@@ -0,0 +1,55 | |||
|
1 | #include <Python.h> | |
|
2 | #include <numpy/arrayobject.h> | |
|
3 | #include <math.h> | |
|
4 | ||
|
5 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args); | |
|
6 | ||
|
7 | static PyMethodDef extensionsMethods[] = { | |
|
8 | { "hildebrand_sekhon", (PyCFunction)hildebrand_sekhon, METH_VARARGS, "get noise with" }, | |
|
9 | { NULL, NULL, 0, NULL } | |
|
10 | }; | |
|
11 | ||
|
12 | PyMODINIT_FUNC initcSchain() { | |
|
13 | Py_InitModule("cSchain", extensionsMethods); | |
|
14 | import_array(); | |
|
15 | } | |
|
16 | ||
|
17 | static PyObject *hildebrand_sekhon(PyObject *self, PyObject *args) { | |
|
18 | /* Do your stuff here. */ | |
|
19 | double navg; | |
|
20 | PyObject *data_obj, *data_array; | |
|
21 | ||
|
22 | if (!PyArg_ParseTuple(args, "Od", &data_obj, &navg)) return NULL; | |
|
23 | data_array = PyArray_FROM_OTF(data_obj, NPY_FLOAT64, NPY_IN_ARRAY); | |
|
24 | if (data_array == NULL) { | |
|
25 | Py_XDECREF(data_array); | |
|
26 | Py_XDECREF(data_obj); | |
|
27 | return NULL; | |
|
28 | } | |
|
29 | double *sortdata = (double*)PyArray_DATA(data_array); | |
|
30 | int lenOfData = (int)PyArray_SIZE(data_array) ; | |
|
31 | double nums_min = lenOfData*0.2; | |
|
32 | if (nums_min <= 5) nums_min = 5; | |
|
33 | double sump = 0; | |
|
34 | double sumq = 0; | |
|
35 | int j = 0; | |
|
36 | int cont = 1; | |
|
37 | double rtest = 0; | |
|
38 | while ((cont == 1) && (j < lenOfData)) { | |
|
39 | sump = sump + sortdata[j]; | |
|
40 | sumq = sumq + pow(sortdata[j], 2); | |
|
41 | if (j > nums_min) { | |
|
42 | rtest = (double)j/(j-1) + 1/navg; | |
|
43 | if ((sumq*j) > (rtest*pow(sump, 2))) { | |
|
44 | j = j - 1; | |
|
45 | sump = sump - sortdata[j]; | |
|
46 | sumq = sumq - pow(sortdata[j],2); | |
|
47 | cont = 0; | |
|
48 | } | |
|
49 | } | |
|
50 | j = j + 1; | |
|
51 | } | |
|
52 | ||
|
53 | double lnoise = sump / j; | |
|
54 | return Py_BuildValue("d", lnoise); | |
|
55 | } |
@@ -1,1183 +1,1189 | |||
|
1 | 1 | ''' |
|
2 | 2 | |
|
3 | 3 | $Author: murco $ |
|
4 | 4 | $Id: JROData.py 173 2012-11-20 15:06:21Z murco $ |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | import copy |
|
8 | 8 | import numpy |
|
9 | 9 | import datetime |
|
10 | 10 | |
|
11 | 11 | from jroheaderIO import SystemHeader, RadarControllerHeader |
|
12 | from schainpy import cSchain | |
|
13 | ||
|
12 | 14 | |
|
13 | 15 | def getNumpyDtype(dataTypeCode): |
|
14 | 16 | |
|
15 | 17 | if dataTypeCode == 0: |
|
16 | 18 | numpyDtype = numpy.dtype([('real','<i1'),('imag','<i1')]) |
|
17 | 19 | elif dataTypeCode == 1: |
|
18 | 20 | numpyDtype = numpy.dtype([('real','<i2'),('imag','<i2')]) |
|
19 | 21 | elif dataTypeCode == 2: |
|
20 | 22 | numpyDtype = numpy.dtype([('real','<i4'),('imag','<i4')]) |
|
21 | 23 | elif dataTypeCode == 3: |
|
22 | 24 | numpyDtype = numpy.dtype([('real','<i8'),('imag','<i8')]) |
|
23 | 25 | elif dataTypeCode == 4: |
|
24 | 26 | numpyDtype = numpy.dtype([('real','<f4'),('imag','<f4')]) |
|
25 | 27 | elif dataTypeCode == 5: |
|
26 | 28 | numpyDtype = numpy.dtype([('real','<f8'),('imag','<f8')]) |
|
27 | 29 | else: |
|
28 | 30 | raise ValueError, 'dataTypeCode was not defined' |
|
29 | 31 | |
|
30 | 32 | return numpyDtype |
|
31 | 33 | |
|
32 | 34 | def getDataTypeCode(numpyDtype): |
|
33 | 35 | |
|
34 | 36 | if numpyDtype == numpy.dtype([('real','<i1'),('imag','<i1')]): |
|
35 | 37 | datatype = 0 |
|
36 | 38 | elif numpyDtype == numpy.dtype([('real','<i2'),('imag','<i2')]): |
|
37 | 39 | datatype = 1 |
|
38 | 40 | elif numpyDtype == numpy.dtype([('real','<i4'),('imag','<i4')]): |
|
39 | 41 | datatype = 2 |
|
40 | 42 | elif numpyDtype == numpy.dtype([('real','<i8'),('imag','<i8')]): |
|
41 | 43 | datatype = 3 |
|
42 | 44 | elif numpyDtype == numpy.dtype([('real','<f4'),('imag','<f4')]): |
|
43 | 45 | datatype = 4 |
|
44 | 46 | elif numpyDtype == numpy.dtype([('real','<f8'),('imag','<f8')]): |
|
45 | 47 | datatype = 5 |
|
46 | 48 | else: |
|
47 | 49 | datatype = None |
|
48 | 50 | |
|
49 | 51 | return datatype |
|
50 | 52 | |
|
51 | 53 | def hildebrand_sekhon(data, navg): |
|
52 | 54 | """ |
|
53 | 55 | This method is for the objective determination of the noise level in Doppler spectra. This |
|
54 | 56 | implementation technique is based on the fact that the standard deviation of the spectral |
|
55 | 57 | densities is equal to the mean spectral density for white Gaussian noise |
|
56 | 58 | |
|
57 | 59 | Inputs: |
|
58 | 60 | Data : heights |
|
59 | 61 | navg : numbers of averages |
|
60 | 62 | |
|
61 | 63 | Return: |
|
62 | 64 | -1 : any error |
|
63 | 65 | anoise : noise's level |
|
64 | 66 | """ |
|
65 | 67 | |
|
66 | 68 | sortdata = numpy.sort(data,axis=None) |
|
67 | lenOfData = len(sortdata) | |
|
68 | nums_min = lenOfData*0.2 | |
|
69 | ||
|
70 | if nums_min <= 5: | |
|
71 | nums_min = 5 | |
|
72 | ||
|
73 | sump = 0. | |
|
74 | ||
|
75 | sumq = 0. | |
|
76 | ||
|
77 | j = 0 | |
|
78 | ||
|
79 | cont = 1 | |
|
80 | ||
|
81 | while((cont==1)and(j<lenOfData)): | |
|
82 | ||
|
83 | sump += sortdata[j] | |
|
84 | ||
|
85 | sumq += sortdata[j]**2 | |
|
86 | ||
|
87 | if j > nums_min: | |
|
88 | rtest = float(j)/(j-1) + 1.0/navg | |
|
89 | if ((sumq*j) > (rtest*sump**2)): | |
|
90 | j = j - 1 | |
|
91 | sump = sump - sortdata[j] | |
|
92 | sumq = sumq - sortdata[j]**2 | |
|
93 | cont = 0 | |
|
69 | # lenOfData = len(sortdata) | |
|
70 | # nums_min = lenOfData*0.2 | |
|
71 | # | |
|
72 | # if nums_min <= 5: | |
|
73 | # nums_min = 5 | |
|
74 | # | |
|
75 | # sump = 0. | |
|
76 | # | |
|
77 | # sumq = 0. | |
|
