@@ -1,1353 +1,1358 | |||||
1 | ''' |
|
1 | ''' | |
2 |
|
2 | |||
3 | $Author: murco $ |
|
3 | $Author: murco $ | |
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 | import copy |
|
7 | import copy | |
8 | import numpy |
|
8 | import numpy | |
9 | import datetime |
|
9 | import datetime | |
10 | import json |
|
10 | import json | |
11 |
|
11 | |||
12 | from schainpy.utils import log |
|
12 | from schainpy.utils import log | |
13 | from .jroheaderIO import SystemHeader, RadarControllerHeader |
|
13 | from .jroheaderIO import SystemHeader, RadarControllerHeader | |
14 |
|
14 | |||
15 |
|
15 | |||
16 | def getNumpyDtype(dataTypeCode): |
|
16 | def getNumpyDtype(dataTypeCode): | |
17 |
|
17 | |||
18 | if dataTypeCode == 0: |
|
18 | if dataTypeCode == 0: | |
19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) |
|
19 | numpyDtype = numpy.dtype([('real', '<i1'), ('imag', '<i1')]) | |
20 | elif dataTypeCode == 1: |
|
20 | elif dataTypeCode == 1: | |
21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) |
|
21 | numpyDtype = numpy.dtype([('real', '<i2'), ('imag', '<i2')]) | |
22 | elif dataTypeCode == 2: |
|
22 | elif dataTypeCode == 2: | |
23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) |
|
23 | numpyDtype = numpy.dtype([('real', '<i4'), ('imag', '<i4')]) | |
24 | elif dataTypeCode == 3: |
|
24 | elif dataTypeCode == 3: | |
25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) |
|
25 | numpyDtype = numpy.dtype([('real', '<i8'), ('imag', '<i8')]) | |
26 | elif dataTypeCode == 4: |
|
26 | elif dataTypeCode == 4: | |
27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) |
|
27 | numpyDtype = numpy.dtype([('real', '<f4'), ('imag', '<f4')]) | |
28 | elif dataTypeCode == 5: |
|
28 | elif dataTypeCode == 5: | |
29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) |
|
29 | numpyDtype = numpy.dtype([('real', '<f8'), ('imag', '<f8')]) | |
30 | else: |
|
30 | else: | |
31 | raise ValueError('dataTypeCode was not defined') |
|
31 | raise ValueError('dataTypeCode was not defined') | |
32 |
|
32 | |||
33 | return numpyDtype |
|
33 | return numpyDtype | |
34 |
|
34 | |||
35 |
|
35 | |||
36 | def getDataTypeCode(numpyDtype): |
|
36 | def getDataTypeCode(numpyDtype): | |
37 |
|
37 | |||
38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): |
|
38 | if numpyDtype == numpy.dtype([('real', '<i1'), ('imag', '<i1')]): | |
39 | datatype = 0 |
|
39 | datatype = 0 | |
40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): |
|
40 | elif numpyDtype == numpy.dtype([('real', '<i2'), ('imag', '<i2')]): | |
41 | datatype = 1 |
|
41 | datatype = 1 | |
42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): |
|
42 | elif numpyDtype == numpy.dtype([('real', '<i4'), ('imag', '<i4')]): | |
43 | datatype = 2 |
|
43 | datatype = 2 | |
44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): |
|
44 | elif numpyDtype == numpy.dtype([('real', '<i8'), ('imag', '<i8')]): | |
45 | datatype = 3 |
|
45 | datatype = 3 | |
46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): |
|
46 | elif numpyDtype == numpy.dtype([('real', '<f4'), ('imag', '<f4')]): | |
47 | datatype = 4 |
|
47 | datatype = 4 | |
48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): |
|
48 | elif numpyDtype == numpy.dtype([('real', '<f8'), ('imag', '<f8')]): | |
49 | datatype = 5 |
|
49 | datatype = 5 | |
50 | else: |
|
50 | else: | |
51 | datatype = None |
|
51 | datatype = None | |
52 |
|
52 | |||
53 | return datatype |
|
53 | return datatype | |
54 |
|
54 | |||
55 |
|
55 | |||
56 | def hildebrand_sekhon(data, navg): |
|
56 | def hildebrand_sekhon(data, navg): | |
57 | """ |
|
57 | """ | |
58 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
58 | This method is for the objective determination of the noise level in Doppler spectra. This | |
59 | implementation technique is based on the fact that the standard deviation of the spectral |
|
59 | implementation technique is based on the fact that the standard deviation of the spectral | |
60 | densities is equal to the mean spectral density for white Gaussian noise |
|
60 | densities is equal to the mean spectral density for white Gaussian noise | |
61 |
|
61 | |||
62 | Inputs: |
|
62 | Inputs: | |
63 | Data : heights |
|
63 | Data : heights | |
64 | navg : numbers of averages |
|
64 | navg : numbers of averages | |
65 |
|
65 | |||
66 | Return: |
|
66 | Return: | |
67 | mean : noise's level |
|
67 | mean : noise's level | |
68 | """ |
|
68 | """ | |
69 |
|
69 | |||
70 | sortdata = numpy.sort(data, axis=None) |
|
70 | sortdata = numpy.sort(data, axis=None) | |
71 | lenOfData = len(sortdata) |
|
71 | lenOfData = len(sortdata) | |
72 | nums_min = lenOfData*0.2 |
|
72 | nums_min = lenOfData*0.2 | |
73 |
|
73 | |||
74 | if nums_min <= 5: |
|
74 | if nums_min <= 5: | |
75 |
|
75 | |||
76 | nums_min = 5 |
|
76 | nums_min = 5 | |
77 |
|
77 | |||
78 | sump = 0. |
|
78 | sump = 0. | |
79 | sumq = 0. |
|
79 | sumq = 0. | |
80 |
|
80 | |||
81 | j = 0 |
|
81 | j = 0 | |
82 | cont = 1 |
|
82 | cont = 1 | |
83 |
|
83 | |||
84 | while((cont == 1)and(j < lenOfData)): |
|
84 | while((cont == 1)and(j < lenOfData)): | |
85 |
|
85 | |||
86 | sump += sortdata[j] |
|
86 | sump += sortdata[j] | |
87 | sumq += sortdata[j]**2 |
|
87 | sumq += sortdata[j]**2 | |
88 |
|
88 | |||
89 | if j > nums_min: |
|
89 | if j > nums_min: | |
90 | rtest = float(j)/(j-1) + 1.0/navg |
|
90 | rtest = float(j)/(j-1) + 1.0/navg | |
91 | if ((sumq*j) > (rtest*sump**2)): |
|
91 | if ((sumq*j) > (rtest*sump**2)): | |
92 | j = j - 1 |
|
92 | j = j - 1 | |
93 | sump = sump - sortdata[j] |
|
93 | sump = sump - sortdata[j] | |
94 | sumq = sumq - sortdata[j]**2 |
|
94 | sumq = sumq - sortdata[j]**2 | |
95 | cont = 0 |
|
95 | cont = 0 | |
96 |
|
96 | |||
97 | j += 1 |
|
97 | j += 1 | |
98 |
|
98 | |||
99 | lnoise = sump / j |
|
99 | lnoise = sump / j | |
100 |
|
100 | |||
101 | return lnoise |
|
101 | return lnoise | |
102 |
|
102 | |||
103 |
|
103 | |||
104 | class Beam: |
|
104 | class Beam: | |
105 |
|
105 | |||
106 | def __init__(self): |
|
106 | def __init__(self): | |
107 | self.codeList = [] |
|
107 | self.codeList = [] | |
108 | self.azimuthList = [] |
|
108 | self.azimuthList = [] | |
109 | self.zenithList = [] |
|
109 | self.zenithList = [] | |
110 |
|
110 | |||
111 |
|
111 | |||
112 | class GenericData(object): |
|
112 | class GenericData(object): | |
113 |
|
113 | |||
114 | flagNoData = True |
|
114 | flagNoData = True | |
115 |
|
115 | |||
116 | def copy(self, inputObj=None): |
|
116 | def copy(self, inputObj=None): | |
117 |
|
117 | |||
118 | if inputObj == None: |
|
118 | if inputObj == None: | |
119 | return copy.deepcopy(self) |
|
119 | return copy.deepcopy(self) | |
120 |
|
120 | |||
121 | for key in list(inputObj.__dict__.keys()): |
|
121 | for key in list(inputObj.__dict__.keys()): | |
122 |
|
122 | |||
123 | attribute = inputObj.__dict__[key] |
|
123 | attribute = inputObj.__dict__[key] | |
124 |
|
124 | |||
125 | # If this attribute is a tuple or list |
|
125 | # If this attribute is a tuple or list | |
126 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
126 | if type(inputObj.__dict__[key]) in (tuple, list): | |
127 | self.__dict__[key] = attribute[:] |
|
127 | self.__dict__[key] = attribute[:] | |
128 | continue |
|
128 | continue | |
129 |
|
129 | |||
130 | # If this attribute is another object or instance |
|
130 | # If this attribute is another object or instance | |
131 | if hasattr(attribute, '__dict__'): |
|
131 | if hasattr(attribute, '__dict__'): | |
132 | self.__dict__[key] = attribute.copy() |
|
132 | self.__dict__[key] = attribute.copy() | |
133 | continue |
|
133 | continue | |
134 |
|
134 | |||
135 | self.__dict__[key] = inputObj.__dict__[key] |
|
135 | self.__dict__[key] = inputObj.__dict__[key] | |
136 |
|
136 | |||
137 | def deepcopy(self): |
|
137 | def deepcopy(self): | |
138 |
|
138 | |||
139 | return copy.deepcopy(self) |
|
139 | return copy.deepcopy(self) | |
140 |
|
140 | |||
141 | def isEmpty(self): |
|
141 | def isEmpty(self): | |
142 |
|
142 | |||
143 | return self.flagNoData |
|
143 | return self.flagNoData | |
144 |
|
144 | |||
145 |
|
145 | |||
146 | class JROData(GenericData): |
|
146 | class JROData(GenericData): | |
147 |
|
147 | |||
148 | # m_BasicHeader = BasicHeader() |
|
148 | # m_BasicHeader = BasicHeader() | |
149 | # m_ProcessingHeader = ProcessingHeader() |
|
149 | # m_ProcessingHeader = ProcessingHeader() | |
150 |
|
150 | |||
151 | systemHeaderObj = SystemHeader() |
|
151 | systemHeaderObj = SystemHeader() | |
152 | radarControllerHeaderObj = RadarControllerHeader() |
|
152 | radarControllerHeaderObj = RadarControllerHeader() | |
153 | # data = None |
|
153 | # data = None | |
154 | type = None |
|
154 | type = None | |
155 | datatype = None # dtype but in string |
|
155 | datatype = None # dtype but in string | |
156 | # dtype = None |
|
156 | # dtype = None | |
157 | # nChannels = None |
|
157 | # nChannels = None | |
158 | # nHeights = None |
|
158 | # nHeights = None | |
159 | nProfiles = None |
|
159 | nProfiles = None | |
160 | heightList = None |
|
160 | heightList = None | |
161 | channelList = None |
|
161 | channelList = None | |
162 | flagDiscontinuousBlock = False |
|
162 | flagDiscontinuousBlock = False | |
163 | useLocalTime = False |
|
163 | useLocalTime = False | |
164 | utctime = None |
|
164 | utctime = None | |
165 | timeZone = None |
|
165 | timeZone = None | |
166 | dstFlag = None |
|
166 | dstFlag = None | |
167 | errorCount = None |
|
167 | errorCount = None | |
168 | blocksize = None |
|
168 | blocksize = None | |
169 | # nCode = None |
|
169 | # nCode = None | |
170 | # nBaud = None |
|
170 | # nBaud = None | |
171 | # code = None |
|
171 | # code = None | |
172 | flagDecodeData = False # asumo q la data no esta decodificada |
|
172 | flagDecodeData = False # asumo q la data no esta decodificada | |
173 | flagDeflipData = False # asumo q la data no esta sin flip |
|
173 | flagDeflipData = False # asumo q la data no esta sin flip | |
174 | flagShiftFFT = False |
|
174 | flagShiftFFT = False | |
175 | # ippSeconds = None |
|
175 | # ippSeconds = None | |
176 | # timeInterval = None |
|
176 | # timeInterval = None | |
177 | nCohInt = None |
|
177 | nCohInt = None | |
178 | # noise = None |
|
178 | # noise = None | |
179 | windowOfFilter = 1 |
|
179 | windowOfFilter = 1 | |
180 | # Speed of ligth |
|
180 | # Speed of ligth | |
181 | C = 3e8 |
|
181 | C = 3e8 | |
182 | frequency = 49.92e6 |
|
182 | frequency = 49.92e6 | |
183 | realtime = False |
|
183 | realtime = False | |
184 | beacon_heiIndexList = None |
|
184 | beacon_heiIndexList = None | |
185 | last_block = None |
|
185 | last_block = None | |
186 | blocknow = None |
|
186 | blocknow = None | |
187 | azimuth = None |
|
187 | azimuth = None | |
188 | zenith = None |
|
188 | zenith = None | |
189 | beam = Beam() |
|
189 | beam = Beam() | |
190 | profileIndex = None |
|
190 | profileIndex = None | |
191 | error = None |
|
191 | error = None | |
192 | data = None |
|
192 | data = None | |
193 | nmodes = None |
|
193 | nmodes = None | |
194 |
|
194 | |||
195 | def __str__(self): |
|
195 | def __str__(self): | |
196 |
|
196 | |||
197 | return '{} - {}'.format(self.type, self.getDatatime()) |
|
197 | return '{} - {}'.format(self.type, self.getDatatime()) | |
198 |
|
198 | |||
199 | def getNoise(self): |
|
199 | def getNoise(self): | |
200 |
|
200 | |||
201 | raise NotImplementedError |
|
201 | raise NotImplementedError | |
202 |
|
202 | |||
203 | def getNChannels(self): |
|
203 | def getNChannels(self): | |
204 |
|
204 | |||
205 | return len(self.channelList) |
|
205 | return len(self.channelList) | |
206 |
|
206 | |||
207 | def getChannelIndexList(self): |
|
207 | def getChannelIndexList(self): | |
208 |
|
208 | |||
209 | return list(range(self.nChannels)) |
|
209 | return list(range(self.nChannels)) | |
210 |
|
210 | |||
211 | def getNHeights(self): |
|
211 | def getNHeights(self): | |
212 |
|
212 | |||
213 | return len(self.heightList) |
|
213 | return len(self.heightList) | |
214 |
|
214 | |||
215 | def getHeiRange(self, extrapoints=0): |
|
215 | def getHeiRange(self, extrapoints=0): | |
216 |
|
216 | |||
217 | heis = self.heightList |
|
217 | heis = self.heightList | |
218 | # deltah = self.heightList[1] - self.heightList[0] |
|
218 | # deltah = self.heightList[1] - self.heightList[0] | |
219 | # |
|
219 | # | |
220 | # heis.append(self.heightList[-1]) |
|
220 | # heis.append(self.heightList[-1]) | |
221 |
|
221 | |||
222 | return heis |
|
222 | return heis | |
223 |
|
223 | |||
224 | def getDeltaH(self): |
|
224 | def getDeltaH(self): | |
225 |
|
225 | |||
226 | delta = self.heightList[1] - self.heightList[0] |
|
226 | delta = self.heightList[1] - self.heightList[0] | |
227 |
|
227 | |||
228 | return delta |
|
228 | return delta | |
229 |
|
229 | |||
230 | def getltctime(self): |
|
230 | def getltctime(self): | |
231 |
|
231 | |||
232 | if self.useLocalTime: |
|
232 | if self.useLocalTime: | |
233 | return self.utctime - self.timeZone * 60 |
|
233 | return self.utctime - self.timeZone * 60 | |
234 |
|
234 | |||
235 | return self.utctime |
|
235 | return self.utctime | |
236 |
|
236 | |||
237 | def getDatatime(self): |
|
237 | def getDatatime(self): | |
238 |
|
238 | |||
239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
239 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) | |
240 | return datatimeValue |
|
240 | return datatimeValue | |
241 |
|
241 | |||
242 | def getTimeRange(self): |
|
242 | def getTimeRange(self): | |
243 |
|
243 | |||
244 | datatime = [] |
|
244 | datatime = [] | |
245 |
|
245 | |||
246 | datatime.append(self.ltctime) |
|
246 | datatime.append(self.ltctime) | |
247 | datatime.append(self.ltctime + self.timeInterval + 1) |
|
247 | datatime.append(self.ltctime + self.timeInterval + 1) | |
248 |
|
248 | |||
249 | datatime = numpy.array(datatime) |
|
249 | datatime = numpy.array(datatime) | |
250 |
|
250 | |||
251 | return datatime |
|
251 | return datatime | |
252 |
|
252 | |||
253 | def getFmaxTimeResponse(self): |
|
253 | def getFmaxTimeResponse(self): | |
254 |
|
254 | |||
255 | period = (10**-6) * self.getDeltaH() / (0.15) |
|
255 | period = (10**-6) * self.getDeltaH() / (0.15) | |
256 |
|
256 | |||
257 | PRF = 1. / (period * self.nCohInt) |
|
257 | PRF = 1. / (period * self.nCohInt) | |
258 |
|
258 | |||
259 | fmax = PRF |
|
259 | fmax = PRF | |
260 |
|
260 | |||
261 | return fmax |
|
261 | return fmax | |
262 |
|
262 | |||
263 | def getFmax(self): |
|
263 | def getFmax(self): | |
264 | PRF = 1. / (self.ippSeconds * self.nCohInt) |
|
264 | PRF = 1. / (self.ippSeconds * self.nCohInt) | |
265 |
|
265 | |||
266 | fmax = PRF |
|
266 | fmax = PRF | |
267 | return fmax |
|
267 | return fmax | |
268 |
|
268 | |||
269 | def getVmax(self): |
|
269 | def getVmax(self): | |
270 |
|
270 | |||
271 | _lambda = self.C / self.frequency |
|
271 | _lambda = self.C / self.frequency | |
272 |
|
272 | |||
273 | vmax = self.getFmax() * _lambda / 2 |
|
273 | vmax = self.getFmax() * _lambda / 2 | |
274 |
|
274 | |||
275 | return vmax |
|
275 | return vmax | |
276 |
|
276 | |||
277 | def get_ippSeconds(self): |
|
277 | def get_ippSeconds(self): | |
278 | ''' |
|
278 | ''' | |
279 | ''' |
|
279 | ''' | |
280 | return self.radarControllerHeaderObj.ippSeconds |
|
280 | return self.radarControllerHeaderObj.ippSeconds | |
281 |
|
281 | |||
282 | def set_ippSeconds(self, ippSeconds): |
|
282 | def set_ippSeconds(self, ippSeconds): | |
283 | ''' |
|
283 | ''' | |
284 | ''' |
|
284 | ''' | |
285 |
|
285 | |||
286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
286 | self.radarControllerHeaderObj.ippSeconds = ippSeconds | |
287 |
|
287 | |||
288 | return |
|
288 | return | |
289 |
|
289 | |||
290 | def get_dtype(self): |
|
290 | def get_dtype(self): | |
291 | ''' |
|
291 | ''' | |
292 | ''' |
|
292 | ''' | |
293 | return getNumpyDtype(self.datatype) |
|
293 | return getNumpyDtype(self.datatype) | |
294 |
|
294 | |||
295 | def set_dtype(self, numpyDtype): |
|
295 | def set_dtype(self, numpyDtype): | |
296 | ''' |
|
296 | ''' | |
297 | ''' |
|
297 | ''' | |
298 |
|
298 | |||
299 | self.datatype = getDataTypeCode(numpyDtype) |
|
299 | self.datatype = getDataTypeCode(numpyDtype) | |
300 |
|
300 | |||
301 | def get_code(self): |
|
301 | def get_code(self): | |
302 | ''' |
|
302 | ''' | |
303 | ''' |
|
303 | ''' | |
304 | return self.radarControllerHeaderObj.code |
|
304 | return self.radarControllerHeaderObj.code | |
305 |
|
305 | |||
306 | def set_code(self, code): |
|
306 | def set_code(self, code): | |
307 | ''' |
|
307 | ''' | |
308 | ''' |
|
308 | ''' | |
309 | self.radarControllerHeaderObj.code = code |
|
309 | self.radarControllerHeaderObj.code = code | |
310 |
|
310 | |||
311 | return |
|
311 | return | |
312 |
|
312 | |||
313 | def get_ncode(self): |
|
313 | def get_ncode(self): | |
314 | ''' |
|
314 | ''' | |
315 | ''' |
|
315 | ''' | |
316 | return self.radarControllerHeaderObj.nCode |
|
316 | return self.radarControllerHeaderObj.nCode | |
317 |
|
317 | |||
318 | def set_ncode(self, nCode): |
|
318 | def set_ncode(self, nCode): | |
319 | ''' |
|
319 | ''' | |
320 | ''' |
|
320 | ''' | |
321 | self.radarControllerHeaderObj.nCode = nCode |
|
321 | self.radarControllerHeaderObj.nCode = nCode | |
322 |
|
322 | |||
323 | return |
|
323 | return | |
324 |
|
324 | |||
325 | def get_nbaud(self): |
|
325 | def get_nbaud(self): | |
326 | ''' |
|
326 | ''' | |
327 | ''' |
|
327 | ''' | |
328 | return self.radarControllerHeaderObj.nBaud |
|
328 | return self.radarControllerHeaderObj.nBaud | |
329 |
|
329 | |||
330 | def set_nbaud(self, nBaud): |
|
330 | def set_nbaud(self, nBaud): | |
331 | ''' |
|
331 | ''' | |
332 | ''' |
|
332 | ''' | |
333 | self.radarControllerHeaderObj.nBaud = nBaud |
|
333 | self.radarControllerHeaderObj.nBaud = nBaud | |
334 |
|
334 | |||
335 | return |
|
335 | return | |
336 |
|
336 | |||
337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
337 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
338 | channelIndexList = property( |
|
338 | channelIndexList = property( | |
339 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
339 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
340 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
341 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
341 | #noise = property(getNoise, "I'm the 'nHeights' property.") | |
342 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
342 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
343 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
343 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
344 | ippSeconds = property(get_ippSeconds, set_ippSeconds) | |
345 | dtype = property(get_dtype, set_dtype) |
|
345 | dtype = property(get_dtype, set_dtype) | |
346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
346 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
347 | code = property(get_code, set_code) |
|
347 | code = property(get_code, set_code) | |
348 | nCode = property(get_ncode, set_ncode) |
|
348 | nCode = property(get_ncode, set_ncode) | |
349 | nBaud = property(get_nbaud, set_nbaud) |
|
349 | nBaud = property(get_nbaud, set_nbaud) | |
350 |
|
350 | |||
351 |
|
351 | |||
352 | class Voltage(JROData): |
|
352 | class Voltage(JROData): | |
353 |
|
353 | |||
354 | # data es un numpy array de 2 dmensiones (canales, alturas) |
|
354 | # data es un numpy array de 2 dmensiones (canales, alturas) | |
355 | data = None |
|
355 | data = None | |
356 |
|
356 | |||
357 | def __init__(self): |
|
357 | def __init__(self): | |
358 | ''' |
|
358 | ''' | |
359 | Constructor |
|
359 | Constructor | |
360 | ''' |
|
360 | ''' | |
361 |
|
361 | |||
362 | self.useLocalTime = True |
|
362 | self.useLocalTime = True | |
363 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
363 | self.radarControllerHeaderObj = RadarControllerHeader() | |
364 | self.systemHeaderObj = SystemHeader() |
|
364 | self.systemHeaderObj = SystemHeader() | |
365 | self.type = "Voltage" |
|
365 | self.type = "Voltage" | |
366 | self.data = None |
|
366 | self.data = None | |
367 | # self.dtype = None |
|
367 | # self.dtype = None | |
368 | # self.nChannels = 0 |
|
368 | # self.nChannels = 0 | |
369 | # self.nHeights = 0 |
|
369 | # self.nHeights = 0 | |
370 | self.nProfiles = None |
|
370 | self.nProfiles = None | |
371 | self.heightList = None |
|
371 | self.heightList = None | |
372 | self.channelList = None |
|
372 | self.channelList = None | |
373 | # self.channelIndexList = None |
|
373 | # self.channelIndexList = None | |
374 | self.flagNoData = True |
|
374 | self.flagNoData = True | |
375 | self.flagDiscontinuousBlock = False |
|
375 | self.flagDiscontinuousBlock = False | |
376 | self.utctime = None |
|
376 | self.utctime = None | |
377 | self.timeZone = None |
|
377 | self.timeZone = None | |
378 | self.dstFlag = None |
|
378 | self.dstFlag = None | |
379 | self.errorCount = None |
|
379 | self.errorCount = None | |
380 | self.nCohInt = None |
|
380 | self.nCohInt = None | |
381 | self.blocksize = None |
|
381 | self.blocksize = None | |
382 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
382 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
383 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
383 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
384 | self.flagShiftFFT = False |
|
384 | self.flagShiftFFT = False | |
385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil |
|
385 | self.flagDataAsBlock = False # Asumo que la data es leida perfil a perfil | |
386 | self.profileIndex = 0 |
|
386 | self.profileIndex = 0 | |
387 |
|
387 | |||
388 | def getNoisebyHildebrand(self, channel=None): |
|
388 | def getNoisebyHildebrand(self, channel=None): | |
389 | """ |
|
389 | """ | |
390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
390 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
391 |
|
391 | |||
392 | Return: |
|
392 | Return: | |
393 | noiselevel |
|
393 | noiselevel | |
394 | """ |
|
394 | """ | |
395 |
|
395 | |||
396 | if channel != None: |
|
396 | if channel != None: | |
397 | data = self.data[channel] |
|
397 | data = self.data[channel] | |
398 | nChannels = 1 |
|
398 | nChannels = 1 | |
399 | else: |
|
399 | else: | |
400 | data = self.data |
|
400 | data = self.data | |
401 | nChannels = self.nChannels |
|
401 | nChannels = self.nChannels | |
402 |
|
402 | |||
403 | noise = numpy.zeros(nChannels) |
|
403 | noise = numpy.zeros(nChannels) | |
404 | power = data * numpy.conjugate(data) |
|
404 | power = data * numpy.conjugate(data) | |
405 |
|
405 | |||
406 | for thisChannel in range(nChannels): |
|
406 | for thisChannel in range(nChannels): | |
407 | if nChannels == 1: |
|
407 | if nChannels == 1: | |
408 | daux = power[:].real |
|
408 | daux = power[:].real | |
409 | else: |
|
409 | else: | |
410 | daux = power[thisChannel, :].real |
|
410 | daux = power[thisChannel, :].real | |
411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
411 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) | |
412 |
|
412 | |||
413 | return noise |
|
413 | return noise | |
414 |
|
414 | |||
415 | def getNoise(self, type=1, channel=None): |
|
415 | def getNoise(self, type=1, channel=None): | |
416 |
|
416 | |||
417 | if type == 1: |
|
417 | if type == 1: | |
418 | noise = self.getNoisebyHildebrand(channel) |
|
418 | noise = self.getNoisebyHildebrand(channel) | |
419 |
|
419 | |||
420 | return noise |
|
420 | return noise | |
421 |
|
421 | |||
422 | def getPower(self, channel=None): |
|
422 | def getPower(self, channel=None): | |
423 |
|
423 | |||
424 | if channel != None: |
|
424 | if channel != None: | |
425 | data = self.data[channel] |
|
425 | data = self.data[channel] | |
426 | else: |
|
426 | else: | |
427 | data = self.data |
|
427 | data = self.data | |
428 |
|
428 | |||
429 | power = data * numpy.conjugate(data) |
|
429 | power = data * numpy.conjugate(data) | |
430 | powerdB = 10 * numpy.log10(power.real) |
|
430 | powerdB = 10 * numpy.log10(power.real) | |
431 | powerdB = numpy.squeeze(powerdB) |
|
431 | powerdB = numpy.squeeze(powerdB) | |
432 |
|
432 | |||
433 | return powerdB |
|
433 | return powerdB | |
434 |
|
434 | |||
435 | def getTimeInterval(self): |
|
435 | def getTimeInterval(self): | |
436 |
|
436 | |||
437 | timeInterval = self.ippSeconds * self.nCohInt |
|
437 | timeInterval = self.ippSeconds * self.nCohInt | |
438 |
|
438 | |||
439 | return timeInterval |
|
439 | return timeInterval | |
440 |
|
440 | |||
441 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
441 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
442 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
443 |
|
443 | |||
444 |
|
444 | |||
445 | class Spectra(JROData): |
|
445 | class Spectra(JROData): | |
446 |
|
446 | |||
447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
447 | # data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) | |
448 | data_spc = None |
|
448 | data_spc = None | |
449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
449 | # data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) | |
450 | data_cspc = None |
|
450 | data_cspc = None | |
451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
451 | # data dc es un numpy array de 2 dmensiones (canales, alturas) | |
452 | data_dc = None |
|
452 | data_dc = None | |
453 | # data power |
|
453 | # data power | |
454 | data_pwr = None |
|
454 | data_pwr = None | |
455 | nFFTPoints = None |
|
455 | nFFTPoints = None | |
456 | # nPairs = None |
|
456 | # nPairs = None | |
457 | pairsList = None |
|
457 | pairsList = None | |
458 | nIncohInt = None |
|
458 | nIncohInt = None | |
459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia |
|
459 | wavelength = None # Necesario para cacular el rango de velocidad desde la frecuencia | |
460 | nCohInt = None # se requiere para determinar el valor de timeInterval |
|
460 | nCohInt = None # se requiere para determinar el valor de timeInterval | |
461 | ippFactor = None |
|
461 | ippFactor = None | |
462 | profileIndex = 0 |
|
462 | profileIndex = 0 | |
463 | plotting = "spectra" |
|
463 | plotting = "spectra" | |
464 |
|
464 | |||
465 | def __init__(self): |
|
465 | def __init__(self): | |
466 | ''' |
|
466 | ''' | |
467 | Constructor |
|
467 | Constructor | |
468 | ''' |
|
468 | ''' | |
469 |
|
469 | |||
470 | self.useLocalTime = True |
|
470 | self.useLocalTime = True | |
471 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
471 | self.radarControllerHeaderObj = RadarControllerHeader() | |
472 | self.systemHeaderObj = SystemHeader() |
|
472 | self.systemHeaderObj = SystemHeader() | |
473 | self.type = "Spectra" |
|
473 | self.type = "Spectra" | |
474 | # self.data = None |
|
474 | # self.data = None | |
475 | # self.dtype = None |
|
475 | # self.dtype = None | |
476 | # self.nChannels = 0 |
|
476 | # self.nChannels = 0 | |
477 | # self.nHeights = 0 |
|
477 | # self.nHeights = 0 | |
478 | self.nProfiles = None |
|
478 | self.nProfiles = None | |
479 | self.heightList = None |
|
479 | self.heightList = None | |
480 | self.channelList = None |
|
480 | self.channelList = None | |
481 | # self.channelIndexList = None |
|
481 | # self.channelIndexList = None | |
482 | self.pairsList = None |
|
482 | self.pairsList = None | |
483 | self.flagNoData = True |
|
483 | self.flagNoData = True | |
484 | self.flagDiscontinuousBlock = False |
|
484 | self.flagDiscontinuousBlock = False | |
485 | self.utctime = None |
|
485 | self.utctime = None | |
486 | self.nCohInt = None |
|
486 | self.nCohInt = None | |
487 | self.nIncohInt = None |
|
487 | self.nIncohInt = None | |
488 | self.blocksize = None |
|
488 | self.blocksize = None | |
489 | self.nFFTPoints = None |
|
489 | self.nFFTPoints = None | |
490 | self.wavelength = None |
|
490 | self.wavelength = None | |
491 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
491 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
492 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
492 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
493 | self.flagShiftFFT = False |
|
493 | self.flagShiftFFT = False | |
494 | self.ippFactor = 1 |
|
494 | self.ippFactor = 1 | |
495 | #self.noise = None |
|
495 | #self.noise = None | |
496 | self.beacon_heiIndexList = [] |
|
496 | self.beacon_heiIndexList = [] | |
497 | self.noise_estimation = None |
|
497 | self.noise_estimation = None | |
498 |
|
498 | |||
499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
499 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
500 | """ |
|
500 | """ | |
501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
501 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon | |
502 |
|
502 | |||
503 | Return: |
|
503 | Return: | |
504 | noiselevel |
|
504 | noiselevel | |
505 | """ |
|
505 | """ | |
506 |
|
506 | |||
507 | noise = numpy.zeros(self.nChannels) |
|
507 | noise = numpy.zeros(self.nChannels) | |
508 |
|
508 | |||
509 | for channel in range(self.nChannels): |
|
509 | for channel in range(self.nChannels): | |
510 | daux = self.data_spc[channel, |
|
510 | daux = self.data_spc[channel, | |
511 | xmin_index:xmax_index, ymin_index:ymax_index] |
|
511 | xmin_index:xmax_index, ymin_index:ymax_index] | |
512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
512 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) | |
513 |
|
513 | |||
514 | return noise |
|
514 | return noise | |
515 |
|
515 | |||
516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
516 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): | |
517 |
|
517 | |||
518 | if self.noise_estimation is not None: |
|
518 | if self.noise_estimation is not None: | |
519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
519 | # this was estimated by getNoise Operation defined in jroproc_spectra.py | |
520 | return self.noise_estimation |
|
520 | return self.noise_estimation | |
521 | else: |
|
521 | else: | |
522 | noise = self.getNoisebyHildebrand( |
|
522 | noise = self.getNoisebyHildebrand( | |
523 | xmin_index, xmax_index, ymin_index, ymax_index) |
|
523 | xmin_index, xmax_index, ymin_index, ymax_index) | |
524 | return noise |
|
524 | return noise | |
525 |
|
525 | |||
526 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
526 | def getFreqRangeTimeResponse(self, extrapoints=0): | |
527 |
|
527 | |||
528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) |
|
528 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints * self.ippFactor) | |
529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
529 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
530 |
|
530 | |||
531 | return freqrange |
|
531 | return freqrange | |
532 |
|
532 | |||
533 | def getAcfRange(self, extrapoints=0): |
|
533 | def getAcfRange(self, extrapoints=0): | |
534 |
|
534 | |||
535 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) |
|
535 | deltafreq = 10. / (self.getFmax() / (self.nFFTPoints * self.ippFactor)) | |
536 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
536 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
537 |
|
537 | |||
538 | return freqrange |
|
538 | return freqrange | |
539 |
|
539 | |||
540 | def getFreqRange(self, extrapoints=0): |
|
540 | def getFreqRange(self, extrapoints=0): | |
541 |
|
541 | |||
542 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) |
|
542 | deltafreq = self.getFmax() / (self.nFFTPoints * self.ippFactor) | |
543 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 |
|
543 | freqrange = deltafreq * (numpy.arange(self.nFFTPoints + extrapoints) -self.nFFTPoints / 2.) - deltafreq / 2 | |
544 |
|
544 | |||
545 | return freqrange |
|
545 | return freqrange | |
546 |
|
546 | |||
547 | def getVelRange(self, extrapoints=0): |
|
547 | def getVelRange(self, extrapoints=0): | |
548 |
|
548 | |||
549 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) |
|
549 | deltav = self.getVmax() / (self.nFFTPoints * self.ippFactor) | |
550 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) |
|
550 | velrange = deltav * (numpy.arange(self.nFFTPoints + extrapoints) - self.nFFTPoints / 2.) | |
551 |
|
551 | |||
552 | if self.nmodes: |
|
552 | if self.nmodes: | |
553 | return velrange/self.nmodes |
|
553 | return velrange/self.nmodes | |
554 | else: |
|
554 | else: | |
555 | return velrange |
|
555 | return velrange | |
556 |
|
556 | |||
557 | def getNPairs(self): |
|
557 | def getNPairs(self): | |
558 |
|
558 | |||
