heiIndexList = [] |
|
496 | self.beacon_heiIndexList = [] | |
497 | self.noise_estimation = None |
|
497 | self.noise_estimation = None | |
498 |
|
498 | |||
499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
500 | """ |
|
500 | """ | |
501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
502 |
|
502 | |||
503 | Return: |
|
503 | Return: | |
504 | noiselevel |
|
504 | noiselevel | |
505 | """ |
|
505 | """ | |
506 |
|
506 | |||
507 | noise = numpy.zeros(self.nChannels) |
|
507 | noise = numpy.zeros(self.nChannels) | |
508 |
|
508 | |||
509 | for channel in range(self.nChannels): |
|
509 | for channel in range(self.nChannels): | |
510 | daux = self.data_spc[channel, |
|
510 | daux = self.data_spc[channel, | |
511 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
511 | xmin_index:xmax_index, ymin_index:ymax_index] | |
512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
513 |
|
513 | |||
514 | return noise |
|
514 | return noise | |
515 |
|
515 | |||
516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
517 |
|
517 | |||
518 | if self.noise_estimation is not None: |
|
518 | if self.noise_estimation is not None: | |
519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
520 | return self.noise_estimation |
|
520 | return self.noise_estimation | |
521 | else: |
|
521 | else: | |
522 | noise = self.getNoisebyHildebrand( |
|
522 | noise = self.getNoisebyHildebrand( | |
523 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
523 | xmin_index, xmax_index, ymin_index, ymax_index) | |
524 | return noise |
|
524 | return noise | |
525 |
|
525 | |||
526 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
526 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
527 |
|
527 | |||
528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
529 | freqrange = deltafreq * \ |
|
529 | freqrange = deltafreq * \ | |
530 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
530 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
531 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
531 | self.nFFTPoints / 2.) - deltafreq / 2 | |
532 |
|
532 | |||
533 | return freqrange |
|
533 | return freqrange | |
534 |
|
534 | |||
535 | def getAcfRange(self, extrapoints=0): |
|
535 | def getAcfRange(self, extrapoints=0): | |
536 |
|
536 | |||
537 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
537 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
538 | freqrange = deltafreq * \ |
|
538 | freqrange = deltafreq * \ | |
539 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
539 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
540 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
540 | self.nFFTPoints / 2.) - deltafreq / 2 | |
541 |
|
541 | |||
542 | return freqrange |
|
542 | return freqrange | |
543 |
|
543 | |||
544 | def getFreqRange(self, extrapoints=0): |
|
544 | def getFreqRange(self, extrapoints=0): | |
545 |
|
545 | |||
546 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
546 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
547 | freqrange = deltafreq * \ |
|
547 | freqrange = deltafreq * \ | |
548 | (numpy.arange(self.nFFTPoints + extrapoints) - |
|
548 | (numpy.arange(self.nFFTPoints + extrapoints) - | |
549 | self.nFFTPoints / 2.) - deltafreq / 2 |
|
549 | self.nFFTPoints / 2.) - deltafreq / 2 | |
550 |
|
550 | |||
551 | return freqrange |
|
551 | return freqrange | |
552 |
|
552 | |||
553 | def getVelRange(self, extrapoints=0): |
|
553 | def getVelRange(self, extrapoints=0): | |
554 |
|
554 | |||
555 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
555 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
556 | velrange = deltav * (numpy.arange(self.nFFTPoints + |
|
556 | velrange = deltav * (numpy.arange(self.nFFTPoints + | |
557 | extrapoints) - self.nFFTPoints / 2.) |
|
557 | extrapoints) - self.nFFTPoints / 2.) | |
558 |
|
558 | |||
559 | if self.nmodes: |
|
559 | if self.nmodes: | |
560 | return velrange/self.nmodes |
|
560 | return velrange/self.nmodes | |
561 | else: |
|
561 | else: | |
562 | return velrange |
|
562 | return velrange | |
563 |
|
563 | |||
564 | def getNPairs(self): |
|
564 | def getNPairs(self): | |
565 |
|
565 | |||
566 | return len(self.pairsList) |
|
566 | return len(self.pairsList) | |
567 |
|
567 | |||
568 | def getPairsIndexList(self): |
|
568 | def getPairsIndexList(self): | |
569 |
|
569 | |||
570 | return list(range(self.nPairs)) |
|
570 | return list(range(self.nPairs)) | |
571 |
|
571 | |||
572 | def getNormFactor(self): |
|
572 | def getNormFactor(self): | |
573 |
|
573 | |||
574 | pwcode = 1 |
|
574 | pwcode = 1 | |
575 |
|
575 | |||
576 | if self.flagDecodeData: |
|
576 | if self.flagDecodeData: | |
577 | pwcode = numpy.sum(self.code[0]**2) |
|
577 | pwcode = numpy.sum(self.code[0]**2) | |
578 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
578 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
579 | normFactor = self.nProfiles * self.nIncohInt * \ |
|
579 | normFactor = self.nProfiles * self.nIncohInt * \ | |
580 | self.nCohInt * pwcode * self.windowOfFilter |
|
580 | self.nCohInt * pwcode * self.windowOfFilter | |
581 |
|
581 | |||
582 | return normFactor |
|
582 | return normFactor | |
583 |
|
583 | |||
584 | def getFlagCspc(self): |
|
584 | def getFlagCspc(self): | |
585 |
|
585 | |||
586 | if self.data_cspc is None: |
|
586 | if self.data_cspc is None: | |
587 | return True |
|
587 | return True | |
588 |
|
588 | |||
589 | return False |
|
589 | return False | |
590 |
|
590 | |||
591 | def getFlagDc(self): |
|
591 | def getFlagDc(self): | |
592 |
|
592 | |||
593 | if self.data_dc is None: |
|
593 | if self.data_dc is None: | |
594 | return True |
|
594 | return True | |
595 |
|
595 | |||
596 | return False |
|
596 | return False | |
597 |
|
597 | |||
598 | def getTimeInterval(self): |
|
598 | def getTimeInterval(self): | |
599 |
|
599 | |||
600 | timeInterval = self.ippSeconds * self.nCohInt * \ |
|
600 | timeInterval = self.ippSeconds * self.nCohInt * \ | |
601 | self.nIncohInt * self.nProfiles * self.ippFactor |
|
601 | self.nIncohInt * self.nProfiles * self.ippFactor | |
602 |
|
602 | |||
603 | return timeInterval |
|
603 | return timeInterval | |
604 |
|
604 | |||
605 | def getPower(self): |
|
605 | def getPower(self): | |
606 |
|
606 | |||
607 | factor = self.normFactor |
|
607 | factor = self.normFactor | |
608 | z = self.data_spc / factor |
|
608 | z = self.data_spc / factor | |
609 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
609 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
610 | avg = numpy.average(z, axis=1) |
|
610 | avg = numpy.average(z, axis=1) | |
611 |
|
611 | |||
612 | return 10 * numpy.log10(avg) |
|
612 | return 10 * numpy.log10(avg) | |
613 |
|
613 | |||
614 | def getCoherence(self, pairsList=None, phase=False): |
|
614 | def getCoherence(self, pairsList=None, phase=False): | |
615 |
|
615 | |||
616 | z = [] |
|
616 | z = [] | |
617 | if pairsList is None: |
|
617 | if pairsList is None: | |
618 | pairsIndexList = self.pairsIndexList |
|
618 | pairsIndexList = self.pairsIndexList | |
619 | else: |
|
619 | else: | |
620 | pairsIndexList = [] |
|
620 | pairsIndexList = [] | |
621 | for pair in pairsList: |
|
621 | for pair in pairsList: | |
622 | if pair not in self.pairsList: |
|
622 | if pair not in self.pairsList: | |
623 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
623 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
624 | pair)) |
|
624 | pair)) | |
625 | pairsIndexList.append(self.pairsList.index(pair)) |
|
625 | pairsIndexList.append(self.pairsList.index(pair)) | |
626 | for i in range(len(pairsIndexList)): |
|
626 | for i in range(len(pairsIndexList)): | |
627 | pair = self.pairsList[pairsIndexList[i]] |
|
627 | pair = self.pairsList[pairsIndexList[i]] | |
628 | ccf = numpy.average( |
|
628 | ccf = numpy.average( | |
629 | self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
629 | self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
630 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
630 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
631 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
631 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
632 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
632 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
633 | if phase: |
|
633 | if phase: | |
634 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
634 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
635 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
635 | avgcoherenceComplex.real) * 180 / numpy.pi | |
636 | else: |
|
636 | else: | |
637 | data = numpy.abs(avgcoherenceComplex) |
|
637 | data = numpy.abs(avgcoherenceComplex) | |
638 |
|
638 | |||
639 | z.append(data) |
|
639 | z.append(data) | |
640 |
|
640 | |||
641 | return numpy.array(z) |
|
641 | return numpy.array(z) | |
642 |
|
642 | |||
643 | def setValue(self, value): |
|
643 | def setValue(self, value): | |
644 |
|
644 | |||
645 | print("This property should not be initialized") |
|
645 | print("This property should not be initialized") | |
646 |
|
646 | |||
647 | return |
|
647 | return | |
648 |
|
648 | |||
649 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
649 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") | |
650 | pairsIndexList = property( |
|
650 | pairsIndexList = property( | |
651 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
651 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") | |
652 | normFactor = property(getNormFactor, setValue, |
|
652 | normFactor = property(getNormFactor, setValue, | |
653 | "I'm the 'getNormFactor' property.") |
|
653 | "I'm the 'getNormFactor' property.") | |
654 | flag_cspc = property(getFlagCspc, setValue) |
|
654 | flag_cspc = property(getFlagCspc, setValue) | |
655 | flag_dc = property(getFlagDc, setValue) |
|
655 | flag_dc = property(getFlagDc, setValue) | |
656 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
656 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
657 | timeInterval = property(getTimeInterval, setValue, |
|
657 | timeInterval = property(getTimeInterval, setValue, | |
658 | "I'm the 'timeInterval' property") |
|
658 | "I'm the 'timeInterval' property") | |
659 |
|
659 | |||
660 |
|
660 | |||
661 | class SpectraHeis(Spectra): |
|
661 | class SpectraHeis(Spectra): | |
662 |
|
662 | |||
663 | data_spc = None |
|
663 | data_spc = None | |
664 | data_cspc = None |
|
664 | data_cspc = None | |
665 | data_dc = None |
|
665 | data_dc = None | |
666 | nFFTPoints = None |
|
666 | nFFTPoints = None | |
667 | # nPairs = None |
|
667 | # nPairs = None | |
668 | pairsList = None |
|
668 | pairsList = None | |
669 | nCohInt = None |
|
669 | nCohInt = None | |
670 | nIncohInt = None |
|
670 | nIncohInt = None | |
671 |
|
671 | |||
672 | def __init__(self): |
|
672 | def __init__(self): | |
673 |
|
673 | |||
674 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
674 | self.radarControllerHeaderObj = RadarControllerHeader() | |
675 |
|
675 | |||
676 | self.systemHeaderObj = SystemHeader() |
|
676 | self.systemHeaderObj = SystemHeader() | |
677 |
|
677 | |||
678 | self.type = "SpectraHeis" |
|
678 | self.type = "SpectraHeis" | |
679 |
|
679 | |||
680 | # self.dtype = None |
|
680 | # self.dtype = None | |
681 |
|
681 | |||
682 | # self.nChannels = 0 |
|
682 | # self.nChannels = 0 | |
683 |
|
683 | |||
684 | # self.nHeights = 0 |
|
684 | # self.nHeights = 0 | |
685 |
|
685 | |||
686 | self.nProfiles = None |
|
686 | self.nProfiles = None | |
687 |
|
687 | |||
688 | self.heightList = None |
|
688 | self.heightList = None | |
689 |
|
689 | |||
690 | self.channelList = None |
|
690 | self.channelList = None | |
691 |
|
691 | |||
692 | # self.channelIndexList = None |
|
692 | # self.channelIndexList = None | |
693 |
|
693 | |||
694 | self.flagNoData = True |
|
694 | self.flagNoData = True | |
695 |
|
695 | |||
696 | self.flagDiscontinuousBlock = False |
|
696 | self.flagDiscontinuousBlock = False | |
697 |
|
697 | |||
698 | # self.nPairs = 0 |
|
698 | # self.nPairs = 0 | |
699 |
|
699 | |||
700 | self.utctime = None |
|
700 | self.utctime = None | |
701 |
|
701 | |||
702 | self.blocksize = None |
|
702 | self.blocksize = None | |
703 |
|
703 | |||
704 | self.profileIndex = 0 |
|
704 | self.profileIndex = 0 | |
705 |
|
705 | |||
706 | self.nCohInt = 1 |
|
706 | self.nCohInt = 1 | |
707 |
|
707 | |||
708 | self.nIncohInt = 1 |
|
708 | self.nIncohInt = 1 | |
709 |
|
709 | |||
710 | def getNormFactor(self): |
|
710 | def getNormFactor(self): | |
711 | pwcode = 1 |
|
711 | pwcode = 1 | |
712 | if self.flagDecodeData: |
|
712 | if self.flagDecodeData: | |
713 | pwcode = numpy.sum(self.code[0]**2) |
|
713 | pwcode = numpy.sum(self.code[0]**2) | |
714 |
|
714 | |||
715 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
715 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
716 |
|
716 | |||
717 | return normFactor |
|
717 | return normFactor | |
718 |
|
718 | |||
719 | def getTimeInterval(self): |
|
719 | def getTimeInterval(self): | |
720 |
|
720 | |||
721 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
721 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
722 |
|
722 | |||
723 | return timeInterval |
|
723 | return timeInterval | |
724 |
|
724 | |||
725 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
725 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
726 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
726 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
727 |
|
727 | |||
728 |
|
728 | |||
729 | class Fits(JROData): |
|
729 | class Fits(JROData): | |
730 |
|
730 | |||
731 | heightList = None |
|
731 | heightList = None | |
732 | channelList = None |
|
732 | channelList = None | |
733 | flagNoData = True |
|
733 | flagNoData = True | |
734 | flagDiscontinuousBlock = False |
|
734 | flagDiscontinuousBlock = False | |
735 | useLocalTime = False |
|
735 | useLocalTime = False | |
736 | utctime = None |
|
736 | utctime = None | |
737 | timeZone = None |
|
737 | timeZone = None | |
738 | # ippSeconds = None |
|
738 | # ippSeconds = None | |
739 | # timeInterval = None |
|
739 | # timeInterval = None | |
740 | nCohInt = None |
|
740 | nCohInt = None | |
741 | nIncohInt = None |
|
741 | nIncohInt = None | |
742 | noise = None |
|
742 | noise = None | |
743 | windowOfFilter = 1 |
|
743 | windowOfFilter = 1 | |
744 | # Speed of ligth |
|
744 | # Speed of ligth | |
745 | C = 3e8 |
|
745 | C = 3e8 | |
746 | frequency = 49.92e6 |
|
746 | frequency = 49.92e6 | |
747 | realtime = False |
|
747 | realtime = False | |
748 |
|
748 | |||
749 | def __init__(self): |
|
749 | def __init__(self): | |
750 |
|
750 | |||
751 | self.type = "Fits" |
|
751 | self.type = "Fits" | |
752 |
|
752 | |||
753 | self.nProfiles = None |
|
753 | self.nProfiles = None | |
754 |
|
754 | |||
755 | self.heightList = None |
|
755 | self.heightList = None | |
756 |
|
756 | |||
757 | self.channelList = None |
|
757 | self.channelList = None | |
758 |
|
758 | |||
759 | # self.channelIndexList = None |
|
759 | # self.channelIndexList = None | |
760 |
|
760 | |||
761 | self.flagNoData = True |
|
761 | self.flagNoData = True | |
762 |
|
762 | |||
763 | self.utctime = None |
|
763 | self.utctime = None | |
764 |
|
764 | |||
765 | self.nCohInt = 1 |
|
765 | self.nCohInt = 1 | |
766 |
|
766 | |||
767 | self.nIncohInt = 1 |
|
767 | self.nIncohInt = 1 | |
768 |
|
768 | |||
769 | self.useLocalTime = True |
|
769 | self.useLocalTime = True | |
770 |
|
770 | |||
771 | self.profileIndex = 0 |
|
771 | self.profileIndex = 0 | |
772 |
|
772 | |||
773 | # self.utctime = None |
|
773 | # self.utctime = None | |
774 | # self.timeZone = None |
|
774 | # self.timeZone = None | |
775 | # self.ltctime = None |
|
775 | # self.ltctime = None | |
776 | # self.timeInterval = None |
|
776 | # self.timeInterval = None | |
777 | # self.header = None |
|
777 | # self.header = None | |
778 | # self.data_header = None |
|
778 | # self.data_header = None | |
779 | # self.data = None |
|
779 | # self.data = None | |
780 | # self.datatime = None |
|
780 | # self.datatime = None | |
781 | # self.flagNoData = False |
|
781 | # self.flagNoData = False | |
782 | # self.expName = '' |
|
782 | # self.expName = '' | |
783 | # self.nChannels = None |
|
783 | # self.nChannels = None | |
784 | # self.nSamples = None |
|
784 | # self.nSamples = None | |
785 | # self.dataBlocksPerFile = None |
|
785 | # self.dataBlocksPerFile = None | |
786 | # self.comments = '' |
|
786 | # self.comments = '' | |
787 | # |
|
787 | # | |
788 |
|
788 | |||
789 | def getltctime(self): |
|
789 | def getltctime(self): | |
790 |
|
790 | |||
791 | if self.useLocalTime: |
|
791 | if self.useLocalTime: | |
792 | return self.utctime - self.timeZone * 60 |
|
792 | return self.utctime - self.timeZone * 60 | |
793 |
|
793 | |||
794 | return self.utctime |
|
794 | return self.utctime | |
795 |
|
795 | |||
796 | def getDatatime(self): |
|
796 | def getDatatime(self): | |
797 |
|
797 | |||
798 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
798 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
799 | return datatime |
|
799 | return datatime | |
800 |
|
800 | |||
801 | def getTimeRange(self): |
|
801 | def getTimeRange(self): | |
802 |
|
802 | |||
803 | datatime = [] |
|
803 | datatime = [] | |
804 |
|
804 | |||
805 | datatime.append(self.ltctime) |
|
805 | datatime.append(self.ltctime) | |
806 | datatime.append(self.ltctime + self.timeInterval) |
|
806 | datatime.append(self.ltctime + self.timeInterval) | |
807 |
|
807 | |||
808 | datatime = numpy.array(datatime) |
|
808 | datatime = numpy.array(datatime) | |
809 |
|
809 | |||
810 | return datatime |
|
810 | return datatime | |
811 |
|
811 | |||
812 | def getHeiRange(self): |
|
812 | def getHeiRange(self): | |
813 |
|
813 | |||
814 | heis = self.heightList |
|
814 | heis = self.heightList | |
815 |
|
815 | |||
816 | return heis |
|
816 | return heis | |
817 |
|
817 | |||
818 | def getNHeights(self): |
|
818 | def getNHeights(self): | |
819 |
|
819 | |||
820 | return len(self.heightList) |
|
820 | return len(self.heightList) | |
821 |
|
821 | |||
822 | def getNChannels(self): |
|
822 | def getNChannels(self): | |
823 |
|
823 | |||
824 | return len(self.channelList) |
|
824 | return len(self.channelList) | |
825 |
|
825 | |||
826 | def getChannelIndexList(self): |
|
826 | def getChannelIndexList(self): | |
827 |
|
827 | |||
828 | return list(range(self.nChannels)) |
|
828 | return list(range(self.nChannels)) | |
829 |
|
829 | |||
830 | def getNoise(self, type=1): |
|
830 | def getNoise(self, type=1): | |
831 |
|
831 | |||