78 | # | |
|
79 | # j = 0 | |
|
80 | # | |
|
81 | # cont = 1 | |
|
82 | # | |
|
83 | # while((cont==1)and(j<lenOfData)): | |
|
84 | # | |
|
85 | # sump += sortdata[j] | |
|
86 | # | |
|
87 | # sumq += sortdata[j]**2 | |
|
88 | # | |
|
89 | # if j > nums_min: | |
|
90 | # rtest = float(j)/(j-1) + 1.0/navg | |
|
91 | # if ((sumq*j) > (rtest*sump**2)): | |
|
92 | # j = j - 1 | |
|
93 | # sump = sump - sortdata[j] | |
|
94 | # sumq = sumq - sortdata[j]**2 | |
|
95 | # cont = 0 | |
|
96 | # | |
|
97 | # j += 1 | |
|
98 | # | |
|
99 | # lnoise = sump /j | |
|
100 | # | |
|
101 | # return lnoise | |
|
94 | 102 | |
|
95 | j += 1 | |
|
103 | return cSchain.hildebrand_sekhon(sortdata, navg) | |
|
96 | 104 | |
|
97 | lnoise = sump /j | |
|
98 | # stdv = numpy.sqrt((sumq - lnoise**2)/(j - 1)) | |
|
99 | return lnoise | |
|
100 | 105 | |
|
101 | 106 | class Beam: |
|
107 | ||
|
102 | 108 | def __init__(self): |
|
103 | 109 | self.codeList = [] |
|
104 | 110 | self.azimuthList = [] |
|
105 | 111 | self.zenithList = [] |
|
106 | 112 | |
|
107 | 113 | class GenericData(object): |
|
108 | 114 | |
|
109 | 115 | flagNoData = True |
|
110 | 116 | |
|
111 | 117 | def __init__(self): |
|
112 | 118 | |
|
113 | 119 | raise NotImplementedError |
|
114 | 120 | |
|
115 | 121 | def copy(self, inputObj=None): |
|
116 | 122 | |
|
117 | 123 | if inputObj == None: |
|
118 | 124 | return copy.deepcopy(self) |
|
119 | 125 | |
|
120 | 126 | for key in inputObj.__dict__.keys(): |
|
121 | 127 | |
|
122 | 128 | attribute = inputObj.__dict__[key] |
|
123 | 129 | |
|
124 | 130 | #If this attribute is a tuple or list |
|
125 | 131 | if type(inputObj.__dict__[key]) in (tuple, list): |
|
126 | 132 | self.__dict__[key] = attribute[:] |
|
127 | 133 | continue |
|
128 | 134 | |
|
129 | 135 | #If this attribute is another object or instance |
|
130 | 136 | if hasattr(attribute, '__dict__'): |
|
131 | 137 | self.__dict__[key] = attribute.copy() |
|
132 | 138 | continue |
|
133 | 139 | |
|
134 | 140 | self.__dict__[key] = inputObj.__dict__[key] |
|
135 | 141 | |
|
136 | 142 | def deepcopy(self): |
|
137 | 143 | |
|
138 | 144 | return copy.deepcopy(self) |
|
139 | 145 | |
|
140 | 146 | def isEmpty(self): |
|
141 | 147 | |
|
142 | 148 | return self.flagNoData |
|
143 | 149 | |
|
144 | 150 | class JROData(GenericData): |
|
145 | 151 | |
|
146 | 152 | # m_BasicHeader = BasicHeader() |
|
147 | 153 | # m_ProcessingHeader = ProcessingHeader() |
|
148 | 154 | |
|
149 | 155 | systemHeaderObj = SystemHeader() |
|
150 | 156 | |
|
151 | 157 | radarControllerHeaderObj = RadarControllerHeader() |
|
152 | 158 | |
|
153 | 159 | # data = None |
|
154 | 160 | |
|
155 | 161 | type = None |
|
156 | 162 | |
|
157 | 163 | datatype = None #dtype but in string |
|
158 | 164 | |
|
159 | 165 | # dtype = None |
|
160 | 166 | |
|
161 | 167 | # nChannels = None |
|
162 | 168 | |
|
163 | 169 | # nHeights = None |
|
164 | 170 | |
|
165 | 171 | nProfiles = None |
|
166 | 172 | |
|
167 | 173 | heightList = None |
|
168 | 174 | |
|
169 | 175 | channelList = None |
|
170 | 176 | |
|
171 | 177 | flagDiscontinuousBlock = False |
|
172 | 178 | |
|
173 | 179 | useLocalTime = False |
|
174 | 180 | |
|
175 | 181 | utctime = None |
|
176 | 182 | |
|
177 | 183 | timeZone = None |
|
178 | 184 | |
|
179 | 185 | dstFlag = None |
|
180 | 186 | |
|
181 | 187 | errorCount = None |
|
182 | 188 | |
|
183 | 189 | blocksize = None |
|
184 | 190 | |
|
185 | 191 | # nCode = None |
|
186 | 192 | # |
|
187 | 193 | # nBaud = None |
|
188 | 194 | # |
|
189 | 195 | # code = None |
|
190 | 196 | |
|
191 | 197 | flagDecodeData = False #asumo q la data no esta decodificada |
|
192 | 198 | |
|
193 | 199 | flagDeflipData = False #asumo q la data no esta sin flip |
|
194 | 200 | |
|
195 | 201 | flagShiftFFT = False |
|
196 | 202 | |
|
197 | 203 | # ippSeconds = None |
|
198 | 204 | |
|
199 | 205 | # timeInterval = None |
|
200 | 206 | |
|
201 | 207 | nCohInt = None |
|
202 | 208 | |
|
203 | 209 | # noise = None |
|
204 | 210 | |
|
205 | 211 | windowOfFilter = 1 |
|
206 | 212 | |
|
207 | 213 | #Speed of ligth |
|
208 | 214 | C = 3e8 |
|
209 | 215 | |
|
210 | 216 | frequency = 49.92e6 |
|
211 | 217 | |
|
212 | 218 | realtime = False |
|
213 | 219 | |
|
214 | 220 | beacon_heiIndexList = None |
|
215 | 221 | |
|
216 | 222 | last_block = None |
|
217 | 223 | |
|
218 | 224 | blocknow = None |
|
219 | 225 | |
|
220 | 226 | azimuth = None |
|
221 | 227 | |
|
222 | 228 | zenith = None |
|
223 | 229 | |
|
224 | 230 | beam = Beam() |
|
225 | 231 | |
|
226 | 232 | profileIndex = None |
|
227 | 233 | |
|
228 | 234 | def __init__(self): |
|
229 | 235 | |
|
230 | 236 | raise NotImplementedError |
|
231 | 237 | |
|
232 | 238 | def getNoise(self): |
|
233 | 239 | |
|
234 | 240 | raise NotImplementedError |
|
235 | 241 | |
|
236 | 242 | def getNChannels(self): |
|
237 | 243 | |
|
238 | 244 | return len(self.channelList) |
|
239 | 245 | |
|
240 | 246 | def getChannelIndexList(self): |
|
241 | 247 | |
|
242 | 248 | return range(self.nChannels) |
|
243 | 249 | |
|
244 | 250 | def getNHeights(self): |
|
245 | 251 | |
|
246 | 252 | return len(self.heightList) |
|
247 | 253 | |
|
248 | 254 | def getHeiRange(self, extrapoints=0): |
|
249 | 255 | |
|
250 | 256 | heis = self.heightList |
|
251 | 257 | # deltah = self.heightList[1] - self.heightList[0] |
|
252 | 258 | # |
|
253 | 259 | # heis.append(self.heightList[-1]) |
|
254 | 260 | |
|
255 | 261 | return heis |
|
256 | 262 | |
|
257 | 263 | def getDeltaH(self): |
|
258 | 264 | |
|
259 | 265 | delta = self.heightList[1] - self.heightList[0] |