559 | return len(self.pairsList) |
|
559 | return len(self.pairsList) | |
560 |
|
560 | |||
561 | def getPairsIndexList(self): |
|
561 | def getPairsIndexList(self): | |
562 |
|
562 | |||
563 | return list(range(self.nPairs)) |
|
563 | return list(range(self.nPairs)) | |
564 |
|
564 | |||
565 | def getNormFactor(self): |
|
565 | def getNormFactor(self): | |
566 |
|
566 | |||
567 | pwcode = 1 |
|
567 | pwcode = 1 | |
568 |
|
568 | |||
569 | if self.flagDecodeData: |
|
569 | if self.flagDecodeData: | |
570 | pwcode = numpy.sum(self.code[0]**2) |
|
570 | pwcode = numpy.sum(self.code[0]**2) | |
571 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
571 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter | |
572 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter |
|
572 | normFactor = self.nProfiles * self.nIncohInt * self.nCohInt * pwcode * self.windowOfFilter | |
573 |
|
573 | |||
574 | return normFactor |
|
574 | return normFactor | |
575 |
|
575 | |||
576 | def getFlagCspc(self): |
|
576 | def getFlagCspc(self): | |
577 |
|
577 | |||
578 | if self.data_cspc is None: |
|
578 | if self.data_cspc is None: | |
579 | return True |
|
579 | return True | |
580 |
|
580 | |||
581 | return False |
|
581 | return False | |
582 |
|
582 | |||
583 | def getFlagDc(self): |
|
583 | def getFlagDc(self): | |
584 |
|
584 | |||
585 | if self.data_dc is None: |
|
585 | if self.data_dc is None: | |
586 | return True |
|
586 | return True | |
587 |
|
587 | |||
588 | return False |
|
588 | return False | |
589 |
|
589 | |||
590 | def getTimeInterval(self): |
|
590 | def getTimeInterval(self): | |
591 |
|
591 | |||
592 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor |
|
592 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles * self.ippFactor | |
593 |
|
593 | |||
594 | return timeInterval |
|
594 | return timeInterval | |
595 |
|
595 | |||
596 | def getPower(self): |
|
596 | def getPower(self): | |
597 |
|
597 | |||
598 | factor = self.normFactor |
|
598 | factor = self.normFactor | |
599 | z = self.data_spc / factor |
|
599 | z = self.data_spc / factor | |
600 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
600 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
601 | avg = numpy.average(z, axis=1) |
|
601 | avg = numpy.average(z, axis=1) | |
602 |
|
602 | |||
603 | return 10 * numpy.log10(avg) |
|
603 | return 10 * numpy.log10(avg) | |
604 |
|
604 | |||
605 | def getCoherence(self, pairsList=None, phase=False): |
|
605 | def getCoherence(self, pairsList=None, phase=False): | |
606 |
|
606 | |||
607 | z = [] |
|
607 | z = [] | |
608 | if pairsList is None: |
|
608 | if pairsList is None: | |
609 | pairsIndexList = self.pairsIndexList |
|
609 | pairsIndexList = self.pairsIndexList | |
610 | else: |
|
610 | else: | |
611 | pairsIndexList = [] |
|
611 | pairsIndexList = [] | |
612 | for pair in pairsList: |
|
612 | for pair in pairsList: | |
613 | if pair not in self.pairsList: |
|
613 | if pair not in self.pairsList: | |
614 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( |
|
614 | raise ValueError("Pair %s is not in dataOut.pairsList" % ( | |
615 | pair)) |
|
615 | pair)) | |
616 | pairsIndexList.append(self.pairsList.index(pair)) |
|
616 | pairsIndexList.append(self.pairsList.index(pair)) | |
617 | for i in range(len(pairsIndexList)): |
|
617 | for i in range(len(pairsIndexList)): | |
618 | pair = self.pairsList[pairsIndexList[i]] |
|
618 | pair = self.pairsList[pairsIndexList[i]] | |
619 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) |
|
619 | ccf = numpy.average(self.data_cspc[pairsIndexList[i], :, :], axis=0) | |
620 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) |
|
620 | powa = numpy.average(self.data_spc[pair[0], :, :], axis=0) | |
621 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) |
|
621 | powb = numpy.average(self.data_spc[pair[1], :, :], axis=0) | |
622 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) |
|
622 | avgcoherenceComplex = ccf / numpy.sqrt(powa * powb) | |
623 | if phase: |
|
623 | if phase: | |
624 | data = numpy.arctan2(avgcoherenceComplex.imag, |
|
624 | data = numpy.arctan2(avgcoherenceComplex.imag, | |
625 | avgcoherenceComplex.real) * 180 / numpy.pi |
|
625 | avgcoherenceComplex.real) * 180 / numpy.pi | |
626 | else: |
|
626 | else: | |
627 | data = numpy.abs(avgcoherenceComplex) |
|
627 | data = numpy.abs(avgcoherenceComplex) | |
628 |
|
628 | |||
629 | z.append(data) |
|
629 | z.append(data) | |
630 |
|
630 | |||
631 | return numpy.array(z) |
|
631 | return numpy.array(z) | |
632 |
|
632 | |||
633 | def setValue(self, value): |
|
633 | def setValue(self, value): | |
634 |
|
634 | |||
635 | print("This property should not be initialized") |
|
635 | print("This property should not be initialized") | |
636 |
|
636 | |||
637 | return |
|
637 | return | |
638 |
|
638 | |||
639 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
639 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") | |
640 | pairsIndexList = property( |
|
640 | pairsIndexList = property( | |
641 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
641 | getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") | |
642 | normFactor = property(getNormFactor, setValue, |
|
642 | normFactor = property(getNormFactor, setValue, | |
643 | "I'm the 'getNormFactor' property.") |
|
643 | "I'm the 'getNormFactor' property.") | |
644 | flag_cspc = property(getFlagCspc, setValue) |
|
644 | flag_cspc = property(getFlagCspc, setValue) | |
645 | flag_dc = property(getFlagDc, setValue) |
|
645 | flag_dc = property(getFlagDc, setValue) | |
646 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
646 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") | |
647 | timeInterval = property(getTimeInterval, setValue, |
|
647 | timeInterval = property(getTimeInterval, setValue, | |
648 | "I'm the 'timeInterval' property") |
|
648 | "I'm the 'timeInterval' property") | |
649 |
|
649 | |||
650 |
|
650 | |||
651 | class SpectraHeis(Spectra): |
|
651 | class SpectraHeis(Spectra): | |
652 |
|
652 | |||
653 | data_spc = None |
|
653 | data_spc = None | |
654 | data_cspc = None |
|
654 | data_cspc = None | |
655 | data_dc = None |
|
655 | data_dc = None | |
656 | nFFTPoints = None |
|
656 | nFFTPoints = None | |
657 | # nPairs = None |
|
657 | # nPairs = None | |
658 | pairsList = None |
|
658 | pairsList = None | |
659 | nCohInt = None |
|
659 | nCohInt = None | |
660 | nIncohInt = None |
|
660 | nIncohInt = None | |
661 |
|
661 | |||
662 | def __init__(self): |
|
662 | def __init__(self): | |
663 |
|
663 | |||
664 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
664 | self.radarControllerHeaderObj = RadarControllerHeader() | |
665 |
|
665 | |||
666 | self.systemHeaderObj = SystemHeader() |
|
666 | self.systemHeaderObj = SystemHeader() | |
667 |
|
667 | |||
668 | self.type = "SpectraHeis" |
|
668 | self.type = "SpectraHeis" | |
669 |
|
669 | |||
670 | # self.dtype = None |
|
670 | # self.dtype = None | |
671 |
|
671 | |||
672 | # self.nChannels = 0 |
|
672 | # self.nChannels = 0 | |
673 |
|
673 | |||
674 | # self.nHeights = 0 |
|
674 | # self.nHeights = 0 | |
675 |
|
675 | |||
676 | self.nProfiles = None |
|
676 | self.nProfiles = None | |
677 |
|
677 | |||
678 | self.heightList = None |
|
678 | self.heightList = None | |
679 |
|
679 | |||
680 | self.channelList = None |
|
680 | self.channelList = None | |
681 |
|
681 | |||
682 | # self.channelIndexList = None |
|
682 | # self.channelIndexList = None | |
683 |
|
683 | |||
684 | self.flagNoData = True |
|
684 | self.flagNoData = True | |
685 |
|
685 | |||
686 | self.flagDiscontinuousBlock = False |
|
686 | self.flagDiscontinuousBlock = False | |
687 |
|
687 | |||
688 | # self.nPairs = 0 |
|
688 | # self.nPairs = 0 | |
689 |
|
689 | |||
690 | self.utctime = None |
|
690 | self.utctime = None | |
691 |
|
691 | |||
692 | self.blocksize = None |
|
692 | self.blocksize = None | |
693 |
|
693 | |||
694 | self.profileIndex = 0 |
|
694 | self.profileIndex = 0 | |
695 |
|
695 | |||
696 | self.nCohInt = 1 |
|
696 | self.nCohInt = 1 | |
697 |
|
697 | |||
698 | self.nIncohInt = 1 |
|
698 | self.nIncohInt = 1 | |
699 |
|
699 | |||
700 | def getNormFactor(self): |
|
700 | def getNormFactor(self): | |
701 | pwcode = 1 |
|
701 | pwcode = 1 | |
702 | if self.flagDecodeData: |
|
702 | if self.flagDecodeData: | |
703 | pwcode = numpy.sum(self.code[0]**2) |
|
703 | pwcode = numpy.sum(self.code[0]**2) | |
704 |
|
704 | |||
705 | normFactor = self.nIncohInt * self.nCohInt * pwcode |
|
705 | normFactor = self.nIncohInt * self.nCohInt * pwcode | |
706 |
|
706 | |||
707 | return normFactor |
|
707 | return normFactor | |
708 |
|
708 | |||
709 | def getTimeInterval(self): |
|
709 | def getTimeInterval(self): | |
710 |
|
710 | |||
711 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
711 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
712 |
|
712 | |||
713 | return timeInterval |
|
713 | return timeInterval | |
714 |
|
714 | |||
715 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
715 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") | |
716 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
716 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
717 |
|
717 | |||
718 |
|
718 | |||
719 | class Fits(JROData): |
|
719 | class Fits(JROData): | |
720 |
|
720 | |||
721 | heightList = None |
|
721 | heightList = None | |
722 | channelList = None |
|
722 | channelList = None | |
723 | flagNoData = True |
|
723 | flagNoData = True | |
724 | flagDiscontinuousBlock = False |
|
724 | flagDiscontinuousBlock = False | |
725 | useLocalTime = False |
|
725 | useLocalTime = False | |
726 | utctime = None |
|
726 | utctime = None | |
727 | timeZone = None |
|
727 | timeZone = None | |
728 | # ippSeconds = None |
|
728 | # ippSeconds = None | |
729 | # timeInterval = None |
|
729 | # timeInterval = None | |
730 | nCohInt = None |
|
730 | nCohInt = None | |
731 | nIncohInt = None |
|
731 | nIncohInt = None | |
732 | noise = None |
|
732 | noise = None | |
733 | windowOfFilter = 1 |
|
733 | windowOfFilter = 1 | |
734 | # Speed of ligth |
|
734 | # Speed of ligth | |
735 | C = 3e8 |
|
735 | C = 3e8 | |
736 | frequency = 49.92e6 |
|
736 | frequency = 49.92e6 | |
737 | realtime = False |
|
737 | realtime = False | |
738 |
|
738 | |||
739 | def __init__(self): |
|
739 | def __init__(self): | |
740 |
|
740 | |||
741 | self.type = "Fits" |
|
741 | self.type = "Fits" | |
742 |
|
742 | |||
743 | self.nProfiles = None |
|
743 | self.nProfiles = None | |
744 |
|
744 | |||
745 | self.heightList = None |
|
745 | self.heightList = None | |
746 |
|
746 | |||
747 | self.channelList = None |
|
747 | self.channelList = None | |
748 |
|
748 | |||
749 | # self.channelIndexList = None |
|
749 | # self.channelIndexList = None | |
750 |
|
750 | |||
751 | self.flagNoData = True |
|
751 | self.flagNoData = True | |
752 |
|
752 | |||
753 | self.utctime = None |
|
753 | self.utctime = None | |
754 |
|
754 | |||
755 | self.nCohInt = 1 |
|
755 | self.nCohInt = 1 | |
756 |
|
756 | |||
757 | self.nIncohInt = 1 |
|
757 | self.nIncohInt = 1 | |
758 |
|
758 | |||
759 | self.useLocalTime = True |
|
759 | self.useLocalTime = True | |
760 |
|
760 | |||
761 | self.profileIndex = 0 |
|
761 | self.profileIndex = 0 | |
762 |
|
762 | |||
763 | # self.utctime = None |
|
763 | # self.utctime = None | |
764 | # self.timeZone = None |
|
764 | # self.timeZone = None | |
765 | # self.ltctime = None |
|
765 | # self.ltctime = None | |
766 | # self.timeInterval = None |
|
766 | # self.timeInterval = None | |
767 | # self.header = None |
|
767 | # self.header = None | |
768 | # self.data_header = None |
|
768 | # self.data_header = None | |
769 | # self.data = None |
|
769 | # self.data = None | |
770 | # self.datatime = None |
|
770 | # self.datatime = None | |
771 | # self.flagNoData = False |
|
771 | # self.flagNoData = False | |
772 | # self.expName = '' |
|
772 | # self.expName = '' | |
773 | # self.nChannels = None |
|
773 | # self.nChannels = None | |
774 | # self.nSamples = None |
|
774 | # self.nSamples = None | |
775 | # self.dataBlocksPerFile = None |
|
775 | # self.dataBlocksPerFile = None | |
776 | # self.comments = '' |
|
776 | # self.comments = '' | |
777 | # |
|
777 | # | |
778 |
|
778 | |||
779 | def getltctime(self): |
|
779 | def getltctime(self): | |
780 |
|
780 | |||
781 | if self.useLocalTime: |
|
781 | if self.useLocalTime: | |
782 | return self.utctime - self.timeZone * 60 |
|
782 | return self.utctime - self.timeZone * 60 | |
783 |
|
783 | |||
784 | return self.utctime |
|
784 | return self.utctime | |
785 |
|
785 | |||
786 | def getDatatime(self): |
|
786 | def getDatatime(self): | |
787 |
|
787 | |||
788 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
788 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) | |
789 | return datatime |
|
789 | return datatime | |
790 |
|
790 | |||
791 | def getTimeRange(self): |
|
791 | def getTimeRange(self): | |
792 |
|
792 | |||
793 | datatime = [] |
|
793 | datatime = [] | |
794 |
|
794 | |||
795 | datatime.append(self.ltctime) |
|
795 | datatime.append(self.ltctime) | |
796 | datatime.append(self.ltctime + self.timeInterval) |
|
796 | datatime.append(self.ltctime + self.timeInterval) | |
797 |
|
797 | |||
798 | datatime = numpy.array(datatime) |
|
798 | datatime = numpy.array(datatime) | |
799 |
|
799 | |||
800 | return datatime |
|
800 | return datatime | |
801 |
|
801 | |||
802 | def getHeiRange(self): |
|
802 | def getHeiRange(self): | |
803 |
|
803 | |||
804 | heis = self.heightList |
|
804 | heis = self.heightList | |
805 |
|
805 | |||
806 | return heis |
|
806 | return heis | |
807 |
|
807 | |||
808 | def getNHeights(self): |
|
808 | def getNHeights(self): | |
809 |
|
809 | |||
810 | return len(self.heightList) |
|
810 | return len(self.heightList) | |
811 |
|
811 | |||
812 | def getNChannels(self): |
|
812 | def getNChannels(self): | |
813 |
|
813 | |||
814 | return len(self.channelList) |
|
814 | return len(self.channelList) | |
815 |
|
815 | |||
816 | def getChannelIndexList(self): |
|
816 | def getChannelIndexList(self): | |
817 |
|
817 | |||
818 | return list(range(self.nChannels)) |
|
818 | return list(range(self.nChannels)) | |
819 |
|
819 | |||
820 | def getNoise(self, type=1): |
|
820 | def getNoise(self, type=1): | |
821 |
|
821 | |||
822 | #noise = numpy.zeros(self.nChannels) |
|
822 | #noise = numpy.zeros(self.nChannels) | |
823 |
|
823 | |||
824 | if type == 1: |
|
824 | if type == 1: | |
825 | noise = self.getNoisebyHildebrand() |
|
825 | noise = self.getNoisebyHildebrand() | |
826 |
|
826 | |||
827 | if type == 2: |
|
827 | if type == 2: | |
828 | noise = self.getNoisebySort() |
|
828 | noise = self.getNoisebySort() | |
829 |
|
829 | |||
830 | if type == 3: |
|
830 | if type == 3: | |
831 | noise = self.getNoisebyWindow() |
|
831 | noise = self.getNoisebyWindow() | |
832 |
|
832 | |||
833 | return noise |
|
833 | return noise | |
834 |
|
834 | |||
835 | def getTimeInterval(self): |
|
835 | def getTimeInterval(self): | |
836 |
|
836 | |||
837 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
837 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt | |
838 |
|
838 | |||
839 | return timeInterval |
|
839 | return timeInterval | |
840 |
|
840 | |||
841 | def get_ippSeconds(self): |
|
841 | def get_ippSeconds(self): | |
842 | ''' |
|
842 | ''' | |
843 | ''' |
|
843 | ''' | |
844 | return self.ipp_sec |
|
844 | return self.ipp_sec | |
845 |
|
845 | |||
846 |
|
846 | |||
847 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
847 | datatime = property(getDatatime, "I'm the 'datatime' property") | |
848 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
848 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") | |
849 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
849 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") | |
850 | channelIndexList = property( |
|
850 | channelIndexList = property( | |
851 | getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
851 | getChannelIndexList, "I'm the 'channelIndexList' property.") | |
852 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
852 | noise = property(getNoise, "I'm the 'nHeights' property.") | |
853 |
|
853 | |||
854 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
854 | ltctime = property(getltctime, "I'm the 'ltctime' property") | |
855 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
855 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
856 | ippSeconds = property(get_ippSeconds, '') |
|
856 | ippSeconds = property(get_ippSeconds, '') | |
857 |
|
857 | |||
858 | class Correlation(JROData): |
|
858 | class Correlation(JROData): | |
859 |
|
859 | |||
860 | noise = None |
|
860 | noise = None | |
861 | SNR = None |
|
861 | SNR = None | |
862 | #-------------------------------------------------- |
|
862 | #-------------------------------------------------- | |
863 | mode = None |
|
863 | mode = None | |
864 | split = False |
|
864 | split = False | |
865 | data_cf = None |
|
865 | data_cf = None | |
866 | lags = None |
|
866 | lags = None | |
867 | lagRange = None |
|
867 | lagRange = None | |
868 | pairsList = None |
|
868 | pairsList = None | |
869 | normFactor = None |
|
869 | normFactor = None | |
870 | #-------------------------------------------------- |
|
870 | #-------------------------------------------------- | |
871 | # calculateVelocity = None |
|
871 | # calculateVelocity = None | |
872 | nLags = None |
|
872 | nLags = None | |
873 | nPairs = None |
|
873 | nPairs = None | |
874 | nAvg = None |
|
874 | nAvg = None | |
875 |
|
875 | |||
876 | def __init__(self): |
|
876 | def __init__(self): | |
877 | ''' |
|
877 | ''' | |
878 | Constructor |
|
878 | Constructor | |
879 | ''' |
|
879 | ''' | |
880 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
880 | self.radarControllerHeaderObj = RadarControllerHeader() | |
881 |
|
881 | |||
882 | self.systemHeaderObj = SystemHeader() |
|
882 | self.systemHeaderObj = SystemHeader() | |
883 |
|
883 | |||
884 | self.type = "Correlation" |
|
884 | self.type = "Correlation" | |
885 |
|
885 | |||
886 | self.data = None |
|
886 | self.data = None | |
887 |
|
887 | |||
888 | self.dtype = None |
|
888 | self.dtype = None | |
889 |
|
889 | |||
890 | self.nProfiles = None |
|
890 | self.nProfiles = None | |
891 |
|
891 | |||
892 | self.heightList = None |
|
892 | self.heightList = None | |
893 |
|
893 | |||
894 | self.channelList = None |
|
894 | self.channelList = None | |
895 |
|
895 | |||
896 | self.flagNoData = True |
|
896 | self.flagNoData = True | |
897 |
|
897 | |||
898 | self.flagDiscontinuousBlock = False |
|
898 | self.flagDiscontinuousBlock = False | |
899 |
|
899 | |||
900 | self.utctime = None |
|
900 | self.utctime = None | |
901 |
|
901 | |||
902 | self.timeZone = None |
|
902 | self.timeZone = None | |
903 |
|
903 | |||
904 | self.dstFlag = None |
|
904 | self.dstFlag = None | |
905 |
|
905 | |||
906 | self.errorCount = None |
|
906 | self.errorCount = None | |
907 |
|
907 | |||
908 | self.blocksize = None |
|
908 | self.blocksize = None | |
909 |
|
909 | |||
910 | self.flagDecodeData = False # asumo q la data no esta decodificada |
|
910 | self.flagDecodeData = False # asumo q la data no esta decodificada | |
911 |
|
911 | |||
912 | self.flagDeflipData = False # asumo q la data no esta sin flip |
|
912 | self.flagDeflipData = False # asumo q la data no esta sin flip | |
913 |
|
913 | |||
914 | self.pairsList = None |
|
914 | self.pairsList = None | |
915 |
|
915 | |||
916 | self.nPoints = None |
|
916 | self.nPoints = None | |
917 |
|
917 | |||
918 | def getPairsList(self): |
|
918 | def getPairsList(self): | |
919 |
|
919 | |||
920 | return self.pairsList |
|
920 | return self.pairsList | |
921 |
|
921 | |||
922 | def getNoise(self, mode=2): |
|
922 | def getNoise(self, mode=2): | |
923 |
|
923 | |||
924 | indR = numpy.where(self.lagR == 0)[0][0] |
|
924 | indR = numpy.where(self.lagR == 0)[0][0] | |
925 | indT = numpy.where(self.lagT == 0)[0][0] |
|
925 | indT = numpy.where(self.lagT == 0)[0][0] | |
926 |
|
926 | |||
927 | jspectra0 = self.data_corr[:, :, indR, :] |
|
927 | jspectra0 = self.data_corr[:, :, indR, :] | |
928 | jspectra = copy.copy(jspectra0) |
|
928 | jspectra = copy.copy(jspectra0) | |
929 |
|
929 | |||
930 | num_chan = jspectra.shape[0] |
|
930 | num_chan = jspectra.shape[0] | |
931 | num_hei = jspectra.shape[2] |
|
931 | num_hei = jspectra.shape[2] | |
932 |
|
932 | |||
933 | freq_dc = jspectra.shape[1] / 2 |
|
933 | freq_dc = jspectra.shape[1] / 2 | |
934 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc |
|
934 | ind_vel = numpy.array([-2, -1, 1, 2]) + freq_dc | |
935 |
|
935 | |||
936 | if ind_vel[0] < 0: |
|
936 | if ind_vel[0] < 0: | |
937 | ind_vel[list(range(0, 1))] = ind_vel[list( |
|
937 | ind_vel[list(range(0, 1))] = ind_vel[list( | |
938 | range(0, 1))] + self.num_prof |
|
938 | range(0, 1))] + self.num_prof | |
939 |
|
939 | |||
940 | if mode == 1: |
|
940 | if mode == 1: | |
941 | jspectra[:, freq_dc, :] = ( |
|
941 | jspectra[:, freq_dc, :] = ( | |
942 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION |
|
942 | jspectra[:, ind_vel[1], :] + jspectra[:, ind_vel[2], :]) / 2 # CORRECCION | |
943 |
|
943 | |||
944 | if mode == 2: |
|
944 | if mode == 2: | |
945 |
|
945 | |||
946 | vel = numpy.array([-2, -1, 1, 2]) |
|
946 | vel = numpy.array([-2, -1, 1, 2]) | |
947 | xx = numpy.zeros([4, 4]) |
|
947 | xx = numpy.zeros([4, 4]) | |
948 |
|
948 | |||
949 | for fil in range(4): |
|
949 | for fil in range(4): | |
950 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) |
|
950 | xx[fil, :] = vel[fil]**numpy.asarray(list(range(4))) | |
951 |
|
951 | |||
952 | xx_inv = numpy.linalg.inv(xx) |
|
952 | xx_inv = numpy.linalg.inv(xx) | |
953 | xx_aux = xx_inv[0, :] |
|
953 | xx_aux = xx_inv[0, :] | |
954 |
|
954 | |||
955 | for ich in range(num_chan): |
|
955 | for ich in range(num_chan): | |
956 | yy = jspectra[ich, ind_vel, :] |
|
956 | yy = jspectra[ich, ind_vel, :] | |
957 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) |
|
957 | jspectra[ich, freq_dc, :] = numpy.dot(xx_aux, yy) | |
958 |
|
958 | |||
959 | junkid = jspectra[ich, freq_dc, :] <= 0 |
|
959 | junkid = jspectra[ich, freq_dc, :] <= 0 | |
960 | cjunkid = sum(junkid) |
|
960 | cjunkid = sum(junkid) | |
961 |
|
961 | |||
962 | if cjunkid.any(): |
|
962 | if cjunkid.any(): | |
963 | jspectra[ich, freq_dc, junkid.nonzero()] = ( |
|
963 | jspectra[ich, freq_dc, junkid.nonzero()] = ( | |
964 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 |
|
964 | jspectra[ich, ind_vel[1], junkid] + jspectra[ich, ind_vel[2], junkid]) / 2 | |
965 |
|
965 | |||
966 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] |
|
966 | noise = jspectra0[:, freq_dc, :] - jspectra[:, freq_dc, :] | |
967 |
|
967 | |||
968 | return noise |
|
968 | return noise | |
969 |
|
969 | |||
970 | def getTimeInterval(self): |
|
970 | def getTimeInterval(self): | |
971 |
|
971 | |||
972 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
972 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles | |
973 |
|
973 | |||
974 | return timeInterval |
|
974 | return timeInterval | |
975 |
|
975 | |||
976 | def splitFunctions(self): |
|
976 | def splitFunctions(self): | |
977 |
|
977 | |||
978 | pairsList = self.pairsList |
|
978 | pairsList = self.pairsList | |
979 | ccf_pairs = [] |
|
979 | ccf_pairs = [] | |
980 | acf_pairs = [] |
|
980 | acf_pairs = [] | |
981 | ccf_ind = [] |
|
981 | ccf_ind = [] | |
982 | acf_ind = [] |
|
982 | acf_ind = [] | |
983 | for l in range(len(pairsList)): |
|
983 | for l in range(len(pairsList)): | |
984 | chan0 = pairsList[l][0] |
|
984 | chan0 = pairsList[l][0] | |
985 | chan1 = pairsList[l][1] |
|
985 | chan1 = pairsList[l][1] | |
986 |
|
986 | |||
987 | # Obteniendo pares de Autocorrelacion |
|
987 | # Obteniendo pares de Autocorrelacion | |
988 | if chan0 == chan1: |
|
988 | if chan0 == chan1: | |
989 | acf_pairs.append(chan0) |
|
989 | acf_pairs.append(chan0) | |
990 | acf_ind.append(l) |
|
990 | acf_ind.append(l) | |
991 | else: |
|
991 | else: | |
992 | ccf_pairs.append(pairsList[l]) |
|
992 | ccf_pairs.append(pairsList[l]) | |
993 | ccf_ind.append(l) |
|
993 | ccf_ind.append(l) | |
994 |
|
994 | |||
995 | data_acf = self.data_cf[acf_ind] |
|
995 | data_acf = self.data_cf[acf_ind] | |
996 | data_ccf = self.data_cf[ccf_ind] |
|
996 | data_ccf = self.data_cf[ccf_ind] | |
997 |
|
997 | |||
998 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
998 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf | |
999 |
|
999 | |||
1000 | def getNormFactor(self): |
|
1000 | def getNormFactor(self): | |
1001 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1001 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() | |
1002 | acf_pairs = numpy.array(acf_pairs) |
|
1002 | acf_pairs = numpy.array(acf_pairs) | |
1003 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) |
|
1003 | normFactor = numpy.zeros((self.nPairs, self.nHeights)) | |
1004 |
|
1004 | |||
1005 | for p in range(self.nPairs): |
|
1005 | for p in range(self.nPairs): | |
1006 | pair = self.pairsList[p] |
|
1006 | pair = self.pairsList[p] | |
1007 |
|
1007 | |||
1008 | ch0 = pair[0] |
|
1008 | ch0 = pair[0] | |
1009 | ch1 = pair[1] |
|
1009 | ch1 = pair[1] | |
1010 |
|
1010 | |||
1011 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) |
|
1011 | ch0_max = numpy.max(data_acf[acf_pairs == ch0, :, :], axis=1) | |
1012 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) |
|
1012 | ch1_max = numpy.max(data_acf[acf_pairs == ch1, :, :], axis=1) | |
1013 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) |
|
1013 | normFactor[p, :] = numpy.sqrt(ch0_max * ch1_max) | |
1014 |
|
1014 | |||
1015 | return normFactor |
|
1015 | return normFactor | |
1016 |
|
1016 | |||
1017 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1017 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") | |
1018 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1018 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") | |
1019 |
|
1019 | |||
1020 |
|
1020 | |||
1021 | class Parameters(Spectra): |
|
1021 | class Parameters(Spectra): | |
1022 |
|
1022 | |||
1023 | experimentInfo = None # Information about the experiment |
|
1023 | experimentInfo = None # Information about the experiment | |
1024 | # Information from previous data |
|
1024 | # Information from previous data | |
1025 | inputUnit = None # Type of data to be processed |
|
1025 | inputUnit = None # Type of data to be processed | |
1026 | operation = None # Type of operation to parametrize |
|
1026 | operation = None # Type of operation to parametrize | |
1027 | # normFactor = None #Normalization Factor |
|
1027 | # normFactor = None #Normalization Factor | |
1028 | groupList = None # List of Pairs, Groups, etc |
|
1028 | groupList = None # List of Pairs, Groups, etc | |
1029 | # Parameters |
|
1029 | # Parameters | |
1030 | data_param = None # Parameters obtained |
|
1030 | data_param = None # Parameters obtained | |
1031 | data_pre = None # Data Pre Parametrization |
|
1031 | data_pre = None # Data Pre Parametrization | |
1032 | data_SNR = None # Signal to Noise Ratio |
|
1032 | data_SNR = None # Signal to Noise Ratio | |
1033 | # heightRange = None #Heights |
|
1033 | # heightRange = None #Heights | |
1034 | abscissaList = None # Abscissa, can be velocities, lags or time |
|
1034 | abscissaList = None # Abscissa, can be velocities, lags or time | |
1035 | # noise = None #Noise Potency |
|
1035 | # noise = None #Noise Potency | |
1036 | utctimeInit = None # Initial UTC time |
|
1036 | utctimeInit = None # Initial UTC time | |
1037 | paramInterval = None # Time interval to calculate Parameters in seconds |
|
1037 | paramInterval = None # Time interval to calculate Parameters in seconds | |
1038 | useLocalTime = True |
|
1038 | useLocalTime = True | |
1039 | # Fitting |
|
1039 | # Fitting | |
1040 | data_error = None # Error of the estimation |
|
1040 | data_error = None # Error of the estimation | |
1041 | constants = None |
|
1041 | constants = None | |
1042 | library = None |
|
1042 | library = None | |
1043 | # Output signal |
|
1043 | # Output signal | |
1044 | outputInterval = None # Time interval to calculate output signal in seconds |
|
1044 | outputInterval = None # Time interval to calculate output signal in seconds | |
1045 | data_output = None # Out signal |
|
1045 | data_output = None # Out signal | |
1046 | nAvg = None |
|
1046 | nAvg = None | |
1047 | noise_estimation = None |
|
1047 | noise_estimation = None | |
1048 | GauSPC = None # Fit gaussian SPC |
|
1048 | GauSPC = None # Fit gaussian SPC | |
1049 |
|
1049 | |||
1050 | def __init__(self): |
|
1050 | def __init__(self): | |
1051 | ''' |
|
1051 | ''' | |
1052 | Constructor |
|
1052 | Constructor | |
1053 | ''' |
|
1053 | ''' | |
1054 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1054 | self.radarControllerHeaderObj = RadarControllerHeader() | |
1055 |
|
1055 | |||
1056 | self.systemHeaderObj = SystemHeader() |
|
1056 | self.systemHeaderObj = SystemHeader() | |
1057 |
|
1057 | |||
1058 | self.type = "Parameters" |
|
1058 | self.type = "Parameters" | |
1059 |
|
1059 | |||
1060 | def getTimeRange1(self, interval): |
|
1060 | def getTimeRange1(self, interval): | |
1061 |
|
1061 | |||
1062 | datatime = [] |
|
1062 | datatime = [] | |
1063 |
|
1063 | |||
1064 | if self.useLocalTime: |
|
1064 | if self.useLocalTime: | |
1065 | time1 = self.utctimeInit - self.timeZone * 60 |
|
1065 | time1 = self.utctimeInit - self.timeZone * 60 | |
1066 | else: |
|
1066 | else: | |
1067 | time1 = self.utctimeInit |
|
1067 | time1 = self.utctimeInit | |
1068 |
|
1068 | |||
1069 | datatime.append(time1) |
|
1069 | datatime.append(time1) | |
1070 | datatime.append(time1 + interval) |
|
1070 | datatime.append(time1 + interval) | |
1071 | datatime = numpy.array(datatime) |
|
1071 | datatime = numpy.array(datatime) | |
1072 |
|
1072 | |||
1073 | return datatime |
|
1073 | return datatime | |
1074 |
|
1074 | |||
1075 | def getTimeInterval(self): |
|
1075 | def getTimeInterval(self): | |
1076 |
|
1076 | |||
1077 | if hasattr(self, 'timeInterval1'): |
|
1077 | if hasattr(self, 'timeInterval1'): | |
1078 | return self.timeInterval1 |
|
1078 | return self.timeInterval1 | |
1079 | else: |
|
1079 | else: | |
1080 | return self.paramInterval |
|
1080 | return self.paramInterval | |
1081 |
|
1081 | |||
1082 | def setValue(self, value): |
|
1082 | def setValue(self, value): | |
1083 |
|
1083 | |||
1084 | print("This property should not be initialized") |
|
1084 | print("This property should not be initialized") | |
1085 |
|
1085 | |||
1086 | return |
|
1086 | return | |
1087 |
|
1087 | |||
1088 | def getNoise(self): |
|
1088 | def getNoise(self): | |
1089 |
|
1089 | |||
1090 | return self.spc_noise |
|
1090 | return self.spc_noise | |
1091 |
|
1091 | |||
1092 | timeInterval = property(getTimeInterval) |
|
1092 | timeInterval = property(getTimeInterval) | |
1093 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") |
|
1093 | noise = property(getNoise, setValue, "I'm the 'Noise' property.") | |
1094 |
|
1094 | |||
1095 |
|
1095 | |||
1096 | class PlotterData(object): |
|
1096 | class PlotterData(object): | |
1097 | ''' |
|
1097 | ''' | |
1098 | Object to hold data to be plotted |
|
1098 | Object to hold data to be plotted | |
1099 | ''' |
|
1099 | ''' | |
1100 |
|
1100 | |||
1101 | MAXNUMX = 100 |
|
1101 | MAXNUMX = 100 | |
1102 | MAXNUMY = 100 |
|
1102 | MAXNUMY = 100 | |
1103 |
|
1103 | |||
1104 | def __init__(self, code, throttle_value, exp_code, buffering=True): |
|
1104 | def __init__(self, code, throttle_value, exp_code, buffering=True): | |
1105 |
|
1105 | |||
1106 | self.throttle = throttle_value |
|
1106 | self.throttle = throttle_value | |
1107 | self.exp_code = exp_code |
|
1107 | self.exp_code = exp_code | |
1108 | self.buffering = buffering |
|
1108 | self.buffering = buffering | |
1109 | self.ready = False |
|
1109 | self.ready = False | |
1110 | self.localtime = False |
|
1110 | self.localtime = False | |
1111 | self.data = {} |
|
1111 | self.data = {} | |
1112 | self.meta = {} |
|
1112 | self.meta = {} | |
1113 | self.__times = [] |
|
1113 | self.__times = [] | |
1114 | self.__heights = [] |
|
1114 | self.__heights = [] | |
1115 |
|
1115 | |||
1116 | if 'snr' in code: |
|
1116 | if 'snr' in code: | |