832 | #noise = numpy.zeros(self.nChannels) |
|
832 | #noise = numpy.zeros(self.nChannels) | |
833 |
|
833 | |||
834 | if type == 1: |
|
834 | if type == 1: | |
835 | noise = self.getNoisebyHildebrand() |
|
835 | noise = self.getNoisebyHildebrand() | |
836 |
|
836 | |||
837 | if type == 2: |
|
837 | if type == 2: | |
838 | noise = self.getNoisebySort() |
|
838 | noise = self.getNoisebySort() | |
839 |
|
839 | |||
840 | if type == 3: |
|
840 | if type == 3: | |
841 | noise = self.getNoisebyWindow() |
|
841 | noise = self.getNoisebyWindow() | |
842 |
|
842 | |||
843 | return noise |
|
843 | return noise | |
844 |
|
844 | |||
845 | def getTimeInterval(self): |
|
845 | def getTimeInterval(self): | |
846 |
|
846 | |||
847 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
847 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
848 |
|
848 | |||
849 | return timeInterval |
|
849 | return timeInterval | |
850 |
|
850 | |||
851 | def get_ippSeconds(self): |
|
851 | def get_ippSeconds(self): | |
852 | ''' |
|
852 | ''' | |
853 | ''' |
|
853 | ''' | |
854 | return self.ipp_sec |
|
854 | return self.ipp_sec | |
855 |
|
855 | |||
856 |
|
856 | |||
857 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
857 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
858 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
858 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
859 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
859 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
860 | channelIndexList = property( |
|
860 | channelIndexList = property( | |
861 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
861 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
862 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
862 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
863 |
|
863 | |||
864 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
864 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
865 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
865 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
866 | ippSeconds = property(get_ippSeconds, '') |
|
866 | ippSeconds = property(get_ippSeconds, '') | |
867 |
|
867 | |||
868 | class Correlation(JROData): |
|
868 | class Correlation(JROData): | |
869 |
|
869 | |||
870 | noise = None |
|
870 | noise = None | |
871 | SNR = None |
|
871 | SNR = None | |
872 | #-------------------------------------------------- |
|
872 | #-------------------------------------------------- | |
873 | mode = None |
|
873 | mode = None | |
874 | split = False |
|
874 | split = False | |
875 | data_cf = None |
|
875 | data_cf = None | |
876 | lags = None |
|
876 | lags = None | |
877 | lagRange = None |
|
877 | lagRange = None | |
878 | pairsList = None |
|
878 | pairsList = None | |
879 | normFactor = None |
|
879 | normFactor = None | |
880 | #-------------------------------------------------- |
|
880 | #-------------------------------------------------- | |
881 | # calculateVelocity = None |
|
881 | # calculateVelocity = None | |
882 | nLags = None |
|
882 | nLags = None | |
883 | nPairs = None |
|
883 | nPairs = None | |
884 | nAvg = None |
|
884 | nAvg = None | |
885 |
|
885 | |||
886 | def __init__(self): |
|
886 | def __init__(self): | |
887 | ''' |
|
887 | ''' | |
888 | Constructor |
|
888 | Constructor | |
889 | ''' |
|
889 | ''' | |
890 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
890 | self.radarControllerHeaderObj = RadarControllerHeader() | |
891 |
|
891 | |||
892 | self.systemHeaderObj = SystemHeader() |
|
892 | self.systemHeaderObj = SystemHeader() | |
893 |
|
893 | |||
894 | self.type = "Correlation" |
|
894 | self.type = "Correlation" | |
895 |
|
895 | |||
896 | self.data = None |
|
896 | self.data = None | |
897 |
|
897 | |||
898 | self.dtype = None |
|
898 | self.dtype = None | |
899 |
|
899 | |||
900 | self.nProfiles = None |
|
900 | self.nProfiles = None | |
901 |
|
901 | |||
902 | self.heightList = None |
|
902 | self.heightList = None | |
903 |
|
903 | |||
904 | self.channelList = None |
|
904 | self.channelList = None | |
905 |
|
905 | |||
906 | self.flagNoData = True |
|
906 | self.flagNoData = True | |
907 |
|
907 | |||
908 | self.flagDiscontinuousBlock = False |
|
908 | self.flagDiscontinuousBlock = False | |
909 |
|
909 | |||
910 | self.utctime = None |
|
910 | self.utctime = None | |
911 |
|
911 | |||
912 | self.timeZone = None |
|
912 | self.timeZone = None | |
913 |
|
913 | |||
914 | self.dstFlag = None |
|
914 | self.dstFlag = None | |
915 |
|
915 | |||
916 | self.errorCount = None |
|
916 | self.errorCount = None | |
917 |
|
917 | |||
918 | self.blocksize = None |
|
918 | self.blocksize = None | |
919 |
|
919 | |||
920 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
920 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
921 |
|
921 | |||
922 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
922 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
923 |
|
923 | |||
924 | self.pairsList = None |
|
924 | self.pairsList = None | |
925 |
|
925 | |||
926 | self.nPoints = None |
|
926 | self.nPoints = None | |
927 |
|
927 | |||
928 | def getPairsList(self): |
|
928 | def getPairsList(self): | |
929 |
|
929 | |||
930 | return self.pairsList |
|
930 | return self.pairsList | |
931 |
|
931 | |||
932 | def getNoise(self, mode=2): |
|
932 | def getNoise(self, mode=2): | |
933 |
|
933 | |||
934 | indR = numpy.where(self.lagR == 0)[0][0] |
|
934 | indR = numpy.where(self.lagR == 0)[0][0] | |
935 | indT = numpy.where(self.lagT == 0)[0][0] |
|
935 | indT = numpy.where(self.lagT == 0)[0][0] | |
936 |
|
936 | |||
937 | jspectra0 = self.data_corr[:, :, indR, :] |
|
937 | jspectra0 = self.data_corr[:, :, indR, :] | |
938 | jspectra = copy.copy(jspectra0) |
|
938 | jspectra = copy.copy(jspectra0) | |
939 |
|
939 | |||
940 | num_chan = jspectra.shape[0] |
|
940 | num_chan = jspectra.shape[0] | |
941 | num_hei = jspectra.shape[2] |
|
941 | num_hei = jspectra.shape[2] | |
942 |
|
942 | |||
943 | freq_dc = jspectra.shape[1] / 2 |
|
943 | freq_dc = jspectra.shape[1] / 2 | |
944 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
944 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
945 |
|
945 | |||
946 | if ind_vel[0] < 0: |
|
946 | if ind_vel[0] < 0: | |
947 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
947 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
948 | range(0, 1))] + self.num_prof |
|
948 | range(0, 1))] + self.num_prof | |
949 |
|
949 | |||
950 | if mode == 1: |
|
950 | if mode == 1: | |
951 | jspectra[:, freq_dc, :] = ( |
|
951 | jspectra[:, freq_dc, :] = ( | |
952 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
952 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
953 |
|
953 | |||
954 | if mode == 2: |
|
954 | if mode == 2: | |
955 |
|
955 | |||
956 | vel = numpy.array([-2, -1, 1, 2]) |
|
956 | vel = numpy.array([-2, -1, 1, 2]) | |
957 | xx = numpy.zeros([4, 4]) |
|
957 | xx = numpy.zeros([4, 4]) | |
958 |
|
958 | |||
959 | for fil in range(4): |
|
959 | for fil in range(4): | |
960 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
960 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
961 |
|
961 | |||
962 | xx_inv = numpy.linalg.inv(xx) |
|
962 | xx_inv = numpy.linalg.inv(xx) | |
963 | xx_aux = xx_inv[0, :] |
|
963 | xx_aux = xx_inv[0, :] | |
964 |
|
964 | |||
965 | for ich in range(num_chan): |
|
965 | for ich in range(num_chan): | |
966 | yy = jspectra[ich, ind_vel, :] |
|
966 | yy = jspectra[ich, ind_vel, :] | |
967 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
967 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
968 |
|
968 | |||
969 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
969 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
970 | cjunkid = sum(junkid) |
|
970 | cjunkid = sum(junkid) | |
971 |
|
971 | |||
972 | if cjunkid.any(): |
|
972 | if cjunkid.any(): | |
973 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
973 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
974 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
974 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
975 |
|
975 | |||
976 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
976 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
977 |
|
977 | |||
978 | return noise |
|
978 | return noise | |
979 |
|
979 | |||
980 | def getTimeInterval(self): |
|
980 | def getTimeInterval(self): | |
981 |
|
981 | |||
982 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
982 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles | |
983 |
|
983 | |||
984 | return timeInterval |
|
984 | return timeInterval | |
985 |
|
985 | |||
986 | def splitFunctions(self): |
|
986 | def splitFunctions(self): | |
987 |
|
987 | |||
988 | pairsList = self.pairsList |
|
988 | pairsList = self.pairsList | |
989 | ccf_pairs = [] |
|
989 | ccf_pairs = [] | |
990 | acf_pairs = [] |
|
990 | acf_pairs = [] | |
991 | ccf_ind = [] |
|
991 | ccf_ind = [] | |
992 | acf_ind = [] |
|
992 | acf_ind = [] | |
993 | for l in range(len(pairsList)): |
|
993 | for l in range(len(pairsList)): | |
994 | chan0 = pairsList[l][0] |
|
994 | chan0 = pairsList[l][0] | |
995 | chan1 = pairsList[l][1] |
|
995 | chan1 = pairsList[l][1] | |
996 |
|
996 | |||
997 | # Obteniendo pares de Autocorrelacion |
|
997 | # Obteniendo pares de Autocorrelacion | |
998 | if chan0 == chan1: |
|
998 | if chan0 == chan1: | |
999 | acf_pairs.append(chan0) |
|
999 | acf_pairs.append(chan0) | |
1000 | acf_ind.append(l) |
|
1000 | acf_ind.append(l) | |
1001 | else: |
|
1001 | else: | |
1002 | ccf_pairs.append(pairsList[l]) |
|
1002 | ccf_pairs.append(pairsList[l]) | |
1003 | ccf_ind.append(l) |
|
1003 | ccf_ind.append(l) | |
1004 |
|
1004 | |||
1005 | data_acf = self.data_cf[acf_ind] |
|
1005 | data_acf = self.data_cf[acf_ind] | |
1006 | data_ccf = self.data_cf[ccf_ind] |
|
1006 | data_ccf = self.data_cf[ccf_ind] | |
1007 |
|
1007 | |||
1008 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1008 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
1009 |
|
1009 | |||
1010 | def getNormFactor(self): |
|
1010 | def getNormFactor(self): | |
1011 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1011 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
1012 | acf_pairs = numpy.array(acf_pairs) |
|
1012 | acf_pairs = numpy.array(acf_pairs) | |
1013 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1013 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
1014 |
|
1014 | |||
1015 | for p in range(self.nPairs): |
|
1015 | for p in range(self.nPairs): | |
1016 | pair = self.pairsList[p] |
|
1016 | pair = self.pairsList[p] | |
1017 |
|
1017 | |||
1018 | ch0 = pair[0] |
|
1018 | ch0 = pair[0] | |
1019 | ch1 = pair[1] |
|
1019 | ch1 = pair[1] | |
1020 |
|
1020 | |||
1021 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1021 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
1022 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1022 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
1023 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1023 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
1024 |
|
1024 | |||
1025 | return normFactor |
|
1025 | return normFactor | |
1026 |
|
1026 | |||
1027 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1027 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
1028 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1028 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") | |
1029 |
|
1029 | |||
1030 |
|
1030 | |||
1031 | class Parameters(Spectra): |
|
1031 | class Parameters(Spectra): | |
1032 |
|
1032 | |||
1033 | experimentInfo = None # Information about the experiment |
|
1033 | experimentInfo = None # Information about the experiment | |
1034 | # Information from previous data |
|
1034 | # Information from previous data | |
1035 | inputUnit = None # Type of data to be processed |
|
1035 | inputUnit = None # Type of data to be processed | |
1036 | operation = None # Type of operation to parametrize |
|
1036 | operation = None # Type of operation to parametrize | |
1037 | # normFactor = None #Normalization Factor |
|
1037 | # normFactor = None #Normalization Factor | |
1038 | groupList = None # List of Pairs, Groups, etc |
|
1038 | groupList = None # List of Pairs, Groups, etc | |
1039 | # Parameters |
|
1039 | # Parameters | |
1040 | data_param = None # Parameters obtained |
|
1040 | data_param = None # Parameters obtained | |
1041 | data_pre = None # Data Pre Parametrization |
|
1041 | data_pre = None # Data Pre Parametrization | |
1042 | data_SNR = None # Signal to Noise Ratio |
|
1042 | data_SNR = None # Signal to Noise Ratio | |
1043 | # heightRange = None #Heights |
|
1043 | # heightRange = None #Heights | |
1044 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1044 | abscissaList = None # Abscissa, can be velocities, lags or time | |
1045 | # noise = None #Noise Potency |
|
1045 | # noise = None #Noise Potency | |
1046 | utctimeInit = None # Initial UTC time |
|
1046 | utctimeInit = None # Initial UTC time | |
1047 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1047 | paramInterval = None # Time interval to calculate Parameters in seconds | |
1048 | useLocalTime = True |
|
1048 | useLocalTime = True | |
1049 | # Fitting |
|
1049 | # Fitting | |
1050 | data_error = None # Error of the estimation |
|
1050 | data_error = None # Error of the estimation | |
1051 | constants = None |
|
1051 | constants = None | |
1052 | library = None |
|
1052 | library = None | |
1053 | # Output signal |
|
1053 | # Output signal | |
1054 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1054 | outputInterval = None # Time interval to calculate output signal in seconds | |
1055 | data_output = None # Out signal |
|
1055 | data_output = None # Out signal | |
1056 | nAvg = None |
|
1056 | nAvg = None | |
1057 | noise_estimation = None |
|
1057 | noise_estimation = None | |
1058 | GauSPC = None # Fit gaussian SPC |
|
1058 | GauSPC = None # Fit gaussian SPC | |
1059 |
|
1059 | |||
1060 | def __init__(self): |
|
1060 | def __init__(self): | |
1061 | ''' |
|
1061 | ''' | |
1062 | Constructor |
|
1062 | Constructor | |
1063 | ''' |
|
1063 | ''' | |
1064 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1064 | self.radarControllerHeaderObj = RadarControllerHeader() | |
1065 |
|
1065 | |||
1066 | self.systemHeaderObj = SystemHeader() |
|
1066 | self.systemHeaderObj = SystemHeader() | |
1067 |
|
1067 | |||
1068 | self.type = "Parameters" |
|
1068 | self.type = "Parameters" | |
1069 |
|
1069 | |||
1070 | def getTimeRange1(self, interval): |
|
1070 | def getTimeRange1(self, interval): | |
1071 |
|
1071 | |||
1072 | datatime = [] |
|
1072 | datatime = [] | |
1073 |
|
1073 | |||
1074 | if self.useLocalTime: |
|
1074 | if self.useLocalTime: | |
1075 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1075 | time1 = self.utctimeInit - self.timeZone * 60 | |
1076 | else: |
|
1076 | else: | |
1077 | time1 = self.utctimeInit |
|
1077 | time1 = self.utctimeInit | |
1078 |
|
1078 | |||
1079 | datatime.append(time1) |
|
1079 | datatime.append(time1) | |
1080 | datatime.append(time1 + interval) |
|
1080 | datatime.append(time1 + interval) | |
1081 | datatime = numpy.array(datatime) |
|
1081 | datatime = numpy.array(datatime) | |
1082 |
|
1082 | |||
1083 | return datatime |
|
1083 | return datatime | |
1084 |
|
1084 | |||
1085 | def getTimeInterval(self): |
|
1085 | def getTimeInterval(self): | |
1086 |
|
1086 | |||
1087 | if hasattr(self, 'timeInterval1'): |
|
1087 | if hasattr(self, 'timeInterval1'): | |
1088 | return self.timeInterval1 |
|
1088 | return self.timeInterval1 | |
1089 | else: |
|
1089 | else: | |
1090 | return self.paramInterval |
|
1090 | return self.paramInterval | |
1091 |
|
1091 | |||
1092 | def setValue(self, value): |
|
1092 | def setValue(self, value): | |
1093 |
|
1093 | |||
1094 | print("This property should not be initialized") |
|
1094 | print("This property should not be initialized") | |
1095 |
|
1095 | |||
1096 | return |
|
1096 | return | |
1097 |
|
1097 | |||
1098 | def getNoise(self): |
|
1098 | def getNoise(self): | |
1099 |
|
1099 | |||
1100 | return self.spc_noise |
|
1100 | return self.spc_noise | |
1101 |
|
1101 | |||
1102 | timeInterval = property(getTimeInterval) |
|
1102 | timeInterval = property(getTimeInterval) | |
1103 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1103 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
1104 |
|
1104 | |||
1105 |
|
1105 | |||
1106 | class PlotterData(object): |
|
1106 | class PlotterData(object): | |
1107 | ''' |
|
1107 | ''' | |
1108 | Object to hold data to be plotted |
|
1108 | Object to hold data to be plotted | |
1109 | ''' |
|
1109 | ''' | |
1110 |
|
1110 | |||
1111 | MAXNUMX = 100 |
|
1111 | MAXNUMX = 100 | |
1112 | MAXNUMY = 100 |
|
1112 | MAXNUMY = 100 | |
1113 |
|
1113 | |||
1114 | def __init__(self, code, throttle_value, exp_code, buffering=True): |
|
1114 | def __init__(self, code, throttle_value, exp_code, buffering=True): | |
1115 |
|
1115 | |||
1116 | self.throttle = throttle_value |
|
1116 | self.throttle = throttle_value | |
1117 | self.exp_code = exp_code |
|
1117 | self.exp_code = exp_code | |
1118 | self.buffering = buffering |
|
1118 | self.buffering = buffering | |
1119 | self.ready = False |
|
1119 | self.ready = False | |
1120 | self.localtime = False |
|
1120 | self.localtime = False | |
1121 | self.data = {} |
|
1121 | self.data = {} | |
1122 | self.meta = {} |
|
1122 | self.meta = {} | |
1123 | self.__times = [] |
|
1123 | self.__times = [] | |
1124 | self.__heights = [] |
|
1124 | self.__heights = [] | |
1125 |
|
1125 | |||
1126 | if 'snr' in code: |
|
1126 | if 'snr' in code: | |
1127 | self.plottypes = ['snr'] |
|
1127 | self.plottypes = ['snr'] | |
1128 | elif code == 'spc': |
|
1128 | elif code == 'spc': | |
1129 | self.plottypes = ['spc', 'noise', 'rti'] |
|
1129 | self.plottypes = ['spc', 'noise', 'rti'] | |
1130 | elif code == 'rti': |
|
1130 | elif code == 'rti': | |
1131 | self.plottypes = ['noise', 'rti'] |
|
1131 | self.plottypes = ['noise', 'rti'] | |
1132 | else: |
|
1132 | else: | |
1133 | self.plottypes = [code] |
|
1133 | self.plottypes = [code] | |
1134 |
|
1134 | |||
1135 | for plot in self.plottypes: |
|
1135 | for plot in self.plottypes: | |
1136 | self.data[plot] = {} |
|
1136 | self.data[plot] = {} | |
1137 |
|
1137 | |||
1138 | def __str__(self): |
|
1138 | def __str__(self): | |
1139 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1139 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
1140 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