|
260 | 266 | |
|
261 | 267 | return delta |
|
262 | 268 | |
|
263 | 269 | def getltctime(self): |
|
264 | 270 | |
|
265 | 271 | if self.useLocalTime: |
|
266 | 272 | return self.utctime - self.timeZone*60 |
|
267 | 273 | |
|
268 | 274 | return self.utctime |
|
269 | 275 | |
|
270 | 276 | def getDatatime(self): |
|
271 | 277 | |
|
272 | 278 | datatimeValue = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
273 | 279 | return datatimeValue |
|
274 | 280 | |
|
275 | 281 | def getTimeRange(self): |
|
276 | 282 | |
|
277 | 283 | datatime = [] |
|
278 | 284 | |
|
279 | 285 | datatime.append(self.ltctime) |
|
280 | 286 | datatime.append(self.ltctime + self.timeInterval+1) |
|
281 | 287 | |
|
282 | 288 | datatime = numpy.array(datatime) |
|
283 | 289 | |
|
284 | 290 | return datatime |
|
285 | 291 | |
|
286 | 292 | def getFmaxTimeResponse(self): |
|
287 | 293 | |
|
288 | 294 | period = (10**-6)*self.getDeltaH()/(0.15) |
|
289 | 295 | |
|
290 | 296 | PRF = 1./(period * self.nCohInt) |
|
291 | 297 | |
|
292 | 298 | fmax = PRF |
|
293 | 299 | |
|
294 | 300 | return fmax |
|
295 | 301 | |
|
296 | 302 | def getFmax(self): |
|
297 | 303 | |
|
298 | 304 | PRF = 1./(self.ippSeconds * self.nCohInt) |
|
299 | 305 | |
|
300 | 306 | fmax = PRF |
|
301 | 307 | |
|
302 | 308 | return fmax |
|
303 | 309 | |
|
304 | 310 | def getVmax(self): |
|
305 | 311 | |
|
306 | 312 | _lambda = self.C/self.frequency |
|
307 | 313 | |
|
308 | 314 | vmax = self.getFmax() * _lambda/2 |
|
309 | 315 | |
|
310 | 316 | return vmax |
|
311 | 317 | |
|
312 | 318 | def get_ippSeconds(self): |
|
313 | 319 | ''' |
|
314 | 320 | ''' |
|
315 | 321 | return self.radarControllerHeaderObj.ippSeconds |
|
316 | 322 | |
|
317 | 323 | def set_ippSeconds(self, ippSeconds): |
|
318 | 324 | ''' |
|
319 | 325 | ''' |
|
320 | 326 | |
|
321 | 327 | self.radarControllerHeaderObj.ippSeconds = ippSeconds |
|
322 | 328 | |
|
323 | 329 | return |
|
324 | 330 | |
|
325 | 331 | def get_dtype(self): |
|
326 | 332 | ''' |
|
327 | 333 | ''' |
|
328 | 334 | return getNumpyDtype(self.datatype) |
|
329 | 335 | |
|
330 | 336 | def set_dtype(self, numpyDtype): |
|
331 | 337 | ''' |
|
332 | 338 | ''' |
|
333 | 339 | |
|
334 | 340 | self.datatype = getDataTypeCode(numpyDtype) |
|
335 | 341 | |
|
336 | 342 | def get_code(self): |
|
337 | 343 | ''' |
|
338 | 344 | ''' |
|
339 | 345 | return self.radarControllerHeaderObj.code |
|
340 | 346 | |
|
341 | 347 | def set_code(self, code): |
|
342 | 348 | ''' |
|
343 | 349 | ''' |
|
344 | 350 | self.radarControllerHeaderObj.code = code |
|
345 | 351 | |
|
346 | 352 | return |
|
347 | 353 | |
|
348 | 354 | def get_ncode(self): |
|
349 | 355 | ''' |
|
350 | 356 | ''' |
|
351 | 357 | return self.radarControllerHeaderObj.nCode |
|
352 | 358 | |
|
353 | 359 | def set_ncode(self, nCode): |
|
354 | 360 | ''' |
|
355 | 361 | ''' |
|
356 | 362 | self.radarControllerHeaderObj.nCode = nCode |
|
357 | 363 | |
|
358 | 364 | return |
|
359 | 365 | |
|
360 | 366 | def get_nbaud(self): |
|
361 | 367 | ''' |
|
362 | 368 | ''' |
|
363 | 369 | return self.radarControllerHeaderObj.nBaud |
|
364 | 370 | |
|
365 | 371 | def set_nbaud(self, nBaud): |
|
366 | 372 | ''' |
|
367 | 373 | ''' |
|
368 | 374 | self.radarControllerHeaderObj.nBaud = nBaud |
|
369 | 375 | |
|
370 | 376 | return |
|
371 | 377 | |
|
372 | 378 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
373 | 379 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
374 | 380 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
375 | 381 | #noise = property(getNoise, "I'm the 'nHeights' property.") |
|
376 | 382 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
377 | 383 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
378 | 384 | ippSeconds = property(get_ippSeconds, set_ippSeconds) |
|
379 | 385 | dtype = property(get_dtype, set_dtype) |
|
380 | 386 | # timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
381 | 387 | code = property(get_code, set_code) |
|
382 | 388 | nCode = property(get_ncode, set_ncode) |
|
383 | 389 | nBaud = property(get_nbaud, set_nbaud) |
|
384 | 390 | |
|
385 | 391 | class Voltage(JROData): |
|
386 | 392 | |
|
387 | 393 | #data es un numpy array de 2 dmensiones (canales, alturas) |
|
388 | 394 | data = None |
|
389 | 395 | |
|
390 | 396 | def __init__(self): |
|
391 | 397 | ''' |
|
392 | 398 | Constructor |
|
393 | 399 | ''' |
|
394 | 400 | |
|
395 | 401 | self.useLocalTime = True |
|
396 | 402 | |
|
397 | 403 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
398 | 404 | |
|
399 | 405 | self.systemHeaderObj = SystemHeader() |
|
400 | 406 | |
|
401 | 407 | self.type = "Voltage" |
|
402 | 408 | |
|
403 | 409 | self.data = None |
|
404 | 410 | |
|
405 | 411 | # self.dtype = None |
|
406 | 412 | |
|
407 | 413 | # self.nChannels = 0 |
|
408 | 414 | |
|
409 | 415 | # self.nHeights = 0 |
|
410 | 416 | |
|
411 | 417 | self.nProfiles = None |
|
412 | 418 | |
|
413 | 419 | self.heightList = None |
|
414 | 420 | |
|
415 | 421 | self.channelList = None |
|
416 | 422 | |
|
417 | 423 | # self.channelIndexList = None |
|
418 | 424 | |
|
419 | 425 | self.flagNoData = True |
|
420 | 426 | |
|
421 | 427 | self.flagDiscontinuousBlock = False |
|
422 | 428 | |
|
423 | 429 | self.utctime = None |
|
424 | 430 | |
|
425 | 431 | self.timeZone = None |
|
426 | 432 | |
|
427 | 433 | self.dstFlag = None |
|
428 | 434 | |
|
429 | 435 | self.errorCount = None |
|
430 | 436 | |
|
431 | 437 | self.nCohInt = None |
|
432 | 438 | |
|
433 | 439 | self.blocksize = None |
|
434 | 440 | |
|