1117 | self.plottypes = ['snr'] |
|
1117 | self.plottypes = ['snr'] | |
1118 | elif code == 'spc': |
|
1118 | elif code == 'spc': | |
1119 | self.plottypes = ['spc', 'noise', 'rti'] |
|
1119 | self.plottypes = ['spc', 'noise', 'rti'] | |
1120 | elif code == 'rti': |
|
1120 | elif code == 'rti': | |
1121 | self.plottypes = ['noise', 'rti'] |
|
1121 | self.plottypes = ['noise', 'rti'] | |
1122 | else: |
|
1122 | else: | |
1123 | self.plottypes = [code] |
|
1123 | self.plottypes = [code] | |
1124 |
|
1124 | |||
1125 | for plot in self.plottypes: |
|
1125 | for plot in self.plottypes: | |
1126 | self.data[plot] = {} |
|
1126 | self.data[plot] = {} | |
1127 |
|
1127 | |||
1128 | def __str__(self): |
|
1128 | def __str__(self): | |
1129 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] |
|
1129 | dum = ['{}{}'.format(key, self.shape(key)) for key in self.data] | |
1130 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) |
|
1130 | return 'Data[{}][{}]'.format(';'.join(dum), len(self.__times)) | |
1131 |
|
1131 | |||
1132 | def __len__(self): |
|
1132 | def __len__(self): | |
1133 | return len(self.__times) |
|
1133 | return len(self.__times) | |
1134 |
|
1134 | |||
1135 | def __getitem__(self, key): |
|
1135 | def __getitem__(self, key): | |
1136 |
|
1136 | |||
1137 | if key not in self.data: |
|
1137 | if key not in self.data: | |
1138 | raise KeyError(log.error('Missing key: {}'.format(key))) |
|
1138 | raise KeyError(log.error('Missing key: {}'.format(key))) | |
1139 | if 'spc' in key or not self.buffering: |
|
1139 | if 'spc' in key or not self.buffering: | |
1140 | ret = self.data[key] |
|
1140 | ret = self.data[key] | |
1141 | elif 'scope' in key: |
|
1141 | elif 'scope' in key: | |
1142 | ret = numpy.array(self.data[key][float(self.tm)]) |
|
1142 | ret = numpy.array(self.data[key][float(self.tm)]) | |
1143 | else: |
|
1143 | else: | |
1144 | ret = numpy.array([self.data[key][x] for x in self.times]) |
|
1144 | ret = numpy.array([self.data[key][x] for x in self.times]) | |
1145 | if ret.ndim > 1: |
|
1145 | if ret.ndim > 1: | |
1146 | ret = numpy.swapaxes(ret, 0, 1) |
|
1146 | ret = numpy.swapaxes(ret, 0, 1) | |
1147 | return ret |
|
1147 | return ret | |
1148 |
|
1148 | |||
1149 | def __contains__(self, key): |
|
1149 | def __contains__(self, key): | |
1150 | return key in self.data |
|
1150 | return key in self.data | |
1151 |
|
1151 | |||
1152 | def setup(self): |
|
1152 | def setup(self): | |
1153 | ''' |
|
1153 | ''' | |
1154 | Configure object |
|
1154 | Configure object | |
1155 | ''' |
|
1155 | ''' | |
1156 |
|
1156 | |||
1157 | self.type = '' |
|
1157 | self.type = '' | |
1158 | self.ready = False |
|
1158 | self.ready = False | |
1159 | self.data = {} |
|
1159 | self.data = {} | |
1160 | self.__times = [] |
|
1160 | self.__times = [] | |
1161 | self.__heights = [] |
|
1161 | self.__heights = [] | |
1162 | self.__all_heights = set() |
|
1162 | self.__all_heights = set() | |
1163 | for plot in self.plottypes: |
|
1163 | for plot in self.plottypes: | |
1164 | if 'snr' in plot: |
|
1164 | if 'snr' in plot: | |
1165 | plot = 'snr' |
|
1165 | plot = 'snr' | |
|
1166 | elif 'spc_moments' == plot: | |||
|
1167 | plot = 'moments' | |||
1166 | self.data[plot] = {} |
|
1168 | self.data[plot] = {} | |
1167 |
|
1169 | |||
1168 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data: |
|
1170 | if 'spc' in self.data or 'rti' in self.data or 'cspc' in self.data or 'moments' in self.data: | |
1169 | self.data['noise'] = {} |
|
1171 | self.data['noise'] = {} | |
1170 | if 'noise' not in self.plottypes: |
|
1172 | if 'noise' not in self.plottypes: | |
1171 | self.plottypes.append('noise') |
|
1173 | self.plottypes.append('noise') | |
1172 |
|
1174 | |||
1173 | def shape(self, key): |
|
1175 | def shape(self, key): | |
1174 | ''' |
|
1176 | ''' | |
1175 | Get the shape of the one-element data for the given key |
|
1177 | Get the shape of the one-element data for the given key | |
1176 | ''' |
|
1178 | ''' | |
1177 |
|
1179 | |||
1178 | if len(self.data[key]): |
|
1180 | if len(self.data[key]): | |
1179 | if 'spc' in key or not self.buffering: |
|
1181 | if 'spc' in key or not self.buffering: | |
1180 | return self.data[key].shape |
|
1182 | return self.data[key].shape | |
1181 | return self.data[key][self.__times[0]].shape |
|
1183 | return self.data[key][self.__times[0]].shape | |
1182 | return (0,) |
|
1184 | return (0,) | |
1183 |
|
1185 | |||
1184 | def update(self, dataOut, tm): |
|
1186 | def update(self, dataOut, tm): | |
1185 | ''' |
|
1187 | ''' | |
1186 | Update data object with new dataOut |
|
1188 | Update data object with new dataOut | |
1187 | ''' |
|
1189 | ''' | |
1188 |
|
1190 | |||
1189 | if tm in self.__times: |
|
1191 | if tm in self.__times: | |
1190 | return |
|
1192 | return | |
1191 | self.profileIndex = dataOut.profileIndex |
|
1193 | self.profileIndex = dataOut.profileIndex | |
1192 | self.tm = tm |
|
1194 | self.tm = tm | |
1193 | self.type = dataOut.type |
|
1195 | self.type = dataOut.type | |
1194 | self.parameters = getattr(dataOut, 'parameters', []) |
|
1196 | self.parameters = getattr(dataOut, 'parameters', []) | |
1195 | if hasattr(dataOut, 'pairsList'): |
|
1197 | if hasattr(dataOut, 'pairsList'): | |
1196 | self.pairs = dataOut.pairsList |
|
1198 | self.pairs = dataOut.pairsList | |
1197 | if hasattr(dataOut, 'meta'): |
|
1199 | if hasattr(dataOut, 'meta'): | |
1198 | self.meta = dataOut.meta |
|
1200 | self.meta = dataOut.meta | |
1199 | self.channels = dataOut.channelList |
|
1201 | self.channels = dataOut.channelList | |
1200 | self.interval = dataOut.getTimeInterval() |
|
1202 | self.interval = dataOut.getTimeInterval() | |
1201 | self.localtime = dataOut.useLocalTime |
|
1203 | self.localtime = dataOut.useLocalTime | |
1202 | if 'spc' in self.plottypes or 'cspc' in self.plottypes: |
|
1204 | if 'spc' in self.plottypes or 'cspc' in self.plottypes or 'spc_moments' in self.plottypes: | |
1203 | self.xrange = (dataOut.getFreqRange(1)/1000., |
|
1205 | self.xrange = (dataOut.getFreqRange(1)/1000., | |
1204 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) |
|
1206 | dataOut.getAcfRange(1), dataOut.getVelRange(1)) | |
1205 | self.factor = dataOut.normFactor |
|
1207 | self.factor = dataOut.normFactor | |
1206 | self.__heights.append(dataOut.heightList) |
|
1208 | self.__heights.append(dataOut.heightList) | |
1207 | self.__all_heights.update(dataOut.heightList) |
|
1209 | self.__all_heights.update(dataOut.heightList) | |
1208 | self.__times.append(tm) |
|
1210 | self.__times.append(tm) | |
1209 |
|
1211 | |||
1210 | for plot in self.plottypes: |
|
1212 | for plot in self.plottypes: | |
1211 |
if plot |
|
1213 | if plot in ('spc', 'spc_moments'): | |
1212 | z = dataOut.data_spc/dataOut.normFactor |
|
1214 | z = dataOut.data_spc/dataOut.normFactor | |
1213 | buffer = 10*numpy.log10(z) |
|
1215 | buffer = 10*numpy.log10(z) | |
1214 | if plot == 'cspc': |
|
1216 | if plot == 'cspc': | |
1215 | z = dataOut.data_spc/dataOut.normFactor |
|
1217 | z = dataOut.data_spc/dataOut.normFactor | |
1216 | buffer = (dataOut.data_spc, dataOut.data_cspc) |
|
1218 | buffer = (dataOut.data_spc, dataOut.data_cspc) | |
1217 | if plot == 'noise': |
|
1219 | if plot == 'noise': | |
1218 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) |
|
1220 | buffer = 10*numpy.log10(dataOut.getNoise()/dataOut.normFactor) | |
1219 | if plot == 'rti': |
|
1221 | if plot == 'rti': | |
1220 | buffer = dataOut.getPower() |
|
1222 | buffer = dataOut.getPower() | |
1221 | if plot == 'snr_db': |
|
1223 | if plot == 'snr_db': | |
1222 | buffer = dataOut.data_SNR |
|
1224 | buffer = dataOut.data_SNR | |
1223 | if plot == 'snr': |
|
1225 | if plot == 'snr': | |
1224 | buffer = 10*numpy.log10(dataOut.data_SNR) |
|
1226 | buffer = 10*numpy.log10(dataOut.data_SNR) | |
1225 | if plot == 'dop': |
|
1227 | if plot == 'dop': | |
1226 | buffer = 10*numpy.log10(dataOut.data_DOP) |
|
1228 | buffer = 10*numpy.log10(dataOut.data_DOP) | |
1227 | if plot == 'mean': |
|
1229 | if plot == 'mean': | |
1228 | buffer = dataOut.data_MEAN |
|
1230 | buffer = dataOut.data_MEAN | |
1229 | if plot == 'std': |
|
1231 | if plot == 'std': | |
1230 | buffer = dataOut.data_STD |
|
1232 | buffer = dataOut.data_STD | |
1231 | if plot == 'coh': |
|
1233 | if plot == 'coh': | |
1232 | buffer = dataOut.getCoherence() |
|
1234 | buffer = dataOut.getCoherence() | |
1233 | if plot == 'phase': |
|
1235 | if plot == 'phase': | |
1234 | buffer = dataOut.getCoherence(phase=True) |
|
1236 | buffer = dataOut.getCoherence(phase=True) | |
1235 | if plot == 'output': |
|
1237 | if plot == 'output': | |
1236 | buffer = dataOut.data_output |
|
1238 | buffer = dataOut.data_output | |
1237 | if plot == 'param': |
|
1239 | if plot == 'param': | |
1238 | buffer = dataOut.data_param |
|
1240 | buffer = dataOut.data_param | |
1239 | if plot == 'scope': |
|
1241 | if plot == 'scope': | |
1240 | buffer = dataOut.data |
|
1242 | buffer = dataOut.data | |
1241 | self.flagDataAsBlock = dataOut.flagDataAsBlock |
|
1243 | self.flagDataAsBlock = dataOut.flagDataAsBlock | |
1242 | self.nProfiles = dataOut.nProfiles |
|
1244 | self.nProfiles = dataOut.nProfiles | |
1243 |
|
1245 | |||
1244 | if plot == 'spc': |
|
1246 | if plot == 'spc': | |
1245 | self.data[plot] = buffer |
|
1247 | self.data[plot] = buffer | |
1246 | elif plot == 'cspc': |
|
1248 | elif plot == 'cspc': | |
1247 | self.data['spc'] = buffer[0] |
|
1249 | self.data['spc'] = buffer[0] | |
1248 | self.data['cspc'] = buffer[1] |
|
1250 | self.data['cspc'] = buffer[1] | |
|
1251 | elif plot == 'spc_moments': | |||
|
1252 | self.data['spc'] = buffer | |||
|
1253 | self.data['moments'][tm] = dataOut.moments | |||
1249 | else: |
|
1254 | else: | |
1250 | if self.buffering: |
|
1255 | if self.buffering: | |
1251 | self.data[plot][tm] = buffer |
|
1256 | self.data[plot][tm] = buffer | |
1252 | else: |
|
1257 | else: | |
1253 | self.data[plot] = buffer |
|
1258 | self.data[plot] = buffer | |
1254 |
|
1259 | |||
1255 | def normalize_heights(self): |
|
1260 | def normalize_heights(self): | |
1256 | ''' |
|
1261 | ''' | |
1257 | Ensure same-dimension of the data for different heighList |
|
1262 | Ensure same-dimension of the data for different heighList | |
1258 | ''' |
|
1263 | ''' | |
1259 |
|
1264 | |||
1260 | H = numpy.array(list(self.__all_heights)) |
|
1265 | H = numpy.array(list(self.__all_heights)) | |
1261 | H.sort() |
|
1266 | H.sort() | |
1262 | for key in self.data: |
|
1267 | for key in self.data: | |
1263 | shape = self.shape(key)[:-1] + H.shape |
|
1268 | shape = self.shape(key)[:-1] + H.shape | |
1264 | for tm, obj in list(self.data[key].items()): |
|
1269 | for tm, obj in list(self.data[key].items()): | |
1265 | h = self.__heights[self.__times.index(tm)] |
|
1270 | h = self.__heights[self.__times.index(tm)] | |
1266 | if H.size == h.size: |
|
1271 | if H.size == h.size: | |
1267 | continue |
|
1272 | continue | |
1268 | index = numpy.where(numpy.in1d(H, h))[0] |
|
1273 | index = numpy.where(numpy.in1d(H, h))[0] | |
1269 | dummy = numpy.zeros(shape) + numpy.nan |
|
1274 | dummy = numpy.zeros(shape) + numpy.nan | |
1270 | if len(shape) == 2: |
|
1275 | if len(shape) == 2: | |
1271 | dummy[:, index] = obj |
|
1276 | dummy[:, index] = obj | |
1272 | else: |
|
1277 | else: | |
1273 | dummy[index] = obj |
|
1278 | dummy[index] = obj | |
1274 | self.data[key][tm] = dummy |
|
1279 | self.data[key][tm] = dummy | |
1275 |
|
1280 | |||
1276 | self.__heights = [H for tm in self.__times] |
|
1281 | self.__heights = [H for tm in self.__times] | |
1277 |
|
1282 | |||
1278 | def jsonify(self, decimate=False): |
|
1283 | def jsonify(self, decimate=False): | |
1279 | ''' |
|
1284 | ''' | |
1280 | Convert data to json |
|
1285 | Convert data to json | |
1281 | ''' |
|
1286 | ''' | |
1282 |
|
1287 | |||
1283 | data = {} |
|
1288 | data = {} | |
1284 | tm = self.times[-1] |
|
1289 | tm = self.times[-1] | |
1285 | dy = int(self.heights.size/self.MAXNUMY) + 1 |
|
1290 | dy = int(self.heights.size/self.MAXNUMY) + 1 | |
1286 | for key in self.data: |
|
1291 | for key in self.data: | |
1287 | if key in ('spc', 'cspc') or not self.buffering: |
|
1292 | if key in ('spc', 'cspc') or not self.buffering: | |
1288 | dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1 |
|
1293 | dx = int(self.data[key].shape[1]/self.MAXNUMX) + 1 | |
1289 | data[key] = self.roundFloats( |
|
1294 | data[key] = self.roundFloats( | |
1290 | self.data[key][::, ::dx, ::dy].tolist()) |
|
1295 | self.data[key][::, ::dx, ::dy].tolist()) | |
1291 | else: |
|
1296 | else: | |
1292 | data[key] = self.roundFloats(self.data[key][tm].tolist()) |
|
1297 | data[key] = self.roundFloats(self.data[key][tm].tolist()) | |
1293 |
|
1298 | |||
1294 | ret = {'data': data} |
|
1299 | ret = {'data': data} | |
1295 | ret['exp_code'] = self.exp_code |
|
1300 | ret['exp_code'] = self.exp_code | |
1296 | ret['time'] = float(tm) |
|
1301 | ret['time'] = float(tm) | |
1297 | ret['interval'] = float(self.interval) |
|
1302 | ret['interval'] = float(self.interval) | |
1298 | ret['localtime'] = self.localtime |
|
1303 | ret['localtime'] = self.localtime | |
1299 | ret['yrange'] = self.roundFloats(self.heights[::dy].tolist()) |
|
1304 | ret['yrange'] = self.roundFloats(self.heights[::dy].tolist()) | |
1300 | if 'spc' in self.data or 'cspc' in self.data: |
|
1305 | if 'spc' in self.data or 'cspc' in self.data: | |
1301 | ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) |
|
1306 | ret['xrange'] = self.roundFloats(self.xrange[2][::dx].tolist()) | |
1302 | else: |
|
1307 | else: | |
1303 | ret['xrange'] = [] |
|
1308 | ret['xrange'] = [] | |
1304 | if hasattr(self, 'pairs'): |
|
1309 | if hasattr(self, 'pairs'): | |
1305 | ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs] |
|
1310 | ret['pairs'] = [(int(p[0]), int(p[1])) for p in self.pairs] | |
1306 | else: |
|
1311 | else: | |
1307 | ret['pairs'] = [] |
|
1312 | ret['pairs'] = [] | |
1308 |
|
1313 | |||
1309 | for key, value in list(self.meta.items()): |
|
1314 | for key, value in list(self.meta.items()): | |
1310 | ret[key] = value |
|
1315 | ret[key] = value | |
1311 |
|
1316 | |||
1312 | return json.dumps(ret) |
|
1317 | return json.dumps(ret) | |
1313 |
|
1318 | |||
1314 | @property |
|
1319 | @property | |
1315 | def times(self): |
|
1320 | def times(self): | |
1316 | ''' |
|
1321 | ''' | |
1317 | Return the list of times of the current data |
|
1322 | Return the list of times of the current data | |
1318 | ''' |
|
1323 | ''' | |
1319 |
|
1324 | |||
1320 | ret = numpy.array(self.__times) |
|
1325 | ret = numpy.array(self.__times) | |
1321 | ret.sort() |
|
1326 | ret.sort() | |
1322 | return ret |
|
1327 | return ret | |
1323 |
|
1328 | |||
1324 | @property |
|
1329 | @property | |
1325 | def min_time(self): |
|
1330 | def min_time(self): | |
1326 | ''' |
|
1331 | ''' | |
1327 | Return the minimun time value |
|
1332 | Return the minimun time value | |
1328 | ''' |
|
1333 | ''' | |
1329 |
|
1334 | |||
1330 | return self.times[0] |
|
1335 | return self.times[0] | |
1331 |
|
1336 | |||
1332 | @property |
|
1337 | @property | |
1333 | def max_time(self): |
|
1338 | def max_time(self): | |
1334 | ''' |
|
1339 | ''' | |
1335 | Return the maximun time value |
|
1340 | Return the maximun time value | |
1336 | ''' |
|
1341 | ''' | |
1337 |
|
1342 | |||
1338 | return self.times[-1] |
|
1343 | return self.times[-1] | |
1339 |
|
1344 | |||
1340 | @property |
|
1345 | @property | |
1341 | def heights(self): |
|
1346 | def heights(self): | |
1342 | ''' |
|
1347 | ''' | |
1343 | Return the list of heights of the current data |
|
1348 | Return the list of heights of the current data | |
1344 | ''' |
|
1349 | ''' | |
1345 |
|
1350 | |||
1346 | return numpy.array(self.__heights[-1]) |
|
1351 | return numpy.array(self.__heights[-1]) | |
1347 |
|
1352 | |||
1348 | @staticmethod |
|
1353 | @staticmethod | |
1349 | def roundFloats(obj): |
|
1354 | def roundFloats(obj): | |
1350 | if isinstance(obj, list): |
|
1355 | if isinstance(obj, list): | |
1351 | return list(map(PlotterData.roundFloats, obj)) |
|
1356 | return list(map(PlotterData.roundFloats, obj)) | |
1352 | elif isinstance(obj, float): |
|
1357 | elif isinstance(obj, float): | |
1353 | return round(obj, 2) |
|
1358 | return round(obj, 2) |
@@ -1,748 +1,747 | |||||
1 | ''' |
|
1 | ''' | |
2 | New Plots Operations |
|
2 | New Plots Operations | |
3 |
|
3 | |||
4 | @author: juan.espinoza@jro.igp.gob.pe |
|
4 | @author: juan.espinoza@jro.igp.gob.pe | |
5 | ''' |
|
5 | ''' | |
6 |
|
6 | |||
7 |
|
7 | |||
8 | import time |
|
8 | import time | |
9 | import datetime |
|
9 | import datetime | |
10 | import numpy |
|
10 | import numpy | |
11 |
|
11 | |||
12 | from schainpy.model.graphics.jroplot_base import Plot, plt |
|
12 | from schainpy.model.graphics.jroplot_base import Plot, plt | |
13 | from schainpy.utils import log |
|
13 | from schainpy.utils import log | |
14 |
|
14 | |||
15 | EARTH_RADIUS = 6.3710e3 |
|
15 | EARTH_RADIUS = 6.3710e3 | |
16 |
|
16 | |||
17 |
|
17 | |||
18 | def ll2xy(lat1, lon1, lat2, lon2): |
|
18 | def ll2xy(lat1, lon1, lat2, lon2): | |
19 |
|
19 | |||
20 | p = 0.017453292519943295 |
|
20 | p = 0.017453292519943295 | |
21 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ |
|
21 | a = 0.5 - numpy.cos((lat2 - lat1) * p)/2 + numpy.cos(lat1 * p) * \ | |
22 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 |
|
22 | numpy.cos(lat2 * p) * (1 - numpy.cos((lon2 - lon1) * p)) / 2 | |
23 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) |
|
23 | r = 12742 * numpy.arcsin(numpy.sqrt(a)) | |
24 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) |
|
24 | theta = numpy.arctan2(numpy.sin((lon2-lon1)*p)*numpy.cos(lat2*p), numpy.cos(lat1*p) | |
25 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) |
|
25 | * numpy.sin(lat2*p)-numpy.sin(lat1*p)*numpy.cos(lat2*p)*numpy.cos((lon2-lon1)*p)) | |
26 | theta = -theta + numpy.pi/2 |
|
26 | theta = -theta + numpy.pi/2 | |
27 | return r*numpy.cos(theta), r*numpy.sin(theta) |
|
27 | return r*numpy.cos(theta), r*numpy.sin(theta) | |
28 |
|
28 | |||
29 |
|
29 | |||
30 | def km2deg(km): |
|
30 | def km2deg(km): | |
31 | ''' |
|
31 | ''' | |
32 | Convert distance in km to degrees |
|
32 | Convert distance in km to degrees | |
33 | ''' |
|
33 | ''' | |
34 |
|
34 | |||
35 | return numpy.rad2deg(km/EARTH_RADIUS) |
|
35 | return numpy.rad2deg(km/EARTH_RADIUS) | |
36 |
|
36 | |||
37 |
|
37 | |||
38 | class SpectraPlot(Plot): |
|
38 | class SpectraPlot(Plot): | |
39 | ''' |
|
39 | ''' | |
40 | Plot for Spectra data |
|
40 | Plot for Spectra data | |
41 | ''' |
|
41 | ''' | |
42 |
|
42 | |||
43 | CODE = 'spc' |
|
43 | CODE = 'spc' | |
44 | colormap = 'jro' |
|
44 | colormap = 'jro' | |
45 |
|
45 | |||
46 | def setup(self): |
|
46 | def setup(self): | |
47 | self.nplots = len(self.data.channels) |
|
47 | self.nplots = len(self.data.channels) | |
48 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) |
|
48 | self.ncols = int(numpy.sqrt(self.nplots) + 0.9) | |
49 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) |
|
49 | self.nrows = int((1.0 * self.nplots / self.ncols) + 0.9) | |
50 | self.width = 3.4 * self.ncols |
|
50 | self.width = 3.4 * self.ncols | |
51 | self.height = 3 * self.nrows |
|
51 | self.height = 3 * self.nrows | |
52 | self.cb_label = 'dB' |
|
52 | self.cb_label = 'dB' | |
53 | if self.showprofile: |
|
53 | if self.showprofile: | |
54 | self.width += 0.8 * self.ncols |
|
54 | self.width += 0.8 * self.ncols | |
55 |
|
55 | |||
56 | self.ylabel = 'Range [km]' |
|
56 | self.ylabel = 'Range [km]' | |
57 |
|
57 | |||
58 | def plot(self): |
|
58 | def plot(self): | |
59 | if self.xaxis == "frequency": |
|
59 | if self.xaxis == "frequency": | |
60 | x = self.data.xrange[0] |
|
60 | x = self.data.xrange[0] | |
61 | self.xlabel = "Frequency (kHz)" |
|
61 | self.xlabel = "Frequency (kHz)" | |
62 | elif self.xaxis == "time": |
|
62 | elif self.xaxis == "time": | |
63 | x = self.data.xrange[1] |
|
63 | x = self.data.xrange[1] | |
64 | self.xlabel = "Time (ms)" |
|
64 | self.xlabel = "Time (ms)" | |
65 | else: |
|
65 | else: | |
66 | x = self.data.xrange[2] |
|
66 | x = self.data.xrange[2] | |
67 | self.xlabel = "Velocity (m/s)" |
|
67 | self.xlabel = "Velocity (m/s)" | |
68 |
|
68 | |||
69 |
if self.CODE == 'spc_me |
|
69 | if self.CODE == 'spc_moments': | |
70 | x = self.data.xrange[2] |
|
70 | x = self.data.xrange[2] | |
71 | self.xlabel = "Velocity (m/s)" |
|
71 | self.xlabel = "Velocity (m/s)" | |
72 |
|
72 | |||
73 | self.titles = [] |
|
73 | self.titles = [] | |
74 |
|
74 | |||
75 | y = self.data.heights |
|
75 | y = self.data.heights | |
76 | self.y = y |
|
76 | self.y = y | |
77 | z = self.data['spc'] |
|
77 | z = self.data['spc'] | |
78 |
|
78 | |||
79 | for n, ax in enumerate(self.axes): |
|
79 | for n, ax in enumerate(self.axes): | |
80 | noise = self.data['noise'][n][-1] |
|
80 | noise = self.data['noise'][n][-1] | |
81 |
if self.CODE == 'spc_me |
|
81 | if self.CODE == 'spc_moments': | |
82 |
mean = self.data['me |
|
82 | mean = self.data['moments'][n, :, 1, :][-1] | |
83 | if ax.firsttime: |
|
83 | if ax.firsttime: | |
84 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
84 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
85 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
85 | self.xmin = self.xmin if self.xmin else -self.xmax | |
86 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) |
|
86 | self.zmin = self.zmin if self.zmin else numpy.nanmin(z) | |
87 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) |
|
87 | self.zmax = self.zmax if self.zmax else numpy.nanmax(z) | |
88 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
88 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
89 | vmin=self.zmin, |
|
89 | vmin=self.zmin, | |
90 | vmax=self.zmax, |
|
90 | vmax=self.zmax, | |
91 | cmap=plt.get_cmap(self.colormap) |
|
91 | cmap=plt.get_cmap(self.colormap) | |
92 | ) |
|
92 | ) | |
93 |
|
93 | |||
94 | if self.showprofile: |
|
94 | if self.showprofile: | |
95 | ax.plt_profile = self.pf_axes[n].plot( |
|
95 | ax.plt_profile = self.pf_axes[n].plot( | |
96 | self.data['rti'][n][-1], y)[0] |
|
96 | self.data['rti'][n][-1], y)[0] | |
97 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, |
|
97 | ax.plt_noise = self.pf_axes[n].plot(numpy.repeat(noise, len(y)), y, | |
98 | color="k", linestyle="dashed", lw=1)[0] |
|
98 | color="k", linestyle="dashed", lw=1)[0] | |
99 |
if self.CODE == 'spc_me |
|
99 | if self.CODE == 'spc_moments': | |
100 | ax.plt_mean = ax.plot(mean, y, color='k')[0] |
|
100 | ax.plt_mean = ax.plot(mean, y, color='k')[0] | |
101 | else: |
|
101 | else: | |
102 | ax.plt.set_array(z[n].T.ravel()) |
|
102 | ax.plt.set_array(z[n].T.ravel()) | |
103 | if self.showprofile: |
|
103 | if self.showprofile: | |
104 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) |
|
104 | ax.plt_profile.set_data(self.data['rti'][n][-1], y) | |
105 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) |
|
105 | ax.plt_noise.set_data(numpy.repeat(noise, len(y)), y) | |
106 |
if self.CODE == 'spc_me |
|
106 | if self.CODE == 'spc_moments': | |
107 | ax.plt_mean.set_data(mean, y) |
|
107 | ax.plt_mean.set_data(mean, y) | |
108 |
|
||||
109 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) |
|
108 | self.titles.append('CH {}: {:3.2f}dB'.format(n, noise)) | |
110 |
|
109 | |||
111 |
|
110 | |||
112 | class CrossSpectraPlot(Plot): |
|
111 | class CrossSpectraPlot(Plot): | |
113 |
|
112 | |||
114 | CODE = 'cspc' |
|
113 | CODE = 'cspc' | |
115 | colormap = 'jet' |
|
114 | colormap = 'jet' | |
116 | zmin_coh = None |
|
115 | zmin_coh = None | |
117 | zmax_coh = None |
|
116 | zmax_coh = None | |
118 | zmin_phase = None |
|
117 | zmin_phase = None | |
119 | zmax_phase = None |
|
118 | zmax_phase = None | |
120 |
|
119 | |||
121 | def setup(self): |
|
120 | def setup(self): | |
122 |
|
121 | |||
123 | self.ncols = 4 |
|
122 | self.ncols = 4 | |
124 | self.nrows = len(self.data.pairs) |
|
123 | self.nrows = len(self.data.pairs) | |
125 | self.nplots = self.nrows * 4 |
|
124 | self.nplots = self.nrows * 4 | |
126 | self.width = 3.4 * self.ncols |
|
125 | self.width = 3.4 * self.ncols | |
127 | self.height = 3 * self.nrows |
|
126 | self.height = 3 * self.nrows | |
128 | self.ylabel = 'Range [km]' |
|
127 | self.ylabel = 'Range [km]' | |
129 | self.showprofile = False |
|
128 | self.showprofile = False | |
130 |
|
129 | |||
131 | def plot(self): |
|
130 | def plot(self): | |
132 |
|
131 | |||
133 | if self.xaxis == "frequency": |
|
132 | if self.xaxis == "frequency": | |
134 | x = self.data.xrange[0] |
|
133 | x = self.data.xrange[0] | |
135 | self.xlabel = "Frequency (kHz)" |
|
134 | self.xlabel = "Frequency (kHz)" | |
136 | elif self.xaxis == "time": |
|
135 | elif self.xaxis == "time": | |
137 | x = self.data.xrange[1] |
|
136 | x = self.data.xrange[1] | |
138 | self.xlabel = "Time (ms)" |
|
137 | self.xlabel = "Time (ms)" | |
139 | else: |
|
138 | else: | |
140 | x = self.data.xrange[2] |
|
139 | x = self.data.xrange[2] | |
141 | self.xlabel = "Velocity (m/s)" |
|
140 | self.xlabel = "Velocity (m/s)" | |
142 |
|
141 | |||
143 | self.titles = [] |
|
142 | self.titles = [] | |
144 |
|
143 | |||
145 | y = self.data.heights |
|
144 | y = self.data.heights | |
146 | self.y = y |
|
145 | self.y = y | |
147 | spc = self.data['spc'] |
|
146 | spc = self.data['spc'] | |
148 | cspc = self.data['cspc'] |
|
147 | cspc = self.data['cspc'] | |
149 |
|
148 | |||
150 | for n in range(self.nrows): |
|
149 | for n in range(self.nrows): | |
151 | noise = self.data['noise'][n][-1] |
|
150 | noise = self.data['noise'][n][-1] | |
152 | pair = self.data.pairs[n] |
|
151 | pair = self.data.pairs[n] | |
153 | ax = self.axes[4 * n] |
|
152 | ax = self.axes[4 * n] | |
154 | spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor) |
|
153 | spc0 = 10.*numpy.log10(spc[pair[0]]/self.data.factor) | |
155 | if ax.firsttime: |
|
154 | if ax.firsttime: | |
156 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) |
|
155 | self.xmax = self.xmax if self.xmax else numpy.nanmax(x) | |
157 | self.xmin = self.xmin if self.xmin else -self.xmax |
|
156 | self.xmin = self.xmin if self.xmin else -self.xmax | |
158 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) |
|
157 | self.zmin = self.zmin if self.zmin else numpy.nanmin(spc) | |
159 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) |
|
158 | self.zmax = self.zmax if self.zmax else numpy.nanmax(spc) | |
160 | ax.plt = ax.pcolormesh(x , y , spc0.T, |
|
159 | ax.plt = ax.pcolormesh(x , y , spc0.T, | |
161 | vmin=self.zmin, |
|
160 | vmin=self.zmin, | |
162 | vmax=self.zmax, |
|
161 | vmax=self.zmax, | |
163 | cmap=plt.get_cmap(self.colormap) |
|
162 | cmap=plt.get_cmap(self.colormap) | |
164 | ) |
|
163 | ) | |
165 | else: |
|
164 | else: | |
166 | ax.plt.set_array(spc0.T.ravel()) |
|
165 | ax.plt.set_array(spc0.T.ravel()) | |
167 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise)) |
|
166 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[0], noise)) | |
168 |
|
167 | |||
169 | ax = self.axes[4 * n + 1] |
|
168 | ax = self.axes[4 * n + 1] | |
170 | spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor) |
|
169 | spc1 = 10.*numpy.log10(spc[pair[1]]/self.data.factor) | |
171 | if ax.firsttime: |
|
170 | if ax.firsttime: | |
172 | ax.plt = ax.pcolormesh(x , y, spc1.T, |
|
171 | ax.plt = ax.pcolormesh(x , y, spc1.T, | |
173 | vmin=self.zmin, |
|
172 | vmin=self.zmin, | |
174 | vmax=self.zmax, |
|
173 | vmax=self.zmax, | |
175 | cmap=plt.get_cmap(self.colormap) |
|
174 | cmap=plt.get_cmap(self.colormap) | |
176 | ) |
|
175 | ) | |
177 | else: |
|
176 | else: | |
178 | ax.plt.set_array(spc1.T.ravel()) |
|
177 | ax.plt.set_array(spc1.T.ravel()) | |
179 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise)) |
|
178 | self.titles.append('CH {}: {:3.2f}dB'.format(pair[1], noise)) | |
180 |
|
179 | |||
181 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) |
|
180 | out = cspc[n] / numpy.sqrt(spc[pair[0]] * spc[pair[1]]) | |
182 | coh = numpy.abs(out) |
|
181 | coh = numpy.abs(out) | |
183 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi |
|
182 | phase = numpy.arctan2(out.imag, out.real) * 180 / numpy.pi | |
184 |
|
183 | |||
185 | ax = self.axes[4 * n + 2] |
|
184 | ax = self.axes[4 * n + 2] | |
186 | if ax.firsttime: |
|
185 | if ax.firsttime: | |
187 | ax.plt = ax.pcolormesh(x, y, coh.T, |
|
186 | ax.plt = ax.pcolormesh(x, y, coh.T, | |
188 | vmin=0, |
|
187 | vmin=0, | |
189 | vmax=1, |
|
188 | vmax=1, | |
190 | cmap=plt.get_cmap(self.colormap_coh) |
|
189 | cmap=plt.get_cmap(self.colormap_coh) | |
191 | ) |
|
190 | ) | |
192 | else: |
|
191 | else: | |
193 | ax.plt.set_array(coh.T.ravel()) |
|
192 | ax.plt.set_array(coh.T.ravel()) | |
194 | self.titles.append( |
|
193 | self.titles.append( | |
195 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) |
|
194 | 'Coherence Ch{} * Ch{}'.format(pair[0], pair[1])) | |
196 |
|
195 | |||
197 | ax = self.axes[4 * n + 3] |
|
196 | ax = self.axes[4 * n + 3] | |
198 | if ax.firsttime: |
|
197 | if ax.firsttime: | |
199 | ax.plt = ax.pcolormesh(x, y, phase.T, |
|
198 | ax.plt = ax.pcolormesh(x, y, phase.T, | |
200 | vmin=-180, |
|
199 | vmin=-180, | |
201 | vmax=180, |
|
200 | vmax=180, | |
202 | cmap=plt.get_cmap(self.colormap_phase) |
|
201 | cmap=plt.get_cmap(self.colormap_phase) | |
203 | ) |
|
202 | ) | |
204 | else: |
|
203 | else: | |
205 | ax.plt.set_array(phase.T.ravel()) |
|
204 | ax.plt.set_array(phase.T.ravel()) | |
206 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) |
|
205 | self.titles.append('Phase CH{} * CH{}'.format(pair[0], pair[1])) | |
207 |
|
206 | |||
208 |
|
207 | |||
209 |
class SpectraMe |
|
208 | class SpectralMomentsPlot(SpectraPlot): | |
210 | ''' |
|
209 | ''' | |
211 |
Plot for Spectra |
|
210 | Plot for Spectral Moments | |
212 | ''' |
|
211 | ''' | |
213 |
CODE = 'spc_me |
|
212 | CODE = 'spc_moments' | |
214 | colormap = 'jro' |
|
213 | colormap = 'jro' | |
215 |
|
214 | |||
216 |
|
215 | |||
217 | class RTIPlot(Plot): |
|
216 | class RTIPlot(Plot): | |
218 | ''' |
|
217 | ''' | |
219 | Plot for RTI data |
|
218 | Plot for RTI data | |
220 | ''' |
|
219 | ''' | |
221 |
|
220 | |||
222 | CODE = 'rti' |
|
221 | CODE = 'rti' | |
223 | colormap = 'jro' |
|
222 | colormap = 'jro' | |
224 |
|
223 | |||
225 | def setup(self): |
|
224 | def setup(self): | |
226 | self.xaxis = 'time' |
|
225 | self.xaxis = 'time' | |
227 | self.ncols = 1 |
|
226 | self.ncols = 1 | |
228 | self.nrows = len(self.data.channels) |
|
227 | self.nrows = len(self.data.channels) | |
229 | self.nplots = len(self.data.channels) |
|
228 | self.nplots = len(self.data.channels) | |
230 | self.ylabel = 'Range [km]' |
|
229 | self.ylabel = 'Range [km]' | |
231 | self.cb_label = 'dB' |
|
230 | self.cb_label = 'dB' | |
232 | self.titles = ['{} Channel {}'.format( |
|
231 | self.titles = ['{} Channel {}'.format( | |
233 | self.CODE.upper(), x) for x in range(self.nrows)] |
|
232 | self.CODE.upper(), x) for x in range(self.nrows)] | |
234 |
|
233 | |||
235 | def plot(self): |
|
234 | def plot(self): | |
236 | self.x = self.data.times |
|
235 | self.x = self.data.times | |
237 | self.y = self.data.heights |
|
236 | self.y = self.data.heights | |
238 | self.z = self.data[self.CODE] |
|
237 | self.z = self.data[self.CODE] | |
239 | self.z = numpy.ma.masked_invalid(self.z) |
|
238 | self.z = numpy.ma.masked_invalid(self.z) | |
240 |
|
239 | |||
241 | if self.decimation is None: |
|
240 | if self.decimation is None: | |
242 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
241 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
243 | else: |
|
242 | else: | |
244 | x, y, z = self.fill_gaps(*self.decimate()) |
|
243 | x, y, z = self.fill_gaps(*self.decimate()) | |
245 |
|
244 | |||
246 | for n, ax in enumerate(self.axes): |
|
245 | for n, ax in enumerate(self.axes): | |
247 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) |
|
246 | self.zmin = self.zmin if self.zmin else numpy.min(self.z) | |
248 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) |
|
247 | self.zmax = self.zmax if self.zmax else numpy.max(self.z) | |
249 | if ax.firsttime: |
|
248 | if ax.firsttime: | |
250 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
249 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
251 | vmin=self.zmin, |