1140 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) | |
1141 |
|
1141 | |||
1142 | def __len__(self): |
|
1142 | def __len__(self): | |
1143 | return len(self.__times) |
|
1143 | return len(self.__times) | |
1144 |
|
1144 | |||
1145 | def __getitem__(self, key): |
|
1145 | def __getitem__(self, key): | |
1146 |
|
1146 | |||
1147 | if key not in self.data: |
|
1147 | if key not in self.data: | |
1148 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1148 | raise KeyError(log.error('Missing key: {}'.format(key))) | |
1149 | if 'spc' in key or not self.buffering: |
|
1149 | if 'spc' in key or not self.buffering: | |
1150 | ret = self.data[key] |
|
1150 | ret = self.data[key] | |
|
1151 | elif 'scope' in key: | |||
|
1152 | ret = numpy.array(self.data[key][float(self.tm)]) | |||
1151 | else: |
|
1153 | else: | |
1152 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
1154 | ret = numpy.array([self.data[key][x] for x in self.times]) | |
1153 | if ret.ndim > 1: |
|
1155 | if ret.ndim > 1: | |
1154 | ret = numpy.swapaxes(ret, 0, 1) |
|
1156 | ret = numpy.swapaxes(ret, 0, 1) | |
1155 | return ret |
|
1157 | return ret | |
1156 |
|
1158 | |||
1157 | def __contains__(self, key): |
|
1159 | def __contains__(self, key): | |
1158 | return key in self.data |
|
1160 | return key in self.data | |
1159 |
|
1161 | |||
1160 | def setup(self): |
|
1162 | def setup(self): | |
1161 | ''' |
|
1163 | ''' | |
1162 | Configure object |
|
1164 | Configure object | |
1163 | ''' |
|
1165 | ''' | |
1164 |
|
1166 | |||
1165 | self.type = '' |
|
1167 | self.type = '' | |
1166 | self.ready = False |
|
1168 | self.ready = False | |
1167 | self.data = {} |
|
1169 | self.data = {} | |
1168 | self.__times = [] |
|
1170 | self.__times = [] | |
1169 | self.__heights = [] |
|
1171 | self.__heights = [] | |
1170 | self.__all_heights = set() |
|
1172 | self.__all_heights = set() | |
1171 | for plot in self.plottypes: |
|
1173 | for plot in self.plottypes: | |
1172 | if 'snr' in plot: |
|
1174 | if 'snr' in plot: | |
1173 | plot = 'snr' |
|
1175 | plot = 'snr' | |
1174 | self.data[plot] = {} |
|
1176 | self.data[plot] = {} | |
1175 |
|
1177 | |||
1176 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data: |
|
1178 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data: | |
1177 | self.data['noise'] = {} |
|
1179 | self.data['noise'] = {} | |
1178 | if 'noise' not in self.plottypes: |
|
1180 | if 'noise' not in self.plottypes: | |
1179 | self.plottypes.append('noise') |
|
1181 | self.plottypes.append('noise') | |
1180 |
|
1182 | |||
1181 | def shape(self, key): |
|
1183 | def shape(self, key): | |
1182 | ''' |
|
1184 | ''' | |
1183 | Get the shape of the one-element data for the given key |
|
1185 | Get the shape of the one-element data for the given key | |
1184 | ''' |
|
1186 | ''' | |
1185 |
|
1187 | |||
1186 | if len(self.data[key]): |
|
1188 | if len(self.data[key]): | |
1187 | if 'spc' in key or not self.buffering: |
|
1189 | if 'spc' in key or not self.buffering: | |
1188 | return self.data[key].shape |
|
1190 | return self.data[key].shape | |
1189 | return self.data[key][self.__times[0]].shape |
|
1191 | return self.data[key][self.__times[0]].shape | |
1190 | return (0,) |
|
1192 | return (0,) | |
1191 |
|
1193 | |||
1192 | def update(self, dataOut, tm): |
|
1194 | def update(self, dataOut, tm): | |
1193 | ''' |
|
1195 | ''' | |
1194 | Update data object with new dataOut |
|
1196 | Update data object with new dataOut | |
1195 | ''' |
|
1197 | ''' | |
1196 |
|
1198 | |||
1197 | if tm in self.__times: |
|
1199 | if tm in self.__times: | |
1198 | return |
|
1200 | return | |
1199 |
|
1201 | self.profileIndex = dataOut.profileIndex | ||
|
1202 | self.tm = tm | |||
1200 | self.type = dataOut.type |
|
1203 | self.type = dataOut.type | |
1201 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1204 | self.parameters = getattr(dataOut, 'parameters', []) | |
1202 | if hasattr(dataOut, 'pairsList'): |
|
1205 | if hasattr(dataOut, 'pairsList'): | |
1203 | self.pairs = dataOut.pairsList |
|
1206 | self.pairs = dataOut.pairsList | |
1204 | if hasattr(dataOut, 'meta'): |
|
1207 | if hasattr(dataOut, 'meta'): | |
1205 | self.meta = dataOut.meta |
|
1208 | self.meta = dataOut.meta | |
1206 | self.channels = dataOut.channelList |
|
1209 | self.channels = dataOut.channelList | |
1207 | self.interval = dataOut.getTimeInterval() |
|
1210 | self.interval = dataOut.getTimeInterval() | |
1208 | self.localtime = dataOut.useLocalTime |
|
1211 | self.localtime = dataOut.useLocalTime | |
1209 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: |
|
1212 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: | |
1210 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
1213 | self.xrange = (dataOut.getFreqRange(1)/1000., | |
1211 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1214 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
1212 | self.factor = dataOut.normFactor |
|
1215 | self.factor = dataOut.normFactor | |
1213 | self.__heights.append(dataOut.heightList) |
|
1216 | self.__heights.append(dataOut.heightList) | |
1214 | self.__all_heights.update(dataOut.heightList) |
|
1217 | self.__all_heights.update(dataOut.heightList) | |
1215 | self.__times.append(tm) |
|
1218 | self.__times.append(tm) | |
1216 |
|
1219 | |||
1217 | for plot in self.plottypes: |
|
1220 | for plot in self.plottypes: | |
1218 | if plot == 'spc': |
|
1221 | if plot == 'spc': | |
1219 | z = dataOut.data_spc/dataOut.normFactor |
|
1222 | z = dataOut.data_spc/dataOut.normFactor | |
1220 | buffer = 10*numpy.log10(z) |
|
1223 | buffer = 10*numpy.log10(z) | |
1221 | if plot == 'cspc': |
|
1224 | if plot == 'cspc': | |
1222 | z = dataOut.data_spc/dataOut.normFactor |
|
1225 | z = dataOut.data_spc/dataOut.normFactor | |
1223 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1226 | buffer = (dataOut.data_spc, dataOut.data_cspc) | |
1224 | if plot == 'noise': |
|
1227 | if plot == 'noise': | |
1225 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1228 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
1226 | if plot == 'rti': |
|
1229 | if plot == 'rti': | |
1227 | buffer = dataOut.getPower() |
|
1230 | buffer = dataOut.getPower() | |
1228 | if plot == 'snr_db': |
|
1231 | if plot == 'snr_db': | |
1229 | buffer = dataOut.data_SNR |
|
1232 | buffer = dataOut.data_SNR | |
1230 | if plot == 'snr': |
|
1233 | if plot == 'snr': | |
1231 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
1234 | buffer = 10*numpy.log10(dataOut.data_SNR) | |
1232 | if plot == 'dop': |
|
1235 | if plot == 'dop': | |
1233 | buffer = 10*numpy.log10(dataOut.data_DOP) |
|
1236 | buffer = 10*numpy.log10(dataOut.data_DOP) | |
1234 | if plot == 'mean': |
|
1237 | if plot == 'mean': | |
1235 | buffer = dataOut.data_MEAN |
|
1238 | buffer = dataOut.data_MEAN | |
1236 | if plot == 'std': |
|
1239 | if plot == 'std': | |
1237 | buffer = dataOut.data_STD |
|
1240 | buffer = dataOut.data_STD | |
1238 | if plot == 'coh': |
|
1241 | if plot == 'coh': | |
1239 | buffer = dataOut.getCoherence() |
|
1242 | buffer = dataOut.getCoherence() | |
1240 | if plot == 'phase': |
|
1243 | if plot == 'phase': | |
1241 | buffer = dataOut.getCoherence(phase=True) |
|
1244 | buffer = dataOut.getCoherence(phase=True) | |
1242 | if plot == 'output': |
|
1245 | if plot == 'output': | |
1243 | buffer = dataOut.data_output |
|
1246 | buffer = dataOut.data_output | |
1244 | if plot == 'param': |
|
1247 | if plot == 'param': | |
1245 | buffer = dataOut.data_param |
|
1248 | buffer = dataOut.data_param | |
|
1249 | if plot == 'scope': | |||
|
1250 | buffer = dataOut.data | |||
|
1251 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |||
|
1252 | self.nProfiles = dataOut.nProfiles | |||
1246 |
|
1253 | |||
1247 | if plot == 'spc': |
|
1254 | if plot == 'spc': | |
1248 | self.data[plot] = buffer |
|
1255 | self.data[plot] = buffer | |
1249 | elif plot == 'cspc': |
|
1256 | elif plot == 'cspc': | |
1250 | self.data['spc'] = buffer[0] |
|
1257 | self.data['spc'] = buffer[0] | |
1251 | self.data['cspc'] = buffer[1] |
|
1258 | self.data['cspc'] = buffer[1] | |
1252 | else: |
|
1259 | else: | |
1253 | if self.buffering: |
|
1260 | if self.buffering: | |
1254 | self.data[plot][tm] = buffer |
|
1261 | self.data[plot][tm] = buffer | |
1255 | else: |
|
1262 | else: | |
1256 | self.data[plot] = buffer |
|
1263 | self.data[plot] = buffer | |
1257 |
|
1264 | |||
1258 | def normalize_heights(self): |
|
1265 | def normalize_heights(self): | |
1259 | ''' |
|
1266 | ''' | |
1260 | Ensure same-dimension of the data for different heighList |
|
1267 | Ensure same-dimension of the data for different heighList | |
1261 | ''' |
|
1268 | ''' | |
1262 |
|
1269 | |||
1263 | H = numpy.array(list(self.__all_heights)) |
|
1270 | H = numpy.array(list(self.__all_heights)) | |
1264 | H.sort() |
|
1271 | H.sort() | |
1265 | for key in self.data: |
|
1272 | for key in self.data: | |
1266 | shape = self.shape(key)[:-1] + H.shape |
|
1273 | shape = self.shape(key)[:-1] + H.shape | |
1267 | for tm, obj in list(self.data[key].items()): |
|
1274 | for tm, obj in list(self.data[key].items()): | |
1268 | h = self.__heights[self.__times.index(tm)] |
|
1275 | h = self.__heights[self.__times.index(tm)] | |
1269 | if H.size == h.size: |
|
1276 | if H.size == h.size: | |
1270 | continue |
|
1277 | continue | |
1271 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1278 | index = numpy.where(numpy.in1d(H, h))[0] | |
1272 | dummy = numpy.zeros(shape) + numpy.nan |
|
1279 | dummy = numpy.zeros(shape) + numpy.nan | |
1273 | if len(shape) == 2: |
|
1280 | if len(shape) == 2: | |
1274 | dummy[:, index] = obj |
|
1281 | dummy[:, index] = obj | |
1275 | else: |
|
1282 | else: | |
1276 | dummy[index] = obj |
|
1283 | dummy[index] = obj | |
1277 | self.data[key][tm] = dummy |
|
1284 | self.data[key][tm] = dummy | |
1278 |
|
1285 | |||
1279 | self.__heights = [H for tm in self.__times] |
|
1286 | self.__heights = [H for tm in self.__times] | |
1280 |
|
1287 | |||
1281 | def jsonify(self, decimate=False): |
|
1288 | def jsonify(self, decimate=False): | |
1282 | ''' |
|
1289 | ''' | |
1283 | Convert data to json |
|
1290 | Convert data to json | |
1284 | ''' |
|
1291 | ''' | |
1285 |
|
1292 | |||
1286 | data = {} |
|
1293 | data = {} | |
1287 | tm = self.times[-1] |
|
1294 | tm = self.times[-1] | |
1288 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
1295 | dy = int(self.heights.size/self.MAXNUMY) + 1 | |
1289 | for key in self.data: |
|
1296 | for key in self.data: | |
1290 | if key in ('spc', 'cspc') or not self.buffering: |
|
1297 | if key in ('spc', 'cspc') or not self.buffering: | |
1291 | dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1 |
|
1298 | dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1 | |
1292 | data[key] = self.roundFloats( |
|
1299 | data[key] = self.roundFloats( | |
1293 | self.data[key][::, ::dx, ::dy].tolist()) |
|
1300 | self.data[key][::, ::dx, ::dy].tolist()) | |
1294 | else: |
|
1301 | else: | |
1295 | data[key] = self.roundFloats(self.data[key][tm].tolist()) |
|
1302 | data[key] = self.roundFloats(self.data[key][tm].tolist()) | |
1296 |
|
1303 | |||
1297 | ret = {'data': data} |
|
1304 | ret = {'data': data} | |
1298 | ret['exp_code'] = self.exp_code |
|
1305 | ret['exp_code'] = self.exp_code | |
1299 | ret['time'] = float(tm) |
|
1306 | ret['time'] = float(tm) | |
1300 | ret['interval'] = float(self.interval) |
|
1307 | ret['interval'] = float(self.interval) | |
1301 | ret['localtime'] = self.localtime |
|
1308 | ret['localtime'] = self.localtime | |
1302 | ret['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1309 | ret['yrange'] = self.roundFloats(self.heights[::dy].tolist()) | |
1303 | if 'spc' in self.data or 'cspc' in self.data: |
|
1310 | if 'spc' in self.data or 'cspc' in self.data: | |
1304 | ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1311 | ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1305 | else: |
|
1312 | else: | |
1306 | ret['xrange'] = [] |
|
1313 | ret['xrange'] = [] | |
1307 | if hasattr(self, 'pairs'): |
|
1314 | if hasattr(self, 'pairs'): | |
1308 | ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs] |
|
1315 | ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs] | |
1309 | else: |
|
1316 | else: | |
1310 | ret['pairs'] = [] |
|
1317 | ret['pairs'] = [] | |
1311 |
|
1318 | |||
1312 | for key, value in list(self.meta.items()): |
|
1319 | for key, value in list(self.meta.items()): | |
1313 | ret[key] = value |
|
1320 | ret[key] = value | |
1314 |
|
1321 | |||
1315 | return json.dumps(ret) |
|
1322 | return json.dumps(ret) | |
1316 |
|
1323 | |||
1317 | @property |
|
1324 | @property | |
1318 | def times(self): |
|
1325 | def times(self): | |
1319 | ''' |
|
1326 | ''' | |
1320 | Return the list of times of the current data |
|
1327 | Return the list of times of the current data | |
1321 | ''' |
|
1328 | ''' | |
1322 |
|
1329 | |||
1323 | ret = numpy.array(self.__times) |
|
1330 | ret = numpy.array(self.__times) | |
1324 | ret.sort() |
|
1331 | ret.sort() | |
1325 | return ret |
|
1332 | return ret | |
1326 |
|
1333 | |||
1327 | @property |
|
1334 | @property | |
1328 | def min_time(self): |
|
1335 | def min_time(self): | |
1329 | ''' |
|
1336 | ''' | |
1330 | Return the minimun time value |
|
1337 | Return the minimun time value | |
1331 | ''' |
|
1338 | ''' | |
1332 |
|
1339 | |||
1333 | return self.times[0] |
|
1340 | return self.times[0] | |
1334 |
|
1341 | |||
1335 | @property |
|
1342 | @property | |
1336 | def max_time(self): |
|
1343 | def max_time(self): | |
1337 | ''' |
|
1344 | ''' | |
1338 | Return the maximun time value |
|
1345 | Return the maximun time value | |
1339 | ''' |
|
1346 | ''' | |
1340 |
|
1347 | |||
1341 | return self.times[-1] |
|
1348 | return self.times[-1] | |
1342 |
|
1349 | |||
1343 | @property |
|
1350 | @property | |
1344 | def heights(self): |
|
1351 | def heights(self): | |
1345 | ''' |
|
1352 | ''' | |
1346 | Return the list of heights of the current data |
|
1353 | Return the list of heights of the current data | |
1347 | ''' |
|
1354 | ''' | |
1348 |
|
1355 | |||
1349 | return numpy.array(self.__heights[-1]) |
|
1356 | return numpy.array(self.__heights[-1]) | |
1350 |
|
1357 | |||
1351 | @staticmethod |
|
1358 | @staticmethod | |
1352 | def roundFloats(obj): |
|
1359 | def roundFloats(obj): | |
1353 | if isinstance(obj, list): |
|
1360 | if isinstance(obj, list): | |
1354 | return list(map(PlotterData.roundFloats, obj)) |
|
1361 | return list(map(PlotterData.roundFloats, obj)) | |
1355 | elif isinstance(obj, float): |
|
1362 | elif isinstance(obj, float): | |
1356 | return round(obj, 2) |
|
1363 | return round(obj, 2) |
@@ -1,799 +1,801 | |||||
1 |
|
1 | |||
2 | import os |
|
2 | import os | |
3 | import sys |
|
3 | import sys | |
4 | import zmq |
|
4 | import zmq | |
5 | import time |
|
5 | import time | |
6 | import datetime |
|
6 | import datetime | |
7 | from functools import wraps |
|
7 | from functools import wraps | |
8 | import numpy |
|
8 | import numpy | |
9 | import matplotlib |
|
9 | import matplotlib | |
10 |
|
10 | |||
11 | if 'BACKEND' in os.environ: |
|
11 | if 'BACKEND' in os.environ: | |
12 | matplotlib.use(os.environ['BACKEND']) |
|
12 | matplotlib.use(os.environ['BACKEND']) | |
13 | elif 'linux' in sys.platform: |
|
13 | elif 'linux' in sys.platform: | |
14 | matplotlib.use("TkAgg") |
|
14 | matplotlib.use("TkAgg") | |
15 | elif 'darwin' in sys.platform: |
|
15 | elif 'darwin' in sys.platform: | |
16 | matplotlib.use('TkAgg') |
|
16 | matplotlib.use('TkAgg') | |
17 | else: |
|
17 | else: | |
18 | from schainpy.utils import log |
|
18 | from schainpy.utils import log | |
19 | log.warning('Using default Backend="Agg"', 'INFO') |
|
19 | log.warning('Using default Backend="Agg"', 'INFO') | |
20 | matplotlib.use('Agg') |
|
20 | matplotlib.use('Agg') | |
21 |
|
21 | |||
22 | import matplotlib.pyplot as plt |
|
22 | import matplotlib.pyplot as plt | |
23 | from matplotlib.patches import Polygon |
|
23 | from matplotlib.patches import Polygon | |
24 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
24 | from mpl_toolkits.axes_grid1 import make_axes_locatable | |
25 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator |
|
25 | from matplotlib.ticker import FuncFormatter, LinearLocator, MultipleLocator | |
26 |
|
26 | |||
27 | from schainpy.model.data.jrodata import PlotterData |
|
27 | from schainpy.model.data.jrodata import PlotterData | |
28 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator |
|
28 | from schainpy.model.proc.jroproc_base import ProcessingUnit, Operation, MPDecorator | |
29 | from schainpy.utils import log |
|
29 | from schainpy.utils import log | |
30 |
|
30 | |||
31 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] |
|
31 | jet_values = matplotlib.pyplot.get_cmap('jet', 100)(numpy.arange(100))[10:90] | |
32 | blu_values = matplotlib.pyplot.get_cmap( |
|
32 | blu_values = matplotlib.pyplot.get_cmap( | |
33 | 'seismic_r', 20)(numpy.arange(20))[10:15] |
|
33 | 'seismic_r', 20)(numpy.arange(20))[10:15] | |
34 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
34 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( | |
35 | 'jro', numpy.vstack((blu_values, jet_values))) |
|
35 | 'jro', numpy.vstack((blu_values, jet_values))) | |
36 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
36 | matplotlib.pyplot.register_cmap(cmap=ncmap) | |
37 |
|
37 | |||
38 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', |
|
38 | CMAPS = [plt.get_cmap(s) for s in ('jro', 'jet', 'viridis', | |
39 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] |
|
39 | 'plasma', 'inferno', 'Greys', 'seismic', 'bwr', 'coolwarm')] | |
40 |
|
40 | |||
41 | EARTH_RADIUS = 6.3710e3 |
|
41 | EARTH_RADIUS = 6.3710e3 | |
42 |
|
42 | |||
43 |
|
43 | |||
44 | def ll2xy(lat1, lon1, lat2, lon2): |
|
44 | def ll2xy(lat1, lon1, lat2, lon2): | |
45 |
|
45 | |||
46 | p = 0.017453292519943295 |
|
46 | p = 0.017453292519943295 | |
47 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
47 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
48 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
48 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
49 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
49 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
50 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
50 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
51 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
51 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
52 | theta = -theta + numpy.pi/2 |
|
52 | theta = -theta + numpy.pi/2 | |