435 | 441 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
436 | 442 | |
|
437 | 443 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
438 | 444 | |
|
439 | 445 | self.flagShiftFFT = False |
|
440 | 446 | |
|
441 | 447 | self.flagDataAsBlock = False #Asumo que la data es leida perfil a perfil |
|
442 | 448 | |
|
443 | 449 | self.profileIndex = 0 |
|
444 | 450 | |
|
445 | 451 | def getNoisebyHildebrand(self, channel = None): |
|
446 | 452 | """ |
|
447 | 453 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
448 | 454 | |
|
449 | 455 | Return: |
|
450 | 456 | noiselevel |
|
451 | 457 | """ |
|
452 | 458 | |
|
453 | 459 | if channel != None: |
|
454 | 460 | data = self.data[channel] |
|
455 | 461 | nChannels = 1 |
|
456 | 462 | else: |
|
457 | 463 | data = self.data |
|
458 | 464 | nChannels = self.nChannels |
|
459 | 465 | |
|
460 | 466 | noise = numpy.zeros(nChannels) |
|
461 | 467 | power = data * numpy.conjugate(data) |
|
462 | 468 | |
|
463 | 469 | for thisChannel in range(nChannels): |
|
464 | 470 | if nChannels == 1: |
|
465 | 471 | daux = power[:].real |
|
466 | 472 | else: |
|
467 | 473 | daux = power[thisChannel,:].real |
|
468 | 474 | noise[thisChannel] = hildebrand_sekhon(daux, self.nCohInt) |
|
469 | 475 | |
|
470 | 476 | return noise |
|
471 | 477 | |
|
472 | 478 | def getNoise(self, type = 1, channel = None): |
|
473 | 479 | |
|
474 | 480 | if type == 1: |
|
475 | 481 | noise = self.getNoisebyHildebrand(channel) |
|
476 | 482 | |
|
477 | 483 | return noise |
|
478 | 484 | |
|
479 | 485 | def getPower(self, channel = None): |
|
480 | 486 | |
|
481 | 487 | if channel != None: |
|
482 | 488 | data = self.data[channel] |
|
483 | 489 | else: |
|
484 | 490 | data = self.data |
|
485 | 491 | |
|
486 | 492 | power = data * numpy.conjugate(data) |
|
487 | 493 | powerdB = 10*numpy.log10(power.real) |
|
488 | 494 | powerdB = numpy.squeeze(powerdB) |
|
489 | 495 | |
|
490 | 496 | return powerdB |
|
491 | 497 | |
|
492 | 498 | def getTimeInterval(self): |
|
493 | 499 | |
|
494 | 500 | timeInterval = self.ippSeconds * self.nCohInt |
|
495 | 501 | |
|
496 | 502 | return timeInterval |
|
497 | 503 | |
|
498 | 504 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
499 | 505 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
500 | 506 | |
|
501 | 507 | class Spectra(JROData): |
|
502 | 508 | |
|
503 | 509 | #data spc es un numpy array de 2 dmensiones (canales, perfiles, alturas) |
|
504 | 510 | data_spc = None |
|
505 | 511 | |
|
506 | 512 | #data cspc es un numpy array de 2 dmensiones (canales, pares, alturas) |
|
507 | 513 | data_cspc = None |
|
508 | 514 | |
|
509 | 515 | #data dc es un numpy array de 2 dmensiones (canales, alturas) |
|
510 | 516 | data_dc = None |
|
511 | 517 | |
|
512 | 518 | #data power |
|
513 | 519 | data_pwr = None |
|
514 | 520 | |
|
515 | 521 | nFFTPoints = None |
|
516 | 522 | |
|
517 | 523 | # nPairs = None |
|
518 | 524 | |
|
519 | 525 | pairsList = None |
|
520 | 526 | |
|
521 | 527 | nIncohInt = None |
|
522 | 528 | |
|
523 | 529 | wavelength = None #Necesario para cacular el rango de velocidad desde la frecuencia |
|
524 | 530 | |
|
525 | 531 | nCohInt = None #se requiere para determinar el valor de timeInterval |
|
526 | 532 | |
|
527 | 533 | ippFactor = None |
|
528 | 534 | |
|
529 | 535 | profileIndex = 0 |
|
530 | 536 | |
|
531 | 537 | plotting = "spectra" |
|
532 | 538 | |
|
533 | 539 | def __init__(self): |
|
534 | 540 | ''' |
|
535 | 541 | Constructor |
|
536 | 542 | ''' |
|
537 | 543 | |
|
538 | 544 | self.useLocalTime = True |
|
539 | 545 | |
|
540 | 546 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
541 | 547 | |
|
542 | 548 | self.systemHeaderObj = SystemHeader() |
|
543 | 549 | |
|
544 | 550 | self.type = "Spectra" |
|
545 | 551 | |
|
546 | 552 | # self.data = None |
|
547 | 553 | |
|
548 | 554 | # self.dtype = None |
|
549 | 555 | |
|
550 | 556 | # self.nChannels = 0 |
|
551 | 557 | |
|
552 | 558 | # self.nHeights = 0 |
|
553 | 559 | |
|
554 | 560 | self.nProfiles = None |
|
555 | 561 | |
|
556 | 562 | self.heightList = None |
|
557 | 563 | |
|
558 | 564 | self.channelList = None |
|
559 | 565 | |
|
560 | 566 | # self.channelIndexList = None |
|
561 | 567 | |
|
562 | 568 | self.pairsList = None |
|
563 | 569 | |
|
564 | 570 | self.flagNoData = True |
|
565 | 571 | |
|
566 | 572 | self.flagDiscontinuousBlock = False |
|
567 | 573 | |
|
568 | 574 | self.utctime = None |
|
569 | 575 | |
|
570 | 576 | self.nCohInt = None |
|
571 | 577 | |
|
572 | 578 | self.nIncohInt = None |
|
573 | 579 | |
|
574 | 580 | self.blocksize = None |
|
575 | 581 | |
|
576 | 582 | self.nFFTPoints = None |
|
577 | 583 | |
|
578 | 584 | self.wavelength = None |
|
579 | 585 | |
|
580 | 586 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
581 | 587 | |
|
582 | 588 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
583 | 589 | |
|
584 | 590 | self.flagShiftFFT = False |
|
585 | 591 | |
|
586 | 592 | self.ippFactor = 1 |
|
587 | 593 | |
|
588 | 594 | #self.noise = None |
|
589 | 595 | |
|
590 | 596 | self.beacon_heiIndexList = [] |
|
591 | 597 | |
|
592 | 598 | self.noise_estimation = None |
|
593 | 599 | |
|
594 | 600 | |
|
595 | 601 | def getNoisebyHildebrand(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
596 | 602 | """ |
|
597 | 603 | Determino el nivel de ruido usando el metodo Hildebrand-Sekhon |
|
598 | 604 | |
|
599 | 605 | Return: |
|
600 | 606 | noiselevel |
|
601 | 607 | """ |
|
602 | 608 | |
|
603 | 609 | noise = numpy.zeros(self.nChannels) |
|
604 | 610 | |
|
605 | 611 | for channel in range(self.nChannels): |
|