|
250 | vmin=self.zmin, | |
252 | vmax=self.zmax, |
|
251 | vmax=self.zmax, | |
253 | cmap=plt.get_cmap(self.colormap) |
|
252 | cmap=plt.get_cmap(self.colormap) | |
254 | ) |
|
253 | ) | |
255 | if self.showprofile: |
|
254 | if self.showprofile: | |
256 | ax.plot_profile = self.pf_axes[n].plot( |
|
255 | ax.plot_profile = self.pf_axes[n].plot( | |
257 | self.data['rti'][n][-1], self.y)[0] |
|
256 | self.data['rti'][n][-1], self.y)[0] | |
258 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, |
|
257 | ax.plot_noise = self.pf_axes[n].plot(numpy.repeat(self.data['noise'][n][-1], len(self.y)), self.y, | |
259 | color="k", linestyle="dashed", lw=1)[0] |
|
258 | color="k", linestyle="dashed", lw=1)[0] | |
260 | else: |
|
259 | else: | |
261 | ax.collections.remove(ax.collections[0]) |
|
260 | ax.collections.remove(ax.collections[0]) | |
262 | ax.plt = ax.pcolormesh(x, y, z[n].T, |
|
261 | ax.plt = ax.pcolormesh(x, y, z[n].T, | |
263 | vmin=self.zmin, |
|
262 | vmin=self.zmin, | |
264 | vmax=self.zmax, |
|
263 | vmax=self.zmax, | |
265 | cmap=plt.get_cmap(self.colormap) |
|
264 | cmap=plt.get_cmap(self.colormap) | |
266 | ) |
|
265 | ) | |
267 | if self.showprofile: |
|
266 | if self.showprofile: | |
268 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) |
|
267 | ax.plot_profile.set_data(self.data['rti'][n][-1], self.y) | |
269 | ax.plot_noise.set_data(numpy.repeat( |
|
268 | ax.plot_noise.set_data(numpy.repeat( | |
270 | self.data['noise'][n][-1], len(self.y)), self.y) |
|
269 | self.data['noise'][n][-1], len(self.y)), self.y) | |
271 |
|
270 | |||
272 |
|
271 | |||
273 | class CoherencePlot(RTIPlot): |
|
272 | class CoherencePlot(RTIPlot): | |
274 | ''' |
|
273 | ''' | |
275 | Plot for Coherence data |
|
274 | Plot for Coherence data | |
276 | ''' |
|
275 | ''' | |
277 |
|
276 | |||
278 | CODE = 'coh' |
|
277 | CODE = 'coh' | |
279 |
|
278 | |||
280 | def setup(self): |
|
279 | def setup(self): | |
281 | self.xaxis = 'time' |
|
280 | self.xaxis = 'time' | |
282 | self.ncols = 1 |
|
281 | self.ncols = 1 | |
283 | self.nrows = len(self.data.pairs) |
|
282 | self.nrows = len(self.data.pairs) | |
284 | self.nplots = len(self.data.pairs) |
|
283 | self.nplots = len(self.data.pairs) | |
285 | self.ylabel = 'Range [km]' |
|
284 | self.ylabel = 'Range [km]' | |
286 | if self.CODE == 'coh': |
|
285 | if self.CODE == 'coh': | |
287 | self.cb_label = '' |
|
286 | self.cb_label = '' | |
288 | self.titles = [ |
|
287 | self.titles = [ | |
289 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
288 | 'Coherence Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
290 | else: |
|
289 | else: | |
291 | self.cb_label = 'Degrees' |
|
290 | self.cb_label = 'Degrees' | |
292 | self.titles = [ |
|
291 | self.titles = [ | |
293 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] |
|
292 | 'Phase Map Ch{} * Ch{}'.format(x[0], x[1]) for x in self.data.pairs] | |
294 |
|
293 | |||
295 |
|
294 | |||
296 | class PhasePlot(CoherencePlot): |
|
295 | class PhasePlot(CoherencePlot): | |
297 | ''' |
|
296 | ''' | |
298 | Plot for Phase map data |
|
297 | Plot for Phase map data | |
299 | ''' |
|
298 | ''' | |
300 |
|
299 | |||
301 | CODE = 'phase' |
|
300 | CODE = 'phase' | |
302 | colormap = 'seismic' |
|
301 | colormap = 'seismic' | |
303 |
|
302 | |||
304 |
|
303 | |||
305 | class NoisePlot(Plot): |
|
304 | class NoisePlot(Plot): | |
306 | ''' |
|
305 | ''' | |
307 | Plot for noise |
|
306 | Plot for noise | |
308 | ''' |
|
307 | ''' | |
309 |
|
308 | |||
310 | CODE = 'noise' |
|
309 | CODE = 'noise' | |
311 |
|
310 | |||
312 | def setup(self): |
|
311 | def setup(self): | |
313 | self.xaxis = 'time' |
|
312 | self.xaxis = 'time' | |
314 | self.ncols = 1 |
|
313 | self.ncols = 1 | |
315 | self.nrows = 1 |
|
314 | self.nrows = 1 | |
316 | self.nplots = 1 |
|
315 | self.nplots = 1 | |
317 | self.ylabel = 'Intensity [dB]' |
|
316 | self.ylabel = 'Intensity [dB]' | |
318 | self.titles = ['Noise'] |
|
317 | self.titles = ['Noise'] | |
319 | self.colorbar = False |
|
318 | self.colorbar = False | |
320 |
|
319 | |||
321 | def plot(self): |
|
320 | def plot(self): | |
322 |
|
321 | |||
323 | x = self.data.times |
|
322 | x = self.data.times | |
324 | xmin = self.data.min_time |
|
323 | xmin = self.data.min_time | |
325 | xmax = xmin + self.xrange * 60 * 60 |
|
324 | xmax = xmin + self.xrange * 60 * 60 | |
326 | Y = self.data[self.CODE] |
|
325 | Y = self.data[self.CODE] | |
327 |
|
326 | |||
328 | if self.axes[0].firsttime: |
|
327 | if self.axes[0].firsttime: | |
329 | for ch in self.data.channels: |
|
328 | for ch in self.data.channels: | |
330 | y = Y[ch] |
|
329 | y = Y[ch] | |
331 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) |
|
330 | self.axes[0].plot(x, y, lw=1, label='Ch{}'.format(ch)) | |
332 | plt.legend() |
|
331 | plt.legend() | |
333 | else: |
|
332 | else: | |
334 | for ch in self.data.channels: |
|
333 | for ch in self.data.channels: | |
335 | y = Y[ch] |
|
334 | y = Y[ch] | |
336 | self.axes[0].lines[ch].set_data(x, y) |
|
335 | self.axes[0].lines[ch].set_data(x, y) | |
337 |
|
336 | |||
338 | self.ymin = numpy.nanmin(Y) - 5 |
|
337 | self.ymin = numpy.nanmin(Y) - 5 | |
339 | self.ymax = numpy.nanmax(Y) + 5 |
|
338 | self.ymax = numpy.nanmax(Y) + 5 | |
340 |
|
339 | |||
341 |
|
340 | |||
342 | class SnrPlot(RTIPlot): |
|
341 | class SnrPlot(RTIPlot): | |
343 | ''' |
|
342 | ''' | |
344 | Plot for SNR Data |
|
343 | Plot for SNR Data | |
345 | ''' |
|
344 | ''' | |
346 |
|
345 | |||
347 | CODE = 'snr' |
|
346 | CODE = 'snr' | |
348 | colormap = 'jet' |
|
347 | colormap = 'jet' | |
349 |
|
348 | |||
350 |
|
349 | |||
351 | class DopplerPlot(RTIPlot): |
|
350 | class DopplerPlot(RTIPlot): | |
352 | ''' |
|
351 | ''' | |
353 | Plot for DOPPLER Data |
|
352 | Plot for DOPPLER Data | |
354 | ''' |
|
353 | ''' | |
355 |
|
354 | |||
356 | CODE = 'dop' |
|
355 | CODE = 'dop' | |
357 | colormap = 'jet' |
|
356 | colormap = 'jet' | |
358 |
|
357 | |||
359 |
|
358 | |||
360 | class SkyMapPlot(Plot): |
|
359 | class SkyMapPlot(Plot): | |
361 | ''' |
|
360 | ''' | |
362 | Plot for meteors detection data |
|
361 | Plot for meteors detection data | |
363 | ''' |
|
362 | ''' | |
364 |
|
363 | |||
365 | CODE = 'param' |
|
364 | CODE = 'param' | |
366 |
|
365 | |||
367 | def setup(self): |
|
366 | def setup(self): | |
368 |
|
367 | |||
369 | self.ncols = 1 |
|
368 | self.ncols = 1 | |
370 | self.nrows = 1 |
|
369 | self.nrows = 1 | |
371 | self.width = 7.2 |
|
370 | self.width = 7.2 | |
372 | self.height = 7.2 |
|
371 | self.height = 7.2 | |
373 | self.nplots = 1 |
|
372 | self.nplots = 1 | |
374 | self.xlabel = 'Zonal Zenith Angle (deg)' |
|
373 | self.xlabel = 'Zonal Zenith Angle (deg)' | |
375 | self.ylabel = 'Meridional Zenith Angle (deg)' |
|
374 | self.ylabel = 'Meridional Zenith Angle (deg)' | |
376 | self.polar = True |
|
375 | self.polar = True | |
377 | self.ymin = -180 |
|
376 | self.ymin = -180 | |
378 | self.ymax = 180 |
|
377 | self.ymax = 180 | |
379 | self.colorbar = False |
|
378 | self.colorbar = False | |
380 |
|
379 | |||
381 | def plot(self): |
|
380 | def plot(self): | |
382 |
|
381 | |||
383 | arrayParameters = numpy.concatenate(self.data['param']) |
|
382 | arrayParameters = numpy.concatenate(self.data['param']) | |
384 | error = arrayParameters[:, -1] |
|
383 | error = arrayParameters[:, -1] | |
385 | indValid = numpy.where(error == 0)[0] |
|
384 | indValid = numpy.where(error == 0)[0] | |
386 | finalMeteor = arrayParameters[indValid, :] |
|
385 | finalMeteor = arrayParameters[indValid, :] | |
387 | finalAzimuth = finalMeteor[:, 3] |
|
386 | finalAzimuth = finalMeteor[:, 3] | |
388 | finalZenith = finalMeteor[:, 4] |
|
387 | finalZenith = finalMeteor[:, 4] | |
389 |
|
388 | |||
390 | x = finalAzimuth * numpy.pi / 180 |
|
389 | x = finalAzimuth * numpy.pi / 180 | |
391 | y = finalZenith |
|
390 | y = finalZenith | |
392 |
|
391 | |||
393 | ax = self.axes[0] |
|
392 | ax = self.axes[0] | |
394 |
|
393 | |||
395 | if ax.firsttime: |
|
394 | if ax.firsttime: | |
396 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] |
|
395 | ax.plot = ax.plot(x, y, 'bo', markersize=5)[0] | |
397 | else: |
|
396 | else: | |
398 | ax.plot.set_data(x, y) |
|
397 | ax.plot.set_data(x, y) | |
399 |
|
398 | |||
400 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') |
|
399 | dt1 = self.getDateTime(self.data.min_time).strftime('%y/%m/%d %H:%M:%S') | |
401 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') |
|
400 | dt2 = self.getDateTime(self.data.max_time).strftime('%y/%m/%d %H:%M:%S') | |
402 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, |
|
401 | title = 'Meteor Detection Sky Map\n %s - %s \n Number of events: %5.0f\n' % (dt1, | |
403 | dt2, |
|
402 | dt2, | |
404 | len(x)) |
|
403 | len(x)) | |
405 | self.titles[0] = title |
|
404 | self.titles[0] = title | |
406 |
|
405 | |||
407 |
|
406 | |||
408 | class ParametersPlot(RTIPlot): |
|
407 | class ParametersPlot(RTIPlot): | |
409 | ''' |
|
408 | ''' | |
410 | Plot for data_param object |
|
409 | Plot for data_param object | |
411 | ''' |
|
410 | ''' | |
412 |
|
411 | |||
413 | CODE = 'param' |
|
412 | CODE = 'param' | |
414 | colormap = 'seismic' |
|
413 | colormap = 'seismic' | |
415 |
|
414 | |||
416 | def setup(self): |
|
415 | def setup(self): | |
417 | self.xaxis = 'time' |
|
416 | self.xaxis = 'time' | |
418 | self.ncols = 1 |
|
417 | self.ncols = 1 | |
419 | self.nrows = self.data.shape(self.CODE)[0] |
|
418 | self.nrows = self.data.shape(self.CODE)[0] | |
420 | self.nplots = self.nrows |
|
419 | self.nplots = self.nrows | |
421 | if self.showSNR: |
|
420 | if self.showSNR: | |
422 | self.nrows += 1 |
|
421 | self.nrows += 1 | |
423 | self.nplots += 1 |
|
422 | self.nplots += 1 | |
424 |
|
423 | |||
425 | self.ylabel = 'Height [km]' |
|
424 | self.ylabel = 'Height [km]' | |
426 | if not self.titles: |
|
425 | if not self.titles: | |
427 | self.titles = self.data.parameters \ |
|
426 | self.titles = self.data.parameters \ | |
428 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] |
|
427 | if self.data.parameters else ['Param {}'.format(x) for x in range(self.nrows)] | |
429 | if self.showSNR: |
|
428 | if self.showSNR: | |
430 | self.titles.append('SNR') |
|
429 | self.titles.append('SNR') | |
431 |
|
430 | |||
432 | def plot(self): |
|
431 | def plot(self): | |
433 | self.data.normalize_heights() |
|
432 | self.data.normalize_heights() | |
434 | self.x = self.data.times |
|
433 | self.x = self.data.times | |
435 | self.y = self.data.heights |
|
434 | self.y = self.data.heights | |
436 | if self.showSNR: |
|
435 | if self.showSNR: | |
437 | self.z = numpy.concatenate( |
|
436 | self.z = numpy.concatenate( | |
438 | (self.data[self.CODE], self.data['snr']) |
|
437 | (self.data[self.CODE], self.data['snr']) | |
439 | ) |
|
438 | ) | |
440 | else: |
|
439 | else: | |
441 | self.z = self.data[self.CODE] |
|
440 | self.z = self.data[self.CODE] | |
442 |
|
441 | |||
443 | self.z = numpy.ma.masked_invalid(self.z) |
|
442 | self.z = numpy.ma.masked_invalid(self.z) | |
444 |
|
443 | |||
445 | if self.decimation is None: |
|
444 | if self.decimation is None: | |
446 | x, y, z = self.fill_gaps(self.x, self.y, self.z) |
|
445 | x, y, z = self.fill_gaps(self.x, self.y, self.z) | |
447 | else: |
|
446 | else: | |
448 | x, y, z = self.fill_gaps(*self.decimate()) |
|
447 | x, y, z = self.fill_gaps(*self.decimate()) | |
449 |
|
448 | |||
450 | for n, ax in enumerate(self.axes): |
|
449 | for n, ax in enumerate(self.axes): | |
451 |
|
450 | |||
452 | self.zmax = self.zmax if self.zmax is not None else numpy.max( |
|
451 | self.zmax = self.zmax if self.zmax is not None else numpy.max( | |
453 | self.z[n]) |
|
452 | self.z[n]) | |
454 | self.zmin = self.zmin if self.zmin is not None else numpy.min( |
|
453 | self.zmin = self.zmin if self.zmin is not None else numpy.min( | |
455 | self.z[n]) |
|
454 | self.z[n]) | |
456 |
|
455 | |||
457 | if ax.firsttime: |
|
456 | if ax.firsttime: | |
458 | if self.zlimits is not None: |
|
457 | if self.zlimits is not None: | |
459 | self.zmin, self.zmax = self.zlimits[n] |
|
458 | self.zmin, self.zmax = self.zlimits[n] | |
460 |
|
459 | |||
461 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
460 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
462 | vmin=self.zmin, |
|
461 | vmin=self.zmin, | |
463 | vmax=self.zmax, |
|
462 | vmax=self.zmax, | |
464 | cmap=self.cmaps[n] |
|
463 | cmap=self.cmaps[n] | |
465 | ) |
|
464 | ) | |
466 | else: |
|
465 | else: | |
467 | if self.zlimits is not None: |
|
466 | if self.zlimits is not None: | |
468 | self.zmin, self.zmax = self.zlimits[n] |
|
467 | self.zmin, self.zmax = self.zlimits[n] | |
469 | ax.collections.remove(ax.collections[0]) |
|
468 | ax.collections.remove(ax.collections[0]) | |
470 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], |
|
469 | ax.plt = ax.pcolormesh(x, y, z[n].T * self.factors[n], | |
471 | vmin=self.zmin, |
|
470 | vmin=self.zmin, | |
472 | vmax=self.zmax, |
|
471 | vmax=self.zmax, | |
473 | cmap=self.cmaps[n] |
|
472 | cmap=self.cmaps[n] | |
474 | ) |
|
473 | ) | |
475 |
|
474 | |||
476 |
|
475 | |||
477 | class OutputPlot(ParametersPlot): |
|
476 | class OutputPlot(ParametersPlot): | |
478 | ''' |
|
477 | ''' | |
479 | Plot data_output object |
|
478 | Plot data_output object | |
480 | ''' |
|
479 | ''' | |
481 |
|
480 | |||
482 | CODE = 'output' |
|
481 | CODE = 'output' | |
483 | colormap = 'seismic' |
|
482 | colormap = 'seismic' | |
484 |
|
483 | |||
485 |
|
484 | |||
486 | class PolarMapPlot(Plot): |
|
485 | class PolarMapPlot(Plot): | |
487 | ''' |
|
486 | ''' | |
488 | Plot for weather radar |
|
487 | Plot for weather radar | |
489 | ''' |
|
488 | ''' | |
490 |
|
489 | |||
491 | CODE = 'param' |
|
490 | CODE = 'param' | |
492 | colormap = 'seismic' |
|
491 | colormap = 'seismic' | |
493 |
|
492 | |||
494 | def setup(self): |
|
493 | def setup(self): | |
495 | self.ncols = 1 |
|
494 | self.ncols = 1 | |
496 | self.nrows = 1 |
|
495 | self.nrows = 1 | |
497 | self.width = 9 |
|
496 | self.width = 9 | |
498 | self.height = 8 |
|
497 | self.height = 8 | |
499 | self.mode = self.data.meta['mode'] |
|
498 | self.mode = self.data.meta['mode'] | |
500 | if self.channels is not None: |
|
499 | if self.channels is not None: | |
501 | self.nplots = len(self.channels) |
|
500 | self.nplots = len(self.channels) | |
502 | self.nrows = len(self.channels) |
|
501 | self.nrows = len(self.channels) | |
503 | else: |
|
502 | else: | |
504 | self.nplots = self.data.shape(self.CODE)[0] |
|
503 | self.nplots = self.data.shape(self.CODE)[0] | |
505 | self.nrows = self.nplots |
|
504 | self.nrows = self.nplots | |
506 | self.channels = list(range(self.nplots)) |
|
505 | self.channels = list(range(self.nplots)) | |
507 | if self.mode == 'E': |
|
506 | if self.mode == 'E': | |
508 | self.xlabel = 'Longitude' |
|
507 | self.xlabel = 'Longitude' | |
509 | self.ylabel = 'Latitude' |
|
508 | self.ylabel = 'Latitude' | |
510 | else: |
|
509 | else: | |
511 | self.xlabel = 'Range (km)' |
|
510 | self.xlabel = 'Range (km)' | |
512 | self.ylabel = 'Height (km)' |
|
511 | self.ylabel = 'Height (km)' | |
513 | self.bgcolor = 'white' |
|
512 | self.bgcolor = 'white' | |
514 | self.cb_labels = self.data.meta['units'] |
|
513 | self.cb_labels = self.data.meta['units'] | |
515 | self.lat = self.data.meta['latitude'] |
|
514 | self.lat = self.data.meta['latitude'] | |
516 | self.lon = self.data.meta['longitude'] |
|
515 | self.lon = self.data.meta['longitude'] | |
517 | self.xmin, self.xmax = float( |
|
516 | self.xmin, self.xmax = float( | |
518 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) |
|
517 | km2deg(self.xmin) + self.lon), float(km2deg(self.xmax) + self.lon) | |
519 | self.ymin, self.ymax = float( |
|
518 | self.ymin, self.ymax = float( | |
520 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) |
|
519 | km2deg(self.ymin) + self.lat), float(km2deg(self.ymax) + self.lat) | |
521 | # self.polar = True |
|
520 | # self.polar = True | |
522 |
|
521 | |||
523 | def plot(self): |
|
522 | def plot(self): | |
524 |
|
523 | |||
525 | for n, ax in enumerate(self.axes): |
|
524 | for n, ax in enumerate(self.axes): | |
526 | data = self.data['param'][self.channels[n]] |
|
525 | data = self.data['param'][self.channels[n]] | |
527 |
|
526 | |||
528 | zeniths = numpy.linspace( |
|
527 | zeniths = numpy.linspace( | |
529 | 0, self.data.meta['max_range'], data.shape[1]) |
|
528 | 0, self.data.meta['max_range'], data.shape[1]) | |
530 | if self.mode == 'E': |
|
529 | if self.mode == 'E': | |
531 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 |
|
530 | azimuths = -numpy.radians(self.data.heights)+numpy.pi/2 | |
532 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
531 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
533 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( |
|
532 | x, y = r*numpy.cos(theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])), r*numpy.sin( | |
534 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) |
|
533 | theta)*numpy.cos(numpy.radians(self.data.meta['elevation'])) | |
535 | x = km2deg(x) + self.lon |
|
534 | x = km2deg(x) + self.lon | |
536 | y = km2deg(y) + self.lat |
|
535 | y = km2deg(y) + self.lat | |
537 | else: |
|
536 | else: | |
538 | azimuths = numpy.radians(self.data.heights) |
|
537 | azimuths = numpy.radians(self.data.heights) | |
539 | r, theta = numpy.meshgrid(zeniths, azimuths) |
|
538 | r, theta = numpy.meshgrid(zeniths, azimuths) | |
540 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) |
|
539 | x, y = r*numpy.cos(theta), r*numpy.sin(theta) | |
541 | self.y = zeniths |
|
540 | self.y = zeniths | |
542 |
|
541 | |||
543 | if ax.firsttime: |
|
542 | if ax.firsttime: | |
544 | if self.zlimits is not None: |
|
543 | if self.zlimits is not None: | |
545 | self.zmin, self.zmax = self.zlimits[n] |
|
544 | self.zmin, self.zmax = self.zlimits[n] | |
546 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
545 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
547 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
546 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
548 | vmin=self.zmin, |
|
547 | vmin=self.zmin, | |
549 | vmax=self.zmax, |
|
548 | vmax=self.zmax, | |
550 | cmap=self.cmaps[n]) |
|
549 | cmap=self.cmaps[n]) | |
551 | else: |
|
550 | else: | |
552 | if self.zlimits is not None: |
|
551 | if self.zlimits is not None: | |
553 | self.zmin, self.zmax = self.zlimits[n] |
|
552 | self.zmin, self.zmax = self.zlimits[n] | |
554 | ax.collections.remove(ax.collections[0]) |
|
553 | ax.collections.remove(ax.collections[0]) | |
555 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
554 | ax.plt = ax.pcolormesh( # r, theta, numpy.ma.array(data, mask=numpy.isnan(data)), | |
556 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), |
|
555 | x, y, numpy.ma.array(data, mask=numpy.isnan(data)), | |
557 | vmin=self.zmin, |
|
556 | vmin=self.zmin, | |
558 | vmax=self.zmax, |
|
557 | vmax=self.zmax, | |
559 | cmap=self.cmaps[n]) |
|
558 | cmap=self.cmaps[n]) | |
560 |
|
559 | |||
561 | if self.mode == 'A': |
|
560 | if self.mode == 'A': | |
562 | continue |
|
561 | continue | |
563 |
|
562 | |||
564 | # plot district names |
|
563 | # plot district names | |
565 | f = open('/data/workspace/schain_scripts/distrito.csv') |
|
564 | f = open('/data/workspace/schain_scripts/distrito.csv') | |
566 | for line in f: |
|
565 | for line in f: | |
567 | label, lon, lat = [s.strip() for s in line.split(',') if s] |
|
566 | label, lon, lat = [s.strip() for s in line.split(',') if s] | |
568 | lat = float(lat) |
|
567 | lat = float(lat) | |
569 | lon = float(lon) |
|
568 | lon = float(lon) | |
570 | # ax.plot(lon, lat, '.b', ms=2) |
|
569 | # ax.plot(lon, lat, '.b', ms=2) | |
571 | ax.text(lon, lat, label.decode('utf8'), ha='center', |
|
570 | ax.text(lon, lat, label.decode('utf8'), ha='center', | |
572 | va='bottom', size='8', color='black') |
|
571 | va='bottom', size='8', color='black') | |
573 |
|
572 | |||
574 | # plot limites |
|
573 | # plot limites | |
575 | limites = [] |
|
574 | limites = [] | |
576 | tmp = [] |
|
575 | tmp = [] | |
577 | for line in open('/data/workspace/schain_scripts/lima.csv'): |
|
576 | for line in open('/data/workspace/schain_scripts/lima.csv'): | |
578 | if '#' in line: |
|
577 | if '#' in line: | |
579 | if tmp: |
|
578 | if tmp: | |
580 | limites.append(tmp) |
|
579 | limites.append(tmp) | |
581 | tmp = [] |
|
580 | tmp = [] | |
582 | continue |
|
581 | continue | |
583 | values = line.strip().split(',') |
|
582 | values = line.strip().split(',') | |
584 | tmp.append((float(values[0]), float(values[1]))) |
|
583 | tmp.append((float(values[0]), float(values[1]))) | |
585 | for points in limites: |
|
584 | for points in limites: | |
586 | ax.add_patch( |
|
585 | ax.add_patch( | |
587 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) |
|
586 | Polygon(points, ec='k', fc='none', ls='--', lw=0.5)) | |
588 |
|
587 | |||
589 | # plot Cuencas |
|
588 | # plot Cuencas | |
590 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): |
|
589 | for cuenca in ('rimac', 'lurin', 'mala', 'chillon', 'chilca', 'chancay-huaral'): | |
591 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) |
|
590 | f = open('/data/workspace/schain_scripts/{}.csv'.format(cuenca)) | |
592 | values = [line.strip().split(',') for line in f] |
|
591 | values = [line.strip().split(',') for line in f] | |
593 | points = [(float(s[0]), float(s[1])) for s in values] |
|
592 | points = [(float(s[0]), float(s[1])) for s in values] | |
594 | ax.add_patch(Polygon(points, ec='b', fc='none')) |
|
593 | ax.add_patch(Polygon(points, ec='b', fc='none')) | |
595 |
|
594 | |||
596 | # plot grid |
|
595 | # plot grid | |
597 | for r in (15, 30, 45, 60): |
|
596 | for r in (15, 30, 45, 60): | |
598 | ax.add_artist(plt.Circle((self.lon, self.lat), |
|
597 | ax.add_artist(plt.Circle((self.lon, self.lat), | |
599 | km2deg(r), color='0.6', fill=False, lw=0.2)) |
|
598 | km2deg(r), color='0.6', fill=False, lw=0.2)) | |
600 | ax.text( |
|
599 | ax.text( | |
601 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), |
|
600 | self.lon + (km2deg(r))*numpy.cos(60*numpy.pi/180), | |
602 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), |
|
601 | self.lat + (km2deg(r))*numpy.sin(60*numpy.pi/180), | |
603 | '{}km'.format(r), |
|
602 | '{}km'.format(r), | |
604 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') |
|
603 | ha='center', va='bottom', size='8', color='0.6', weight='heavy') | |
605 |
|
604 | |||
606 | if self.mode == 'E': |
|
605 | if self.mode == 'E': | |
607 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) |
|
606 | title = 'El={}$^\circ$'.format(self.data.meta['elevation']) | |
608 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) |
|
607 | label = 'E{:02d}'.format(int(self.data.meta['elevation'])) | |
609 | else: |
|
608 | else: | |
610 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) |
|
609 | title = 'Az={}$^\circ$'.format(self.data.meta['azimuth']) | |
611 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) |
|
610 | label = 'A{:02d}'.format(int(self.data.meta['azimuth'])) | |
612 |
|
611 | |||
613 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] |
|
612 | self.save_labels = ['{}-{}'.format(lbl, label) for lbl in self.labels] | |
614 | self.titles = ['{} {}'.format( |
|
613 | self.titles = ['{} {}'.format( | |
615 | self.data.parameters[x], title) for x in self.channels] |
|
614 | self.data.parameters[x], title) for x in self.channels] | |
616 |
|
615 | |||
617 | class ScopePlot(Plot): |
|
616 | class ScopePlot(Plot): | |
618 |
|
617 | |||
619 | ''' |
|
618 | ''' | |
620 | Plot for Scope |
|
619 | Plot for Scope | |
621 | ''' |
|
620 | ''' | |
622 |
|
621 | |||
623 | CODE = 'scope' |
|
622 | CODE = 'scope' | |
624 |
|
623 | |||
625 | def setup(self): |
|
624 | def setup(self): | |
626 |
|
625 | |||
627 | self.xaxis = 'Range (Km)' |
|
626 | self.xaxis = 'Range (Km)' | |
628 | self.ncols = 1 |
|
627 | self.ncols = 1 | |
629 | self.nrows = 1 |
|
628 | self.nrows = 1 | |
630 | self.nplots = 1 |
|
629 | self.nplots = 1 | |
631 | self.ylabel = 'Intensity [dB]' |
|
630 | self.ylabel = 'Intensity [dB]' | |
632 | self.titles = ['Scope'] |
|
631 | self.titles = ['Scope'] | |
633 | self.colorbar = False |
|
632 | self.colorbar = False | |
634 | colspan = 3 |
|
633 | colspan = 3 | |
635 | rowspan = 1 |
|
634 | rowspan = 1 | |
636 |
|
635 | |||
637 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
636 | def plot_iq(self, x, y, channelIndexList, thisDatetime, wintitle): | |
638 |
|
637 | |||
639 | yreal = y[channelIndexList,:].real |
|
638 | yreal = y[channelIndexList,:].real | |
640 | yimag = y[channelIndexList,:].imag |
|
639 | yimag = y[channelIndexList,:].imag | |
641 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
640 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
642 | self.xlabel = "Range (Km)" |
|
641 | self.xlabel = "Range (Km)" | |
643 | self.ylabel = "Intensity - IQ" |
|
642 | self.ylabel = "Intensity - IQ" | |
644 |
|
643 | |||
645 | self.y = yreal |
|
644 | self.y = yreal | |
646 | self.x = x |
|
645 | self.x = x | |
647 | self.xmin = min(x) |
|
646 | self.xmin = min(x) | |
648 | self.xmax = max(x) |
|
647 | self.xmax = max(x) | |
649 |
|
648 | |||
650 |
|
649 | |||
651 | self.titles[0] = title |
|
650 | self.titles[0] = title | |
652 |
|
651 | |||
653 | for i,ax in enumerate(self.axes): |
|
652 | for i,ax in enumerate(self.axes): | |
654 | title = "Channel %d" %(i) |
|
653 | title = "Channel %d" %(i) | |
655 | if ax.firsttime: |
|
654 | if ax.firsttime: | |
656 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] |
|
655 | ax.plt_r = ax.plot(x, yreal[i,:], color='b')[0] | |
657 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] |
|
656 | ax.plt_i = ax.plot(x, yimag[i,:], color='r')[0] | |
658 | else: |
|
657 | else: | |
659 | #pass |
|
658 | #pass | |
660 | ax.plt_r.set_data(x, yreal[i,:]) |
|
659 | ax.plt_r.set_data(x, yreal[i,:]) | |
661 | ax.plt_i.set_data(x, yimag[i,:]) |
|
660 | ax.plt_i.set_data(x, yimag[i,:]) | |
662 |
|
661 | |||
663 | def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): |
|
662 | def plot_power(self, x, y, channelIndexList, thisDatetime, wintitle): | |
664 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) |
|
663 | y = y[channelIndexList,:] * numpy.conjugate(y[channelIndexList,:]) | |
665 | yreal = y.real |
|
664 | yreal = y.real | |
666 | self.y = yreal |
|
665 | self.y = yreal | |
667 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
666 | title = wintitle + " Scope: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
668 | self.xlabel = "Range (Km)" |
|
667 | self.xlabel = "Range (Km)" | |
669 | self.ylabel = "Intensity" |
|
668 | self.ylabel = "Intensity" | |
670 | self.xmin = min(x) |
|
669 | self.xmin = min(x) | |
671 | self.xmax = max(x) |
|
670 | self.xmax = max(x) | |
672 |
|
671 | |||
673 |
|
672 | |||
674 | self.titles[0] = title |
|
673 | self.titles[0] = title | |
675 |
|
674 | |||
676 | for i,ax in enumerate(self.axes): |
|
675 | for i,ax in enumerate(self.axes): | |
677 | title = "Channel %d" %(i) |
|
676 | title = "Channel %d" %(i) | |
678 |
|
677 | |||
679 | ychannel = yreal[i,:] |
|
678 | ychannel = yreal[i,:] | |
680 |
|
679 | |||
681 | if ax.firsttime: |
|
680 | if ax.firsttime: | |
682 | ax.plt_r = ax.plot(x, ychannel)[0] |
|
681 | ax.plt_r = ax.plot(x, ychannel)[0] | |
683 | else: |
|
682 | else: | |
684 | #pass |
|
683 | #pass | |
685 | ax.plt_r.set_data(x, ychannel) |
|
684 | ax.plt_r.set_data(x, ychannel) | |
686 |
|
685 | |||
687 |
|
686 | |||
688 | def plot(self): |
|
687 | def plot(self): | |
689 |
|
688 | |||
690 | if self.channels: |
|
689 | if self.channels: | |
691 | channels = self.channels |
|
690 | channels = self.channels | |
692 | else: |
|
691 | else: | |
693 | channels = self.data.channels |
|
692 | channels = self.data.channels | |
694 |
|
693 | |||
695 |
|
694 | |||
696 |
|
695 | |||
697 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) |
|
696 | thisDatetime = datetime.datetime.utcfromtimestamp(self.data.times[-1]) | |
698 |
|
697 | |||
699 | scope = self.data['scope'] |
|
698 | scope = self.data['scope'] | |
700 |
|
699 | |||
701 |
|
700 | |||
702 | if self.data.flagDataAsBlock: |
|
701 | if self.data.flagDataAsBlock: | |
703 |
|
702 | |||
704 | for i in range(self.data.nProfiles): |
|
703 | for i in range(self.data.nProfiles): | |
705 |
|
704 | |||
706 | wintitle1 = " [Profile = %d] " %i |
|
705 | wintitle1 = " [Profile = %d] " %i | |
707 |
|
706 | |||
708 | if self.type == "power": |
|
707 | if self.type == "power": | |
709 | self.plot_power(self.data.heights, |
|
708 | self.plot_power(self.data.heights, | |
710 | scope[:,i,:], |
|
709 | scope[:,i,:], | |
711 | channels, |
|
710 | channels, | |
712 | thisDatetime, |
|
711 | thisDatetime, | |
713 | wintitle1 |
|
712 | wintitle1 | |
714 | ) |
|
713 | ) | |
715 |
|
714 | |||
716 | if self.type == "iq": |
|
715 | if self.type == "iq": | |
717 | self.plot_iq(self.data.heights, |
|
716 | self.plot_iq(self.data.heights, | |
718 | scope[:,i,:], |
|
717 | scope[:,i,:], | |
719 | channels, |
|
718 | channels, | |
720 | thisDatetime, |
|
719 | thisDatetime, | |
721 | wintitle1 |
|
720 | wintitle1 | |
722 | ) |
|
721 | ) | |
723 |
|
722 | |||
724 |
|
723 | |||
725 |
|
724 | |||
726 |
|
725 | |||
727 |
|
726 | |||
728 | else: |
|
727 | else: | |
729 | wintitle = " [Profile = %d] " %self.data.profileIndex |
|
728 | wintitle = " [Profile = %d] " %self.data.profileIndex | |
730 |
|
729 | |||
731 | if self.type == "power": |
|
730 | if self.type == "power": | |
732 | self.plot_power(self.data.heights, |
|
731 | self.plot_power(self.data.heights, | |
733 | scope, |
|
732 | scope, | |
734 | channels, |
|
733 | channels, | |
735 | thisDatetime, |
|
734 | thisDatetime, | |
736 | wintitle |
|
735 | wintitle | |
737 | ) |
|
736 | ) | |
738 |
|
737 | |||
739 | if self.type == "iq": |
|
738 | if self.type == "iq": | |
740 | self.plot_iq(self.data.heights, |
|
739 | self.plot_iq(self.data.heights, | |
741 | scope, |
|
740 | scope, | |
742 | channels, |
|
741 | channels, | |
743 | thisDatetime, |
|
742 | thisDatetime, | |
744 | wintitle |
|
743 | wintitle | |
745 | ) |
|
744 | ) | |
746 |
|
745 | |||
747 |
|
746 | |||
748 | No newline at end of file |
|
747 |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
@@ -1,1588 +1,1589 | |||||
1 | ''' |
|
1 | ''' | |
2 | Created on Jul 9, 2014 |
|
2 | Created on Jul 9, 2014 | |
3 |
|
3 | |||
4 | @author: roj-idl71 |
|
4 | @author: roj-idl71 | |
5 | ''' |
|
5 | ''' | |
6 | import os |
|
6 | import os | |
7 | import datetime |
|
7 | import datetime | |
8 | import numpy |
|
8 | import numpy | |
9 |
|
9 | |||
10 | from .figure import Figure, isRealtime, isTimeInHourRange |
|
10 | from .figure import Figure, isRealtime, isTimeInHourRange | |
11 | from .plotting_codes import * |
|
11 | from .plotting_codes import * | |
12 | from schainpy.model.proc.jroproc_base import MPDecorator |
|
12 | from schainpy.model.proc.jroproc_base import MPDecorator | |
13 |
|
13 | |||
14 | from schainpy.utils import log |
|
14 | from schainpy.utils import log | |
15 |
|
15 | |||
16 | @MPDecorator |
|
16 | @MPDecorator | |
17 | class SpectraPlot_(Figure): |
|
17 | class SpectraPlot_(Figure): | |
18 |
|
18 | |||
19 | isConfig = None |
|
19 | isConfig = None | |
20 | __nsubplots = None |
|
20 | __nsubplots = None | |
21 |
|
21 | |||
22 | WIDTHPROF = None |
|
22 | WIDTHPROF = None | |
23 | HEIGHTPROF = None |
|
23 | HEIGHTPROF = None | |
24 | PREFIX = 'spc' |
|
24 | PREFIX = 'spc' | |
25 |
|
25 | |||
26 | def __init__(self): |
|
26 | def __init__(self): | |
27 | Figure.__init__(self) |
|
27 | Figure.__init__(self) | |
28 | self.isConfig = False |
|
28 | self.isConfig = False | |
29 | self.__nsubplots = 1 |
|
29 | self.__nsubplots = 1 | |
30 | self.WIDTH = 250 |
|
30 | self.WIDTH = 250 | |
31 | self.HEIGHT = 250 |
|
31 | self.HEIGHT = 250 | |
32 | self.WIDTHPROF = 120 |
|
32 | self.WIDTHPROF = 120 | |
33 | self.HEIGHTPROF = 0 |
|
33 | self.HEIGHTPROF = 0 | |
34 | self.counter_imagwr = 0 |
|
34 | self.counter_imagwr = 0 | |
35 |
|
35 | |||
36 | self.PLOT_CODE = SPEC_CODE |
|
36 | self.PLOT_CODE = SPEC_CODE | |
37 |
|
37 | |||
38 | self.FTP_WEI = None |
|
38 | self.FTP_WEI = None | |
39 | self.EXP_CODE = None |
|