53 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
53 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | def km2deg(km): |
|
56 | def km2deg(km): | |
57 | ''' |
|
57 | ''' | |
58 | Convert distance in km to degrees |
|
58 | Convert distance in km to degrees | |
59 | ''' |
|
59 | ''' | |
60 |
|
60 | |||
61 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
61 | return numpy.rad2deg(km/EARTH_RADIUS) | |
62 |
|
62 | |||
63 |
|
63 | |||
64 | def figpause(interval): |
|
64 | def figpause(interval): | |
65 | backend = plt.rcParams['backend'] |
|
65 | backend = plt.rcParams['backend'] | |
66 | if backend in matplotlib.rcsetup.interactive_bk: |
|
66 | if backend in matplotlib.rcsetup.interactive_bk: | |
67 | figManager = matplotlib._pylab_helpers.Gcf.get_active() |
|
67 | figManager = matplotlib._pylab_helpers.Gcf.get_active() | |
68 | if figManager is not None: |
|
68 | if figManager is not None: | |
69 | canvas = figManager.canvas |
|
69 | canvas = figManager.canvas | |
70 | if canvas.figure.stale: |
|
70 | if canvas.figure.stale: | |
71 | canvas.draw() |
|
71 | canvas.draw() | |
72 | try: |
|
72 | try: | |
73 | canvas.start_event_loop(interval) |
|
73 | canvas.start_event_loop(interval) | |
74 | except: |
|
74 | except: | |
75 | pass |
|
75 | pass | |
76 | return |
|
76 | return | |
77 |
|
77 | |||
78 |
|
78 | |||
79 | def popup(message): |
|
79 | def popup(message): | |
80 | ''' |
|
80 | ''' | |
81 | ''' |
|
81 | ''' | |
82 |
|
82 | |||
83 | fig = plt.figure(figsize=(12, 8), facecolor='r') |
|
83 | fig = plt.figure(figsize=(12, 8), facecolor='r') | |
84 | text = '\n'.join([s.strip() for s in message.split(':')]) |
|
84 | text = '\n'.join([s.strip() for s in message.split(':')]) | |
85 | fig.text(0.01, 0.5, text, ha='left', va='center', |
|
85 | fig.text(0.01, 0.5, text, ha='left', va='center', | |
86 | size='20', weight='heavy', color='w') |
|
86 | size='20', weight='heavy', color='w') | |
87 | fig.show() |
|
87 | fig.show() | |
88 | figpause(1000) |
|
88 | figpause(1000) | |
89 |
|
89 | |||
90 |
|
90 | |||
91 | class Throttle(object): |
|
91 | class Throttle(object): | |
92 | ''' |
|
92 | ''' | |
93 | Decorator that prevents a function from being called more than once every |
|
93 | Decorator that prevents a function from being called more than once every | |
94 | time period. |
|
94 | time period. | |
95 | To create a function that cannot be called more than once a minute, but |
|
95 | To create a function that cannot be called more than once a minute, but | |
96 | will sleep until it can be called: |
|
96 | will sleep until it can be called: | |
97 | @Throttle(minutes=1) |
|
97 | @Throttle(minutes=1) | |
98 | def foo(): |
|
98 | def foo(): | |
99 | pass |
|
99 | pass | |
100 |
|
100 | |||
101 | for i in range(10): |
|
101 | for i in range(10): | |
102 | foo() |
|
102 | foo() | |
103 | print "This function has run %s times." % i |
|
103 | print "This function has run %s times." % i | |
104 | ''' |
|
104 | ''' | |
105 |
|
105 | |||
106 | def __init__(self, seconds=0, minutes=0, hours=0): |
|
106 | def __init__(self, seconds=0, minutes=0, hours=0): | |
107 | self.throttle_period = datetime.timedelta( |
|
107 | self.throttle_period = datetime.timedelta( | |
108 | seconds=seconds, minutes=minutes, hours=hours |
|
108 | seconds=seconds, minutes=minutes, hours=hours | |
109 | ) |
|
109 | ) | |
110 |
|
110 | |||
111 | self.time_of_last_call = datetime.datetime.min |
|
111 | self.time_of_last_call = datetime.datetime.min | |
112 |
|
112 | |||
113 | def __call__(self, fn): |
|
113 | def __call__(self, fn): | |
114 | @wraps(fn) |
|
114 | @wraps(fn) | |
115 | def wrapper(*args, **kwargs): |
|
115 | def wrapper(*args, **kwargs): | |
116 | coerce = kwargs.pop('coerce', None) |
|
116 | coerce = kwargs.pop('coerce', None) | |
117 | if coerce: |
|
117 | if coerce: | |
118 | self.time_of_last_call = datetime.datetime.now() |
|
118 | self.time_of_last_call = datetime.datetime.now() | |
119 | return fn(*args, **kwargs) |
|
119 | return fn(*args, **kwargs) | |
120 | else: |
|
120 | else: | |
121 | now = datetime.datetime.now() |
|
121 | now = datetime.datetime.now() | |
122 | time_since_last_call = now - self.time_of_last_call |
|
122 | time_since_last_call = now - self.time_of_last_call | |
123 | time_left = self.throttle_period - time_since_last_call |
|
123 | time_left = self.throttle_period - time_since_last_call | |
124 |
|
124 | |||
125 | if time_left > datetime.timedelta(seconds=0): |
|
125 | if time_left > datetime.timedelta(seconds=0): | |
126 | return |
|
126 | return | |
127 |
|
127 | |||
128 | self.time_of_last_call = datetime.datetime.now() |
|
128 | self.time_of_last_call = datetime.datetime.now() | |
129 | return fn(*args, **kwargs) |
|
129 | return fn(*args, **kwargs) | |
130 |
|
130 | |||
131 | return wrapper |
|
131 | return wrapper | |
132 |
|
132 | |||
133 | def apply_throttle(value): |
|
133 | def apply_throttle(value): | |
134 |
|
134 | |||
135 | @Throttle(seconds=value) |
|
135 | @Throttle(seconds=value) | |
136 | def fnThrottled(fn): |
|
136 | def fnThrottled(fn): | |
137 | fn() |
|
137 | fn() | |
138 |
|
138 | |||
139 | return fnThrottled |
|
139 | return fnThrottled | |
140 |
|
140 | |||
141 | @MPDecorator |
|
141 | @MPDecorator | |
142 | class Plotter(ProcessingUnit): |
|
142 | class Plotter(ProcessingUnit): | |
143 | ''' |
|
143 | ''' | |
144 | Proccessing unit to handle plot operations |
|
144 | Proccessing unit to handle plot operations | |
145 | ''' |
|
145 | ''' | |
146 |
|
146 | |||
147 | def __init__(self): |
|
147 | def __init__(self): | |
148 |
|
148 | |||
149 | ProcessingUnit.__init__(self) |
|
149 | ProcessingUnit.__init__(self) | |
150 |
|
150 | |||
151 | def setup(self, **kwargs): |
|
151 | def setup(self, **kwargs): | |
152 |
|
152 | |||
153 | self.connections = 0 |
|
153 | self.connections = 0 | |
154 | self.web_address = kwargs.get('web_server', False) |
|
154 | self.web_address = kwargs.get('web_server', False) | |
155 | self.realtime = kwargs.get('realtime', False) |
|
155 | self.realtime = kwargs.get('realtime', False) | |
156 | self.localtime = kwargs.get('localtime', True) |
|
156 | self.localtime = kwargs.get('localtime', True) | |
157 | self.buffering = kwargs.get('buffering', True) |
|
157 | self.buffering = kwargs.get('buffering', True) | |
158 | self.throttle = kwargs.get('throttle', 2) |
|
158 | self.throttle = kwargs.get('throttle', 2) | |
159 | self.exp_code = kwargs.get('exp_code', None) |
|
159 | self.exp_code = kwargs.get('exp_code', None) | |
160 | self.set_ready = apply_throttle(self.throttle) |
|
160 | self.set_ready = apply_throttle(self.throttle) | |
161 | self.dates = [] |
|
161 | self.dates = [] | |
162 | self.data = PlotterData( |
|
162 | self.data = PlotterData( | |
163 | self.plots, self.throttle, self.exp_code, self.buffering) |
|
163 | self.plots, self.throttle, self.exp_code, self.buffering) | |
164 | self.isConfig = True |
|
164 | self.isConfig = True | |
165 |
|
165 | |||
166 | def ready(self): |
|
166 | def ready(self): | |
167 | ''' |
|
167 | ''' | |
168 | Set dataOut ready |
|
168 | Set dataOut ready | |
169 | ''' |
|
169 | ''' | |
170 |
|
170 | |||
171 | self.data.ready = True |
|
171 | self.data.ready = True | |
172 | self.dataOut.data_plt = self.data |
|
172 | self.dataOut.data_plt = self.data | |
173 |
|
173 | |||
174 | def run(self, realtime=True, localtime=True, buffering=True, |
|
174 | def run(self, realtime=True, localtime=True, buffering=True, | |
175 | throttle=2, exp_code=None, web_server=None): |
|
175 | throttle=2, exp_code=None, web_server=None): | |
176 |
|
176 | |||
177 | if not self.isConfig: |
|
177 | if not self.isConfig: | |
178 | self.setup(realtime=realtime, localtime=localtime, |
|
178 | self.setup(realtime=realtime, localtime=localtime, | |
179 | buffering=buffering, throttle=throttle, exp_code=exp_code, |
|
179 | buffering=buffering, throttle=throttle, exp_code=exp_code, | |
180 | web_server=web_server) |
|
180 | web_server=web_server) | |
181 |
|
181 | |||
182 | if self.web_address: |
|
182 | if self.web_address: | |
183 | log.success( |
|
183 | log.success( | |
184 | 'Sending to web: {}'.format(self.web_address), |
|
184 | 'Sending to web: {}'.format(self.web_address), | |
185 | self.name |
|
185 | self.name | |
186 | ) |
|
186 | ) | |
187 | self.context = zmq.Context() |
|
187 | self.context = zmq.Context() | |
188 | self.sender_web = self.context.socket(zmq.REQ) |
|
188 | self.sender_web = self.context.socket(zmq.REQ) | |
189 | self.sender_web.connect(self.web_address) |
|
189 | self.sender_web.connect(self.web_address) | |
190 | self.poll = zmq.Poller() |
|
190 | self.poll = zmq.Poller() | |
191 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
191 | self.poll.register(self.sender_web, zmq.POLLIN) | |
192 | time.sleep(1) |
|
192 | time.sleep(1) | |
193 |
|
193 | |||
194 | # t = Thread(target=self.event_monitor, args=(monitor,)) |
|
194 | # t = Thread(target=self.event_monitor, args=(monitor,)) | |
195 | # t.start() |
|
195 | # t.start() | |
196 |
|
196 | |||
197 | self.dataOut = self.dataIn |
|
197 | self.dataOut = self.dataIn | |
198 | self.data.ready = False |
|
198 | self.data.ready = False | |
199 |
|
199 | |||
200 | if self.dataOut.flagNoData: |
|
200 | if self.dataOut.flagNoData: | |
201 | coerce = True |
|
201 | coerce = True | |
202 | else: |
|
202 | else: | |
203 | coerce = False |
|
203 | coerce = False | |
204 |
|
204 | |||
205 | if self.dataOut.type == 'Parameters': |
|
205 | if self.dataOut.type == 'Parameters': | |
206 | tm = self.dataOut.utctimeInit |
|
206 | tm = self.dataOut.utctimeInit | |
207 | else: |
|
207 | else: | |
208 | tm = self.dataOut.utctime |
|
208 | tm = self.dataOut.utctime | |
209 | if self.dataOut.useLocalTime: |
|
209 | if self.dataOut.useLocalTime: | |
210 | if not self.localtime: |
|
210 | if not self.localtime: | |
211 | tm += time.timezone |
|
211 | tm += time.timezone | |
212 | dt = datetime.datetime.fromtimestamp(tm).date() |
|
212 | dt = datetime.datetime.fromtimestamp(tm).date() | |
213 | else: |
|
213 | else: | |
214 | if self.localtime: |
|
214 | if self.localtime: | |
215 | tm -= time.timezone |
|
215 | tm -= time.timezone | |
216 | dt = datetime.datetime.utcfromtimestamp(tm).date() |
|
216 | dt = datetime.datetime.utcfromtimestamp(tm).date() | |
217 | if dt not in self.dates: |
|
217 | if dt not in self.dates: | |
218 | if self.data: |
|
218 | if self.data: | |
219 | self.ready() |
|
219 | self.ready() | |
220 | self.data.setup() |
|
220 | self.data.setup() | |
221 | self.dates.append(dt) |
|
221 | self.dates.append(dt) | |
222 |
|
222 | |||
223 | self.data.update(self.dataOut, tm) |
|
223 | self.data.update(self.dataOut, tm) | |
224 |
|
224 | |||
225 | if False: # TODO check when publishers ends |
|
225 | if False: # TODO check when publishers ends | |
226 | self.connections -= 1 |
|
226 | self.connections -= 1 | |
227 | if self.connections == 0 and dt in self.dates: |
|
227 | if self.connections == 0 and dt in self.dates: | |
228 | self.data.ended = True |
|
228 | self.data.ended = True | |
229 | self.ready() |
|
229 | self.ready() | |
230 | time.sleep(1) |
|
230 | time.sleep(1) | |
231 | else: |
|
231 | else: | |
232 | if self.realtime: |
|
232 | if self.realtime: | |
233 | self.ready() |
|
233 | self.ready() | |
234 | if self.web_address: |
|
234 | if self.web_address: | |
235 | retries = 5 |
|
235 | retries = 5 | |
236 | while True: |
|
236 | while True: | |
237 | self.sender_web.send(self.data.jsonify()) |
|
237 | self.sender_web.send(self.data.jsonify()) | |
238 | socks = dict(self.poll.poll(5000)) |
|
238 | socks = dict(self.poll.poll(5000)) | |
239 | if socks.get(self.sender_web) == zmq.POLLIN: |
|
239 | if socks.get(self.sender_web) == zmq.POLLIN: | |
240 | reply = self.sender_web.recv_string() |
|
240 | reply = self.sender_web.recv_string() | |
241 | if reply == 'ok': |
|
241 | if reply == 'ok': | |
242 | log.log("Response from server ok", self.name) |
|
242 | log.log("Response from server ok", self.name) | |
243 | break |
|
243 | break | |
244 | else: |
|
244 | else: | |
245 | log.warning( |
|
245 | log.warning( | |
246 | "Malformed reply from server: {}".format(reply), self.name) |
|
246 | "Malformed reply from server: {}".format(reply), self.name) | |
247 |
|
247 | |||
248 | else: |
|
248 | else: | |
249 | log.warning( |
|
249 | log.warning( | |
250 | "No response from server, retrying...", self.name) |
|
250 | "No response from server, retrying...", self.name) | |
251 | self.sender_web.setsockopt(zmq.LINGER, 0) |
|
251 | self.sender_web.setsockopt(zmq.LINGER, 0) | |
252 | self.sender_web.close() |
|
252 | self.sender_web.close() | |
253 | self.poll.unregister(self.sender_web) |
|
253 | self.poll.unregister(self.sender_web) | |
254 | retries -= 1 |
|
254 | retries -= 1 | |
255 | if retries == 0: |
|
255 | if retries == 0: | |
256 | log.error( |
|
256 | log.error( | |
257 | "Server seems to be offline, abandoning", self.name) |
|
257 | "Server seems to be offline, abandoning", self.name) | |
258 | self.sender_web = self.context.socket(zmq.REQ) |
|
258 | self.sender_web = self.context.socket(zmq.REQ) | |
259 | self.sender_web.connect(self.web_address) |
|
259 | self.sender_web.connect(self.web_address) | |
260 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
260 | self.poll.register(self.sender_web, zmq.POLLIN) | |
261 | time.sleep(1) |
|
261 | time.sleep(1) | |
262 | break |
|
262 | break | |
263 | self.sender_web = self.context.socket(zmq.REQ) |
|
263 | self.sender_web = self.context.socket(zmq.REQ) | |
264 | self.sender_web.connect(self.web_address) |
|
264 | self.sender_web.connect(self.web_address) | |
265 | self.poll.register(self.sender_web, zmq.POLLIN) |
|
265 | self.poll.register(self.sender_web, zmq.POLLIN) | |
266 | time.sleep(1) |
|
266 | time.sleep(1) | |
267 | else: |
|
267 | else: | |
268 | self.set_ready(self.ready, coerce=coerce) |
|
268 | self.set_ready(self.ready, coerce=coerce) | |
269 |
|
269 | |||
270 | return |
|
270 | return | |
271 |
|
271 | |||
272 | def close(self): |
|
272 | def close(self): | |
273 | pass |
|
273 | pass | |
274 |
|
274 | |||
275 |
|
275 | |||
276 | @MPDecorator |
|
276 | @MPDecorator | |
277 | class Plot(Operation): |
|
277 | class Plot(Operation): | |
278 | ''' |
|
278 | ''' | |
279 | Base class for Schain plotting operations |
|
279 | Base class for Schain plotting operations | |
280 | ''' |
|
280 | ''' | |
281 |
|
281 | |||
282 | CODE = 'Figure' |
|
282 | CODE = 'Figure' | |
283 | colormap = 'jro' |
|
283 | colormap = 'jro' | |
284 | bgcolor = 'white' |
|
284 | bgcolor = 'white' | |
285 | __missing = 1E30 |
|
285 | __missing = 1E30 | |
286 |
|
286 | |||
287 | __attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax', |
|
287 | __attrs__ = ['show', 'save', 'xmin', 'xmax', 'ymin', 'ymax', 'zmin', 'zmax', | |
288 | 'zlimits', 'xlabel', 'ylabel', 'xaxis', 'cb_label', 'title', |
|
288 | 'zlimits', 'xlabel', 'ylabel', 'xaxis', 'cb_label', 'title', | |
289 | 'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure', |
|
289 | 'colorbar', 'bgcolor', 'width', 'height', 'localtime', 'oneFigure', | |
290 | 'showprofile', 'decimation', 'pause'] |
|
290 | 'showprofile', 'decimation', 'pause'] | |
291 |
|
291 | |||
292 | def __init__(self): |
|
292 | def __init__(self): | |
293 |
|
293 | |||
294 | Operation.__init__(self) |
|
294 | Operation.__init__(self) | |
295 | self.isConfig = False |
|
295 | self.isConfig = False | |
296 | self.isPlotConfig = False |
|
296 | self.isPlotConfig = False | |
297 |
|
297 | |||
298 | def __fmtTime(self, x, pos): |
|
298 | def __fmtTime(self, x, pos): | |
299 | ''' |
|
299 | ''' | |
300 | ''' |
|
300 | ''' | |
301 |
|
301 | |||
302 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) |
|
302 | return '{}'.format(self.getDateTime(x).strftime('%H:%M')) | |
303 |
|
303 | |||
304 | def __setup(self, **kwargs): |
|
304 | def __setup(self, **kwargs): | |
305 | ''' |
|
305 | ''' | |
306 | Initialize variables |
|
306 | Initialize variables | |
307 | ''' |
|
307 | ''' | |
308 |
|
308 | |||
309 | self.figures = [] |
|
309 | self.figures = [] | |
310 | self.axes = [] |
|
310 | self.axes = [] | |
311 | self.cb_axes = [] |
|
311 | self.cb_axes = [] | |
312 | self.localtime = kwargs.pop('localtime', True) |
|
312 | self.localtime = kwargs.pop('localtime', True) | |
313 | self.show = kwargs.get('show', True) |
|
313 | self.show = kwargs.get('show', True) | |
314 | self.save = kwargs.get('save', False) |
|
314 | self.save = kwargs.get('save', False) | |
315 | self.ftp = kwargs.get('ftp', False) |
|
315 | self.ftp = kwargs.get('ftp', False) | |
316 | self.colormap = kwargs.get('colormap', self.colormap) |
|
316 | self.colormap = kwargs.get('colormap', self.colormap) | |
317 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') |
|
317 | self.colormap_coh = kwargs.get('colormap_coh', 'jet') | |
318 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') |
|
318 | self.colormap_phase = kwargs.get('colormap_phase', 'RdBu_r') | |
319 | self.colormaps = kwargs.get('colormaps', None) |
|
319 | self.colormaps = kwargs.get('colormaps', None) | |
320 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) |
|
320 | self.bgcolor = kwargs.get('bgcolor', self.bgcolor) | |
321 | self.showprofile = kwargs.get('showprofile', False) |
|
321 | self.showprofile = kwargs.get('showprofile', False) | |
322 | self.title = kwargs.get('wintitle', self.CODE.upper()) |
|
322 | self.title = kwargs.get('wintitle', self.CODE.upper()) | |
323 | self.cb_label = kwargs.get('cb_label', None) |
|
323 | self.cb_label = kwargs.get('cb_label', None) | |
324 | self.cb_labels = kwargs.get('cb_labels', None) |
|
324 | self.cb_labels = kwargs.get('cb_labels', None) | |
325 | self.labels = kwargs.get('labels', None) |
|
325 | self.labels = kwargs.get('labels', None) | |
326 | self.xaxis = kwargs.get('xaxis', 'frequency') |
|
326 | self.xaxis = kwargs.get('xaxis', 'frequency') | |
327 | self.zmin = kwargs.get('zmin', None) |
|
327 | self.zmin = kwargs.get('zmin', None) | |
328 | self.zmax = kwargs.get('zmax', None) |
|
328 | self.zmax = kwargs.get('zmax', None) | |
329 | self.zlimits = kwargs.get('zlimits', None) |
|
329 | self.zlimits = kwargs.get('zlimits', None) | |
330 | self.xmin = kwargs.get('xmin', None) |
|
330 | self.xmin = kwargs.get('xmin', None) | |
331 | self.xmax = kwargs.get('xmax', None) |
|
331 | self.xmax = kwargs.get('xmax', None) | |
332 | self.xrange = kwargs.get('xrange', 12) |
|
332 | self.xrange = kwargs.get('xrange', 12) | |
333 | self.xscale = kwargs.get('xscale', None) |
|