606 | 612 | daux = self.data_spc[channel,xmin_index:xmax_index,ymin_index:ymax_index] |
|
607 | 613 | noise[channel] = hildebrand_sekhon(daux, self.nIncohInt) |
|
608 | 614 | |
|
609 | 615 | return noise |
|
610 | 616 | |
|
611 | 617 | def getNoise(self, xmin_index=None, xmax_index=None, ymin_index=None, ymax_index=None): |
|
612 | 618 | |
|
613 | 619 | if self.noise_estimation is not None: |
|
614 | 620 | return self.noise_estimation #this was estimated by getNoise Operation defined in jroproc_spectra.py |
|
615 | 621 | else: |
|
616 | 622 | noise = self.getNoisebyHildebrand(xmin_index, xmax_index, ymin_index, ymax_index) |
|
617 | 623 | return noise |
|
618 | 624 | |
|
619 | 625 | def getFreqRangeTimeResponse(self, extrapoints=0): |
|
620 | 626 | |
|
621 | 627 | deltafreq = self.getFmaxTimeResponse() / (self.nFFTPoints*self.ippFactor) |
|
622 | 628 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
623 | 629 | |
|
624 | 630 | return freqrange |
|
625 | 631 | |
|
626 | 632 | def getAcfRange(self, extrapoints=0): |
|
627 | 633 | |
|
628 | 634 | deltafreq = 10./(self.getFmax() / (self.nFFTPoints*self.ippFactor)) |
|
629 | 635 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
630 | 636 | |
|
631 | 637 | return freqrange |
|
632 | 638 | |
|
633 | 639 | def getFreqRange(self, extrapoints=0): |
|
634 | 640 | |
|
635 | 641 | deltafreq = self.getFmax() / (self.nFFTPoints*self.ippFactor) |
|
636 | 642 | freqrange = deltafreq*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) - deltafreq/2 |
|
637 | 643 | |
|
638 | 644 | return freqrange |
|
639 | 645 | |
|
640 | 646 | def getVelRange(self, extrapoints=0): |
|
641 | 647 | |
|
642 | 648 | deltav = self.getVmax() / (self.nFFTPoints*self.ippFactor) |
|
643 | 649 | velrange = deltav*(numpy.arange(self.nFFTPoints+extrapoints)-self.nFFTPoints/2.) #- deltav/2 |
|
644 | 650 | |
|
645 | 651 | return velrange |
|
646 | 652 | |
|
647 | 653 | def getNPairs(self): |
|
648 | 654 | |
|
649 | 655 | return len(self.pairsList) |
|
650 | 656 | |
|
651 | 657 | def getPairsIndexList(self): |
|
652 | 658 | |
|
653 | 659 | return range(self.nPairs) |
|
654 | 660 | |
|
655 | 661 | def getNormFactor(self): |
|
656 | 662 | |
|
657 | 663 | pwcode = 1 |
|
658 | 664 | |
|
659 | 665 | if self.flagDecodeData: |
|
660 | 666 | pwcode = numpy.sum(self.code[0]**2) |
|
661 | 667 | #normFactor = min(self.nFFTPoints,self.nProfiles)*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
662 | 668 | normFactor = self.nProfiles*self.nIncohInt*self.nCohInt*pwcode*self.windowOfFilter |
|
663 | 669 | |
|
664 | 670 | return normFactor |
|
665 | 671 | |
|
666 | 672 | def getFlagCspc(self): |
|
667 | 673 | |
|
668 | 674 | if self.data_cspc is None: |
|
669 | 675 | return True |
|
670 | 676 | |
|
671 | 677 | return False |
|
672 | 678 | |
|
673 | 679 | def getFlagDc(self): |
|
674 | 680 | |
|
675 | 681 | if self.data_dc is None: |
|
676 | 682 | return True |
|
677 | 683 | |
|
678 | 684 | return False |
|
679 | 685 | |
|
680 | 686 | def getTimeInterval(self): |
|
681 | 687 | |
|
682 | 688 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt * self.nProfiles |
|
683 | 689 | |
|
684 | 690 | return timeInterval |
|
685 | 691 | |
|
686 | 692 | def getPower(self): |
|
687 | 693 | |
|
688 | 694 | factor = self.normFactor |
|
689 | 695 | z = self.data_spc/factor |
|
690 | 696 | z = numpy.where(numpy.isfinite(z), z, numpy.NAN) |
|
691 | 697 | avg = numpy.average(z, axis=1) |
|
692 | 698 | |
|
693 | 699 | return 10*numpy.log10(avg) |
|
694 | 700 | |
|
695 | 701 | def setValue(self, value): |
|
696 | 702 | |
|
697 | 703 | print "This property should not be initialized" |
|
698 | 704 | |
|
699 | 705 | return |
|
700 | 706 | |
|
701 | 707 | nPairs = property(getNPairs, setValue, "I'm the 'nPairs' property.") |
|
702 | 708 | pairsIndexList = property(getPairsIndexList, setValue, "I'm the 'pairsIndexList' property.") |
|
703 | 709 | normFactor = property(getNormFactor, setValue, "I'm the 'getNormFactor' property.") |
|
704 | 710 | flag_cspc = property(getFlagCspc, setValue) |
|
705 | 711 | flag_dc = property(getFlagDc, setValue) |
|
706 | 712 | noise = property(getNoise, setValue, "I'm the 'nHeights' property.") |
|
707 | 713 | timeInterval = property(getTimeInterval, setValue, "I'm the 'timeInterval' property") |
|
708 | 714 | |
|
709 | 715 | class SpectraHeis(Spectra): |
|
710 | 716 | |
|
711 | 717 | data_spc = None |
|
712 | 718 | |
|
713 | 719 | data_cspc = None |
|
714 | 720 | |
|
715 | 721 | data_dc = None |
|
716 | 722 | |
|
717 | 723 | nFFTPoints = None |
|
718 | 724 | |
|
719 | 725 | # nPairs = None |
|
720 | 726 | |
|
721 | 727 | pairsList = None |
|
722 | 728 | |
|
723 | 729 | nCohInt = None |
|
724 | 730 | |
|
725 | 731 | nIncohInt = None |
|
726 | 732 | |
|
727 | 733 | def __init__(self): |
|
728 | 734 | |
|
729 | 735 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
730 | 736 | |
|
731 | 737 | self.systemHeaderObj = SystemHeader() |
|
732 | 738 | |
|
733 | 739 | self.type = "SpectraHeis" |
|
734 | 740 | |
|
735 | 741 | # self.dtype = None |
|
736 | 742 | |
|
737 | 743 | # self.nChannels = 0 |
|
738 | 744 | |
|
739 | 745 | # self.nHeights = 0 |
|
740 | 746 | |
|
741 | 747 | self.nProfiles = None |
|
742 | 748 | |
|
743 | 749 | self.heightList = None |
|
744 | 750 | |
|
745 | 751 | self.channelList = None |
|
746 | 752 | |
|
747 | 753 | # self.channelIndexList = None |
|
748 | 754 | |
|
749 | 755 | self.flagNoData = True |
|
750 | 756 | |
|
751 | 757 | self.flagDiscontinuousBlock = False |
|
752 | 758 | |
|
753 | 759 | # self.nPairs = 0 |
|