39 | self.EXP_CODE = None | |
40 | self.SUB_EXP_CODE = None |
|
40 | self.SUB_EXP_CODE = None | |
41 | self.PLOT_POS = None |
|
41 | self.PLOT_POS = None | |
42 |
|
42 | |||
43 | self.__xfilter_ena = False |
|
43 | self.__xfilter_ena = False | |
44 | self.__yfilter_ena = False |
|
44 | self.__yfilter_ena = False | |
45 |
|
45 | |||
46 | self.indice=1 |
|
46 | self.indice=1 | |
47 |
|
47 | |||
48 | def getSubplots(self): |
|
48 | def getSubplots(self): | |
49 |
|
49 | |||
50 | ncol = int(numpy.sqrt(self.nplots)+0.9) |
|
50 | ncol = int(numpy.sqrt(self.nplots)+0.9) | |
51 | nrow = int(self.nplots*1./ncol + 0.9) |
|
51 | nrow = int(self.nplots*1./ncol + 0.9) | |
52 |
|
52 | |||
53 | return nrow, ncol |
|
53 | return nrow, ncol | |
54 |
|
54 | |||
55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
55 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
56 |
|
56 | |||
57 | self.__showprofile = showprofile |
|
57 | self.__showprofile = showprofile | |
58 | self.nplots = nplots |
|
58 | self.nplots = nplots | |
59 |
|
59 | |||
60 | ncolspan = 1 |
|
60 | ncolspan = 1 | |
61 | colspan = 1 |
|
61 | colspan = 1 | |
62 | if showprofile: |
|
62 | if showprofile: | |
63 | ncolspan = 3 |
|
63 | ncolspan = 3 | |
64 | colspan = 2 |
|
64 | colspan = 2 | |
65 | self.__nsubplots = 2 |
|
65 | self.__nsubplots = 2 | |
66 |
|
66 | |||
67 | self.createFigure(id = id, |
|
67 | self.createFigure(id = id, | |
68 | wintitle = wintitle, |
|
68 | wintitle = wintitle, | |
69 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
69 | widthplot = self.WIDTH + self.WIDTHPROF, | |
70 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
70 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
71 | show=show) |
|
71 | show=show) | |
72 |
|
72 | |||
73 | nrow, ncol = self.getSubplots() |
|
73 | nrow, ncol = self.getSubplots() | |
74 |
|
74 | |||
75 | counter = 0 |
|
75 | counter = 0 | |
76 | for y in range(nrow): |
|
76 | for y in range(nrow): | |
77 | for x in range(ncol): |
|
77 | for x in range(ncol): | |
78 |
|
78 | |||
79 | if counter >= self.nplots: |
|
79 | if counter >= self.nplots: | |
80 | break |
|
80 | break | |
81 |
|
81 | |||
82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
82 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
83 |
|
83 | |||
84 | if showprofile: |
|
84 | if showprofile: | |
85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
85 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
86 |
|
86 | |||
87 | counter += 1 |
|
87 | counter += 1 | |
88 |
|
88 | |||
89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, |
|
89 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile=True, | |
90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
90 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
91 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
92 | server=None, folder=None, username=None, password=None, |
|
92 | server=None, folder=None, username=None, password=None, | |
93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, |
|
93 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, realtime=False, | |
94 | xaxis="frequency", colormap='jet', normFactor=None): |
|
94 | xaxis="frequency", colormap='jet', normFactor=None): | |
95 |
|
95 | |||
96 | """ |
|
96 | """ | |
97 |
|
97 | |||
98 | Input: |
|
98 | Input: | |
99 | dataOut : |
|
99 | dataOut : | |
100 | id : |
|
100 | id : | |
101 | wintitle : |
|
101 | wintitle : | |
102 | channelList : |
|
102 | channelList : | |
103 | showProfile : |
|
103 | showProfile : | |
104 | xmin : None, |
|
104 | xmin : None, | |
105 | xmax : None, |
|
105 | xmax : None, | |
106 | ymin : None, |
|
106 | ymin : None, | |
107 | ymax : None, |
|
107 | ymax : None, | |
108 | zmin : None, |
|
108 | zmin : None, | |
109 | zmax : None |
|
109 | zmax : None | |
110 | """ |
|
110 | """ | |
111 | if dataOut.flagNoData: |
|
111 | if dataOut.flagNoData: | |
112 | return dataOut |
|
112 | return dataOut | |
113 |
|
113 | |||
114 | if realtime: |
|
114 | if realtime: | |
115 | if not(isRealtime(utcdatatime = dataOut.utctime)): |
|
115 | if not(isRealtime(utcdatatime = dataOut.utctime)): | |
116 | print('Skipping this plot function') |
|
116 | print('Skipping this plot function') | |
117 | return |
|
117 | return | |
118 |
|
118 | |||
119 | if channelList == None: |
|
119 | if channelList == None: | |
120 | channelIndexList = dataOut.channelIndexList |
|
120 | channelIndexList = dataOut.channelIndexList | |
121 | else: |
|
121 | else: | |
122 | channelIndexList = [] |
|
122 | channelIndexList = [] | |
123 | for channel in channelList: |
|
123 | for channel in channelList: | |
124 | if channel not in dataOut.channelList: |
|
124 | if channel not in dataOut.channelList: | |
125 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) |
|
125 | raise ValueError("Channel %d is not in dataOut.channelList" %channel) | |
126 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
126 | channelIndexList.append(dataOut.channelList.index(channel)) | |
127 |
|
127 | |||
128 | if normFactor is None: |
|
128 | if normFactor is None: | |
129 | factor = dataOut.normFactor |
|
129 | factor = dataOut.normFactor | |
130 | else: |
|
130 | else: | |
131 | factor = normFactor |
|
131 | factor = normFactor | |
132 | if xaxis == "frequency": |
|
132 | if xaxis == "frequency": | |
133 | x = dataOut.getFreqRange(1)/1000. |
|
133 | x = dataOut.getFreqRange(1)/1000. | |
134 | xlabel = "Frequency (kHz)" |
|
134 | xlabel = "Frequency (kHz)" | |
135 |
|
135 | |||
136 | elif xaxis == "time": |
|
136 | elif xaxis == "time": | |
137 | x = dataOut.getAcfRange(1) |
|
137 | x = dataOut.getAcfRange(1) | |
138 | xlabel = "Time (ms)" |
|
138 | xlabel = "Time (ms)" | |
139 |
|
139 | |||
140 | else: |
|
140 | else: | |
141 | x = dataOut.getVelRange(1) |
|
141 | x = dataOut.getVelRange(1) | |
142 | xlabel = "Velocity (m/s)" |
|
142 | xlabel = "Velocity (m/s)" | |
143 |
|
143 | |||
144 | ylabel = "Range (km)" |
|
144 | ylabel = "Range (km)" | |
145 |
|
145 | |||
146 | y = dataOut.getHeiRange() |
|
146 | y = dataOut.getHeiRange() | |
147 | z = dataOut.data_spc/factor |
|
147 | z = dataOut.data_spc/factor | |
148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
148 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
149 | zdB = 10*numpy.log10(z) |
|
149 | zdB = 10*numpy.log10(z) | |
150 |
|
150 | |||
151 | avg = numpy.average(z, axis=1) |
|
151 | avg = numpy.average(z, axis=1) | |
152 | avgdB = 10*numpy.log10(avg) |
|
152 | avgdB = 10*numpy.log10(avg) | |
153 |
|
153 | |||
154 | noise = dataOut.getNoise()/factor |
|
154 | noise = dataOut.getNoise()/factor | |
155 | noisedB = 10*numpy.log10(noise) |
|
155 | noisedB = 10*numpy.log10(noise) | |
156 |
|
156 | |||
157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
157 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
158 | title = wintitle + " Spectra" |
|
158 | title = wintitle + " Spectra" | |
159 |
|
159 | |||
160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
160 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
161 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
162 |
|
162 | |||
163 | if not self.isConfig: |
|
163 | if not self.isConfig: | |
164 |
|
164 | |||
165 | nplots = len(channelIndexList) |
|
165 | nplots = len(channelIndexList) | |
166 |
|
166 | |||
167 | self.setup(id=id, |
|
167 | self.setup(id=id, | |
168 | nplots=nplots, |
|
168 | nplots=nplots, | |
169 | wintitle=wintitle, |
|
169 | wintitle=wintitle, | |
170 | showprofile=showprofile, |
|
170 | showprofile=showprofile, | |
171 | show=show) |
|
171 | show=show) | |
172 |
|
172 | |||
173 | if xmin == None: xmin = numpy.nanmin(x) |
|
173 | if xmin == None: xmin = numpy.nanmin(x) | |
174 | if xmax == None: xmax = numpy.nanmax(x) |
|
174 | if xmax == None: xmax = numpy.nanmax(x) | |
175 | if ymin == None: ymin = numpy.nanmin(y) |
|
175 | if ymin == None: ymin = numpy.nanmin(y) | |
176 | if ymax == None: ymax = numpy.nanmax(y) |
|
176 | if ymax == None: ymax = numpy.nanmax(y) | |
177 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
177 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
178 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
178 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
179 |
|
179 | |||
180 | self.FTP_WEI = ftp_wei |
|
180 | self.FTP_WEI = ftp_wei | |
181 | self.EXP_CODE = exp_code |
|
181 | self.EXP_CODE = exp_code | |
182 | self.SUB_EXP_CODE = sub_exp_code |
|
182 | self.SUB_EXP_CODE = sub_exp_code | |
183 | self.PLOT_POS = plot_pos |
|
183 | self.PLOT_POS = plot_pos | |
184 |
|
184 | |||
185 | self.isConfig = True |
|
185 | self.isConfig = True | |
186 |
|
186 | |||
187 | self.setWinTitle(title) |
|
187 | self.setWinTitle(title) | |
188 |
|
188 | |||
189 | for i in range(self.nplots): |
|
189 | for i in range(self.nplots): | |
190 | index = channelIndexList[i] |
|
190 | index = channelIndexList[i] | |
191 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
191 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
192 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) |
|
192 | title = "Channel %d: %4.2fdB: %s" %(dataOut.channelList[index], noisedB[index], str_datetime) | |
193 | if len(dataOut.beam.codeList) != 0: |
|
193 | if len(dataOut.beam.codeList) != 0: | |
194 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) |
|
194 | title = "Ch%d:%4.2fdB,%2.2f,%2.2f:%s" %(dataOut.channelList[index], noisedB[index], dataOut.beam.azimuthList[index], dataOut.beam.zenithList[index], str_datetime) | |
195 |
|
195 | |||
196 | axes = self.axesList[i*self.__nsubplots] |
|
196 | axes = self.axesList[i*self.__nsubplots] | |
197 | axes.pcolor(x, y, zdB[index,:,:], |
|
197 | axes.pcolor(x, y, zdB[index,:,:], | |
198 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
198 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
199 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, |
|
199 | xlabel=xlabel, ylabel=ylabel, title=title, colormap=colormap, | |
200 | ticksize=9, cblabel='') |
|
200 | ticksize=9, cblabel='') | |
201 |
|
201 | |||
202 | if self.__showprofile: |
|
202 | if self.__showprofile: | |
203 | axes = self.axesList[i*self.__nsubplots +1] |
|
203 | axes = self.axesList[i*self.__nsubplots +1] | |
204 | axes.pline(avgdB[index,:], y, |
|
204 | axes.pline(avgdB[index,:], y, | |
205 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
205 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
206 | xlabel='dB', ylabel='', title='', |
|
206 | xlabel='dB', ylabel='', title='', | |
207 | ytick_visible=False, |
|
207 | ytick_visible=False, | |
208 | grid='x') |
|
208 | grid='x') | |
209 |
|
209 | |||
210 | noiseline = numpy.repeat(noisedB[index], len(y)) |
|
210 | noiseline = numpy.repeat(noisedB[index], len(y)) | |
211 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) |
|
211 | axes.addpline(noiseline, y, idline=1, color="black", linestyle="dashed", lw=2) | |
212 |
|
212 | |||
213 | self.draw() |
|
213 | self.draw() | |
214 |
|
214 | |||
215 | if figfile == None: |
|
215 | if figfile == None: | |
216 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
216 | str_datetime = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
217 | name = str_datetime |
|
217 | name = str_datetime | |
218 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
218 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
219 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) |
|
219 | name = name + '_az' + '_%2.2f'%(dataOut.azimuth) + '_zn' + '_%2.2f'%(dataOut.zenith) | |
220 | figfile = self.getFilename(name) |
|
220 | figfile = self.getFilename(name) | |
221 |
|
221 | |||
222 | self.save(figpath=figpath, |
|
222 | self.save(figpath=figpath, | |
223 | figfile=figfile, |
|
223 | figfile=figfile, | |
224 | save=save, |
|
224 | save=save, | |
225 | ftp=ftp, |
|
225 | ftp=ftp, | |
226 | wr_period=wr_period, |
|
226 | wr_period=wr_period, | |
227 | thisDatetime=thisDatetime) |
|
227 | thisDatetime=thisDatetime) | |
228 |
|
228 | |||
229 |
|
229 | |||
230 | return dataOut |
|
230 | return dataOut | |
|
231 | ||||
231 | @MPDecorator |
|
232 | @MPDecorator | |
232 | class CrossSpectraPlot_(Figure): |
|
233 | class CrossSpectraPlot_(Figure): | |
233 |
|
234 | |||
234 | isConfig = None |
|
235 | isConfig = None | |
235 | __nsubplots = None |
|
236 | __nsubplots = None | |
236 |
|
237 | |||
237 | WIDTH = None |
|
238 | WIDTH = None | |
238 | HEIGHT = None |
|
239 | HEIGHT = None | |
239 | WIDTHPROF = None |
|
240 | WIDTHPROF = None | |
240 | HEIGHTPROF = None |
|
241 | HEIGHTPROF = None | |
241 | PREFIX = 'cspc' |
|
242 | PREFIX = 'cspc' | |
242 |
|
243 | |||
243 | def __init__(self): |
|
244 | def __init__(self): | |
244 | Figure.__init__(self) |
|
245 | Figure.__init__(self) | |
245 | self.isConfig = False |
|
246 | self.isConfig = False | |
246 | self.__nsubplots = 4 |
|
247 | self.__nsubplots = 4 | |
247 | self.counter_imagwr = 0 |
|
248 | self.counter_imagwr = 0 | |
248 | self.WIDTH = 250 |
|
249 | self.WIDTH = 250 | |
249 | self.HEIGHT = 250 |
|
250 | self.HEIGHT = 250 | |
250 | self.WIDTHPROF = 0 |
|
251 | self.WIDTHPROF = 0 | |
251 | self.HEIGHTPROF = 0 |
|
252 | self.HEIGHTPROF = 0 | |
252 |
|
253 | |||
253 | self.PLOT_CODE = CROSS_CODE |
|
254 | self.PLOT_CODE = CROSS_CODE | |
254 | self.FTP_WEI = None |
|
255 | self.FTP_WEI = None | |
255 | self.EXP_CODE = None |
|
256 | self.EXP_CODE = None | |
256 | self.SUB_EXP_CODE = None |
|
257 | self.SUB_EXP_CODE = None | |
257 | self.PLOT_POS = None |
|
258 | self.PLOT_POS = None | |
258 |
|
259 | |||
259 | self.indice=0 |
|
260 | self.indice=0 | |
260 |
|
261 | |||
261 | def getSubplots(self): |
|
262 | def getSubplots(self): | |
262 |
|
263 | |||
263 | ncol = 4 |
|
264 | ncol = 4 | |
264 | nrow = self.nplots |
|
265 | nrow = self.nplots | |
265 |
|
266 | |||
266 | return nrow, ncol |
|
267 | return nrow, ncol | |
267 |
|
268 | |||
268 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
269 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
269 |
|
270 | |||
270 | self.__showprofile = showprofile |
|
271 | self.__showprofile = showprofile | |
271 | self.nplots = nplots |
|
272 | self.nplots = nplots | |
272 |
|
273 | |||
273 | ncolspan = 1 |
|
274 | ncolspan = 1 | |
274 | colspan = 1 |
|
275 | colspan = 1 | |
275 |
|
276 | |||
276 | self.createFigure(id = id, |
|
277 | self.createFigure(id = id, | |
277 | wintitle = wintitle, |
|
278 | wintitle = wintitle, | |
278 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
279 | widthplot = self.WIDTH + self.WIDTHPROF, | |
279 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
280 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
280 | show=True) |
|
281 | show=True) | |
281 |
|
282 | |||
282 | nrow, ncol = self.getSubplots() |
|
283 | nrow, ncol = self.getSubplots() | |
283 |
|
284 | |||
284 | counter = 0 |
|
285 | counter = 0 | |
285 | for y in range(nrow): |
|
286 | for y in range(nrow): | |
286 | for x in range(ncol): |
|
287 | for x in range(ncol): | |
287 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
288 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
288 |
|
289 | |||
289 | counter += 1 |
|
290 | counter += 1 | |
290 |
|
291 | |||
291 | def run(self, dataOut, id, wintitle="", pairsList=None, |
|
292 | def run(self, dataOut, id, wintitle="", pairsList=None, | |
292 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
293 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
293 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, |
|
294 | coh_min=None, coh_max=None, phase_min=None, phase_max=None, | |
294 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
295 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
295 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
296 | power_cmap='jet', coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
296 | server=None, folder=None, username=None, password=None, |
|
297 | server=None, folder=None, username=None, password=None, | |
297 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, |
|
298 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, | |
298 | xaxis='frequency'): |
|
299 | xaxis='frequency'): | |
299 |
|
300 | |||
300 | """ |
|
301 | """ | |
301 |
|
302 | |||
302 | Input: |
|
303 | Input: | |
303 | dataOut : |
|
304 | dataOut : | |
304 | id : |
|
305 | id : | |
305 | wintitle : |
|
306 | wintitle : | |
306 | channelList : |
|
307 | channelList : | |
307 | showProfile : |
|
308 | showProfile : | |
308 | xmin : None, |
|
309 | xmin : None, | |
309 | xmax : None, |
|
310 | xmax : None, | |
310 | ymin : None, |
|
311 | ymin : None, | |
311 | ymax : None, |
|
312 | ymax : None, | |
312 | zmin : None, |
|
313 | zmin : None, | |
313 | zmax : None |
|
314 | zmax : None | |
314 | """ |
|
315 | """ | |
315 |
|
316 | |||
316 | if dataOut.flagNoData: |
|
317 | if dataOut.flagNoData: | |
317 | return dataOut |
|
318 | return dataOut | |
318 |
|
319 | |||
319 | if pairsList == None: |
|
320 | if pairsList == None: | |
320 | pairsIndexList = dataOut.pairsIndexList |
|
321 | pairsIndexList = dataOut.pairsIndexList | |
321 | else: |
|
322 | else: | |
322 | pairsIndexList = [] |
|
323 | pairsIndexList = [] | |
323 | for pair in pairsList: |
|
324 | for pair in pairsList: | |
324 | if pair not in dataOut.pairsList: |
|
325 | if pair not in dataOut.pairsList: | |
325 | raise ValueError("Pair %s is not in dataOut.pairsList" %str(pair)) |
|
326 | raise ValueError("Pair %s is not in dataOut.pairsList" %str(pair)) | |
326 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
327 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
327 |
|
328 | |||
328 | if not pairsIndexList: |
|
329 | if not pairsIndexList: | |
329 | return |
|
330 | return | |
330 |
|
331 | |||
331 | if len(pairsIndexList) > 4: |
|
332 | if len(pairsIndexList) > 4: | |
332 | pairsIndexList = pairsIndexList[0:4] |
|
333 | pairsIndexList = pairsIndexList[0:4] | |
333 |
|
334 | |||
334 | if normFactor is None: |
|
335 | if normFactor is None: | |
335 | factor = dataOut.normFactor |
|
336 | factor = dataOut.normFactor | |
336 | else: |
|
337 | else: | |
337 | factor = normFactor |
|
338 | factor = normFactor | |
338 | x = dataOut.getVelRange(1) |
|
339 | x = dataOut.getVelRange(1) | |
339 | y = dataOut.getHeiRange() |
|
340 | y = dataOut.getHeiRange() | |
340 | z = dataOut.data_spc[:,:,:]/factor |
|
341 | z = dataOut.data_spc[:,:,:]/factor | |
341 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
342 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
342 |
|
343 | |||
343 | noise = dataOut.noise/factor |
|
344 | noise = dataOut.noise/factor | |
344 |
|
345 | |||
345 | zdB = 10*numpy.log10(z) |
|
346 | zdB = 10*numpy.log10(z) | |
346 | noisedB = 10*numpy.log10(noise) |
|
347 | noisedB = 10*numpy.log10(noise) | |
347 |
|
348 | |||
348 | if coh_min == None: |
|
349 | if coh_min == None: | |
349 | coh_min = 0.0 |
|
350 | coh_min = 0.0 | |
350 | if coh_max == None: |
|
351 | if coh_max == None: | |
351 | coh_max = 1.0 |
|
352 | coh_max = 1.0 | |
352 |
|
353 | |||
353 | if phase_min == None: |
|
354 | if phase_min == None: | |
354 | phase_min = -180 |
|
355 | phase_min = -180 | |
355 | if phase_max == None: |
|
356 | if phase_max == None: | |
356 | phase_max = 180 |
|
357 | phase_max = 180 | |
357 |
|
358 | |||
358 | #thisDatetime = dataOut.datatime |
|
359 | #thisDatetime = dataOut.datatime | |
359 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
360 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
360 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
361 | title = wintitle + " Cross-Spectra: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
361 | # xlabel = "Velocity (m/s)" |
|
362 | # xlabel = "Velocity (m/s)" | |
362 | ylabel = "Range (Km)" |
|
363 | ylabel = "Range (Km)" | |
363 |
|
364 | |||
364 | if xaxis == "frequency": |
|
365 | if xaxis == "frequency": | |
365 | x = dataOut.getFreqRange(1)/1000. |
|
366 | x = dataOut.getFreqRange(1)/1000. | |
366 | xlabel = "Frequency (kHz)" |
|
367 | xlabel = "Frequency (kHz)" | |
367 |
|
368 | |||
368 | elif xaxis == "time": |
|
369 | elif xaxis == "time": | |
369 | x = dataOut.getAcfRange(1) |
|
370 | x = dataOut.getAcfRange(1) | |
370 | xlabel = "Time (ms)" |
|
371 | xlabel = "Time (ms)" | |
371 |
|
372 | |||
372 | else: |
|
373 | else: | |
373 | x = dataOut.getVelRange(1) |
|
374 | x = dataOut.getVelRange(1) | |
374 | xlabel = "Velocity (m/s)" |
|
375 | xlabel = "Velocity (m/s)" | |
375 |
|
376 | |||
376 | if not self.isConfig: |
|
377 | if not self.isConfig: | |
377 |
|
378 | |||
378 | nplots = len(pairsIndexList) |
|
379 | nplots = len(pairsIndexList) | |
379 |
|
380 | |||
380 | self.setup(id=id, |
|
381 | self.setup(id=id, | |
381 | nplots=nplots, |
|
382 | nplots=nplots, | |
382 | wintitle=wintitle, |
|
383 | wintitle=wintitle, | |
383 | showprofile=False, |
|
384 | showprofile=False, | |
384 | show=show) |
|
385 | show=show) | |
385 |
|
386 | |||
386 | avg = numpy.abs(numpy.average(z, axis=1)) |
|
387 | avg = numpy.abs(numpy.average(z, axis=1)) | |
387 | avgdB = 10*numpy.log10(avg) |
|
388 | avgdB = 10*numpy.log10(avg) | |
388 |
|
389 | |||
389 | if xmin == None: xmin = numpy.nanmin(x) |
|
390 | if xmin == None: xmin = numpy.nanmin(x) | |
390 | if xmax == None: xmax = numpy.nanmax(x) |
|
391 | if xmax == None: xmax = numpy.nanmax(x) | |
391 | if ymin == None: ymin = numpy.nanmin(y) |
|
392 | if ymin == None: ymin = numpy.nanmin(y) | |
392 | if ymax == None: ymax = numpy.nanmax(y) |
|
393 | if ymax == None: ymax = numpy.nanmax(y) | |
393 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
394 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
394 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
395 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
395 |
|
396 | |||
396 | self.FTP_WEI = ftp_wei |
|
397 | self.FTP_WEI = ftp_wei | |
397 | self.EXP_CODE = exp_code |
|
398 | self.EXP_CODE = exp_code | |
398 | self.SUB_EXP_CODE = sub_exp_code |
|
399 | self.SUB_EXP_CODE = sub_exp_code | |
399 | self.PLOT_POS = plot_pos |
|
400 | self.PLOT_POS = plot_pos | |
400 |
|
401 | |||
401 | self.isConfig = True |
|
402 | self.isConfig = True | |
402 |
|
403 | |||
403 | self.setWinTitle(title) |
|
404 | self.setWinTitle(title) | |
404 |
|
405 | |||
405 |
|
406 | |||
406 | for i in range(self.nplots): |
|
407 | for i in range(self.nplots): | |
407 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
408 | pair = dataOut.pairsList[pairsIndexList[i]] | |
408 |
|
409 | |||
409 | chan_index0 = dataOut.channelList.index(pair[0]) |
|
410 | chan_index0 = dataOut.channelList.index(pair[0]) | |
410 | chan_index1 = dataOut.channelList.index(pair[1]) |
|
411 | chan_index1 = dataOut.channelList.index(pair[1]) | |
411 |
|
412 | |||
412 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) |
|
413 | str_datetime = '%s %s'%(thisDatetime.strftime("%Y/%m/%d"),thisDatetime.strftime("%H:%M:%S")) | |
413 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) |
|
414 | title = "Ch%d: %4.2fdB: %s" %(pair[0], noisedB[chan_index0], str_datetime) | |
414 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) |
|
415 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index0,:,:]/factor) | |
415 | axes0 = self.axesList[i*self.__nsubplots] |
|
416 | axes0 = self.axesList[i*self.__nsubplots] | |
416 | axes0.pcolor(x, y, zdB, |
|
417 | axes0.pcolor(x, y, zdB, | |
417 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
418 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
418 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
419 | xlabel=xlabel, ylabel=ylabel, title=title, | |
419 | ticksize=9, colormap=power_cmap, cblabel='') |
|
420 | ticksize=9, colormap=power_cmap, cblabel='') | |
420 |
|
421 | |||
421 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) |
|
422 | title = "Ch%d: %4.2fdB: %s" %(pair[1], noisedB[chan_index1], str_datetime) | |
422 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) |
|
423 | zdB = 10.*numpy.log10(dataOut.data_spc[chan_index1,:,:]/factor) | |
423 | axes0 = self.axesList[i*self.__nsubplots+1] |
|
424 | axes0 = self.axesList[i*self.__nsubplots+1] | |
424 | axes0.pcolor(x, y, zdB, |
|
425 | axes0.pcolor(x, y, zdB, | |
425 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
426 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
426 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
427 | xlabel=xlabel, ylabel=ylabel, title=title, | |
427 | ticksize=9, colormap=power_cmap, cblabel='') |
|
428 | ticksize=9, colormap=power_cmap, cblabel='') | |
428 |
|
429 | |||
429 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) |
|
430 | coherenceComplex = dataOut.data_cspc[pairsIndexList[i],:,:] / numpy.sqrt( dataOut.data_spc[chan_index0,:,:]*dataOut.data_spc[chan_index1,:,:] ) | |
430 | coherence = numpy.abs(coherenceComplex) |
|
431 | coherence = numpy.abs(coherenceComplex) | |
431 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi |
|
432 | # phase = numpy.arctan(-1*coherenceComplex.imag/coherenceComplex.real)*180/numpy.pi | |
432 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi |
|
433 | phase = numpy.arctan2(coherenceComplex.imag, coherenceComplex.real)*180/numpy.pi | |
433 |
|
434 | |||
434 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) |
|
435 | title = "Coherence Ch%d * Ch%d" %(pair[0], pair[1]) | |
435 | axes0 = self.axesList[i*self.__nsubplots+2] |
|
436 | axes0 = self.axesList[i*self.__nsubplots+2] | |
436 | axes0.pcolor(x, y, coherence, |
|
437 | axes0.pcolor(x, y, coherence, | |
437 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, |
|
438 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=coh_min, zmax=coh_max, | |
438 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
439 | xlabel=xlabel, ylabel=ylabel, title=title, | |
439 | ticksize=9, colormap=coherence_cmap, cblabel='') |
|
440 | ticksize=9, colormap=coherence_cmap, cblabel='') | |
440 |
|
441 | |||
441 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) |
|
442 | title = "Phase Ch%d * Ch%d" %(pair[0], pair[1]) | |
442 | axes0 = self.axesList[i*self.__nsubplots+3] |
|
443 | axes0 = self.axesList[i*self.__nsubplots+3] | |
443 | axes0.pcolor(x, y, phase, |
|
444 | axes0.pcolor(x, y, phase, | |
444 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
445 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
445 | xlabel=xlabel, ylabel=ylabel, title=title, |
|
446 | xlabel=xlabel, ylabel=ylabel, title=title, | |
446 | ticksize=9, colormap=phase_cmap, cblabel='') |
|
447 | ticksize=9, colormap=phase_cmap, cblabel='') | |
447 |
|
448 | |||
448 | self.draw() |
|
449 | self.draw() | |
449 |
|
450 | |||
450 | self.save(figpath=figpath, |
|
451 | self.save(figpath=figpath, | |
451 | figfile=figfile, |
|
452 | figfile=figfile, | |
452 | save=save, |
|
453 | save=save, | |
453 | ftp=ftp, |
|
454 | ftp=ftp, | |
454 | wr_period=wr_period, |
|
455 | wr_period=wr_period, | |
455 | thisDatetime=thisDatetime) |
|
456 | thisDatetime=thisDatetime) | |
456 |
|
457 | |||
457 | return dataOut |
|
458 | return dataOut | |
458 |
|
459 | |||
459 | @MPDecorator |
|
460 | @MPDecorator | |
460 | class RTIPlot_(Figure): |
|
461 | class RTIPlot_(Figure): | |
461 |
|
462 | |||
462 | __isConfig = None |
|
463 | __isConfig = None | |
463 | __nsubplots = None |
|
464 | __nsubplots = None | |
464 |
|
465 | |||
465 | WIDTHPROF = None |
|
466 | WIDTHPROF = None | |
466 | HEIGHTPROF = None |
|
467 | HEIGHTPROF = None | |
467 | PREFIX = 'rti' |
|
468 | PREFIX = 'rti' | |
468 |
|
469 | |||
469 | def __init__(self): |
|
470 | def __init__(self): | |
470 |
|
471 | |||
471 | Figure.__init__(self) |
|
472 | Figure.__init__(self) | |
472 | self.timerange = None |
|
473 | self.timerange = None | |
473 | self.isConfig = False |
|
474 | self.isConfig = False | |
474 | self.__nsubplots = 1 |
|
475 | self.__nsubplots = 1 | |
475 |
|
476 | |||
476 | self.WIDTH = 800 |
|
477 | self.WIDTH = 800 | |
477 | self.HEIGHT = 250 |
|
478 | self.HEIGHT = 250 | |
478 | self.WIDTHPROF = 120 |
|
479 | self.WIDTHPROF = 120 | |
479 | self.HEIGHTPROF = 0 |
|
480 | self.HEIGHTPROF = 0 | |
480 | self.counter_imagwr = 0 |
|
481 | self.counter_imagwr = 0 | |
481 |
|
482 | |||
482 | self.PLOT_CODE = RTI_CODE |
|
483 | self.PLOT_CODE = RTI_CODE | |
483 |
|
484 | |||
484 | self.FTP_WEI = None |
|
485 | self.FTP_WEI = None | |
485 | self.EXP_CODE = None |
|
486 | self.EXP_CODE = None | |
486 | self.SUB_EXP_CODE = None |
|
487 | self.SUB_EXP_CODE = None | |
487 | self.PLOT_POS = None |
|
488 | self.PLOT_POS = None | |
488 | self.tmin = None |
|
489 | self.tmin = None | |
489 | self.tmax = None |
|
490 | self.tmax = None | |
490 |
|
491 | |||
491 | self.xmin = None |
|
492 | self.xmin = None | |
492 | self.xmax = None |
|
493 | self.xmax = None | |
493 |
|
494 | |||
494 | self.figfile = None |
|
495 | self.figfile = None | |
495 |
|
496 | |||
496 | def getSubplots(self): |
|
497 | def getSubplots(self): | |
497 |
|
498 | |||
498 | ncol = 1 |
|
499 | ncol = 1 | |
499 | nrow = self.nplots |
|
500 | nrow = self.nplots | |
500 |
|
501 | |||
501 | return nrow, ncol |
|
502 | return nrow, ncol | |
502 |
|
503 | |||
503 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
504 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
504 |
|
505 | |||
505 | self.__showprofile = showprofile |
|
506 | self.__showprofile = showprofile | |
506 | self.nplots = nplots |
|
507 | self.nplots = nplots | |
507 |
|
508 | |||
508 | ncolspan = 1 |
|
509 | ncolspan = 1 | |
509 | colspan = 1 |
|
510 | colspan = 1 | |
510 | if showprofile: |
|
511 | if showprofile: | |
511 | ncolspan = 7 |
|
512 | ncolspan = 7 | |
512 | colspan = 6 |
|
513 | colspan = 6 | |
513 | self.__nsubplots = 2 |
|
514 | self.__nsubplots = 2 | |
514 |
|
515 | |||
515 | self.createFigure(id = id, |
|
516 | self.createFigure(id = id, | |
516 | wintitle = wintitle, |
|
517 | wintitle = wintitle, | |
517 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
518 | widthplot = self.WIDTH + self.WIDTHPROF, | |
518 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
519 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
519 | show=show) |
|
520 | show=show) | |
520 |
|
521 | |||
521 | nrow, ncol = self.getSubplots() |
|
522 | nrow, ncol = self.getSubplots() | |
522 |
|
523 | |||
523 | counter = 0 |
|
524 | counter = 0 | |
524 | for y in range(nrow): |
|
525 | for y in range(nrow): | |
525 | for x in range(ncol): |
|
526 | for x in range(ncol): | |
526 |
|
527 | |||
527 | if counter >= self.nplots: |
|
528 | if counter >= self.nplots: | |
528 | break |
|
529 | break | |
529 |
|
530 | |||
530 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
531 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
531 |
|
532 | |||
532 | if showprofile: |
|
533 | if showprofile: | |
533 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
534 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
534 |
|
535 | |||
535 | counter += 1 |
|
536 | counter += 1 | |
536 |
|
537 | |||
537 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
538 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
538 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
539 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
539 | timerange=None, colormap='jet', |
|
540 | timerange=None, colormap='jet', | |
540 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, |
|
541 | save=False, figpath='./', lastone=0,figfile=None, ftp=False, wr_period=1, show=True, | |
541 | server=None, folder=None, username=None, password=None, |
|
542 | server=None, folder=None, username=None, password=None, | |
542 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): |
|
543 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0, normFactor=None, HEIGHT=None): | |
543 |
|
544 | |||
544 | """ |
|
545 | """ | |
545 |
|
546 | |||
546 | Input: |
|
547 | Input: | |
547 | dataOut : |
|
548 | dataOut : | |
548 | id : |
|
549 | id : | |
549 | wintitle : |
|
550 | wintitle : | |
550 | channelList : |
|
551 | channelList : | |
551 | showProfile : |
|
552 | showProfile : | |
552 | xmin : None, |
|
553 | xmin : None, | |
553 | xmax : None, |
|
554 | xmax : None, | |
554 | ymin : None, |
|
555 | ymin : None, | |
555 | ymax : None, |
|
556 | ymax : None, | |
556 | zmin : None, |
|
557 | zmin : None, | |
557 | zmax : None |
|
558 | zmax : None | |
558 | """ |
|
559 | """ | |
559 | if dataOut.flagNoData: |
|
560 | if dataOut.flagNoData: | |
560 | return dataOut |
|
561 | return dataOut | |
561 |
|
562 | |||