333 | self.xscale = kwargs.get('xscale', None) | |
334 | self.ymin = kwargs.get('ymin', None) |
|
334 | self.ymin = kwargs.get('ymin', None) | |
335 | self.ymax = kwargs.get('ymax', None) |
|
335 | self.ymax = kwargs.get('ymax', None) | |
336 | self.yscale = kwargs.get('yscale', None) |
|
336 | self.yscale = kwargs.get('yscale', None) | |
337 | self.xlabel = kwargs.get('xlabel', None) |
|
337 | self.xlabel = kwargs.get('xlabel', None) | |
338 | self.decimation = kwargs.get('decimation', None) |
|
338 | self.decimation = kwargs.get('decimation', None) | |
339 | self.showSNR = kwargs.get('showSNR', False) |
|
339 | self.showSNR = kwargs.get('showSNR', False) | |
340 | self.oneFigure = kwargs.get('oneFigure', True) |
|
340 | self.oneFigure = kwargs.get('oneFigure', True) | |
341 | self.width = kwargs.get('width', None) |
|
341 | self.width = kwargs.get('width', None) | |
342 | self.height = kwargs.get('height', None) |
|
342 | self.height = kwargs.get('height', None) | |
343 | self.colorbar = kwargs.get('colorbar', True) |
|
343 | self.colorbar = kwargs.get('colorbar', True) | |
344 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) |
|
344 | self.factors = kwargs.get('factors', [1, 1, 1, 1, 1, 1, 1, 1]) | |
345 | self.channels = kwargs.get('channels', None) |
|
345 | self.channels = kwargs.get('channels', None) | |
346 | self.titles = kwargs.get('titles', []) |
|
346 | self.titles = kwargs.get('titles', []) | |
347 | self.polar = False |
|
347 | self.polar = False | |
|
348 | self.type = kwargs.get('type', 'iq') | |||
348 | self.grid = kwargs.get('grid', False) |
|
349 | self.grid = kwargs.get('grid', False) | |
349 | self.pause = kwargs.get('pause', False) |
|
350 | self.pause = kwargs.get('pause', False) | |
350 | self.save_labels = kwargs.get('save_labels', None) |
|
351 | self.save_labels = kwargs.get('save_labels', None) | |
351 | self.realtime = kwargs.get('realtime', True) |
|
352 | self.realtime = kwargs.get('realtime', True) | |
352 | self.buffering = kwargs.get('buffering', True) |
|
353 | self.buffering = kwargs.get('buffering', True) | |
353 | self.throttle = kwargs.get('throttle', 2) |
|
354 | self.throttle = kwargs.get('throttle', 2) | |
354 | self.exp_code = kwargs.get('exp_code', None) |
|
355 | self.exp_code = kwargs.get('exp_code', None) | |
355 | self.__throttle_plot = apply_throttle(self.throttle) |
|
356 | self.__throttle_plot = apply_throttle(self.throttle) | |
356 | self.data = PlotterData( |
|
357 | self.data = PlotterData( | |
357 | self.CODE, self.throttle, self.exp_code, self.buffering) |
|
358 | self.CODE, self.throttle, self.exp_code, self.buffering) | |
358 |
|
359 | |||
359 | def __setup_plot(self): |
|
360 | def __setup_plot(self): | |
360 | ''' |
|
361 | ''' | |
361 | Common setup for all figures, here figures and axes are created |
|
362 | Common setup for all figures, here figures and axes are created | |
362 | ''' |
|
363 | ''' | |
363 |
|
364 | |||
364 | self.setup() |
|
365 | self.setup() | |
365 |
|
366 | |||
366 | self.time_label = 'LT' if self.localtime else 'UTC' |
|
367 | self.time_label = 'LT' if self.localtime else 'UTC' | |
367 | if self.data.localtime: |
|
368 | if self.data.localtime: | |
368 | self.getDateTime = datetime.datetime.fromtimestamp |
|
369 | self.getDateTime = datetime.datetime.fromtimestamp | |
369 | else: |
|
370 | else: | |
370 | self.getDateTime = datetime.datetime.utcfromtimestamp |
|
371 | self.getDateTime = datetime.datetime.utcfromtimestamp | |
371 |
|
372 | |||
372 | if self.width is None: |
|
373 | if self.width is None: | |
373 | self.width = 8 |
|
374 | self.width = 8 | |
374 |
|
375 | |||
375 | self.figures = [] |
|
376 | self.figures = [] | |
376 | self.axes = [] |
|
377 | self.axes = [] | |
377 | self.cb_axes = [] |
|
378 | self.cb_axes = [] | |
378 | self.pf_axes = [] |
|
379 | self.pf_axes = [] | |
379 | self.cmaps = [] |
|
380 | self.cmaps = [] | |
380 |
|
381 | |||
381 | size = '15%' if self.ncols == 1 else '30%' |
|
382 | size = '15%' if self.ncols == 1 else '30%' | |
382 | pad = '4%' if self.ncols == 1 else '8%' |
|
383 | pad = '4%' if self.ncols == 1 else '8%' | |
383 |
|
384 | |||
384 | if self.oneFigure: |
|
385 | if self.oneFigure: | |
385 | if self.height is None: |
|
386 | if self.height is None: | |
386 | self.height = 1.4 * self.nrows + 1 |
|
387 | self.height = 1.4 * self.nrows + 1 | |
387 | fig = plt.figure(figsize=(self.width, self.height), |
|
388 | fig = plt.figure(figsize=(self.width, self.height), | |
388 | edgecolor='k', |
|
389 | edgecolor='k', | |
389 | facecolor='w') |
|
390 | facecolor='w') | |
390 | self.figures.append(fig) |
|
391 | self.figures.append(fig) | |
391 | for n in range(self.nplots): |
|
392 | for n in range(self.nplots): | |
392 | ax = fig.add_subplot(self.nrows, self.ncols, |
|
393 | ax = fig.add_subplot(self.nrows, self.ncols, | |
393 | n + 1, polar=self.polar) |
|
394 | n + 1, polar=self.polar) | |
394 | ax.tick_params(labelsize=8) |
|
395 | ax.tick_params(labelsize=8) | |
395 | ax.firsttime = True |
|
396 | ax.firsttime = True | |
396 | ax.index = 0 |
|
397 | ax.index = 0 | |
397 | ax.press = None |
|
398 | ax.press = None | |
398 | self.axes.append(ax) |
|
399 | self.axes.append(ax) | |
399 | if self.showprofile: |
|
400 | if self.showprofile: | |
400 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
401 | cax = self.__add_axes(ax, size=size, pad=pad) | |
401 | cax.tick_params(labelsize=8) |
|
402 | cax.tick_params(labelsize=8) | |
402 | self.pf_axes.append(cax) |
|
403 | self.pf_axes.append(cax) | |
403 | else: |
|
404 | else: | |
404 | if self.height is None: |
|
405 | if self.height is None: | |
405 | self.height = 3 |
|
406 | self.height = 3 | |
406 | for n in range(self.nplots): |
|
407 | for n in range(self.nplots): | |
407 | fig = plt.figure(figsize=(self.width, self.height), |
|
408 | fig = plt.figure(figsize=(self.width, self.height), | |
408 | edgecolor='k', |
|
409 | edgecolor='k', | |
409 | facecolor='w') |
|
410 | facecolor='w') | |
410 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) |
|
411 | ax = fig.add_subplot(1, 1, 1, polar=self.polar) | |
411 | ax.tick_params(labelsize=8) |
|
412 | ax.tick_params(labelsize=8) | |
412 | ax.firsttime = True |
|
413 | ax.firsttime = True | |
413 | ax.index = 0 |
|
414 | ax.index = 0 | |
414 | ax.press = None |
|
415 | ax.press = None | |
415 | self.figures.append(fig) |
|
416 | self.figures.append(fig) | |
416 | self.axes.append(ax) |
|
417 | self.axes.append(ax) | |
417 | if self.showprofile: |
|
418 | if self.showprofile: | |
418 | cax = self.__add_axes(ax, size=size, pad=pad) |
|
419 | cax = self.__add_axes(ax, size=size, pad=pad) | |
419 | cax.tick_params(labelsize=8) |
|
420 | cax.tick_params(labelsize=8) | |
420 | self.pf_axes.append(cax) |
|
421 | self.pf_axes.append(cax) | |
421 |
|
422 | |||
422 | for n in range(self.nrows): |
|
423 | for n in range(self.nrows): | |
423 | if self.colormaps is not None: |
|
424 | if self.colormaps is not None: | |
424 | cmap = plt.get_cmap(self.colormaps[n]) |
|
425 | cmap = plt.get_cmap(self.colormaps[n]) | |
425 | else: |
|
426 | else: | |
426 | cmap = plt.get_cmap(self.colormap) |
|
427 | cmap = plt.get_cmap(self.colormap) | |
427 | cmap.set_bad(self.bgcolor, 1.) |
|
428 | cmap.set_bad(self.bgcolor, 1.) | |
428 | self.cmaps.append(cmap) |
|
429 | self.cmaps.append(cmap) | |
429 |
|
430 | |||
430 | for fig in self.figures: |
|
431 | for fig in self.figures: | |
431 | fig.canvas.mpl_connect('key_press_event', self.OnKeyPress) |
|
432 | fig.canvas.mpl_connect('key_press_event', self.OnKeyPress) | |
432 | fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll) |
|
433 | fig.canvas.mpl_connect('scroll_event', self.OnBtnScroll) | |
433 | fig.canvas.mpl_connect('button_press_event', self.onBtnPress) |
|
434 | fig.canvas.mpl_connect('button_press_event', self.onBtnPress) | |
434 | fig.canvas.mpl_connect('motion_notify_event', self.onMotion) |
|
435 | fig.canvas.mpl_connect('motion_notify_event', self.onMotion) | |
435 | fig.canvas.mpl_connect('button_release_event', self.onBtnRelease) |
|
436 | fig.canvas.mpl_connect('button_release_event', self.onBtnRelease) | |
436 | if self.show: |
|
437 | if self.show: | |
437 | fig.show() |
|
438 | fig.show() | |
438 |
|
439 | |||
439 | def OnKeyPress(self, event): |
|
440 | def OnKeyPress(self, event): | |
440 | ''' |
|
441 | ''' | |
441 | Event for pressing keys (up, down) change colormap |
|
442 | Event for pressing keys (up, down) change colormap | |
442 | ''' |
|
443 | ''' | |
443 | ax = event.inaxes |
|
444 | ax = event.inaxes | |
444 | if ax in self.axes: |
|
445 | if ax in self.axes: | |
445 | if event.key == 'down': |
|
446 | if event.key == 'down': | |
446 | ax.index += 1 |
|
447 | ax.index += 1 | |
447 | elif event.key == 'up': |
|
448 | elif event.key == 'up': | |
448 | ax.index -= 1 |
|
449 | ax.index -= 1 | |
449 | if ax.index < 0: |
|
450 | if ax.index < 0: | |
450 | ax.index = len(CMAPS) - 1 |
|
451 | ax.index = len(CMAPS) - 1 | |
451 | elif ax.index == len(CMAPS): |
|
452 | elif ax.index == len(CMAPS): | |
452 | ax.index = 0 |
|
453 | ax.index = 0 | |
453 | cmap = CMAPS[ax.index] |
|
454 | cmap = CMAPS[ax.index] | |
454 | ax.cbar.set_cmap(cmap) |
|
455 | ax.cbar.set_cmap(cmap) | |
455 | ax.cbar.draw_all() |
|
456 | ax.cbar.draw_all() | |
456 | ax.plt.set_cmap(cmap) |
|
457 | ax.plt.set_cmap(cmap) | |
457 | ax.cbar.patch.figure.canvas.draw() |
|
458 | ax.cbar.patch.figure.canvas.draw() | |
458 | self.colormap = cmap.name |
|
459 | self.colormap = cmap.name | |
459 |
|
460 | |||
460 | def OnBtnScroll(self, event): |
|
461 | def OnBtnScroll(self, event): | |
461 | ''' |
|
462 | ''' | |
462 | Event for scrolling, scale figure |
|
463 | Event for scrolling, scale figure | |
463 | ''' |
|
464 | ''' | |
464 | cb_ax = event.inaxes |
|
465 | cb_ax = event.inaxes | |
465 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
466 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |
466 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] |
|
467 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] | |
467 | pt = ax.cbar.ax.bbox.get_points()[:, 1] |
|
468 | pt = ax.cbar.ax.bbox.get_points()[:, 1] | |
468 | nrm = ax.cbar.norm |
|
469 | nrm = ax.cbar.norm | |
469 | vmin, vmax, p0, p1, pS = ( |
|
470 | vmin, vmax, p0, p1, pS = ( | |
470 | nrm.vmin, nrm.vmax, pt[0], pt[1], event.y) |
|
471 | nrm.vmin, nrm.vmax, pt[0], pt[1], event.y) | |
471 | scale = 2 if event.step == 1 else 0.5 |
|
472 | scale = 2 if event.step == 1 else 0.5 | |
472 | point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0) |
|
473 | point = vmin + (vmax - vmin) / (p1 - p0) * (pS - p0) | |
473 | ax.cbar.norm.vmin = point - scale * (point - vmin) |
|
474 | ax.cbar.norm.vmin = point - scale * (point - vmin) | |
474 | ax.cbar.norm.vmax = point - scale * (point - vmax) |
|
475 | ax.cbar.norm.vmax = point - scale * (point - vmax) | |
475 | ax.plt.set_norm(ax.cbar.norm) |
|
476 | ax.plt.set_norm(ax.cbar.norm) | |
476 | ax.cbar.draw_all() |
|
477 | ax.cbar.draw_all() | |
477 | ax.cbar.patch.figure.canvas.draw() |
|
478 | ax.cbar.patch.figure.canvas.draw() | |
478 |
|
479 | |||
479 | def onBtnPress(self, event): |
|
480 | def onBtnPress(self, event): | |
480 | ''' |
|
481 | ''' | |
481 | Event for mouse button press |
|
482 | Event for mouse button press | |
482 | ''' |
|
483 | ''' | |
483 | cb_ax = event.inaxes |
|
484 | cb_ax = event.inaxes | |
484 | if cb_ax is None: |
|
485 | if cb_ax is None: | |
485 | return |
|
486 | return | |
486 |
|
487 | |||
487 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
488 | if cb_ax in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |
488 | cb_ax.press = event.x, event.y |
|
489 | cb_ax.press = event.x, event.y | |
489 | else: |
|
490 | else: | |
490 | cb_ax.press = None |
|
491 | cb_ax.press = None | |
491 |
|
492 | |||
492 | def onMotion(self, event): |
|
493 | def onMotion(self, event): | |
493 | ''' |
|
494 | ''' | |
494 | Event for move inside colorbar |
|
495 | Event for move inside colorbar | |
495 | ''' |
|
496 | ''' | |
496 | cb_ax = event.inaxes |
|
497 | cb_ax = event.inaxes | |
497 | if cb_ax is None: |
|
498 | if cb_ax is None: | |
498 | return |
|
499 | return | |
499 | if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]: |
|
500 | if cb_ax not in [ax.cbar.ax for ax in self.axes if ax.cbar]: | |
500 | return |
|
501 | return | |
501 | if cb_ax.press is None: |
|
502 | if cb_ax.press is None: | |
502 | return |
|
503 | return | |
503 |
|
504 | |||
504 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] |
|
505 | ax = [ax for ax in self.axes if cb_ax == ax.cbar.ax][0] | |
505 | xprev, yprev = cb_ax.press |
|
506 | xprev, yprev = cb_ax.press | |
506 | dx = event.x - xprev |
|
507 | dx = event.x - xprev | |
507 | dy = event.y - yprev |
|
508 | dy = event.y - yprev | |
508 | cb_ax.press = event.x, event.y |
|
509 | cb_ax.press = event.x, event.y | |
509 | scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin |
|
510 | scale = ax.cbar.norm.vmax - ax.cbar.norm.vmin | |
510 | perc = 0.03 |
|
511 | perc = 0.03 | |
511 |
|
512 | |||
512 | if event.button == 1: |
|
513 | if event.button == 1: | |
513 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) |
|
514 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) | |
514 | ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy) |
|
515 | ax.cbar.norm.vmax -= (perc * scale) * numpy.sign(dy) | |
515 | elif event.button == 3: |
|
516 | elif event.button == 3: | |
516 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) |
|
517 | ax.cbar.norm.vmin -= (perc * scale) * numpy.sign(dy) | |
517 | ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy) |
|
518 | ax.cbar.norm.vmax += (perc * scale) * numpy.sign(dy) | |
518 |
|
519 | |||
519 | ax.cbar.draw_all() |
|
520 | ax.cbar.draw_all() | |
520 | ax.plt.set_norm(ax.cbar.norm) |
|
521 | ax.plt.set_norm(ax.cbar.norm) | |
521 | ax.cbar.patch.figure.canvas.draw() |
|
522 | ax.cbar.patch.figure.canvas.draw() | |
522 |
|
523 | |||
523 | def onBtnRelease(self, event): |
|
524 | def onBtnRelease(self, event): | |
524 | ''' |
|
525 | ''' | |
525 | Event for mouse button release |
|
526 | Event for mouse button release | |
526 | ''' |
|
527 | ''' | |
527 | cb_ax = event.inaxes |
|
528 | cb_ax = event.inaxes | |
528 | if cb_ax is not None: |
|
529 | if cb_ax is not None: | |
529 | cb_ax.press = None |
|
530 | cb_ax.press = None | |
530 |
|
531 | |||
531 | def __add_axes(self, ax, size='30%', pad='8%'): |
|
532 | def __add_axes(self, ax, size='30%', pad='8%'): | |
532 | ''' |
|
533 | ''' | |
533 | Add new axes to the given figure |
|
534 | Add new axes to the given figure | |
534 | ''' |
|
535 | ''' | |
535 | divider = make_axes_locatable(ax) |
|
536 | divider = make_axes_locatable(ax) | |
536 | nax = divider.new_horizontal(size=size, pad=pad) |
|
537 | nax = divider.new_horizontal(size=size, pad=pad) | |
537 | ax.figure.add_axes(nax) |
|
538 | ax.figure.add_axes(nax) | |
538 | return nax |
|
539 | return nax | |
539 |
|
540 | |||
540 | def setup(self): |
|
541 | def setup(self): | |
541 | ''' |
|
542 | ''' | |
542 | This method should be implemented in the child class, the following |
|
543 | This method should be implemented in the child class, the following | |
543 | attributes should be set: |
|
544 | attributes should be set: | |
544 |
|
545 | |||
545 | self.nrows: number of rows |
|
546 | self.nrows: number of rows | |
546 | self.ncols: number of cols |
|
547 | self.ncols: number of cols | |
547 | self.nplots: number of plots (channels or pairs) |
|
548 | self.nplots: number of plots (channels or pairs) | |
548 | self.ylabel: label for Y axes |
|
549 | self.ylabel: label for Y axes | |
549 | self.titles: list of axes title |
|
550 | self.titles: list of axes title | |
550 |
|
551 | |||
551 | ''' |
|
552 | ''' | |
552 | raise NotImplementedError |
|
553 | raise NotImplementedError | |
553 |
|
554 | |||
554 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): |
|
555 | def fill_gaps(self, x_buffer, y_buffer, z_buffer): | |
555 | ''' |
|
556 | ''' | |
556 | Create a masked array for missing data |
|
557 | Create a masked array for missing data | |
557 | ''' |
|
558 | ''' | |
558 | if x_buffer.shape[0] < 2: |
|
559 | if x_buffer.shape[0] < 2: | |
559 | return x_buffer, y_buffer, z_buffer |
|
560 | return x_buffer, y_buffer, z_buffer | |
560 |
|
561 | |||
561 | deltas = x_buffer[1:] - x_buffer[0:-1] |
|
562 | deltas = x_buffer[1:] - x_buffer[0:-1] | |
562 | x_median = numpy.median(deltas) |
|
563 | x_median = numpy.median(deltas) | |
563 |
|
564 | |||
564 | index = numpy.where(deltas > 5 * x_median) |
|
565 | index = numpy.where(deltas > 5 * x_median) | |
565 |
|
566 | |||
566 | if len(index[0]) != 0: |
|
567 | if len(index[0]) != 0: | |
567 | z_buffer[::, index[0], ::] = self.__missing |
|
568 | z_buffer[::, index[0], ::] = self.__missing | |
568 | z_buffer = numpy.ma.masked_inside(z_buffer, |
|
569 | z_buffer = numpy.ma.masked_inside(z_buffer, | |
569 | 0.99 * self.__missing, |
|
570 | 0.99 * self.__missing, | |
570 | 1.01 * self.__missing) |
|
571 | 1.01 * self.__missing) | |
571 |
|
572 | |||
572 | return x_buffer, y_buffer, z_buffer |
|
573 | return x_buffer, y_buffer, z_buffer | |
573 |
|
574 | |||
574 | def decimate(self): |
|
575 | def decimate(self): | |
575 |
|
576 | |||
576 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 |
|
577 | # dx = int(len(self.x)/self.__MAXNUMX) + 1 | |
577 | dy = int(len(self.y) / self.decimation) + 1 |
|
578 | dy = int(len(self.y) / self.decimation) + 1 | |
578 |
|
579 | |||
579 | # x = self.x[::dx] |
|
580 | # x = self.x[::dx] | |
580 | x = self.x |
|
581 | x = self.x | |
581 | y = self.y[::dy] |
|
582 | y = self.y[::dy] | |
582 | z = self.z[::, ::, ::dy] |
|
583 | z = self.z[::, ::, ::dy] | |
583 |
|
584 | |||
584 | return x, y, z |
|
585 | return x, y, z | |
585 |
|
586 | |||
586 | def format(self): |
|
587 | def format(self): | |
587 | ''' |
|
588 | ''' | |
588 | Set min and max values, labels, ticks and titles |
|
589 | Set min and max values, labels, ticks and titles | |
589 | ''' |
|
590 | ''' | |
590 |
|
591 | |||
591 | if self.xmin is None: |
|
592 | if self.xmin is None: | |
592 | xmin = self.data.min_time |
|
593 | xmin = self.data.min_time | |
593 | else: |
|
594 | else: | |
594 | if self.xaxis is 'time': |
|
595 | if self.xaxis is 'time': | |
595 | dt = self.getDateTime(self.data.min_time) |
|
596 | dt = self.getDateTime(self.data.min_time) | |
596 | xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - |
|
597 | xmin = (dt.replace(hour=int(self.xmin), minute=0, second=0) - | |