754 | 760 | |
|
755 | 761 | self.utctime = None |
|
756 | 762 | |
|
757 | 763 | self.blocksize = None |
|
758 | 764 | |
|
759 | 765 | self.profileIndex = 0 |
|
760 | 766 | |
|
761 | 767 | self.nCohInt = 1 |
|
762 | 768 | |
|
763 | 769 | self.nIncohInt = 1 |
|
764 | 770 | |
|
765 | 771 | def getNormFactor(self): |
|
766 | 772 | pwcode = 1 |
|
767 | 773 | if self.flagDecodeData: |
|
768 | 774 | pwcode = numpy.sum(self.code[0]**2) |
|
769 | 775 | |
|
770 | 776 | normFactor = self.nIncohInt*self.nCohInt*pwcode |
|
771 | 777 | |
|
772 | 778 | return normFactor |
|
773 | 779 | |
|
774 | 780 | def getTimeInterval(self): |
|
775 | 781 | |
|
776 | 782 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
777 | 783 | |
|
778 | 784 | return timeInterval |
|
779 | 785 | |
|
780 | 786 | normFactor = property(getNormFactor, "I'm the 'getNormFactor' property.") |
|
781 | 787 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
782 | 788 | |
|
783 | 789 | class Fits(JROData): |
|
784 | 790 | |
|
785 | 791 | heightList = None |
|
786 | 792 | |
|
787 | 793 | channelList = None |
|
788 | 794 | |
|
789 | 795 | flagNoData = True |
|
790 | 796 | |
|
791 | 797 | flagDiscontinuousBlock = False |
|
792 | 798 | |
|
793 | 799 | useLocalTime = False |
|
794 | 800 | |
|
795 | 801 | utctime = None |
|
796 | 802 | |
|
797 | 803 | timeZone = None |
|
798 | 804 | |
|
799 | 805 | # ippSeconds = None |
|
800 | 806 | |
|
801 | 807 | # timeInterval = None |
|
802 | 808 | |
|
803 | 809 | nCohInt = None |
|
804 | 810 | |
|
805 | 811 | nIncohInt = None |
|
806 | 812 | |
|
807 | 813 | noise = None |
|
808 | 814 | |
|
809 | 815 | windowOfFilter = 1 |
|
810 | 816 | |
|
811 | 817 | #Speed of ligth |
|
812 | 818 | C = 3e8 |
|
813 | 819 | |
|
814 | 820 | frequency = 49.92e6 |
|
815 | 821 | |
|
816 | 822 | realtime = False |
|
817 | 823 | |
|
818 | 824 | |
|
819 | 825 | def __init__(self): |
|
820 | 826 | |
|
821 | 827 | self.type = "Fits" |
|
822 | 828 | |
|
823 | 829 | self.nProfiles = None |
|
824 | 830 | |
|
825 | 831 | self.heightList = None |
|
826 | 832 | |
|
827 | 833 | self.channelList = None |
|
828 | 834 | |
|
829 | 835 | # self.channelIndexList = None |
|
830 | 836 | |
|
831 | 837 | self.flagNoData = True |
|
832 | 838 | |
|
833 | 839 | self.utctime = None |
|
834 | 840 | |
|
835 | 841 | self.nCohInt = 1 |
|
836 | 842 | |
|
837 | 843 | self.nIncohInt = 1 |
|
838 | 844 | |
|
839 | 845 | self.useLocalTime = True |
|
840 | 846 | |
|
841 | 847 | self.profileIndex = 0 |
|
842 | 848 | |
|
843 | 849 | # self.utctime = None |
|
844 | 850 | # self.timeZone = None |
|
845 | 851 | # self.ltctime = None |
|
846 | 852 | # self.timeInterval = None |
|
847 | 853 | # self.header = None |
|
848 | 854 | # self.data_header = None |
|
849 | 855 | # self.data = None |
|
850 | 856 | # self.datatime = None |
|
851 | 857 | # self.flagNoData = False |
|
852 | 858 | # self.expName = '' |
|
853 | 859 | # self.nChannels = None |
|
854 | 860 | # self.nSamples = None |
|
855 | 861 | # self.dataBlocksPerFile = None |
|
856 | 862 | # self.comments = '' |
|
857 | 863 | # |
|
858 | 864 | |
|
859 | 865 | |
|
860 | 866 | def getltctime(self): |
|
861 | 867 | |
|
862 | 868 | if self.useLocalTime: |
|
863 | 869 | return self.utctime - self.timeZone*60 |
|
864 | 870 | |
|
865 | 871 | return self.utctime |
|
866 | 872 | |
|
867 | 873 | def getDatatime(self): |
|
868 | 874 | |
|
869 | 875 | datatime = datetime.datetime.utcfromtimestamp(self.ltctime) |
|
870 | 876 | return datatime |
|
871 | 877 | |
|
872 | 878 | def getTimeRange(self): |
|
873 | 879 | |
|
874 | 880 | datatime = [] |
|
875 | 881 | |
|
876 | 882 | datatime.append(self.ltctime) |
|
877 | 883 | datatime.append(self.ltctime + self.timeInterval) |
|
878 | 884 | |
|
879 | 885 | datatime = numpy.array(datatime) |
|
880 | 886 | |
|
881 | 887 | return datatime |
|
882 | 888 | |
|
883 | 889 | def getHeiRange(self): |
|
884 | 890 | |
|
885 | 891 | heis = self.heightList |
|
886 | 892 | |
|
887 | 893 | return heis |
|
888 | 894 | |
|
889 | 895 | def getNHeights(self): |
|
890 | 896 | |
|
891 | 897 | return len(self.heightList) |
|
892 | 898 | |
|
893 | 899 | def getNChannels(self): |
|
894 | 900 | |
|
895 | 901 | return len(self.channelList) |
|
896 | 902 | |
|
897 | 903 | def getChannelIndexList(self): |
|
898 | 904 | |
|
899 | 905 | return range(self.nChannels) |
|
900 | 906 | |
|
901 | 907 | def getNoise(self, type = 1): |
|
902 | 908 | |
|
903 | 909 | #noise = numpy.zeros(self.nChannels) |
|
904 | 910 | |
|
905 | 911 | if type == 1: |
|
906 | 912 | noise = self.getNoisebyHildebrand() |
|
907 | 913 | |
|
908 | 914 | if type == 2: |
|
909 | 915 | noise = self.getNoisebySort() |
|
910 | 916 | |
|
911 | 917 | if type == 3: |
|
912 | 918 | noise = self.getNoisebyWindow() |
|
913 | 919 | |
|
914 | 920 | return noise |
|
915 | 921 | |
|
916 | 922 | def getTimeInterval(self): |
|
917 | 923 | |
|
918 | 924 | timeInterval = self.ippSeconds * self.nCohInt * self.nIncohInt |
|
919 | 925 | |
|
920 | 926 | return timeInterval |
|
921 | 927 | |
|
922 | 928 | datatime = property(getDatatime, "I'm the 'datatime' property") |
|
923 | 929 | nHeights = property(getNHeights, "I'm the 'nHeights' property.") |
|
924 | 930 | nChannels = property(getNChannels, "I'm the 'nChannel' property.") |
|
925 | 931 | channelIndexList = property(getChannelIndexList, "I'm the 'channelIndexList' property.") |
|
926 | 932 | noise = property(getNoise, "I'm the 'nHeights' property.") |
|
927 | 933 | |
|
928 | 934 | ltctime = property(getltctime, "I'm the 'ltctime' property") |
|