562 | #colormap = kwargs.get('colormap', 'jet') |
|
563 | #colormap = kwargs.get('colormap', 'jet') | |
563 | if HEIGHT is not None: |
|
564 | if HEIGHT is not None: | |
564 | self.HEIGHT = HEIGHT |
|
565 | self.HEIGHT = HEIGHT | |
565 |
|
566 | |||
566 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
567 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
567 | return |
|
568 | return | |
568 |
|
569 | |||
569 | if channelList == None: |
|
570 | if channelList == None: | |
570 | channelIndexList = dataOut.channelIndexList |
|
571 | channelIndexList = dataOut.channelIndexList | |
571 | else: |
|
572 | else: | |
572 | channelIndexList = [] |
|
573 | channelIndexList = [] | |
573 | for channel in channelList: |
|
574 | for channel in channelList: | |
574 | if channel not in dataOut.channelList: |
|
575 | if channel not in dataOut.channelList: | |
575 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
576 | raise ValueError("Channel %d is not in dataOut.channelList") | |
576 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
577 | channelIndexList.append(dataOut.channelList.index(channel)) | |
577 |
|
578 | |||
578 | if normFactor is None: |
|
579 | if normFactor is None: | |
579 | factor = dataOut.normFactor |
|
580 | factor = dataOut.normFactor | |
580 | else: |
|
581 | else: | |
581 | factor = normFactor |
|
582 | factor = normFactor | |
582 |
|
583 | |||
583 | #factor = dataOut.normFactor |
|
584 | #factor = dataOut.normFactor | |
584 | x = dataOut.getTimeRange() |
|
585 | x = dataOut.getTimeRange() | |
585 | y = dataOut.getHeiRange() |
|
586 | y = dataOut.getHeiRange() | |
586 |
|
587 | |||
587 | z = dataOut.data_spc/factor |
|
588 | z = dataOut.data_spc/factor | |
588 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
589 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
589 | avg = numpy.average(z, axis=1) |
|
590 | avg = numpy.average(z, axis=1) | |
590 | avgdB = 10.*numpy.log10(avg) |
|
591 | avgdB = 10.*numpy.log10(avg) | |
591 | # avgdB = dataOut.getPower() |
|
592 | # avgdB = dataOut.getPower() | |
592 |
|
593 | |||
593 |
|
594 | |||
594 | thisDatetime = dataOut.datatime |
|
595 | thisDatetime = dataOut.datatime | |
595 | #thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
596 | #thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
596 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
597 | title = wintitle + " RTI" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
597 | xlabel = "" |
|
598 | xlabel = "" | |
598 | ylabel = "Range (Km)" |
|
599 | ylabel = "Range (Km)" | |
599 |
|
600 | |||
600 | update_figfile = False |
|
601 | update_figfile = False | |
601 |
|
602 | |||
602 | if self.xmax is not None and dataOut.ltctime >= self.xmax: #yong |
|
603 | if self.xmax is not None and dataOut.ltctime >= self.xmax: #yong | |
603 | self.counter_imagwr = wr_period |
|
604 | self.counter_imagwr = wr_period | |
604 | self.isConfig = False |
|
605 | self.isConfig = False | |
605 | update_figfile = True |
|
606 | update_figfile = True | |
606 |
|
607 | |||
607 | if not self.isConfig: |
|
608 | if not self.isConfig: | |
608 |
|
609 | |||
609 | nplots = len(channelIndexList) |
|
610 | nplots = len(channelIndexList) | |
610 |
|
611 | |||
611 | self.setup(id=id, |
|
612 | self.setup(id=id, | |
612 | nplots=nplots, |
|
613 | nplots=nplots, | |
613 | wintitle=wintitle, |
|
614 | wintitle=wintitle, | |
614 | showprofile=showprofile, |
|
615 | showprofile=showprofile, | |
615 | show=show) |
|
616 | show=show) | |
616 |
|
617 | |||
617 | if timerange != None: |
|
618 | if timerange != None: | |
618 | self.timerange = timerange |
|
619 | self.timerange = timerange | |
619 |
|
620 | |||
620 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
621 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
621 |
|
622 | |||
622 | noise = dataOut.noise/factor |
|
623 | noise = dataOut.noise/factor | |
623 | noisedB = 10*numpy.log10(noise) |
|
624 | noisedB = 10*numpy.log10(noise) | |
624 |
|
625 | |||
625 | if ymin == None: ymin = numpy.nanmin(y) |
|
626 | if ymin == None: ymin = numpy.nanmin(y) | |
626 | if ymax == None: ymax = numpy.nanmax(y) |
|
627 | if ymax == None: ymax = numpy.nanmax(y) | |
627 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 |
|
628 | if zmin == None: zmin = numpy.floor(numpy.nanmin(noisedB)) - 3 | |
628 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 |
|
629 | if zmax == None: zmax = numpy.ceil(numpy.nanmax(avgdB)) + 3 | |
629 |
|
630 | |||
630 | self.FTP_WEI = ftp_wei |
|
631 | self.FTP_WEI = ftp_wei | |
631 | self.EXP_CODE = exp_code |
|
632 | self.EXP_CODE = exp_code | |
632 | self.SUB_EXP_CODE = sub_exp_code |
|
633 | self.SUB_EXP_CODE = sub_exp_code | |
633 | self.PLOT_POS = plot_pos |
|
634 | self.PLOT_POS = plot_pos | |
634 |
|
635 | |||
635 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
636 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
636 | self.isConfig = True |
|
637 | self.isConfig = True | |
637 | self.figfile = figfile |
|
638 | self.figfile = figfile | |
638 | update_figfile = True |
|
639 | update_figfile = True | |
639 |
|
640 | |||
640 | self.setWinTitle(title) |
|
641 | self.setWinTitle(title) | |
641 |
|
642 | |||
642 | for i in range(self.nplots): |
|
643 | for i in range(self.nplots): | |
643 | index = channelIndexList[i] |
|
644 | index = channelIndexList[i] | |
644 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
645 | title = "Channel %d: %s" %(dataOut.channelList[index], thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
645 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): |
|
646 | if ((dataOut.azimuth!=None) and (dataOut.zenith!=None)): | |
646 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) |
|
647 | title = title + '_' + 'azimuth,zenith=%2.2f,%2.2f'%(dataOut.azimuth, dataOut.zenith) | |
647 | axes = self.axesList[i*self.__nsubplots] |
|
648 | axes = self.axesList[i*self.__nsubplots] | |
648 | zdB = avgdB[index].reshape((1,-1)) |
|
649 | zdB = avgdB[index].reshape((1,-1)) | |
649 | axes.pcolorbuffer(x, y, zdB, |
|
650 | axes.pcolorbuffer(x, y, zdB, | |
650 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
651 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
651 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
652 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
652 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) |
|
653 | ticksize=9, cblabel='', cbsize="1%", colormap=colormap) | |
653 |
|
654 | |||
654 | if self.__showprofile: |
|
655 | if self.__showprofile: | |
655 | axes = self.axesList[i*self.__nsubplots +1] |
|
656 | axes = self.axesList[i*self.__nsubplots +1] | |
656 | axes.pline(avgdB[index], y, |
|
657 | axes.pline(avgdB[index], y, | |
657 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
658 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
658 | xlabel='dB', ylabel='', title='', |
|
659 | xlabel='dB', ylabel='', title='', | |
659 | ytick_visible=False, |
|
660 | ytick_visible=False, | |
660 | grid='x') |
|
661 | grid='x') | |
661 |
|
662 | |||
662 | self.draw() |
|
663 | self.draw() | |
663 |
|
664 | |||
664 | self.save(figpath=figpath, |
|
665 | self.save(figpath=figpath, | |
665 | figfile=figfile, |
|
666 | figfile=figfile, | |
666 | save=save, |
|
667 | save=save, | |
667 | ftp=ftp, |
|
668 | ftp=ftp, | |
668 | wr_period=wr_period, |
|
669 | wr_period=wr_period, | |
669 | thisDatetime=thisDatetime, |
|
670 | thisDatetime=thisDatetime, | |
670 | update_figfile=update_figfile) |
|
671 | update_figfile=update_figfile) | |
671 | return dataOut |
|
672 | return dataOut | |
672 |
|
673 | |||
673 | @MPDecorator |
|
674 | @MPDecorator | |
674 | class CoherenceMap_(Figure): |
|
675 | class CoherenceMap_(Figure): | |
675 | isConfig = None |
|
676 | isConfig = None | |
676 | __nsubplots = None |
|
677 | __nsubplots = None | |
677 |
|
678 | |||
678 | WIDTHPROF = None |
|
679 | WIDTHPROF = None | |
679 | HEIGHTPROF = None |
|
680 | HEIGHTPROF = None | |
680 | PREFIX = 'cmap' |
|
681 | PREFIX = 'cmap' | |
681 |
|
682 | |||
682 | def __init__(self): |
|
683 | def __init__(self): | |
683 | Figure.__init__(self) |
|
684 | Figure.__init__(self) | |
684 | self.timerange = 2*60*60 |
|
685 | self.timerange = 2*60*60 | |
685 | self.isConfig = False |
|
686 | self.isConfig = False | |
686 | self.__nsubplots = 1 |
|
687 | self.__nsubplots = 1 | |
687 |
|
688 | |||
688 | self.WIDTH = 800 |
|
689 | self.WIDTH = 800 | |
689 | self.HEIGHT = 180 |
|
690 | self.HEIGHT = 180 | |
690 | self.WIDTHPROF = 120 |
|
691 | self.WIDTHPROF = 120 | |
691 | self.HEIGHTPROF = 0 |
|
692 | self.HEIGHTPROF = 0 | |
692 | self.counter_imagwr = 0 |
|
693 | self.counter_imagwr = 0 | |
693 |
|
694 | |||
694 | self.PLOT_CODE = COH_CODE |
|
695 | self.PLOT_CODE = COH_CODE | |
695 |
|
696 | |||
696 | self.FTP_WEI = None |
|
697 | self.FTP_WEI = None | |
697 | self.EXP_CODE = None |
|
698 | self.EXP_CODE = None | |
698 | self.SUB_EXP_CODE = None |
|
699 | self.SUB_EXP_CODE = None | |
699 | self.PLOT_POS = None |
|
700 | self.PLOT_POS = None | |
700 | self.counter_imagwr = 0 |
|
701 | self.counter_imagwr = 0 | |
701 |
|
702 | |||
702 | self.xmin = None |
|
703 | self.xmin = None | |
703 | self.xmax = None |
|
704 | self.xmax = None | |
704 |
|
705 | |||
705 | def getSubplots(self): |
|
706 | def getSubplots(self): | |
706 | ncol = 1 |
|
707 | ncol = 1 | |
707 | nrow = self.nplots*2 |
|
708 | nrow = self.nplots*2 | |
708 |
|
709 | |||
709 | return nrow, ncol |
|
710 | return nrow, ncol | |
710 |
|
711 | |||
711 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
712 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
712 | self.__showprofile = showprofile |
|
713 | self.__showprofile = showprofile | |
713 | self.nplots = nplots |
|
714 | self.nplots = nplots | |
714 |
|
715 | |||
715 | ncolspan = 1 |
|
716 | ncolspan = 1 | |
716 | colspan = 1 |
|
717 | colspan = 1 | |
717 | if showprofile: |
|
718 | if showprofile: | |
718 | ncolspan = 7 |
|
719 | ncolspan = 7 | |
719 | colspan = 6 |
|
720 | colspan = 6 | |
720 | self.__nsubplots = 2 |
|
721 | self.__nsubplots = 2 | |
721 |
|
722 | |||
722 | self.createFigure(id = id, |
|
723 | self.createFigure(id = id, | |
723 | wintitle = wintitle, |
|
724 | wintitle = wintitle, | |
724 | widthplot = self.WIDTH + self.WIDTHPROF, |
|
725 | widthplot = self.WIDTH + self.WIDTHPROF, | |
725 | heightplot = self.HEIGHT + self.HEIGHTPROF, |
|
726 | heightplot = self.HEIGHT + self.HEIGHTPROF, | |
726 | show=True) |
|
727 | show=True) | |
727 |
|
728 | |||
728 | nrow, ncol = self.getSubplots() |
|
729 | nrow, ncol = self.getSubplots() | |
729 |
|
730 | |||
730 | for y in range(nrow): |
|
731 | for y in range(nrow): | |
731 | for x in range(ncol): |
|
732 | for x in range(ncol): | |
732 |
|
733 | |||
733 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
734 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
734 |
|
735 | |||
735 | if showprofile: |
|
736 | if showprofile: | |
736 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) |
|
737 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan+colspan, 1, 1) | |
737 |
|
738 | |||
738 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
739 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
739 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, |
|
740 | xmin=None, xmax=None, ymin=None, ymax=None, zmin=None, zmax=None, | |
740 | timerange=None, phase_min=None, phase_max=None, |
|
741 | timerange=None, phase_min=None, phase_max=None, | |
741 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, |
|
742 | save=False, figpath='./', figfile=None, ftp=False, wr_period=1, | |
742 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, |
|
743 | coherence_cmap='jet', phase_cmap='RdBu_r', show=True, | |
743 | server=None, folder=None, username=None, password=None, |
|
744 | server=None, folder=None, username=None, password=None, | |
744 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
745 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
745 |
|
746 | |||
746 |
|
747 | |||
747 | if dataOut.flagNoData: |
|
748 | if dataOut.flagNoData: | |
748 | return dataOut |
|
749 | return dataOut | |
749 |
|
750 | |||
750 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
751 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
751 | return |
|
752 | return | |
752 |
|
753 | |||
753 | if pairsList == None: |
|
754 | if pairsList == None: | |
754 | pairsIndexList = dataOut.pairsIndexList |
|
755 | pairsIndexList = dataOut.pairsIndexList | |
755 | else: |
|
756 | else: | |
756 | pairsIndexList = [] |
|
757 | pairsIndexList = [] | |
757 | for pair in pairsList: |
|
758 | for pair in pairsList: | |
758 | if pair not in dataOut.pairsList: |
|
759 | if pair not in dataOut.pairsList: | |
759 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
760 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
760 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
761 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
761 |
|
762 | |||
762 | if pairsIndexList == []: |
|
763 | if pairsIndexList == []: | |
763 | return |
|
764 | return | |
764 |
|
765 | |||
765 | if len(pairsIndexList) > 4: |
|
766 | if len(pairsIndexList) > 4: | |
766 | pairsIndexList = pairsIndexList[0:4] |
|
767 | pairsIndexList = pairsIndexList[0:4] | |
767 |
|
768 | |||
768 | if phase_min == None: |
|
769 | if phase_min == None: | |
769 | phase_min = -180 |
|
770 | phase_min = -180 | |
770 | if phase_max == None: |
|
771 | if phase_max == None: | |
771 | phase_max = 180 |
|
772 | phase_max = 180 | |
772 |
|
773 | |||
773 | x = dataOut.getTimeRange() |
|
774 | x = dataOut.getTimeRange() | |
774 | y = dataOut.getHeiRange() |
|
775 | y = dataOut.getHeiRange() | |
775 |
|
776 | |||
776 | thisDatetime = dataOut.datatime |
|
777 | thisDatetime = dataOut.datatime | |
777 |
|
778 | |||
778 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
779 | title = wintitle + " CoherenceMap" #: %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
779 | xlabel = "" |
|
780 | xlabel = "" | |
780 | ylabel = "Range (Km)" |
|
781 | ylabel = "Range (Km)" | |
781 | update_figfile = False |
|
782 | update_figfile = False | |
782 |
|
783 | |||
783 | if not self.isConfig: |
|
784 | if not self.isConfig: | |
784 | nplots = len(pairsIndexList) |
|
785 | nplots = len(pairsIndexList) | |
785 | self.setup(id=id, |
|
786 | self.setup(id=id, | |
786 | nplots=nplots, |
|
787 | nplots=nplots, | |
787 | wintitle=wintitle, |
|
788 | wintitle=wintitle, | |
788 | showprofile=showprofile, |
|
789 | showprofile=showprofile, | |
789 | show=show) |
|
790 | show=show) | |
790 |
|
791 | |||
791 | if timerange != None: |
|
792 | if timerange != None: | |
792 | self.timerange = timerange |
|
793 | self.timerange = timerange | |
793 |
|
794 | |||
794 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
795 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
795 |
|
796 | |||
796 | if ymin == None: ymin = numpy.nanmin(y) |
|
797 | if ymin == None: ymin = numpy.nanmin(y) | |
797 | if ymax == None: ymax = numpy.nanmax(y) |
|
798 | if ymax == None: ymax = numpy.nanmax(y) | |
798 | if zmin == None: zmin = 0. |
|
799 | if zmin == None: zmin = 0. | |
799 | if zmax == None: zmax = 1. |
|
800 | if zmax == None: zmax = 1. | |
800 |
|
801 | |||
801 | self.FTP_WEI = ftp_wei |
|
802 | self.FTP_WEI = ftp_wei | |
802 | self.EXP_CODE = exp_code |
|
803 | self.EXP_CODE = exp_code | |
803 | self.SUB_EXP_CODE = sub_exp_code |
|
804 | self.SUB_EXP_CODE = sub_exp_code | |
804 | self.PLOT_POS = plot_pos |
|
805 | self.PLOT_POS = plot_pos | |
805 |
|
806 | |||
806 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
807 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
807 |
|
808 | |||
808 | self.isConfig = True |
|
809 | self.isConfig = True | |
809 | update_figfile = True |
|
810 | update_figfile = True | |
810 |
|
811 | |||
811 | self.setWinTitle(title) |
|
812 | self.setWinTitle(title) | |
812 |
|
813 | |||
813 | for i in range(self.nplots): |
|
814 | for i in range(self.nplots): | |
814 |
|
815 | |||
815 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
816 | pair = dataOut.pairsList[pairsIndexList[i]] | |
816 |
|
817 | |||
817 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) |
|
818 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i],:,:],axis=0) | |
818 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) |
|
819 | powa = numpy.average(dataOut.data_spc[pair[0],:,:],axis=0) | |
819 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) |
|
820 | powb = numpy.average(dataOut.data_spc[pair[1],:,:],axis=0) | |
820 |
|
821 | |||
821 |
|
822 | |||
822 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
823 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
823 | coherence = numpy.abs(avgcoherenceComplex) |
|
824 | coherence = numpy.abs(avgcoherenceComplex) | |
824 |
|
825 | |||
825 | z = coherence.reshape((1,-1)) |
|
826 | z = coherence.reshape((1,-1)) | |
826 |
|
827 | |||
827 | counter = 0 |
|
828 | counter = 0 | |
828 |
|
829 | |||
829 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
830 | title = "Coherence Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
830 | axes = self.axesList[i*self.__nsubplots*2] |
|
831 | axes = self.axesList[i*self.__nsubplots*2] | |
831 | axes.pcolorbuffer(x, y, z, |
|
832 | axes.pcolorbuffer(x, y, z, | |
832 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, |
|
833 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=zmin, zmax=zmax, | |
833 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
834 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
834 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") |
|
835 | ticksize=9, cblabel='', colormap=coherence_cmap, cbsize="1%") | |
835 |
|
836 | |||
836 | if self.__showprofile: |
|
837 | if self.__showprofile: | |
837 | counter += 1 |
|
838 | counter += 1 | |
838 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
839 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
839 | axes.pline(coherence, y, |
|
840 | axes.pline(coherence, y, | |
840 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, |
|
841 | xmin=zmin, xmax=zmax, ymin=ymin, ymax=ymax, | |
841 | xlabel='', ylabel='', title='', ticksize=7, |
|
842 | xlabel='', ylabel='', title='', ticksize=7, | |
842 | ytick_visible=False, nxticks=5, |
|
843 | ytick_visible=False, nxticks=5, | |
843 | grid='x') |
|
844 | grid='x') | |
844 |
|
845 | |||
845 | counter += 1 |
|
846 | counter += 1 | |
846 |
|
847 | |||
847 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
848 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
848 |
|
849 | |||
849 | z = phase.reshape((1,-1)) |
|
850 | z = phase.reshape((1,-1)) | |
850 |
|
851 | |||
851 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
852 | title = "Phase Ch%d * Ch%d: %s" %(pair[0], pair[1], thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
852 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
853 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
853 | axes.pcolorbuffer(x, y, z, |
|
854 | axes.pcolorbuffer(x, y, z, | |
854 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, |
|
855 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, zmin=phase_min, zmax=phase_max, | |
855 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, |
|
856 | xlabel=xlabel, ylabel=ylabel, title=title, rti=True, XAxisAsTime=True, | |
856 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") |
|
857 | ticksize=9, cblabel='', colormap=phase_cmap, cbsize="1%") | |
857 |
|
858 | |||
858 | if self.__showprofile: |
|
859 | if self.__showprofile: | |
859 | counter += 1 |
|
860 | counter += 1 | |
860 | axes = self.axesList[i*self.__nsubplots*2 + counter] |
|
861 | axes = self.axesList[i*self.__nsubplots*2 + counter] | |
861 | axes.pline(phase, y, |
|
862 | axes.pline(phase, y, | |
862 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, |
|
863 | xmin=phase_min, xmax=phase_max, ymin=ymin, ymax=ymax, | |
863 | xlabel='', ylabel='', title='', ticksize=7, |
|
864 | xlabel='', ylabel='', title='', ticksize=7, | |
864 | ytick_visible=False, nxticks=4, |
|
865 | ytick_visible=False, nxticks=4, | |
865 | grid='x') |
|
866 | grid='x') | |
866 |
|
867 | |||
867 | self.draw() |
|
868 | self.draw() | |
868 |
|
869 | |||
869 | if dataOut.ltctime >= self.xmax: |
|
870 | if dataOut.ltctime >= self.xmax: | |
870 | self.counter_imagwr = wr_period |
|
871 | self.counter_imagwr = wr_period | |
871 | self.isConfig = False |
|
872 | self.isConfig = False | |
872 | update_figfile = True |
|
873 | update_figfile = True | |
873 |
|
874 | |||
874 | self.save(figpath=figpath, |
|
875 | self.save(figpath=figpath, | |
875 | figfile=figfile, |
|
876 | figfile=figfile, | |
876 | save=save, |
|
877 | save=save, | |
877 | ftp=ftp, |
|
878 | ftp=ftp, | |
878 | wr_period=wr_period, |
|
879 | wr_period=wr_period, | |
879 | thisDatetime=thisDatetime, |
|
880 | thisDatetime=thisDatetime, | |
880 | update_figfile=update_figfile) |
|
881 | update_figfile=update_figfile) | |
881 |
|
882 | |||
882 | return dataOut |
|
883 | return dataOut | |
883 |
|
884 | |||
884 | @MPDecorator |
|
885 | @MPDecorator | |
885 | class PowerProfilePlot_(Figure): |
|
886 | class PowerProfilePlot_(Figure): | |
886 |
|
887 | |||
887 | isConfig = None |
|
888 | isConfig = None | |
888 | __nsubplots = None |
|
889 | __nsubplots = None | |
889 |
|
890 | |||
890 | WIDTHPROF = None |
|
891 | WIDTHPROF = None | |
891 | HEIGHTPROF = None |
|
892 | HEIGHTPROF = None | |
892 | PREFIX = 'spcprofile' |
|
893 | PREFIX = 'spcprofile' | |
893 |
|
894 | |||
894 | def __init__(self): |
|
895 | def __init__(self): | |
895 | Figure.__init__(self) |
|
896 | Figure.__init__(self) | |
896 | self.isConfig = False |
|
897 | self.isConfig = False | |
897 | self.__nsubplots = 1 |
|
898 | self.__nsubplots = 1 | |
898 |
|
899 | |||
899 | self.PLOT_CODE = POWER_CODE |
|
900 | self.PLOT_CODE = POWER_CODE | |
900 |
|
901 | |||
901 | self.WIDTH = 300 |
|
902 | self.WIDTH = 300 | |
902 | self.HEIGHT = 500 |
|
903 | self.HEIGHT = 500 | |
903 | self.counter_imagwr = 0 |
|
904 | self.counter_imagwr = 0 | |
904 |
|
905 | |||
905 | def getSubplots(self): |
|
906 | def getSubplots(self): | |
906 | ncol = 1 |
|
907 | ncol = 1 | |
907 | nrow = 1 |
|
908 | nrow = 1 | |
908 |
|
909 | |||
909 | return nrow, ncol |
|
910 | return nrow, ncol | |
910 |
|
911 | |||
911 | def setup(self, id, nplots, wintitle, show): |
|
912 | def setup(self, id, nplots, wintitle, show): | |
912 |
|
913 | |||
913 | self.nplots = nplots |
|
914 | self.nplots = nplots | |
914 |
|
915 | |||
915 | ncolspan = 1 |
|
916 | ncolspan = 1 | |
916 | colspan = 1 |
|
917 | colspan = 1 | |
917 |
|
918 | |||
918 | self.createFigure(id = id, |
|
919 | self.createFigure(id = id, | |
919 | wintitle = wintitle, |
|
920 | wintitle = wintitle, | |
920 | widthplot = self.WIDTH, |
|
921 | widthplot = self.WIDTH, | |
921 | heightplot = self.HEIGHT, |
|
922 | heightplot = self.HEIGHT, | |
922 | show=show) |
|
923 | show=show) | |
923 |
|
924 | |||
924 | nrow, ncol = self.getSubplots() |
|
925 | nrow, ncol = self.getSubplots() | |
925 |
|
926 | |||
926 | counter = 0 |
|
927 | counter = 0 | |
927 | for y in range(nrow): |
|
928 | for y in range(nrow): | |
928 | for x in range(ncol): |
|
929 | for x in range(ncol): | |
929 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
930 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
930 |
|
931 | |||
931 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
932 | def run(self, dataOut, id, wintitle="", channelList=None, | |
932 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
933 | xmin=None, xmax=None, ymin=None, ymax=None, | |
933 | save=False, figpath='./', figfile=None, show=True, |
|
934 | save=False, figpath='./', figfile=None, show=True, | |
934 | ftp=False, wr_period=1, server=None, |
|
935 | ftp=False, wr_period=1, server=None, | |
935 | folder=None, username=None, password=None): |
|
936 | folder=None, username=None, password=None): | |
936 |
|
937 | |||
937 | if dataOut.flagNoData: |
|
938 | if dataOut.flagNoData: | |
938 | return dataOut |
|
939 | return dataOut | |
939 |
|
940 | |||
940 |
|
941 | |||
941 | if channelList == None: |
|
942 | if channelList == None: | |
942 | channelIndexList = dataOut.channelIndexList |
|
943 | channelIndexList = dataOut.channelIndexList | |
943 | channelList = dataOut.channelList |
|
944 | channelList = dataOut.channelList | |
944 | else: |
|
945 | else: | |
945 | channelIndexList = [] |
|
946 | channelIndexList = [] | |
946 | for channel in channelList: |
|
947 | for channel in channelList: | |
947 | if channel not in dataOut.channelList: |
|
948 | if channel not in dataOut.channelList: | |
948 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
949 | raise ValueError("Channel %d is not in dataOut.channelList") | |
949 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
950 | channelIndexList.append(dataOut.channelList.index(channel)) | |
950 |
|
951 | |||
951 | factor = dataOut.normFactor |
|
952 | factor = dataOut.normFactor | |
952 |
|
953 | |||
953 | y = dataOut.getHeiRange() |
|
954 | y = dataOut.getHeiRange() | |
954 |
|
955 | |||
955 | #for voltage |
|
956 | #for voltage | |
956 | if dataOut.type == 'Voltage': |
|
957 | if dataOut.type == 'Voltage': | |
957 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) |
|
958 | x = dataOut.data[channelIndexList,:] * numpy.conjugate(dataOut.data[channelIndexList,:]) | |
958 | x = x.real |
|
959 | x = x.real | |
959 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
960 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
960 |
|
961 | |||
961 | #for spectra |
|
962 | #for spectra | |
962 | if dataOut.type == 'Spectra': |
|
963 | if dataOut.type == 'Spectra': | |
963 | x = dataOut.data_spc[channelIndexList,:,:]/factor |
|
964 | x = dataOut.data_spc[channelIndexList,:,:]/factor | |
964 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) |
|
965 | x = numpy.where(numpy.isfinite(x), x, numpy.NAN) | |
965 | x = numpy.average(x, axis=1) |
|
966 | x = numpy.average(x, axis=1) | |
966 |
|
967 | |||
967 |
|
968 | |||
968 | xdB = 10*numpy.log10(x) |
|
969 | xdB = 10*numpy.log10(x) | |
969 |
|
970 | |||
970 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
971 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
971 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
972 | title = wintitle + " Power Profile %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
972 | xlabel = "dB" |
|
973 | xlabel = "dB" | |
973 | ylabel = "Range (Km)" |
|
974 | ylabel = "Range (Km)" | |
974 |
|
975 | |||
975 | if not self.isConfig: |
|
976 | if not self.isConfig: | |
976 |
|
977 | |||
977 | nplots = 1 |
|
978 | nplots = 1 | |
978 |
|
979 | |||
979 | self.setup(id=id, |
|
980 | self.setup(id=id, | |
980 | nplots=nplots, |
|
981 | nplots=nplots, | |
981 | wintitle=wintitle, |
|
982 | wintitle=wintitle, | |
982 | show=show) |
|
983 | show=show) | |
983 |
|
984 | |||
984 | if ymin == None: ymin = numpy.nanmin(y) |
|
985 | if ymin == None: ymin = numpy.nanmin(y) | |
985 | if ymax == None: ymax = numpy.nanmax(y) |
|
986 | if ymax == None: ymax = numpy.nanmax(y) | |
986 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 |
|
987 | if xmin == None: xmin = numpy.nanmin(xdB)*0.9 | |
987 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 |
|
988 | if xmax == None: xmax = numpy.nanmax(xdB)*1.1 | |
988 |
|
989 | |||
989 | self.isConfig = True |
|
990 | self.isConfig = True | |
990 |
|
991 | |||
991 | self.setWinTitle(title) |
|
992 | self.setWinTitle(title) | |
992 |
|
993 | |||
993 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
994 | title = "Power Profile: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
994 | axes = self.axesList[0] |
|
995 | axes = self.axesList[0] | |
995 |
|
996 | |||
996 | legendlabels = ["channel %d"%x for x in channelList] |
|
997 | legendlabels = ["channel %d"%x for x in channelList] | |
997 | axes.pmultiline(xdB, y, |
|
998 | axes.pmultiline(xdB, y, | |
998 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
999 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
999 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1000 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
1000 | ytick_visible=True, nxticks=5, |
|
1001 | ytick_visible=True, nxticks=5, | |
1001 | grid='x') |
|
1002 | grid='x') | |
1002 |
|
1003 | |||
1003 | self.draw() |
|
1004 | self.draw() | |
1004 |
|
1005 | |||
1005 | self.save(figpath=figpath, |
|
1006 | self.save(figpath=figpath, | |
1006 | figfile=figfile, |
|
1007 | figfile=figfile, | |
1007 | save=save, |
|
1008 | save=save, | |
1008 | ftp=ftp, |
|
1009 | ftp=ftp, | |
1009 | wr_period=wr_period, |
|
1010 | wr_period=wr_period, | |
1010 | thisDatetime=thisDatetime) |
|
1011 | thisDatetime=thisDatetime) | |
1011 |
|
1012 | |||
1012 | return dataOut |
|
1013 | return dataOut | |
1013 |
|
1014 | |||
1014 | @MPDecorator |
|
1015 | @MPDecorator | |
1015 | class SpectraCutPlot_(Figure): |
|
1016 | class SpectraCutPlot_(Figure): | |
1016 |
|
1017 | |||
1017 | isConfig = None |
|
1018 | isConfig = None | |
1018 | __nsubplots = None |
|
1019 | __nsubplots = None | |
1019 |
|
1020 | |||
1020 | WIDTHPROF = None |
|
1021 | WIDTHPROF = None | |
1021 | HEIGHTPROF = None |
|
1022 | HEIGHTPROF = None | |
1022 | PREFIX = 'spc_cut' |
|
1023 | PREFIX = 'spc_cut' | |
1023 |
|
1024 | |||
1024 | def __init__(self): |
|
1025 | def __init__(self): | |
1025 | Figure.__init__(self) |
|
1026 | Figure.__init__(self) | |
1026 | self.isConfig = False |
|
1027 | self.isConfig = False | |
1027 | self.__nsubplots = 1 |
|
1028 | self.__nsubplots = 1 | |
1028 |
|
1029 | |||
1029 | self.PLOT_CODE = POWER_CODE |
|
1030 | self.PLOT_CODE = POWER_CODE | |
1030 |
|
1031 | |||
1031 | self.WIDTH = 700 |
|
1032 | self.WIDTH = 700 | |
1032 | self.HEIGHT = 500 |
|
1033 | self.HEIGHT = 500 | |
1033 | self.counter_imagwr = 0 |
|
1034 | self.counter_imagwr = 0 | |
1034 |
|
1035 | |||
1035 | def getSubplots(self): |
|
1036 | def getSubplots(self): | |
1036 | ncol = 1 |
|
1037 | ncol = 1 | |
1037 | nrow = 1 |
|
1038 | nrow = 1 | |
1038 |
|
1039 | |||
1039 | return nrow, ncol |
|
1040 | return nrow, ncol | |
1040 |
|
1041 | |||
1041 | def setup(self, id, nplots, wintitle, show): |
|
1042 | def setup(self, id, nplots, wintitle, show): | |
1042 |
|
1043 | |||
1043 | self.nplots = nplots |
|
1044 | self.nplots = nplots | |
1044 |
|
1045 | |||
1045 | ncolspan = 1 |
|
1046 | ncolspan = 1 | |
1046 | colspan = 1 |
|
1047 | colspan = 1 | |
1047 |
|
1048 | |||
1048 | self.createFigure(id = id, |
|
1049 | self.createFigure(id = id, | |
1049 | wintitle = wintitle, |
|
1050 | wintitle = wintitle, | |
1050 | widthplot = self.WIDTH, |
|
1051 | widthplot = self.WIDTH, | |
1051 | heightplot = self.HEIGHT, |
|
1052 | heightplot = self.HEIGHT, | |
1052 | show=show) |
|
1053 | show=show) | |
1053 |
|
1054 | |||
1054 | nrow, ncol = self.getSubplots() |
|
1055 | nrow, ncol = self.getSubplots() | |
1055 |
|
1056 | |||
1056 | counter = 0 |
|
1057 | counter = 0 | |
1057 | for y in range(nrow): |
|
1058 | for y in range(nrow): | |
1058 | for x in range(ncol): |
|
1059 | for x in range(ncol): | |
1059 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) |
|
1060 | self.addAxes(nrow, ncol*ncolspan, y, x*ncolspan, colspan, 1) | |
1060 |
|
1061 | |||
1061 | def run(self, dataOut, id, wintitle="", channelList=None, |
|
1062 | def run(self, dataOut, id, wintitle="", channelList=None, | |
1062 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1063 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1063 | save=False, figpath='./', figfile=None, show=True, |
|
1064 | save=False, figpath='./', figfile=None, show=True, | |
1064 | ftp=False, wr_period=1, server=None, |
|
1065 | ftp=False, wr_period=1, server=None, | |
1065 | folder=None, username=None, password=None, |
|
1066 | folder=None, username=None, password=None, | |
1066 | xaxis="frequency"): |
|
1067 | xaxis="frequency"): | |
1067 |
|
1068 | |||
1068 | if dataOut.flagNoData: |
|
1069 | if dataOut.flagNoData: | |
1069 | return dataOut |
|
1070 | return dataOut | |
1070 |
|
1071 | |||
1071 | if channelList == None: |
|
1072 | if channelList == None: | |
1072 | channelIndexList = dataOut.channelIndexList |
|
1073 | channelIndexList = dataOut.channelIndexList | |
1073 | channelList = dataOut.channelList |
|
1074 | channelList = dataOut.channelList | |
1074 | else: |
|
1075 | else: | |