597 | datetime.datetime(1970, 1, 1)).total_seconds() |
|
598 | datetime.datetime(1970, 1, 1)).total_seconds() | |
598 | if self.data.localtime: |
|
599 | if self.data.localtime: | |
599 | xmin += time.timezone |
|
600 | xmin += time.timezone | |
600 | else: |
|
601 | else: | |
601 | xmin = self.xmin |
|
602 | xmin = self.xmin | |
602 |
|
603 | |||
603 | if self.xmax is None: |
|
604 | if self.xmax is None: | |
604 | xmax = xmin + self.xrange * 60 * 60 |
|
605 | xmax = xmin + self.xrange * 60 * 60 | |
605 | else: |
|
606 | else: | |
606 | if self.xaxis is 'time': |
|
607 | if self.xaxis is 'time': | |
607 | dt = self.getDateTime(self.data.max_time) |
|
608 | dt = self.getDateTime(self.data.max_time) | |
608 | xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) - |
|
609 | xmax = (dt.replace(hour=int(self.xmax), minute=59, second=59) - | |
609 | datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() |
|
610 | datetime.datetime(1970, 1, 1) + datetime.timedelta(seconds=1)).total_seconds() | |
610 | if self.data.localtime: |
|
611 | if self.data.localtime: | |
611 | xmax += time.timezone |
|
612 | xmax += time.timezone | |
612 | else: |
|
613 | else: | |
613 | xmax = self.xmax |
|
614 | xmax = self.xmax | |
614 |
|
615 | |||
615 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) |
|
616 | ymin = self.ymin if self.ymin else numpy.nanmin(self.y) | |
616 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) |
|
617 | ymax = self.ymax if self.ymax else numpy.nanmax(self.y) | |
617 | Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000]) |
|
618 | Y = numpy.array([1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000]) | |
618 | i = 1 if numpy.where( |
|
619 | #i = 1 if numpy.where( | |
619 | abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0] |
|
620 | # abs(ymax-ymin) <= Y)[0][0] < 0 else numpy.where(abs(ymax-ymin) <= Y)[0][0] | |
620 | ystep = Y[i] / 10. |
|
621 | #ystep = Y[i] / 10. | |
621 |
|
622 | ystep = round(ymax,-1)//5 | ||
622 | if self.xaxis is not 'time': |
|
623 | if self.xaxis is not 'time': | |
623 | X = numpy.array([0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, |
|
624 | X = numpy.array([0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, | |
624 | 200, 500, 1000, 2000, 5000])/2. |
|
625 | 200, 500, 1000, 2000, 5000, 10000, 20000, 50000])/2. | |
|
626 | ||||
625 | i = 1 if numpy.where( |
|
627 | i = 1 if numpy.where( | |
626 | abs(xmax-xmin) <= X)[0][0] < 0 else numpy.where(abs(xmax-xmin) <= X)[0][0] |
|
628 | abs(xmax-xmin) <= X)[0][0] < 0 else numpy.where(abs(xmax-xmin) <= X)[0][0] | |
627 | xstep = X[i] / 5. |
|
629 | xstep = X[i] / 5. | |
628 |
|
630 | |||
629 | for n, ax in enumerate(self.axes): |
|
631 | for n, ax in enumerate(self.axes): | |
630 | if ax.firsttime: |
|
632 | if ax.firsttime: | |
631 | ax.set_facecolor(self.bgcolor) |
|
633 | ax.set_facecolor(self.bgcolor) | |
632 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) |
|
634 | ax.yaxis.set_major_locator(MultipleLocator(ystep)) | |
633 | if self.xscale: |
|
635 | if self.xscale: | |
634 | ax.xaxis.set_major_formatter(FuncFormatter( |
|
636 | ax.xaxis.set_major_formatter(FuncFormatter( | |
635 | lambda x, pos: '{0:g}'.format(x*self.xscale))) |
|
637 | lambda x, pos: '{0:g}'.format(x*self.xscale))) | |
636 | if self.xscale: |
|
638 | if self.xscale: | |
637 | ax.yaxis.set_major_formatter(FuncFormatter( |
|
639 | ax.yaxis.set_major_formatter(FuncFormatter( | |
638 | lambda x, pos: '{0:g}'.format(x*self.yscale))) |
|
640 | lambda x, pos: '{0:g}'.format(x*self.yscale))) | |
639 | if self.xaxis is 'time': |
|
641 | if self.xaxis is 'time': | |
640 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) |
|
642 | ax.xaxis.set_major_formatter(FuncFormatter(self.__fmtTime)) | |
641 | ax.xaxis.set_major_locator(LinearLocator(9)) |
|
643 | ax.xaxis.set_major_locator(LinearLocator(9)) | |
642 | else: |
|
644 | else: | |
643 | ax.xaxis.set_major_locator(MultipleLocator(xstep)) |
|
645 | ax.xaxis.set_major_locator(MultipleLocator(xstep)) | |
644 | if self.xlabel is not None: |
|
646 | if self.xlabel is not None: | |
645 | ax.set_xlabel(self.xlabel) |
|
647 | ax.set_xlabel(self.xlabel) | |
646 | ax.set_ylabel(self.ylabel) |
|
648 | ax.set_ylabel(self.ylabel) | |
647 | ax.firsttime = False |
|
649 | ax.firsttime = False | |
648 | if self.showprofile: |
|
650 | if self.showprofile: | |
649 | self.pf_axes[n].set_ylim(ymin, ymax) |
|
651 | self.pf_axes[n].set_ylim(ymin, ymax) | |
650 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) |
|
652 | self.pf_axes[n].set_xlim(self.zmin, self.zmax) | |
651 | self.pf_axes[n].set_xlabel('dB') |
|
653 | self.pf_axes[n].set_xlabel('dB') | |
652 | self.pf_axes[n].grid(b=True, axis='x') |
|
654 | self.pf_axes[n].grid(b=True, axis='x') | |
653 | [tick.set_visible(False) |
|
655 | [tick.set_visible(False) | |
654 | for tick in self.pf_axes[n].get_yticklabels()] |
|
656 | for tick in self.pf_axes[n].get_yticklabels()] | |
655 | if self.colorbar: |
|
657 | if self.colorbar: | |
656 | ax.cbar = plt.colorbar( |
|
658 | ax.cbar = plt.colorbar( | |
657 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) |
|
659 | ax.plt, ax=ax, fraction=0.05, pad=0.02, aspect=10) | |
658 | ax.cbar.ax.tick_params(labelsize=8) |
|
660 | ax.cbar.ax.tick_params(labelsize=8) | |
659 | ax.cbar.ax.press = None |
|
661 | ax.cbar.ax.press = None | |
660 | if self.cb_label: |
|
662 | if self.cb_label: | |
661 | ax.cbar.set_label(self.cb_label, size=8) |
|
663 | ax.cbar.set_label(self.cb_label, size=8) | |
662 | elif self.cb_labels: |
|
664 | elif self.cb_labels: | |
663 | ax.cbar.set_label(self.cb_labels[n], size=8) |
|
665 | ax.cbar.set_label(self.cb_labels[n], size=8) | |
664 | else: |
|
666 | else: | |
665 | ax.cbar = None |
|
667 | ax.cbar = None | |
666 | if self.grid: |
|
668 | if self.grid: | |
667 | ax.grid(True) |
|
669 | ax.grid(True) | |
668 |
|
670 | |||
669 | if not self.polar: |
|
671 | if not self.polar: | |
670 | ax.set_xlim(xmin, xmax) |
|
672 | ax.set_xlim(xmin, xmax) | |
671 | ax.set_ylim(ymin, ymax) |
|
673 | ax.set_ylim(ymin, ymax) | |
672 | ax.set_title('{} {} {}'.format( |
|
674 | ax.set_title('{} {} {}'.format( | |
673 | self.titles[n], |
|
675 | self.titles[n], | |
674 | self.getDateTime(self.data.max_time).strftime( |
|
676 | self.getDateTime(self.data.max_time).strftime( | |
675 | '%H:%M:%S'), |
|
677 | '%H:%M:%S'), | |
676 | self.time_label), |
|
678 | self.time_label), | |
677 | size=8) |
|
679 | size=8) | |
678 | else: |
|
680 | else: | |
679 | ax.set_title('{}'.format(self.titles[n]), size=8) |
|
681 | ax.set_title('{}'.format(self.titles[n]), size=8) | |
680 | ax.set_ylim(0, 90) |
|
682 | ax.set_ylim(0, 90) | |
681 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
683 | ax.set_yticks(numpy.arange(0, 90, 20)) | |
682 | ax.yaxis.labelpad = 40 |
|
684 | ax.yaxis.labelpad = 40 | |
683 |
|
685 | |||
684 | def clear_figures(self): |
|
686 | def clear_figures(self): | |
685 | ''' |
|
687 | ''' | |
686 | Reset axes for redraw plots |
|
688 | Reset axes for redraw plots | |
687 | ''' |
|
689 | ''' | |
688 |
|
690 | |||
689 | for ax in self.axes: |
|
691 | for ax in self.axes: | |
690 | ax.clear() |
|
692 | ax.clear() | |
691 | ax.firsttime = True |
|
693 | ax.firsttime = True | |
692 | if ax.cbar: |
|
694 | if ax.cbar: | |
693 | ax.cbar.remove() |
|
695 | ax.cbar.remove() | |
694 |
|
696 | |||
695 | def __plot(self): |
|
697 | def __plot(self): | |
696 | ''' |
|
698 | ''' | |
697 | Main function to plot, format and save figures |
|
699 | Main function to plot, format and save figures | |
698 | ''' |
|
700 | ''' | |
699 |
|
701 | |||
700 | #try: |
|
702 | #try: | |
701 | self.plot() |
|
703 | self.plot() | |
702 | self.format() |
|
704 | self.format() | |
703 | #except Exception as e: |
|
705 | #except Exception as e: | |
704 | # log.warning('{} Plot could not be updated... check data'.format( |
|
706 | # log.warning('{} Plot could not be updated... check data'.format( | |
705 | # self.CODE), self.name) |
|
707 | # self.CODE), self.name) | |
706 | # log.error(str(e), '') |
|
708 | # log.error(str(e), '') | |
707 | # return |
|
709 | # return | |
708 |
|
710 | |||
709 | for n, fig in enumerate(self.figures): |
|
711 | for n, fig in enumerate(self.figures): | |
710 | if self.nrows == 0 or self.nplots == 0: |
|
712 | if self.nrows == 0 or self.nplots == 0: | |
711 | log.warning('No data', self.name) |
|
713 | log.warning('No data', self.name) | |
712 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') |
|
714 | fig.text(0.5, 0.5, 'No Data', fontsize='large', ha='center') | |
713 | fig.canvas.manager.set_window_title(self.CODE) |
|
715 | fig.canvas.manager.set_window_title(self.CODE) | |
714 | continue |
|
716 | continue | |
715 |
|
717 | |||
716 | fig.tight_layout() |
|
718 | fig.tight_layout() | |
717 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, |
|
719 | fig.canvas.manager.set_window_title('{} - {}'.format(self.title, | |
718 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) |
|
720 | self.getDateTime(self.data.max_time).strftime('%Y/%m/%d'))) | |
719 | fig.canvas.draw() |
|
721 | fig.canvas.draw() | |
720 |
|
722 | |||
721 | if self.save: |
|
723 | if self.save: | |
722 |
|
724 | |||
723 | if self.save_labels: |
|
725 | if self.save_labels: | |
724 | labels = self.save_labels |
|
726 | labels = self.save_labels | |
725 | else: |
|
727 | else: | |
726 | labels = list(range(self.nrows)) |
|
728 | labels = list(range(self.nrows)) | |
727 |
|
729 | |||
728 | if self.oneFigure: |
|
730 | if self.oneFigure: | |
729 | label = '' |
|
731 | label = '' | |
730 | else: |
|
732 | else: | |
731 | label = '-{}'.format(labels[n]) |
|
733 | label = '-{}'.format(labels[n]) | |
732 | figname = os.path.join( |
|
734 | figname = os.path.join( | |
733 | self.save, |
|
735 | self.save, | |
734 | self.CODE, |
|
736 | self.CODE, | |
735 | '{}{}_{}.png'.format( |
|
737 | '{}{}_{}.png'.format( | |
736 | self.CODE, |
|
738 | self.CODE, | |
737 | label, |
|
739 | label, | |
738 | self.getDateTime(self.data.max_time).strftime( |
|
740 | self.getDateTime(self.data.max_time).strftime( | |
739 | '%Y%m%d_%H%M%S'), |
|
741 | '%Y%m%d_%H%M%S'), | |
740 | ) |
|
742 | ) | |
741 | ) |
|
743 | ) | |
742 | log.log('Saving figure: {}'.format(figname), self.name) |
|
744 | log.log('Saving figure: {}'.format(figname), self.name) | |
743 | if not os.path.isdir(os.path.dirname(figname)): |
|
745 | if not os.path.isdir(os.path.dirname(figname)): | |
744 | os.makedirs(os.path.dirname(figname)) |
|
746 | os.makedirs(os.path.dirname(figname)) | |
745 | fig.savefig(figname) |
|
747 | fig.savefig(figname) | |
746 |
|
748 | |||
747 | def plot(self): |
|
749 | def plot(self): | |
748 | ''' |
|
750 | ''' | |
749 | Must be defined in the child class |
|
751 | Must be defined in the child class | |
750 | ''' |
|
752 | ''' | |
751 | raise NotImplementedError |
|
753 | raise NotImplementedError | |
752 |
|
754 | |||
753 | def run(self, dataOut, **kwargs): |
|
755 | def run(self, dataOut, **kwargs): | |
754 |
|
756 | |||
755 | if dataOut.error: |
|
757 | if dataOut.error: | |
756 | coerce = True |
|
758 | coerce = True | |
757 | else: |
|
759 | else: | |
758 | coerce = False |
|
760 | coerce = False | |
759 |
|
761 | |||
760 | if self.isConfig is False: |
|
762 | if self.isConfig is False: | |
761 | self.__setup(**kwargs) |
|
763 | self.__setup(**kwargs) | |
762 | self.data.setup() |
|
764 | self.data.setup() | |
763 | self.isConfig = True |
|
765 | self.isConfig = True | |
764 |
|
766 | |||
765 | if dataOut.type == 'Parameters': |
|
767 | if dataOut.type == 'Parameters': | |
766 | tm = dataOut.utctimeInit |
|
768 | tm = dataOut.utctimeInit | |
767 | else: |
|
769 | else: | |
768 | tm = dataOut.utctime |
|
770 | tm = dataOut.utctime | |
769 |
|
771 | |||
770 | if dataOut.useLocalTime: |
|
772 | if dataOut.useLocalTime: | |
771 | if not self.localtime: |
|
773 | if not self.localtime: | |
772 | tm += time.timezone |
|
774 | tm += time.timezone | |
773 | else: |
|
775 | else: | |
774 | if self.localtime: |
|
776 | if self.localtime: | |
775 | tm -= time.timezone |
|
777 | tm -= time.timezone | |
776 |
|
778 | |||
777 | if self.data and (tm - self.data.min_time) >= self.xrange*60*60: |
|
779 | if self.data and (tm - self.data.min_time) >= self.xrange*60*60: | |
778 | self.__plot() |
|
780 | self.__plot() | |
779 | self.data.setup() |
|
781 | self.data.setup() | |
780 | self.clear_figures() |
|
782 | self.clear_figures() | |
781 |
|
783 | |||
782 | self.data.update(dataOut, tm) |
|
784 | self.data.update(dataOut, tm) | |
783 |
|
785 | |||
784 | if self.isPlotConfig is False: |
|
786 | if self.isPlotConfig is False: | |
785 | self.__setup_plot() |
|
787 | self.__setup_plot() | |
786 | self.isPlotConfig = True |
|
788 | self.isPlotConfig = True | |
787 |
|
789 | |||
788 | if self.realtime: |
|
790 | if self.realtime: | |
789 | self.__plot() |
|
791 | self.__plot() | |
790 | else: |
|
792 | else: | |
791 | self.__throttle_plot(self.__plot, coerce=coerce) |
|
793 | self.__throttle_plot(self.__plot, coerce=coerce) | |
792 |
|
794 | |||
793 | figpause(0.001) |
|
795 | figpause(0.001) | |
794 |
|
796 | |||
795 | def close(self): |
|
797 | def close(self): | |
796 |
|
798 | |||
797 | if self.data and self.pause: |
|
799 | if self.data and self.pause: | |
798 | figpause(10) |
|
800 | figpause(10) | |
799 |
|
801 |
@@ -1,616 +1,748 | |||||
1 | ''' |
|
1 | ''' | |
2 | New Plots Operations |
|
2 | New Plots Operations | |
3 |
|
3 | |||
4 | @author: juan.espinoza@jro.igp.gob.pe |
|
4 | @author: juan.espinoza@jro.igp.gob.pe | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 |
|
7 | |||
8 | import time |
|
8 | import time | |
9 | import datetime |
|
9 | import datetime | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
13 | from schainpy.utils import log |
|
13 | from schainpy.utils import log | |
14 |
|
14 | |||
15 | EARTH_RADIUS = 6.3710e3 |
|
15 | EARTH_RADIUS = 6.3710e3 | |
16 |
|
16 | |||
17 |
|
17 | |||
18 | def ll2xy(lat1, lon1, lat2, lon2): |
|
18 | def ll2xy(lat1, lon1, lat2, lon2): | |
19 |
|
19 | |||
20 | p = 0.017453292519943295 |
|
20 | p = 0.017453292519943295 | |
21 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
21 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
22 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
22 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
23 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
23 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
24 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
24 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
25 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
25 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
26 | theta = -theta + numpy.pi/2 |
|
26 | theta = -theta + numpy.pi/2 | |
27 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
27 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
28 |
|
28 | |||
29 |
|
29 | |||
30 | def km2deg(km): |
|
30 | def km2deg(km): | |
31 | ''' |
|
31 | ''' | |
32 | Convert distance in km to degrees |
|
32 | Convert distance in km to degrees | |
33 | ''' |
|
33 | ''' | |
34 |
|
34 | |||
35 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
35 | return numpy.rad2deg(km/EARTH_RADIUS) | |
36 |
|
36 | |||
37 |
|
37 | |||
38 | class SpectraPlot(Plot): |
|
38 | class SpectraPlot(Plot): | |
39 | ''' |
|
39 | ''' | |
40 | Plot for Spectra data |
|
40 | Plot for Spectra data | |
41 | ''' |
|
41 | ''' | |
42 |
|
42 | |||
43 | CODE = 'spc' |
|
43 | CODE = 'spc' | |
44 | colormap = 'jro' |
|
44 | colormap = 'jro' | |
45 |
|
45 | |||
46 | def setup(self): |
|
46 | def setup(self): | |
47 | self.nplots = len(self.data.channels) |
|
47 | self.nplots = len(self.data.channels) | |
48 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
48 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
49 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
49 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
50 | self.width = 3.4 * self.ncols |
|
50 | self.width = 3.4 * self.ncols | |
51 | self.height = 3 * self.nrows |
|
51 | self.height = 3 * self.nrows | |
52 | self.cb_label = 'dB' |
|
52 | self.cb_label = 'dB' | |
53 | if self.showprofile: |
|
53 | if self.showprofile: | |
54 | self.width += 0.8 * self.ncols |
|
54 | self.width += 0.8 * self.ncols | |
55 |
|
55 | |||
56 | self.ylabel = 'Range [km]' |
|
56 | self.ylabel = 'Range [km]' | |
57 |
|
57 | |||
58 | def plot(self): |
|
58 | def plot(self): | |
59 | if self.xaxis == "frequency": |
|
59 | if self.xaxis == "frequency": | |
60 | x = self.data.xrange[0] |
|
60 | x = self.data.xrange[0] | |
61 | self.xlabel = "Frequency (kHz)" |
|
61 | self.xlabel = "Frequency (kHz)" | |
62 | elif self.xaxis == "time": |
|
62 | elif self.xaxis == "time": | |
63 | x = self.data.xrange[1] |
|
63 | x = self.data.xrange[1] | |
64 | self.xlabel = "Time (ms)" |
|
64 | self.xlabel = "Time (ms)" | |
65 | else: |
|
65 | else: | |
66 | x = self.data.xrange[2] |
|
66 | x = self.data.xrange[2] | |
67 | self.xlabel = "Velocity (m/s)" |
|
67 | self.xlabel = "Velocity (m/s)" | |
68 |
|
68 | |||
69 | if self.CODE == 'spc_mean': |
|
69 | if self.CODE == 'spc_mean': | |
70 | x = self.data.xrange[2] |
|
70 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
71 | self.xlabel = "Velocity (m/s)" | |
72 |
|
72 | |||
73 | self.titles = [] |
|
73 | self.titles = [] | |
74 |
|
74 | |||
75 | y = self.data.heights |
|
75 | y = self.data.heights | |
76 | self.y = y |
|
76 | self.y = y | |
77 | z = self.data['spc'] |
|
77 | z = self.data['spc'] | |
78 |
|
78 | |||
79 | for n, ax in enumerate(self.axes): |
|
79 | for n, ax in enumerate(self.axes): | |
80 | noise = self.data['noise'][n][-1] |
|
80 | noise = self.data['noise'][n][-1] | |
81 | if self.CODE == 'spc_mean': |
|
81 | if self.CODE == 'spc_mean': | |
82 | mean = self.data['mean'][n][-1] |
|
82 | mean = self.data['mean'][n][-1] | |
83 | if ax.firsttime: |
|
83 | if ax.firsttime: | |
84 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
84 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
85 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
85 | self.xmin = self.xmin if self.xmin else -self.xmax | |
86 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
86 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
87 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
87 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
88 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
88 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
89 | vmin=self.zmin, |
|
89 | vmin=self.zmin, | |
90 | vmax=self.zmax, |
|
90 | vmax=self.zmax, | |