929 | 935 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
930 | 936 | |
|
931 | 937 | |
|
932 | 938 | class Correlation(JROData): |
|
933 | 939 | |
|
934 | 940 | noise = None |
|
935 | 941 | |
|
936 | 942 | SNR = None |
|
937 | 943 | |
|
938 | 944 | #-------------------------------------------------- |
|
939 | 945 | |
|
940 | 946 | mode = None |
|
941 | 947 | |
|
942 | 948 | split = False |
|
943 | 949 | |
|
944 | 950 | data_cf = None |
|
945 | 951 | |
|
946 | 952 | lags = None |
|
947 | 953 | |
|
948 | 954 | lagRange = None |
|
949 | 955 | |
|
950 | 956 | pairsList = None |
|
951 | 957 | |
|
952 | 958 | normFactor = None |
|
953 | 959 | |
|
954 | 960 | #-------------------------------------------------- |
|
955 | 961 | |
|
956 | 962 | # calculateVelocity = None |
|
957 | 963 | |
|
958 | 964 | nLags = None |
|
959 | 965 | |
|
960 | 966 | nPairs = None |
|
961 | 967 | |
|
962 | 968 | nAvg = None |
|
963 | 969 | |
|
964 | 970 | |
|
965 | 971 | def __init__(self): |
|
966 | 972 | ''' |
|
967 | 973 | Constructor |
|
968 | 974 | ''' |
|
969 | 975 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
970 | 976 | |
|
971 | 977 | self.systemHeaderObj = SystemHeader() |
|
972 | 978 | |
|
973 | 979 | self.type = "Correlation" |
|
974 | 980 | |
|
975 | 981 | self.data = None |
|
976 | 982 | |
|
977 | 983 | self.dtype = None |
|
978 | 984 | |
|
979 | 985 | self.nProfiles = None |
|
980 | 986 | |
|
981 | 987 | self.heightList = None |
|
982 | 988 | |
|
983 | 989 | self.channelList = None |
|
984 | 990 | |
|
985 | 991 | self.flagNoData = True |
|
986 | 992 | |
|
987 | 993 | self.flagDiscontinuousBlock = False |
|
988 | 994 | |
|
989 | 995 | self.utctime = None |
|
990 | 996 | |
|
991 | 997 | self.timeZone = None |
|
992 | 998 | |
|
993 | 999 | self.dstFlag = None |
|
994 | 1000 | |
|
995 | 1001 | self.errorCount = None |
|
996 | 1002 | |
|
997 | 1003 | self.blocksize = None |
|
998 | 1004 | |
|
999 | 1005 | self.flagDecodeData = False #asumo q la data no esta decodificada |
|
1000 | 1006 | |
|
1001 | 1007 | self.flagDeflipData = False #asumo q la data no esta sin flip |
|
1002 | 1008 | |
|
1003 | 1009 | self.pairsList = None |
|
1004 | 1010 | |
|
1005 | 1011 | self.nPoints = None |
|
1006 | 1012 | |
|
1007 | 1013 | def getPairsList(self): |
|
1008 | 1014 | |
|
1009 | 1015 | return self.pairsList |
|
1010 | 1016 | |
|
1011 | 1017 | def getNoise(self, mode = 2): |
|
1012 | 1018 | |
|
1013 | 1019 | indR = numpy.where(self.lagR == 0)[0][0] |
|
1014 | 1020 | indT = numpy.where(self.lagT == 0)[0][0] |
|
1015 | 1021 | |
|
1016 | 1022 | jspectra0 = self.data_corr[:,:,indR,:] |
|
1017 | 1023 | jspectra = copy.copy(jspectra0) |
|
1018 | 1024 | |
|
1019 | 1025 | num_chan = jspectra.shape[0] |
|
1020 | 1026 | num_hei = jspectra.shape[2] |
|
1021 | 1027 | |
|
1022 | 1028 | freq_dc = jspectra.shape[1]/2 |
|
1023 | 1029 | ind_vel = numpy.array([-2,-1,1,2]) + freq_dc |
|
1024 | 1030 | |
|
1025 | 1031 | if ind_vel[0]<0: |
|
1026 | 1032 | ind_vel[range(0,1)] = ind_vel[range(0,1)] + self.num_prof |
|
1027 | 1033 | |
|
1028 | 1034 | if mode == 1: |
|
1029 | 1035 | jspectra[:,freq_dc,:] = (jspectra[:,ind_vel[1],:] + jspectra[:,ind_vel[2],:])/2 #CORRECCION |
|
1030 | 1036 | |
|
1031 | 1037 | if mode == 2: |
|
1032 | 1038 | |
|
1033 | 1039 | vel = numpy.array([-2,-1,1,2]) |
|
1034 | 1040 | xx = numpy.zeros([4,4]) |
|
1035 | 1041 | |
|
1036 | 1042 | for fil in range(4): |
|
1037 | 1043 | xx[fil,:] = vel[fil]**numpy.asarray(range(4)) |
|
1038 | 1044 | |
|
1039 | 1045 | xx_inv = numpy.linalg.inv(xx) |
|
1040 | 1046 | xx_aux = xx_inv[0,:] |
|
1041 | 1047 | |
|
1042 | 1048 | for ich in range(num_chan): |
|
1043 | 1049 | yy = jspectra[ich,ind_vel,:] |
|
1044 | 1050 | jspectra[ich,freq_dc,:] = numpy.dot(xx_aux,yy) |
|
1045 | 1051 | |
|
1046 | 1052 | junkid = jspectra[ich,freq_dc,:]<=0 |
|
1047 | 1053 | cjunkid = sum(junkid) |
|
1048 | 1054 | |
|
1049 | 1055 | if cjunkid.any(): |
|
1050 | 1056 | jspectra[ich,freq_dc,junkid.nonzero()] = (jspectra[ich,ind_vel[1],junkid] + jspectra[ich,ind_vel[2],junkid])/2 |
|
1051 | 1057 | |
|
1052 | 1058 | noise = jspectra0[:,freq_dc,:] - jspectra[:,freq_dc,:] |
|
1053 | 1059 | |
|
1054 | 1060 | return noise |
|
1055 | 1061 | |
|
1056 | 1062 | def getTimeInterval(self): |
|
1057 | 1063 | |
|
1058 | 1064 | timeInterval = self.ippSeconds * self.nCohInt * self.nProfiles |
|
1059 | 1065 | |
|
1060 | 1066 | return timeInterval |
|
1061 | 1067 | |
|
1062 | 1068 | def splitFunctions(self): |
|
1063 | 1069 | |
|
1064 | 1070 | pairsList = self.pairsList |
|
1065 | 1071 | ccf_pairs = [] |
|
1066 | 1072 | acf_pairs = [] |
|
1067 | 1073 | ccf_ind = [] |
|
1068 | 1074 | acf_ind = [] |
|
1069 | 1075 | for l in range(len(pairsList)): |
|
1070 | 1076 | chan0 = pairsList[l][0] |
|
1071 | 1077 | chan1 = pairsList[l][1] |
|
1072 | 1078 | |
|
1073 | 1079 | #Obteniendo pares de Autocorrelacion |
|
1074 | 1080 | if chan0 == chan1: |
|
1075 | 1081 | acf_pairs.append(chan0) |
|
1076 | 1082 | acf_ind.append(l) |
|
1077 | 1083 | else: |
|
1078 | 1084 | ccf_pairs.append(pairsList[l]) |
|
1079 | 1085 | ccf_ind.append(l) |
|
1080 | 1086 | |
|
1081 | 1087 | data_acf = self.data_cf[acf_ind] |
|
1082 | 1088 | data_ccf = self.data_cf[ccf_ind] |
|
1083 | 1089 | |
|
1084 | 1090 | return acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf |
|
1085 | 1091 | |
|
1086 | 1092 | def getNormFactor(self): |
|
1087 | 1093 | acf_ind, ccf_ind, acf_pairs, ccf_pairs, data_acf, data_ccf = self.splitFunctions() |
|
1088 | 1094 | acf_pairs = numpy.array(acf_pairs) |
|
1089 | 1095 | normFactor = numpy.zeros((self.nPairs,self.nHeights)) |