1075 | channelIndexList = [] |
|
1076 | channelIndexList = [] | |
1076 | for channel in channelList: |
|
1077 | for channel in channelList: | |
1077 | if channel not in dataOut.channelList: |
|
1078 | if channel not in dataOut.channelList: | |
1078 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1079 | raise ValueError("Channel %d is not in dataOut.channelList") | |
1079 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1080 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1080 |
|
1081 | |||
1081 | factor = dataOut.normFactor |
|
1082 | factor = dataOut.normFactor | |
1082 |
|
1083 | |||
1083 | y = dataOut.getHeiRange() |
|
1084 | y = dataOut.getHeiRange() | |
1084 |
|
1085 | |||
1085 | z = dataOut.data_spc/factor |
|
1086 | z = dataOut.data_spc/factor | |
1086 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
1087 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) | |
1087 |
|
1088 | |||
1088 | hei_index = numpy.arange(25)*3 + 20 |
|
1089 | hei_index = numpy.arange(25)*3 + 20 | |
1089 |
|
1090 | |||
1090 | if xaxis == "frequency": |
|
1091 | if xaxis == "frequency": | |
1091 | x = dataOut.getFreqRange()/1000. |
|
1092 | x = dataOut.getFreqRange()/1000. | |
1092 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1093 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1093 | xlabel = "Frequency (kHz)" |
|
1094 | xlabel = "Frequency (kHz)" | |
1094 | ylabel = "Power (dB)" |
|
1095 | ylabel = "Power (dB)" | |
1095 |
|
1096 | |||
1096 | elif xaxis == "time": |
|
1097 | elif xaxis == "time": | |
1097 | x = dataOut.getAcfRange() |
|
1098 | x = dataOut.getAcfRange() | |
1098 | zdB = z[0,:,hei_index] |
|
1099 | zdB = z[0,:,hei_index] | |
1099 | xlabel = "Time (ms)" |
|
1100 | xlabel = "Time (ms)" | |
1100 | ylabel = "ACF" |
|
1101 | ylabel = "ACF" | |
1101 |
|
1102 | |||
1102 | else: |
|
1103 | else: | |
1103 | x = dataOut.getVelRange() |
|
1104 | x = dataOut.getVelRange() | |
1104 | zdB = 10*numpy.log10(z[0,:,hei_index]) |
|
1105 | zdB = 10*numpy.log10(z[0,:,hei_index]) | |
1105 | xlabel = "Velocity (m/s)" |
|
1106 | xlabel = "Velocity (m/s)" | |
1106 | ylabel = "Power (dB)" |
|
1107 | ylabel = "Power (dB)" | |
1107 |
|
1108 | |||
1108 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) |
|
1109 | thisDatetime = datetime.datetime.utcfromtimestamp(dataOut.getTimeRange()[0]) | |
1109 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1110 | title = wintitle + " Range Cuts %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1110 |
|
1111 | |||
1111 | if not self.isConfig: |
|
1112 | if not self.isConfig: | |
1112 |
|
1113 | |||
1113 | nplots = 1 |
|
1114 | nplots = 1 | |
1114 |
|
1115 | |||
1115 | self.setup(id=id, |
|
1116 | self.setup(id=id, | |
1116 | nplots=nplots, |
|
1117 | nplots=nplots, | |
1117 | wintitle=wintitle, |
|
1118 | wintitle=wintitle, | |
1118 | show=show) |
|
1119 | show=show) | |
1119 |
|
1120 | |||
1120 | if xmin == None: xmin = numpy.nanmin(x)*0.9 |
|
1121 | if xmin == None: xmin = numpy.nanmin(x)*0.9 | |
1121 | if xmax == None: xmax = numpy.nanmax(x)*1.1 |
|
1122 | if xmax == None: xmax = numpy.nanmax(x)*1.1 | |
1122 | if ymin == None: ymin = numpy.nanmin(zdB) |
|
1123 | if ymin == None: ymin = numpy.nanmin(zdB) | |
1123 | if ymax == None: ymax = numpy.nanmax(zdB) |
|
1124 | if ymax == None: ymax = numpy.nanmax(zdB) | |
1124 |
|
1125 | |||
1125 | self.isConfig = True |
|
1126 | self.isConfig = True | |
1126 |
|
1127 | |||
1127 | self.setWinTitle(title) |
|
1128 | self.setWinTitle(title) | |
1128 |
|
1129 | |||
1129 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) |
|
1130 | title = "Spectra Cuts: %s" %(thisDatetime.strftime("%d-%b-%Y %H:%M:%S")) | |
1130 | axes = self.axesList[0] |
|
1131 | axes = self.axesList[0] | |
1131 |
|
1132 | |||
1132 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] |
|
1133 | legendlabels = ["Range = %dKm" %y[i] for i in hei_index] | |
1133 |
|
1134 | |||
1134 | axes.pmultilineyaxis( x, zdB, |
|
1135 | axes.pmultilineyaxis( x, zdB, | |
1135 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, |
|
1136 | xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, | |
1136 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, |
|
1137 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, | |
1137 | ytick_visible=True, nxticks=5, |
|
1138 | ytick_visible=True, nxticks=5, | |
1138 | grid='x') |
|
1139 | grid='x') | |
1139 |
|
1140 | |||
1140 | self.draw() |
|
1141 | self.draw() | |
1141 |
|
1142 | |||
1142 | self.save(figpath=figpath, |
|
1143 | self.save(figpath=figpath, | |
1143 | figfile=figfile, |
|
1144 | figfile=figfile, | |
1144 | save=save, |
|
1145 | save=save, | |
1145 | ftp=ftp, |
|
1146 | ftp=ftp, | |
1146 | wr_period=wr_period, |
|
1147 | wr_period=wr_period, | |
1147 | thisDatetime=thisDatetime) |
|
1148 | thisDatetime=thisDatetime) | |
1148 |
|
1149 | |||
1149 | return dataOut |
|
1150 | return dataOut | |
1150 |
|
1151 | |||
1151 | @MPDecorator |
|
1152 | @MPDecorator | |
1152 | class Noise_(Figure): |
|
1153 | class Noise_(Figure): | |
1153 |
|
1154 | |||
1154 | isConfig = None |
|
1155 | isConfig = None | |
1155 | __nsubplots = None |
|
1156 | __nsubplots = None | |
1156 |
|
1157 | |||
1157 | PREFIX = 'noise' |
|
1158 | PREFIX = 'noise' | |
1158 |
|
1159 | |||
1159 |
|
1160 | |||
1160 | def __init__(self): |
|
1161 | def __init__(self): | |
1161 | Figure.__init__(self) |
|
1162 | Figure.__init__(self) | |
1162 | self.timerange = 24*60*60 |
|
1163 | self.timerange = 24*60*60 | |
1163 | self.isConfig = False |
|
1164 | self.isConfig = False | |
1164 | self.__nsubplots = 1 |
|
1165 | self.__nsubplots = 1 | |
1165 | self.counter_imagwr = 0 |
|
1166 | self.counter_imagwr = 0 | |
1166 | self.WIDTH = 800 |
|
1167 | self.WIDTH = 800 | |
1167 | self.HEIGHT = 400 |
|
1168 | self.HEIGHT = 400 | |
1168 | self.WIDTHPROF = 120 |
|
1169 | self.WIDTHPROF = 120 | |
1169 | self.HEIGHTPROF = 0 |
|
1170 | self.HEIGHTPROF = 0 | |
1170 | self.xdata = None |
|
1171 | self.xdata = None | |
1171 | self.ydata = None |
|
1172 | self.ydata = None | |
1172 |
|
1173 | |||
1173 | self.PLOT_CODE = NOISE_CODE |
|
1174 | self.PLOT_CODE = NOISE_CODE | |
1174 |
|
1175 | |||
1175 | self.FTP_WEI = None |
|
1176 | self.FTP_WEI = None | |
1176 | self.EXP_CODE = None |
|
1177 | self.EXP_CODE = None | |
1177 | self.SUB_EXP_CODE = None |
|
1178 | self.SUB_EXP_CODE = None | |
1178 | self.PLOT_POS = None |
|
1179 | self.PLOT_POS = None | |
1179 | self.figfile = None |
|
1180 | self.figfile = None | |
1180 |
|
1181 | |||
1181 | self.xmin = None |
|
1182 | self.xmin = None | |
1182 | self.xmax = None |
|
1183 | self.xmax = None | |
1183 |
|
1184 | |||
1184 | def getSubplots(self): |
|
1185 | def getSubplots(self): | |
1185 |
|
1186 | |||
1186 | ncol = 1 |
|
1187 | ncol = 1 | |
1187 | nrow = 1 |
|
1188 | nrow = 1 | |
1188 |
|
1189 | |||
1189 | return nrow, ncol |
|
1190 | return nrow, ncol | |
1190 |
|
1191 | |||
1191 | def openfile(self, filename): |
|
1192 | def openfile(self, filename): | |
1192 | dirname = os.path.dirname(filename) |
|
1193 | dirname = os.path.dirname(filename) | |
1193 |
|
1194 | |||
1194 | if not os.path.exists(dirname): |
|
1195 | if not os.path.exists(dirname): | |
1195 | os.mkdir(dirname) |
|
1196 | os.mkdir(dirname) | |
1196 |
|
1197 | |||
1197 | f = open(filename,'w+') |
|
1198 | f = open(filename,'w+') | |
1198 | f.write('\n\n') |
|
1199 | f.write('\n\n') | |
1199 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') |
|
1200 | f.write('JICAMARCA RADIO OBSERVATORY - Noise \n') | |
1200 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) |
|
1201 | f.write('DD MM YYYY HH MM SS Channel0 Channel1 Channel2 Channel3\n\n' ) | |
1201 | f.close() |
|
1202 | f.close() | |
1202 |
|
1203 | |||
1203 | def save_data(self, filename_phase, data, data_datetime): |
|
1204 | def save_data(self, filename_phase, data, data_datetime): | |
1204 |
|
1205 | |||
1205 | f=open(filename_phase,'a') |
|
1206 | f=open(filename_phase,'a') | |
1206 |
|
1207 | |||
1207 | timetuple_data = data_datetime.timetuple() |
|
1208 | timetuple_data = data_datetime.timetuple() | |
1208 | day = str(timetuple_data.tm_mday) |
|
1209 | day = str(timetuple_data.tm_mday) | |
1209 | month = str(timetuple_data.tm_mon) |
|
1210 | month = str(timetuple_data.tm_mon) | |
1210 | year = str(timetuple_data.tm_year) |
|
1211 | year = str(timetuple_data.tm_year) | |
1211 | hour = str(timetuple_data.tm_hour) |
|
1212 | hour = str(timetuple_data.tm_hour) | |
1212 | minute = str(timetuple_data.tm_min) |
|
1213 | minute = str(timetuple_data.tm_min) | |
1213 | second = str(timetuple_data.tm_sec) |
|
1214 | second = str(timetuple_data.tm_sec) | |
1214 |
|
1215 | |||
1215 | data_msg = '' |
|
1216 | data_msg = '' | |
1216 | for i in range(len(data)): |
|
1217 | for i in range(len(data)): | |
1217 | data_msg += str(data[i]) + ' ' |
|
1218 | data_msg += str(data[i]) + ' ' | |
1218 |
|
1219 | |||
1219 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') |
|
1220 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' ' + data_msg + '\n') | |
1220 | f.close() |
|
1221 | f.close() | |
1221 |
|
1222 | |||
1222 |
|
1223 | |||
1223 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1224 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1224 |
|
1225 | |||
1225 | self.__showprofile = showprofile |
|
1226 | self.__showprofile = showprofile | |
1226 | self.nplots = nplots |
|
1227 | self.nplots = nplots | |
1227 |
|
1228 | |||
1228 | ncolspan = 7 |
|
1229 | ncolspan = 7 | |
1229 | colspan = 6 |
|
1230 | colspan = 6 | |
1230 | self.__nsubplots = 2 |
|
1231 | self.__nsubplots = 2 | |
1231 |
|
1232 | |||
1232 | self.createFigure(id = id, |
|
1233 | self.createFigure(id = id, | |
1233 | wintitle = wintitle, |
|
1234 | wintitle = wintitle, | |
1234 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1235 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1235 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1236 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1236 | show=show) |
|
1237 | show=show) | |
1237 |
|
1238 | |||
1238 | nrow, ncol = self.getSubplots() |
|
1239 | nrow, ncol = self.getSubplots() | |
1239 |
|
1240 | |||
1240 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1241 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1241 |
|
1242 | |||
1242 |
|
1243 | |||
1243 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', |
|
1244 | def run(self, dataOut, id, wintitle="", channelList=None, showprofile='True', | |
1244 | xmin=None, xmax=None, ymin=None, ymax=None, |
|
1245 | xmin=None, xmax=None, ymin=None, ymax=None, | |
1245 | timerange=None, |
|
1246 | timerange=None, | |
1246 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1247 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1247 | server=None, folder=None, username=None, password=None, |
|
1248 | server=None, folder=None, username=None, password=None, | |
1248 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1249 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1249 |
|
1250 | |||
1250 | if dataOut.flagNoData: |
|
1251 | if dataOut.flagNoData: | |
1251 | return dataOut |
|
1252 | return dataOut | |
1252 |
|
1253 | |||
1253 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1254 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1254 | return |
|
1255 | return | |
1255 |
|
1256 | |||
1256 | if channelList == None: |
|
1257 | if channelList == None: | |
1257 | channelIndexList = dataOut.channelIndexList |
|
1258 | channelIndexList = dataOut.channelIndexList | |
1258 | channelList = dataOut.channelList |
|
1259 | channelList = dataOut.channelList | |
1259 | else: |
|
1260 | else: | |
1260 | channelIndexList = [] |
|
1261 | channelIndexList = [] | |
1261 | for channel in channelList: |
|
1262 | for channel in channelList: | |
1262 | if channel not in dataOut.channelList: |
|
1263 | if channel not in dataOut.channelList: | |
1263 | raise ValueError("Channel %d is not in dataOut.channelList") |
|
1264 | raise ValueError("Channel %d is not in dataOut.channelList") | |
1264 | channelIndexList.append(dataOut.channelList.index(channel)) |
|
1265 | channelIndexList.append(dataOut.channelList.index(channel)) | |
1265 |
|
1266 | |||
1266 | x = dataOut.getTimeRange() |
|
1267 | x = dataOut.getTimeRange() | |
1267 | #y = dataOut.getHeiRange() |
|
1268 | #y = dataOut.getHeiRange() | |
1268 | factor = dataOut.normFactor |
|
1269 | factor = dataOut.normFactor | |
1269 | noise = dataOut.noise[channelIndexList]/factor |
|
1270 | noise = dataOut.noise[channelIndexList]/factor | |
1270 | noisedB = 10*numpy.log10(noise) |
|
1271 | noisedB = 10*numpy.log10(noise) | |
1271 |
|
1272 | |||
1272 | thisDatetime = dataOut.datatime |
|
1273 | thisDatetime = dataOut.datatime | |
1273 |
|
1274 | |||
1274 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1275 | title = wintitle + " Noise" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1275 | xlabel = "" |
|
1276 | xlabel = "" | |
1276 | ylabel = "Intensity (dB)" |
|
1277 | ylabel = "Intensity (dB)" | |
1277 | update_figfile = False |
|
1278 | update_figfile = False | |
1278 |
|
1279 | |||
1279 | if not self.isConfig: |
|
1280 | if not self.isConfig: | |
1280 |
|
1281 | |||
1281 | nplots = 1 |
|
1282 | nplots = 1 | |
1282 |
|
1283 | |||
1283 | self.setup(id=id, |
|
1284 | self.setup(id=id, | |
1284 | nplots=nplots, |
|
1285 | nplots=nplots, | |
1285 | wintitle=wintitle, |
|
1286 | wintitle=wintitle, | |
1286 | showprofile=showprofile, |
|
1287 | showprofile=showprofile, | |
1287 | show=show) |
|
1288 | show=show) | |
1288 |
|
1289 | |||
1289 | if timerange != None: |
|
1290 | if timerange != None: | |
1290 | self.timerange = timerange |
|
1291 | self.timerange = timerange | |
1291 |
|
1292 | |||
1292 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1293 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1293 |
|
1294 | |||
1294 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 |
|
1295 | if ymin == None: ymin = numpy.floor(numpy.nanmin(noisedB)) - 10.0 | |
1295 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 |
|
1296 | if ymax == None: ymax = numpy.nanmax(noisedB) + 10.0 | |
1296 |
|
1297 | |||
1297 | self.FTP_WEI = ftp_wei |
|
1298 | self.FTP_WEI = ftp_wei | |
1298 | self.EXP_CODE = exp_code |
|
1299 | self.EXP_CODE = exp_code | |
1299 | self.SUB_EXP_CODE = sub_exp_code |
|
1300 | self.SUB_EXP_CODE = sub_exp_code | |
1300 | self.PLOT_POS = plot_pos |
|
1301 | self.PLOT_POS = plot_pos | |
1301 |
|
1302 | |||
1302 |
|
1303 | |||
1303 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1304 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1304 | self.isConfig = True |
|
1305 | self.isConfig = True | |
1305 | self.figfile = figfile |
|
1306 | self.figfile = figfile | |
1306 | self.xdata = numpy.array([]) |
|
1307 | self.xdata = numpy.array([]) | |
1307 | self.ydata = numpy.array([]) |
|
1308 | self.ydata = numpy.array([]) | |
1308 |
|
1309 | |||
1309 | update_figfile = True |
|
1310 | update_figfile = True | |
1310 |
|
1311 | |||
1311 | #open file beacon phase |
|
1312 | #open file beacon phase | |
1312 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1313 | path = '%s%03d' %(self.PREFIX, self.id) | |
1313 | noise_file = os.path.join(path,'%s.txt'%self.name) |
|
1314 | noise_file = os.path.join(path,'%s.txt'%self.name) | |
1314 | self.filename_noise = os.path.join(figpath,noise_file) |
|
1315 | self.filename_noise = os.path.join(figpath,noise_file) | |
1315 |
|
1316 | |||
1316 | self.setWinTitle(title) |
|
1317 | self.setWinTitle(title) | |
1317 |
|
1318 | |||
1318 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1319 | title = "Noise %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1319 |
|
1320 | |||
1320 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] |
|
1321 | legendlabels = ["channel %d"%(idchannel) for idchannel in channelList] | |
1321 | axes = self.axesList[0] |
|
1322 | axes = self.axesList[0] | |
1322 |
|
1323 | |||
1323 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1324 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1324 |
|
1325 | |||
1325 | if len(self.ydata)==0: |
|
1326 | if len(self.ydata)==0: | |
1326 | self.ydata = noisedB.reshape(-1,1) |
|
1327 | self.ydata = noisedB.reshape(-1,1) | |
1327 | else: |
|
1328 | else: | |
1328 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) |
|
1329 | self.ydata = numpy.hstack((self.ydata, noisedB.reshape(-1,1))) | |
1329 |
|
1330 | |||
1330 |
|
1331 | |||
1331 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1332 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1332 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1333 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1333 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1334 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1334 | XAxisAsTime=True, grid='both' |
|
1335 | XAxisAsTime=True, grid='both' | |
1335 | ) |
|
1336 | ) | |
1336 |
|
1337 | |||
1337 | self.draw() |
|
1338 | self.draw() | |
1338 |
|
1339 | |||
1339 | if dataOut.ltctime >= self.xmax: |
|
1340 | if dataOut.ltctime >= self.xmax: | |
1340 | self.counter_imagwr = wr_period |
|
1341 | self.counter_imagwr = wr_period | |
1341 | self.isConfig = False |
|
1342 | self.isConfig = False | |
1342 | update_figfile = True |
|
1343 | update_figfile = True | |
1343 |
|
1344 | |||
1344 | self.save(figpath=figpath, |
|
1345 | self.save(figpath=figpath, | |
1345 | figfile=figfile, |
|
1346 | figfile=figfile, | |
1346 | save=save, |
|
1347 | save=save, | |
1347 | ftp=ftp, |
|
1348 | ftp=ftp, | |
1348 | wr_period=wr_period, |
|
1349 | wr_period=wr_period, | |
1349 | thisDatetime=thisDatetime, |
|
1350 | thisDatetime=thisDatetime, | |
1350 | update_figfile=update_figfile) |
|
1351 | update_figfile=update_figfile) | |
1351 |
|
1352 | |||
1352 | #store data beacon phase |
|
1353 | #store data beacon phase | |
1353 | if save: |
|
1354 | if save: | |
1354 | self.save_data(self.filename_noise, noisedB, thisDatetime) |
|
1355 | self.save_data(self.filename_noise, noisedB, thisDatetime) | |
1355 |
|
1356 | |||
1356 | return dataOut |
|
1357 | return dataOut | |
1357 |
|
1358 | |||
1358 | @MPDecorator |
|
1359 | @MPDecorator | |
1359 | class BeaconPhase_(Figure): |
|
1360 | class BeaconPhase_(Figure): | |
1360 |
|
1361 | |||
1361 | __isConfig = None |
|
1362 | __isConfig = None | |
1362 | __nsubplots = None |
|
1363 | __nsubplots = None | |
1363 |
|
1364 | |||
1364 | PREFIX = 'beacon_phase' |
|
1365 | PREFIX = 'beacon_phase' | |
1365 |
|
1366 | |||
1366 | def __init__(self): |
|
1367 | def __init__(self): | |
1367 | Figure.__init__(self) |
|
1368 | Figure.__init__(self) | |
1368 | self.timerange = 24*60*60 |
|
1369 | self.timerange = 24*60*60 | |
1369 | self.isConfig = False |
|
1370 | self.isConfig = False | |
1370 | self.__nsubplots = 1 |
|
1371 | self.__nsubplots = 1 | |
1371 | self.counter_imagwr = 0 |
|
1372 | self.counter_imagwr = 0 | |
1372 | self.WIDTH = 800 |
|
1373 | self.WIDTH = 800 | |
1373 | self.HEIGHT = 400 |
|
1374 | self.HEIGHT = 400 | |
1374 | self.WIDTHPROF = 120 |
|
1375 | self.WIDTHPROF = 120 | |
1375 | self.HEIGHTPROF = 0 |
|
1376 | self.HEIGHTPROF = 0 | |
1376 | self.xdata = None |
|
1377 | self.xdata = None | |
1377 | self.ydata = None |
|
1378 | self.ydata = None | |
1378 |
|
1379 | |||
1379 | self.PLOT_CODE = BEACON_CODE |
|
1380 | self.PLOT_CODE = BEACON_CODE | |
1380 |
|
1381 | |||
1381 | self.FTP_WEI = None |
|
1382 | self.FTP_WEI = None | |
1382 | self.EXP_CODE = None |
|
1383 | self.EXP_CODE = None | |
1383 | self.SUB_EXP_CODE = None |
|
1384 | self.SUB_EXP_CODE = None | |
1384 | self.PLOT_POS = None |
|
1385 | self.PLOT_POS = None | |
1385 |
|
1386 | |||
1386 | self.filename_phase = None |
|
1387 | self.filename_phase = None | |
1387 |
|
1388 | |||
1388 | self.figfile = None |
|
1389 | self.figfile = None | |
1389 |
|
1390 | |||
1390 | self.xmin = None |
|
1391 | self.xmin = None | |
1391 | self.xmax = None |
|
1392 | self.xmax = None | |
1392 |
|
1393 | |||
1393 | def getSubplots(self): |
|
1394 | def getSubplots(self): | |
1394 |
|
1395 | |||
1395 | ncol = 1 |
|
1396 | ncol = 1 | |
1396 | nrow = 1 |
|
1397 | nrow = 1 | |
1397 |
|
1398 | |||
1398 | return nrow, ncol |
|
1399 | return nrow, ncol | |
1399 |
|
1400 | |||
1400 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): |
|
1401 | def setup(self, id, nplots, wintitle, showprofile=True, show=True): | |
1401 |
|
1402 | |||
1402 | self.__showprofile = showprofile |
|
1403 | self.__showprofile = showprofile | |
1403 | self.nplots = nplots |
|
1404 | self.nplots = nplots | |
1404 |
|
1405 | |||
1405 | ncolspan = 7 |
|
1406 | ncolspan = 7 | |
1406 | colspan = 6 |
|
1407 | colspan = 6 | |
1407 | self.__nsubplots = 2 |
|
1408 | self.__nsubplots = 2 | |
1408 |
|
1409 | |||
1409 | self.createFigure(id = id, |
|
1410 | self.createFigure(id = id, | |
1410 | wintitle = wintitle, |
|
1411 | wintitle = wintitle, | |
1411 | widthplot = self.WIDTH+self.WIDTHPROF, |
|
1412 | widthplot = self.WIDTH+self.WIDTHPROF, | |
1412 | heightplot = self.HEIGHT+self.HEIGHTPROF, |
|
1413 | heightplot = self.HEIGHT+self.HEIGHTPROF, | |
1413 | show=show) |
|
1414 | show=show) | |
1414 |
|
1415 | |||
1415 | nrow, ncol = self.getSubplots() |
|
1416 | nrow, ncol = self.getSubplots() | |
1416 |
|
1417 | |||
1417 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) |
|
1418 | self.addAxes(nrow, ncol*ncolspan, 0, 0, colspan, 1) | |
1418 |
|
1419 | |||
1419 | def save_phase(self, filename_phase): |
|
1420 | def save_phase(self, filename_phase): | |
1420 | f = open(filename_phase,'w+') |
|
1421 | f = open(filename_phase,'w+') | |
1421 | f.write('\n\n') |
|
1422 | f.write('\n\n') | |
1422 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') |
|
1423 | f.write('JICAMARCA RADIO OBSERVATORY - Beacon Phase \n') | |
1423 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) |
|
1424 | f.write('DD MM YYYY HH MM SS pair(2,0) pair(2,1) pair(2,3) pair(2,4)\n\n' ) | |
1424 | f.close() |
|
1425 | f.close() | |
1425 |
|
1426 | |||
1426 | def save_data(self, filename_phase, data, data_datetime): |
|
1427 | def save_data(self, filename_phase, data, data_datetime): | |
1427 | f=open(filename_phase,'a') |
|
1428 | f=open(filename_phase,'a') | |
1428 | timetuple_data = data_datetime.timetuple() |
|
1429 | timetuple_data = data_datetime.timetuple() | |
1429 | day = str(timetuple_data.tm_mday) |
|
1430 | day = str(timetuple_data.tm_mday) | |
1430 | month = str(timetuple_data.tm_mon) |
|
1431 | month = str(timetuple_data.tm_mon) | |
1431 | year = str(timetuple_data.tm_year) |
|
1432 | year = str(timetuple_data.tm_year) | |
1432 | hour = str(timetuple_data.tm_hour) |
|
1433 | hour = str(timetuple_data.tm_hour) | |
1433 | minute = str(timetuple_data.tm_min) |
|
1434 | minute = str(timetuple_data.tm_min) | |
1434 | second = str(timetuple_data.tm_sec) |
|
1435 | second = str(timetuple_data.tm_sec) | |
1435 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') |
|
1436 | f.write(day+' '+month+' '+year+' '+hour+' '+minute+' '+second+' '+str(data[0])+' '+str(data[1])+' '+str(data[2])+' '+str(data[3])+'\n') | |
1436 | f.close() |
|
1437 | f.close() | |
1437 |
|
1438 | |||
1438 |
|
1439 | |||
1439 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', |
|
1440 | def run(self, dataOut, id, wintitle="", pairsList=None, showprofile='True', | |
1440 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, |
|
1441 | xmin=None, xmax=None, ymin=None, ymax=None, hmin=None, hmax=None, | |
1441 | timerange=None, |
|
1442 | timerange=None, | |
1442 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, |
|
1443 | save=False, figpath='./', figfile=None, show=True, ftp=False, wr_period=1, | |
1443 | server=None, folder=None, username=None, password=None, |
|
1444 | server=None, folder=None, username=None, password=None, | |
1444 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): |
|
1445 | ftp_wei=0, exp_code=0, sub_exp_code=0, plot_pos=0): | |
1445 |
|
1446 | |||
1446 | if dataOut.flagNoData: |
|
1447 | if dataOut.flagNoData: | |
1447 | return dataOut |
|
1448 | return dataOut | |
1448 |
|
1449 | |||
1449 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): |
|
1450 | if not isTimeInHourRange(dataOut.datatime, xmin, xmax): | |
1450 | return |
|
1451 | return | |
1451 |
|
1452 | |||
1452 | if pairsList == None: |
|
1453 | if pairsList == None: | |
1453 | pairsIndexList = dataOut.pairsIndexList[:10] |
|
1454 | pairsIndexList = dataOut.pairsIndexList[:10] | |
1454 | else: |
|
1455 | else: | |
1455 | pairsIndexList = [] |
|
1456 | pairsIndexList = [] | |
1456 | for pair in pairsList: |
|
1457 | for pair in pairsList: | |
1457 | if pair not in dataOut.pairsList: |
|
1458 | if pair not in dataOut.pairsList: | |
1458 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) |
|
1459 | raise ValueError("Pair %s is not in dataOut.pairsList" %(pair)) | |
1459 | pairsIndexList.append(dataOut.pairsList.index(pair)) |
|
1460 | pairsIndexList.append(dataOut.pairsList.index(pair)) | |
1460 |
|
1461 | |||
1461 | if pairsIndexList == []: |
|
1462 | if pairsIndexList == []: | |
1462 | return |
|
1463 | return | |
1463 |
|
1464 | |||
1464 | # if len(pairsIndexList) > 4: |
|
1465 | # if len(pairsIndexList) > 4: | |
1465 | # pairsIndexList = pairsIndexList[0:4] |
|
1466 | # pairsIndexList = pairsIndexList[0:4] | |
1466 |
|
1467 | |||
1467 | hmin_index = None |
|
1468 | hmin_index = None | |
1468 | hmax_index = None |
|
1469 | hmax_index = None | |
1469 |
|
1470 | |||
1470 | if hmin != None and hmax != None: |
|
1471 | if hmin != None and hmax != None: | |
1471 | indexes = numpy.arange(dataOut.nHeights) |
|
1472 | indexes = numpy.arange(dataOut.nHeights) | |
1472 | hmin_list = indexes[dataOut.heightList >= hmin] |
|
1473 | hmin_list = indexes[dataOut.heightList >= hmin] | |
1473 | hmax_list = indexes[dataOut.heightList <= hmax] |
|
1474 | hmax_list = indexes[dataOut.heightList <= hmax] | |
1474 |
|
1475 | |||
1475 | if hmin_list.any(): |
|
1476 | if hmin_list.any(): | |
1476 | hmin_index = hmin_list[0] |
|
1477 | hmin_index = hmin_list[0] | |
1477 |
|
1478 | |||
1478 | if hmax_list.any(): |
|
1479 | if hmax_list.any(): | |
1479 | hmax_index = hmax_list[-1]+1 |
|
1480 | hmax_index = hmax_list[-1]+1 | |
1480 |
|
1481 | |||
1481 | x = dataOut.getTimeRange() |
|
1482 | x = dataOut.getTimeRange() | |
1482 | #y = dataOut.getHeiRange() |
|
1483 | #y = dataOut.getHeiRange() | |
1483 |
|
1484 | |||
1484 |
|
1485 | |||
1485 | thisDatetime = dataOut.datatime |
|
1486 | thisDatetime = dataOut.datatime | |
1486 |
|
1487 | |||
1487 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) |
|
1488 | title = wintitle + " Signal Phase" # : %s" %(thisDatetime.strftime("%d-%b-%Y")) | |
1488 | xlabel = "Local Time" |
|
1489 | xlabel = "Local Time" | |
1489 | ylabel = "Phase (degrees)" |
|
1490 | ylabel = "Phase (degrees)" | |
1490 |
|
1491 | |||
1491 | update_figfile = False |
|
1492 | update_figfile = False | |
1492 |
|
1493 | |||
1493 | nplots = len(pairsIndexList) |
|
1494 | nplots = len(pairsIndexList) | |
1494 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) |
|
1495 | #phase = numpy.zeros((len(pairsIndexList),len(dataOut.beacon_heiIndexList))) | |
1495 | phase_beacon = numpy.zeros(len(pairsIndexList)) |
|
1496 | phase_beacon = numpy.zeros(len(pairsIndexList)) | |
1496 | for i in range(nplots): |
|
1497 | for i in range(nplots): | |
1497 | pair = dataOut.pairsList[pairsIndexList[i]] |
|
1498 | pair = dataOut.pairsList[pairsIndexList[i]] | |
1498 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) |
|
1499 | ccf = numpy.average(dataOut.data_cspc[pairsIndexList[i], :, hmin_index:hmax_index], axis=0) | |
1499 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) |
|
1500 | powa = numpy.average(dataOut.data_spc[pair[0], :, hmin_index:hmax_index], axis=0) | |
1500 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) |
|
1501 | powb = numpy.average(dataOut.data_spc[pair[1], :, hmin_index:hmax_index], axis=0) | |
1501 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) |
|
1502 | avgcoherenceComplex = ccf/numpy.sqrt(powa*powb) | |
1502 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi |
|
1503 | phase = numpy.arctan2(avgcoherenceComplex.imag, avgcoherenceComplex.real)*180/numpy.pi | |
1503 |
|
1504 | |||
1504 | if dataOut.beacon_heiIndexList: |
|
1505 | if dataOut.beacon_heiIndexList: | |
1505 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) |
|
1506 | phase_beacon[i] = numpy.average(phase[dataOut.beacon_heiIndexList]) | |
1506 | else: |
|
1507 | else: | |
1507 | phase_beacon[i] = numpy.average(phase) |
|
1508 | phase_beacon[i] = numpy.average(phase) | |
1508 |
|
1509 | |||
1509 | if not self.isConfig: |
|
1510 | if not self.isConfig: | |
1510 |
|
1511 | |||
1511 | nplots = len(pairsIndexList) |
|
1512 | nplots = len(pairsIndexList) | |
1512 |
|
1513 | |||
1513 | self.setup(id=id, |
|
1514 | self.setup(id=id, | |
1514 | nplots=nplots, |
|
1515 | nplots=nplots, | |
1515 | wintitle=wintitle, |
|
1516 | wintitle=wintitle, | |
1516 | showprofile=showprofile, |
|
1517 | showprofile=showprofile, | |
1517 | show=show) |
|
1518 | show=show) | |
1518 |
|
1519 | |||
1519 | if timerange != None: |
|
1520 | if timerange != None: | |
1520 | self.timerange = timerange |
|
1521 | self.timerange = timerange | |
1521 |
|
1522 | |||
1522 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) |
|
1523 | self.xmin, self.xmax = self.getTimeLim(x, xmin, xmax, timerange) | |
1523 |
|
1524 | |||
1524 | if ymin == None: ymin = 0 |
|
1525 | if ymin == None: ymin = 0 | |
1525 | if ymax == None: ymax = 360 |
|
1526 | if ymax == None: ymax = 360 | |
1526 |
|
1527 | |||
1527 | self.FTP_WEI = ftp_wei |
|
1528 | self.FTP_WEI = ftp_wei | |
1528 | self.EXP_CODE = exp_code |
|
1529 | self.EXP_CODE = exp_code | |
1529 | self.SUB_EXP_CODE = sub_exp_code |
|
1530 | self.SUB_EXP_CODE = sub_exp_code | |
1530 | self.PLOT_POS = plot_pos |
|
1531 | self.PLOT_POS = plot_pos | |
1531 |
|
1532 | |||
1532 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") |
|
1533 | self.name = thisDatetime.strftime("%Y%m%d_%H%M%S") | |
1533 | self.isConfig = True |
|
1534 | self.isConfig = True | |
1534 | self.figfile = figfile |
|
1535 | self.figfile = figfile | |
1535 | self.xdata = numpy.array([]) |
|
1536 | self.xdata = numpy.array([]) | |
1536 | self.ydata = numpy.array([]) |
|
1537 | self.ydata = numpy.array([]) | |
1537 |
|
1538 | |||
1538 | update_figfile = True |
|
1539 | update_figfile = True | |
1539 |
|
1540 | |||
1540 | #open file beacon phase |
|
1541 | #open file beacon phase | |
1541 | path = '%s%03d' %(self.PREFIX, self.id) |
|
1542 | path = '%s%03d' %(self.PREFIX, self.id) | |
1542 | beacon_file = os.path.join(path,'%s.txt'%self.name) |
|
1543 | beacon_file = os.path.join(path,'%s.txt'%self.name) | |
1543 | self.filename_phase = os.path.join(figpath,beacon_file) |
|
1544 | self.filename_phase = os.path.join(figpath,beacon_file) | |
1544 | #self.save_phase(self.filename_phase) |
|
1545 | #self.save_phase(self.filename_phase) | |
1545 |
|
1546 | |||
1546 |
|
1547 | |||
1547 | #store data beacon phase |
|
1548 | #store data beacon phase | |
1548 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) |
|
1549 | #self.save_data(self.filename_phase, phase_beacon, thisDatetime) | |
1549 |
|
1550 | |||
1550 | self.setWinTitle(title) |
|
1551 | self.setWinTitle(title) | |
1551 |
|
1552 | |||
1552 |
|
1553 | |||
1553 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) |
|
1554 | title = "Phase Plot %s" %(thisDatetime.strftime("%Y/%m/%d %H:%M:%S")) | |
1554 |
|
1555 | |||
1555 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] |
|
1556 | legendlabels = ["Pair (%d,%d)"%(pair[0], pair[1]) for pair in dataOut.pairsList] | |
1556 |
|
1557 | |||
1557 | axes = self.axesList[0] |
|
1558 | axes = self.axesList[0] | |
1558 |
|
1559 | |||
1559 | self.xdata = numpy.hstack((self.xdata, x[0:1])) |
|
1560 | self.xdata = numpy.hstack((self.xdata, x[0:1])) | |
1560 |
|
1561 | |||
1561 | if len(self.ydata)==0: |
|
1562 | if len(self.ydata)==0: | |
1562 | self.ydata = phase_beacon.reshape(-1,1) |
|
1563 | self.ydata = phase_beacon.reshape(-1,1) | |
1563 | else: |
|
1564 | else: | |
1564 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) |
|
1565 | self.ydata = numpy.hstack((self.ydata, phase_beacon.reshape(-1,1))) | |
1565 |
|
1566 | |||
1566 |
|
1567 | |||
1567 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, |