91 | cmap=plt.get_cmap(self.colormap) |
|
91 | cmap=plt.get_cmap(self.colormap) | |
92 | ) |
|
92 | ) | |
93 |
|
93 | |||
94 | if self.showprofile: |
|
94 | if self.showprofile: | |
95 | ax.plt_profile = self.pf_axes[n].plot( |
|
95 | ax.plt_profile = self.pf_axes[n].plot( | |
96 | self.data['rti'][n][-1], y)[0] |
|
96 | self.data['rti'][n][-1], y)[0] | |
97 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
97 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
98 | color="k", linestyle="dashed", lw=1)[0] |
|
98 | color="k", linestyle="dashed", lw=1)[0] | |
99 | if self.CODE == 'spc_mean': |
|
99 | if self.CODE == 'spc_mean': | |
100 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
100 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
101 | else: |
|
101 | else: | |
102 | ax.plt.set_array(z[n].T.ravel()) |
|
102 | ax.plt.set_array(z[n].T.ravel()) | |
103 | if self.showprofile: |
|
103 | if self.showprofile: | |
104 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
104 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
105 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
105 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
106 | if self.CODE == 'spc_mean': |
|
106 | if self.CODE == 'spc_mean': | |
107 | ax.plt_mean.set_data(mean, y) |
|
107 | ax.plt_mean.set_data(mean, y) | |
108 |
|
108 | |||
109 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
109 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
110 |
|
110 | |||
111 |
|
111 | |||
112 | class CrossSpectraPlot(Plot): |
|
112 | class CrossSpectraPlot(Plot): | |
113 |
|
113 | |||
114 | CODE = 'cspc' |
|
114 | CODE = 'cspc' | |
115 | colormap = 'jet' |
|
115 | colormap = 'jet' | |
116 | zmin_coh = None |
|
116 | zmin_coh = None | |
117 | zmax_coh = None |
|
117 | zmax_coh = None | |
118 | zmin_phase = None |
|
118 | zmin_phase = None | |
119 | zmax_phase = None |
|
119 | zmax_phase = None | |
120 |
|
120 | |||
121 | def setup(self): |
|
121 | def setup(self): | |
122 |
|
122 | |||
123 | self.ncols = 4 |
|
123 | self.ncols = 4 | |
124 | self.nrows = len(self.data.pairs) |
|
124 | self.nrows = len(self.data.pairs) | |
125 | self.nplots = self.nrows * 4 |
|
125 | self.nplots = self.nrows * 4 | |
126 | self.width = 3.4 * self.ncols |
|
126 | self.width = 3.4 * self.ncols | |
127 | self.height = 3 * self.nrows |
|
127 | self.height = 3 * self.nrows | |
128 | self.ylabel = 'Range [km]' |
|
128 | self.ylabel = 'Range [km]' | |
129 | self.showprofile = False |
|
129 | self.showprofile = False | |
130 |
|
130 | |||
131 | def plot(self): |
|
131 | def plot(self): | |
132 |
|
132 | |||
133 | if self.xaxis == "frequency": |
|
133 | if self.xaxis == "frequency": | |
134 | x = self.data.xrange[0] |
|
134 | x = self.data.xrange[0] | |
135 | self.xlabel = "Frequency (kHz)" |
|
135 | self.xlabel = "Frequency (kHz)" | |
136 | elif self.xaxis == "time": |
|
136 | elif self.xaxis == "time": | |
137 | x = self.data.xrange[1] |
|
137 | x = self.data.xrange[1] | |
138 | self.xlabel = "Time (ms)" |
|
138 | self.xlabel = "Time (ms)" | |
139 | else: |
|
139 | else: | |
140 | x = self.data.xrange[2] |
|
140 | x = self.data.xrange[2] | |
141 | self.xlabel = "Velocity (m/s)" |
|
141 | self.xlabel = "Velocity (m/s)" | |
142 |
|
142 | |||
143 | self.titles = [] |
|
143 | self.titles = [] | |
144 |
|
144 | |||
145 | y = self.data.heights |
|
145 | y = self.data.heights | |
146 | self.y = y |
|
146 | self.y = y | |
147 | spc = self.data['spc'] |
|
147 | spc = self.data['spc'] | |
148 | cspc = self.data['cspc'] |
|
148 | cspc = self.data['cspc'] | |
149 |
|
149 | |||
150 | for n in range(self.nrows): |
|
150 | for n in range(self.nrows): | |
151 | noise = self.data['noise'][n][-1] |
|
151 | noise = self.data['noise'][n][-1] | |
152 | pair = self.data.pairs[n] |
|
152 | pair = self.data.pairs[n] | |
153 | ax = self.axes[4 * n] |
|
153 | ax = self.axes[4 * n] | |
154 | spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor) |
|
154 | spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor) | |
155 | if ax.firsttime: |
|
155 | if ax.firsttime: | |
156 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
156 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
157 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
157 | self.xmin = self.xmin if self.xmin else -self.xmax | |
158 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
158 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | |
159 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
159 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
160 | ax.plt = ax.pcolormesh(x , y , spc0.T, |
|
160 | ax.plt = ax.pcolormesh(x , y , spc0.T, | |
161 | vmin=self.zmin, |
|
161 | vmin=self.zmin, | |
162 | vmax=self.zmax, |
|
162 | vmax=self.zmax, | |
163 | cmap=plt.get_cmap(self.colormap) |
|
163 | cmap=plt.get_cmap(self.colormap) | |
164 | ) |
|
164 | ) | |
165 | else: |
|
165 | else: | |
166 | ax.plt.set_array(spc0.T.ravel()) |
|
166 | ax.plt.set_array(spc0.T.ravel()) | |
167 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise)) |
|
167 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise)) | |
168 |
|
168 | |||
169 | ax = self.axes[4 * n + 1] |
|
169 | ax = self.axes[4 * n + 1] | |
170 | spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor) |
|
170 | spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor) | |
171 | if ax.firsttime: |
|
171 | if ax.firsttime: | |
172 | ax.plt = ax.pcolormesh(x , y, spc1.T, |
|
172 | ax.plt = ax.pcolormesh(x , y, spc1.T, | |
173 | vmin=self.zmin, |
|
173 | vmin=self.zmin, | |
174 | vmax=self.zmax, |
|
174 | vmax=self.zmax, | |
175 | cmap=plt.get_cmap(self.colormap) |
|
175 | cmap=plt.get_cmap(self.colormap) | |
176 | ) |
|
176 | ) | |
177 | else: |
|
177 | else: | |
178 | ax.plt.set_array(spc1.T.ravel()) |
|
178 | ax.plt.set_array(spc1.T.ravel()) | |
179 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise)) |
|
179 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise)) | |
180 |
|
180 | |||
181 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
181 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
182 | coh = numpy.abs(out) |
|
182 | coh = numpy.abs(out) | |
183 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
183 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
184 |
|
184 | |||
185 | ax = self.axes[4 * n + 2] |
|
185 | ax = self.axes[4 * n + 2] | |
186 | if ax.firsttime: |
|
186 | if ax.firsttime: | |
187 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
187 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
188 | vmin=0, |
|
188 | vmin=0, | |
189 | vmax=1, |
|
189 | vmax=1, | |
190 | cmap=plt.get_cmap(self.colormap_coh) |
|
190 | cmap=plt.get_cmap(self.colormap_coh) | |
191 | ) |
|
191 | ) | |
192 | else: |
|
192 | else: | |
193 | ax.plt.set_array(coh.T.ravel()) |
|
193 | ax.plt.set_array(coh.T.ravel()) | |
194 | self.titles.append( |
|
194 | self.titles.append( | |
195 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
195 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
196 |
|
196 | |||
197 | ax = self.axes[4 * n + 3] |
|
197 | ax = self.axes[4 * n + 3] | |
198 | if ax.firsttime: |
|
198 | if ax.firsttime: | |
199 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
199 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
200 | vmin=-180, |
|
200 | vmin=-180, | |
201 | vmax=180, |
|
201 | vmax=180, | |
202 | cmap=plt.get_cmap(self.colormap_phase) |
|
202 | cmap=plt.get_cmap(self.colormap_phase) | |
203 | ) |
|
203 | ) | |
204 | else: |
|
204 | else: | |
205 | ax.plt.set_array(phase.T.ravel()) |
|
205 | ax.plt.set_array(phase.T.ravel()) | |
206 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
206 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
207 |
|
207 | |||
208 |
|
208 | |||
209 | class SpectraMeanPlot(SpectraPlot): |
|
209 | class SpectraMeanPlot(SpectraPlot): | |
210 | ''' |
|
210 | ''' | |
211 | Plot for Spectra and Mean |
|
211 | Plot for Spectra and Mean | |
212 | ''' |
|
212 | ''' | |
213 | CODE = 'spc_mean' |
|
213 | CODE = 'spc_mean' | |
214 | colormap = 'jro' |
|
214 | colormap = 'jro' | |
215 |
|
215 | |||
216 |
|
216 | |||
217 | class RTIPlot(Plot): |
|
217 | class RTIPlot(Plot): | |
218 | ''' |
|
218 | ''' | |
219 | Plot for RTI data |
|
219 | Plot for RTI data | |
220 | ''' |
|
220 | ''' | |
221 |
|
221 | |||
222 | CODE = 'rti' |
|
222 | CODE = 'rti' | |
223 | colormap = 'jro' |
|
223 | colormap = 'jro' | |
224 |
|
224 | |||
225 | def setup(self): |
|
225 | def setup(self): | |
226 | self.xaxis = 'time' |
|
226 | self.xaxis = 'time' | |
227 | self.ncols = 1 |
|
227 | self.ncols = 1 | |
228 | self.nrows = len(self.data.channels) |
|
228 | self.nrows = len(self.data.channels) | |
229 | self.nplots = len(self.data.channels) |
|
229 | self.nplots = len(self.data.channels) | |
230 | self.ylabel = 'Range [km]' |
|
230 | self.ylabel = 'Range [km]' | |
231 | self.cb_label = 'dB' |
|
231 | self.cb_label = 'dB' | |
232 | self.titles = ['{} Channel {}'.format( |
|
232 | self.titles = ['{} Channel {}'.format( | |
233 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
233 | self.CODE.upper(), x) for x in range(self.nrows)] | |
234 |
|
234 | |||
235 | def plot(self): |
|
235 | def plot(self): | |
236 | self.x = self.data.times |
|
236 | self.x = self.data.times | |
237 | self.y = self.data.heights |
|
237 | self.y = self.data.heights | |
238 | self.z = self.data[self.CODE] |
|
238 | self.z = self.data[self.CODE] | |
239 | self.z = numpy.ma.masked_invalid(self.z) |
|
239 | self.z = numpy.ma.masked_invalid(self.z) | |
240 |
|
240 | |||
241 | if self.decimation is None: |
|
241 | if self.decimation is None: | |
242 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
242 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
243 | else: |
|
243 | else: | |
244 | x, y, z = self.fill_gaps(*self.decimate()) |
|
244 | x, y, z = self.fill_gaps(*self.decimate()) | |
245 |
|
245 | |||
246 | for n, ax in enumerate(self.axes): |
|
246 | for n, ax in enumerate(self.axes): | |
247 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
247 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
248 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
248 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
249 | if ax.firsttime: |
|
249 | if ax.firsttime: | |
250 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
250 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
251 | vmin=self.zmin, |
|
251 | vmin=self.zmin, | |
252 | vmax=self.zmax, |
|
252 | vmax=self.zmax, | |
253 | cmap=plt.get_cmap(self.colormap) |
|
253 | cmap=plt.get_cmap(self.colormap) | |
254 | ) |
|
254 | ) | |
255 | if self.showprofile: |
|
255 | if self.showprofile: | |
256 | ax.plot_profile = self.pf_axes[n].plot( |
|
256 | ax.plot_profile = self.pf_axes[n].plot( | |
257 | self.data['rti'][n][-1], self.y)[0] |
|
257 | self.data['rti'][n][-1], self.y)[0] | |
258 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
258 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
259 | color="k", linestyle="dashed", lw=1)[0] |
|
259 | color="k", linestyle="dashed", lw=1)[0] | |
260 | else: |
|
260 | else: | |
261 | ax.collections.remove(ax.collections[0]) |
|
261 | ax.collections.remove(ax.collections[0]) | |
262 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
262 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
263 | vmin=self.zmin, |
|
263 | vmin=self.zmin, | |
264 | vmax=self.zmax, |
|
264 | vmax=self.zmax, | |
265 | cmap=plt.get_cmap(self.colormap) |
|
265 | cmap=plt.get_cmap(self.colormap) | |
266 | ) |
|
266 | ) | |
267 | if self.showprofile: |
|
267 | if self.showprofile: | |
268 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
268 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
269 | ax.plot_noise.set_data(numpy.repeat( |
|
269 | ax.plot_noise.set_data(numpy.repeat( | |
270 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
270 | self.data['noise'][n][-1], len(self.y)), self.y) | |
271 |
|
271 | |||
272 |
|
272 | |||
273 | class CoherencePlot(RTIPlot): |
|
273 | class CoherencePlot(RTIPlot): | |
274 | ''' |
|
274 | ''' | |
275 | Plot for Coherence data |
|
275 | Plot for Coherence data | |
276 | ''' |
|
276 | ''' | |
277 |
|
277 | |||
278 | CODE = 'coh' |
|
278 | CODE = 'coh' | |
279 |
|
279 | |||
280 | def setup(self): |
|
280 | def setup(self): | |
281 | self.xaxis = 'time' |
|
281 | self.xaxis = 'time' | |
282 | self.ncols = 1 |
|
282 | self.ncols = 1 | |
283 | self.nrows = len(self.data.pairs) |
|
283 | self.nrows = len(self.data.pairs) | |
284 | self.nplots = len(self.data.pairs) |
|
284 | self.nplots = len(self.data.pairs) | |
285 | self.ylabel = 'Range [km]' |
|
285 | self.ylabel = 'Range [km]' | |
286 | if self.CODE == 'coh': |
|
286 | if self.CODE == 'coh': | |
287 | self.cb_label = '' |
|
287 | self.cb_label = '' | |
288 | self.titles = [ |
|
288 | self.titles = [ | |
289 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
289 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
290 | else: |
|
290 | else: | |
291 | self.cb_label = 'Degrees' |
|
291 | self.cb_label = 'Degrees' | |
292 | self.titles = [ |
|
292 | self.titles = [ | |
293 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
293 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
294 |
|
294 | |||
295 |
|
295 | |||
296 | class PhasePlot(CoherencePlot): |
|
296 | class PhasePlot(CoherencePlot): | |
297 | ''' |
|
297 | ''' | |
298 | Plot for Phase map data |
|
298 | Plot for Phase map data | |
299 | ''' |
|
299 | ''' | |
300 |
|
300 | |||
301 | CODE = 'phase' |
|
301 | CODE = 'phase' | |
302 | colormap = 'seismic' |
|
302 | colormap = 'seismic' | |
303 |
|
303 | |||
304 |
|
304 | |||
305 | class NoisePlot(Plot): |
|
305 | class NoisePlot(Plot): | |
306 | ''' |
|
306 | ''' | |
307 | Plot for noise |
|
307 | Plot for noise | |
308 | ''' |
|
308 | ''' | |
309 |
|
309 | |||
310 | CODE = 'noise' |
|
310 | CODE = 'noise' | |
311 |
|
311 | |||
312 | def setup(self): |
|
312 | def setup(self): | |
313 | self.xaxis = 'time' |
|
313 | self.xaxis = 'time' | |
314 | self.ncols = 1 |
|
314 | self.ncols = 1 | |
315 | self.nrows = 1 |
|
315 | self.nrows = 1 | |
316 | self.nplots = 1 |
|
316 | self.nplots = 1 | |
317 | self.ylabel = 'Intensity [dB]' |
|
317 | self.ylabel = 'Intensity [dB]' | |
318 | self.titles = ['Noise'] |
|
318 | self.titles = ['Noise'] | |
319 | self.colorbar = False |
|
319 | self.colorbar = False | |
320 |
|
320 | |||
321 | def plot(self): |
|
321 | def plot(self): | |
322 |
|
322 | |||
323 | x = self.data.times |
|
323 | x = self.data.times | |
324 | xmin = self.data.min_time |
|
324 | xmin = self.data.min_time | |
325 | xmax = xmin + self.xrange * 60 * 60 |
|
325 | xmax = xmin + self.xrange * 60 * 60 | |
326 | Y = self.data[self.CODE] |
|
326 | Y = self.data[self.CODE] | |
327 |
|
327 | |||
328 | if self.axes[0].firsttime: |
|
328 | if self.axes[0].firsttime: | |
329 | for ch in self.data.channels: |
|
329 | for ch in self.data.channels: | |
330 | y = Y[ch] |
|
330 | y = Y[ch] | |
331 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
331 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
332 | plt.legend() |
|
332 | plt.legend() | |
333 | else: |
|
333 | else: | |
334 | for ch in self.data.channels: |
|
334 | for ch in self.data.channels: | |
335 | y = Y[ch] |
|
335 | y = Y[ch] | |
336 | self.axes[0].lines[ch].set_data(x, y) |
|
336 | self.axes[0].lines[ch].set_data(x, y) | |
337 |
|
337 | |||
338 | self.ymin = numpy.nanmin(Y) - 5 |
|
338 | self.ymin = numpy.nanmin(Y) - 5 | |
339 | self.ymax = numpy.nanmax(Y) + 5 |
|
339 | self.ymax = numpy.nanmax(Y) + 5 | |
340 |
|
340 | |||
341 |
|
341 | |||
342 | class SnrPlot(RTIPlot): |
|
342 | class SnrPlot(RTIPlot): | |
343 | ''' |
|
343 | ''' | |
344 | Plot for SNR Data |
|
344 | Plot for SNR Data | |
345 | ''' |
|
345 | ''' | |
346 |
|
346 | |||
347 | CODE = 'snr' |
|
347 | CODE = 'snr' | |
348 | colormap = 'jet' |
|
348 | colormap = 'jet' | |
349 |
|
349 | |||
350 |
|
350 | |||
351 | class DopplerPlot(RTIPlot): |
|
351 | class DopplerPlot(RTIPlot): | |
352 | ''' |
|
352 | ''' | |
353 | Plot for DOPPLER Data |
|
353 | Plot for DOPPLER Data | |
354 | ''' |
|
354 | ''' | |
355 |
|
355 | |||
356 | CODE = 'dop' |
|
356 | CODE = 'dop' | |
357 | colormap = 'jet' |
|
357 | colormap = 'jet' | |
358 |
|
358 | |||
359 |
|
359 | |||
360 | class SkyMapPlot(Plot): |
|
360 | class SkyMapPlot(Plot): | |
361 | ''' |
|
361 | ''' | |
362 | Plot for meteors detection data |
|
362 | Plot for meteors detection data | |
363 | ''' |
|
363 | ''' | |
364 |
|
364 | |||
365 | CODE = 'param' |
|
365 | CODE = 'param' | |
366 |
|
366 | |||
367 | def setup(self): |
|
367 | def setup(self): | |
368 |
|
368 | |||
369 | self.ncols = 1 |
|
369 | self.ncols = 1 | |
370 | self.nrows = 1 |
|
370 | self.nrows = 1 | |
371 | self.width = 7.2 |
|
371 | self.width = 7.2 | |
372 | self.height = 7.2 |
|
372 | self.height = 7.2 | |
373 | self.nplots = 1 |
|
373 | self.nplots = 1 | |
374 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
374 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
375 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
375 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
376 | self.polar = True |
|
376 | self.polar = True | |
377 | self.ymin = -180 |
|
377 | self.ymin = -180 | |
378 | self.ymax = 180 |
|
378 | self.ymax = 180 | |
379 | self.colorbar = False |
|
379 | self.colorbar = False | |
380 |
|
380 | |||
381 | def plot(self): |
|
381 | def plot(self): | |
382 |
|
382 | |||
383 | arrayParameters = numpy.concatenate(self.data['param']) |
|
383 | arrayParameters = numpy.concatenate(self.data['param']) | |
384 | error = arrayParameters[:, -1] |
|
384 | error = arrayParameters[:, -1] | |
385 | indValid = numpy.where(error == 0)[0] |
|
385 | indValid = numpy.where(error == 0)[0] | |
386 | finalMeteor = arrayParameters[indValid, :] |
|
386 | finalMeteor = arrayParameters[indValid, :] | |
387 | finalAzimuth = finalMeteor[:, 3] |
|
387 | finalAzimuth = finalMeteor[:, 3] | |
388 | finalZenith = finalMeteor[:, 4] |
|
388 | finalZenith = finalMeteor[:, 4] | |
389 |
|
389 | |||
390 | x = finalAzimuth * numpy.pi / 180 |
|
390 | x = finalAzimuth * numpy.pi / 180 | |
391 | y = finalZenith |
|
391 | y = finalZenith | |
392 |
|
392 | |||
393 | ax = self.axes[0] |
|
393 | ax = self.axes[0] | |
394 |
|
394 | |||
395 | if ax.firsttime: |
|
395 | if ax.firsttime: | |
396 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
396 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
397 | else: |
|
397 | else: | |
398 | ax.plot.set_data(x, y) |
|
398 | ax.plot.set_data(x, y) | |
399 |
|
399 | |||