|
1090 | 1096 | |
|
1091 | 1097 | for p in range(self.nPairs): |
|
1092 | 1098 | pair = self.pairsList[p] |
|
1093 | 1099 | |
|
1094 | 1100 | ch0 = pair[0] |
|
1095 | 1101 | ch1 = pair[1] |
|
1096 | 1102 | |
|
1097 | 1103 | ch0_max = numpy.max(data_acf[acf_pairs==ch0,:,:], axis=1) |
|
1098 | 1104 | ch1_max = numpy.max(data_acf[acf_pairs==ch1,:,:], axis=1) |
|
1099 | 1105 | normFactor[p,:] = numpy.sqrt(ch0_max*ch1_max) |
|
1100 | 1106 | |
|
1101 | 1107 | return normFactor |
|
1102 | 1108 | |
|
1103 | 1109 | timeInterval = property(getTimeInterval, "I'm the 'timeInterval' property") |
|
1104 | 1110 | normFactor = property(getNormFactor, "I'm the 'normFactor property'") |
|
1105 | 1111 | |
|
1106 | 1112 | class Parameters(JROData): |
|
1107 | 1113 | |
|
1108 | 1114 | experimentInfo = None #Information about the experiment |
|
1109 | 1115 | |
|
1110 | 1116 | #Information from previous data |
|
1111 | 1117 | |
|
1112 | 1118 | inputUnit = None #Type of data to be processed |
|
1113 | 1119 | |
|
1114 | 1120 | operation = None #Type of operation to parametrize |
|
1115 | 1121 | |
|
1116 | 1122 | normFactor = None #Normalization Factor |
|
1117 | 1123 | |
|
1118 | 1124 | groupList = None #List of Pairs, Groups, etc |
|
1119 | 1125 | |
|
1120 | 1126 | #Parameters |
|
1121 | 1127 | |
|
1122 | 1128 | data_param = None #Parameters obtained |
|
1123 | 1129 | |
|
1124 | 1130 | data_pre = None #Data Pre Parametrization |
|
1125 | 1131 | |
|
1126 | 1132 | data_SNR = None #Signal to Noise Ratio |
|
1127 | 1133 | |
|
1128 | 1134 | # heightRange = None #Heights |
|
1129 | 1135 | |
|
1130 | 1136 | abscissaList = None #Abscissa, can be velocities, lags or time |
|
1131 | 1137 | |
|
1132 | 1138 | noise = None #Noise Potency |
|
1133 | 1139 | |
|
1134 | 1140 | utctimeInit = None #Initial UTC time |
|
1135 | 1141 | |
|
1136 | 1142 | paramInterval = None #Time interval to calculate Parameters in seconds |
|
1137 | 1143 | |
|
1138 | 1144 | useLocalTime = True |
|
1139 | 1145 | |
|
1140 | 1146 | #Fitting |
|
1141 | 1147 | |
|
1142 | 1148 | data_error = None #Error of the estimation |
|
1143 | 1149 | |
|
1144 | 1150 | constants = None |
|
1145 | 1151 | |
|
1146 | 1152 | library = None |
|
1147 | 1153 | |
|
1148 | 1154 | #Output signal |
|
1149 | 1155 | |
|
1150 | 1156 | outputInterval = None #Time interval to calculate output signal in seconds |
|
1151 | 1157 | |
|
1152 | 1158 | data_output = None #Out signal |
|
1153 | 1159 | |
|
1154 | 1160 | nAvg = None |
|
1155 | 1161 | |
|
1156 | 1162 | |
|
1157 | 1163 | def __init__(self): |
|
1158 | 1164 | ''' |
|
1159 | 1165 | Constructor |
|
1160 | 1166 | ''' |
|
1161 | 1167 | self.radarControllerHeaderObj = RadarControllerHeader() |
|
1162 | 1168 | |
|
1163 | 1169 | self.systemHeaderObj = SystemHeader() |
|
1164 | 1170 | |
|
1165 | 1171 | self.type = "Parameters" |
|
1166 | 1172 | |
|
1167 | 1173 | def getTimeRange1(self, interval): |
|
1168 | 1174 | |
|
1169 | 1175 | datatime = [] |
|
1170 | 1176 | |
|
1171 | 1177 | if self.useLocalTime: |
|
1172 | 1178 | time1 = self.utctimeInit - self.timeZone*60 |
|
1173 | 1179 | else: |
|
1174 | 1180 | time1 = self.utctimeInit |
|
1175 | 1181 | |
|
1176 | 1182 | # datatime.append(self.utctimeInit) |
|
1177 | 1183 | # datatime.append(self.utctimeInit + self.outputInterval) |
|
1178 | 1184 | datatime.append(time1) |
|
1179 | 1185 | datatime.append(time1 + interval) |
|
1180 | 1186 | |
|
1181 | 1187 | datatime = numpy.array(datatime) |
|
1182 | 1188 | |
|
1183 | 1189 | return datatime |
@@ -1,45 +1,48 | |||
|
1 | 1 | ''' |
|
2 | 2 | Created on Jul 16, 2014 |
|
3 | 3 | |
|
4 |
|
|
|
4 | @author: Miguel Urco | |
|
5 | 5 | ''' |
|
6 | 6 | |
|
7 | 7 | from schainpy import __version__ |
|
8 | 8 | from setuptools import setup, Extension |
|
9 | 9 | |
|
10 | 10 | setup(name="schainpy", |
|
11 | 11 | version=__version__, |
|
12 | 12 | description="Python tools to read, write and process Jicamarca data", |
|
13 | 13 | author="Miguel Urco", |
|
14 | 14 | author_email="miguel.urco@jro.igp.gob.pe", |
|
15 | 15 | url="http://jro.igp.gob.pe", |
|
16 | 16 | packages = {'schainpy', |
|
17 | 17 | 'schainpy.model', |
|
18 | 18 | 'schainpy.model.data', |
|
19 | 19 | 'schainpy.model.graphics', |
|
20 | 20 | 'schainpy.model.io', |
|
21 | 21 | 'schainpy.model.proc', |
|
22 | 22 | 'schainpy.model.serializer', |
|
23 | 23 | 'schainpy.model.utils', |
|
24 | 24 | 'schainpy.gui', |
|
25 | 25 | 'schainpy.gui.figures', |
|
26 | 26 | 'schainpy.gui.viewcontroller', |
|
27 | 27 | 'schainpy.gui.viewer', |
|
28 | 28 | 'schainpy.gui.viewer.windows'}, |
|
29 | ext_package='schainpy', | |
|
29 | 30 | py_modules=[''], |
|
30 | 31 | package_data={'': ['schain.conf.template'], |
|
31 | 32 | 'schainpy.gui.figures': ['*.png','*.jpg'], |
|
32 | 33 | }, |
|
33 | 34 | include_package_data=False, |
|
34 | 35 | scripts =['schainpy/gui/schainGUI', |
|
35 | 36 | 'schainpy/scripts/schain'], |
|
37 | ext_modules=[Extension("cSchain", ["schainpy/model/proc/extensions.c"])], | |
|
36 | 38 | install_requires=[ |
|
37 |
"scipy >= 0. |
|
|
38 |
"h5py >= 2. |
|
|
39 |
"matplotlib >= 1. |
|
|
40 |
"pyfits >= |
|
|
41 |
"numpy >= 1. |
|
|
42 | "paramiko", | |
|
43 |
"paho-mqtt" |
|
|
39 | "scipy >= 0.14.0", | |
|
40 | "h5py >= 2.2.1", | |
|
41 | "matplotlib >= 1.4.2", | |
|
42 | "pyfits >= 3.4", | |
|
43 | "numpy >= 1.11.2", | |
|
44 | "paramiko >= 2.1.2", | |
|
45 | "paho-mqtt >= 1.2", | |
|
46 | "zmq", | |
|
44 | 47 | ], |
|
45 | 48 | ) No newline at end of file |
General Comments 0
You need to be logged in to leave comments.
Login now