|
1568 | axes.pmultilineyaxis(x=self.xdata, y=self.ydata, | |
1568 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, |
|
1569 | xmin=self.xmin, xmax=self.xmax, ymin=ymin, ymax=ymax, | |
1569 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", |
|
1570 | xlabel=xlabel, ylabel=ylabel, title=title, legendlabels=legendlabels, marker='x', markersize=8, linestyle="solid", | |
1570 | XAxisAsTime=True, grid='both' |
|
1571 | XAxisAsTime=True, grid='both' | |
1571 | ) |
|
1572 | ) | |
1572 |
|
1573 | |||
1573 | self.draw() |
|
1574 | self.draw() | |
1574 |
|
1575 | |||
1575 | if dataOut.ltctime >= self.xmax: |
|
1576 | if dataOut.ltctime >= self.xmax: | |
1576 | self.counter_imagwr = wr_period |
|
1577 | self.counter_imagwr = wr_period | |
1577 | self.isConfig = False |
|
1578 | self.isConfig = False | |
1578 | update_figfile = True |
|
1579 | update_figfile = True | |
1579 |
|
1580 | |||
1580 | self.save(figpath=figpath, |
|
1581 | self.save(figpath=figpath, | |
1581 | figfile=figfile, |
|
1582 | figfile=figfile, | |
1582 | save=save, |
|
1583 | save=save, | |
1583 | ftp=ftp, |
|
1584 | ftp=ftp, | |
1584 | wr_period=wr_period, |
|
1585 | wr_period=wr_period, | |
1585 | thisDatetime=thisDatetime, |
|
1586 | thisDatetime=thisDatetime, | |
1586 | update_figfile=update_figfile) |
|
1587 | update_figfile=update_figfile) | |
1587 |
|
1588 | |||
1588 | return dataOut No newline at end of file |
|
1589 | return dataOut |
@@ -1,500 +1,470 | |||||
1 | import os |
|
1 | import os | |
2 | import sys |
|
2 | import sys | |
3 | import datetime |
|
3 | import datetime | |
4 | import numpy |
|
4 | import numpy | |
5 | import matplotlib |
|
5 | from .jroplot_base import matplotlib, make_axes_locatable, FuncFormatter, LinearLocator | |
6 |
|
||||
7 | if 'BACKEND' in os.environ: |
|
|||
8 | matplotlib.use(os.environ['BACKEND']) |
|
|||
9 | elif 'linux' in sys.platform: |
|
|||
10 | matplotlib.use("TkAgg") |
|
|||
11 | elif 'darwin' in sys.platform: |
|
|||
12 | matplotlib.use('TkAgg') |
|
|||
13 | else: |
|
|||
14 | from schainpy.utils import log |
|
|||
15 | log.warning('Using default Backend="Agg"', 'INFO') |
|
|||
16 | matplotlib.use('Agg') |
|
|||
17 | # Qt4Agg', 'GTK', 'GTKAgg', 'ps', 'agg', 'cairo', 'MacOSX', 'GTKCairo', 'WXAgg', 'template', 'TkAgg', 'GTK3Cairo', 'GTK3Agg', 'svg', 'WebAgg', 'CocoaAgg', 'emf', 'gdk', 'WX' |
|
|||
18 | import matplotlib.pyplot |
|
|||
19 |
|
||||
20 | from mpl_toolkits.axes_grid1 import make_axes_locatable |
|
|||
21 | from matplotlib.ticker import FuncFormatter, LinearLocator |
|
|||
22 |
|
||||
23 | ########################################### |
|
|||
24 | # Actualizacion de las funciones del driver |
|
|||
25 | ########################################### |
|
|||
26 |
|
||||
27 | # create jro colormap |
|
|||
28 |
|
||||
29 | jet_values = matplotlib.pyplot.get_cmap("jet", 100)(numpy.arange(100))[10:90] |
|
|||
30 | blu_values = matplotlib.pyplot.get_cmap( |
|
|||
31 | "seismic_r", 20)(numpy.arange(20))[10:15] |
|
|||
32 | ncmap = matplotlib.colors.LinearSegmentedColormap.from_list( |
|
|||
33 | "jro", numpy.vstack((blu_values, jet_values))) |
|
|||
34 | matplotlib.pyplot.register_cmap(cmap=ncmap) |
|
|||
35 |
|
||||
36 |
|
6 | |||
37 | def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi=80): |
|
7 | def createFigure(id, wintitle, width, height, facecolor="w", show=True, dpi=80): | |
38 |
|
8 | |||
39 | matplotlib.pyplot.ioff() |
|
9 | matplotlib.pyplot.ioff() | |
40 |
|
10 | |||
41 | fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=( |
|
11 | fig = matplotlib.pyplot.figure(num=id, facecolor=facecolor, figsize=( | |
42 | 1.0 * width / dpi, 1.0 * height / dpi)) |
|
12 | 1.0 * width / dpi, 1.0 * height / dpi)) | |
43 | fig.canvas.manager.set_window_title(wintitle) |
|
13 | fig.canvas.manager.set_window_title(wintitle) | |
44 | # fig.canvas.manager.resize(width, height) |
|
14 | # fig.canvas.manager.resize(width, height) | |
45 | matplotlib.pyplot.ion() |
|
15 | matplotlib.pyplot.ion() | |
46 |
|
16 | |||
47 | if show: |
|
17 | if show: | |
48 | matplotlib.pyplot.show() |
|
18 | matplotlib.pyplot.show() | |
49 |
|
19 | |||
50 | return fig |
|
20 | return fig | |
51 |
|
21 | |||
52 |
|
22 | |||
53 | def closeFigure(show=False, fig=None): |
|
23 | def closeFigure(show=False, fig=None): | |
54 |
|
24 | |||
55 | # matplotlib.pyplot.ioff() |
|
25 | # matplotlib.pyplot.ioff() | |
56 | # matplotlib.pyplot.pause(0) |
|
26 | # matplotlib.pyplot.pause(0) | |
57 |
|
27 | |||
58 | if show: |
|
28 | if show: | |
59 | matplotlib.pyplot.show() |
|
29 | matplotlib.pyplot.show() | |
60 |
|
30 | |||
61 | if fig != None: |
|
31 | if fig != None: | |
62 | matplotlib.pyplot.close(fig) |
|
32 | matplotlib.pyplot.close(fig) | |
63 | # matplotlib.pyplot.pause(0) |
|
33 | # matplotlib.pyplot.pause(0) | |
64 | # matplotlib.pyplot.ion() |
|
34 | # matplotlib.pyplot.ion() | |
65 |
|
35 | |||
66 | return |
|
36 | return | |
67 |
|
37 | |||
68 | matplotlib.pyplot.close("all") |
|
38 | matplotlib.pyplot.close("all") | |
69 | # matplotlib.pyplot.pause(0) |
|
39 | # matplotlib.pyplot.pause(0) | |
70 | # matplotlib.pyplot.ion() |
|
40 | # matplotlib.pyplot.ion() | |
71 |
|
41 | |||
72 | return |
|
42 | return | |
73 |
|
43 | |||
74 |
|
44 | |||
75 | def saveFigure(fig, filename): |
|
45 | def saveFigure(fig, filename): | |
76 |
|
46 | |||
77 | # matplotlib.pyplot.ioff() |
|
47 | # matplotlib.pyplot.ioff() | |
78 | fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi) |
|
48 | fig.savefig(filename, dpi=matplotlib.pyplot.gcf().dpi) | |
79 | # matplotlib.pyplot.ion() |
|
49 | # matplotlib.pyplot.ion() | |
80 |
|
50 | |||
81 |
|
51 | |||
82 | def clearFigure(fig): |
|
52 | def clearFigure(fig): | |
83 |
|
53 | |||
84 | fig.clf() |
|
54 | fig.clf() | |
85 |
|
55 | |||
86 |
|
56 | |||
87 | def setWinTitle(fig, title): |
|
57 | def setWinTitle(fig, title): | |
88 |
|
58 | |||
89 | fig.canvas.manager.set_window_title(title) |
|
59 | fig.canvas.manager.set_window_title(title) | |
90 |
|
60 | |||
91 |
|
61 | |||
92 | def setTitle(fig, title): |
|
62 | def setTitle(fig, title): | |
93 |
|
63 | |||
94 | fig.suptitle(title) |
|
64 | fig.suptitle(title) | |
95 |
|
65 | |||
96 |
|
66 | |||
97 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False): |
|
67 | def createAxes(fig, nrow, ncol, xpos, ypos, colspan, rowspan, polar=False): | |
98 |
|
68 | |||
99 | matplotlib.pyplot.ioff() |
|
69 | matplotlib.pyplot.ioff() | |
100 | matplotlib.pyplot.figure(fig.number) |
|
70 | matplotlib.pyplot.figure(fig.number) | |
101 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), |
|
71 | axes = matplotlib.pyplot.subplot2grid((nrow, ncol), | |
102 | (xpos, ypos), |
|
72 | (xpos, ypos), | |
103 | colspan=colspan, |
|
73 | colspan=colspan, | |
104 | rowspan=rowspan, |
|
74 | rowspan=rowspan, | |
105 | polar=polar) |
|
75 | polar=polar) | |
106 |
|
76 | |||
107 | matplotlib.pyplot.ion() |
|
77 | matplotlib.pyplot.ion() | |
108 | return axes |
|
78 | return axes | |
109 |
|
79 | |||
110 |
|
80 | |||
111 | def setAxesText(ax, text): |
|
81 | def setAxesText(ax, text): | |
112 |
|
82 | |||
113 | ax.annotate(text, |
|
83 | ax.annotate(text, | |
114 | xy=(.1, .99), |
|
84 | xy=(.1, .99), | |
115 | xycoords='figure fraction', |
|
85 | xycoords='figure fraction', | |
116 | horizontalalignment='left', |
|
86 | horizontalalignment='left', | |
117 | verticalalignment='top', |
|
87 | verticalalignment='top', | |
118 | fontsize=10) |
|
88 | fontsize=10) | |
119 |
|
89 | |||
120 |
|
90 | |||
121 | def printLabels(ax, xlabel, ylabel, title): |
|
91 | def printLabels(ax, xlabel, ylabel, title): | |
122 |
|
92 | |||
123 | ax.set_xlabel(xlabel, size=11) |
|
93 | ax.set_xlabel(xlabel, size=11) | |
124 | ax.set_ylabel(ylabel, size=11) |
|
94 | ax.set_ylabel(ylabel, size=11) | |
125 | ax.set_title(title, size=8) |
|
95 | ax.set_title(title, size=8) | |
126 |
|
96 | |||
127 |
|
97 | |||
128 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', |
|
98 | def createPline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', | |
129 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
99 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
130 | nxticks=4, nyticks=10, |
|
100 | nxticks=4, nyticks=10, | |
131 | grid=None, color='blue'): |
|
101 | grid=None, color='blue'): | |
132 | """ |
|
102 | """ | |
133 |
|
103 | |||
134 | Input: |
|
104 | Input: | |
135 | grid : None, 'both', 'x', 'y' |
|
105 | grid : None, 'both', 'x', 'y' | |
136 | """ |
|
106 | """ | |
137 |
|
107 | |||
138 | matplotlib.pyplot.ioff() |
|
108 | matplotlib.pyplot.ioff() | |
139 |
|
109 | |||
140 | ax.set_xlim([xmin, xmax]) |
|
110 | ax.set_xlim([xmin, xmax]) | |
141 | ax.set_ylim([ymin, ymax]) |
|
111 | ax.set_ylim([ymin, ymax]) | |
142 |
|
112 | |||
143 | printLabels(ax, xlabel, ylabel, title) |
|
113 | printLabels(ax, xlabel, ylabel, title) | |
144 |
|
114 | |||
145 | ###################################################### |
|
115 | ###################################################### | |
146 | if (xmax - xmin) <= 1: |
|
116 | if (xmax - xmin) <= 1: | |
147 | xtickspos = numpy.linspace(xmin, xmax, nxticks) |
|
117 | xtickspos = numpy.linspace(xmin, xmax, nxticks) | |
148 | xtickspos = numpy.array([float("%.1f" % i) for i in xtickspos]) |
|
118 | xtickspos = numpy.array([float("%.1f" % i) for i in xtickspos]) | |
149 | ax.set_xticks(xtickspos) |
|
119 | ax.set_xticks(xtickspos) | |
150 | else: |
|
120 | else: | |
151 | xtickspos = numpy.arange(nxticks) * \ |
|
121 | xtickspos = numpy.arange(nxticks) * \ | |
152 | int((xmax - xmin) / (nxticks)) + int(xmin) |
|
122 | int((xmax - xmin) / (nxticks)) + int(xmin) | |
153 | # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin) |
|
123 | # xtickspos = numpy.arange(nxticks)*float(xmax-xmin)/float(nxticks) + int(xmin) | |
154 | ax.set_xticks(xtickspos) |
|
124 | ax.set_xticks(xtickspos) | |
155 |
|
125 | |||
156 | for tick in ax.get_xticklabels(): |
|
126 | for tick in ax.get_xticklabels(): | |
157 | tick.set_visible(xtick_visible) |
|
127 | tick.set_visible(xtick_visible) | |
158 |
|
128 | |||
159 | for tick in ax.xaxis.get_major_ticks(): |
|
129 | for tick in ax.xaxis.get_major_ticks(): | |
160 | tick.label.set_fontsize(ticksize) |
|
130 | tick.label.set_fontsize(ticksize) | |
161 |
|
131 | |||
162 | ###################################################### |
|
132 | ###################################################### | |
163 | for tick in ax.get_yticklabels(): |
|
133 | for tick in ax.get_yticklabels(): | |
164 | tick.set_visible(ytick_visible) |
|
134 | tick.set_visible(ytick_visible) | |
165 |
|
135 | |||
166 | for tick in ax.yaxis.get_major_ticks(): |
|
136 | for tick in ax.yaxis.get_major_ticks(): | |
167 | tick.label.set_fontsize(ticksize) |
|
137 | tick.label.set_fontsize(ticksize) | |
168 |
|
138 | |||
169 | ax.plot(x, y, color=color) |
|
139 | ax.plot(x, y, color=color) | |
170 | iplot = ax.lines[-1] |
|
140 | iplot = ax.lines[-1] | |
171 |
|
141 | |||
172 | ###################################################### |
|
142 | ###################################################### | |
173 | if '0.' in matplotlib.__version__[0:2]: |
|
143 | if '0.' in matplotlib.__version__[0:2]: | |
174 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
144 | print("The matplotlib version has to be updated to 1.1 or newer") | |
175 | return iplot |
|
145 | return iplot | |
176 |
|
146 | |||
177 | if '1.0.' in matplotlib.__version__[0:4]: |
|
147 | if '1.0.' in matplotlib.__version__[0:4]: | |
178 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
148 | print("The matplotlib version has to be updated to 1.1 or newer") | |
179 | return iplot |
|
149 | return iplot | |
180 |
|
150 | |||
181 | if grid != None: |
|
151 | if grid != None: | |
182 | ax.grid(b=True, which='major', axis=grid) |
|
152 | ax.grid(b=True, which='major', axis=grid) | |
183 |
|
153 | |||
184 | matplotlib.pyplot.tight_layout() |
|
154 | matplotlib.pyplot.tight_layout() | |
185 |
|
155 | |||
186 | matplotlib.pyplot.ion() |
|
156 | matplotlib.pyplot.ion() | |
187 |
|
157 | |||
188 | return iplot |
|
158 | return iplot | |
189 |
|
159 | |||
190 |
|
160 | |||
191 | def set_linedata(ax, x, y, idline): |
|
161 | def set_linedata(ax, x, y, idline): | |
192 |
|
162 | |||
193 | ax.lines[idline].set_data(x, y) |
|
163 | ax.lines[idline].set_data(x, y) | |
194 |
|
164 | |||
195 |
|
165 | |||
196 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
166 | def pline(iplot, x, y, xlabel='', ylabel='', title=''): | |
197 |
|
167 | |||
198 | ax = iplot.axes |
|
168 | ax = iplot.axes | |
199 |
|
169 | |||
200 | printLabels(ax, xlabel, ylabel, title) |
|
170 | printLabels(ax, xlabel, ylabel, title) | |
201 |
|
171 | |||
202 | set_linedata(ax, x, y, idline=0) |
|
172 | set_linedata(ax, x, y, idline=0) | |
203 |
|
173 | |||
204 |
|
174 | |||
205 | def addpline(ax, x, y, color, linestyle, lw): |
|
175 | def addpline(ax, x, y, color, linestyle, lw): | |
206 |
|
176 | |||
207 | ax.plot(x, y, color=color, linestyle=linestyle, lw=lw) |
|
177 | ax.plot(x, y, color=color, linestyle=linestyle, lw=lw) | |
208 |
|
178 | |||
209 |
|
179 | |||
210 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, |
|
180 | def createPcolor(ax, x, y, z, xmin, xmax, ymin, ymax, zmin, zmax, | |
211 | xlabel='', ylabel='', title='', ticksize=9, |
|
181 | xlabel='', ylabel='', title='', ticksize=9, | |
212 | colormap='jet', cblabel='', cbsize="5%", |
|
182 | colormap='jet', cblabel='', cbsize="5%", | |
213 | XAxisAsTime=False): |
|
183 | XAxisAsTime=False): | |
214 |
|
184 | |||
215 | matplotlib.pyplot.ioff() |
|
185 | matplotlib.pyplot.ioff() | |
216 |
|
186 | |||
217 | divider = make_axes_locatable(ax) |
|
187 | divider = make_axes_locatable(ax) | |
218 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) |
|
188 | ax_cb = divider.new_horizontal(size=cbsize, pad=0.05) | |
219 | fig = ax.get_figure() |
|
189 | fig = ax.get_figure() | |
220 | fig.add_axes(ax_cb) |
|
190 | fig.add_axes(ax_cb) | |
221 |
|
191 | |||
222 | ax.set_xlim([xmin, xmax]) |
|
192 | ax.set_xlim([xmin, xmax]) | |
223 | ax.set_ylim([ymin, ymax]) |
|
193 | ax.set_ylim([ymin, ymax]) | |
224 |
|
194 | |||
225 | printLabels(ax, xlabel, ylabel, title) |
|
195 | printLabels(ax, xlabel, ylabel, title) | |
226 |
|
196 | |||
227 | z = numpy.ma.masked_invalid(z) |
|
197 | z = numpy.ma.masked_invalid(z) | |
228 | cmap = matplotlib.pyplot.get_cmap(colormap) |
|
198 | cmap = matplotlib.pyplot.get_cmap(colormap) | |
229 | cmap.set_bad('white', 1.) |
|
199 | cmap.set_bad('white', 1.) | |
230 | imesh = ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap) |
|
200 | imesh = ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap) | |
231 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) |
|
201 | cb = matplotlib.pyplot.colorbar(imesh, cax=ax_cb) | |
232 | cb.set_label(cblabel) |
|
202 | cb.set_label(cblabel) | |
233 |
|
203 | |||
234 | # for tl in ax_cb.get_yticklabels(): |
|
204 | # for tl in ax_cb.get_yticklabels(): | |
235 | # tl.set_visible(True) |
|
205 | # tl.set_visible(True) | |
236 |
|
206 | |||
237 | for tick in ax.yaxis.get_major_ticks(): |
|
207 | for tick in ax.yaxis.get_major_ticks(): | |
238 | tick.label.set_fontsize(ticksize) |
|
208 | tick.label.set_fontsize(ticksize) | |
239 |
|
209 | |||
240 | for tick in ax.xaxis.get_major_ticks(): |
|
210 | for tick in ax.xaxis.get_major_ticks(): | |
241 | tick.label.set_fontsize(ticksize) |
|
211 | tick.label.set_fontsize(ticksize) | |
242 |
|
212 | |||
243 | for tick in cb.ax.get_yticklabels(): |
|
213 | for tick in cb.ax.get_yticklabels(): | |
244 | tick.set_fontsize(ticksize) |
|
214 | tick.set_fontsize(ticksize) | |
245 |
|
215 | |||
246 | ax_cb.yaxis.tick_right() |
|
216 | ax_cb.yaxis.tick_right() | |
247 |
|
217 | |||
248 | if '0.' in matplotlib.__version__[0:2]: |
|
218 | if '0.' in matplotlib.__version__[0:2]: | |
249 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
219 | print("The matplotlib version has to be updated to 1.1 or newer") | |
250 | return imesh |
|
220 | return imesh | |
251 |
|
221 | |||
252 | if '1.0.' in matplotlib.__version__[0:4]: |
|
222 | if '1.0.' in matplotlib.__version__[0:4]: | |
253 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
223 | print("The matplotlib version has to be updated to 1.1 or newer") | |
254 | return imesh |
|
224 | return imesh | |
255 |
|
225 | |||
256 | matplotlib.pyplot.tight_layout() |
|
226 | matplotlib.pyplot.tight_layout() | |
257 |
|
227 | |||
258 | if XAxisAsTime: |
|
228 | if XAxisAsTime: | |
259 |
|
229 | |||
260 | def func(x, pos): return ('%s') % ( |
|
230 | def func(x, pos): return ('%s') % ( | |
261 | datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
231 | datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
262 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
232 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
263 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
233 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
264 |
|
234 | |||
265 | matplotlib.pyplot.ion() |
|
235 | matplotlib.pyplot.ion() | |
266 | return imesh |
|
236 | return imesh | |
267 |
|
237 | |||
268 |
|
238 | |||
269 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): |
|
239 | def pcolor(imesh, z, xlabel='', ylabel='', title=''): | |
270 |
|
240 | |||
271 | z = z.T |
|
241 | z = z.T | |
272 | ax = imesh.axes |
|
242 | ax = imesh.axes | |
273 | printLabels(ax, xlabel, ylabel, title) |
|
243 | printLabels(ax, xlabel, ylabel, title) | |
274 | imesh.set_array(z.ravel()) |
|
244 | imesh.set_array(z.ravel()) | |
275 |
|
245 | |||
276 |
|
246 | |||
277 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
247 | def addpcolor(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): | |
278 |
|
248 | |||
279 | printLabels(ax, xlabel, ylabel, title) |
|
249 | printLabels(ax, xlabel, ylabel, title) | |
280 |
|
250 | |||
281 | ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, |
|
251 | ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, | |
282 | cmap=matplotlib.pyplot.get_cmap(colormap)) |
|
252 | cmap=matplotlib.pyplot.get_cmap(colormap)) | |
283 |
|
253 | |||
284 |
|
254 | |||
285 | def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): |
|
255 | def addpcolorbuffer(ax, x, y, z, zmin, zmax, xlabel='', ylabel='', title='', colormap='jet'): | |
286 |
|
256 | |||
287 | printLabels(ax, xlabel, ylabel, title) |
|
257 | printLabels(ax, xlabel, ylabel, title) | |
288 |
|
258 | |||
289 | ax.collections.remove(ax.collections[0]) |
|
259 | ax.collections.remove(ax.collections[0]) | |
290 |
|
260 | |||
291 | z = numpy.ma.masked_invalid(z) |
|
261 | z = numpy.ma.masked_invalid(z) | |
292 |
|
262 | |||
293 | cmap = matplotlib.pyplot.get_cmap(colormap) |
|
263 | cmap = matplotlib.pyplot.get_cmap(colormap) | |
294 | cmap.set_bad('white', 1.) |
|
264 | cmap.set_bad('white', 1.) | |
295 |
|
265 | |||
296 | ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap) |
|
266 | ax.pcolormesh(x, y, z.T, vmin=zmin, vmax=zmax, cmap=cmap) | |
297 |
|
267 | |||
298 |
|
268 | |||
299 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
269 | def createPmultiline(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
300 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
270 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
301 | nxticks=4, nyticks=10, |
|
271 | nxticks=4, nyticks=10, | |
302 | grid=None): |
|
272 | grid=None): | |
303 | """ |
|
273 | """ | |
304 |
|
274 | |||
305 | Input: |
|
275 | Input: | |
306 | grid : None, 'both', 'x', 'y' |
|
276 | grid : None, 'both', 'x', 'y' | |
307 | """ |
|
277 | """ | |
308 |
|
278 | |||
309 | matplotlib.pyplot.ioff() |
|
279 | matplotlib.pyplot.ioff() | |
310 |
|
280 | |||
311 | lines = ax.plot(x.T, y) |
|
281 | lines = ax.plot(x.T, y) | |
312 | leg = ax.legend(lines, legendlabels, loc='upper right') |
|
282 | leg = ax.legend(lines, legendlabels, loc='upper right') | |
313 | leg.get_frame().set_alpha(0.5) |
|
283 | leg.get_frame().set_alpha(0.5) | |
314 | ax.set_xlim([xmin, xmax]) |
|
284 | ax.set_xlim([xmin, xmax]) | |
315 | ax.set_ylim([ymin, ymax]) |
|
285 | ax.set_ylim([ymin, ymax]) | |
316 | printLabels(ax, xlabel, ylabel, title) |
|
286 | printLabels(ax, xlabel, ylabel, title) | |
317 |
|
287 | |||
318 | xtickspos = numpy.arange(nxticks) * \ |
|
288 | xtickspos = numpy.arange(nxticks) * \ | |
319 | int((xmax - xmin) / (nxticks)) + int(xmin) |
|
289 | int((xmax - xmin) / (nxticks)) + int(xmin) | |
320 | ax.set_xticks(xtickspos) |
|
290 | ax.set_xticks(xtickspos) | |
321 |
|
291 | |||
322 | for tick in ax.get_xticklabels(): |
|
292 | for tick in ax.get_xticklabels(): | |
323 | tick.set_visible(xtick_visible) |
|
293 | tick.set_visible(xtick_visible) | |
324 |
|
294 | |||
325 | for tick in ax.xaxis.get_major_ticks(): |
|
295 | for tick in ax.xaxis.get_major_ticks(): | |
326 | tick.label.set_fontsize(ticksize) |
|
296 | tick.label.set_fontsize(ticksize) | |
327 |
|
297 | |||
328 | for tick in ax.get_yticklabels(): |
|
298 | for tick in ax.get_yticklabels(): | |
329 | tick.set_visible(ytick_visible) |
|
299 | tick.set_visible(ytick_visible) | |
330 |
|
300 | |||
331 | for tick in ax.yaxis.get_major_ticks(): |
|
301 | for tick in ax.yaxis.get_major_ticks(): | |
332 | tick.label.set_fontsize(ticksize) |
|
302 | tick.label.set_fontsize(ticksize) | |
333 |
|
303 | |||
334 | iplot = ax.lines[-1] |
|
304 | iplot = ax.lines[-1] | |
335 |
|
305 | |||
336 | if '0.' in matplotlib.__version__[0:2]: |
|
306 | if '0.' in matplotlib.__version__[0:2]: | |
337 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
307 | print("The matplotlib version has to be updated to 1.1 or newer") | |
338 | return iplot |
|
308 | return iplot | |
339 |
|
309 | |||
340 | if '1.0.' in matplotlib.__version__[0:4]: |
|
310 | if '1.0.' in matplotlib.__version__[0:4]: | |
341 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
311 | print("The matplotlib version has to be updated to 1.1 or newer") | |
342 | return iplot |
|
312 | return iplot | |
343 |
|
313 | |||
344 | if grid != None: |
|
314 | if grid != None: | |
345 | ax.grid(b=True, which='major', axis=grid) |
|
315 | ax.grid(b=True, which='major', axis=grid) | |
346 |
|
316 | |||
347 | matplotlib.pyplot.tight_layout() |
|
317 | matplotlib.pyplot.tight_layout() | |
348 |
|
318 | |||
349 | matplotlib.pyplot.ion() |
|
319 | matplotlib.pyplot.ion() | |
350 |
|
320 | |||
351 | return iplot |
|
321 | return iplot | |
352 |
|
322 | |||
353 |
|
323 | |||
354 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): |
|
324 | def pmultiline(iplot, x, y, xlabel='', ylabel='', title=''): | |
355 |
|
325 | |||
356 | ax = iplot.axes |
|
326 | ax = iplot.axes | |
357 |
|
327 | |||
358 | printLabels(ax, xlabel, ylabel, title) |
|
328 | printLabels(ax, xlabel, ylabel, title) | |
359 |
|
329 | |||
360 | for i in range(len(ax.lines)): |
|
330 | for i in range(len(ax.lines)): | |
361 | line = ax.lines[i] |
|
331 | line = ax.lines[i] | |
362 | line.set_data(x[i, :], y) |
|
332 | line.set_data(x[i, :], y) | |
363 |
|
333 | |||
364 |
|
334 | |||
365 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, |
|
335 | def createPmultilineYAxis(ax, x, y, xmin, xmax, ymin, ymax, xlabel='', ylabel='', title='', legendlabels=None, | |
366 | ticksize=9, xtick_visible=True, ytick_visible=True, |
|
336 | ticksize=9, xtick_visible=True, ytick_visible=True, | |
367 | nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None", |
|
337 | nxticks=4, nyticks=10, marker='.', markersize=10, linestyle="None", | |
368 | grid=None, XAxisAsTime=False): |
|
338 | grid=None, XAxisAsTime=False): | |
369 | """ |
|
339 | """ | |
370 |
|
340 | |||
371 | Input: |
|
341 | Input: | |
372 | grid : None, 'both', 'x', 'y' |
|
342 | grid : None, 'both', 'x', 'y' | |
373 | """ |
|
343 | """ | |
374 |
|
344 | |||
375 | matplotlib.pyplot.ioff() |
|
345 | matplotlib.pyplot.ioff() | |
376 |
|
346 | |||
377 | # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) |
|
347 | # lines = ax.plot(x, y.T, marker=marker,markersize=markersize,linestyle=linestyle) | |
378 | lines = ax.plot(x, y.T) |
|
348 | lines = ax.plot(x, y.T) | |
379 | # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \ |
|
349 | # leg = ax.legend(lines, legendlabels, loc=2, bbox_to_anchor=(1.01, 1.00), numpoints=1, handlelength=1.5, \ | |
380 | # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.) |
|
350 | # handletextpad=0.5, borderpad=0.5, labelspacing=0.5, borderaxespad=0.) | |
381 |
|
351 | |||
382 | leg = ax.legend(lines, legendlabels, |
|
352 | leg = ax.legend(lines, legendlabels, | |
383 | loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0) |
|
353 | loc='upper right', bbox_to_anchor=(1.16, 1), borderaxespad=0) | |
384 |
|
354 | |||
385 | for label in leg.get_texts(): |
|
355 | for label in leg.get_texts(): | |
386 | label.set_fontsize(9) |
|
356 | label.set_fontsize(9) | |
387 |
|
357 | |||
388 | ax.set_xlim([xmin, xmax]) |
|
358 | ax.set_xlim([xmin, xmax]) | |
389 | ax.set_ylim([ymin, ymax]) |
|
359 | ax.set_ylim([ymin, ymax]) | |
390 | printLabels(ax, xlabel, ylabel, title) |
|
360 | printLabels(ax, xlabel, ylabel, title) | |
391 |
|
361 | |||
392 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) |
|
362 | # xtickspos = numpy.arange(nxticks)*int((xmax-xmin)/(nxticks)) + int(xmin) | |
393 | # ax.set_xticks(xtickspos) |
|
363 | # ax.set_xticks(xtickspos) | |
394 |
|
364 | |||
395 | for tick in ax.get_xticklabels(): |
|
365 | for tick in ax.get_xticklabels(): | |
396 | tick.set_visible(xtick_visible) |
|
366 | tick.set_visible(xtick_visible) | |
397 |
|
367 | |||
398 | for tick in ax.xaxis.get_major_ticks(): |
|
368 | for tick in ax.xaxis.get_major_ticks(): | |
399 | tick.label.set_fontsize(ticksize) |
|
369 | tick.label.set_fontsize(ticksize) | |
400 |
|
370 | |||
401 | for tick in ax.get_yticklabels(): |
|
371 | for tick in ax.get_yticklabels(): | |
402 | tick.set_visible(ytick_visible) |
|
372 | tick.set_visible(ytick_visible) | |
403 |
|
373 | |||
404 | for tick in ax.yaxis.get_major_ticks(): |
|
374 | for tick in ax.yaxis.get_major_ticks(): | |
405 | tick.label.set_fontsize(ticksize) |
|
375 | tick.label.set_fontsize(ticksize) | |
406 |
|
376 | |||
407 | iplot = ax.lines[-1] |
|
377 | iplot = ax.lines[-1] | |
408 |
|
378 | |||
409 | if '0.' in matplotlib.__version__[0:2]: |
|
379 | if '0.' in matplotlib.__version__[0:2]: | |
410 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
380 | print("The matplotlib version has to be updated to 1.1 or newer") | |
411 | return iplot |
|
381 | return iplot | |
412 |
|
382 | |||
413 | if '1.0.' in matplotlib.__version__[0:4]: |
|
383 | if '1.0.' in matplotlib.__version__[0:4]: | |
414 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
384 | print("The matplotlib version has to be updated to 1.1 or newer") | |
415 | return iplot |
|
385 | return iplot | |
416 |
|
386 | |||
417 | if grid != None: |
|
387 | if grid != None: | |
418 | ax.grid(b=True, which='major', axis=grid) |
|
388 | ax.grid(b=True, which='major', axis=grid) | |
419 |
|
389 | |||
420 | matplotlib.pyplot.tight_layout() |
|
390 | matplotlib.pyplot.tight_layout() | |
421 |
|
391 | |||
422 | if XAxisAsTime: |
|
392 | if XAxisAsTime: | |
423 |
|
393 | |||
424 | def func(x, pos): return ('%s') % ( |
|
394 | def func(x, pos): return ('%s') % ( | |
425 | datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) |
|
395 | datetime.datetime.utcfromtimestamp(x).strftime("%H:%M:%S")) | |
426 | ax.xaxis.set_major_formatter(FuncFormatter(func)) |
|
396 | ax.xaxis.set_major_formatter(FuncFormatter(func)) | |
427 | ax.xaxis.set_major_locator(LinearLocator(7)) |
|
397 | ax.xaxis.set_major_locator(LinearLocator(7)) | |
428 |
|
398 | |||
429 | matplotlib.pyplot.ion() |
|
399 | matplotlib.pyplot.ion() | |
430 |
|
400 | |||
431 | return iplot |
|
401 | return iplot | |
432 |
|
402 | |||
433 |
|
403 | |||
434 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): |
|
404 | def pmultilineyaxis(iplot, x, y, xlabel='', ylabel='', title=''): | |
435 |
|
405 | |||
436 | ax = iplot.axes |
|
406 | ax = iplot.axes | |
437 | printLabels(ax, xlabel, ylabel, title) |
|
407 | printLabels(ax, xlabel, ylabel, title) | |
438 |
|
408 | |||
439 | for i in range(len(ax.lines)): |
|
409 | for i in range(len(ax.lines)): | |
440 | line = ax.lines[i] |
|
410 | line = ax.lines[i] | |
441 | line.set_data(x, y[i, :]) |
|
411 | line.set_data(x, y[i, :]) | |
442 |
|
412 | |||
443 |
|
413 | |||
444 | def createPolar(ax, x, y, |
|
414 | def createPolar(ax, x, y, | |
445 | xlabel='', ylabel='', title='', ticksize=9, |
|
415 | xlabel='', ylabel='', title='', ticksize=9, | |
446 | colormap='jet', cblabel='', cbsize="5%", |
|
416 | colormap='jet', cblabel='', cbsize="5%", | |
447 | XAxisAsTime=False): |
|
417 | XAxisAsTime=False): | |
448 |
|
418 | |||
449 | matplotlib.pyplot.ioff() |
|
419 | matplotlib.pyplot.ioff() | |
450 |
|
420 | |||
451 | ax.plot(x, y, 'bo', markersize=5) |
|
421 | ax.plot(x, y, 'bo', markersize=5) | |
452 | # ax.set_rmax(90) |
|
422 | # ax.set_rmax(90) | |
453 | ax.set_ylim(0, 90) |
|
423 | ax.set_ylim(0, 90) | |
454 | ax.set_yticks(numpy.arange(0, 90, 20)) |
|
424 | ax.set_yticks(numpy.arange(0, 90, 20)) | |
455 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11') |
|
425 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center' ,size='11') | |
456 | # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11') |
|
426 | # ax.text(0, 50, ylabel, rotation='vertical', va ='center', ha = 'left' ,size='11') | |
457 | # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical') |
|
427 | # ax.text(100, 100, 'example', ha='left', va='center', rotation='vertical') | |
458 | ax.yaxis.labelpad = 40 |
|
428 | ax.yaxis.labelpad = 40 | |
459 | printLabels(ax, xlabel, ylabel, title) |
|
429 | printLabels(ax, xlabel, ylabel, title) | |
460 | iplot = ax.lines[-1] |
|
430 | iplot = ax.lines[-1] | |
461 |
|
431 | |||
462 | if '0.' in matplotlib.__version__[0:2]: |
|
432 | if '0.' in matplotlib.__version__[0:2]: | |
463 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
433 | print("The matplotlib version has to be updated to 1.1 or newer") | |
464 | return iplot |
|
434 | return iplot | |
465 |
|
435 | |||
466 | if '1.0.' in matplotlib.__version__[0:4]: |
|
436 | if '1.0.' in matplotlib.__version__[0:4]: | |
467 | print("The matplotlib version has to be updated to 1.1 or newer") |
|
437 | print("The matplotlib version has to be updated to 1.1 or newer") | |
468 | return iplot |
|
438 | return iplot | |
469 |
|
439 | |||
470 | # if grid != None: |
|
440 | # if grid != None: | |
471 | # ax.grid(b=True, which='major', axis=grid) |
|
441 | # ax.grid(b=True, which='major', axis=grid) | |
472 |
|
442 | |||
473 | matplotlib.pyplot.tight_layout() |
|
443 | matplotlib.pyplot.tight_layout() | |
474 |
|
444 | |||
475 | matplotlib.pyplot.ion() |
|
445 | matplotlib.pyplot.ion() | |
476 |
|
446 | |||
477 | return iplot |
|
447 | return iplot | |
478 |
|
448 | |||
479 |
|
449 | |||
480 | def polar(iplot, x, y, xlabel='', ylabel='', title=''): |
|
450 | def polar(iplot, x, y, xlabel='', ylabel='', title=''): | |
481 |
|
451 | |||
482 | ax = iplot.axes |
|
452 | ax = iplot.axes | |
483 |
|
453 | |||
484 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11') |
|
454 | # ax.text(0, -110, ylabel, rotation='vertical', va ='center', ha = 'center',size='11') | |
485 | printLabels(ax, xlabel, ylabel, title) |
|
455 | printLabels(ax, xlabel, ylabel, title) | |
486 |
|
456 | |||
487 | set_linedata(ax, x, y, idline=0) |
|
457 | set_linedata(ax, x, y, idline=0) | |
488 |
|
458 | |||
489 |
|
459 | |||
490 | def draw(fig): |
|
460 | def draw(fig): | |
491 |
|
461 | |||
492 | if type(fig) == 'int': |
|
462 | if type(fig) == 'int': | |
493 | raise ValueError("Error drawing: Fig parameter should be a matplotlib figure object figure") |
|
463 | raise ValueError("Error drawing: Fig parameter should be a matplotlib figure object figure") | |
494 |
|
464 | |||
495 | fig.canvas.draw() |
|
465 | fig.canvas.draw() | |
496 |
|
466 | |||
497 |
|
467 | |||
498 | def pause(interval=0.000001): |
|
468 | def pause(interval=0.000001): | |
499 |
|
469 | |||
500 | matplotlib.pyplot.pause(interval) No newline at end of file |
|
470 | matplotlib.pyplot.pause(interval) |
1 | NO CONTENT: modified file |
|
NO CONTENT: modified file |
General Comments 0
You need to be logged in to leave comments.
Login now