400 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
400 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
401 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
401 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
402 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
402 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
403 | dt2, |
|
403 | dt2, | |
404 | len(x)) |
|
404 | len(x)) | |
405 | self.titles[0] = title |
|
405 | self.titles[0] = title | |
406 |
|
406 | |||
407 |
|
407 | |||
408 | class ParametersPlot(RTIPlot): |
|
408 | class ParametersPlot(RTIPlot): | |
409 | ''' |
|
409 | ''' | |
410 | Plot for data_param object |
|
410 | Plot for data_param object | |
411 | ''' |
|
411 | ''' | |
412 |
|
412 | |||
413 | CODE = 'param' |
|
413 | CODE = 'param' | |
414 | colormap = 'seismic' |
|
414 | colormap = 'seismic' | |
415 |
|
415 | |||
416 | def setup(self): |
|
416 | def setup(self): | |
417 | self.xaxis = 'time' |
|
417 | self.xaxis = 'time' | |
418 | self.ncols = 1 |
|
418 | self.ncols = 1 | |
419 | self.nrows = self.data.shape(self.CODE)[0] |
|
419 | self.nrows = self.data.shape(self.CODE)[0] | |
420 | self.nplots = self.nrows |
|
420 | self.nplots = self.nrows | |
421 | if self.showSNR: |
|
421 | if self.showSNR: | |
422 | self.nrows += 1 |
|
422 | self.nrows += 1 | |
423 | self.nplots += 1 |
|
423 | self.nplots += 1 | |
424 |
|
424 | |||
425 | self.ylabel = 'Height [km]' |
|
425 | self.ylabel = 'Height [km]' | |
426 | if not self.titles: |
|
426 | if not self.titles: | |
427 | self.titles = self.data.parameters \ |
|
427 | self.titles = self.data.parameters \ | |
428 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
428 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] | |
429 | if self.showSNR: |
|
429 | if self.showSNR: | |
430 | self.titles.append('SNR') |
|
430 | self.titles.append('SNR') | |
431 |
|
431 | |||
432 | def plot(self): |
|
432 | def plot(self): | |
433 | self.data.normalize_heights() |
|
433 | self.data.normalize_heights() | |
434 | self.x = self.data.times |
|
434 | self.x = self.data.times | |
435 | self.y = self.data.heights |
|
435 | self.y = self.data.heights | |
436 | if self.showSNR: |
|
436 | if self.showSNR: | |
437 | self.z = numpy.concatenate( |
|
437 | self.z = numpy.concatenate( | |
438 | (self.data[self.CODE], self.data['snr']) |
|
438 | (self.data[self.CODE], self.data['snr']) | |
439 | ) |
|
439 | ) | |
440 | else: |
|
440 | else: | |
441 | self.z = self.data[self.CODE] |
|
441 | self.z = self.data[self.CODE] | |
442 |
|
442 | |||
443 | self.z = numpy.ma.masked_invalid(self.z) |
|
443 | self.z = numpy.ma.masked_invalid(self.z) | |
444 |
|
444 | |||
445 | if self.decimation is None: |
|
445 | if self.decimation is None: | |
446 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
446 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
447 | else: |
|
447 | else: | |
448 | x, y, z = self.fill_gaps(*self.decimate()) |
|
448 | x, y, z = self.fill_gaps(*self.decimate()) | |
449 |
|
449 | |||
450 | for n, ax in enumerate(self.axes): |
|
450 | for n, ax in enumerate(self.axes): | |
451 |
|
451 | |||
452 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
452 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
453 | self.z[n]) |
|
453 | self.z[n]) | |
454 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
454 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
455 | self.z[n]) |
|
455 | self.z[n]) | |
456 |
|
456 | |||
457 | if ax.firsttime: |
|
457 | if ax.firsttime: | |
458 | if self.zlimits is not None: |
|
458 | if self.zlimits is not None: | |
459 | self.zmin, self.zmax = self.zlimits[n] |
|
459 | self.zmin, self.zmax = self.zlimits[n] | |
460 |
|
460 | |||
461 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
461 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
462 | vmin=self.zmin, |
|
462 | vmin=self.zmin, | |
463 | vmax=self.zmax, |
|
463 | vmax=self.zmax, | |
464 | cmap=self.cmaps[n] |
|
464 | cmap=self.cmaps[n] | |
465 | ) |
|
465 | ) | |
466 | else: |
|
466 | else: | |
467 | if self.zlimits is not None: |
|
467 | if self.zlimits is not None: | |
468 | self.zmin, self.zmax = self.zlimits[n] |
|
468 | self.zmin, self.zmax = self.zlimits[n] | |
469 | ax.collections.remove(ax.collections[0]) |
|
469 | ax.collections.remove(ax.collections[0]) | |
470 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
470 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
471 | vmin=self.zmin, |
|
471 | vmin=self.zmin, | |
472 | vmax=self.zmax, |
|
472 | vmax=self.zmax, | |
473 | cmap=self.cmaps[n] |
|
473 | cmap=self.cmaps[n] | |
474 | ) |
|
474 | ) | |
475 |
|
475 | |||
476 |
|
476 | |||
477 | class OutputPlot(ParametersPlot): |
|
477 | class OutputPlot(ParametersPlot): | |
478 | ''' |
|
478 | ''' | |
479 | Plot data_output object |
|
479 | Plot data_output object | |
480 | ''' |
|
480 | ''' | |
481 |
|
481 | |||
482 | CODE = 'output' |
|
482 | CODE = 'output' | |
483 | colormap = 'seismic' |
|
483 | colormap = 'seismic' | |
484 |
|
484 | |||
485 |
|
485 | |||
486 | class PolarMapPlot(Plot): |
|
486 | class PolarMapPlot(Plot): | |
487 | ''' |
|
487 | ''' | |
488 | Plot for weather radar |
|
488 | Plot for weather radar | |
489 | ''' |
|
489 | ''' | |
490 |
|
490 | |||
491 | CODE = 'param' |
|
491 | CODE = 'param' | |
492 | colormap = 'seismic' |
|
492 | colormap = 'seismic' | |
493 |
|
493 | |||
494 | def setup(self): |
|
494 | def setup(self): | |
495 | self.ncols = 1 |
|
495 | self.ncols = 1 | |
496 | self.nrows = 1 |
|
496 | self.nrows = 1 | |
497 | self.width = 9 |
|
497 | self.width = 9 | |
498 | self.height = 8 |
|
498 | self.height = 8 | |
499 | self.mode = self.data.meta['mode'] |
|
499 | self.mode = self.data.meta['mode'] | |
500 | if self.channels is not None: |
|
500 | if self.channels is not None: | |
501 | self.nplots = len(self.channels) |
|
501 | self.nplots = len(self.channels) | |
502 | self.nrows = len(self.channels) |
|
502 | self.nrows = len(self.channels) | |
503 | else: |
|
503 | else: | |
504 | self.nplots = self.data.shape(self.CODE)[0] |
|
504 | self.nplots = self.data.shape(self.CODE)[0] | |
505 | self.nrows = self.nplots |
|
505 | self.nrows = self.nplots | |
506 | self.channels = list(range(self.nplots)) |
|
506 | self.channels = list(range(self.nplots)) | |
507 | if self.mode == 'E': |
|
507 | if self.mode == 'E': | |
508 | self.xlabel = 'Longitude' |
|
508 | self.xlabel = 'Longitude' | |
509 | self.ylabel = 'Latitude' |
|
509 | self.ylabel = 'Latitude' | |
510 | else: |
|
510 | else: | |
511 | self.xlabel = 'Range (km)' |
|
511 | self.xlabel = 'Range (km)' | |
512 | self.ylabel = 'Height (km)' |
|
512 | self.ylabel = 'Height (km)' | |
513 | self.bgcolor = 'white' |
|
513 | self.bgcolor = 'white' | |
514 | self.cb_labels = self.data.meta['units'] |
|
514 | self.cb_labels = self.data.meta['units'] | |
515 | self.lat = self.data.meta['latitude'] |
|
515 | self.lat = self.data.meta['latitude'] | |
516 | self.lon = self.data.meta['longitude'] |
|
516 | self.lon = self.data.meta['longitude'] | |
517 | self.xmin, self.xmax = float( |
|
517 | self.xmin, self.xmax = float( | |
518 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
518 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
519 | self.ymin, self.ymax = float( |
|
519 | self.ymin, self.ymax = float( | |
520 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
520 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
521 | # self.polar = True |
|
521 | # self.polar = True | |
522 |
|
522 | |||
523 | def plot(self): |
|
523 | def plot(self): | |
524 |
|
524 | |||
525 | for n, ax in enumerate(self.axes): |
|
525 | for n, ax in enumerate(self.axes): | |
526 | data = self.data['param'][self.channels[n]] |
|
526 | data = self.data['param'][self.channels[n]] | |
527 |
|
527 | |||
528 | zeniths = numpy.linspace( |
|
528 | zeniths = numpy.linspace( | |
529 | 0, self.data.meta['max_range'], data.shape[1]) |
|
529 | 0, self.data.meta['max_range'], data.shape[1]) | |
530 | if self.mode == 'E': |
|
530 | if self.mode == 'E': | |
531 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 |
|
531 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 | |
532 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
532 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
533 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
533 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
534 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
534 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
535 | x = km2deg(x) + self.lon |
|
535 | x = km2deg(x) + self.lon | |
536 | y = km2deg(y) + self.lat |
|
536 | y = km2deg(y) + self.lat | |
537 | else: |
|
537 | else: | |
538 | azimuths = numpy.radians(self.data.heights) |
|
538 | azimuths = numpy.radians(self.data.heights) | |
539 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
539 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
540 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
540 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
541 | self.y = zeniths |
|
541 | self.y = zeniths | |
542 |
|
542 | |||
543 | if ax.firsttime: |
|
543 | if ax.firsttime: | |
544 | if self.zlimits is not None: |
|
544 | if self.zlimits is not None: | |
545 | self.zmin, self.zmax = self.zlimits[n] |
|
545 | self.zmin, self.zmax = self.zlimits[n] | |
546 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
546 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
547 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
547 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
548 | vmin=self.zmin, |
|
548 | vmin=self.zmin, | |
549 | vmax=self.zmax, |
|
549 | vmax=self.zmax, | |
550 | cmap=self.cmaps[n]) |
|
550 | cmap=self.cmaps[n]) | |
551 | else: |
|
551 | else: | |
552 | if self.zlimits is not None: |
|
552 | if self.zlimits is not None: | |
553 | self.zmin, self.zmax = self.zlimits[n] |
|
553 | self.zmin, self.zmax = self.zlimits[n] | |
554 | ax.collections.remove(ax.collections[0]) |
|
554 | ax.collections.remove(ax.collections[0]) | |
555 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
555 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
556 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
556 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
557 | vmin=self.zmin, |
|
557 | vmin=self.zmin, | |
558 | vmax=self.zmax, |
|
558 | vmax=self.zmax, | |
559 | cmap=self.cmaps[n]) |
|
559 | cmap=self.cmaps[n]) | |
560 |
|
560 | |||
561 | if self.mode == 'A': |
|
561 | if self.mode == 'A': | |
562 | continue |
|
562 | continue | |
563 |
|
563 | |||
564 | # plot district names |
|
564 | # plot district names | |
565 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
565 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
566 | for line in f: |
|
566 | for line in f: | |
567 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
567 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
568 | lat = float(lat) |
|
568 | lat = float(lat) | |
569 | lon = float(lon) |
|
569 | lon = float(lon) | |
570 | # ax.plot(lon, lat, '.b', ms=2) |
|
570 | # ax.plot(lon, lat, '.b', ms=2) | |
571 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
571 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
572 | va='bottom', size='8', color='black') |
|
572 | va='bottom', size='8', color='black') | |
573 |
|
573 | |||
574 | # plot limites |
|
574 | # plot limites | |
575 | limites = [] |
|
575 | limites = [] | |
576 | tmp = [] |
|
576 | tmp = [] | |
577 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
577 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
578 | if '#' in line: |
|
578 | if '#' in line: | |
579 | if tmp: |
|
579 | if tmp: | |
580 | limites.append(tmp) |
|
580 | limites.append(tmp) | |
581 | tmp = [] |
|
581 | tmp = [] | |
582 | continue |
|
582 | continue | |
583 | values = line.strip().split(',') |
|
583 | values = line.strip().split(',') | |
584 | tmp.append((float(values[0]), float(values[1]))) |
|
584 | tmp.append((float(values[0]), float(values[1]))) | |
585 | for points in limites: |
|
585 | for points in limites: | |
586 | ax.add_patch( |
|
586 | ax.add_patch( | |
587 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
587 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
588 |
|
588 | |||
589 | # plot Cuencas |
|
589 | # plot Cuencas | |
590 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
590 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
591 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
591 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
592 | values = [line.strip().split(',') for line in f] |
|
592 | values = [line.strip().split(',') for line in f] | |
593 | points = [(float(s[0]), float(s[1])) for s in values] |
|
593 | points = [(float(s[0]), float(s[1])) for s in values] | |
594 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
594 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
595 |
|
595 | |||
596 | # plot grid |
|
596 | # plot grid | |
597 | for r in (15, 30, 45, 60): |
|
597 | for r in (15, 30, 45, 60): | |
598 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
598 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
599 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
599 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
600 | ax.text( |
|
600 | ax.text( | |
601 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
601 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
602 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
602 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
603 | '{}km'.format(r), |
|
603 | '{}km'.format(r), | |
604 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
604 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
605 |
|
605 | |||
606 | if self.mode == 'E': |
|
606 | if self.mode == 'E': | |
607 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
607 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
608 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
608 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
609 | else: |
|
609 | else: | |
610 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
610 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
611 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
611 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
612 |
|
612 | |||
613 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
613 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
614 | self.titles = ['{} {}'.format( |
|
614 | self.titles = ['{} {}'.format( | |
615 | self.data.parameters[x], title) for x in self.channels] |
|
615 | self.data.parameters[x], title) for x in self.channels] | |
616 |
|
616 | |||
|
617 | class ScopePlot(Plot): | |||
|
618 | ||||
|
619 | ''' | |||
|
620 | Plot for Scope | |||
|
621 | ''' | |||
|
622 | ||||
|
623 | CODE = 'scope' | |||
|
624 | ||||
|
625 | def setup(self): | |||
|
626 | ||||
|
627 | self.xaxis = 'Range (Km)' | |||
|
628 | self.ncols = 1 | |||
|
629 | self.nrows = 1 | |||
|
630 | self.nplots = 1 | |||
|
631 | self.ylabel = 'Intensity [dB]' | |||
|
632 | self.titles = ['Scope'] | |||
|
633 | self.colorbar = False | |||
|
634 | colspan = 3 | |||
|
635 | rowspan = 1 | |||
|
636 | ||||
|
637 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): | |||
|
638 | ||||
|
639 | yreal = y[channelIndexList,:].real | |||
|
640 | yimag = y[channelIndexList,:].imag | |||
|
641 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |||
|
642 | self.xlabel = "Range (Km)" | |||
|
643 | self.ylabel = "Intensity - IQ" | |||
|
644 | ||||
|
645 | self.y = yreal | |||
|
646 | self.x = x | |||
|
647 | self.xmin = min(x) | |||
|
648 | self.xmax = max(x) | |||
|
649 | ||||
|
650 | ||||
|
651 | self.titles[0] = title | |||
|
652 | ||||
|
653 | for i,ax in enumerate(self.axes): | |||
|
654 | title = "Channel %d" %(i) | |||
|
655 | if ax.firsttime: | |||
|
656 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] | |||
|
657 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] | |||
|
658 | else: | |||
|
659 | #pass | |||
|
660 | ax.plt_r.set_data(x, yreal[i,:]) | |||
|
661 | ax.plt_i.set_data(x, yimag[i,:]) | |||
|
662 | ||||
|
663 | def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): | |||
|
664 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) | |||
|
665 | yreal = y.real | |||
|
666 | self.y = yreal | |||
|
667 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |||
|
668 | self.xlabel = "Range (Km)" | |||
|
669 | self.ylabel = "Intensity" | |||
|
670 | self.xmin = min(x) | |||
|
671 | self.xmax = max(x) | |||
|
672 | ||||
|
673 | ||||
|
674 | self.titles[0] = title | |||
|
675 | ||||
|
676 | for i,ax in enumerate(self.axes): | |||
|
677 | title = "Channel %d" %(i) | |||
|
678 | ||||
|
679 | ychannel = yreal[i,:] | |||
|
680 | ||||
|
681 | if ax.firsttime: | |||
|
682 | ax.plt_r = ax.plot(x, ychannel)[0] | |||
|
683 | else: | |||
|
684 | #pass | |||
|
685 | ax.plt_r.set_data(x, ychannel) | |||
|
686 | ||||
|
687 | ||||
|
688 | def plot(self): | |||
|
689 | ||||
|
690 | if self.channels: | |||
|
691 | channels = self.channels | |||
|
692 | else: | |||
|
693 | channels = self.data.channels | |||
|
694 | ||||
|
695 | ||||
|
696 | ||||
|
697 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |||
|
698 | ||||
|
699 | scope = self.data['scope'] | |||
|
700 | ||||
|
701 | ||||
|
702 | if self.data.flagDataAsBlock: | |||
|
703 | ||||
|
704 | for i in range(self.data.nProfiles): | |||
|
705 | ||||
|
706 | wintitle1 = " [Profile = %d] " %i | |||
|
707 | ||||
|
708 | if self.type == "power": | |||
|
709 | self.plot_power(self.data.heights, | |||
|
710 | scope[:,i,:], | |||
|
711 | channels, | |||
|
712 | thisDatetime, | |||
|
713 | wintitle1 | |||
|
714 | ) | |||
|
715 | ||||
|
716 | if self.type == "iq": | |||
|
717 | self.plot_iq(self.data.heights, | |||
|
718 | scope[:,i,:], | |||
|
719 | channels, | |||
|
720 | thisDatetime, | |||
|
721 | wintitle1 | |||
|
722 | ) | |||
|
723 | ||||
|
724 | ||||
|
725 | ||||
|
726 | ||||
|
727 | ||||
|
728 | else: | |||
|
729 | wintitle = " [Profile = %d] " %self.data.profileIndex | |||
|
730 | ||||
|
731 | if self.type == "power": | |||
|
732 | self.plot_power(self.data.heights, | |||
|
733 | scope, | |||
|
734 | channels, | |||
|
735 | thisDatetime, | |||
|
736 | wintitle | |||
|
737 | ) | |||
|
738 | ||||
|
739 | if self.type == "iq": | |||
|
740 | self.plot_iq(self.data.heights, | |||
|
741 | scope, | |||
|
742 | channels, | |||
|
743 | thisDatetime, | |||
|
744 | wintitle | |||
|
745 | ) | |||
|
746 | ||||
|
747 | ||||
|
748 | No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now